1
|
Anbiaee G, Feizpour R, Khoshbin Z, Ramezani M, Alibolandi M, Taghdisi SM, Abnous K. A simple tag-free fluorometric aptasensing assay for sensitive detection of kanamycin. Anal Biochem 2023; 672:115183. [PMID: 37169123 DOI: 10.1016/j.ab.2023.115183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/08/2023] [Accepted: 05/09/2023] [Indexed: 05/13/2023]
Abstract
A novel label-free and enzyme-free fluorescence aptasensing assay that uses Sybr Green I (SGI) as the signal indicator for the kanamycin determination was designed. An aptamer-complementary strand (Apt/CP) conjugate was formed, which provided the intercalation sites for SGI and, therefore, a considerable fluorescent signal. The introduction of the target led to the separation of Apt from CP due to the high affinity of Apt toward kanamycin. Hence, the suitable intercalation gaps reduced, which resulted in a decrease in the generated fluorescent signal. Under optimized conditions, a broad linear concentration range from 0.05 μM to 20 μM and a limit of detection of 11.76 nM were obtained, confirming the ability of the fabricated aptasensor for sensitive and specific kanamycin detection in real samples such as milk and human serum. The aptasensing method has the potential to be extensively employed in the food industry and veterinary science due to its simplicity, sensitivity, user-friendly, and capability of on-site detection of kanamycin.
Collapse
Affiliation(s)
- Ghasem Anbiaee
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Rozita Feizpour
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Khoshbin
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Ramezani
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mona Alibolandi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mohammad Taghdisi
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Khalil Abnous
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
2
|
Štukovnik Z, Bren U. Recent Developments in Electrochemical-Impedimetric Biosensors for Virus Detection. Int J Mol Sci 2022; 23:ijms232415922. [PMID: 36555560 PMCID: PMC9788240 DOI: 10.3390/ijms232415922] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/07/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Viruses, including influenza viruses, MERS-CoV (Middle East respiratory syndrome coronavirus), SARS-CoV (severe acute respiratory syndrome coronavirus), HAV (Hepatitis A virus), HBV (Hepatitis B virus), HCV (Hepatitis C virus), HIV (human immunodeficiency virus), EBOV (Ebola virus), ZIKV (Zika virus), and most recently SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2), are responsible for many diseases that result in hundreds of thousands of deaths yearly. The ongoing outbreak of the COVID-19 disease has raised a global concern and intensified research on the detection of viruses and virus-related diseases. Novel methods for the sensitive, rapid, and on-site detection of pathogens, such as the recent SARS-CoV-2, are critical for diagnosing and treating infectious diseases before they spread and affect human health worldwide. In this sense, electrochemical impedimetric biosensors could be applied for virus detection on a large scale. This review focuses on the recent developments in electrochemical-impedimetric biosensors for the detection of viruses.
Collapse
Affiliation(s)
- Zala Štukovnik
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, 2000 Maribor, Slovenia
| | - Urban Bren
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, 2000 Maribor, Slovenia
- Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska, Glagoljaška ulica 8, 6000 Koper, Slovenia
- Institute for Environmental Protection and Sensors, Beloruska ulica 7, 2000 Maribor, Slovenia
| |
Collapse
|
3
|
Chen R, Chen X, Liu H, Fang L, Chen B, Luan T. Developing a robust method integrating with selective membrane-based preconcentration and signal amplification for field virus detection. Anal Chim Acta 2022; 1229:340360. [PMID: 36156222 DOI: 10.1016/j.aca.2022.340360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 08/29/2022] [Accepted: 09/02/2022] [Indexed: 11/01/2022]
Abstract
Infectious diseases caused by viruses have attracted global concern owing to their rapid spread and catastrophic consequences. Therefore, developing fast and reliable on-site virus detection methods is essential for the prevention and treatment of virus-related diseases. In this study, immunoassays on a membrane, combining virus preconcentration with nanoparticle-based signal amplification, were used to realize the rapid and accurate visual detection of viruses. The biotin-streptavidin scaffolds for target virus preconcentration were established on a membrane, and subsequently a Zika aptamer (Apt) immobilized on the membrane recognized and captured the nonstructural protein 1 of Zika virus (ZIKV-NS1). The probe for detection was synthesized by conjugating the Zika Apt with a high level of horseradish peroxidase on gold nanoparticles. The ZIKV-loaded membrane was incubated with the probes, and the viral signal was amplified as the signal of horseradish peroxidase. In the presence of 3,3,5',5'-tetramethyl benzidine and hydrogen peroxide, the green color of the probe-coated membrane indicated the level of ZIKV-NS1. Our developed method could reach a detection limit of 5 ng mL-1, and the whole procedure could be completed within 1 h. Analyses of rabbit serum and environmental water samples demonstrated that an immunoassay-based approach on the membrane could accurately determine the level of ZIKV-NS1 against the complicated matrix. Our results suggest that this virus detection method has a high potential for application in clinical and environmental settings.
Collapse
Affiliation(s)
- Ruohong Chen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Xingni Chen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Hongtao Liu
- Instrumental Analysis & Research Center, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Ling Fang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China; Instrumental Analysis & Research Center, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Baowei Chen
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University, Guangzhou, 510276, China.
| | - Tiangang Luan
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China; Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 510006, China; School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China.
| |
Collapse
|
4
|
Tsai YS, Wang CH, Tsai HP, Shan YS, Lee GB. Electromagnetically-driven integrated microfluidic platform using reverse transcription loop-mediated isothermal amplification for detection of severe acute respiratory syndrome coronavirus 2. Anal Chim Acta 2022; 1219:340036. [PMID: 35715135 PMCID: PMC9167649 DOI: 10.1016/j.aca.2022.340036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 06/02/2022] [Accepted: 06/02/2022] [Indexed: 11/25/2022]
Abstract
Rapid, sensitive and accurate diagnosis of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is of great need for effective quarantining and treatment. Real-time reverse-transcription polymerase chain reaction requiring thermocyling has been commonly used for diagnosis of SARS-CoV-2 though it may take two to 4 h before lengthy sample pretreatment process and require bulky apparatus and well-trained personnel. Since multiple reverse transcription loop-mediated isothermal amplification (multiple RT-LAMP) process without thermocycling is sensitive, specific and fast, an electromagnetically-driven microfluidic chip (EMC) was developed herein to lyse SARS-CoV-2 viruses, extract their RNAs, and perform qualitative analysis of three marker genes by on-chip multiple RT-LAMP in an automatic format within 82 min at a limit of detection of only ∼5000 copies per reaction (i.e. 200 virus/ μL). This compact EMC may be especially promising for SARS-CoV-2 diagnostics in resource-limited countries.
Collapse
Affiliation(s)
- Yu-Shiuan Tsai
- Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Chih-Hung Wang
- Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Huey-Pin Tsai
- Department of Pathology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yan-Shen Shan
- Institute of Clinical Medicine, National Cheng Kung University Hospital, National Cheng Kung University, Tainan, Taiwan; Division of General Surgery, Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Gwo-Bin Lee
- Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu, Taiwan; Institute of NanoEngineering and Microsystems, National Tsing Hua University, Hsinchu, Taiwan.
| |
Collapse
|
5
|
Kabay G, DeCastro J, Altay A, Smith K, Lu HW, Capossela AM, Moarefian M, Aran K, Dincer C. Emerging Biosensing Technologies for the Diagnostics of Viral Infectious Diseases. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2201085. [PMID: 35288985 DOI: 10.1002/adma.202201085] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Indexed: 06/14/2023]
Abstract
Several viral infectious diseases appear limitless since the beginning of the 21st century, expanding into pandemic lengths. Thus, there are extensive efforts to provide more efficient means of diagnosis, a better understanding of acquired immunity, and improved monitoring of inflammatory biomarkers, as these are all crucial for controlling the spread of infection while aiding in vaccine development and improving patient outcomes. In this regard, various biosensors have been developed recently to streamline pathogen and immune response detection by addressing the limitations of traditional methods, including isothermal amplification-based systems and lateral flow assays. This review explores state-of-the-art biosensors for detecting viral pathogens, serological assays, and inflammatory biomarkers from the material perspective, by discussing their advantages, limitations, and further potential regarding their analytical performance, clinical utility, and point-of-care adaptability. Additionally, next-generation biosensing technologies that offer better sensitivity and selectivity, and easy handling for end-users are highlighted. An emerging example of these next-generation biosensors are those powered by novel synthetic biology tools, such as clustered regularly interspaced short palindromic repeats (CRISPR) with CRISPR-associated proteins (Cas), in combination with integrated point-of-care devices. Lastly, the current challenges are discussed and a roadmap for furthering these advanced biosensing technologies to manage future pandemics is provided.
Collapse
Affiliation(s)
- Gözde Kabay
- FIT Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, 79110, Freiburg, Germany
- Department of Microsystems Engineering - IMTEK, University of Freiburg, 79110, Freiburg, Germany
- Institute of Functional Interfaces - IFG, Karlsruhe Institute of Technology, 76344, Karlsruhe, Germany
| | - Jonalyn DeCastro
- The Claremont Colleges, Keck Graduate Institute, Claremont, CA, 91711, USA
| | - Alara Altay
- FIT Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, 79110, Freiburg, Germany
- Department of Microsystems Engineering - IMTEK, University of Freiburg, 79110, Freiburg, Germany
| | - Kasey Smith
- The Claremont Colleges, Keck Graduate Institute, Claremont, CA, 91711, USA
| | - Hsiang-Wei Lu
- The Claremont Colleges, Keck Graduate Institute, Claremont, CA, 91711, USA
| | | | - Maryam Moarefian
- The Claremont Colleges, Keck Graduate Institute, Claremont, CA, 91711, USA
| | - Kiana Aran
- The Claremont Colleges, Keck Graduate Institute, Claremont, CA, 91711, USA
- Cardea Bio Inc., San Diego, CA, 92121, USA
| | - Can Dincer
- FIT Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, 79110, Freiburg, Germany
- Department of Microsystems Engineering - IMTEK, University of Freiburg, 79110, Freiburg, Germany
| |
Collapse
|
6
|
Mikuła E, Katrlík J, Rodrigues LR. Electrochemical Aptasensors for Parkinson's Disease Biomarkers Detection. Curr Med Chem 2022; 29:5795-5814. [PMID: 35619313 DOI: 10.2174/0929867329666220520123337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 02/07/2022] [Accepted: 03/10/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Biomarkers are characteristic molecules that can be measured as indicators of biological process status or condition, exhibiting special relevance in Parkinson's Disease (PD). This disease is a chronic neurodegenerative disorder very difficult to study given the site of pathology and due to a clinical phenotype that fluctuates over time. Currently there is no definitive diagnostic test, thus clinicians hope that the detection of crucial biomarkers will help to the symptomatic and presymptomatic diagnostics and providing surrogate endpoints to demonstrate the clinical efficacy of new treatments. METHODS Electrochemical aptasensors are excellent analytical tools that are used in the detection of PD biomarkers, as they are portable, easy to use, and perform real-time analysis. RESULTS In this review, we discuss the most important clinical biomarkers for PD, highlighting their physiological role and function in the disease. Herein, we review for the first time innovative aptasensors for the detection of current potential PD biomarkers based on electrochemical techniques and discuss future alternatives, including ideal analytical platforms for point-of-care diagnostics. CONCLUSION These new tools will be critical not only in the discovery of sensitive, specific, and reliable biomarkers of preclinical PD, but also in the development of tests that can assist in the early detection and differential diagnosis of parkinsonian disorders and in monitoring disease progression. Various methods for fixing aptamers onto the sensor surfaces, enabling quantitative and specific PD biomarker detection present in synthetic and clinical samples, will also be discussed.
Collapse
Affiliation(s)
- Edyta Mikuła
- Department of Biosensors, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland
| | - Jaroslav Katrlík
- Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, 84538 Bratislava, Slovakia
| | - Ligia R Rodrigues
- Centre of Biological Engineering, Universidade do Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| |
Collapse
|
7
|
Patil PJ, Sutar SS, Usman M, Patil DN, Dhanavade MJ, Shehzad Q, Mehmood A, Shah H, Teng C, Zhang C, Li X. Exploring bioactive peptides as potential therapeutic and biotechnology treasures: A contemporary perspective. Life Sci 2022; 301:120637. [PMID: 35568229 DOI: 10.1016/j.lfs.2022.120637] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 05/02/2022] [Accepted: 05/09/2022] [Indexed: 12/21/2022]
Abstract
In preceding years, bioactive peptides (BAPs) have piqued escalating attention owing to their multitudinous biological features. To date, many potential BAPs exhibiting anti-cancer activities have been documented; yet, obstacles such as their safety profiles and consumer acceptance continue to exist. Moreover, BAPs have been discovered to facilitate the suppression of Coronavirus Disease 2019 (CoVID-19) and maybe ideal for treating the CoVID-19 infection, as stated by published experimental findings, but their widespread knowledge is scarce. Likewise, there is a cornucopia of BAPs possessing neuroprotective effects that mend neurodegenerative diseases (NDs) by regulating gut microbiota, but they remain a subject of research interest. Additionally, a plethora of researchers have attempted next-generation approaches based on BAPs, but they need scientific attention. The text format of this critical review is organized around an overview of BAPs' versatility and diverse bio functionalities with emphasis on recent developments and novelties. The review is alienated into independent sections, which are related to either BAPs based disease management strategies or next-generation BAPs based approaches. BAPs based anti-cancer, anti-CoVID-19, and neuroprotective strategies have been explored, which may offer insights that could help the researchers and industries to find an alternate regimen against the three aforementioned fatal diseases. To the best of our knowledge, this is the first review that has systematically discussed the next-generation approaches in BAP research. Furthermore, it can be concluded that the BAPs may be optimal for the management of cancer, CoVID-19, and NDs; nevertheless, experimental and preclinical studies are crucial to validate their therapeutic benefits.
Collapse
Affiliation(s)
- Prasanna J Patil
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China; School of Food and Health, Beijing Technology and Business University, No. 11, Fucheng Road, Beijing 100048, China
| | - Shubham S Sutar
- Department of Biotechnology, Shivaji University, Vidyanagar, Kolhapur, Maharashtra 416004, India
| | - Muhammad Usman
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China; School of Food and Health, Beijing Technology and Business University, No. 11, Fucheng Road, Beijing 100048, China
| | - Devashree N Patil
- Department of Biotechnology, Shivaji University, Vidyanagar, Kolhapur, Maharashtra 416004, India
| | - Maruti J Dhanavade
- Department of Microbiology, Bharati Vidyapeeth's Dr. Patangrao Kadam Mahavidyalaya, Sangli, Maharashtra 416416, India
| | - Qayyum Shehzad
- National Engineering Laboratory for Agri-Product Quality Traceability, Beijing Technology and Business University, Beijing 100048, China
| | - Arshad Mehmood
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China; School of Food and Health, Beijing Technology and Business University, No. 11, Fucheng Road, Beijing 100048, China; Beijing Engineering and Technology Research Center of Food Additives, School of Food and Chemical Technology, Beijing Technology and Business University, Beijing 100048, China
| | - Haroon Shah
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China; School of Food and Health, Beijing Technology and Business University, No. 11, Fucheng Road, Beijing 100048, China
| | - Chao Teng
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China; School of Food and Health, Beijing Technology and Business University, No. 11, Fucheng Road, Beijing 100048, China; Beijing Engineering and Technology Research Center of Food Additives, School of Food and Chemical Technology, Beijing Technology and Business University, Beijing 100048, China
| | - Chengnan Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China; School of Food and Health, Beijing Technology and Business University, No. 11, Fucheng Road, Beijing 100048, China; Beijing Engineering and Technology Research Center of Food Additives, School of Food and Chemical Technology, Beijing Technology and Business University, Beijing 100048, China.
| | - Xiuting Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China; School of Food and Health, Beijing Technology and Business University, No. 11, Fucheng Road, Beijing 100048, China; Beijing Engineering and Technology Research Center of Food Additives, School of Food and Chemical Technology, Beijing Technology and Business University, Beijing 100048, China.
| |
Collapse
|
8
|
Zhdanov GA, Gribanyov DA, Gambaryan AS, Kukushkin VI, Zavyalova EG. Using a Biosensor Based on Surface-Enhanced Raman Scattering to Identify Influenza Viruses in Biological Fluids. BULLETIN OF THE RUSSIAN ACADEMY OF SCIENCES: PHYSICS 2022. [PMCID: PMC9109670 DOI: 10.3103/s1062873822040293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Biosensors based on the effect of surface-enhanced Raman scattering obtained on silver nanoclusters modified with DNA aptamers allow viruses to be detected with high sensitivity. However, measurements in biological media are complicated by the nonspecific sorption of biomolecules on silver. Conditions for preparing samples of biological fluids that allow the nonspecific sorption of biomolecules to be nullified are studied.
Collapse
|
9
|
Zhang Z, Ma P, Ahmed R, Wang J, Akin D, Soto F, Liu BF, Li P, Demirci U. Advanced Point-of-Care Testing Technologies for Human Acute Respiratory Virus Detection. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2103646. [PMID: 34623709 DOI: 10.1002/adma.202103646] [Citation(s) in RCA: 76] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 08/25/2021] [Indexed: 04/14/2023]
Abstract
The ever-growing global threats to human life caused by the human acute respiratory virus (RV) infections have cost billions of lives, created a significant economic burden, and shaped society for centuries. The timely response to emerging RVs could save human lives and reduce the medical care burden. The development of RV detection technologies is essential for potentially preventing RV pandemic and epidemics. However, commonly used detection technologies lack sensitivity, specificity, and speed, thus often failing to provide the rapid turnaround times. To address this problem, new technologies are devised to address the performance inadequacies of the traditional methods. These emerging technologies offer improvements in convenience, speed, flexibility, and portability of point-of-care test (POCT). Herein, recent developments in POCT are comprehensively reviewed for eight typical acute respiratory viruses. This review discusses the challenges and opportunities of various recognition and detection strategies and discusses these according to their detection principles, including nucleic acid amplification, optical POCT, electrochemistry, lateral flow assays, microfluidics, enzyme-linked immunosorbent assays, and microarrays. The importance of limits of detection, throughput, portability, and specificity when testing clinical samples in resource-limited settings is emphasized. Finally, the evaluation of commercial POCT kits for both essential RV diagnosis and clinical-oriented practices is included.
Collapse
Affiliation(s)
- Zhaowei Zhang
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, National Reference Laboratory for Agricultural Testing (Biotoxin), Key Laboratory of Biology and Genetic Improvement of Oil Crops, Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture and Rural Affairs, Wuhan, 430062, P. R. China
- Bio-Acoustic MEMS in Medicine (BAMM) Laboratory, Canary Center at Stanford for Cancer Early Detection, Department of Radiology, Stanford School of Medicine, Palo Alto, CA, 94304, USA
| | - Peng Ma
- Bio-Acoustic MEMS in Medicine (BAMM) Laboratory, Canary Center at Stanford for Cancer Early Detection, Department of Radiology, Stanford School of Medicine, Palo Alto, CA, 94304, USA
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Rajib Ahmed
- Bio-Acoustic MEMS in Medicine (BAMM) Laboratory, Canary Center at Stanford for Cancer Early Detection, Department of Radiology, Stanford School of Medicine, Palo Alto, CA, 94304, USA
| | - Jie Wang
- Bio-Acoustic MEMS in Medicine (BAMM) Laboratory, Canary Center at Stanford for Cancer Early Detection, Department of Radiology, Stanford School of Medicine, Palo Alto, CA, 94304, USA
| | - Demir Akin
- Bio-Acoustic MEMS in Medicine (BAMM) Laboratory, Canary Center at Stanford for Cancer Early Detection, Department of Radiology, Stanford School of Medicine, Palo Alto, CA, 94304, USA
| | - Fernando Soto
- Bio-Acoustic MEMS in Medicine (BAMM) Laboratory, Canary Center at Stanford for Cancer Early Detection, Department of Radiology, Stanford School of Medicine, Palo Alto, CA, 94304, USA
| | - Bi-Feng Liu
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Peiwu Li
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, National Reference Laboratory for Agricultural Testing (Biotoxin), Key Laboratory of Biology and Genetic Improvement of Oil Crops, Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture and Rural Affairs, Wuhan, 430062, P. R. China
| | - Utkan Demirci
- Bio-Acoustic MEMS in Medicine (BAMM) Laboratory, Canary Center at Stanford for Cancer Early Detection, Department of Radiology, Stanford School of Medicine, Palo Alto, CA, 94304, USA
| |
Collapse
|
10
|
Hashem A, Hossain MAM, Marlinda AR, Mamun MA, Sagadevan S, Shahnavaz Z, Simarani K, Johan MR. Nucleic acid-based electrochemical biosensors for rapid clinical diagnosis: Advances, challenges, and opportunities. Crit Rev Clin Lab Sci 2021; 59:156-177. [PMID: 34851806 DOI: 10.1080/10408363.2021.1997898] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Clinical diagnostic tests should be quick, reliable, simple to perform, and affordable for diagnosis and treatment of diseases. In this regard, owing to their novel properties, biosensors have attracted the attention of scientists as well as end-users. They are efficient, stable, and relatively cheap. Biosensors have broad applications in medical diagnosis, including point-of-care (POC) monitoring, forensics, and biomedical research. The electrochemical nucleic acid (NA) biosensor, the latest invention in this field, combines the sensitivity of electroanalytical methods with the inherent bioselectivity of deoxyribonucleic acid (DNA) and ribonucleic acid (RNA). The NA biosensor exploits the affinity of single-stranded DNA/RNA for its complementary strand and is used to detect complementary sequences of NA based on hybridization. After the NA component in the sensor detects the analyte, a catalytic reaction or binding event that generates an electrical signal in the transducer ensues. Since 2000, much progress has been made in this field, but there are still numerous challenges. This critical review describes the advances, challenges, and prospects of NA-based electrochemical biosensors for clinical diagnosis. It includes the basic principles, classification, sensing enhancement strategies, and applications of biosensors as well as their advantages, limitations, and future prospects, and thus it should be useful to academics as well as industry in the improvement and application of EC NA biosensors.
Collapse
Affiliation(s)
- Abu Hashem
- Nanotechnology and Catalysis Research Centre, Institute for Advanced Studies, University of Malaya, Kuala Lumpur, Malaysia.,Microbial Biotechnology Division, National Institute of Biotechnology, Dhaka, Bangladesh
| | - M A Motalib Hossain
- Nanotechnology and Catalysis Research Centre, Institute for Advanced Studies, University of Malaya, Kuala Lumpur, Malaysia
| | - Ab Rahman Marlinda
- Nanotechnology and Catalysis Research Centre, Institute for Advanced Studies, University of Malaya, Kuala Lumpur, Malaysia
| | - Mohammad Al Mamun
- Nanotechnology and Catalysis Research Centre, Institute for Advanced Studies, University of Malaya, Kuala Lumpur, Malaysia.,Department of Chemistry, Jagannath University, Dhaka, Bangladesh
| | - Suresh Sagadevan
- Nanotechnology and Catalysis Research Centre, Institute for Advanced Studies, University of Malaya, Kuala Lumpur, Malaysia
| | - Zohreh Shahnavaz
- Nanotechnology and Catalysis Research Centre, Institute for Advanced Studies, University of Malaya, Kuala Lumpur, Malaysia
| | - Khanom Simarani
- Department of Microbiology, Institute of Biological Sciences, Faculty of Sciences, University of Malaya, Kuala Lumpur, Malaysia
| | - Mohd Rafie Johan
- Nanotechnology and Catalysis Research Centre, Institute for Advanced Studies, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
11
|
Belza J, Opletalová A, Poláková K. Carbon dots for virus detection and therapy. Mikrochim Acta 2021; 188:430. [PMID: 34822008 PMCID: PMC8613466 DOI: 10.1007/s00604-021-05076-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 11/02/2021] [Indexed: 12/11/2022]
Abstract
Recent experience with the COVID-19 pandemic should be a lesson learnt with respect to the effort we have to invest in the development of new strategies for the treatment of viral diseases, along with their cheap, easy, sensitive, and selective detection. Since we live in a globalized world where just hours can play a crucial role in the spread of a virus, its detection must be as quick as possible. Thanks to their chemical stability, photostability, and superior biocompatibility, carbon dots are a kind of nanomaterial showing great potential in both the detection of various virus strains and a broad-spectrum antiviral therapy. The biosensing and antiviral properties of carbon dots can be tuned by the selection of synthesis precursors as well as by easy post-synthetic functionalization. In this review, we will first summarize current options of virus detection utilizing carbon dots by either electrochemical or optical biosensing approaches. Secondly, we will cover and share the up-to-date knowledge of carbon dots' antiviral properties, which showed promising activity against various types of viruses including SARS-CoV-2. The mechanisms of their antiviral actions will be further adressed as well. Finally, we will discuss the advantages and distadvantages of the use of carbon dots in the tangled battle against viral infections in order to provide valuable informations for further research and development of new virus biosensors and antiviral therapeutics.
Collapse
Affiliation(s)
- Jan Belza
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Šlechtitelů 27, 779 00, Olomouc, Czech Republic
- Department of Physical Chemistry, Faculty of Science, Palacký University Olomouc, 17. listopadu 1192/12, 771 00, Olomouc, Czech Republic
| | - Ariana Opletalová
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Šlechtitelů 27, 779 00, Olomouc, Czech Republic
| | - Kateřina Poláková
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Šlechtitelů 27, 779 00, Olomouc, Czech Republic.
| |
Collapse
|
12
|
|
13
|
Krüger A, de Jesus Santos AP, de Sá V, Ulrich H, Wrenger C. Aptamer Applications in Emerging Viral Diseases. Pharmaceuticals (Basel) 2021; 14:ph14070622. [PMID: 34203242 PMCID: PMC8308861 DOI: 10.3390/ph14070622] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 05/31/2021] [Accepted: 06/01/2021] [Indexed: 02/07/2023] Open
Abstract
Aptamers are single-stranded DNA or RNA molecules which are submitted to a process denominated SELEX. SELEX uses reiterative screening of a random oligonucleotide library to identify high-affinity binders to a chosen target, which may be a peptide, protein, or entire cells or viral particles. Aptamers can rival antibodies in target recognition, and benefit from their non-proteic nature, ease of modification, increased stability, and pharmacokinetic properties. This turns them into ideal candidates for diagnostic as well as therapeutic applications. Here, we review the recent accomplishments in the development of aptamers targeting emerging viral diseases, with emphasis on recent findings of aptamers binding to coronaviruses. We focus on aptamer development for diagnosis, including biosensors, in addition to aptamer modifications for stabilization in body fluids and tissue penetration. Such aptamers are aimed at in vivo diagnosis and treatment, such as quantification of viral load and blocking host cell invasion, virus assembly, or replication, respectively. Although there are currently no in vivo applications of aptamers in combating viral diseases, such strategies are promising for therapy development in the future.
Collapse
Affiliation(s)
- Arne Krüger
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000-SP, Brazil;
| | - Ana Paula de Jesus Santos
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo 05508-900-SP, Brazil; (A.P.d.J.S.); (V.d.S.)
| | - Vanessa de Sá
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo 05508-900-SP, Brazil; (A.P.d.J.S.); (V.d.S.)
| | - Henning Ulrich
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo 05508-900-SP, Brazil; (A.P.d.J.S.); (V.d.S.)
- Correspondence: (H.U.); (C.W.)
| | - Carsten Wrenger
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000-SP, Brazil;
- Correspondence: (H.U.); (C.W.)
| |
Collapse
|
14
|
Goud KY, Reddy KK, Khorshed A, Kumar VS, Mishra RK, Oraby M, Ibrahim AH, Kim H, Gobi KV. Electrochemical diagnostics of infectious viral diseases: Trends and challenges. Biosens Bioelectron 2021; 180:113112. [PMID: 33706158 PMCID: PMC7921732 DOI: 10.1016/j.bios.2021.113112] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/06/2021] [Accepted: 02/22/2021] [Indexed: 02/07/2023]
Abstract
Infectious diseases caused by viruses can elevate up to undesired pandemic conditions affecting the global population and normal life function. These in turn impact the established world economy, create jobless situations, physical, mental, emotional stress, and challenge the human survival. Therefore, timely detection, treatment, isolation and prevention of spreading the pandemic infectious diseases not beyond the originated town is critical to avoid global impairment of life (e.g., Corona virus disease - 2019, COVID-19). The objective of this review article is to emphasize the recent advancements in the electrochemical diagnostics of twelve life-threatening viruses namely - COVID-19, Middle east respiratory syndrome (MERS), Severe acute respiratory syndrome (SARS), Influenza, Hepatitis, Human immunodeficiency virus (HIV), Human papilloma virus (HPV), Zika virus, Herpes simplex virus, Chikungunya, Dengue, and Rotavirus. This review describes the design, principle, underlying rationale, receptor, and mechanistic aspects of sensor systems reported for such viruses. Electrochemical sensor systems which comprised either antibody or aptamers or direct/mediated electron transfer in the recognition matrix were explicitly segregated into separate sub-sections for critical comparison. This review emphasizes the current challenges involved in translating laboratory research to real-world device applications, future prospects and commercialization aspects of electrochemical diagnostic devices for virus detection. The background and overall progress provided in this review are expected to be insightful to the researchers in sensor field and facilitate the design and fabrication of electrochemical sensors for life-threatening viruses with broader applicability to any desired pathogens.
Collapse
Affiliation(s)
- K Yugender Goud
- Department of NanoEngineering, University of California San Diego, La Jolla, CA, 92093, USA.
| | - K Koteshwara Reddy
- Smart Living Innovation Technology Centre, Department of Energy Science and Technology, Myongji University, Yongin, Gyeonggi-do, 17058, Republic of Korea.
| | - Ahmed Khorshed
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Sohag University, Sohag, 82524, Egypt.
| | - V Sunil Kumar
- Department of Chemistry, National Institute of Technology Warangal, Telangana, 506004, India
| | - Rupesh K Mishra
- Department of NanoEngineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Mohamed Oraby
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Sohag University, Sohag, 82524, Egypt
| | - Alyaa Hatem Ibrahim
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Sohag University, Sohag, 82524, Egypt
| | - Hern Kim
- Smart Living Innovation Technology Centre, Department of Energy Science and Technology, Myongji University, Yongin, Gyeonggi-do, 17058, Republic of Korea.
| | - K Vengatajalabathy Gobi
- Department of Chemistry, National Institute of Technology Warangal, Telangana, 506004, India.
| |
Collapse
|
15
|
Han C, Li Q, Ji H, Xing W, Zhang L, Zhang L. Aptamers: The Powerful Molecular Tools for Virus Detection. Chem Asian J 2021; 16:1298-1306. [PMID: 33851522 DOI: 10.1002/asia.202100242] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/11/2021] [Indexed: 01/23/2023]
Abstract
Aptamers are short single-stranded DNA or RNA oligonucleotides selected by the technique of systematic evolution of ligands by exponential enrichment (SELEX). Aptamers have been demonstrated to bind various targets from small-molecule to cells or even tissues in the way of antibodies. Thus, they are called chemical antibodies. We summarize and evaluate recent developments in aptamer-based sensors (for short aptasensors) for virus detection in this review. These aptasensors are mainly classified into optical and electronic aptasensors based on the type of transducer. Nowadays, the smartphone has become the most widely used mobile device with billions of users worldwide. Considering the ongoing COVID-19 outbreak, smartphone-based aptasensors for a portable and point-of-care test (POCT) of COVID-19 detection will be of great importance in the future.
Collapse
Affiliation(s)
- Cong Han
- State Key Laboratory of Medicinal Chemical biology, College of Life Sciences, Nankai University, Tianjin, 300350, P. R. China
| | - Qian Li
- State Key Laboratory of Medicinal Chemical biology, College of Pharmacy, Nankai University, Tianjin, 300350, P. R. China
| | - Haishuo Ji
- State Key Laboratory of Medicinal Chemical biology, College of Pharmacy, Nankai University, Tianjin, 300350, P. R. China
| | - Wenping Xing
- State Key Laboratory of Medicinal Chemical biology, College of Pharmacy, Nankai University, Tianjin, 300350, P. R. China
| | - Limin Zhang
- Department of Internal Medicine, Leling Hospital of Traditional Chinese Medicine, Shandong, 253600, P. R. China
| | - Liyun Zhang
- State Key Laboratory of Medicinal Chemical biology, College of Life Sciences, Nankai University, Tianjin, 300350, P. R. China
| |
Collapse
|
16
|
Gribanyov D, Zhdanov G, Olenin A, Lisichkin G, Gambaryan A, Kukushkin V, Zavyalova E. SERS-Based Colloidal Aptasensors for Quantitative Determination of Influenza Virus. Int J Mol Sci 2021; 22:1842. [PMID: 33673314 PMCID: PMC7918581 DOI: 10.3390/ijms22041842] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/07/2021] [Accepted: 02/09/2021] [Indexed: 02/06/2023] Open
Abstract
Development of sensitive techniques for rapid detection of viruses is on a high demand. Surface-enhanced Raman spectroscopy (SERS) is an appropriate tool for new techniques due to its high sensitivity. DNA aptamers are short structured oligonucleotides that can provide specificity for SERS biosensors. Existing SERS-based aptasensors for rapid virus detection had several disadvantages. Some of them lacked possibility of quantitative determination, while others had sophisticated and expensive implementation. In this paper, we provide a new approach that combines rapid specific detection and the possibility of quantitative determination of viruses using the example of influenza A virus.
Collapse
Affiliation(s)
- Dmitry Gribanyov
- Institute of Solid State Physics of Russian Academy of Science, 142432 Chernogolovka, Russia;
| | - Gleb Zhdanov
- Chemistry Department, Lomonosov Moscow State University, 119991 Moscow, Russia; (G.Z.); (A.O.); (G.L.)
| | - Andrei Olenin
- Chemistry Department, Lomonosov Moscow State University, 119991 Moscow, Russia; (G.Z.); (A.O.); (G.L.)
| | - Georgii Lisichkin
- Chemistry Department, Lomonosov Moscow State University, 119991 Moscow, Russia; (G.Z.); (A.O.); (G.L.)
| | - Alexandra Gambaryan
- Chumakov Federal Scientific Center for Research and Development of Immune and Biological Products RAS, 108819 Moscow, Russia;
| | - Vladimir Kukushkin
- Institute of Solid State Physics of Russian Academy of Science, 142432 Chernogolovka, Russia;
| | - Elena Zavyalova
- Chemistry Department, Lomonosov Moscow State University, 119991 Moscow, Russia; (G.Z.); (A.O.); (G.L.)
| |
Collapse
|
17
|
Antiochia R. Developments in biosensors for CoV detection and future trends. Biosens Bioelectron 2021; 173:112777. [PMID: 33189015 PMCID: PMC7591947 DOI: 10.1016/j.bios.2020.112777] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 10/24/2020] [Accepted: 10/27/2020] [Indexed: 12/24/2022]
Abstract
This review summarizes the state of art of biosensor technology for Coronavirus (CoV) detection, the current challenges and the future perspectives. Three categories of affinity-based biosensors (ABBs) have been developed, depending on their transduction mechanism, namely electrochemical, optical and piezoelectric biosensors. The biorecognition elements include antibodies and DNA, which undergo important non-covalent binding interactions, with the formation of antigen-antibody and ssDNA/oligonucleotide-complementary strand complexes in immuno- and DNA-sensors, respectively. The analytical performances, the advantages and drawbacks of each type of biosensor are highlighted, discussed, and compared to traditional methods. It is hoped that this review will encourage scientists and academics to design and develop new biosensing platforms for point-of-care (POC) diagnostics to manage the coronavirus disease 2019 (COVID-19) pandemic, providing interesting reference for future studies.
Collapse
Affiliation(s)
- Riccarda Antiochia
- Department of Chemistry and Drug Technologies, Sapienza University of Rome, P.le Aldo Moro 5, 00185, Rome, Italy.
| |
Collapse
|
18
|
Kim SM, Kim J, Noh S, Sohn H, Lee T. Recent Development of Aptasensor for Influenza Virus Detection. BIOCHIP JOURNAL 2020; 14:327-339. [PMID: 33224441 PMCID: PMC7670017 DOI: 10.1007/s13206-020-4401-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 09/22/2020] [Indexed: 12/27/2022]
Abstract
In nowadays, we have entered the new era of pandemics and the significance of virus detection deeply impacts human society. Viruses with genetic mutations are reported nearly every year, and people have prepared tools to detect the virus and vaccines to ensure proper treatments. Influenza virus (IV) is one of the most harmful viruses reporting various mutations, sub-types, and rapid infection speed for humans and animals including swine and poultry. Moreover, IV infection presents several harmful symptoms including cough, fever, diarrhea, chills, even causing death. To reduce the IV-induced harm, its proper and rapid detection is highly required. Conventional techniques were used against various IV sub-types including H1N1, H3N2, and H5N1. However, some of the techniques are time-consuming, expensive, or labor-intensive for detecting IV. Recently, the nucleic acid-based aptamer has gained attention as a novel bioprobe for constructing a biosensor. In this review, the authors discuss the recent progress in aptasensors for detecting IV in terms of an electrochemical and an optical biosensor.
Collapse
Affiliation(s)
- Soo Min Kim
- Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-ro, Nowon-gu, Seoul, 01899 Republic of Korea
| | - Jinmyeong Kim
- Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-ro, Nowon-gu, Seoul, 01899 Republic of Korea
| | - Seungwoo Noh
- Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-ro, Nowon-gu, Seoul, 01899 Republic of Korea
| | - Hiesang Sohn
- Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-ro, Nowon-gu, Seoul, 01899 Republic of Korea
| | - Taek Lee
- Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-ro, Nowon-gu, Seoul, 01899 Republic of Korea
| |
Collapse
|
19
|
Abstract
Aptasensors form a class of biosensors that function on the basis of a biological recognition. An aptasensor is advantageous because it incorporates a unique biologic recognition element, i.e., an aptamer, coupled to a transducer to convert a biological interaction to readable signals that can be easily processed and reported. In such biosensors, the specificity of aptamers is comparable to and sometimes even better than that of antibodies. Using the SELEX technique, aptamers with high specificity and affinity to various targets can be isolated from large pools of different oligonucleotides. Nowadays, new modifications of the SELEX technique and, as a result, easy generation and synthesis of aptamers have led to the wide application of these materials as biological receptors in biosensors. In this regard, aptamers promise a bright future. In the present research a brief account is initially provided of the recent developments in aptasensors for various targets. Then, immobilization methods, design strategies, current limitations and future directions are discussed for aptasensors.
Collapse
Affiliation(s)
- Laleh Hosseinzadeh
- Department of Chemistry, Dehloran Branch, Islamic Azad University, Dehloran, Iran
| | | |
Collapse
|
20
|
Peters R, Stevenson M. Immunological detection of Zika virus: A summary in the context of general viral diagnostics. J Microbiol Methods 2020. [DOI: 10.1016/bs.mim.2019.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
21
|
Malik YS, Verma AK, Kumar N, Touil N, Karthik K, Tiwari R, Bora DP, Dhama K, Ghosh S, Hemida MG, Abdel-Moneim AS, Bányai K, Vlasova AN, Kobayashi N, Singh RK. Advances in Diagnostic Approaches for Viral Etiologies of Diarrhea: From the Lab to the Field. Front Microbiol 2019; 10:1957. [PMID: 31608017 PMCID: PMC6758846 DOI: 10.3389/fmicb.2019.01957] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 08/08/2019] [Indexed: 12/25/2022] Open
Abstract
The applications of correct diagnostic approaches play a decisive role in timely containment of infectious diseases spread and mitigation of public health risks. Nevertheless, there is a need to update the diagnostics regularly to capture the new, emergent, and highly divergent viruses. Acute gastroenteritis of viral origin has been identified as a significant cause of mortality across the globe, with the more serious consequences seen at the extremes of age groups (young and elderly) and immune-compromised individuals. Therefore, significant advancements and efforts have been put in the development of enteric virus diagnostics to meet the WHO ASSURED criteria as a benchmark over the years. The Enzyme-Linked Immunosorbent (ELISA) and Polymerase Chain Reaction (PCR) are the basic assays that provided the platform for development of several efficient diagnostics such as real-time RT-PCR, loop-mediated isothermal amplification (LAMP), polymerase spiral reaction (PSR), biosensors, microarrays and next generation sequencing. Herein, we describe and discuss the applications of these advanced technologies in context to enteric virus detection by delineating their features, advantages and limitations.
Collapse
Affiliation(s)
- Yashpal Singh Malik
- Division of Biological Standardization, Indian Council of Agricultural Research-Indian Veterinary Research Institute, Izatnagar, India
| | - Atul Kumar Verma
- Division of Biological Standardization, Indian Council of Agricultural Research-Indian Veterinary Research Institute, Izatnagar, India
| | - Naveen Kumar
- ICAR-National Institute of High Security Animal Diseases, OIE Reference Laboratory for Avian Influenza, Bhopal, India
| | - Nadia Touil
- Laboratoire de Biosécurité et de Recherche, Hôpital Militaire d’Instruction Mohammed V, Rabat, Morocco
| | - Kumaragurubaran Karthik
- Central University Laboratory, Tamil Nadu Veterinary and Animal Sciences University, Chennai, India
| | - Ruchi Tiwari
- Department of Veterinary Microbiology & Immunology, College of Veterinary Sciences, DUVASU, Mathura, India
| | - Durlav Prasad Bora
- Department of Microbiology, College of Veterinary Science, Assam Agricultural University, Guwahati, India
| | - Kuldeep Dhama
- Division of Pathology, Indian Council of Agricultural Research-Indian Veterinary Research Institute, Izatnagar, India
| | - Souvik Ghosh
- Department of Biomedical Sciences, One Health Center for Zoonoses and Tropical Veterinary Medicine, Ross University School of Veterinary Medicine, Basseterre, Saint Kitts and Nevis
| | - Maged Gomaa Hemida
- Department of Microbiology and Parasitology, College of Veterinary Medicine, King Faisal University, Al-Hufuf, Saudi Arabia
- Department of Virology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Ahmed S. Abdel-Moneim
- Department of Microbiology, College of Medicine, Taif University, Taif, Saudi Arabia
- Department of Virology, Faculty of Veterinary Medicine, Beni Suef University, Beni Suef, Egypt
| | - Krisztián Bányai
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, Budapest, Hungary
| | - Anastasia N. Vlasova
- Food Animal Health Research Program, Department of Veterinary Preventive Medicine, CFAES, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH, United States
| | | | - Raj Kumar Singh
- Division of Biological Standardization, Indian Council of Agricultural Research-Indian Veterinary Research Institute, Izatnagar, India
| |
Collapse
|
22
|
Plasmonic nanoplatform for point-of-care testing trace HCV core protein. Biosens Bioelectron 2019; 147:111488. [PMID: 31350137 DOI: 10.1016/j.bios.2019.111488] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 06/18/2019] [Accepted: 06/29/2019] [Indexed: 12/29/2022]
Abstract
Early diagnosis of hepatitis C virus (HCV) infection is still urgently desired as there is a global healthy burden and no vaccine available. In this work, a plasmonic nanoplatform was engineered with catalytic hairpin assembly (CHA) amplification reaction specifically of HCV core protein (HCVcp), G-quadruplex/hemin DNAzyme and nanofibrous membrane together. HCVcp was detected in whole serum at the ultralow concentration of 1.0 × 10-4 pg/mL with naked eye. By testing serum samples from 30 donors with different viral loads, detection sensitivity of the plasmonic nanoplatform turned out to be much better than that of the commercial ELISA kit. In addition, the plasmonic nanoplatform exhibited high specificity, excellent reusability and long-term stability. Naked-eye detection based on the plasmonic nanoplatform is expected to have potential applications in point-of-care testing (POCT) and early diagnosis of hepatitis C and other infectious diseases.
Collapse
|
23
|
Zhou Q, Ouyang S, Ao Z, Sun J, Liu G, Hu X. Integrating Biolayer Interferometry, Atomic Force Microscopy, and Density Functional Theory Calculation Studies on the Affinity between Humic Acid Fractions and Graphene Oxide. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:3773-3781. [PMID: 30865825 DOI: 10.1021/acs.est.8b05232] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The interactions between nanoparticles and humic acid (HA) are critical to understanding the environmental risks and applications of nanoparticles. However, the interactions between HA fractions and graphene oxide (GO, a popular carbon nanosheet) at the molecular level remain largely unclear. Four HA fractions with molecular weights ranging from 4.6 to 23.8 kDa were separated, and the large HA fractions presented low oxygen contents and many aromatic structures. The binding constants of the large HA fractions on GO were 2.6- to 3551-fold higher than those of the small HA fractions, while the maximum adsorption capacities of the larger HA fractions onto GO were much higher. Atomic force microscopy (AFM) found that the small and large HA fractions were spread over the center and the edge of the GO nanosheets, respectively. Density functional theory (DFT) simulation and nuclear magnetic resonance spectroscopy confirmed the above phenomena (three adsorption patterns, "vs", "ps", and "pea") and revealed that HA bonded to the GO nanosheets mainly through van der Waals force and π-π interactions. The integrating analysis of binding affinity, AFM, and DFT provides new insights into the environmental behavior of GO and the applications of GO in pollutant removal under exposure from HA.
Collapse
Affiliation(s)
- Qixing Zhou
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering , Nankai University , Tianjin 300350 , China
| | - Shaohu Ouyang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering , Nankai University , Tianjin 300350 , China
| | - Zhimin Ao
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Institute of Environmental Health and Pollution Control, School of Environmental Science and Engineering , Guangdong University of Technology , Guangzhou , 510006 , China
| | - Jing Sun
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering , Nankai University , Tianjin 300350 , China
| | - Guanlan Liu
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Institute of Environmental Health and Pollution Control, School of Environmental Science and Engineering , Guangdong University of Technology , Guangzhou , 510006 , China
| | - Xiangang Hu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering , Nankai University , Tianjin 300350 , China
| |
Collapse
|
24
|
Kim SH, Lee J, Lee BH, Song CS, Gu MB. Specific detection of avian influenza H5N2 whole virus particles on lateral flow strips using a pair of sandwich-type aptamers. Biosens Bioelectron 2019; 134:123-129. [PMID: 30986614 DOI: 10.1016/j.bios.2019.03.061] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 03/17/2019] [Accepted: 03/27/2019] [Indexed: 11/25/2022]
Abstract
We report a selection of a cognate pair of aptamers for whole avian influenza virus particles of H5N2 by using graphene-oxide based systemic evolution of ligands by exponential enrichment (GO-SELEX), and the application of a pair of sandwich-type binding aptamers on the lateral flow strips. The aptamers were characterized by GO-FRET assay, and Kd values of the selected aptamers were estimated to be from 6.913 × 105 to 1.27 × 106 EID50/ml (EID50/ml: 50% egg infective dose). Based on the evidence from confocal laser scanning microscope (CLSM), surface plasmon resonance (SPR), and circular dichroism (CD) spectrum analysis, the aptamers, J3APT and JH4APT, were found to be working as a cognate pair that binds to the target virus at the different sites simultaneously. This cognate pair of aptamers then was successfully applied on the lateral flow strips, clearly showing sandwich-type binding images with the presence of the certain numbers of H5N2 virus particles. On the newly developed lateral flow strips, the target virus was detectable down to 6 × 105 EID50/ml in the buffer and 1.2 × 106 EID50/ml in the duck's feces, respectively, by the naked eye. By using the ImageJ software, the LOD was found to be 1.27 × 105 EID50/ml in the buffer and 2.09 × 105 EID50/ml in the duck's feces, respectively. Interestingly, on the lateral flow strips, enhanced specificity towards the target virus (H5N2) appeared over other subtypes of H5Nx. To the best of our knowledge, this is the first report about the application of the cognate pair of aptamers for the detection of influenza virus on the lateral flow strips. This study shows the promising perspective of a cognate pair of aptamers for the on-site detection system which could be useful for rapid detection of avian influenza viruses for preventing the pandemic influenza viruses from spreading.
Collapse
Affiliation(s)
- Sang Hoon Kim
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Anam-dong, Seongbuk-gu, Seoul, 136-701, Republic of Korea
| | - Junho Lee
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Anam-dong, Seongbuk-gu, Seoul, 136-701, Republic of Korea
| | - Bang Hyun Lee
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Anam-dong, Seongbuk-gu, Seoul, 136-701, Republic of Korea
| | - Chang-Seon Song
- Department of Veterinary Medicine, Konkuk University, Seoul, 05029, Republic of Korea
| | - Man Bock Gu
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Anam-dong, Seongbuk-gu, Seoul, 136-701, Republic of Korea.
| |
Collapse
|
25
|
Acquah C, Agyei D, Obeng EM, Pan S, Tan KX, Danquah MK. Aptamers: an emerging class of bioaffinity ligands in bioactive peptide applications. Crit Rev Food Sci Nutr 2019; 60:1195-1206. [PMID: 30714390 DOI: 10.1080/10408398.2018.1564234] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The food and health applications of bioactive peptides have grown remarkably in the past few decades. Current elucidations have shown that bioactive peptides have unique structural arrangement of amino acids, conferring distinct functionalities, and molecular affinity characteristics. However, whereas interest in the biological potency of bioactive peptides has grown, cost-effective techniques for monitoring the structural changes in these peptides and how these changes affect the biological properties have not grown at the same rate. Due to the high binding affinity of aptamers for other biomolecules, they have a huge potential for use in tracking the structural, conformational, and compositional changes in bioactive peptides. This review provides an overview of bioactive peptides and their essential structure-activity relationship. The review further highlights on the types and methods of synthesis of aptamers before the discussion of the prospects, merits, and challenges in the use of aptamers for bioaffinity interactions with bioactive peptides.
Collapse
Affiliation(s)
- Caleb Acquah
- Department of Chemical Engineering, Curtin University, Sarawak, Malaysia.,School of Nutrition Sciences, Faculty of Health Sciences, Curtin University, Sarawak, Malaysia
| | - Dominic Agyei
- Department of Food Science, University of Otago, Dunedin, New Zealand
| | - Eugene Marfo Obeng
- Bioengineering Laboratory, Department of Chemical Engineering, Monash University, Victoria, Australia
| | - Sharadwata Pan
- School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Kei Xian Tan
- Department of Chemical Engineering, Curtin University, Sarawak, Malaysia
| | - Michael Kobina Danquah
- Department of Chemical Engineering, University of Tennessee, Chattanooga, Tennessee, USA
| |
Collapse
|
26
|
Lee T, Ahn JH, Park SY, Kim GH, Kim J, Kim TH, Nam I, Park C, Lee MH. Recent Advances in AIV Biosensors Composed of Nanobio Hybrid Material. MICROMACHINES 2018; 9:E651. [PMID: 30544883 PMCID: PMC6316213 DOI: 10.3390/mi9120651] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 11/29/2018] [Accepted: 12/06/2018] [Indexed: 11/17/2022]
Abstract
Since the beginning of the 2000s, globalization has accelerated because of the development of transportation systems that allow for human and material exchanges throughout the world. However, this globalization has brought with it the rise of various pathogenic viral agents, such as Middle East respiratory syndrome coronavirus (MERS-CoV), severe acute respiratory syndrome coronavirus (SARS-CoV), Zika virus, and Dengue virus. In particular, avian influenza virus (AIV) is highly infectious and causes economic, health, ethnical, and social problems to human beings, which has necessitated the development of an ultrasensitive and selective rapid-detection system of AIV. To prevent the damage associated with the spread of AIV, early detection and adequate treatment of AIV is key. There are traditional techniques that have been used to detect AIV in chickens, ducks, humans, and other living organisms. However, the development of a technique that allows for the more rapid diagnosis of AIV is still necessary. To achieve this goal, the present article reviews the use of an AIV biosensor employing nanobio hybrid materials to enhance the sensitivity and selectivity of the technique while also reducing the detection time and high-throughput process time. This review mainly focused on four techniques: the electrochemical detection system, electrical detection method, optical detection methods based on localized surface plasmon resonance, and fluorescence.
Collapse
Affiliation(s)
- Taek Lee
- Department of Chemical Engineering, Kwangwoon University, Seoul 01899, Korea.
| | - Jae-Hyuk Ahn
- Department of Electronic Engineering, Kwangwoon University, Seoul 01899, Korea.
| | - Sun Yong Park
- Department of Chemical Engineering, Kwangwoon University, Seoul 01899, Korea.
| | - Ga-Hyeon Kim
- Department of Chemical Engineering, Kwangwoon University, Seoul 01899, Korea.
| | - Jeonghyun Kim
- Department of Electronics Convergence Engineering, Kwangwoon University, Seoul 01899, Korea.
| | - Tae-Hyung Kim
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, Korea.
| | - Inho Nam
- Division of Chemistry & Bio-Environmental Sciences, Seoul Women's University, Seoul 01797, Korea.
| | - Chulhwan Park
- Department of Chemical Engineering, Kwangwoon University, Seoul 01899, Korea.
| | - Min-Ho Lee
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, Korea.
| |
Collapse
|
27
|
Szakács Z, Mészáros T, de Jonge MI, Gyurcsányi RE. Selective counting and sizing of single virus particles using fluorescent aptamer-based nanoparticle tracking analysis. NANOSCALE 2018; 10:13942-13948. [PMID: 29845157 DOI: 10.1039/c8nr01310a] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Detection and counting of single virus particles in liquid samples are largely limited to narrow size distribution of viruses and purified formulations. To address these limitations, here we propose a calibration-free method that enables concurrently the selective recognition, counting and sizing of virus particles as demonstrated through the detection of human respiratory syncytial virus (RSV), an enveloped virus with a broad size distribution, in throat swab samples. RSV viruses were selectively labeled through their attachment glycoproteins (G) with fluorescent aptamers, which further enabled their identification, sizing and counting at the single particle level by fluorescent nanoparticle tracking analysis. The proposed approach seems to be generally applicable to virus detection and quantification. Moreover, it could be successfully applied to detect single RSV particles in swab samples of diagnostic relevance. Since the selective recognition is associated with the sizing of each detected particle, this method enables to discriminate viral elements linked to the virus as well as various virus forms and associations.
Collapse
Affiliation(s)
- Zoltán Szakács
- MTA-BME Lendület Chemical Nanosensors Research Group, Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, Szt. Gellert tér 4, H-1111 Budapest, Hungary.
| | - Tamás Mészáros
- Department of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, Budapest, Hungary
| | - Marien I de Jonge
- Section Pediatric Infectious Diseases, Laboratory of Medical Immunology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Róbert E Gyurcsányi
- MTA-BME Lendület Chemical Nanosensors Research Group, Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, Szt. Gellert tér 4, H-1111 Budapest, Hungary.
| |
Collapse
|
28
|
Yang W, Li T, Shu C, Ji S, Wang L, Wang Y, Li D, Mtalimanja M, Sun L, Ding L. Non-enzymolytic adenosine barcode-mediated dual signal amplification strategy for ultrasensitive protein detection using LC-MS/MS. Mikrochim Acta 2018; 185:293. [PMID: 29748725 DOI: 10.1007/s00604-018-2832-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 04/30/2018] [Indexed: 01/03/2023]
Abstract
A method is described for the determination of proteins with LC-MS/MS enabled by a small molecule (adenosine) barcode and based on a double-recognition sandwich structure. The coagulation protein thrombin was chosen as the model analyte. Magnetic nanoparticles were functionalized with aptamer29 (MNP/apt29) and used to capture thrombin from the samples. MNP/apt29 forms a sandwich with functionalized gold nanoparticles modified with (a) aptamer15 acting as thrombin-recognizing element and (b) a large number of adenosine as mass barcodes. The sandwich formed (MNP/apt29-thrombin-apt15/AuNP/adenosine) can ben magnetically separated from the sample. Mass barcodes are subsequently released from the sandwiched structure for further analysis by adding 11-mercaptoundecanoic acid. Adenosine is then detected by LC-MS/MS as it reflects the level of thrombin with impressively amplified signal. Numerous adenosines introduced into the sandwich proportional to the target concentration further amplify the signal. Under optimized conditions, the response is linearly proportional to the thrombin concentration in the range of 0.02 nM to 10 nM, with a detection limit of 9 fM. The application of this method to the determination of thrombin in spiked plasma samples gave recoveries that ranged from 92.3% to 104.7%. Graphical abstract Schematic representation of a method for the determination of thrombin with LC-MS/MS. The method is based on a double-recognition sandwiched structure. With LC-MS/MS, mass barcodes (adenosine) are detected to quantify thrombin, which amplifies the detection signal impressively.
Collapse
Affiliation(s)
- Wen Yang
- Department of Pharmaceutical Analysis, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, China.,Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, China
| | - Tengfei Li
- Department of Pharmaceutical Analysis, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, China.,Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, China
| | - Chang Shu
- Department of Pharmaceutical Analysis, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, China.,Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, China
| | - Shunli Ji
- Department of Pharmaceutical Analysis, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, China.,Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, China
| | - Lei Wang
- Department of Pharmaceutical Analysis, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, China.,Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, China.,College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Yan Wang
- Department of Pharmaceutical Analysis, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, China.,Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, China.,College of Pharmacy and Chemistry, Dali University, Wanhua Road, Dali, 671000, China
| | - Duo Li
- Department of Pharmaceutical Analysis, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, China.,Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, China
| | - Michael Mtalimanja
- Department of Pharmaceutical Analysis, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, China.,Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, China
| | - Luning Sun
- Research Division of Clinical Pharmacology, First Affiliated Hospital with Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210009, China
| | - Li Ding
- Department of Pharmaceutical Analysis, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, China. .,Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, China.
| |
Collapse
|
29
|
Komorowska B, Hasiów-Jaroszewska B, Minicka J. Application of nucleic acid aptamers for detection of Apple stem pitting virus isolates. Mol Cell Probes 2017; 36:62-65. [PMID: 29050990 DOI: 10.1016/j.mcp.2017.10.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 09/30/2017] [Accepted: 10/12/2017] [Indexed: 12/19/2022]
Abstract
DNA aptamers (PSA-H and MT32) were applied for the detection of Apple stem pitting virus (ASPV) isolates using an Enzyme-Linked Oligonucleotide Assay (ELONA) and Western blot analysis. The specificity and effectiveness of aptamers were verified in comparison to a conventional Enzyme Linked Immunosorbent Assay (ELISA). A genetically diverse group of ASPV isolates was tested. The results showed that aptamer MT32 detected a wider range of ASPV isolates than an aptamer PSA-H and proved to be superior to commercially available monoclonal antibodies. Aptamer MT32 produced higher signal intensity in ELONA with a virus-infected plant extracts than antibodies in ELISA. Moreover, the ELISA method failed to detect ASPV in six samples. The results presented in this study indicated that aptamer MT32 can be used as a receptor molecule of various immunoassay protocols for ASPV detection.
Collapse
Affiliation(s)
- Beata Komorowska
- Research Institute of Horticulture, Department of Phytopathology, Konstytucji 3 Maja 1/3, 96-100 Skierniewice, Poland.
| | - Beata Hasiów-Jaroszewska
- Institute of Plant Protection-National Research Institute, Department of Virology and Bacteriology, Wł. Węgorka 20, 60-318 Poznań, Poland
| | - Julia Minicka
- Institute of Plant Protection-National Research Institute, Department of Virology and Bacteriology, Wł. Węgorka 20, 60-318 Poznań, Poland
| |
Collapse
|
30
|
Percze K, Szakács Z, Scholz É, András J, Szeitner Z, Kieboom CHVD, Ferwerda G, Jonge MID, Gyurcsányi RE, Mészáros T. Aptamers for respiratory syncytial virus detection. Sci Rep 2017; 7:42794. [PMID: 28220811 PMCID: PMC5318870 DOI: 10.1038/srep42794] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 01/17/2017] [Indexed: 01/04/2023] Open
Abstract
The identification of the infectious agents is pivotal for appropriate care of patients with viral diseases. Current viral diagnostics rely on selective detection of viral nucleic acid or protein components. In general, detection of proteins rather than nucleic acids is technically more suitable for rapid tests. However, protein-based virus identification methods depend on antibodies limiting the practical applicability of these approaches. Aptamers rival antibodies in target selectivity and binding affinity, and excel in terms of robustness and cost of synthesis. Although aptamers have been generated for virus identification in laboratory settings, their introduction into routine virus diagnostics has not been realized, yet. Here, we demonstrate that the rationally designed SELEX protocol can be applied on whole virus to select aptamers, which can potentially be applied for viral diagnostics. This approach does not require purified virus protein or complicated virus purification. The presented data also illustrate that corroborating the functionality of aptamers with various approaches is essential to pinpoint the most appropriate aptamer amongst the panel of candidates obtained by the selection. Our protocol yielded aptamers capable of detecting respiratory syncytial virus (RSV), an important pathogen causing severe disease especially in young infants, at clinically relevant concentrations in complex matrices.
Collapse
Affiliation(s)
- Krisztina Percze
- Department of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, Budapest, Hungary
| | - Zoltán Szakács
- MTA-BME “Lendület” Chemical Nanosensors Research Group, Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, Szt. Gellért tér 4, 1111, Budapest, Hungary
| | - Éva Scholz
- Department of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, Budapest, Hungary
| | - Judit András
- Department of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, Budapest, Hungary
| | - Zsuzsanna Szeitner
- Department of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, Budapest, Hungary
| | - Corné H. van den Kieboom
- Laboratory of Pediatric Infectious Diseases, Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Gerben Ferwerda
- Laboratory of Pediatric Infectious Diseases, Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Marien I. de Jonge
- Laboratory of Pediatric Infectious Diseases, Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Róbert E. Gyurcsányi
- MTA-BME “Lendület” Chemical Nanosensors Research Group, Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, Szt. Gellért tér 4, 1111, Budapest, Hungary
| | - Tamás Mészáros
- Department of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, Budapest, Hungary
- MTA-BME Research Group for Technical Analytical Chemistry, Budapest University of Technology and Economics, Budapest, Hungary
| |
Collapse
|
31
|
Gravimetric Viral Diagnostics: QCM Based Biosensors for Early Detection of Viruses. CHEMOSENSORS 2017. [DOI: 10.3390/chemosensors5010007] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
32
|
Menger M, Yarman A, Erdőssy J, Yildiz HB, Gyurcsányi RE, Scheller FW. MIPs and Aptamers for Recognition of Proteins in Biomimetic Sensing. BIOSENSORS 2016; 6:E35. [PMID: 27438862 PMCID: PMC5039654 DOI: 10.3390/bios6030035] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 07/04/2016] [Accepted: 07/11/2016] [Indexed: 12/12/2022]
Abstract
Biomimetic binders and catalysts have been generated in order to substitute the biological pendants in separation techniques and bioanalysis. The two major approaches use either "evolution in the test tube" of nucleotides for the preparation of aptamers or total chemical synthesis for molecularly imprinted polymers (MIPs). The reproducible production of aptamers is a clear advantage, whilst the preparation of MIPs typically leads to a population of polymers with different binding sites. The realization of binding sites in the total bulk of the MIPs results in a higher binding capacity, however, on the expense of the accessibility and exchange rate. Furthermore, the readout of the bound analyte is easier for aptamers since the integration of signal generating labels is well established. On the other hand, the overall negative charge of the nucleotides makes aptamers prone to non-specific adsorption of positively charged constituents of the sample and the "biological" degradation of non-modified aptamers and ionic strength-dependent changes of conformation may be challenging in some application.
Collapse
Affiliation(s)
- Marcus Menger
- Fraunhofer Institute for Cell Therapy and Immunology, Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg 13, Potsdam D-14476, Germany.
| | - Aysu Yarman
- Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Strasse 25-26, Potsdam D-14476, Germany.
- Turkish-German University, Faculty of Science, Molecular Biotechnology, Sahinkaya Cad. No. 86, Bekoz, Istanbul 34820, Turkey.
| | - Júlia Erdőssy
- MTA-BME "Lendület" Chemical Nanosensors Research Group, Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, Szent Gellért tér 4, Budapest H-1111, Hungary.
| | - Huseyin Bekir Yildiz
- Department of Materials Science and Nanotechnology Engineering, KTO Karatay University, Konya 42020, Turkey.
| | - Róbert E Gyurcsányi
- MTA-BME "Lendület" Chemical Nanosensors Research Group, Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, Szent Gellért tér 4, Budapest H-1111, Hungary.
| | - Frieder W Scheller
- Fraunhofer Institute for Cell Therapy and Immunology, Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg 13, Potsdam D-14476, Germany.
- Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Strasse 25-26, Potsdam D-14476, Germany.
| |
Collapse
|
33
|
Ma C, Liu H, Tian T, Song X, Yu J, Yan M. A simple and rapid detection assay for peptides based on the specific recognition of aptamer and signal amplification of hybridization chain reaction. Biosens Bioelectron 2016; 83:15-8. [PMID: 27093485 DOI: 10.1016/j.bios.2016.04.030] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 04/05/2016] [Accepted: 04/11/2016] [Indexed: 12/12/2022]
Abstract
A simple and rapid assay for the detection of peptides is designed based on the specific recognition of aptamer, the quenching effect of graphene oxide (GO) and the efficient signal amplification of hybrid chain reaction (HCR). In this assay, the hairpin structure of aptamer is opened after binding with targets, and the initiation sequence could be exposed to hairpin probe 1 (H1) to open its hairpin structure. Then the opened H1 will open the hairpin structure of hairpin probe 2 (H2), and in turn, the opened initiation sequence of H2 continues to open H1. As a result, the specific recognition of target and fluorescent signals are accumulated through the process in short 1h. Attentively, the aptamer can not only identify target peptides, but also initiate the HCR between H1 and H2. More importantly, the HCR is initiated only after the target recognition of aptamer. After HCR, the excess hairpin probes will be anchored on the GO surface, and the background is greatly reduced due to the quenching effect of GO. By using Mucin-1(MUC1) as a model peptide, the assay has a wide linear range as two orders of magnitude and the detection range is from 0.01 to 5nM with low detection limit of 3.33pM. Therefore, the simple and rapid detection of the target can be realized, and the novel assay has great potential in detecting various peptides and even cancer cells.
Collapse
Affiliation(s)
- Chao Ma
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Haiyun Liu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Tian Tian
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Xianrang Song
- Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Jinan 250117, China
| | - Jinghua Yu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Mei Yan
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China.
| |
Collapse
|