1
|
Ular Çağatay N, Bodur S, Bodur SE, Maviş ME, Bakırdere S. Combination of quadruple isotope dilution strategy and dispersive solid phase extraction method for accurate quantification of selected steroid hormones. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2025; 17:256-264. [PMID: 39607754 DOI: 10.1039/d4ay01545b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Steroid hormones are essential for the regulation of various vital body functions. Therefore, the determination of steroid hormones in biological fluids is a significant issue to find out the mechanism of steroid hormones related to disorders. In this study, Fe3O4/reduced graphene oxide (Fe3O4/rGO) nanocomposite based dispersive solid phase extraction (DSPE) was coupled with liquid chromatography - quadruple isotope dilution - triple quadrupole mass spectrometry (LC-ID4-MS/MS) for the accurate and precise determination of aldosterone, testosterone, 17-hydroxyprogesterone and estrone in serum samples. There is no study in literature about the combination of DSPE and LC-ID4-MS/MS methods for the extraction and determination of selected steroid hormones. Significant improvements in accuracy and precision for the proposed method was achieved by the combination of DSPE and LC-ID4-MS/MS. The percent recovery results were calculated between 100.0 and 103.4% with low percent relative standard deviation values (≤2.0%). The obtained recovery results proved the application of the developed method with high accuracy and precision for the determination of steroid hormones in serum samples. Hence, the developed method is superior to the current analytical methods for the determination of selected steroid hormones in terms of sensitivity, accuracy and precision.
Collapse
Affiliation(s)
- Neşe Ular Çağatay
- Yıldız Technical University, Faculty of Art and Science, Department of Chemistry, 34220, İstanbul, Turkey.
- Altium International Laboratuvar Cihazları A.Ş., R&D Center, Barbaros Mah. Temmuz Sok. No. 6, Ataşehir, 34746, İstanbul, Turkey
| | - Süleyman Bodur
- Yıldız Technical University, Faculty of Art and Science, Department of Chemistry, 34220, İstanbul, Turkey.
- İstinye University, Faculty of Pharmacy, Department of Analytical Chemistry, 34010, İstanbul, Turkey
- İstinye University, Scientific and Technological Research Application and Research Center, 34010, İstanbul, Turkey
| | - Sezin Erarpat Bodur
- Yıldız Technical University, Faculty of Art and Science, Department of Chemistry, 34220, İstanbul, Turkey.
| | - Murat Emrah Maviş
- Altium International Laboratuvar Cihazları A.Ş., R&D Center, Barbaros Mah. Temmuz Sok. No. 6, Ataşehir, 34746, İstanbul, Turkey
| | - Sezgin Bakırdere
- Yıldız Technical University, Faculty of Art and Science, Department of Chemistry, 34220, İstanbul, Turkey.
- Turkish Academy of Sciences (TÜBA), Vedat Dalokay Street, No. 112, Çankaya, 06670, Ankara, Turkey
| |
Collapse
|
2
|
Srinivasan P, Arguello EME, Atwah I. Evaluating the reliability of solid phase extraction techniques for hydrocarbon analysis by GC-MS. J Chromatogr A 2024; 1737:465435. [PMID: 39427508 DOI: 10.1016/j.chroma.2024.465435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/07/2024] [Accepted: 10/11/2024] [Indexed: 10/22/2024]
Abstract
Saturate and aromatic compounds are essential in the petroleum industry for assessing the thermal maturity of source rocks and oils, which is critical for basin modeling and sweet-spot mapping. These compounds also play a role in environmental applications, such as oil spill fingerprinting and biogeochemistry. However, the analysis of these compounds by gas chromatography-mass spectrometry (GC-MS) requires meticulous and time-consuming separation processes. Traditional methods like normal-phase liquid column chromatography (LCC) involve large volumes of harmful solvents. This study evaluates the effectiveness of five different sorbents using solid-phase extraction (SPE) techniques-neutral Si, SiOH, Ag-ion, neutral Al, and Ag-ion mixed with activated silica-compared to LCC. The goal was to discern differences in peak resolution, concentration, and isomer ratios of saturate and aromatic compounds for thermal maturity and source rock assessments. The results show that SiOH, neutral Si, and neutral Al do not fully separate aromatic compounds from the saturate fraction, sometimes leaving 40-100% of aromatics within the saturate fraction. Ag-ion mixed with activated silica provided the best separation, resulting in up to 23 times higher aromatic concentration than SiOH. This method is more reliable for quantifying both saturate and aromatic compounds, increases the efficiency of hydrocarbon evaluations, and reduces solvent consumption by 63%, offering a more sustainable approach to hydrocarbon analysis.
Collapse
Affiliation(s)
- Poorna Srinivasan
- Aramco Americas- Houston Research Center, 16300 Park Row Drive, Houston, TX 77084, USA.
| | | | | |
Collapse
|
3
|
Cocovi-Solberg DJ, Schnidrig S, Miró M, Hann S. Versatile injector for inline renewable solid-phase extraction: Application to cyclodextrin-based bioaccessibility assessment in environmental solids. Anal Chim Acta 2024; 1329:343047. [PMID: 39396269 DOI: 10.1016/j.aca.2024.343047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/31/2024] [Accepted: 08/01/2024] [Indexed: 10/15/2024]
Abstract
BACKGROUND Solid phase extraction (SPE) is a standard sample preparation technique in HPLC workflows. Inline cartridges are high-performance alternatives to manual or robotic systems but at long term, they suffer from irreversible sorption of matrix components and sorbent compaction. Bead injection (BI) is a niche fluidic technique that allows renewing a sorbent bed through the manipulation of its suspension. However, there is a need for a versatile and reliable tool in HPLC that can exchange the inline sorbent automatically, resorting to inexpensive and assorted bulk sorbents. RESULTS We present a new flow path for a liquid chromatographic injector to perform inline micro-solid phase extraction. The sample is processed at real time, trapping the analytes and discarding the matrix. Cleaning the matrix and injecting 10 μL of sample takes 70 s, comparable with the injection in commercial HPLC systems. If the aim is to preconcentrate the analytes, average enrichment factors of 250 have been obtained after processing sample volumes of 3200 μL in 16 min (interleavable with the chromatographic step), keeping the peak position and width independent of the injected volume (compared to large volume direct injection). The desired bed mass is automatically and pressure-driven manipulated in the valve, retained by an inline frit, and optionally, after the analysis, removed by forward flow. The chromatographic performance of the new design is compared to the standard 6-port, 2-position HPLC injector. As a case study, we have monitored the extraction kinetics of a cyclodextrin-based bioaccessibility extraction test of persistent organic contaminants in soil, by extracting several fractions in valve, process them with inline SPE with a balanced hydrophilic-hydrophobic reversed-phase sorbent, and inject the bioaccessible compounds into HPLC. Aiming at avoiding carryover, the sorbent bed (ca. 3 mg) is exchanged before every run. It should be noted that this contribution focuses on HPLC, but other non-separative techniques, such as Flow Injection Analysis, can equally benefit from this injection platform. SIGNIFICANCE This contribution reports the first use of inline BI-solid phase extraction in HPLC workflows, without heart-cut eluate injection, in which the sorbent can be exchanged automatically by forward flow. This performance is enabled by prototyping a valve that can autonomously swap sorbents in real-time for diverse samples, as a cartridge exchanger, but using cost-effective and environmentally friendlier bulk sorbents (bed masses from sub-mg to 5 mg) without requiring additional hardware.
Collapse
Affiliation(s)
- David J Cocovi-Solberg
- University of Natural Resources and Life Sciences, Vienna, Department of Chemistry, Institute of Analytical Chemistry, Muthgasse 18, 1190, Wien, Austria.
| | - Stephan Schnidrig
- VICI AG International, Parkstrasse 2, CH-6214, Schenkon, Switzerland.
| | - Manuel Miró
- FI-TRACE group, Department of Chemistry, University of the Balearic Islands, Cra Valldemossa km 7.5, 07122, Palma de Mallorca, Spain.
| | - Stephan Hann
- University of Natural Resources and Life Sciences, Vienna, Department of Chemistry, Institute of Analytical Chemistry, Muthgasse 18, 1190, Wien, Austria.
| |
Collapse
|
4
|
Wang Q, Zheng Y, Deng B, Chen D, Jia L, Shi N. Automated kapok fiber-based pipette-tip solid-phase extraction coupled with liquid chromatography-tandem mass spectrometry for rapid and sensitive analysis of tyrosine kinase inhibitors in plasma. J Chromatogr A 2024; 1736:465420. [PMID: 39378625 DOI: 10.1016/j.chroma.2024.465420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/09/2024] [Accepted: 10/03/2024] [Indexed: 10/10/2024]
Abstract
This study delineates the development of a novel automated pipette-tip solid-phase extraction (SPE) methodology, employing kapok fiber as a naturally efficient and cost-effective adsorbent for the selective extraction of eleven tyrosine kinase inhibitors (TKIs) from plasma. The uniqueness of this method lies in its assembly, where kapok fibers are ingeniously wrapped around a stainless-steel spring within the pipette tip, ensuring an obstruction-free central space for effortless solution aspiration and dispensation. This design significantly minimizes backpressure, enhancing operational efficiency and ensuring compatibility with pipettors, including the implementation of an electric pipettor to streamline the sample preparation process and facilitate automation. The method's analytical performance, rigorously validated through liquid chromatography-tandem mass spectrometry, exhibits outstanding linearity in ranges of 0.1/0.5-200 ng mL-1 (R² > 0.993), commendable accuracy (86.3%-114.8%), and consistent precision (3.4-11.3%), alongside remarkably low detection limits that span from 0.024 to 0.130 ng mL-1. The assembly of kapok fiber within the pipette tip, in this unique configuration, results in a practical, cost-effective, eco-friendly, and automated pipette-tip SPE method. This innovation signifies a significant advancement in bioanalytical methodologies, offering an efficient and sustainable approach for extracting analytes from complex biological samples. This process notably enhances both the sensitivity and selectivity of subsequent instrumental analyses.
Collapse
Affiliation(s)
- Qianqian Wang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Yuanyuan Zheng
- Henan Key Laboratory of Nanomedicine for Targeting Diagnosis and Treatment, Zhengzhou University, School of Pharmaceutical Sciences, Zhengzhou 450001, China
| | - Bowen Deng
- Henan Key Laboratory of Nanomedicine for Targeting Diagnosis and Treatment, Zhengzhou University, School of Pharmaceutical Sciences, Zhengzhou 450001, China
| | - Di Chen
- Henan Key Laboratory of Nanomedicine for Targeting Diagnosis and Treatment, Zhengzhou University, School of Pharmaceutical Sciences, Zhengzhou 450001, China.
| | - Liuqun Jia
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.
| | - Nian Shi
- Physics Diagnostic Division, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.
| |
Collapse
|
5
|
Hu ZJ, Luan XL, Cui YY, Yang CX. Novel phenazine-based microporous organic network for selective and sensitive determination of trace sulfonamides in milk samples. Anal Chim Acta 2024; 1326:343138. [PMID: 39260916 DOI: 10.1016/j.aca.2024.343138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/14/2024] [Accepted: 08/20/2024] [Indexed: 09/13/2024]
Abstract
BACKGROUND Sulfonamide (SA) residues in food of animal origin possess a potential threat to human health and environment. However, due to the polar and ionic characteristics and trace level of SAs and the complexity of food matrices, direct measurement of SAs in these samples is still very difficult. Development of efficient sample pretreatment method for sensitive and selective extraction of trace SAs is of great significance and urgently desired. Therefore, rational design and synthesizing advanced and selective extractants is quite important. RESULTS In this work, a novel phenazine-based microporous organic network (MON) named TEPM-DP is reasonably synthesized and employed as a packing material for selective solid phase extraction (SPE) and sensitive determination of four typical SAs in milk samples. Phenazine-based monomer with aromatic and heteroaromatic ring and numerous N atoms is chosen to construct TEPM-DP adsorbent to provide π-π, hydrogen bonding, hydrophobic, and electrostatic extraction sites for SAs. The proposed method owns wide linear ranges, low limits of detection, high enrichment factors, and good precisions and recoveries for SAs in complex milk samples. The recoveries of SAs on TEPM-DP are much higher than those of commercial C18 and activated carbon. The extraction mechanisms are also elucidated via FT-IR, XPS, and comparative experiments. SIGNIFICANCE This work reports the first example of design and synthesizing phenazine-based MON in SPE via a simple and rapid solvothermal method. The results reveal the great prospects of TEPM-DP for enriching polar and ionic SAs in complex samples and uncover the potency of phenazine-based MON in sample pretreatment, which will promote the development of MON.
Collapse
Affiliation(s)
- Zhao-Jun Hu
- School of Pharmaceutical Sciences & Institute of Materia Medica, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
| | - Xiao-Lin Luan
- School of Pharmaceutical Sciences & Institute of Materia Medica, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
| | - Yuan-Yuan Cui
- School of Pharmaceutical Sciences & Institute of Materia Medica, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
| | - Cheng-Xiong Yang
- School of Pharmaceutical Sciences & Institute of Materia Medica, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China.
| |
Collapse
|
6
|
Dolkar P, Sharma M, Modeel S, Yadav S, Siwach S, Bharti M, Yadav P, Lata P, Negi T, Negi RK. Challenges and effective tracking down strategies of antibiotic contamination in aquatic ecosystem. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:55935-55957. [PMID: 39254807 DOI: 10.1007/s11356-024-34806-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 08/22/2024] [Indexed: 09/11/2024]
Abstract
A growing environmental concern revolves around the widespread use of medicines, particularly antibiotics, which adversely impact water quality and various life forms. The unregulated production and utilization of antibiotics not only affect non-targeted organisms but also exert significant evolutionary pressures, leading to the rapid development of antimicrobial resistance (AMR) in bacterial communities. To address this issue, global studies have been conducted to assess the prevalence and quantities of antibiotics in various environmental components including freshwater, ocean, local sewage, and fish. These studies aim to establish effective analytical methods for identifying and measuring antibiotic residues in environmental matrices that might enable authorities to establish norms for the containment and disposal of antibiotics. This article offers a comprehensive overview of methods used to extract antibiotics from environmental matrices exploring purification techniques such as liquid-liquid extraction, solid-phase extraction, green extraction techniques, and concentration methods like lyophilization and rotary evaporation. It further highlights qualitative and quantitative analysis methods, high-performance liquid chromatography, ultra-high-performance liquid chromatography, and liquid chromatography-tandem along with analytical methods such as UV-Vis and tandem mass spectrometry for detecting and measuring antibiotics. Urgency is underscored for proactive strategies to curb antibiotic contamination, safeguarding the integrity of aquatic ecosystems and public health on a global scale.
Collapse
Affiliation(s)
- Padma Dolkar
- Fish Molecular Biology Laboratory, Department of Zoology, University of Delhi, New Delhi, 110007, India
| | - Monika Sharma
- Fish Molecular Biology Laboratory, Department of Zoology, University of Delhi, New Delhi, 110007, India
- Present Address: Gargi College, University of Delhi, Delhi, 110049, India
| | - Sonakshi Modeel
- Fish Molecular Biology Laboratory, Department of Zoology, University of Delhi, New Delhi, 110007, India
| | - Sheetal Yadav
- Fish Molecular Biology Laboratory, Department of Zoology, University of Delhi, New Delhi, 110007, India
| | - Sneha Siwach
- Fish Molecular Biology Laboratory, Department of Zoology, University of Delhi, New Delhi, 110007, India
| | - Meghali Bharti
- Fish Molecular Biology Laboratory, Department of Zoology, University of Delhi, New Delhi, 110007, India
| | - Pankaj Yadav
- Fish Molecular Biology Laboratory, Department of Zoology, University of Delhi, New Delhi, 110007, India
| | - Pushp Lata
- Fish Molecular Biology Laboratory, Department of Zoology, University of Delhi, New Delhi, 110007, India
| | - Tarana Negi
- Government College, Dujana, Jhajjar, Haryana, 124102, India
| | - Ram Krishan Negi
- Fish Molecular Biology Laboratory, Department of Zoology, University of Delhi, New Delhi, 110007, India.
| |
Collapse
|
7
|
Morales N, Thickett SC, Maya F. Effect of crosslinker/porogen ratio on sponge-nested polymer monoliths for solid-phase extraction. J Chromatogr A 2024; 1730:465124. [PMID: 38959657 DOI: 10.1016/j.chroma.2024.465124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/24/2024] [Accepted: 06/26/2024] [Indexed: 07/05/2024]
Abstract
Polymer monoliths can be polymerised within different molds, but limited options are available for the preparation of free-standing polymer monoliths for analytical sample preparation, and in particular, solid-phase extraction (SPE). Commercial melamine-formaldehyde sponges can be used as supports for the preparation of polymer monoliths, due its flexibility, giving various shapes to monoliths. Herein, the crosslinker/porogen ratio of highly porous sponge-nested divinylbenzene (DVB) polymer monoliths has been evaluated. Monoliths prepared using different crosslinker/porogen ratios were applied to the extraction of bisphenol F, bisphenol A, bisphenol AF, and bisphenol B. Monoliths containing 50 wt % DVB and 50 wt % porogens presented the highest recovery of bisphenols. Under the optimised conditions, the developed method showed a linear range between 2.5 µg L-1 and 150 µg L-1 for BPA and BPAF, and between 5 µg L-1 and 150 µg L-1 for BPB and BPF. The limits of detection (LOD, S/N = 3) and limits of quantification (LOQ, S/N = 10) ranged from 0.36 µg L-1 to 1.09 µg L-1, and from 1.20 µg L-1 to 3.65 µg L-1, respectively. The recoveries for spiked bisphenols (10 µg L-1) in tap water and water contained in a polycarbonate containers were between 82 % and 114 %.
Collapse
Affiliation(s)
- Natalia Morales
- Australian Centre for Research on Separation Science (ACROSS), School of Natural Sciences, University of Tasmania, Hobart, Tasmania 7001, Australia; School of Natural Sciences - Chemistry, University of Tasmania, Hobart, Tasmania 7001, Australia
| | - Stuart C Thickett
- School of Natural Sciences - Chemistry, University of Tasmania, Hobart, Tasmania 7001, Australia
| | - Fernando Maya
- Australian Centre for Research on Separation Science (ACROSS), School of Natural Sciences, University of Tasmania, Hobart, Tasmania 7001, Australia; School of Natural Sciences - Chemistry, University of Tasmania, Hobart, Tasmania 7001, Australia.
| |
Collapse
|
8
|
Song G, Liu X, Lei K, Li T, Li W, Chen D. ExpoNano: A Strategy Based on Hyper-Cross-Linked Polymers Achieves Urinary Exposome Assessment for Biomonitoring. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024. [PMID: 39096285 DOI: 10.1021/acs.est.4c01146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/05/2024]
Abstract
Urinary analysis of exogenous and endogenous molecules constitutes an efficient, noninvasive approach to evaluate human health status. However, the exposome characterization of urinary molecules remains extremely challenging with current techniques. Herein, we develop an ExpoNano strategy based on hyper-cross-linked polymers (HCPs) to achieve ultrahigh-throughput measurement of exo/endogenous molecules in urine. The strategy includes a simple trapping-detrapping procedure (15 min) with HCPs in enzymatically treated urine, followed by mass spectrometer determination. Molecules that can be determined by ExpoNano have a wide range of molecular weight (75-837 Da) and Log Kow (octanol-water partition coefficient; -9.86 to 10.56). The HCPs can be repeatedly used five times without decreasing the trapping efficiency. Application of ExpoNano in a biomonitoring study revealed a total of 63 environmental chemicals detected in >50% of the urine pools collected from Chinese adults living in 13 cities, with a median concentration of 0.026-47 ng/mL, while nontargeted analysis detected an additional 243 exogenous molecules. Targeted and nontargeted analysis also detected 926 endogenous molecules in pooled urine. Collectively, the ExpoNano strategy demonstrates unique advantages over traditional urine analysis approaches, including a wide range of analytes, satisfactory trapping efficiency, high simplicity and reusability, and extremely reduced time demand and financial cost.
Collapse
Affiliation(s)
- Guixian Song
- College of Environment and Climate, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Xiaotu Liu
- College of Environment and Climate, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Kunxiang Lei
- College of Environment and Climate, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Tiantian Li
- China CDC Key Laboratory of Environment and Public Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Wanbin Li
- College of Environment and Climate, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Da Chen
- College of Environment and Climate, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| |
Collapse
|
9
|
Zhou J, Wang S, He X, Ren H, Zhang XX. Comparative evaluation of SPE methods for biotoxicity assessment of water and wastewater: Linkage between chemical extracting efficiency and biotoxicity outcome. J Environ Sci (China) 2024; 142:33-42. [PMID: 38527894 DOI: 10.1016/j.jes.2023.07.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 03/27/2024]
Abstract
Biotoxicity assessment results of environmental waters largely depend on the sample extraction protocols that enrich pollutants to meet the effect-trigger thresholds of bioassays. However, more chemical mixture does not necessarily translate to higher combined biotoxicity. Thus, there is a need to establish the link between chemical extracting efficiency and biotoxicity outcome to standardize extraction methods for biotoxicity assessment of environmental waters. This study compares the performance of five different extraction phases in solid phase extraction (SPE), namely HLB, HLB+Coconut, C18 cartridge, C18 disk and Strata-X, and evaluated their chemical extracting efficiencies and biotoxicity outcomes. We quantitatively assessed cytotoxicity, acute toxicity, genotoxicity, estrogenic activity, and neurotoxicity of the extracts using in vitro bioassays and characterized the chemical extracting efficiencies of the SPE methods through chemical recoveries of 23 model compounds with different polarities and total organic carbon. Using Pareto ranking, we identified HLB+Coconut as the optimal SPE method, which exhibited the highest level of water sample biotoxicity and recovered the most chemicals in water samples. We found that the biotoxicity outcomes of the extracted water samples significantly and positively correlated with the chemical extracting efficiencies of the SPE methods. Moreover, we observed synchronous changing patterns in biotoxicity outcome and chemical extracting efficiencies in response to increasing sample volumes per cartridge (SVPC) during SPE. Our findings underscore that higher chemical extracting efficiency of SPE corresponds to higher biotoxicity outcome of environmental water samples, providing a scientific basis for standardization of SPE methods for adequate assessment of biotoxicities of environmental waters.
Collapse
Affiliation(s)
- Jiawei Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Shihao Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Xiwei He
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China.
| | - Hongqiang Ren
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Xu-Xiang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
10
|
Yang S, Sun M. Recent Advanced Methods for Extracting and Analyzing Cannabinoids from Cannabis-Infused Edibles and Detecting Hemp-Derived Contaminants in Food (2013-2023): A Comprehensive Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 38857901 DOI: 10.1021/acs.jafc.4c01286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
Cannabis-infused edibles are food products infused with a cannabis extract. These edibles include baked goods, candies, and beverages, offering an alternative way to consume cannabis instead of smoking or vaporizing it. Ensuring the accurate detection of cannabis-infused edibles and identification of any contaminants is crucial for public health and safety. This is particularly important for compliance with legal regulations as these substances can have significant psychoactive effects, especially on unsuspecting consumers such as children or individuals with certain medical conditions. Using efficient extraction methods can greatly improve detection accuracy, ensuring that the concentration of cannabinoids in edibles is measured correctly and adheres to dosage guidelines and legal limits. This review comprehensively examines the preparation and extraction techniques for cannabinoid edibles. It covers methods such as solid-phase extraction, enhanced matrix removal-lipid, QuEChERS, dissolution and dispersion techniques, liquid-phase extraction, and other emerging methodologies along with analytical techniques for cannabinoid analysis. The main analytical techniques employed for the determination of cannabinoids include liquid chromatography (LC), gas chromatography (GC), direct analysis in real time (DART), and mass spectrometry (MS). The application of these extraction and analytical techniques is further demonstrated through their use in analyzing specific edible samples, including oils, candies, beverages, solid coffee and tea, snacks, pet food, and contaminated products.
Collapse
Affiliation(s)
- Siyun Yang
- Department of Biology, Kean University, Union, New Jersey 07083, United States
| | - Mingjing Sun
- Department of Chemistry and Physics, Kean University, Union, New Jersey 07083, United States
| |
Collapse
|
11
|
Jiang PY, Yuan L, Liu DX, Yu HL, Bi XJ, Lv Q, Yang Y, Liu CC. Revealing nitrogenous VX metabolites and the whole-molecule VX metabolism in the urine of guinea pigs. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134400. [PMID: 38691927 DOI: 10.1016/j.jhazmat.2024.134400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 04/21/2024] [Accepted: 04/22/2024] [Indexed: 05/03/2024]
Abstract
VX, a well-known organophosphorus nerve agent (OPNA), poses a significant threat to public safety if employed by terrorists. Obtaining complete metabolites is critical to unequivocally confirm its alleged use/exposure and elucidate its whole-molecular metabolism. However, the nitrogenous VX metabolites containing 2-diisopropylaminoethyl moiety from urinary excretion remain unknown. Therefore, this study applied a newly developed untargeted workflow platform to discover and identify them using VX-exposed guinea pigs as animal models. 2-(N,N-diisopropylamino)ethanesulfonic acid (DiPSA) was revealed as a novel nitrogenous VX metabolite in urine, and 2-(Diisopropylaminoethyl) methyl sulfide (DAEMS) was confirmed as another in plasma, indicating that VX metabolism differed between urine and plasma. It is the first report of a nitrogenous VX metabolite in urine and a complete elucidation of the VX metabolic pathway. DiPSA was evaluated as an excellent VX exposure biomarker. The whole-molecule VX metabolism in urine was characterized entirely for the first time via the simultaneous quantification of DiPSA and two known P-based biomarkers. About 52.1% and 32.4% of VX were excreted in urine as P-based and nitrogenous biomarkers within 24 h. These findings provide valuable insights into the unambiguous detection of OPNA exposure/intoxication and human and environmental exposure risk assessment.
Collapse
Affiliation(s)
- Pei-Yu Jiang
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Ling Yuan
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Dong-Xin Liu
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Hui-Lan Yu
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Xiao-Jing Bi
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Qiao Lv
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Yang Yang
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Chang-Cai Liu
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China.
| |
Collapse
|
12
|
Owczarzy A, Kulig K, Piordas K, Piśla P, Sarkowicz P, Rogóż W, Maciążek-Jurczyk M. Solid-phase microextraction - a future technique in pharmacology and coating trends. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:3164-3178. [PMID: 38717233 DOI: 10.1039/d4ay00187g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2024]
Abstract
Traditional sample preparation techniques based on liquid-liquid extraction (LLE) or solid-phase extraction (SPE) often suffer from a major error due to the matrix effects caused by significant co-extraction of matrix components. The implementation of a modern extraction technique such as solid-phase microextraction (SPME) was aimed at reducing analysis time and the use of organic solvents, as well as eliminating pre-analytical and analytical errors. Solid-phase microextraction (SPME) is an innovative technique for extracting low molecular weight compounds (less than 1500 Da) from highly complex matrices, including biological matrices. It has a wide range of applications in various types of analysis including pharmaceutical, clinical, metabolomics and proteomics. SPME has a number of advantages over other extraction techniques. Among the most important are low environmental impact, the ability to sample and preconcentrate analytes in one step, simple automation, and the ability to extract multiple analytes simultaneously. It is expected to become, in the future, another method for cell cycle research. Numerous available literature sources prove that solid-phase microextraction can be a future technique in many scientific fields, including pharmaceutical sciences. This paper provides a literature review of trends in SPME coatings and pharmacological applications.
Collapse
Affiliation(s)
- Aleksandra Owczarzy
- Department of Physical Pharmacy, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 40-055 Katowice, Poland.
| | - Karolina Kulig
- Department of Physical Pharmacy, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 40-055 Katowice, Poland.
| | - Katarzyna Piordas
- Student Research Group at the Department of Physical Pharmacy, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 40-055 Katowice, Poland
| | - Patrycja Piśla
- Student Research Group at the Department of Physical Pharmacy, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 40-055 Katowice, Poland
| | - Patrycja Sarkowicz
- Student Research Group at the Department of Physical Pharmacy, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 40-055 Katowice, Poland
| | - Wojciech Rogóż
- Department of Physical Pharmacy, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 40-055 Katowice, Poland.
| | - Małgorzata Maciążek-Jurczyk
- Department of Physical Pharmacy, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 40-055 Katowice, Poland.
| |
Collapse
|
13
|
Abbas Z, Tong Y, Wang J, Zhang J, Wei X, Si D, Zhang R. Potential Role and Mechanism of Mulberry Extract in Immune Modulation: Focus on Chemical Compositions, Mechanistic Insights, and Extraction Techniques. Int J Mol Sci 2024; 25:5333. [PMID: 38791372 PMCID: PMC11121110 DOI: 10.3390/ijms25105333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/05/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
Mulberry is a rapidly growing plant that thrives in diverse climatic, topographical, and soil types, spanning temperature and temperate countries. Mulberry plants are valued as functional foods for their abundant chemical composition, serving as a significant reservoir of bioactive compounds like proteins, polysaccharides, phenolics, and flavonoids. Moreover, these compounds displayed potent antioxidant activity by scavenging free radicals, inhibiting reactive oxygen species generation, and restoring elevated nitric oxide production induced by LPS stimulation through the downregulation of inducible NO synthase expression. Active components like oxyresveratrol found in Morus demonstrated anti-inflammatory effects by inhibiting leukocyte migration through the MEK/ERK signaling pathway. Gallic and chlorogenic acids in mulberry leaves (ML) powder-modulated TNF, IL-6, and IRS1 proteins, improving various inflammatory conditions by immune system modulation. As we delve deeper into understanding its anti-inflammatory potential and how it works therapeutically, it is crucial to refine the extraction process to enhance the effectiveness of its bioactive elements. Recent advancements in extraction techniques, such as solid-liquid extraction, pressurized liquid extraction, superficial fluid extraction, microwave-assisted extraction, and ultrasonic-assisted extraction, are being explored. Among the extraction methods tested, including Soxhlet extraction, maceration, and ultrasound-assisted extraction (UAE), UAE demonstrated superior efficiency in extracting bioactive compounds from mulberry leaves. Overall, this comprehensive review sheds light on the potential of mulberry as a natural immunomodulatory agent and provides insights into its mechanisms of action for future research and therapeutic applications.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Rijun Zhang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (Z.A.); (Y.T.); (J.W.); (J.Z.); (X.W.); (D.S.)
| |
Collapse
|
14
|
Fonseca D, Martins N, Garcia R, Cabrita MJ. Comprehensive Two-Dimensional Gas Chromatography with a TOF MS Detector-An Effective Tool to Trace the Signature of Grape Varieties. Molecules 2024; 29:1989. [PMID: 38731480 PMCID: PMC11085376 DOI: 10.3390/molecules29091989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
Varietal volatile compounds are characteristic of each variety of grapes and come from the skins of the grapes. This work focuses on the development of a methodology for the analysis of free compounds in grapes from Trincadeira, Cabernet Sauvignon, Syrah, Castelão and Tinta Barroca from the 2021 and 2022 harvests, using HS-SPME-GC × GC-TOFMS. To achieve this purpose, a previous optimization step of sample preparation was implemented, with the optimized conditions being 4 g of grapes, 2 g of NaCl, and 2 mL of H2O. The extraction conditions were also optimized, and it was observed that performing the extraction for 40 min at 60 °C was the best for identifying more varietal compounds. The fiber used was a triple fiber of carboxen/divinylbenzene/polydimethylsiloxane (CAR/DVB/PDMS). In addition to the sample preparation, the analytical conditions were also optimized, enabling the adequate separation of analytes. Using the optimized methodology, it was possible to identify fifty-two free volatile compounds, including seventeen monoterpenes, twenty-eight sesquiterpenes, and seven C13-norisoprenoids. It was observed that in 2021, more free varietal volatile compounds were identifiable compared to 2022. According to the results obtained through a linear discriminant analysis (LDA), the differences in volatile varietal signature are observed both among different grape varieties and across different years.
Collapse
Affiliation(s)
- Daniela Fonseca
- Mediterranean Institute for Agriculture, Environment and Development & Institute of Research and Advanced Training, University of Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal;
| | - Nuno Martins
- Mediterranean Institute for Agriculture, Environment and Development & Global Change and Sustainability Institute, University of Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal; (N.M.); (R.G.)
| | - Raquel Garcia
- Mediterranean Institute for Agriculture, Environment and Development & Global Change and Sustainability Institute, University of Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal; (N.M.); (R.G.)
- Department of Crop Science, School of Science and Technology, University of Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal
| | - Maria João Cabrita
- Mediterranean Institute for Agriculture, Environment and Development & Global Change and Sustainability Institute, University of Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal; (N.M.); (R.G.)
- Department of Crop Science, School of Science and Technology, University of Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal
| |
Collapse
|
15
|
Azuma T, Matsunaga N, Ohmagari N, Kuroda M. Development of a High-Throughput Analytical Method for Antimicrobials in Wastewater Using an Automated Pipetting and Solid-Phase Extraction System. Antibiotics (Basel) 2024; 13:335. [PMID: 38667011 PMCID: PMC11605239 DOI: 10.3390/antibiotics13040335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/01/2024] [Accepted: 04/03/2024] [Indexed: 12/01/2024] Open
Abstract
Antimicrobial resistance (AMR) has emerged and spread globally. Recent studies have also reported the presence of antimicrobials in a wide variety of aquatic environments. Conducting a nationwide monitoring survey of AMR in the environment to elucidate its status and to assess its impact on ecosystems and human health is of social importance. In this study, we developed a novel high-throughput analysis (HTA) system based on a 96-well plate solid-phase extraction (SPE), using automated pipetting and an SPE pre-treatment system. The effectiveness of the system as an HTA for antimicrobials in environmental water was verified by comparing it with a conventional manual analytical system in a domestic hospital over a period of two years and four months. The results of the manual analysis and HTA using a combination of automated pipetting and SPE systems were generally consistent, and no statistically significant difference was observed (p > 0.05) between the two systems. The agreement ratios between the measured concentrations based on the conventional and HTA methods were positively correlated with a correlation coefficient of r = 0.99. These results indicate that HTA, which combines automated pipetting and an SPE pre-treatment system for rapid, high-volume analysis, can be used as an effective approach for understanding the environmental contamination of antimicrobials at multiple sites. To the best of our knowledge, this is the first report to present the accuracy and agreement between concentrations based on a manual analysis and those measured using HTA in hospital wastewater. These findings contribute to a comprehensive understanding of antimicrobials in aquatic environments and assess the ecological and human health risks associated with antimicrobials and antimicrobial-resistant bacteria to maintain the safety of aquatic environments.
Collapse
Affiliation(s)
- Takashi Azuma
- Department of Pharmacy, Osaka Medical and Pharmaceutical University, Takatsuki 569-1094, Japan
| | - Nobuaki Matsunaga
- AMR Clinical Reference Center, National Center for Global Health and Medicine, Tokyo 162-8655, Japan; (N.M.); (N.O.)
| | - Norio Ohmagari
- AMR Clinical Reference Center, National Center for Global Health and Medicine, Tokyo 162-8655, Japan; (N.M.); (N.O.)
- Disease Control and Prevention Center, National Center for Global Health and Medicine, Tokyo 162-8655, Japan
| | - Makoto Kuroda
- Pathogen Genomics Center, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| |
Collapse
|
16
|
Batista LFA, Gonçalves SRS, Bressan CD, Grassi MT, Abate G. Evaluation of organo-vermiculites as sorbent phases for solid-phase extraction of ibuprofen from water. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:1880-1886. [PMID: 38469698 DOI: 10.1039/d3ay02291a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
The study of ibuprofen (IBU) preconcentration was carried out making use of a homemade column for solid-phase extraction (SPE), using vermiculite (VT) or organo-vermiculites (OVTs) as sorbent phases. Aqueous samples (50.0 mL) percolated the column and IBU was sorbed onto the VT or OVT and then desorbed using acetonitrile. Employing this SPE system and OVT, calibration curves were generated for IBU, by spectrophotometric quantification using the α-naphthylamine method. R2 values higher than 0.9950 and LOD between 12 and 18 μg L-1 were observed, for real enrichment factors of 21 and 31, by using OVTs. The analytical protocol was applied to three water samples, which were spiked with IBU solutions to evaluate the precision and accuracy of the method. Recoveries between 77 and 110% at three different IBU concentrations and RSD lower than 18% were observed, even by using the spectrophotometric method. The protocol developed in this study demonstrated that the OVT was appropriate to work as a preconcentration phase for IBU determination in water samples.
Collapse
Affiliation(s)
- Luis Fernando A Batista
- Departamento de Química, Universidade Federal do Paraná (UFPR), Centro Politécnico, C. P. 19032, Curitiba, PR, Brazil, CEP 81531-980.
| | - Sara Renata S Gonçalves
- Departamento de Química, Universidade Federal do Paraná (UFPR), Centro Politécnico, C. P. 19032, Curitiba, PR, Brazil, CEP 81531-980.
| | - Carolina D Bressan
- Departamento de Química, Universidade Federal do Paraná (UFPR), Centro Politécnico, C. P. 19032, Curitiba, PR, Brazil, CEP 81531-980.
| | - Marco T Grassi
- Departamento de Química, Universidade Federal do Paraná (UFPR), Centro Politécnico, C. P. 19032, Curitiba, PR, Brazil, CEP 81531-980.
| | - Gilberto Abate
- Departamento de Química, Universidade Federal do Paraná (UFPR), Centro Politécnico, C. P. 19032, Curitiba, PR, Brazil, CEP 81531-980.
| |
Collapse
|
17
|
Sandoval MA, Calzadilla W, Vidal J, Brillas E, Salazar-González R. Contaminants of emerging concern: Occurrence, analytical techniques, and removal with electrochemical advanced oxidation processes with special emphasis in Latin America. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 345:123397. [PMID: 38272166 DOI: 10.1016/j.envpol.2024.123397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 12/02/2023] [Accepted: 01/17/2024] [Indexed: 01/27/2024]
Abstract
The occurrence of contaminants of emerging concern (CECs) in environmental systems is gradually more studied worldwide. However, in Latin America, the presence of contaminants of emerging concern, together with their environmental and toxicological impacts, has recently been gaining wide interest in the scientific community. This paper presents a critical review about the source, fate, and occurrence of distinct emerging contaminants reported during the last two decades in various countries of Latin America. In recent years, Brazil, Chile, and Colombia are the main countries that have conducted research on the presence of these pollutants in biological and aquatic compartments. Data gathered indicated that pharmaceuticals, pesticides, and personal care products are the most assessed CECs in Latin America, being the most common compounds the followings: atrazine, acenaphthene, caffeine, carbamazepine, ciprofloxacin, diclofenac, diuron, estrone, losartan, sulfamethoxazole, and trimethoprim. Most common analytical methodologies for identifying these compounds were HPLC and GC coupled with mass spectrometry with the potential to characterize and quantify complex substances in the environment at low concentrations. Most CECs' monitoring and detection were observed near to urban areas which confirm the out-of-date wastewater treatment plants and sanitization infrastructures limiting the removal of these pollutants. Therefore, the implementation of tertiary treatment should be required. In this tenor, this review also summarizes some studies of CECs removal using electrochemical advanced oxidation processes that showed satisfactory performance. Finally, challenges, recommendations, and future perspectives are discussed.
Collapse
Affiliation(s)
- Miguel A Sandoval
- Instituto Tecnológico Superior de Guanajuato, Tecnológico Nacional de México, Carretera Estatal Guanajuato-Puentecillas Km. 10.5, 36262, Guanajuato, Mexico
| | - Wendy Calzadilla
- Research Group of Analysis, Treatments, Electrochemistry, Recovery and Reuse of Water, (WATER2), Departamento de Química Inorgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Chile
| | - Jorge Vidal
- Departamento de Química de Los Materiales, Facultad de Química y Biología, Universidad de Santiago de Chile, Chile
| | - Enric Brillas
- Laboratori d'Electroquímica dels Materials i del Medi Ambient, Departament de Ciència de Materials i de Química Física, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
| | - Ricardo Salazar-González
- Departamento de Química de Los Materiales, Facultad de Química y Biología, Universidad de Santiago de Chile, Chile.
| |
Collapse
|
18
|
Sabotič J, Bayram E, Ezra D, Gaudêncio SP, Haznedaroğlu BZ, Janež N, Ktari L, Luganini A, Mandalakis M, Safarik I, Simes D, Strode E, Toruńska-Sitarz A, Varamogianni-Mamatsi D, Varese GC, Vasquez MI. A guide to the use of bioassays in exploration of natural resources. Biotechnol Adv 2024; 71:108307. [PMID: 38185432 DOI: 10.1016/j.biotechadv.2024.108307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 12/05/2023] [Accepted: 01/01/2024] [Indexed: 01/09/2024]
Abstract
Bioassays are the main tool to decipher bioactivities from natural resources thus their selection and quality are critical for optimal bioprospecting. They are used both in the early stages of compounds isolation/purification/identification, and in later stages to evaluate their safety and efficacy. In this review, we provide a comprehensive overview of the most common bioassays used in the discovery and development of new bioactive compounds with a focus on marine bioresources. We present a comprehensive list of practical considerations for selecting appropriate bioassays and discuss in detail the bioassays typically used to explore antimicrobial, antibiofilm, cytotoxic, antiviral, antioxidant, and anti-ageing potential. The concept of quality control and bioassay validation are introduced, followed by safety considerations, which are critical to advancing bioactive compounds to a higher stage of development. We conclude by providing an application-oriented view focused on the development of pharmaceuticals, food supplements, and cosmetics, the industrial pipelines where currently known marine natural products hold most potential. We highlight the importance of gaining reliable bioassay results, as these serve as a starting point for application-based development and further testing, as well as for consideration by regulatory authorities.
Collapse
Affiliation(s)
- Jerica Sabotič
- Department of Biotechnology, Jožef Stefan Institute, 1000 Ljubljana, Slovenia.
| | - Engin Bayram
- Institute of Environmental Sciences, Bogazici University, Bebek, Istanbul 34342, Turkey
| | - David Ezra
- Department of Plant Pathology and Weed Research, ARO, The Volcani Institute, P.O.Box 15159, Rishon LeZion 7528809, Israel
| | - Susana P Gaudêncio
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal; UCIBIO - Applied Biomolecular Sciences Unit, Department of Chemistry, Blue Biotechnology & Biomedicine Lab, NOVA School of Science and Technology, NOVA University of Lisbon, 2819-516 Caparica, Portugal
| | - Berat Z Haznedaroğlu
- Institute of Environmental Sciences, Bogazici University, Bebek, Istanbul 34342, Turkey
| | - Nika Janež
- Department of Biotechnology, Jožef Stefan Institute, 1000 Ljubljana, Slovenia
| | - Leila Ktari
- B3Aqua Laboratory, National Institute of Marine Sciences and Technologies, Carthage University, Tunis, Tunisia
| | - Anna Luganini
- Department of Life Sciences and Systems Biology, University of Turin, 10123 Turin, Italy
| | - Manolis Mandalakis
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, 71500 Heraklion, Greece
| | - Ivo Safarik
- Department of Nanobiotechnology, Biology Centre, ISBB, CAS, Na Sadkach 7, 370 05 Ceske Budejovice, Czech Republic; Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacky University, Slechtitelu 27, 783 71 Olomouc, Czech Republic
| | - Dina Simes
- Centre of Marine Sciences (CCMAR), Universidade do Algarve, 8005-139 Faro, Portugal; 2GenoGla Diagnostics, Centre of Marine Sciences (CCMAR), Universidade do Algarve, Faro, Portugal
| | - Evita Strode
- Latvian Institute of Aquatic Ecology, Agency of Daugavpils University, Riga LV-1007, Latvia
| | - Anna Toruńska-Sitarz
- Department of Marine Biology and Biotechnology, Faculty of Oceanography and Geography, University of Gdańsk, 81-378 Gdynia, Poland
| | - Despoina Varamogianni-Mamatsi
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, 71500 Heraklion, Greece
| | | | - Marlen I Vasquez
- Department of Chemical Engineering, Cyprus University of Technology, 3036 Limassol, Cyprus
| |
Collapse
|
19
|
Xu Z, Yu K, Zhang M, Ju Y, He J, Jiang Y, Li Y, Jiang J. Accurate Clinical Detection of Vitamin D by Mass Spectrometry: A Review. Crit Rev Anal Chem 2024:1-25. [PMID: 38376891 DOI: 10.1080/10408347.2024.2316237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Vitamin D deficiency is thought to be associated with a wide range of diseases, including diabetes, cancer, depression, neurodegenerative diseases, and cardiovascular and cerebrovascular diseases. This vitamin D deficiency is a global epidemic affecting both developing and developed countries and therefore qualitative and quantitative analysis of vitamin D in a clinical context is essential. Mass spectrometry has played an increasingly important role in the clinical analysis of vitamin D because of its accuracy, sensitivity, specificity, and the ability to detect multiple substances at the same time. Despite their many advantages, mass spectrometry-based methods are not without analytical challenges. Front-end and back-end challenges such as protein precipitation, analyte extraction, derivatization, mass spectrometer functionality, must be carefully considered to provide accurate and robust analysis of vitamin D through a well-designed approach with continuous control by internal and external quality control. Therefore, the aim of this review is to provide a comprehensive overview of the development of mass spectrometry methods for vitamin D accurate analysis, including emphasis on status markers, deleterious effects of biological matrices, derivatization reactions, effects of ionization sources, contribution of epimers, standardization of assays between laboratories.
Collapse
Affiliation(s)
- Zhilong Xu
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Weihai, China
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China
| | - Kai Yu
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Weihai, China
| | - Meng Zhang
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Weihai, China
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China
| | - Yun Ju
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Weihai, China
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China
| | - Jing He
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Weihai, China
| | - Yanxiao Jiang
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Weihai, China
| | - Yunuo Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling, China
| | - Jie Jiang
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Weihai, China
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, China
| |
Collapse
|
20
|
Ma M, Yang Y, Huang Z, Huang F, Li Q, Liu H. Recent progress in the synthesis and applications of covalent organic framework-based composites. NANOSCALE 2024; 16:1600-1632. [PMID: 38189523 DOI: 10.1039/d3nr05797f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Covalent organic frameworks (COFs) have historically been of interest to researchers in different areas due to their distinctive characteristics, including well-ordered pores, large specific surface area, and structural tunability. In the past few years, as COF synthesis techniques developed, COF-based composites fabricated by integrating COFs and other functional materials including various kinds of metal or metal oxide nanoparticles, ionic liquids, metal-organic frameworks, silica, polymers, enzymes and carbon nanomaterials have emerged as a novel kind of porous hybrid material. Herein, we first provide a thorough summary of advanced strategies for preparing COF-based composites; then, the emerging applications of COF-based composites in diverse fields due to their synergistic effects are systematically highlighted, including analytical chemistry (sensing, extraction, membrane separation, and chromatographic separation) and catalysis. Finally, the current challenges associated with future perspectives of COF-based composites are also briefly discussed to inspire the advancement of more COF-based composites with excellent properties.
Collapse
Affiliation(s)
- Mingxuan Ma
- Department of Pharmacy, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu Province 225000, People's Republic of China.
| | - Yonghao Yang
- School of Medicine, Yangzhou University, Yangzhou, Jiangsu Province 225000, People's Republic of China
| | - Zhonghua Huang
- Department of Pharmacy, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu Province 225000, People's Republic of China.
| | - Fuhong Huang
- Department of Pharmacy, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu Province 225000, People's Republic of China.
| | - Quanliang Li
- Department of Pharmacy, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu Province 225000, People's Republic of China.
| | - Hongyu Liu
- Department of Pharmacy, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu Province 225000, People's Republic of China.
| |
Collapse
|
21
|
Kochale K, Cunha R, Teutenberg T, Schmidt TC. Development of a column switching for direct online enrichment and separation of polar and nonpolar analytes from aqueous matrices. J Chromatogr A 2024; 1714:464554. [PMID: 38065029 DOI: 10.1016/j.chroma.2023.464554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 11/28/2023] [Accepted: 11/30/2023] [Indexed: 01/05/2024]
Abstract
Trace substances in surface waters may threaten health and pose a risk for the aquatic environment. Moreover, separation and detection by instrumental analysis is challenging due to the low concentration and the wide range of polarities. Separation of polar and nonpolar analytes can be achieved by using stationary phases with different selectivity. Lower limits of detection of trace substances can be obtained by offline enrichment on solid phase materials. However, these practices require substantial effort and are time consuming and costly. Therefore, in this study, a column switching was developed to enrich and separate both polar and nonpolar analytes by an on-column large volume injection of aqueous samples. The column switching can significantly reduce the effort and time for analyzing trace substances without compromising on separation and detection. A reversed phase (RP) column is used to trap the nonpolar analytes. The polar analytes are enriched on a porous graphitized carbon column (PGC) coupled serially behind the RP column. A novel valve switching system is implemented to enable elution of the nonpolar analytes from the RP column and, subsequently, elution of polar analytes from the PGC column and separation on a hydrophilic interaction liquid chromatography (HILIC) column. To enable separation of polar analytes dissolved in an aqueous matrix by HILIC, the water plug that is flushed from the PGC column is diluted by dosing organic solvent directly upstream of the HILIC column. The developed method was tested by applying target analysis and non-target screening, highlighting the advantage to effectively separate and detect both polar and nonpolar compounds in a single chromatographic run. In the target analysis, the analytes, with a logD at pH 3 ranging from -2.8 to + 4.5, could be enriched and separated. Besides the 965 features in the RP phase, 572 features from real wastewater were observed in the HILIC phase which would otherwise elute in the void time in conventional one-dimensional RP methods.
Collapse
Affiliation(s)
- Kjell Kochale
- Institut für Umwelt & Energie, Technik & Analytik e. V. (IUTA), Bliersheimer Str. 58-60, 47229 Duisburg, Germany; Instrumental Analytical Chemistry, University of Duisburg-Essen, Universitätsstr. 5, 45141 Essen, Germany
| | - Ricardo Cunha
- Institut für Umwelt & Energie, Technik & Analytik e. V. (IUTA), Bliersheimer Str. 58-60, 47229 Duisburg, Germany
| | - Thorsten Teutenberg
- Institut für Umwelt & Energie, Technik & Analytik e. V. (IUTA), Bliersheimer Str. 58-60, 47229 Duisburg, Germany.
| | - Torsten C Schmidt
- Instrumental Analytical Chemistry, University of Duisburg-Essen, Universitätsstr. 5, 45141 Essen, Germany
| |
Collapse
|
22
|
Flores-Hernandez DR, Leija Gutiérrez HM, Hernandez-Hernandez JA, Sánchez-Fernández JA, Bonilla-Rios J. Enhancing Solid-Phase Extraction of Tamoxifen and Its Metabolites from Human Plasma Using MOF-Integrated Polyacrylonitrile Composites: A Study on CuBTC and ZIF-8 Efficacy. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 14:73. [PMID: 38202528 PMCID: PMC10780427 DOI: 10.3390/nano14010073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/22/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024]
Abstract
This study investigates electrospun fibers of metal-organic frameworks (MOFs), particularly CuBTC and ZIF-8, in polyacrylonitrile (PAN) for the solid-phase extraction (SPE) of Tamoxifen (TAM) and its metabolites (NDTAM, ENDO, and 4OHT) from human blood plasma. The focus is on the isolation, pre-concentration, and extraction of the analytes, aiming to provide a more accessible and affordable breast cancer patient-monitoring technology. The unique physicochemical properties of MOFs, such as high porosity and surface area, combined with PAN's stability and low density, are leveraged to improve SPE efficiency. The study meticulously examines the interactions of these MOFs with the analytes under various conditions, including elution solvents and protein precipitators. Results reveal that ZIF-8/PAN composites outperform CuBTC/PAN and PAN alone, especially when methanol is used as the protein precipitator. This superior performance is attributed to the physicochemical compatibility between the analytes' properties, like solubility and polarity, and the MOFs' structural features, including pore flexibility, active site availability, surface polarity, and surface area. The findings underscore MOFs' potential in SPE applications and provide valuable insights into the selectivity and sensitivity of different MOFs towards specific analytes, advancing more efficient targeted extraction methods in biomedical analysis.
Collapse
Affiliation(s)
- Domingo R. Flores-Hernandez
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501, Monterrey 64849, Mexico;
| | - Héctor Manuel Leija Gutiérrez
- Universidad Autónoma de Nuevo Leon, CICFM-FCFM. Av. Universidad S/N, Ciudad Universitaria, San Nicolas de los Garza 66451, Mexico;
| | | | - José Antonio Sánchez-Fernández
- Procesos de Polimerización, Centro de Investigación en Química Aplicada, Blvd. Enrique Reyna No. 140, Saltillo 25294, Mexico
| | - Jaime Bonilla-Rios
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501, Monterrey 64849, Mexico;
| |
Collapse
|
23
|
Drabińska N, Marcinkowska MA, Wieczorek MN, Jeleń HH. Application of Sorbent-Based Extraction Techniques in Food Analysis. Molecules 2023; 28:7985. [PMID: 38138475 PMCID: PMC10745519 DOI: 10.3390/molecules28247985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/03/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023] Open
Abstract
This review presents an outline of the application of the most popular sorbent-based methods in food analysis. Solid-phase extraction (SPE) is discussed based on the analyses of lipids, mycotoxins, pesticide residues, processing contaminants and flavor compounds, whereas solid-phase microextraction (SPME) is discussed having volatile and flavor compounds but also processing contaminants in mind. Apart from these two most popular methods, other techniques, such as stir bar sorptive extraction (SBSE), molecularly imprinted polymers (MIPs), high-capacity sorbent extraction (HCSE), and needle-trap devices (NTD), are outlined. Additionally, novel forms of sorbent-based extraction methods such as thin-film solid-phase microextraction (TF-SPME) are presented. The utility and challenges related to these techniques are discussed in this review. Finally, the directions and need for future studies are addressed.
Collapse
Affiliation(s)
| | | | | | - Henryk H. Jeleń
- Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Wojska Polskiego 31, 60-624 Poznan, Poland; (N.D.); (M.A.M.); (M.N.W.)
| |
Collapse
|
24
|
Casado-Hidalgo G, Morante-Zarcero S, Pérez-Quintanilla D, Sierra I. Design and Optimisation of Sustainable Sample Treatments Based on Ultrasound-Assisted Extraction and Strong Cation-Exchange Purification with Functionalised SBA-15 for Opium Alkaloids in Ground Poppy Seeds. Toxins (Basel) 2023; 15:672. [PMID: 38133176 PMCID: PMC10747185 DOI: 10.3390/toxins15120672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/13/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023] Open
Abstract
An analysis methodology was optimised and validated for the quantification of opium alkaloids (OAs) in ground poppy seeds. This involved ultrasound-assisted extraction (UAE) and solid-phase extraction (SPE) purification before analysis using a high-performance liquid chromatography mass spectrometry detector (HPLC-MS/MS). UAE was optimised through the design of experiments with three factors and a three-level full factorial design. For SPE optimisation, a commercial material was compared with a previously synthesised material of SBA-15 silica functionalised with sulfonic groups (SBA-15-SO3-). The synthesised material demonstrated superior efficiency with only 25 mg and proved to be reusable for up to four cycles. The methodology was properly validated in terms of linearity, limits of detection and quantification, and selectivity. Matrix effects were negligible; adequate recovery values (85-100%) and inter-day and intra-day precision (≤15%) were obtained. The greenness of the method was evaluated with the AGREEprep metric scale, being more environmentally friendly compared to OA analysis methods. Finally, the method was applied to different samples of ground poppy seeds and revealed a concentration of 140 mg/kg of morphine equivalents in one of the samples, surpassing the legislatively established limits by sevenfold. This highlights the need to analyse these types of samples to mitigate potential public health issues.
Collapse
Affiliation(s)
| | | | | | - Isabel Sierra
- Departamento de Tecnología Química y Ambiental, E.S.C.E.T, Universidad Rey Juan Carlos, C/Tulipán s/n, Móstoles, 28933 Madrid, Spain; (G.C.-H.); (S.M.-Z.); (D.P.-Q.)
| |
Collapse
|
25
|
Wu T, Karimi-Maleh H, Dragoi EN, Puri P, Zhang D, Zhang Z. Traditional methods and biosensors for detecting disinfection by-products in water: A review. ENVIRONMENTAL RESEARCH 2023; 237:116935. [PMID: 37625534 DOI: 10.1016/j.envres.2023.116935] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 08/16/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023]
Abstract
In recent years, pollution caused by disinfection by-products (DBPs) has become a global concern. Initially, there were fewer contaminants, and the mechanism of their generation was unclear; however, the number of contaminants has increased exponentially as a result of rapid industrialization and numerous economic activities (e.q., during the outbreak of COVID-19 a surge in the use of chlorinated disinfectants was observed). DBP toxicity results in various adverse health effects and organ failure in humans. In addition, it profoundly affects other forms of life, including animals, plants, and microorganisms. This review comprehensively discusses the pre-treatment methods of traditional and emerging DBPs and the technologies applied for their detection. Additionally, this paper provides a detailed discussion of the principles, applicability, and characteristics of traditional large-scale instrumentation methods (such as gas/liquid/ion chromatography coupled with mass spectrometry) for detecting DBPs based on their respective detection techniques. At the same time, the design, functionality, classification, and characteristics of rapid detection technologies (such as biosensors) are also detailed and analyzed.
Collapse
Affiliation(s)
- Tao Wu
- School of Resources and Environment, University of Electronic Science and Technology of China, 611731, Xiyuan Ave, Chengdu, China
| | - Hassan Karimi-Maleh
- School of Resources and Environment, University of Electronic Science and Technology of China, 611731, Xiyuan Ave, Chengdu, China; School of Engineering, Lebanese American University, Byblos, Lebanon.
| | - Elena Niculina Dragoi
- Cristofor Simionescu Faculty of Chemical Engineering and Environmental Protection, Gheorghe Asachi Technical University, Bld. D Mangeron no 700050, Iasi, Romania
| | - Paridhi Puri
- University Centre for Research and Development, Chandigarh University, Gharuan, Mohali, 140413, Punjab, India
| | - Dongxing Zhang
- Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China, Yesun Industry Zone, Guanlan Street, Shenzhen, Guangdong, 518110, China.
| | - Zhouxiang Zhang
- School of Resources and Environment, University of Electronic Science and Technology of China, 611731, Xiyuan Ave, Chengdu, China
| |
Collapse
|
26
|
Papaioannou C, Geladakis G, Kommata V, Batargias C, Lagoumintzis G. Insights in Pharmaceutical Pollution: The Prospective Role of eDNA Metabarcoding. TOXICS 2023; 11:903. [PMID: 37999555 PMCID: PMC10675236 DOI: 10.3390/toxics11110903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 10/30/2023] [Accepted: 11/02/2023] [Indexed: 11/25/2023]
Abstract
Environmental pollution is a growing threat to natural ecosystems and one of the world's most pressing concerns. The increasing worldwide use of pharmaceuticals has elevated their status as significant emerging contaminants. Pharmaceuticals enter aquatic environments through multiple pathways related to anthropogenic activity. Their high consumption, insufficient waste treatment, and the incapacity of organisms to completely metabolize them contribute to their accumulation in aquatic environments, posing a threat to all life forms. Various analytical methods have been used to quantify pharmaceuticals. Biotechnology advancements based on next-generation sequencing (NGS) techniques, like eDNA metabarcoding, have enabled the development of new methods for assessing and monitoring the ecotoxicological effects of pharmaceuticals. eDNA metabarcoding is a valuable biomonitoring tool for pharmaceutical pollution because it (a) provides an efficient method to assess and predict pollution status, (b) identifies pollution sources, (c) tracks changes in pharmaceutical pollution levels over time, (d) assesses the ecological impact of pharmaceutical pollution, (e) helps prioritize cleanup and mitigation efforts, and (f) offers insights into the diversity and composition of microbial and other bioindicator communities. This review highlights the issue of aquatic pharmaceutical pollution while emphasizing the importance of using modern NGS-based biomonitoring actions to assess its environmental effects more consistently and effectively.
Collapse
Affiliation(s)
- Charikleia Papaioannou
- Department of Biology, University of Patras, 26504 Patras, Greece; (C.P.); (G.G.); (V.K.)
| | - George Geladakis
- Department of Biology, University of Patras, 26504 Patras, Greece; (C.P.); (G.G.); (V.K.)
| | - Vasiliki Kommata
- Department of Biology, University of Patras, 26504 Patras, Greece; (C.P.); (G.G.); (V.K.)
| | - Costas Batargias
- Department of Biology, University of Patras, 26504 Patras, Greece; (C.P.); (G.G.); (V.K.)
| | | |
Collapse
|
27
|
Glöckler D, Harir M, Schmitt-Kopplin P, Elsner M, Bakkour R. Selectivity of β-Cyclodextrin Polymer toward Aquatic Contaminants: Insights from Ultrahigh-Resolution Mass Spectrometry of Dissolved Organic Matter. Anal Chem 2023; 95:15505-15513. [PMID: 37831967 DOI: 10.1021/acs.analchem.3c01394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2023]
Abstract
Selectivity in solid-phase extraction (SPE) materials has become increasingly important for analyte enrichment in sensitive analytical workflows to alleviate detrimental matrix effects. Molecular-level investigation of matrix constituents, which are preferentially extracted or excluded, can provide the analytical chemist with valuable information to learn about their control on sorbent selectivity. In this work, we employ nontargeted Fourier transform ion cyclotron resonance mass spectrometry (FTICR MS) to elucidate the molecular chemodiversity of freshwater-derived dissolved organic matter (DOM) extracted by the selective model sorbent β-cyclodextrin polymer (β-CDP) in comparison to conventional, universal SPE sorbents (i.e., Oasis HLB, Supel-Select HLB, and LiChrolut EN). Statistical analysis of MS data corroborated the highly selective nature of β-CDP by revealing the extracted DOM spectra that are most dissimilar to original compositions. We found that its selectivity was characterized by pronounced discrimination against highly oxygenated and unsaturated DOM compounds, which were associated with the classes of lignin-like, tannin-like, and carboxylic-rich alicyclic molecules. In contrast, conventional sorbents excluded less highly oxygenated compounds and showed a more universal extraction behavior for a wide range of DOM compositional space. We lay these findings in a larger context that aids the analyst in obtaining an a priori estimate of sorbent selectivity toward any target analyte of interest serving thereby an optimization of sample preparation. This study highlights the great value of nontargeted ultrahigh-resolution MS for better understanding of targeted analytics and provides new insights into the selective sorption behavior of novel sorbents.
Collapse
Affiliation(s)
- David Glöckler
- TUM School of Natural Sciences, Chair of Analytical Chemistry and Water Chemistry, Technical University of Munich, Garching 85748 , Germany
| | - Mourad Harir
- Research Unit Analytical BioGeoChemistry, Helmholtz Munich, Neuherberg 85764, Germany
- TUM School of Life Sciences, Chair of Analytical Food Chemistry, Technical University of Munich, Freising 85354, Germany
| | - Philippe Schmitt-Kopplin
- Research Unit Analytical BioGeoChemistry, Helmholtz Munich, Neuherberg 85764, Germany
- TUM School of Life Sciences, Chair of Analytical Food Chemistry, Technical University of Munich, Freising 85354, Germany
| | - Martin Elsner
- TUM School of Natural Sciences, Chair of Analytical Chemistry and Water Chemistry, Technical University of Munich, Garching 85748 , Germany
| | - Rani Bakkour
- TUM School of Natural Sciences, Chair of Analytical Chemistry and Water Chemistry, Technical University of Munich, Garching 85748 , Germany
| |
Collapse
|
28
|
Clivillé-Cabré P, Lacorte S, Borrull F, Fontanals N, Marcé RM. Evaluation of ceramic passive samplers using a mixed-mode strong cation-exchange sorbent to monitor polar contaminants in river water. J Chromatogr A 2023; 1708:464348. [PMID: 37708670 DOI: 10.1016/j.chroma.2023.464348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 08/30/2023] [Accepted: 08/30/2023] [Indexed: 09/16/2023]
Abstract
Although most of the analytical methods developed for the monitoring of contaminants in environmental waters are based on discrete grab sampling, an alternative of increasing interest is the use of passive sampling. Methods based on passive sampling provide the sampling and pre-concentration of the analytes in-situ, which makes the sample treatment less time consuming and costly than using discrete grab sampling. In this study, ceramic passive samplers (CPSs) using mixed-mode strong cation-exchange sorbent (Oasis MCX) as retention phase were evaluated for the determination of a group of 21 therapeutic and illicit drugs and some of their metabolites in river water samples that were determined by liquid chromatography-tandem mass spectrometry. After assessing the stability of the analytes, the CPSs were calibrated for 9 days with bottled water and river water, obtaining, for the 19 stable compounds, sample rates (Rs) ranging between 0.180 and 1.767 mL/day and diffusion coefficients (De) between 2.02E-8 and 2.81E-7 cm2/s. Once calibrated, CPSs were deployed for the determination of contaminants in the Ebre River, with good reproducibility, and some of the analytes were determined, including amongst others, gabapentin at 76 ng/L, caffeine at 203 ng/L or diclofenac amine at 57 ng/L. The passive sampling method herein presented is simple and feasible and allows the time-integrated analysis of pharmaceuticals and drugs at trace levels in river water. This study opens the possibility of using other mixed-mode sorbents or other types of sorbents as retaining phase on CPSs for the determination of very polar contaminants in water.
Collapse
Affiliation(s)
- Pol Clivillé-Cabré
- Universitat Rovira i Virgili, Department of Analytical Chemistry and Organic Chemistry, Sescelades Campus, Marcel·lí Domingo 1, 43007 Tarragona, Spain
| | - Sílvia Lacorte
- Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18, 08034 Barcelona, Spain
| | - Francesc Borrull
- Universitat Rovira i Virgili, Department of Analytical Chemistry and Organic Chemistry, Sescelades Campus, Marcel·lí Domingo 1, 43007 Tarragona, Spain
| | - Núria Fontanals
- Universitat Rovira i Virgili, Department of Analytical Chemistry and Organic Chemistry, Sescelades Campus, Marcel·lí Domingo 1, 43007 Tarragona, Spain.
| | - Rosa Maria Marcé
- Universitat Rovira i Virgili, Department of Analytical Chemistry and Organic Chemistry, Sescelades Campus, Marcel·lí Domingo 1, 43007 Tarragona, Spain
| |
Collapse
|
29
|
Lukić Bilela L, Matijošytė I, Krutkevičius J, Alexandrino DAM, Safarik I, Burlakovs J, Gaudêncio SP, Carvalho MF. Impact of per- and polyfluorinated alkyl substances (PFAS) on the marine environment: Raising awareness, challenges, legislation, and mitigation approaches under the One Health concept. MARINE POLLUTION BULLETIN 2023; 194:115309. [PMID: 37591052 DOI: 10.1016/j.marpolbul.2023.115309] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 07/09/2023] [Accepted: 07/16/2023] [Indexed: 08/19/2023]
Abstract
Per- and polyfluorinated alkyl substances (PFAS) have long been known for their detrimental effects on the ecosystems and living organisms; however the long-term impact on the marine environment is still insufficiently recognized. Based on PFAS persistence and bioaccumulation in the complex marine food network, adverse effects will be exacerbated by global processes such as climate change and synergies with other pollutants, like microplastics. The range of fluorochemicals currently included in the PFAS umbrella has significantly expanded due to the updated OECD definition, raising new concerns about their poorly understood dynamics and negative effects on the ocean wildlife and human health. Mitigation challenges and approaches, including biodegradation and currently studied materials for PFAS environmental removal are proposed here, highlighting the importance of ongoing monitoring and bridging research gaps. The PFAS EU regulations, good practices and legal frameworks are discussed, with emphasis on recommendations for improving marine ecosystem management.
Collapse
Affiliation(s)
- Lada Lukić Bilela
- Department of Biology, Faculty of Science, University of Sarajevo, Sarajevo, Bosnia and Herzegovina.
| | - Inga Matijošytė
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Sauletekio ave. 7, Vilnius, Lithuania.
| | - Jokūbas Krutkevičius
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Sauletekio ave. 7, Vilnius, Lithuania.
| | - Diogo A M Alexandrino
- CIIMAR Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Porto, Portugal; Department of Environmental Health, School of Health, P. Porto, Porto, Portugal.
| | - Ivo Safarik
- Department of Nanobiotechnology, Biology Centre, ISBB, CAS, Na Sadkach 7, 370 05 Ceske Budejovice, Czech Republic; Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacky University, Slechtitelu 27, 783 71 Olomouc, Czech Republic
| | - Juris Burlakovs
- Mineral and Energy Economy Research Institute of Polish Academy of Sciences, Józefa Wybickiego 7 A, 31-261 Kraków, Poland.
| | - Susana P Gaudêncio
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Chemistry Department, NOVA Faculty for Sciences and Technology, NOVA University of Lisbon, 2819-516 Caparica, Portugal.
| | - Maria F Carvalho
- CIIMAR Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Porto, Portugal; School of Medicine and Biomedical Sciences (ICBAS), University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal.
| |
Collapse
|
30
|
Géhin C, O'Neill N, Moore A, Harrison M, Holman SW, Blom G. Dispersant-First Dispersive Liquid-Liquid Microextraction (DF-DLLME), a Novel Sample Preparation Procedure for NDMA Determination in Metformin Products. J Pharm Sci 2023; 112:2453-2462. [PMID: 37031864 DOI: 10.1016/j.xphs.2023.03.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/10/2023] [Accepted: 03/24/2023] [Indexed: 04/11/2023]
Abstract
Since December 2019, global batch recalls of metformin pharmaceutical products have highlighted an urgent need to control N-nitrosodimethylamine (NDMA) contamination to demonstrate patient safety and maintain supply of this essential medicine. Due to their formulation, the metformin extended-release products present difficult analytical challenges for conventional sample preparation procedures, such as artefactual (in-situ) NDMA formation, gelling, and precipitation. To overcome these challenges, a new version of dispersive liquid-liquid microextraction (DLLME) termed dispersant-first DLLME (DF-DLLME) was developed and optimized for the analysis of NDMA in metformin extended-release products using a detailed Design of Experiments (DoE) to optimize sample preparation. Gas chromatography-high resolution accurate mass-mass spectrometry (GC-HRAM-MS) combined with automated DF-DLLME were successfully applied to monitor the NDMA levels of two different metformin extended-release AstraZeneca products to ultra-trace levels (parts per billion). The additional benefits associated with DF-DLLME, which include automation, time/costs saving, and greener sample preparation, make this novel technique easier to transfer from a development to Quality Control (QC) environment. In addition, this also offers an attractive candidate for the wider platform analysis of N-nitrosamines in pharmaceutical drug products.
Collapse
Affiliation(s)
- Caroline Géhin
- Chemical Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Macclesfield, United Kingdom
| | - Nicholas O'Neill
- Chemical Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Macclesfield, United Kingdom
| | - Amy Moore
- Chemical Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Macclesfield, United Kingdom
| | - Mark Harrison
- Chemical Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Macclesfield, United Kingdom
| | - Stephen W Holman
- Chemical Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Macclesfield, United Kingdom
| | - Giorgio Blom
- Chemical Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Macclesfield, United Kingdom.
| |
Collapse
|
31
|
Morales N, Thickett SC, Maya F. Sponge-nested polymer monoliths: Versatile materials for the solid-phase extraction of bisphenols. J Sep Sci 2023; 46:e2300378. [PMID: 37528734 DOI: 10.1002/jssc.202300378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/23/2023] [Accepted: 07/24/2023] [Indexed: 08/03/2023]
Abstract
Polymer monoliths are promising materials for sample preparation due to their high porosity, pH stability, and simple preparation. The use of melamine formaldehyde foams has been reported as an effective support to prepare highly robust silica and polymer monoliths. Herein, divinylbenzene monoliths based on a 50:50 (%, w/w) crosslinker/porogen ratio have been nested within a melamine-formaldehyde sponge, resulting in monoliths with a surface area higher than 400 m2 /g. The extraction performance of these monoliths was evaluated for the extraction of endocrine-disrupting bisphenols from aqueous solutions. We evaluated for the first time the versatility of sponge-nested polymer monoliths by comparing three different extraction modes (vortex mixing, magnetic stirring, and orbital shaking). Vortex mixing showed a comparable recovery of bisphenols (39%-81%) in a shorter extraction time (30 min, instead of 2 h). In addition, the robustness of the sponge-nested polymer monoliths was demonstrated for the first time by reshaping a larger monolithic cube (0.125 cm3 ) into four smaller pieces (4 × 0.03125 cm3 ) leading to a 16%-21% increase in extraction efficiency. This effect was attributed to an increase in the effective contact area with the sample, obtaining a higher analyte extraction capacity.
Collapse
Affiliation(s)
- Natalia Morales
- Australian Centre for Research on Separation Science (ACROSS), School of Natural Sciences (Chemistry), University of Tasmania, Hobart, Tasmania, Australia
| | - Stuart C Thickett
- School of Natural Sciences (Chemistry), University of Tasmania, Hobart, Tasmania, Australia
| | - Fernando Maya
- Australian Centre for Research on Separation Science (ACROSS), School of Natural Sciences (Chemistry), University of Tasmania, Hobart, Tasmania, Australia
| |
Collapse
|
32
|
Sugiura J, Tsuchiyama T, Taniguchi M, Fukatsu K, Miyazaki H. Novel SPE purification approach using the direct adsorption of vaporised propionic acid in food for rapid HPLC determination. Food Chem 2023; 428:136799. [PMID: 37429237 DOI: 10.1016/j.foodchem.2023.136799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 06/28/2023] [Accepted: 07/01/2023] [Indexed: 07/12/2023]
Abstract
Solid phase extraction (SPE) is a technique widely used in food analysis for the isolation of analytes. Herein, we proposed a novel application of SPE to extract vaporised propionic acid, a common preservative, from a heated sample solution. A sample was heated under acidified conditions and the resulting steam was directly passed through an SPE column to extract the propionic acid, followed by elution and HPLC analysis. Here, the extraction on the SPE column ensures direct capture of propionic acid. The results demonstrated excellent linearity (R2 greater than 0.999) and recoveries of 89.9%-97.6% with intra- and inter-day precisions lower than 3.9%. To the best of our knowledge, no study has investigated the applicability of SPE to an analyte vaporised in the headspace of food products. The proposed method is promising in its application to various volatile compounds and in the routine analysis of propionic acid in food.
Collapse
Affiliation(s)
- Jun Sugiura
- Food Department, Nagoya City Public Health Research Institute, 4-207, Sakurazaka, Moriyama-ku, Nagoya 463-8585, Japan.
| | - Tomoyuki Tsuchiyama
- Food Department, Nagoya City Public Health Research Institute, 4-207, Sakurazaka, Moriyama-ku, Nagoya 463-8585, Japan
| | - Masaru Taniguchi
- Food Department, Nagoya City Public Health Research Institute, 4-207, Sakurazaka, Moriyama-ku, Nagoya 463-8585, Japan
| | - Kosuke Fukatsu
- Food Department, Nagoya City Public Health Research Institute, 4-207, Sakurazaka, Moriyama-ku, Nagoya 463-8585, Japan
| | - Hitoshi Miyazaki
- Food Department, Nagoya City Public Health Research Institute, 4-207, Sakurazaka, Moriyama-ku, Nagoya 463-8585, Japan
| |
Collapse
|
33
|
de Oliveira AFB, de Melo Vieira A, Santos JM. Trends and challenges in analytical chemistry for multi-analysis of illicit drugs employing wastewater-based epidemiology. Anal Bioanal Chem 2023; 415:3749-3758. [PMID: 36952026 PMCID: PMC10034891 DOI: 10.1007/s00216-023-04644-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 03/04/2023] [Accepted: 03/08/2023] [Indexed: 03/24/2023]
Abstract
Wastewater-based epidemiology (WBE) for quantification of illicit drug biomarkers (IDBs) in wastewater samples is an effective tool that can provide information about drug consumption. The most commonly quantified IDBs belong to different chemical classes, including cocaine, amphetamine-type stimulants, opioids, and cannabinoids, so the different chemical properties of these molecules pose a challenge in the development of analytical methods for multi-analyte analysis. Recent workflows include the steps of sampling and storage, sample preparation using solid-phase extraction (SPE) or without extraction, and quantification of analytes employing gas or liquid chromatography coupled with mass spectrometry. The greatest difficulty is due to the fact that wastewater samples are complex chemical mixtures containing analytes with different chemical properties, often present at low concentrations. Therefore, in the development of analytical methods, there is the need to simplify and optimize the analytical workflows, reducing associated uncertainties, analysis times, and costs. The present work provides a critical bibliographic survey of studies published from the year 2020 until now, highlighting the challenges and trends of published analytical workflows for the multi-analysis of IDBs in wastewater samples, considering sampling and sample preparation, method validation, and analytical techniques.
Collapse
Affiliation(s)
- Ana Flávia Barbosa de Oliveira
- Petroleum, Energy and Mass Spectrometry Research Group (PEM), Chemistry Department, Federal Rural University of Pernambuco (UFRPE), Recife, PE, 52171-900, Brazil
| | - Aline de Melo Vieira
- Petroleum, Energy and Mass Spectrometry Research Group (PEM), Chemistry Department, Federal Rural University of Pernambuco (UFRPE), Recife, PE, 52171-900, Brazil
| | - Jandyson Machado Santos
- Petroleum, Energy and Mass Spectrometry Research Group (PEM), Chemistry Department, Federal Rural University of Pernambuco (UFRPE), Recife, PE, 52171-900, Brazil.
| |
Collapse
|
34
|
Vállez-Gomis V, Benedé JL, Combès A, Chisvert A, Pichon V. Solid-phase immunoextraction followed by liquid chromatography-tandem mass spectrometry for the selective determination of thyroxine in human serum. Talanta 2023; 265:124864. [PMID: 37379751 DOI: 10.1016/j.talanta.2023.124864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 06/07/2023] [Accepted: 06/20/2023] [Indexed: 06/30/2023]
Abstract
In this work, an analytical method based on solid-phase extraction (SPE) followed by liquid chromatography-tandem mass spectrometry analysis (LC-MS/MS) has been developed for the selective determination of thyroxine (T4) in human serum. For this purpose, two immunosorbents (ISs) specific to T4 were synthesized by grafting two different T4-specific monoclonal antibodies on a cyanogen bromide (CNBr)-activated-Sepharose® 4B solid support. The grafting yields obtained from the immobilization of each antibody on the CNBr-activated-Sepharose® 4B were over 90%, demonstrating that most of the antibodies were covalently bound to the solid support. The SPE procedure was optimized by studying the retention capability and selectivity of the two ISs in pure media fortified with T4. Under the optimized conditions, high elution efficiencies were achieved in the elution fraction for both specific ISs (i.e., 85%), whereas low ones were obtained in the control ISs (ca. 2%), showing the selectivity of the specific ISs. The ISs were also characterized by studying extraction and synthesis repeatability (RSD <8%), and capacity (104 ng of T4 per 35 mg of ISs, i.e., 3 μg g-1). Finally, the methodology was applied to a pooled human serum sample in order to study its analytical utility and accuracy. Relative recovery (RR) values between 81 and 107% were obtained, showing no matrix effects during the global methodology. Furthermore, the need to perform the immunoextraction was evidenced by comparing the LC-MS scan chromatograms and RR values with and without applying the immunoextraction procedure on a serum sample submitted to protein precipitation. This works exploits, for the first time, the use of an IS on the selective determination of T4 in human serum samples.
Collapse
Affiliation(s)
- Víctor Vállez-Gomis
- Department of Analytical, Bioanalytical Sciences, and Miniaturization, UMR 8231 Chemistry, Biology and Innovation, ESPCI Paris, PSL University, CNRS, 10 rue Vauquelin, Paris 75005, France; GICAPC Research Group, Department of Analytical Chemistry, University of Valencia, Burjassot, Valencia 46100, Spain
| | - Juan L Benedé
- GICAPC Research Group, Department of Analytical Chemistry, University of Valencia, Burjassot, Valencia 46100, Spain
| | - Audrey Combès
- Department of Analytical, Bioanalytical Sciences, and Miniaturization, UMR 8231 Chemistry, Biology and Innovation, ESPCI Paris, PSL University, CNRS, 10 rue Vauquelin, Paris 75005, France
| | - Alberto Chisvert
- GICAPC Research Group, Department of Analytical Chemistry, University of Valencia, Burjassot, Valencia 46100, Spain
| | - Valérie Pichon
- Department of Analytical, Bioanalytical Sciences, and Miniaturization, UMR 8231 Chemistry, Biology and Innovation, ESPCI Paris, PSL University, CNRS, 10 rue Vauquelin, Paris 75005, France; Sorbonne Université, Paris 75005, France.
| |
Collapse
|
35
|
Khongkla S, Nurerk P, Udomsri P, Jullakan S, Bunkoed O. A monolith graphene oxide and mesoporous carbon composite sorbent in polyvinyl alcohol cryogel to extract and enrich fluoroquinolones in honey. J Food Compost Anal 2023. [DOI: 10.1016/j.jfca.2023.105288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
36
|
Zhao Y, Zhu L, Ding Y, Ji W, Liu K, Liu K, Gao B, Tao X, Dong YG, Wang FQ, Wei D. Simple and cheap CRISPR/Cas12a biosensor based on plug-and-play of DNA aptamers for the detection of endocrine-disrupting compounds. Talanta 2023; 263:124761. [PMID: 37267883 DOI: 10.1016/j.talanta.2023.124761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/10/2023] [Accepted: 05/29/2023] [Indexed: 06/04/2023]
Abstract
Endocrine-disrupting compounds (EDCs) are widely distributed in the environment. Here, we present a CRISPR/Cas12a (CAS) biosensor based on DNA aptamers for point-of-care detection of EDCs. Two typical EDCs, 17β-estradiol (E2) and bisphenol A (BPA), were selected to be detected by the CAS biosensors via the plug-and-play of their DNA aptamers. The results indicated that the performance of the CAS biosensors can be well regulated by controlling the trans-cleavage activity of Cas12a on a single-stranded DNA reporter and optimizing the sequence and ratio of DNA aptamer and activator DNA. Ultimately, two reliable and specific biosensors were developed, with the linear range and limit of detection of 0.2-25 nM and 0.08 nM for E2 and of 0.1-250 nM and 0.06 nM for BPA, respectively. Compared to the existing detection methods, the CAS biosensors showed higher reliability and sensitivity with simple operation, short detection time, and no costly equipment.
Collapse
Affiliation(s)
- Yunqiu Zhao
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China; Key Laboratory of Biocatalysis and Intelligent Manufacturing (ECUST), China National Light Industry, Shanghai, 200237, China
| | - Lin Zhu
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China
| | - Yaxue Ding
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China
| | - Weiting Ji
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China
| | - Kun Liu
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China
| | - Ke Liu
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China; Key Laboratory of Biocatalysis and Intelligent Manufacturing (ECUST), China National Light Industry, Shanghai, 200237, China
| | - Bei Gao
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China; Key Laboratory of Biocatalysis and Intelligent Manufacturing (ECUST), China National Light Industry, Shanghai, 200237, China
| | - Xinyi Tao
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China; Key Laboratory of Biocatalysis and Intelligent Manufacturing (ECUST), China National Light Industry, Shanghai, 200237, China
| | - Yu-Guo Dong
- Key Laboratory of Biocatalysis and Intelligent Manufacturing (ECUST), China National Light Industry, Shanghai, 200237, China.
| | - Feng-Qing Wang
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China; Key Laboratory of Biocatalysis and Intelligent Manufacturing (ECUST), China National Light Industry, Shanghai, 200237, China.
| | - Dongzhi Wei
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China; Key Laboratory of Biocatalysis and Intelligent Manufacturing (ECUST), China National Light Industry, Shanghai, 200237, China
| |
Collapse
|
37
|
Aguiar D, Marques C, Pereira AC. The Importance of Monitoring Cortisol in the Agri-Food Sector-A Systematic Review. Metabolites 2023; 13:692. [PMID: 37367850 DOI: 10.3390/metabo13060692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/01/2023] [Accepted: 05/24/2023] [Indexed: 06/28/2023] Open
Abstract
Cortisol monitoring in the agri-food sector is considered a valuable tool due to its direct correlation with growth, reproduction, the immune system, and overall animal welfare. Strategies to monitor this stress hormone and its correlation to food quality and security have been studied in fish farming and the livestock industry. This review discusses studies on monitoring cortisol in the food industry for the first time. The impact of cortisol on animal production, quality, and the security of food products, and the analytical procedures commonly implemented for sample pre-concentration and quantification by liquid chromatography coupled to mass spectrometry, are reviewed and discussed according to the results published in the period 2012-2022. Aquaculture, or fish farming, is the leading agri-food sector, where cortisol's impact and usefulness are better known than in livestock. The determination of cortisol in fish not only allows for an increase in the production rate, but also the ability to monitor the water quality, enhancing the sustainable development of this industry. In cattle, further studies are needed since it has mainly been used to detect the administration of illicit substances. Current analytical control and monitoring techniques are expensive and often depend on invasive sampling, not allowing fast or real-time monitoring.
Collapse
Affiliation(s)
- Dayana Aguiar
- Department of Physics, University of Aveiro, 3810-193 Aveiro, Portugal
- ISOPlexis, Centre for Sustainable Agriculture and Food Technology, University of Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
| | - Carlos Marques
- Department of Physics, University of Aveiro, 3810-193 Aveiro, Portugal
- Institute of Nanostructures, Nanomodelling and Nanofabrication (I3N), University of Aveiro, 3810-193 Aveiro, Portugal
| | - Ana C Pereira
- ISOPlexis, Centre for Sustainable Agriculture and Food Technology, University of Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
- Institute of Nanostructures, Nanomodelling and Nanofabrication (I3N), University of Aveiro, 3810-193 Aveiro, Portugal
- Chemical Process Engineering and Forest Products Research Centre, Department of Chemical Engineering, University of Coimbra, Pólo II-Rua Sílvio Lima, 3030-790 Coimbra, Portugal
| |
Collapse
|
38
|
Glöckler D, Wabnitz C, Elsner M, Bakkour R. Avoiding Interferences in Advance: Cyclodextrin Polymers to Enhance Selectivity in Extraction of Organic Micropollutants for Carbon Isotope Analysis. Anal Chem 2023; 95:7839-7848. [PMID: 37167407 DOI: 10.1021/acs.analchem.2c05465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Compound-specific isotope analysis (CSIA) of organic water contaminants can provide important information about their sources and fate in the environment. Analyte enrichment from water remains nonetheless a critical yet inevitable step before measurement. Commercially available solid-phase extraction (SPE) sorbents are inherently nonselective leading to co-extraction of concurrent dissolved organic matter (DOM) and in turn to analytical interferences, especially for low-occurring contaminants. Here, we (i) increased extraction selectivity by synthesizing cyclodextrin polymers (α-, β-, γ-CDP) as SPE sorbents, (ii) assessed their applicability to carbon isotope analysis for a selection of pesticides, and (iii) compared them with commonly used commercial sorbents. Extraction with β-CDP significantly reduced backgrounds in gas chromatography-isotope ratio mass spectrometry (GC-IRMS) and enhanced sensitivity by a factor of 7.5, which was further confirmed by lower carbon-normalized CDOM/Canalyte ratios in corresponding extracts as derived from dissolved organic carbon (DOC) and liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis. Gibbs free energies of adsorption demonstrated weak competition between DOM and analyte on the three CDPs. No isotopic fractionation (Δδ13C within ± 0.3‰) was observed for the investigated pesticides after using β-CDP as an SPE sorbent covering a range of concentrations (5-500 μg L-1), flow velocities (5-40 cm min-1), and sorbent regeneration (up to six times). The present study highlights the benefit of selecting innovative extraction sorbents to avoid interferences in advance. This strategy in combination with existing cleanup approaches offers new prospects for CSIA at field concentrations of tens to hundreds of nanograms per liter.
Collapse
Affiliation(s)
- David Glöckler
- TUM School of Natural Sciences, Chair of Analytical Chemistry and Water Chemistry, Technical University of Munich, 85748 Garching, Germany
| | - Christopher Wabnitz
- TUM School of Natural Sciences, Chair of Analytical Chemistry and Water Chemistry, Technical University of Munich, 85748 Garching, Germany
| | - Martin Elsner
- TUM School of Natural Sciences, Chair of Analytical Chemistry and Water Chemistry, Technical University of Munich, 85748 Garching, Germany
| | - Rani Bakkour
- TUM School of Natural Sciences, Chair of Analytical Chemistry and Water Chemistry, Technical University of Munich, 85748 Garching, Germany
| |
Collapse
|
39
|
Handle KF, Bakry R, Bonn GK. Phosphonium based anion exchange resin for enrichment of phenolic acids. J Chromatogr A 2023; 1700:464049. [PMID: 37178554 DOI: 10.1016/j.chroma.2023.464049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/26/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023]
Abstract
The aim of this work is to investigate the efficiency of a phosphonium-based strong anion exchange sorbent for the extraction of some selected phenolic acids. The material was synthesized through chloromethylation of a porous poly(styrene-divinylbenzene) substrate with high degree of crosslinking, followed by quaternarization with tributyl phosphine. The parameters affecting the solid phase extraction of five phenolic acids, namely chlorogenic acid, caffeic acid, dihydroxybenzoic acid, ferulic acid and rosmarinic acid were optimized. The sample pH and the type, volume and concentration of the eluting solutions were investigated. The analysis of the phenolic acids after extraction was performed using HPLC with diode array detection. Limit of detection, limit of quantitation, linear range, correlation coefficient and reproducibility for the determination of the phenolic acids were estimated. The retention of the phenolic acids on the developed phase was studied using breakthrough analysis. The experimental breakthrough curves were fitted by Boltzmann's function, and the regression parameters were utilized for the determination of the breakthrough parameters. The results obtained using the developed phase were compared with those obtained by the commercially available Oasis MAX sorbent. The proposed approach was successfully applied for the extraction and pre-concentration of rosmarinic acid from rosemary leaf (Rosmarini folium) alcoholic extract.
Collapse
Affiliation(s)
- Karl F Handle
- Institute of Analytical Chemistry and Radiochemistry, University of Innsbruck, Innrain 80-82, Innsbruck A-6020, Austria
| | - Rania Bakry
- Institute of Analytical Chemistry and Radiochemistry, University of Innsbruck, Innrain 80-82, Innsbruck A-6020, Austria.
| | - Günther K Bonn
- Institute of Analytical Chemistry and Radiochemistry, University of Innsbruck, Innrain 80-82, Innsbruck A-6020, Austria; ADSI-Austrian Drug Screening Institute, Innrain 66a, Innsbruck A-6020, Austria
| |
Collapse
|
40
|
Nagia M, Morgan I, Gamel MA, Farag MA. Maximizing the value of indole-3-carbinol, from its distribution in dietary sources, health effects, metabolism, extraction, and analysis in food and biofluids. Crit Rev Food Sci Nutr 2023; 64:8133-8154. [PMID: 37051943 DOI: 10.1080/10408398.2023.2197065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
Indole-3-carbinol (I3C) is a major dietary component produced in Brassica vegetables from glucosinolates (GLS) upon herbivores' attack. The compound is gaining increasing interest due to its anticancer activity. However, reports about improving its level in plants or other sources are still rare. Unfortunately, I3C is unstable in acidic media and tends to polymerize rendering its extraction and detection challenging. This review presents a multifaceted overview of I3C regarding its natural occurrence, biosynthesis, isolation, and extraction procedure from dietary sources, and optimization for the best recovery yield. Further, an overview is presented on its metabolism and biotransformation inside the body to account for its health benefits and factors to ensure the best metabolic yield. Compile of the different analytical approaches for I3C analysis in dietary sources is presented for the first time, together with approaches for its detection and its metabolism in body fluids for proof of efficacy. Lastly, the chemopreventive effects of I3C and the underlying action mechanisms are summarized. Optimizing the yield and methods for the detection of I3C will assist for its incorporation as a nutraceutical or adjuvant in cancer treatment programs. Highlighting the complete biosynthetic pathway and factors involved in I3C production will aid for its future biotechnological production.
Collapse
Affiliation(s)
- Mohamed Nagia
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Halle (Saale), Germany
- Department of Chemistry of Natural Compounds, Pharmaceutical and Drug Industries Research Institute, National Research Center, Cairo, Egypt
| | - Ibrahim Morgan
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Halle (Saale), Germany
| | - Mirette A Gamel
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Mohamed A Farag
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
41
|
Dai Y, Wu N, Liu LE, Yu F, Wu Y, Jian N. Simple and efficient solid phase extraction based on molecularly imprinted resorcinol–formaldehyde resin nanofibers for determination of trace sulfonamides in animal-origin foods. Food Chem 2023; 404:134671. [DOI: 10.1016/j.foodchem.2022.134671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 10/11/2022] [Accepted: 10/15/2022] [Indexed: 11/07/2022]
|
42
|
Murakami H, Iida K, Oda Y, Umemura T, Nakajima H, Esaka Y, Inoue Y, Teshima N. Hydrophilic interaction chromatography-type sorbent prepared by the modification of methacrylate-base resin with polyethyleneimine for solid-phase extraction of polar compounds. ANAL SCI 2023; 39:375-381. [PMID: 36577893 DOI: 10.1007/s44211-022-00250-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 12/14/2022] [Indexed: 12/29/2022]
Abstract
Hydrophilic interaction chromatography (HILIC)-type sorbents were newly developed for the solid-phase extraction (SPE) of polar compounds. Two methacrylate-base resins with different cross-linking monomers and pore properties were synthesized, and three polyethyleneimines (PEIs) with different molecular weights were modified onto each base resin. In both cases, PEIs with a molecular weight of 10,000 (PEI-10,000) exhibited the highest adsorption properties for polar compounds (uracil, uridine, adenosine, cytidine, and guanosine). To control the water-enriched layer at the surface of the PEI-10,000-modified sorbents, the additive amount of PEI-10,000 in the modified reaction was also optimized. When 10 times the amount of PEI-10,000 to each base resin was added, an improvement in adsorption property was observed. Moreover, the use of a nonaqueous sample solution (100% acetonitrile) during the sample loading process drastically improved adsorption, especially for uracil (about 80%) and adenosine (100%). These results indicate that the formation of a strong water-enriched layer at the surface of sorbents with an effective expression of hydrophilic interaction was an important factor in the adsorption properties of polar compounds in HILIC mode-SPE.
Collapse
Affiliation(s)
- Hiroya Murakami
- Department of Applied Chemistry, Aichi Institute of Technology, 1247 Yachigusa, Yakusa-cho, Toyota, 470-0392, Japan.
| | - Keisuke Iida
- Department of Applied Chemistry, Aichi Institute of Technology, 1247 Yachigusa, Yakusa-cho, Toyota, 470-0392, Japan
| | - Yuki Oda
- Department of Applied Chemistry, Aichi Institute of Technology, 1247 Yachigusa, Yakusa-cho, Toyota, 470-0392, Japan
| | - Tomonari Umemura
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1, Horinouchi, Hachioji, Tokyo, 192-0392, Japan
| | - Hizuru Nakajima
- Department of Applied Chemistry for Environment, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, 1-1 Minami-Ohsawa, Hachioji, Tokyo, 192-0397, Japan
| | - Yukihiro Esaka
- Gifu Pharmaceutical University, Daigaku-nishi, Gifu, 501-1196, Japan
| | - Yoshinori Inoue
- Department of Applied Chemistry, Aichi Institute of Technology, 1247 Yachigusa, Yakusa-cho, Toyota, 470-0392, Japan
| | - Norio Teshima
- Department of Applied Chemistry, Aichi Institute of Technology, 1247 Yachigusa, Yakusa-cho, Toyota, 470-0392, Japan
| |
Collapse
|
43
|
Toth J, Pineda M, Yargeau V. Fast and simplified quantitative multiresidue analytical method for pesticides in surface waters by UHPLC-MS/MS with online sample preparation. CHEMOSPHERE 2023; 318:137962. [PMID: 36708776 DOI: 10.1016/j.chemosphere.2023.137962] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/20/2023] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
A quantitative multiresidue analytical method for the simultaneous analysis of current-use agricultural pesticides in surface waters is reported. The method involves minimal sample manipulation and small sample collection volumes (for 1 mL and 5 mL injections) with online sample clean-up and analyte preconcentration on a hydrophilic-lipophilic balance (HLB) column. To our knowledge, this online approach with the use of an HLB column has not yet been reported for multiresidue pesticide analysis in surface waters. Chromatographic separations of isomeric pesticides were achieved through the sequential coupling of C8 and polar endcapped C18 analytical columns. High resolution accurate mass (HRAM) quadrupole Orbitrap spectrometry was performed in full scan mode followed by data-dependent MS/MS fragmentation (FS-ddMS2) with concurrent electrospray ionization in both positive and negative modes. The method was validated for thirty-one (31) diverse current-use pesticides and demonstrated strong linearity (R2 > 0.9912) and precision (% RSD <8.4%) with low quantitation limits (average LOQ of 41 ng L-1). The majority of target analytes experienced minimal matrix effects (<±20%) in fortified environmental water samples. When applied to surface water samples, the method detected fourteen of the target analytes, including twelve herbicides, one insecticide, and one fungicide. This method offers a fast, simple, and reliable approach for the quantitative analysis of diverse current-use pesticides in surface water samples within hours of sample collection in the field. The robust nature of the method may allow for potential application to other types of water and the targeted or untargeted screening of other emerging contaminants.
Collapse
Affiliation(s)
- Jonah Toth
- Department of Chemical Engineering, McGill University, 3610 Rue University, Montréal, Québec, Canada H3A 0C5
| | - Marco Pineda
- Department of Chemical Engineering, McGill University, 3610 Rue University, Montréal, Québec, Canada H3A 0C5
| | - Viviane Yargeau
- Department of Chemical Engineering, McGill University, 3610 Rue University, Montréal, Québec, Canada H3A 0C5.
| |
Collapse
|
44
|
Teimoori S, Shirkhanloo H, Hassani AH, Panahi M, Mansouri N. An immobilization of aminopropyl trimethoxysilane-phenanthrene carbaldehyde on graphene oxide for toluene extraction and separation in water samples. CHEMOSPHERE 2023; 316:137800. [PMID: 36634719 DOI: 10.1016/j.chemosphere.2023.137800] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 01/03/2023] [Accepted: 01/08/2023] [Indexed: 06/17/2023]
Abstract
A new functionalized Nano graphene with aminopropyl trimethoxysilane-phenanthrene-4-carbaldehyde (NGO@APTMS-PNTCA) as a novel adsorbent was used to extract toluene from water samples by the ultrasound-assisted dispersive solid-phase microextraction procedure (USA-D-SPME). So, 50 mg of NGO@APTMS-PNTCA adsorbent was added to water samples and sonicated for 20 min. After toluene extraction, the NGO@APTMS-PNTCA adsorbent separated from the liquid phase with a Whatman membrane filter (200 nm). Then, the toluene was back-extracted from the adsorbent by 2.0 mL of the acetone/ethanol (1:1, eluent) at 25 °C. Due to the physical properties and structure of toluene, fluorobenzene was used as an internal standard. Finally, the toluene values were measured by a gas chromatography-flame ionization detector (GC-FID). In optimized conditions, the limit of detection (LOD), the working range (WR), and the enrichment factor (EF) were obtained at 2.5 μg L-1, 0.01-1.2 mg L-1, and 9.63, respectively (MRSD% = 3.38). Also, the limit of quantification (LOQ) 10 μg L-1 and extraction recovery of more than 95% was efficiently achieved for toluene. Standard additions of toluene to blank solutions had high recoveries between 95.2% and 104.5% with a relative standard deviation (RSD%) of 0.27-5.2. The absorption capacities of NGO and NGO@APTMS-PNTCA adsorbents for toluene extraction were obtained at 32.8 mg g-1 and 154.9 mg g-1, respectively. The USA-D-SPME method was validated by spiking the standard concentrations of toluene. The proposed method demonstrated relevant and suitable statistical results with high accuracy and precision for toluene extraction by a novel adsorbent synthesis.
Collapse
Affiliation(s)
- Shahnaz Teimoori
- Department of Environmental Engineering, Faculty of Natural Resources and Environment, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Hamid Shirkhanloo
- Research Institute of Petroleum Industry(RIPI), West Entrance Blvd., Olympic Village, Tehran, 14857-33111, Iran.
| | - Amir Hessam Hassani
- Department of Environmental Engineering, Faculty of Natural Resources and Environment, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mostafa Panahi
- Department of Energy and Industry, Faculty of Natural Resources and Environment, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Nabiollah Mansouri
- Department of Environmental Engineering, Faculty of Natural Resources and Environment, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
45
|
Advancements in Clay Materials for Trace Level Determination and Remediation of Phenols from Wastewater: A Review. SEPARATIONS 2023. [DOI: 10.3390/separations10020125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023] Open
Abstract
The wide spread of phenols and their toxicity in the environment pose a severe threat to the existence and sustainability of living organisms. Rapid detection of these pollutants in wastewaters has attracted the attention of researchers from various fields of environmental science and engineering. Discoveries regarding materials and method developments are deemed necessary for the effective detection and remediation of wastewater. Although various advanced materials such as organic and inorganic materials have been developed, secondary pollution due to material leaching has become a major concern. Therefore, a natural-based material is preferable. Clay is one of the potential natural-based sorbents for the detection and remediation of phenols. It has a high porosity and polarity, good mechanical strength, moisture resistance, chemical and thermal stability, and cation exchange capacity, which will benefit the detection and adsorptive removal of phenols. Several attempts have been made to improve the capabilities of natural clay as sorbent. This manuscript will discuss the potential of clays as sorbents for the remediation of phenols. The activation, modification, and application of clays have been discussed. The achievements, challenges, and concluding remarks were provided.
Collapse
|
46
|
Chen L, Yan X, Zhou X, Peng P, Sun Q, Zhao F. Advances in the on-line solid-phase extraction-liquid chromatography-mass spectrometry analysis of emerging organic contaminants. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2023.116976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
47
|
Xu X, Huang L, Shuai Q. Porphyrin-based magnetic porous organic polymer for efficient magnetic solid phase extraction of nonsteroidal anti-inflammatory drugs from water. J Chromatogr A 2023; 1689:463770. [PMID: 36638587 DOI: 10.1016/j.chroma.2022.463770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/25/2022] [Accepted: 12/29/2022] [Indexed: 12/31/2022]
Abstract
The ubiquitous occurrence of nonsteroidal anti-inflammatory drugs (NSAIDs) in the environmental water system has drawn significant concerns due to their adverse effects. The accurate monitoring the content of them is of great significance but challenging in terms of the complex matrix and trace concentration. In this work, a porphyrin-based magnetic porous organic polymer composite (PM-POP) was prepared through a solvent-free synthetic method. Owing to the highly porous structure and strong affinities, the as-prepared PM-POP could be utilized as a highly efficient adsorbent for the magnetic solid phase extraction (MSPE) of NSAIDs. Combining with the high-performance liquid chromatography separation with ultraviolet detector (HPLC-UV), a sensitive analytical method was established, which exhibited wide linear ranges (0.1-400 μg/L) and large enrichment factors (EFs) (39.5-82.9 folds) along with good precision (intra-day RSD ≤ 4.9%) and repeatability (inter-day RSD ≤ 8.4%). Ultimately, it was applied to determinate trace NSAIDs in practical water samples successfully, demonstrating its good application prospect in environmental analysis.
Collapse
Affiliation(s)
- Xuejiao Xu
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, No. 388, Lumo Road, Hongshan District, Wuhan 430074, PR China
| | - Lijin Huang
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, No. 388, Lumo Road, Hongshan District, Wuhan 430074, PR China.
| | - Qin Shuai
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, No. 388, Lumo Road, Hongshan District, Wuhan 430074, PR China.
| |
Collapse
|
48
|
Wu J, Cai Z. Enrichment of nucleobase adducts from genomic DNA in the cytoplasm by solid-phase extraction. J Chromatogr B Analyt Technol Biomed Life Sci 2023; 1215:123574. [PMID: 36586340 DOI: 10.1016/j.jchromb.2022.123574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 12/07/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022]
Abstract
The exact levels of some DNA adducts, like N7-deoxyguanosine (N7-dG), can be under-calculated since these adducts may depurinate due to their chemical instability, leading to corresponding nucleobase adducts being released into the cytoplasm. To accurately quantify the levels of DNA adducts, it is necessary to consider those modified nucleobases. However, high levels and diversity of cytoplasmic small molecule metabolites (SMMs) can strongly interfere with the detection of adducts, and it is almost impossible to remove them with nucleobase adducts being well retained. Therefore, we aimed to establish an optimized enrichment method based on solid-phase extraction (SPE) to reduce the co-elution of SMMs with target analytes. In this vein, we employed three bisphenols (BPA, BPF, and BPAF) as examples, prepared corresponding N7-guanine (N7-Gua) adducts, loaded on an Oasis hydrophilic-lipophilic balance ® (HLB) cartridge, used a series of mobile phases containing different percentage of methanol for elution, and evaluated the levels of these adducts in each eluent. First, we found that neutral samples led to the best retention for all three adducts compared with acidified or basified ones. We next employed normal distribution fitting model to characterize the elution of analytes from H2O/methanol with different pHs and observed that neutral mobile phases resulted in more hydrophobic elution for all three adducts. Besides, N7-BPA-Gua and N7-BPF-Gua obtained narrow fitted peaks at neutral pH, while N7-BPAF-Gua had minimized elution windows at low pH. After optimization, we exposed 293T cells to the aforementioned bisphenols and quantified the N7-Gua adducts in the cytoplasm and the corresponding N7-dG adducts in genomic DNA. The results revealed that with the same levels of BPs exposure, BPAF led to the highest levels of adducts in both cytoplasm and genomic DNA samples, followed by BPA and BPF in order. In summary, our research established an appropriate model to describe the elution of DNA adducts in the SPE, applied it to optimize the loading and elution conditions, and discussed the genotoxicity of bisphenols by accurate quantification of both cleaved and uncleaved N7-dG adducts.
Collapse
Affiliation(s)
- Jiabin Wu
- State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong, People's Republic of China
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong, People's Republic of China.
| |
Collapse
|
49
|
Oliveira TC, Lanças FM. Determination of selected herbicides in sugarcane-derived foods by graphene-oxide based disposable pipette extraction followed by liquid chromatography-tandem mass spectrometry. J Chromatogr A 2023; 1687:463690. [PMID: 36502646 DOI: 10.1016/j.chroma.2022.463690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/21/2022] [Accepted: 11/27/2022] [Indexed: 11/29/2022]
Abstract
Sugarcane is widely cultivated in Brazil. Although there are Maximum Residue Limits of pesticides determined for this plant, there is no legislation covering alimentary products from sugarcane. In this study, Disposable Pipette Tip Extraction (DPX) technique was evaluated as a sample preparation technique for simultaneous determination of eleven herbicides followed by LC-MS/MS analysis in three sugarcane-derived food matrices: juice, candy, and syrup. First, graphene oxide anchored to silica functionalized with octadecyl silane and endcapped was synthesized, which was evaluated as a sorbent in DPX. Then, after evaluating the parameters involved in DPX extraction, the method was validated following the ICH guide. As a result, the method showed acceptable linearity (r ≥ 0.99), limits of quantification (1.0 - 5.0 ng mL-1 for juice and 5.0 - 25.0 ng g - 1 for candy and syrup, varying according to the pesticide), precision, and accuracy within the limits of the literature, and recoveries ranging from 48 - 69% (juice), 34 - 89% (candy), and 28 - 76% (syrup). Finally, the developed method was successfully applied in actual samples of the three studied matrices.
Collapse
Affiliation(s)
| | - Fernando Mauro Lanças
- University of São Paulo, Institute of Chemistry at São Carlos, 13560-970 São Carlos, SP, Brazil.
| |
Collapse
|
50
|
Morales N, Thickett SC, Maya F. Sponge-nested polymer monolith sorptive extraction. J Chromatogr A 2023; 1687:463668. [PMID: 36463645 DOI: 10.1016/j.chroma.2022.463668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 11/24/2022]
Abstract
Polymer monoliths are an alternative to traditional particle-packed supports used in solid-phase extraction because of their ease of preparation, high porosity, and pH stability. They often required the attachment of monoliths to a support, such as the internal walls of a column to enable their use for sample preparation. Applications of free-standing polymer monoliths are rarely found because of their limited mechanical stability. Herein, divinylbenzene monoliths were polymerised within a commercial melamine-formaldehyde sponge using different polymerisation times. The sponge-nested polymer monoliths are highly robust, and their size and shape can be easily adjusted for desired applications. The prepared sponge-nested polymer monoliths had surface areas in the range of 237 m2 g-1 to 369 m2 g-1. A melamine-formaldehyde sponge cut into 1 cm3 cubes were used to template the polymer monoliths. Miniaturized monoliths with a size of 0.125 cm3 were directly cut from the larger cubes without compromising the integrity of the porous monolith structure. The resulting nested monolith sorptive extraction (NMSE) supports were applied for the extraction of the endocrine disruptors bisphenol A, 4-tert-butylphenol, and 4-tert-octylphenol. The prepared sponge-nested monoliths are low-cost (40 monoliths/AU$). NMSE was carried out by the direct immersion of the monoliths in the aqueous standards/samples, requiring only an orbital shaker for the extraction procedure. Best performance was obtained for polymer monoliths polymerized for 6 h, enabling limits of detection of 5.6 to 6.5 µg L-1 for the selected analysis using HPLC-UV.
Collapse
Affiliation(s)
- Natalia Morales
- Australian Centre for Research on Separation Science (ACROSS), School of Natural Sciences (Chemistry), University of Tasmania, Hobart, Tasmania 7001, Australia
| | - Stuart C Thickett
- School of Natural Sciences (Chemistry), University of Tasmania, Hobart, Tasmania 7005, Australia
| | - Fernando Maya
- Australian Centre for Research on Separation Science (ACROSS), School of Natural Sciences (Chemistry), University of Tasmania, Hobart, Tasmania 7001, Australia.
| |
Collapse
|