1
|
Wang Y, Zhang Y, Wang J. Micro-droplet printed ion-selective membrane sensors for in situ monitoring of marine heavy metal ions. Talanta 2025; 281:126837. [PMID: 39276575 DOI: 10.1016/j.talanta.2024.126837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 09/01/2024] [Accepted: 09/06/2024] [Indexed: 09/17/2024]
Abstract
Fast, accurate, and reliable techniques for marine toxic heavy metal ions (HMI) detection are critical for the ecological environment and human health. One of the fatal drawbacks of traditional ion selective electrochemical sensors is that the modification of electrode cannot be accurately quantified, resulting in poor repeatability of the detection electrode and large error between the multi-electrode detection results. In order to tackle this challenge, this study presents ultra-fine micro-droplet printed electrodes for the in-situ detection of Cd2+, a carcinogenic and toxic HMI commonly found in the ocean. The ion selective membrane casting liquid was dispersed into tiny droplets with a diameter of micron through microfluidic technology, and the microdroplets were precisely arranged on the electrode surface. As a result, the modification error of electrode was reduced to pL level (accurate to 10 pL), which greatly improved the repeatability between electrodes prepared in different batches. The results of experiments with pure electrolyte, interference ions and artificial seawater indicated that the micro-droplet printed sensors possessed excellent properties of accuracy, precision, repeatability, and anti-interference. This novel micro-droplet printed sensor has the potential to capture an accurate picture of nearshore HMI in heterogeneous environments under shock conditions.
Collapse
Affiliation(s)
- Yuezhu Wang
- Liaoning Key Laboratory of Marine Sensing and Intelligent Detection, Dalian Maritime University, 116026, Dalian, China; College of Environmental Sciences and Engineering, Dalian Maritime University, 116026, Dalian, China
| | - Yichi Zhang
- Liaoning Key Laboratory of Marine Sensing and Intelligent Detection, Dalian Maritime University, 116026, Dalian, China; Information Science and Technology College, Dalian Maritime University, 116026, Dalian, China
| | - Junsheng Wang
- Liaoning Key Laboratory of Marine Sensing and Intelligent Detection, Dalian Maritime University, 116026, Dalian, China; Information Science and Technology College, Dalian Maritime University, 116026, Dalian, China.
| |
Collapse
|
2
|
Zhong WL, Yang JY. Fluorescent carbon quantum dots for heavy metal sensing. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177473. [PMID: 39522783 DOI: 10.1016/j.scitotenv.2024.177473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/19/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024]
Abstract
Many heavy metals pose significant threats to the environment and human health. Traditional methods for detecting heavy metals are often limited by complex procedures, high costs, and challenges in field monitoring. Carbon quantum dots (CQDs), a novel class of fluorescent carbon nanomaterials, have garnered significant interest due to their excellent biocompatibility, low cost, and minimal toxicity. This paper reviews the primary synthesis methods, luminescence mechanisms, and fluorescence quenching mechanisms of CQDs, as well as their recent applications in detecting heavy metals. In heavy metal sensing applications, the simplest hydrothermal method is commonly employed for the one-step synthesis and surface modification of CQDs. Various green reagents and biomass materials, such as citric acid, glutathione, orange peel, and bagasse, can be used for CQDs' preparation. Quantum confinement effects and surface defects give CQDs their distinctive luminescence properties, enabling the detection of heavy metals through fluorescence quenching or enhancement. Additionally, CQDs can be applied in biological imaging and smart detection, and when combined with adsorption materials, they can offer multifunctional capabilities. This review also discusses the future development prospects of CQDs.
Collapse
Affiliation(s)
- Wen-Lin Zhong
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Jin-Yan Yang
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
3
|
Dong H, Xie H, Xie X, Wang Q, Sun H, Zhu W, Zhao G, Xu C, Yin K, Zhang J. Ampicillin-derived carbon dots as the sensitive probe for the detection of Fe 3+ and Cu 2+ in living cells and water samples. Mikrochim Acta 2024; 191:759. [PMID: 39585453 DOI: 10.1007/s00604-024-06849-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 11/15/2024] [Indexed: 11/26/2024]
Abstract
Water-soluble N-doped fluorescent (FL) carbon dots (ACDs) were successfully fabricated hydrothermally using ampicillin sodium as sole precursor. The produced ACDs exhibit satisfactory optical behavior, favorable photostability, and acceptable water solubility. With bright blue emission at 450 nm, the ACDs were utilized for multivariate sensing Fe3+ and Cu2+ based on the synergistic effect of the inner filter effect (IFE) and static quenching with detection limits of 0.31 μM and 0.26 μM, respectively. The practicality of ACDs has been verified by the successful determination of Fe3+ and Cu2+ in real water and living cells. These findings confirm the feasibility of the proposed ACDs as FL sensors for efficient and selective detection of Fe3+ and Cu2+, which present promising prospects for real-time monitoring these two metal ions in environmental and biological systems.
Collapse
Affiliation(s)
- Hongjie Dong
- Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, P.R. China
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, P.R. China
| | - Huanhuan Xie
- Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, P.R. China
| | - Xiaoman Xie
- Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, P.R. China
| | - Qi Wang
- Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, P.R. China
| | - Hang Sun
- Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, P.R. China
| | - Wenju Zhu
- Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, P.R. China
| | - Guihua Zhao
- Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, P.R. China
| | - Chao Xu
- Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, P.R. China
| | - Kun Yin
- Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, P.R. China.
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, P.R. China.
| | - Junmei Zhang
- Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, P.R. China.
| |
Collapse
|
4
|
Khan R, Shukla S, Kumar M, Barceló D, Zuorro A, Bhargava PC. Progress and obstacles in employing carbon quantum dots for sustainable wastewater treatment. ENVIRONMENTAL RESEARCH 2024; 261:119671. [PMID: 39048068 DOI: 10.1016/j.envres.2024.119671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 07/15/2024] [Accepted: 07/22/2024] [Indexed: 07/27/2024]
Abstract
We explored the potential of carbon quantum dots (CQDs) as novel materials for wastewater treatment and their role towards environmental sustainability. The advantages of CQDs over other carbon-based materials, when synthesized using the same precursor material and for the same contaminant are discussed, enabling future researchers to choose the appropriate material. CQDs have demonstrated exceptional adaptability in various wastewater treatment, acting as efficient adsorbents for contaminants, exhibiting excellent photocatalytic properties for degradation of organic pollutants, and functioning as highly sensitive sensors for water quality monitoring. We found that bottom-up approach has better control over particle size (resulting CQDs: 1-4 nm), whereas top-down synthesis approach (resulting CQDs: 2-10 nm) have more potential for large scale applications and tunability. Transmission electron microscopy (TEM) remains the most expensive characterization technique, which provides the best resolution of the CQD's surface. The study emphasizes on the environmental impact and safety considerations pertaining to CQDs by emphasizing the need for thorough toxicity evaluation, and necessary environmental precautions. The study also identifies the lacunae pertaining to critical challenges in practical implementation of CQDs, such as scalability, competition of co-existing contaminants, and stability. Finally, future research directions are proposed, advocating green synthesis approaches, tailored surface functionalization, and, lowering the overall cost for analysis, synthesis and application of CQDs.
Collapse
Affiliation(s)
- Ramsha Khan
- Aquatic Toxicology Laboratory, Environmental Toxicology Group, Council of Scientific and Industrial Research-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow, 226001, Uttar Pradesh, India.
| | - Saurabh Shukla
- Aquatic Toxicology Laboratory, Environmental Toxicology Group, Council of Scientific and Industrial Research-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow, 226001, Uttar Pradesh, India.
| | - Manish Kumar
- Sustainability Cluster, School of Engineering University of Petroleum and Energy Studies Dehradun, Uttarakhand, India; Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Monterey, Monterrey, 64849, Nuevo Leon, Mexico.
| | - Damià Barceló
- Sustainability Cluster, School of Engineering University of Petroleum and Energy Studies Dehradun, Uttarakhand, India; Chemistry and Physics Department, University of Almeria, Ctra Sacramento s/n, 04120, Almería, Spain.
| | - Antonio Zuorro
- Department of Chemical Engineering, Materials and Environment, Sapienza University, Via Eudossiana 18, Rome, 00184, Italy.
| | - Preeti Chaturvedi Bhargava
- Aquatic Toxicology Laboratory, Environmental Toxicology Group, Council of Scientific and Industrial Research-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow, 226001, Uttar Pradesh, India.
| |
Collapse
|
5
|
Soni H, Jain V, Ballal S, Ariffin IA, Chahar M, Saini S, Bhattu M, Singh H, Bechelany M, Singh J. From Structure to Sensing: Molecular Mechanistic Insights into Plant-Derived Carbon Dots for Heavy Metal Ion Detection. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1766. [PMID: 39513846 PMCID: PMC11547485 DOI: 10.3390/nano14211766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 10/30/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024]
Abstract
Plant-derived carbon dots (P-CDs) are gaining attention in environmental remediation due to their cost-effectiveness, availability, and lower toxicity compared with chemically synthesized carbon dots. This review comprehensively examines the recent advancements in the synthesis and application of P-CDs, with a particular emphasis on their efficacy in the sensing of heavy metals, which are among the most pervasive environmental contaminants. A detailed comparative analysis is presented by evaluating the performance of P-CDs against their chemically synthesized counterparts based on key parameters, such as optimal operating conditions and detection limits. Furthermore, sensing the potential of P-CDs towards every heavy metal ion has been discussed with in-depth mechanistic insights. Additionally, this review explores the industrial applications and future directions of P-CDs. This review provides a comprehensive analysis of -P-CDs for heavy metal sensing, aiming to enhance their sensitivity and selectivity toward heavy metal ions.
Collapse
Affiliation(s)
- Himanshi Soni
- Centre of Research Impact and Outcome, Chitkara University, Rajpura 140417, Punjab, India;
| | - Vicky Jain
- Marwadi University Research Center, Department of Chemistry, Faculty of Science, Marwadi University, Rajkot 360003, Gujarat, India;
| | - Suhas Ballal
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore 560027, Karnataka, India;
| | | | - Mamata Chahar
- Department of Chemistry, NIMS Institute of Engineering & Technology, NIMS University Rajasthan, Jaipur 303121, Rajasthan, India;
| | - Suman Saini
- Department of Applied Sciences, Chandigarh Engineering College, Chandigarh Group of Colleges—Jhanjeri, Mohali 140307, Punjab, India;
| | - Monika Bhattu
- Research & Incubation Centre, Department of Chemistry, Rayat Bahra University, Mohali 140103, Punjab, India;
- Parul Institute of Applied Sciences, Parul University, Vadodara 391760, Gujarat, India
| | - Harbinder Singh
- University Centre for Research and Development, Chandigarh University, Mohali 140413, Punjab, India;
| | - Mikhael Bechelany
- Institut Européen des Membranes, IEM, UMR-5635, University of Montpellier, ENSCM, CNRS, Place Eugène Bataillon, 34095 Montpellier, France
- Functional Materials Group, Gulf University for Science and Technology (GUST), Mubarak Al-Abdullah 32093, Kuwait
| | - Jagpreet Singh
- Research & Incubation Centre, Department of Chemistry, Rayat Bahra University, Mohali 140103, Punjab, India;
| |
Collapse
|
6
|
Le TA, Huynh TP. Hemicellulose-Based Sensors: When Sustainability Meets Complexity. ACS Sens 2024; 9:4975-5001. [PMID: 39344466 DOI: 10.1021/acssensors.4c01027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Hemicelluloses (HCs) are promising sustainable biopolymers with a great natural abundance, excellent biocompatibility, and biodegradability. Yet, their potential sensing applications remain limited due to intrinsic challenges in their heterogeneous chemical composition, structure, and physicochemical properties. Herein, recent advances in the development of HC-based sensors for different chemical analytes and physical stimuli using different transduction mechanisms are reviewed and discussed. HCs can be utilized as carbonaceous precursors, reducing, capping, and stabilizing agents, binders, and active components for sensing applications. In addition, different strategies to develop and improve the sensing capacity of HC-based sensors are also highlighted.
Collapse
Affiliation(s)
- Trung-Anh Le
- Department of Chemistry, Faculty of Science, University of Helsinki, A.I. Virtasen aukio 1, 00560 Helsinki, Finland
| | - Tan-Phat Huynh
- Laboratory of Molecular Sciences and Engineering, Åbo Akademi University, Henrikinkatu 2, 20500 Turku, Finland
| |
Collapse
|
7
|
Hassan OH, Saad AS, Ghali M. Highly sensitive detection of kojic acid in food samples using fluorescent carbon dots derived from pomegranate peel. Sci Rep 2024; 14:21144. [PMID: 39256396 PMCID: PMC11387480 DOI: 10.1038/s41598-024-70844-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 08/21/2024] [Indexed: 09/12/2024] Open
Abstract
Kojic acid (KA) has gained significant attention due to its widespread use in the food and cosmetics industries. However, concerns about its potential carcinogenic effects have heightened the need for sensitive detection methods. This study introduces a fluorescence-based optical sensor for the quantification of KA in food samples, utilizing fluorescent carbon dots (CDs) synthesized from pomegranate peel via a hydrothermal method. The Stern-Volmer plot demonstrated a linear response for KA in the range of 120 to 1200 µM, with a Pearson correlation coefficient (r) of 0.9999 and. The sensor exhibited a detection limit of 30 ± 0.04 µM and a limit of quantification (LOQ) of 90 ± 0.14 µM. Application of the developed method to soy sauce and vinegar samples yielded accurate KA determinations, with recoveries of 103.11 ± 0.96% and 104.45 ± 2.15%, respectively. These findings highlight the potential of the proposed sensor for practical applications in food quality and safety assessment, offering valuable insights into the presence of KA in food products.
Collapse
Affiliation(s)
- Omnia H Hassan
- Energy Materials Program, Institute of Basic and Applied Sciences, Egypt-Japan University of Science and Technology, New Borg El-Arab City, Alexandria, 21934, Egypt
| | - Ahmed S Saad
- PharmD Program, Egypt-Japan University of Science and Technology, New Borg El-Arab 21934, Alexandria, Egypt
- Analytical Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr Alaini St. 11562, Cairo, Egypt
| | - Mohsen Ghali
- Energy Materials Program, Institute of Basic and Applied Sciences, Egypt-Japan University of Science and Technology, New Borg El-Arab City, Alexandria, 21934, Egypt.
- Physics Department, Faculty of Science, Kafrelsheikh University, Kafrelsheikh, Egypt.
| |
Collapse
|
8
|
Sarath Kumar CB, Reji RP, Sivalingam Y, Kawazoe Y, Surya VJ. Carbon and boron nitride quantum dots as optical sensor probes for selective detection of toxic metals in drinking water: a quantum chemical prediction through structure- and morphology-dependent electronic and optical properties. RSC Adv 2024; 14:28182-28200. [PMID: 39234523 PMCID: PMC11372860 DOI: 10.1039/d4ra04843a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 08/12/2024] [Indexed: 09/06/2024] Open
Abstract
Toxic metals present in drinking water pose a serious threat to the environment and human beings when present in abundance. In this work, we investigated the sensing ability of quantum dots (pristine CQDs, boron/nitrogen/sulphur (B/N/S)-doped CQDs, and BNQDs) of various sizes and morphologies (rectangular, circular, and triangular) towards toxic metals such as arsenic (As), cobalt (Co), nickel (Ni), copper (Cu), and lead (Pb) using quantum chemical density functional theory calculations in both gas and water phases. We probed the structural, electronic, and optical properties of the QDs. All the modelled QDs are energetically stable. Frontier molecular orbital analysis predicted that BNQDs are more chemically stable than all other CQDs. UV-vis absorption and Raman spectra analyses helped to understand the optical properties of all the QDs. Further, adsorption studies revealed that triangular pristine CQDs and sulphur-doped CQDs show higher adsorption affinity towards the toxic metals. The magnitude of adsorption energies follows the trend Ni > Pb > As > Cu > Co in most of the QDs. Several pristine and doped CQDs exhibited chemisorption towards the toxic metals, and hence, they can be used as adsorbents. However, a majority of BNQDs showed physisorption towards the metals, and therefore, they can be used as efficient optical sensors compared to CQDs. Further, the sensing ability of the QDs was explored through optical phenomena such as changes in UV-vis absorption spectra and fluorescence after metal adsorption. When compared to pristine CQDs and B/N/S-doped CQDs, metal complexation caused significant changes in the UV-vis absorbance peak intensities in BNQDs along with peak shifts. Moreover, metal interaction with the QDs increased their fluorescence lifetime with the highest values observed in Co-adsorbed triangular H18C46 (152.30 ns), Pb-adsorbed rectangular H15C30S (21.29 ns), and As-adsorbed circular B27N27H18 (2.99 μs) among pristine CQDs, B/N/S-doped CQDs, and BNQDs, respectively. Overall, we believe that our first-of-its-kind computational prediction of the optical sensing ability of tailor-made zero-dimensional systems such as QDs will be a great aid for experimentalists in designing novel and rapid optical probes to detect toxic metals in drinking water.
Collapse
Affiliation(s)
- Chedharla Balaji Sarath Kumar
- Novel, Advanced, and Applied Materials (NAAM) Laboratory, Department of Physics and Nanotechnology, SRM Institute of Science and Technology Kattankulathur 603203 Tamil Nadu India
| | - Rence Painappallil Reji
- Novel, Advanced, and Applied Materials (NAAM) Laboratory, Department of Physics and Nanotechnology, SRM Institute of Science and Technology Kattankulathur 603203 Tamil Nadu India
| | - Yuvaraj Sivalingam
- Laboratory of Sensors, Energy and Electronic Devices (Lab SEED), Department of Physics and Nanotechnology, SRM Institute of Science and Technology Kattankulathur 603203 Tamil Nadu India
- Computer, Electrical and Mathematical Sciences and Engineering Division (CEMSE), King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Kingdom of Saudi Arabia
| | - Yoshiyuki Kawazoe
- New Industry Creation Hatchery Center, Tohoku University Aoba-ku, Miyagi Sendai 980-8579 Japan
- Department of Physics and Nanotechnology, SRM Institute of Science and Technology Kattankulathur 603203 Tamil Nadu India
| | - Velappa Jayaraman Surya
- Novel, Advanced, and Applied Materials (NAAM) Laboratory, Department of Physics and Nanotechnology, SRM Institute of Science and Technology Kattankulathur 603203 Tamil Nadu India
- New Industry Creation Hatchery Center, Tohoku University Aoba-ku, Miyagi Sendai 980-8579 Japan
| |
Collapse
|
9
|
Roozbahani A, Salahinejad M, Gholipour V. An exploratory in N-doped carbon dots as green fluorescence probes for Hg(II) ions detection. ENVIRONMENTAL TECHNOLOGY 2024; 45:3612-3620. [PMID: 37261901 DOI: 10.1080/09593330.2023.2220891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 05/23/2023] [Indexed: 06/03/2023]
Abstract
Carbon dots (CDs), as a fascinating carbon nanomaterial, have important applications in various fields due to their unique properties. The physical and chemical properties of CDs can be fine-tuned using heteroatom doping and surface functionalisation. Here, we synthesised N-doped carbon dots (N-CDs) by reacting Citric acid, which serve as the carbon core, with twenty amino acids under microwave irradiation. The fluorescence quenching of each amino acid doped CDs by Hg(II) ions was experimentally measured. Then the effect of the molecular features and chemical properties of amino acids on the fluorescence quenching of N-CDs by Hg(II) ions was investigated by using the quantitative structure-property relationship (QSPR) method. Applying different machine learning techniques including correlation-based and ReliefF algorithm feature selection approaches to choose relevant descriptors, multi-linear regression, and support vector machine to construct QSPR model, some reliable and predictive models were developed. Based on the variables used throughout the final QSPR models, hydrophobic interactions, in addition to hydrogen bonding interactions, can be considered a major factor governing the photoluminescence behaviour of different N-CDs quenched by Hg(II) ions. N-CDs derived from amino acids bearing larger hydrophobic surfaces show greater fluorescence quenching, indicating that a greater capacity to interact with Hg(II) metal ions resulting in further fluorescence quenching.
Collapse
Affiliation(s)
- Ali Roozbahani
- Radiation Application Research School, Nuclear Science and Technology Research Institute, Tehran, Iran
- Faculty of Chemistry, Kharazmi University, Tehran, Iran
| | - Maryam Salahinejad
- Radiation Application Research School, Nuclear Science and Technology Research Institute, Tehran, Iran
| | | |
Collapse
|
10
|
Freire MS, Silva HJB, Albuquerque GM, Monte JP, Lima MTA, Silva JJ, Pereira GAL, Pereira G. Advances on chalcogenide quantum dots-based sensors for environmental pollutants monitoring. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 931:172848. [PMID: 38703843 DOI: 10.1016/j.scitotenv.2024.172848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/23/2024] [Accepted: 04/26/2024] [Indexed: 05/06/2024]
Abstract
Water contamination represents a significant ecological impact with global consequences, contributing to water scarcity worldwide. The presence of several pollutants, including heavy metals, pharmaceuticals, pesticides, and pathogens, in water resources underscores a pressing global concern, prompting the European Union (EU) to establish a Water Watch List to monitor the level of these substances. Nowadays, the standard methods used to detect and quantify these contaminants are mainly liquid or gas chromatography coupled with mass spectrometry (LC/GC-MS). While these methodologies offer precision and accuracy, they require expensive equipment and experienced technicians, and cannot be used on the field. In this context, chalcogenide quantum dots (QDs)-based sensors have emerged as promising, user-friendly, practical, and portable tools for environmental monitoring. QDs are semiconductor nanocrystals that possess excellent properties, and have demonstrated versatility across various sensor types, such as fluorescent, electrochemical, plasmonic, and colorimetric ones. This review summarizes recent advances (2019-2023) in the use of chalcogenide QDs for environmental sensing, highlighting the development of sensors capable of detect efficiently heavy metals, anions, pharmaceuticals, pesticides, endocrine disrupting compounds, organic dyes, toxic gases, nitroaromatics, and pathogens.
Collapse
Affiliation(s)
- Mércia S Freire
- Departamento de Química Fundamental, Universidade Federal de Pernambuco, Recife, Brazil
| | - Hitalo J B Silva
- Departamento de Química Fundamental, Universidade Federal de Pernambuco, Recife, Brazil
| | | | - Joalen P Monte
- Departamento de Química Fundamental, Universidade Federal de Pernambuco, Recife, Brazil
| | - Max T A Lima
- Departamento de Química Fundamental, Universidade Federal de Pernambuco, Recife, Brazil
| | - Jailson J Silva
- Departamento de Química Fundamental, Universidade Federal de Pernambuco, Recife, Brazil
| | - Giovannia A L Pereira
- Departamento de Química Fundamental, Universidade Federal de Pernambuco, Recife, Brazil.
| | - Goreti Pereira
- Departamento de Química Fundamental, Universidade Federal de Pernambuco, Recife, Brazil; Departamento de Química & CESAM, Universidade de Aveiro, Aveiro, Portugal.
| |
Collapse
|
11
|
Zarei A, Rezaei A, Shahlaei M, Asani Z, Ramazani A, Wang C. Selective and sensitive CQD-based sensing platform for Cu 2+ detection in Wilson's disease. Sci Rep 2024; 14:13183. [PMID: 38851799 PMCID: PMC11162432 DOI: 10.1038/s41598-024-63771-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 05/31/2024] [Indexed: 06/10/2024] Open
Abstract
Excessive Cu2+ intake can cause neurological disorders (e.g. Wilson's disease) and adversely affect the gastrointestinal, liver, and kidney organs. The presence of Cu2+ is strongly linked to the emergence and progression of Wilson's disease (WD), and accurately measuring the amount of copper is a crucial step in diagnosing WD at an early stage in a clinical setting. In this work, CQDs were fabricated through a facile technique as a novel fluorescence-based sensing platform for detecting Cu(II) in aqueous solutions, and in the serum samples of healthy and affected individuals by WD. The CQDs interact with Cu(II) ions to produce Turn-on and Turn-off states at nano-molar and micro-molar levels, respectively, with LODs of 0.001 µM and 1 µM. In fact, the Cu2+ ions can act like a bridge between two CQDs by which the charge and electron transfer between the CQDs may increase, possibly can have significant effects on the spectroscopic features of the CQDs. To the best of our knowledge, this is the first reported research that can detect Cu(II) at low levels using two different complexation states, with promising results in testing serum. The potential of the sensor to detect Cu(II) was tested on serum samples from healthy and affected individuals by WD, and compared to results obtained by ICP-OES. Astonishingly, the results showed an excellent correlation between the measured Cu(II) levels using the proposed technique and ICP-OES, indicating the high potential of the fluorimetric CQD-based probe for Cu(II) detection. The accuracy, sensitivity, selectivity, high precision, accuracy, and applicability of the probe toward Cu(II) ions make it a potential diagnostic tool for Wilson's disease in a clinical setting.
Collapse
Affiliation(s)
- Armin Zarei
- The Organic Chemistry Research Laboratory (OCRL), Department of Chemistry, University of Zanjan, Zanjan, 45371-38791, Iran
| | - Aram Rezaei
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Mohsen Shahlaei
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Zhaleh Asani
- Students Research Committee,, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Radiology Department, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ali Ramazani
- The Organic Chemistry Research Laboratory (OCRL), Department of Chemistry, University of Zanjan, Zanjan, 45371-38791, Iran.
- The Convergent Sciences & Technologies Laboratory (CSTL), Research Institute of Modern Biological Techniques (RIMBT), University of Zanjan, Zanjan 45371-38791, Iran.
| | - Chuanyi Wang
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, People's Republic of China.
| |
Collapse
|
12
|
Sgreccia E, Gallardo Gonzalez FS, Prosposito P, Burratti L, Sisani M, Bastianini M, Knauth P, Di Vona ML. Heavy Metal Detection and Removal by Composite Carbon Quantum Dots/Ionomer Membranes. MEMBRANES 2024; 14:134. [PMID: 38921501 PMCID: PMC11205769 DOI: 10.3390/membranes14060134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/02/2024] [Accepted: 06/04/2024] [Indexed: 06/27/2024]
Abstract
The combination of ion exchange membranes with carbon quantum dots (CQDs) is a promising field that could lead to significant advances in water treatment. Composite membranes formed by sulfonated poly(ether ether ketone) (SPEEK) with embedded CQDs were used for the detection and removal of heavy metal ions, such as lead and cadmium, from water. SPEEK is responsible for the capture of heavy metals based on the cation exchange mechanism, while CQDs detect their contamination by exhibiting changes in fluorescence. Water-insoluble "red" carbon quantum dots (rCQDs) were synthesized from p-phenylenediamine so that their photoluminescence was shifted from that of the polymer matrix. CQDs and the composites were characterized by several techniques: FTIR, Raman, UV/VIS, photoluminescence, XPS spectroscopies, and AFM microscopy. The heavy metal ion concentration was analyzed by inductively coupled plasma-optical emission spectroscopy (ICP-OES). The concentration ranges were 10.8-0.1 mM for Pb2+ and 10.0-0.27 mM for Cd2+. SPEEK/rCQDs showed a more pronounced turn-off effect for lead. The composite achieved 100% removal efficiency for lead and cadmium when the concentration was below a half of the ion exchange capacity of SPEEK. The regeneration of membranes in 1 M NaCl was also studied. A second order law was effective to describe the kinetics of the process.
Collapse
Affiliation(s)
- Emanuela Sgreccia
- Department of Industrial Engineering, University of Rome Tor Vergata, 00133 Roma, Italy; (F.S.G.G.); (P.P.)
| | | | - Paolo Prosposito
- Department of Industrial Engineering, University of Rome Tor Vergata, 00133 Roma, Italy; (F.S.G.G.); (P.P.)
| | - Luca Burratti
- Faculty of Science, Technology and Innovation of the University “Mercatorum”, 00186 Rome, Italy;
| | - Michele Sisani
- R & D Department, Prolabin & Tefarm S.r.l., 06134 Perugia, Italy; (M.S.); (M.B.)
| | - Maria Bastianini
- R & D Department, Prolabin & Tefarm S.r.l., 06134 Perugia, Italy; (M.S.); (M.B.)
| | - Philippe Knauth
- CNRS, MADIREL (UMR 7246) and International Laboratory: Ionomer Materials for Energy, Aix Marseille University, Campus St Jérôme, 13013 Marseille, France;
| | - Maria Luisa Di Vona
- Department of Industrial Engineering, University of Rome Tor Vergata, 00133 Roma, Italy; (F.S.G.G.); (P.P.)
| |
Collapse
|
13
|
Biesen L, Müller TJJ. The complexometric behavior of selected aroyl-S,N-ketene acetals shows that they are more than AIEgens. Sci Rep 2024; 14:12565. [PMID: 38822000 PMCID: PMC11143253 DOI: 10.1038/s41598-024-62100-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 05/13/2024] [Indexed: 06/02/2024] Open
Abstract
Using the established synthetic methods, aroyl-S,N-ketene acetals and subsequent bi- and multichromophores can be readily synthesized. Aside from pronounced AIE (aggregation induced emission) properties, these selected examples possess distinct complexometric behavior for various metals purely based on the underlying structural motifs. This affects the fluorescence properties of the materials which can be readily exploited for metal ion detection and for the formation of different metal-aroyl-S,N-ketene acetal complexes that were confirmed by Job plot analysis. In particular, gold(I), iron(III), and ruthenium (III) ions reveal complexation enhanced or quenched emission. For most dyes, weakly coodinating complexes were observed, only in case of a phenanthroline aroyl-S,N-ketene acetal multichromophore, measurements indicate the formation of a strongly coordinating complex. For this multichromophore, the complexation results in a loss of fluorescence intensity whereas for dimethylamino-aroyl-S,N-ketene acetals and bipyridine bichromophores, the observed quantum yield is nearly tripled upon complexation. Even if no stable complexes are formed, changes in absorption and emission properties allow for a simple ion detection.
Collapse
Affiliation(s)
- Lukas Biesen
- Heinrich-Heine-Universität Düsseldorf, Math.-Nat. Fakultät, Institut für Organische Chemie und Makromolekulare Chemie, Universitätsstraße 1, 40225, Düsseldorf, Germany
- School of Chemistry, Joseph Black Building, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Thomas J J Müller
- Heinrich-Heine-Universität Düsseldorf, Math.-Nat. Fakultät, Institut für Organische Chemie und Makromolekulare Chemie, Universitätsstraße 1, 40225, Düsseldorf, Germany.
| |
Collapse
|
14
|
Mumthaj A, Umadevi M. A selective and sensitive probes of chalcone derivative as a fluorescent chemosensor for the detection of Cr 3+ ion. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 308:123741. [PMID: 38091649 DOI: 10.1016/j.saa.2023.123741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 11/27/2023] [Accepted: 12/06/2023] [Indexed: 01/13/2024]
Abstract
A new chalcone based chemosensor like 6-cinnamoylthiochroman-4-one (AZAN), has been designed and synthesized from 6-chlorothiochroman-4-one and cinnamaldehyde via keto ethylenic linkage. Its amino derivatives were synthesized by using urea (AZANU), thiourea (AZANTU) and 2,6-diamino pyridine (AZANPy) respectively and its metal ion sensing properties were investigated. The sensors can selectively recognize and sense the metal cations by showing different fluorescent characteristics at different concentrations. The fluorescence intensity shows remarkable enhancement by Cr3+ over other common metal ions (Cd2+, Hg2+ and Pb2+). The proposed mechanism can be confirmed by UV-Vis and emission titration. The newly synthesized receptor can sense the metal ions even in nano molar level. The binding or association constant and detection limit of chemosensor to Cr3+ are 1.684 × 105 M-1 and 0.2245 × 10-9 M respectively. A computation using the density functional theory was done to gain detailed insights into the electronic structures of the ligand and its derivatives. B3LYP function and 6-31G(d,p) basis set were used to optimize the ground-state geometry of the chemical and its derivatives.
Collapse
Affiliation(s)
- A Mumthaj
- PG Research Department of Chemistry, Nehru Memorial College (Autonomous), Puthanampatti, (Affiliated to Bharathidasan University), Tiruchirappalli, Tamil Nadu 626 002, India; PG Research Department of Chemistry, Hajee Karutha Rowther Howdia College, Uthamapalayam, Tamil Nadu 626 5533, India
| | - M Umadevi
- PG Research Department of Chemistry, Nehru Memorial College (Autonomous), Puthanampatti, (Affiliated to Bharathidasan University), Tiruchirappalli, Tamil Nadu 626 002, India.
| |
Collapse
|
15
|
Vyas T, Jaiswal S, Choudhary S, Kodgire P, Joshi A. Recombinant Organophosphorus acid anhydrolase (OPAA) enzyme-carbon quantum dot (CQDs)-immobilized thin film biosensors for the specific detection of Ethyl Paraoxon and Methyl Parathion in water resources. ENVIRONMENTAL RESEARCH 2024; 243:117855. [PMID: 38070850 DOI: 10.1016/j.envres.2023.117855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/14/2023] [Accepted: 11/30/2023] [Indexed: 02/06/2024]
Abstract
Organophosphates pesticide (OP) toxicity through water resources is a large concern globally among all the emerging pollutants. Detection of OPs is a challenge which needs to be addressed considering the hazardous effects on the health of human beings. In the current research thin film biosensors of recombinant, Organophosphorus acid anhydrolase (OPAA) enzyme along with carbon quantum dots (CQDs) immobilized in thin films were developed. OPAA-CQDs thin film biosensors were used for the specific detection of two OPs Ethyl Paraoxon (EP) and Methyl Parathion (MP) in river water and household water supply. Recombinant OPAA enzyme was expressed in E. Coli, purified and immobilized on the CQD containing chitosan thin films. The CQDs used for this purpose were developed by a one-pot hydrothermal method from phthalic acid and Tri ethylene diamine. The properties of CQDs, OPAA and thin films were characterized using techniques like XPS, TEM, XRD, enzyme activity and CLSM measurements. Biosensing studies of EP and MP were performed by taking fluorescence measurements using a fiber optic spectrometer. The analytical parameters of biosensing were compared against an estimation carried out using the HPLC method. The biosensing performance indicates that the OPAA-CQDs thin film-based biosensors were able to detect both EP and MP in a range of 0-100 μM having a detection limit of 0.18 ppm/0.69 ppm for EP/MP, respectively with a response time of 5 min. The accuracy of estimation of EP/MP when spiked in water resources lie in the range of ∼100-102% which clearly indicates the OPAA-CQD based thin film biosensors can function as a point-of-use method for the detection of OP pesticides in complex water resources.
Collapse
Affiliation(s)
- Tanmay Vyas
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, Indore, 453552, Madhya Pradesh, India
| | - Surbhi Jaiswal
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, Indore, 453552, Madhya Pradesh, India
| | - Sandeep Choudhary
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, Indore, 453552, Madhya Pradesh, India
| | - Prashant Kodgire
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, Indore, 453552, Madhya Pradesh, India.
| | - Abhijeet Joshi
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, Indore, 453552, Madhya Pradesh, India.
| |
Collapse
|
16
|
Thakur S, Bains A, Sridhar K, Kaushik R, Chawla P, Sharma M. Valorization of food industrial waste: Green synthesis of carbon quantum dots and novel applications. CHEMOSPHERE 2024; 347:140656. [PMID: 37951400 DOI: 10.1016/j.chemosphere.2023.140656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/22/2023] [Accepted: 11/06/2023] [Indexed: 11/14/2023]
Abstract
Food analysis is a key element in monitoring food quality for risk assessment concerning public health. Instead of using chemically prepared carbon sources for food analysis, eco-friendly and green technology based CQDs are in great demand due to their least toxicity. Carbon quantum dots (CQDs) represent an innovative group of fluorescent nanomaterials, possessing characteristics like photoluminescence, minimal toxicity, high water solubility, and a strong affinity for biocompatibility. Their versatility extends to various applications in fields like sensor technology, biomedicine, and photocatalysis, among other areas. This paper reviews the current challenges related to the use of food by-products as a source of carbon not only enhances the value of waste but also facilitates food safety detection. The integration of CQDs into food technology for food safety analysis shows a great impact on the economy and environment. Furthermore, the details of synthesis, toxicity, application, and characterization of CQDs were also described along with a brief conceptual overview. Particularly, the detection of food additives, food-borne pathogens, heavy metal ions, and pesticide residues was also elaborated. Furthermore, the advantages and the drawbacks are also discussed, with an emphasis on their future prospects in this emerging research field. This review concluded that the use of food residual components has been associated with several toxic effects and accumulation of these residues leads to many disorders like cancer, neurological disorder, reproductive disease, cardiovascular and arthritis. Moreover, the carbon source produced from food waste interacted with other functional groups like oxygen, hydrogen, and nitrogen through π- π* and n- π* interactions. Overall, understanding the mechanism of fluorescence quenching of residual components is of great interest in the field of food detection, as it can provide insights into the design of cost-effective fluorescence probes with low toxicity.
Collapse
Affiliation(s)
- Sweezee Thakur
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, 144411, Punjab, India
| | - Aarti Bains
- Department of Microbiology, Lovely Professional University, Phagwara, 144411, Punjab, India
| | - Kandi Sridhar
- Department of Food Technology, Karpagam Academy of Higher Education (Deemed to be University), Coimbatore, 641021, India
| | - Ravinder Kaushik
- School of Health Sciences, University of Petroleum and Energy Studies, Dehradun, 248007, Uttrakhand, India
| | - Prince Chawla
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, 144411, Punjab, India.
| | - Minaxi Sharma
- Department of Applied Biology, University of Science and Technology Meghalaya, Baridua, 793101, India.
| |
Collapse
|
17
|
Alafeef M, Srivastava I, Aditya T, Pan D. Carbon Dots: From Synthesis to Unraveling the Fluorescence Mechanism. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2303937. [PMID: 37715112 DOI: 10.1002/smll.202303937] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/31/2023] [Indexed: 09/17/2023]
Abstract
Carbon dots (CDs) being a new type of carbon-based nanomaterial have attracted intensive interest from researchers owing to their excellent biophysical properties. CDs are a class of fluorescent carbon nanomaterials that have emerged as a promising alternative to traditional quantum dots and organic dyes in applications including bioimaging, sensing, and optoelectronics. CDs possess unique optical properties, such as tunable emission, facile synthesis, and low toxicity, making them attractive for many applications in biology, medicine, and environmental areas. The synthesis of CDs is achievable by a variety of methods, including bottom-up and top-down approaches, involving the use of different carbon sources and surface functionalization strategies. However, understanding the fluorescence mechanism of CDs remains a challenge. Various mechanistic models have been proposed to explain their origin of luminescence. This review summarizes the recent developments in the synthesis and functionalization of CDs and provides an overview of the current understanding of the fluorescence mechanism.
Collapse
Affiliation(s)
- Maha Alafeef
- Bioengineering Department, The University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Nuclear Engineering, Pennsylvania State University, State College, PA, 16801, USA
- Materials Science and Engineering, Pennsylvania State University, State College, PA, 16801, USA
- Biomedical Engineering Department, Pennsylvania State University, State College, PA, 16801, USA
- Biomedical Engineering Department, Jordan University of Science and Technology, Irbid, 22110, Jordan
- Huck Institute of Life Sciences, Pennsylvania State University, State College, PA, 16801, USA
| | - Indrajit Srivastava
- Bioengineering Department, The University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Nuclear Engineering, Pennsylvania State University, State College, PA, 16801, USA
- Materials Science and Engineering, Pennsylvania State University, State College, PA, 16801, USA
- Biomedical Engineering Department, Pennsylvania State University, State College, PA, 16801, USA
- Biomedical Engineering Department, Jordan University of Science and Technology, Irbid, 22110, Jordan
- Huck Institute of Life Sciences, Pennsylvania State University, State College, PA, 16801, USA
| | - Teresa Aditya
- Department of Nuclear Engineering, Pennsylvania State University, State College, PA, 16801, USA
- Materials Science and Engineering, Pennsylvania State University, State College, PA, 16801, USA
- Biomedical Engineering Department, Pennsylvania State University, State College, PA, 16801, USA
- Biomedical Engineering Department, Jordan University of Science and Technology, Irbid, 22110, Jordan
- Huck Institute of Life Sciences, Pennsylvania State University, State College, PA, 16801, USA
| | - Dipanjan Pan
- Bioengineering Department, The University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Nuclear Engineering, Pennsylvania State University, State College, PA, 16801, USA
- Materials Science and Engineering, Pennsylvania State University, State College, PA, 16801, USA
- Biomedical Engineering Department, Pennsylvania State University, State College, PA, 16801, USA
- Biomedical Engineering Department, Jordan University of Science and Technology, Irbid, 22110, Jordan
- Huck Institute of Life Sciences, Pennsylvania State University, State College, PA, 16801, USA
| |
Collapse
|
18
|
Qurtulen, Ahmad A. Green tea waste-derived carbon dots: efficient degradation of RhB dye and selective sensing of Cu 2+ ions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:121630-121646. [PMID: 37957492 DOI: 10.1007/s11356-023-30735-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023]
Abstract
Herein, we have synthesized carbon dots (CDs) using a one-step hydrothermal method from green tea waste, a biomass-derived source with high fluorescent properties and excellent solubility in water. The synthesis of CDs was confirmed through a comprehensive range of characterization techniques, including HRTEM (high-resolution transmission electron microscopy), XPS (X-ray photoelectron spectroscopy), and EDX (energy-dispersive X-ray spectroscopy). The optical properties of the synthesized CDs were assessed using UV-Vis spectroscopy and fluorescence (FL) spectroscopy. The CDs displayed exceptional stability across a wide pH range and various concentrations. Moreover, these CDs exhibited a photoluminescence quantum yield (PLQY) of 21.6%, indicating their efficiency in emitting fluorescent light upon excitation. The CDs also showcased their prowess in fluorometrically detecting Cu2+ ions, displaying high sensitivity and selectivity. They presented two distinct linear ranges: 0.02 to 50 µM and 50 to 100 µM, with recovery rates ranging from 94.2 to 104.06%. Moreover, under visible light irradiation, the CDs exhibited significant efficiency in the photocatalytic removal of dyes. Specifically, the CDs achieved degradation rate of 97.89% for Rhodamine B (RhB) within a 30-min irradiation period. In the context of RhB adsorption, it is evident that the experimental data align more closely with the Freundlich isotherm than the Langmuir isotherm. This is substantiated by a higher R2 value (0.97) for the Freundlich isotherm model compared to the Langmuir adsorption isotherm model (0.93). Notably, the adsorption kinetics was effectively described by pseudo first-order kinetics models. Overall, these results highlight the promising potential of CDs in applications such as environmental remediation and waste treatment processes due to their photocatalytic and sensing capabilities.
Collapse
Affiliation(s)
- Qurtulen
- Department of Chemistry, Aligarh Muslim University, Aligarh, 202002, India.
| | - Anees Ahmad
- Department of Chemistry, Aligarh Muslim University, Aligarh, 202002, India
| |
Collapse
|
19
|
Jaison AMC, Vasudevan D, Ponmudi K, George A, Varghese A. One Pot Hydrothermal Synthesis and Application of Bright-yellow-emissive Carbon Quantum Dots in Hg 2+ Detection. J Fluoresc 2023; 33:2281-2294. [PMID: 37017893 DOI: 10.1007/s10895-023-03233-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 03/28/2023] [Indexed: 04/06/2023]
Abstract
Carbon quantum dots (CQD) have drawn great interest worldwide for their extensive application as sensors due to their extraordinary physical and chemical characteristics, good biocompatibility, and high fluorescence in nature. Here, we demonstrate a technique for detecting mercury (Hg2+) ion using a fluorescent CQD probe. Ecology is concerned about the accumulation of heavy metal ions in water samples due to their harmful effects on human health. Sensitive identification and removal of metal ions from water samples are required to reduce heavy metals' risk. To find out Mercury in the water sample, carbon quantum dots were used and synthesized by 5-dimethyl amino methyl furfuryl alcohol and o-phenylene diamine through the hydrothermal technique. The synthesized CQD shows yellow emission when exposed to UV irradiation. Mercury ion was used to quench carbon quantum dots, and it was found that the detection limit was 5.2 nM with a linear range of 15-100 µM. The synthesized carbon quantum dots were demonstrated to efficiently detect Mercury ions in real water samples.
Collapse
Affiliation(s)
| | - Devipriya Vasudevan
- Department of Chemistry, CHRIST (Deemed to be University), Bangalore, Karnataka, 560029, India
| | - Keerthana Ponmudi
- Department of Chemistry, CHRIST (Deemed to be University), Bangalore, Karnataka, 560029, India
| | - Ashlay George
- Department of Chemistry, CHRIST (Deemed to be University), Bangalore, Karnataka, 560029, India
| | - Anitha Varghese
- Department of Chemistry, CHRIST (Deemed to be University), Bangalore, Karnataka, 560029, India.
| |
Collapse
|
20
|
Singh P, Arpita, Kumar S, Kumar P, Kataria N, Bhankar V, Kumar K, Kumar R, Hsieh CT, Khoo KS. Assessment of biomass-derived carbon dots as highly sensitive and selective templates for the sensing of hazardous ions. NANOSCALE 2023; 15:16241-16267. [PMID: 37439261 DOI: 10.1039/d3nr01966g] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Access to safe drinking water and a hygienic living environment are the basic necessities that encourage healthy living. However, the presence of various pollutants (especially toxic heavy metal ions) at high concentrations in water renders water unfit for drinking and domestic use. The presence of high concentrations of heavy-metal ions (e.g., Pb2+, Hg2+, Cr6+, Cd2+, or Cu2+) greater than their permissible limits adversely affects human health, and increases the risk of cancer of the kidneys, liver, skin, and central nervous system. Therefore, their detection in water is crucial. Due to the various benefits of "green"-synthesized carbon-dots (C-dots) over other materials, these materials are potential candidates for sensing of toxic heavy-metal ions in water sources. C-dots are very small carbon-based nanomaterials that show chemical stability, magnificent biocompatibility, excitation wavelength-dependent photoluminescence (PL), water solubility, simple preparation strategies, photoinduced electron transfer, and the opportunity for functionalization. A new family of C-dots called "carbon quantum dots" (CQDs) are fluorescent zero-dimensional carbon nanoparticles of size < 10 nm. The green synthesis of C-dots has numerous advantages over conventional chemical routes, such as utilization of inexpensive and non-poisonous materials, straightforward operations, rapid reactions, and renewable precursors. Natural sources, such as biomass and biomass wastes, are broadly accepted as green precursors for fabricating C-dots because these sources are economical, ecological, and readily/extensively accessible. Two main methods are available for C-dots production: top-down and bottom-up. Herein, this review article discusses the recent advancements in the green fabrication of C-dots: photostability; surface structure and functionalization; potential applications for the sensing of hazardous anions and toxic heavy-metal ions; binding of toxic ions with C-dots; probable mechanistic routes of PL-based sensing of toxic heavy-metal ions. The green production of C-dots and their promising applications in the sensing of hazardous ions discussed herein provides deep insights into the safety of human health and the environment. Nonetheless, this review article provides a resource for the conversion of low-value biomass and biomass waste into valuable materials (i.e., C-dots) for promising sensing applications.
Collapse
Affiliation(s)
- Permender Singh
- Department of Chemistry, Deenbandhu Chhotu Ram University of Science & Technology, Murthal, Sonipat-131039, Haryana, India.
| | - Arpita
- J. C. Bose University of Science & Technology, YMCA, Faridabad-121006, Haryana, India.
| | - Sandeep Kumar
- J. C. Bose University of Science & Technology, YMCA, Faridabad-121006, Haryana, India.
| | - Parmod Kumar
- J. C. Bose University of Science & Technology, YMCA, Faridabad-121006, Haryana, India.
| | - Navish Kataria
- J. C. Bose University of Science & Technology, YMCA, Faridabad-121006, Haryana, India.
| | - Vinita Bhankar
- Department of Biochemistry, Kurukshetra University, Kurukshetra-136119, Haryana, India
| | - Krishan Kumar
- Department of Chemistry, Deenbandhu Chhotu Ram University of Science & Technology, Murthal, Sonipat-131039, Haryana, India.
| | - Ravi Kumar
- J. C. Bose University of Science & Technology, YMCA, Faridabad-121006, Haryana, India.
| | - Chien-Te Hsieh
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan, Taiwan.
- Department of Mechanical, Aerospace, and Biomedical Engineering, University of Tennessee, Knoxville, TN 37996, USA
| | - Kuan Shiong Khoo
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan, Taiwan.
- Centre for Herbal Pharmacology and Environmental Sustainability, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam-603103, Tamil Nadu, India
| |
Collapse
|
21
|
Vyas T, Gogoi M, Joshi A. Fluorescent fiber-optic device sensor based on carbon quantum dot (CQD) thin films for dye detection in water resources. Analyst 2023; 148:5178-5189. [PMID: 37721153 DOI: 10.1039/d3an01343j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
Industrialization, especially in textile industries, has led to increased use of dyes and pigments to impart colours to fabrics. Textile dyes are one of the chief emerging pollutants of water resources as industrial effluents. In the current research, we report the development and utilization of pH-sensitive carbon quantum dots (CQDs) immobilized in polymer thin films acting as sensors for textile dye detection. The CQDs and CQD-containing polymer films were characterized by various techniques like XRD, TEM, XPS, and CLSM. The synthesized CQD thin films possess a unique pH-sensitive property that can be used to detect various model acidic and basic dyes that are important components of industrial effluents from textile dyes. The detection capability of the sensor films was evaluated by spiking dyes in various water matrices, like household tap water and river water. The results indicate that pH-sensitive CQD thin film was able to detect three acidic dyes, namely methyl red, methyl orange, and bromocresol green, and one basic dye, methylene blue, in a linear range of 0-100 μM with a response time of 1 minute. The CQD thin-film sensors have a limit of detection of 26.4 ppb, 214.5 ppb, 46.2 ppb, and 29.7 ppb for methyl red, methyl orange, bromocresol green and methylene blue, respectively. The accuracy of detection performed by spiking studies in water resources indicated an ∼100% recovery value in all tested acidic and basic dyes. The sensor films were compared for analytical parameters using UV-visible-fluorescence spectroscopy and HPLC.
Collapse
Affiliation(s)
- Tanmay Vyas
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, Indore-453552, Madhya Pradesh, India.
| | - Manashjit Gogoi
- Department of Biomedical Engineering, North-Eastern Hill University, Umshing Mawkynroh, Shillong 793022, India
| | - Abhijeet Joshi
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, Indore-453552, Madhya Pradesh, India.
| |
Collapse
|
22
|
Wang M, Huang H, Wang L, Sun M, Hou H, Yang X. Carbon dots-based dual-emission proportional fluorescence sensor for ultra-sensitive visual detection of mercury ions in natural water. Colloids Surf A Physicochem Eng Asp 2023; 675:132080. [DOI: 10.1016/j.colsurfa.2023.132080] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
23
|
Deng Y, Liu D, Guo T, Qian J, Zhou Y. Controllable preparation of long wavelength carbon dots and their application in fluorescence detection. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:4692-4699. [PMID: 37675461 DOI: 10.1039/d3ay00969f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
By adjusting the reactants and reaction conditions, the particle size and surface state of fluorescent carbon dots (CDs) can be controlled, and CDs with different photoluminescence colors can be finally prepared. However, this multi-step procedure is relatively time-consuming and complex. Therefore, it is of great significance to explore a more convenient and efficient preparation route. In this paper, SA (P-aminobenzenesulfonic acid) and οPD (o-phenylenediamine) were used as precursors, and water and ethanol were used as reaction solvents. By adjusting the proportion of the precursor or reaction solvent, self-doping and co-doping of the precursor were realized, and CDs with various fluorescent colors were finally prepared. It was found that red-emission CDs (r-CDs) could be prepared with SA and οPD as precursors and water as the solvent. Through comparative study, it was found that r-CDs were affected by H+ in the formation process and photoluminescence process. The fluorescence stability of r-CDs indicated that they have good selectivity for some metal ions. The r-CDs prepared in this paper realized the specific recognition of Cu2+ and Ag+ through the "off-on" process, and the detection limits were 0.165 μm and 1.53 μm, respectively. And this test has the potential for practical qualitative testing.
Collapse
Affiliation(s)
- Yafeng Deng
- School of Electronic Information Engineering, Jingchu University of Technology, Jingmen, Hubei, China
| | - Di Liu
- Research Center of Graphic Communication, Printing and Packaging, Wuhan University, Wuhan, Hubei, China.
| | - Ting Guo
- School of Electronic Information Engineering, Jingchu University of Technology, Jingmen, Hubei, China
| | - Jun Qian
- Research Center of Graphic Communication, Printing and Packaging, Wuhan University, Wuhan, Hubei, China.
| | - Yihua Zhou
- Research Center of Graphic Communication, Printing and Packaging, Wuhan University, Wuhan, Hubei, China.
| |
Collapse
|
24
|
Paul S, Nandi S, Das M, Bora A, Hossain MT, Ghosh S, Giri PK. Two-dimensional bismuth oxyselenide quantum dots as nanosensors for selective metal ion detection over a wide dynamic range: sensing mechanism and selectivity. NANOSCALE 2023; 15:12612-12625. [PMID: 37462457 DOI: 10.1039/d3nr02029k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
Bismuth oxyselenide (Bi2O2Se) nanosheets, a new 2D non-van der Waals nanomaterial having unique semiconducting properties, could be favorable for various sensing applications. In the present report, a top-down chemical approach was adopted to synthesize ultrathin Bi2O2Se quantum dots (QDs) in an appropriate solution. The as-prepared 2D Bi2O2Se QDs with an average size of ∼3 nm, exhibiting strong visible fluorescence, were utilized for heavy-metal ion detection with high selectivity. The QDs show a high optical band gap and a reasonably high fluorescence quantum yield (∼4%) in the green region without any functionalization. A series of heavy metal ions were detected using these QDs. The as-prepared QDs exhibit selective detection of Fe3+ over a wide dynamic range with a high quenching ratio and a low detection limit (<0.5 μM). The mechanism of visible fluorescence and Fe3+ ion-induced quenching was investigated in detail based on a model involving adsorption and charge transfer. Density functional theory (DFT) first principles calculations show that fluorescence quenching occurred selectively due to the efficient trapping of electrons in the bandgap states created by the Fe atoms. This work presents a sustainable and scalable method to synthesize 2D Bi2O2Se QDs for heavy metal ion sensing over a wide dynamic range and these 2D QDs could find potential uses in gas sensors, biosensors and optoelectronics.
Collapse
Affiliation(s)
- Sumana Paul
- Department of Physics, Indian Institute of Technology Guwahati, Guwahati 781039, India.
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Sanju Nandi
- Department of Physics, Indian Institute of Technology Guwahati, Guwahati 781039, India.
| | - Mandira Das
- Department of Physics, Indian Institute of Technology Guwahati, Guwahati 781039, India.
| | - Abhilasha Bora
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Md Tarik Hossain
- Department of Physics, Indian Institute of Technology Guwahati, Guwahati 781039, India.
| | - Subhradip Ghosh
- Department of Physics, Indian Institute of Technology Guwahati, Guwahati 781039, India.
| | - P K Giri
- Department of Physics, Indian Institute of Technology Guwahati, Guwahati 781039, India.
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati 781039, India
| |
Collapse
|
25
|
Yu W, Sun W, Zhang Y, Shen C, Cao X, Song P, Zhu X, Liu M, Yang Y. Plasmon-enhanced fluorescence for ellagic acid detection based on surface structure of gold nanoparticles. Anal Bioanal Chem 2023; 415:4901-4909. [PMID: 37341782 DOI: 10.1007/s00216-023-04792-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/30/2023] [Accepted: 06/01/2023] [Indexed: 06/22/2023]
Abstract
Ellagic acid (EA), as a natural polyphenolic acid, is considered a naturally occurring inhibitor of carcinogenesis. Herein, we developed a plasmon-enhanced fluorescence (PEF) probe for EA detection based on silica-coated gold nanoparticles (Au NPs). A silica shell was designed to control the distance between silica quantum dots (Si QDs) and Au NPs. The experimental results indicated that an 8.8-fold fluorescence enhancement was obtained compared with the original Si QDs. Three-dimensional finite-difference time-domain (3D-FDTD) simulations further demonstrated that the local electric field enhancement around Au NPs led to the fluorescence enhancement. In addition, the fluorescent sensor was applied for the sensitive detection of EA with a detection limit of 0.14 μM. It can be used to detect EA in pomegranate rind with a recovery rate of 100.26-107.93%. It can also be applied to the analysis of other substances by changing the identification substances. These experimental results indicated that the probe provides a good option for clinical analysis and food safety.
Collapse
Affiliation(s)
- Weidao Yu
- College of Food and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, People's Republic of China
| | - Wen Sun
- College of Food and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, People's Republic of China
| | - Yukai Zhang
- College of Food and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, People's Republic of China
| | - Caihong Shen
- National Engineering Research Center of Solid-State Brewing, Luzhou, 646000, People's Republic of China
- Luzhou Laojiao Co. Ltd, Luzhou, 646000, People's Republic of China
| | - Xiaonian Cao
- National Engineering Research Center of Solid-State Brewing, Luzhou, 646000, People's Republic of China
- Luzhou Laojiao Co. Ltd, Luzhou, 646000, People's Republic of China
| | - Ping Song
- College of Food and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, People's Republic of China
| | - Xiaofeng Zhu
- College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Miao Liu
- National Engineering Research Center of Solid-State Brewing, Luzhou, 646000, People's Republic of China.
- Luzhou Laojiao Co. Ltd, Luzhou, 646000, People's Republic of China.
| | - Yaqiong Yang
- College of Food and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, People's Republic of China.
| |
Collapse
|
26
|
Xu Y, Lan J, Wang B, Bo C, Ou J, Gong B. Simple fabrication of carbon quantum dots and activated carbon from waste wolfberry stems for detection and adsorption of copper ion. RSC Adv 2023; 13:21199-21210. [PMID: 37456551 PMCID: PMC10339073 DOI: 10.1039/d3ra04026g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 07/07/2023] [Indexed: 07/18/2023] Open
Abstract
Removal of heavy metal pollution is an endless topic, because heavy metals can cause irreversible damage to the human body and environment. It is urgent to develop novel materials for detection and adsorption of heavy metal ions. In this paper, waste wolfberry straw was utilized as a carbon source, and two simple methods were developed to successfully prepare activated carbon (AC) and carbon quantum dots (CQDs). The fabrication conditions were optimized by adjusting the mass ratio of precursor to activator, type of activator and activation times. When sodium hydroxide (NaOH) was selected as an activator (6 : 1, mass ratio of NaOH to AC-precursor), and the activation was performed at 600 °C for 1 h, the highest specific surface area of the obtained AC-NaOH-3 reached 3016 m2 g-1. The adsorption capacity for copper ions (Cu2+) reached 68.06 mg g-1. The preparation conditions for CQDs were also optimized by adjusting the concentration of wolfberry stem, reaction time and temperature. When the wolfberry stem concentration was 7.5 g L-1, and the activation was performed at 200 °C for 24 h, the obtained CQDs exhibited strong fluorescence emission in the blank and 12 kinds of metal ion solutions, respectively, however, the fluorescence intensity was remarkably decreased after adding Cu2+. In the range of 10-80 nM, the linear correlation coefficient between the concentration of Cu2+ and fluorescence intensity of CQDs was 0.992, and the limit of detection was 2.83 nmol L-1. Thus, these two kinds of materials were prepared from wolfberry stem, which opened up a new way for the application in adsorption and detection of copper ions.
Collapse
Affiliation(s)
- Yunjia Xu
- School of Chemistry and Chemical Engineering, Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University Yinchuan 750021 China
| | - Jingming Lan
- School of Chemistry and Chemical Engineering, Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University Yinchuan 750021 China
| | - Baoying Wang
- School of Chemistry and Chemical Engineering, Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University Yinchuan 750021 China
| | - Chunmiao Bo
- School of Chemistry and Chemical Engineering, Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University Yinchuan 750021 China
| | - Junjie Ou
- State Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University Xi'an 710127 China
| | - Bolin Gong
- School of Chemistry and Chemical Engineering, Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University Yinchuan 750021 China
| |
Collapse
|
27
|
Niu C, Yao Z, Jiang S. Synthesis and application of quantum dots in detection of environmental contaminants in food: A comprehensive review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 882:163565. [PMID: 37080319 DOI: 10.1016/j.scitotenv.2023.163565] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 04/13/2023] [Accepted: 04/14/2023] [Indexed: 05/03/2023]
Abstract
Environmental pollutants can accumulate in the human body through the food chain, which may seriously impact human health. Therefore, it is of vital importance to develop quick, simple, accurate and sensitive (respond quickly) technologies to evaluate the concentration of environmental pollutants in food. Quantum dots (QDs)-based fluorescence detection methods have great potential to overcome the shortcomings of traditional detection methods, such as long detection time, cumbersome detection procedures, and low sensitivity. This paper reviews the types and synthesis methods of QDs with a focus on green synthesis and the research progress on rapid detection of environmental pollutants (e.g., heavy metals, pesticides, and antibiotics) in food. Metal-based QDs, carbon-based QDs, and "top-down" and "bottom-up" synthesis methods are discussed in detail. In addition, research progress of QDs in detecting different environmental pollutants in food is discussed, especially, the practical application of these methods is analyzed. Finally, current challenges and future research directions of QDs-based detection technologies are critically discussed. Hydrothermal synthesis of carbon-based QDs with low toxicity from natural materials has a promising future. Research is needed on green synthesis of QDs, direct detection without pre-processing, and simultaneous detection of multiple contaminants. Finally, how to keep the mobile sensor stable, sensitive and easy to store is a hot topic in the future.
Collapse
Affiliation(s)
- Chenyue Niu
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China.
| | - Zhiliang Yao
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China.
| | - Shanxue Jiang
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China.
| |
Collapse
|
28
|
Yakusheva A, Aly-Eldeen M, Gusev A, Zakharova O, Kuznetsov D. Cyan Fluorescent Carbon Quantum Dots with Amino Derivatives for the Visual Detection of Copper (II) Cations in Sea Water. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1004. [PMID: 36985898 PMCID: PMC10055749 DOI: 10.3390/nano13061004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/02/2023] [Accepted: 03/06/2023] [Indexed: 06/18/2023]
Abstract
Amino- and carboxyl-functionalized carbon quantum dots (Amino-CQDs) were synthesized through fast and simple microwave treatment of a citric acid, ethylenediamine and ethylenediaminetetraacetic acid (EDTA) mix. The reproducible and stable optical properties from newly synthesized CQD dispersion with a maximum absorbance spectra at 330 nm and the symmetric emission maximum at 470 nm made the Amino-CQDs a promising fluorescence material for analytical applications. The highly aminated and chelate moieties on the CQDs was appropriate for a copper (Cu2+) cation sensor in the linear range from 1 × 10-4 mg/mL to 10 mg/mL with a limit of detection at 0.00036 mg/mL by static fluorescence quenching effects. Furthermore, Amino-CQDs demonstrated stable fluorescence parameters for assays in diluted alkali metal solution (Na+ and K+) and sea water. Finally, a visual sensor, based on Amino-CQDs, was successfully created for the 0.01-100 mg/mL range to produce a colorimetric effect that can be registered by computer vision software (Open CV Python).
Collapse
Affiliation(s)
- Anastasia Yakusheva
- Department of Functional Nanosystems and High-Temperature Materials, National University of Science and Technology MISIS, Leninsky Prospect 4, 119049 Moscow, Russia
| | - Mohamed Aly-Eldeen
- Marine Chemistry Laboratory, National Institute of Oceanography & Fisheries, Kayet-Bey, Al-Anfoushi, Alexandria 5321430, Egypt
| | - Alexander Gusev
- Department of Functional Nanosystems and High-Temperature Materials, National University of Science and Technology MISIS, Leninsky Prospect 4, 119049 Moscow, Russia
- Research Institute for Environmental Science and Biotechnology, Derzhavin Tambov State University, 33, Internatsionalnaya Str., 392000 Tambov, Russia
| | - Olga Zakharova
- Department of Functional Nanosystems and High-Temperature Materials, National University of Science and Technology MISIS, Leninsky Prospect 4, 119049 Moscow, Russia
- Research Institute for Environmental Science and Biotechnology, Derzhavin Tambov State University, 33, Internatsionalnaya Str., 392000 Tambov, Russia
| | - Denis Kuznetsov
- Department of Functional Nanosystems and High-Temperature Materials, National University of Science and Technology MISIS, Leninsky Prospect 4, 119049 Moscow, Russia
| |
Collapse
|
29
|
Chen M, Wang J, Zhang Q, Zhang J, Chen Z, Sun R. Reversible detection of Hg(II) in pure water based on thymine modified nitrogen, sulfur co-doped carbon dots combined with antidote. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 286:121998. [PMID: 36279800 DOI: 10.1016/j.saa.2022.121998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 10/12/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
Conventional Hg2+ visual sensors are unsustainable, hindering their practical application for improved water quality and health. In order to address this challenge, herein, N, S co-doped carbon nanodots (NS-CDs) were prepared and well characterized, presented the fluorescent monitoring for Hg2+ over other metal ions with the limit of detection (LOD) of 0.47 µM. Next, the CDs were successfully modified by thymine without any fluorescence labelling (referred to as T-NS-CDs). The sensitivity to Hg2+ cloud be noticeable enhanced due to the formation of T-Hg2+-T specific base pairs. Accordingly, the LOD was calculated with values as low as 1.56 nM. Furthermore, Hg2+ could be released and complexed with antidote (meso-2,3-dimercaptosuccinic acid) (DMSA-Hg2+), being the responsible for the reversible interconversion between T-Hg2+-T and DMSA-Hg2+. Interestingly, the proposed sensing system also applies to the fluorescent sensing for Hg2+ in tap water with satisfactory recoveries (96.97 %-101.38 %, RSD < 2 %). Thus, by simply combination of elemental doping and surface functionalization, the surface state and functionalities of CDs could be tailorable, endowing the fluorometric sensing towards Hg2+ in environmental system.
Collapse
Affiliation(s)
- Min Chen
- School of Chemistry and Materials Science, Guizhou Normal University, Guiyang 550025, China
| | - Jun Wang
- School of Chemistry and Materials Science, Guizhou Normal University, Guiyang 550025, China.
| | - Qianbo Zhang
- School of Chemistry and Materials Science, Guizhou Normal University, Guiyang 550025, China
| | - Jinsheng Zhang
- School of Chemistry and Materials Science, Guizhou Normal University, Guiyang 550025, China
| | - Zhiming Chen
- School of Chemistry and Materials Science, Guizhou Normal University, Guiyang 550025, China
| | - Rongguo Sun
- School of Chemistry and Materials Science, Guizhou Normal University, Guiyang 550025, China
| |
Collapse
|
30
|
Siahcheshm P, Heiden P. High quantum yield carbon quantum dots as selective fluorescent turn-off probes for dual detection of Fe2+/Fe3+ ions. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2022.114284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
31
|
Design and Applications of Enzyme-Linked Nanostructured Materials for Efficient Bio-catalysis. Top Catal 2023. [DOI: 10.1007/s11244-022-01770-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
32
|
Dahake RV, Bansiwal A. Disposable Sensors for Heavy Metals Detection: A Review of Carbon and Non‐Noble Metal‐Based Receptors. ChemistrySelect 2022. [DOI: 10.1002/slct.202202824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Rashmi V. Dahake
- CSIR-National Environmental Engineering Research Institute(NEERI) Nagpur
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad Uttar Pradesh
| | - Amit Bansiwal
- CSIR-National Environmental Engineering Research Institute(NEERI) Nagpur
| |
Collapse
|
33
|
Gaurav A, Jain A, Tripathi SK. Review on Fluorescent Carbon/Graphene Quantum Dots: Promising Material for Energy Storage and Next-Generation Light-Emitting Diodes. MATERIALS (BASEL, SWITZERLAND) 2022; 15:7888. [PMID: 36431372 PMCID: PMC9695987 DOI: 10.3390/ma15227888] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 10/31/2022] [Accepted: 11/04/2022] [Indexed: 05/10/2023]
Abstract
Carbon/graphene quantum dots are 0D fluorescent carbon materials with sizes ranging from 2 nm to around 50 nm, with some attractive properties and diverse applications. Different synthesis routes, bandgap variation, higher stability, low toxicity with tunable emission, and the variation of physical and chemical properties with change in size have drawn immense attention to its potential application in different optoelectronics-based materials, especially advanced light-emitting diodes and energy storage devices. WLEDs are a strong candidate for the future of solid-state lighting due to their higher luminance and luminous efficiency. High-performance batteries play an important part in terms of energy saving and storage. In this review article, the authors provide a comparative analysis of recent and ongoing advances in synthesis (top-down and bottom-up), properties, and wide applications in different kinds of next-generation light-emitting diodes such as WLEDs, and energy storage devices such as batteries (Li-B, Na-B) and supercapacitors. Furthermore, they discuss the potential applications and progress of carbon dots in battery applications such as electrode materials. The authors also summarise the developmental stages and challenges in the existing field, the state-of-the-art of carbon/graphene quantum dots, and the potential and possible solutions for the same.
Collapse
Affiliation(s)
- Ashish Gaurav
- Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Taipei 10617, Taiwan
| | - Amrita Jain
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5B, 02-106 Warsaw, Poland
| | - Santosh Kumar Tripathi
- Department of Physics, School of Physical Sciences, Mahatma Gandhi Central University, Motihari 845401, Bihar, India
| |
Collapse
|
34
|
Chen J, Xia X, Li P, Yu H, Xie Y, Guo Y, Yao W, Qian H, Cheng Y. A facile “off-on” fluorescence sensor for pentachlorophenol detection based on natural N and S co-doped carbon dots from crawfish shells. Food Chem 2022; 405:134802. [DOI: 10.1016/j.foodchem.2022.134802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/17/2022] [Accepted: 10/27/2022] [Indexed: 11/05/2022]
|
35
|
Carbon dots as potential greener and sustainable fluorescent nanomaterials in service of pollutants sensing. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
36
|
Huang C, Wang H, Xu Y, Ma S, Gong B, Ou J. Carbon dot-functionalized macroporous adsorption resin for bifunctional ultra-sensitive detection and fast removal of iron(III) ions. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:3727-3738. [PMID: 36106929 DOI: 10.1039/d2ay01366e] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Heavy metal pollution has spread around the world with the development of industry, posing a major threat to human health. It is urgent to design and fabricate bifunctional materials for detection and adsorption of heavy metal ions. Herein, poly(glycidyl methacrylate-co-ethylene glycol dimethacrylate) microspheres, a kind of common macroporous adsorption resin (MAR), were employed as the matrix, and carbon dots (CDs) with excellent optical properties were grafted onto the surface of MAR by surface-initiated atom transfer radical polymerization (SI-ATRP) and photo-initiated "thiol-yne" click chemistry. The synthesized MAR@poly(PA)@CD could produce fluorescence quenching with Fe3+. A simple fluorescence spectrometric method for detection of Fe3+ was established. The fluorescence intensity of MAR@poly(PA)@CD decreased linearly with the concentration of Fe3+ in the range of 0-70 nmol L-1, with a limit of detection (LOD) of 6.6 nmol L-1, which had the potential for trace detection. In addition, after SI-ATRP modification, many adsorption sites were generated on the surface of MAR, and the adsorption capacity for Fe3+ was 23.8 mg g-1. Isothermal and kinetic adsorption experiments were more consistent with the Langmuir model (r = 0.9992) and pseudo-second-order model (r = 0.9902), indicating that the adsorption was monolayer adsorption and chemical adsorption, respectively. MAR@poly(PA)@CD with dual functions of detecting and adsorbing Fe3+ was successfully prepared, showing great application prospects in the environmental field.
Collapse
Affiliation(s)
- Chao Huang
- School of Chemistry and Chemical Engineering, Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan 750021, China.
| | - Hongwei Wang
- School of Chemistry and Chemical Engineering, Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan 750021, China.
| | - Yunjia Xu
- School of Chemistry and Chemical Engineering, Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan 750021, China.
| | - Shujuan Ma
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| | - Bolin Gong
- School of Chemistry and Chemical Engineering, Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan 750021, China.
| | - Junjie Ou
- School of Chemistry and Chemical Engineering, Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan 750021, China.
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
37
|
Khan ME, Mohammad A, Yoon T. State-of-the-art developments in carbon quantum dots (CQDs): Photo-catalysis, bio-imaging, and bio-sensing applications. CHEMOSPHERE 2022; 302:134815. [PMID: 35526688 DOI: 10.1016/j.chemosphere.2022.134815] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 04/25/2022] [Accepted: 04/29/2022] [Indexed: 06/14/2023]
Abstract
Carbon quantum dots (CQDs), the intensifying nanostructured form of carbon material, have exhibited incredible impetus in several research fields such as bio-imaging, bio-sensing, drug delivery systems, optoelectronics, photovoltaics, and photocatalysis, thanks to their exceptional properties. The CQDs show extensive photonic and electronic properties, as well as their light-collecting, tunable photoluminescence, remarkable up-converted photoluminescence, and photo-induced transfer of electrons were widely studied. These properties have great advantages in a variety of visible-light-induced catalytic applications for the purpose of fully utilizing the energy from the solar spectrum. The major purpose of this review is to validate current improvements in the fabrication of CQDs, characteristics, and visible-light-induced catalytic applications, with a focus on CQDs multiple functions in photo-redox processes. We also examine the problems and future directions of CQD-based nanostructured materials in this growing research field, with an eye toward establishing a decisive role for CQDs in photocatalysis, bio-imaging, and bio-sensing applications that are enormously effective and stable over time. In the end, a look forward to future developments is presented, with a view to overcoming challenges and encouraging further research into this promising field.
Collapse
Affiliation(s)
- Mohammad Ehtisham Khan
- Department of Chemical Engineering Technology, College of Applied Industrial Technology (CAIT), Jazan University, Jazan, 45971, Saudi Arabia.
| | - Akbar Mohammad
- School of Chemical Engineering, Yeungnam University, Gyeongsan-si, Gyeongbuk, 38541, South Korea.
| | - Taeho Yoon
- School of Chemical Engineering, Yeungnam University, Gyeongsan-si, Gyeongbuk, 38541, South Korea.
| |
Collapse
|
38
|
Natural and Engineered Nanomaterials for the Identification of Heavy Metal Ions—A Review. NANOMATERIALS 2022; 12:nano12152665. [PMID: 35957095 PMCID: PMC9370674 DOI: 10.3390/nano12152665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/23/2022] [Accepted: 07/25/2022] [Indexed: 11/17/2022]
Abstract
In recent years, there has been much interest in developing advanced and innovative approaches for sensing applications in various fields, including agriculture and environmental remediation. The development of novel sensors for detecting heavy metals using nanomaterials has emerged as a rapidly developing research area due to its high availability and sustainability. This review emphasized the naturally derived and engineered nanomaterials that have the potential to be applied as sensing reagents to interact with metal ions or as reducing and stabilizing agents to synthesize metallic nanoparticles for the detection of heavy metal ions. This review also focused on the recent advancement of nanotechnology-based detection methods using naturally derived and engineered materials, with a summary of their sensitivity and selectivity towards heavy metals. This review paper covers the pros and cons of sensing applications with recent research published from 2015 to 2022.
Collapse
|
39
|
Green Synthesis of Fluorescent Carbon Dots from Ocimum basilicum L. Seed and Their Application as Effective Photocatalyst in Pollutants Degradation. J CLUST SCI 2022. [DOI: 10.1007/s10876-022-02339-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
40
|
Jin Y, Zhang X, Feng T, Li M, Xiao H, Zhou S, Zhao Y, Zhong J, Yang D. Construction of polysulfone anion exchange hybrid membranes by incorporating carbon quantum dots and facilitated transport mechanisms. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
41
|
Fluorescence turn-off sensing of lead and gentamicin based on phosphorus and chlorine co-doped carbon dots. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
42
|
Surface-functionalized fluorescent carbon dots (CDs) for dual-mode detection of lead ions. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02307-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
43
|
Zhang L, Zhao M, Xiao M, Im MH, Abd El-Aty AM, Shao H, She Y. Recent Advances in the Recognition Elements of Sensors to Detect Pyrethroids in Food: A Review. BIOSENSORS 2022; 12:402. [PMID: 35735550 PMCID: PMC9220870 DOI: 10.3390/bios12060402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 05/25/2022] [Accepted: 06/08/2022] [Indexed: 01/06/2023]
Abstract
The presence of pyrethroids in food and the environment due to their excessive use and extensive application in the agriculture industry represents a significant threat to public health. Therefore, the determination of the presence of pyrethroids in foods by simple, rapid, and sensitive methods is warranted. Herein, recognition methods for pyrethroids based on electrochemical and optical biosensors from the last five years are reviewed, including surface-enhanced Raman scattering (SERS), surface plasmon resonance (SPR), chemiluminescence, biochemical, fluorescence, and colorimetric methods. In addition, recognition elements used for pyrethroid detection, including enzymes, antigens/antibodies, aptamers, and molecular-imprinted polymers, are classified and discussed based on the bioreceptor types. The current research status, the advantages and disadvantages of existing methods, and future development trends are discussed. The research progress of rapid pyrethroid detection in our laboratory is also presented.
Collapse
Affiliation(s)
- Le Zhang
- Institute of Quality Standards & Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (L.Z.); (M.Z.)
| | - Mingqi Zhao
- Institute of Quality Standards & Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (L.Z.); (M.Z.)
| | - Ming Xiao
- Academy of Agriculture and Forestry Sciences, Qinghai University, Xining 810000, China;
| | - Moo-Hyeog Im
- Department of Food Engineering, Daegu University, Gyeongsan 38453, Korea;
| | - A. M. Abd El-Aty
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt;
- Department of Medical Pharmacology, Medical Faculty, Ataturk University, Erzurum 25240, Turkey
| | - Hua Shao
- Institute of Quality Standards & Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (L.Z.); (M.Z.)
| | - Yongxin She
- Institute of Quality Standards & Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (L.Z.); (M.Z.)
| |
Collapse
|
44
|
Jariah A, Shiddiq M, Armynah B, Tahir D. Sensor Heavy Metal from Natural Resources for a Green Environment: A Review Relation Between Synthesis Method and Luminescence Properties of Carbon Dots. LUMINESCENCE 2022; 37:1246-1258. [PMID: 35671060 DOI: 10.1002/bio.4303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/19/2022] [Accepted: 06/04/2022] [Indexed: 11/10/2022]
Abstract
Carbon dots are 10-nm nanomaterial classes as excellent candidates in various applications: physics, biology, chemistry, and food science due to high stable biocompatibility and high surface expansive. Carbon dots (CDs) produced from natural materials have received wide attention due to their unique benefits, easy availabilities, sufficient costs, and harmless to the ecosystem. The various properties of CDs can be obtained from various synthesis methods: hydrothermal, microwave-assisted, and pyrolysis. The CDs have shown enormous potential in metal particle detection, colorimetric sensors, electrochemical sensors, and pesticide sensor. This review provides systematic information on a synthesis method based on natural resources and the application to the environmental sensors for supporting the clean environment. We hopefully this review, useful as a reference source in providing the guidance or roadmap of new researchers to develop new strategy in increasing luminescence properties CDs for multi detection of heavy metal in the environment.
Collapse
Affiliation(s)
- Ainun Jariah
- Department of Physics, Hasanuddin University, Makassar, Indonesia
| | - Muhandis Shiddiq
- Research Centre for Physics, Indonesian Institute of Science, Pupiptek Banten, Indonesia
| | | | - Dahlang Tahir
- Department of Physics, Hasanuddin University, Makassar, Indonesia
| |
Collapse
|
45
|
RasulKhan B, Ponnaiah SK, Balasubramanian J, Periakaruppan P. Novel Carbon Quantum Dotted Reduced Graphene Oxide Nanosheets for Nano-molar Range Cadmium Quantification. Electrocatalysis (N Y) 2022. [DOI: 10.1007/s12678-022-00732-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
46
|
Peng B, Guo Y, Ma Y, Zhou M, Zhao Y, Wang J, Fang Y. Smartphone-assisted multiple-mode assay of ascorbic acid using cobalt oxyhydroxide nanoflakes and carbon quantum dots. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107185] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
47
|
Tuning the Sensing Properties of N and S Co-Doped Carbon Dots for Colorimetric Detection of Copper and Cobalt in Water. SENSORS 2022; 22:s22072487. [PMID: 35408102 PMCID: PMC9003535 DOI: 10.3390/s22072487] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/21/2022] [Accepted: 03/22/2022] [Indexed: 01/05/2023]
Abstract
In this study, nitrogen and sulfur co-doped carbon dots (NS-CDs) were investigated for the detection of heavy metals in water through absorption-based colorimetric response. NS-CDs were synthesized by a simple one-pot hydrothermal method and characterized by TEM, STEM-coupled with energy dispersive X-ray analysis, NMR, and IR spectroscopy. Addition of Cu(II) ions to NS-CD aqueous solutions gave origin to a distinct absorption band at 660 nm which was attributed to the formation of cuprammonium complexes through coordination with amino functional groups of NS-CDs. Absorbance increased linearly with Cu(II) concentration in the range 1–100 µM and enabled a limit of detection of 200 nM. No response was observed with the other tested metals, including Fe(III) which, however, appreciably decreased sensitivity to copper. Increase of pH of the NS-CD solution up to 9.5 greatly reduced this interference effect and enhanced the response to Cu(II), thus confirming the different nature of the two interactions. In addition, a concurrent response to Co(II) appeared in a different spectral region, thus suggesting the possibility of dual-species multiple sensitivity. The present method neither requires any other reagents nor any previous assay treatment and thus can be a promising candidate for low-cost monitoring of copper onsite and by unskilled personnel.
Collapse
|
48
|
Dual Fluorometric Detection of Fe 3+ and Hg 2+ Ions in an Aqueous Medium Using Carbon Quantum Dots as a "Turn-off" Fluorescence Sensor. J Fluoresc 2022; 32:1143-1154. [PMID: 35318547 DOI: 10.1007/s10895-022-02922-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 03/01/2022] [Indexed: 10/18/2022]
Abstract
The present study aimed to develop a carbon dots-based fluorescence (FL) sensor that can detect more than one pollutant simultaneously in the same aqueous solution. The carbon dots-based FL sensor has been prepared by employing a facile hydrothermal method using citric acid and ethylenediamine as precursors. The as-synthesized CDs displayed excellent hydrophilicity, good photostability and blue fluorescence under UV light. They have been used as an efficient "turn-off" FL sensor for dual sensing of Fe3+ and Hg2+ ions in an aqueous medium with high sensitivity and selectivity through a static quenching mechanism. The lowest limit of detection (LOD) for Fe3+ and Hg2+ ions was found to be 0.406 µM and 0.934 µM, respectively over the concentration range of 0-50 µM. Therefore, the present work provides an effective strategy to monitor the concentration of Fe3+ and Hg2+ ions simultaneously in an aqueous medium using environment-friendly CDs.
Collapse
|
49
|
Sanni SO, Moundzounga THG, Oseghe EO, Haneklaus NH, Viljoen EL, Brink HG. One-Step Green Synthesis of Water-Soluble Fluorescent Carbon Dots and Its Application in the Detection of Cu 2. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:958. [PMID: 35335771 PMCID: PMC8952276 DOI: 10.3390/nano12060958] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/08/2022] [Accepted: 03/09/2022] [Indexed: 01/29/2023]
Abstract
Renewable biowaste-derived carbon dots have garnered immense interest owing to their exceptional optical, fluorescence, chemical, and environmentally friendly attributes, which have been exploited for the detection of metals, non-metals, and organics in the environment. In the present study, water-soluble fluorescent carbon dots (CDs) were synthesized via facile green microwave pyrolysis of pine-cone biomass as precursors, without any chemical additives. The synthesized fluorescent pine-cone carbon dots (PC-CDs) were spherical in shape with a bimodal particle-size distribution (average diameters of 15.2 nm and 42.1 nm) and a broad absorption band of between 280 and 350 nm, attributed to a π-π* and n-π* transition. The synthesized PC-CDs exhibited the highest fluorescent (FL) intensity at an excitation wavelength of 360 nm, with maximum emission of 430 nm. The synthesized PC-CDs were an excellent fluorescent probe for the selective detection of Cu2+ in aqueous solution, amidst the presence of other metal ions. The FL intensity of PC-CDs was exceptionally quenched in the presence of Cu2+ ions, with a low detection limit of 0.005 μg/mL; this was largely ascribed to Cu2+ ion binding interactions with the enriched surface functional groups on the PC-CDs. As-synthesized PC-CDs are an excellent, cost effective, and sensitive probe for detecting and monitoring Cu2+ metal ions in wastewater.
Collapse
Affiliation(s)
- Saheed O. Sanni
- Department of Chemical Engineering, Faculty of Engineering, Built Environment and Information Technology, University of Pretoria, Pretoria 0028, South Africa
- Biosorption and Wastewater Treatment Research Laboratory, Department of Chemistry, Faculty of Applied and Computer Sciences, Vaal University of Technology, Vanderbijlpark 1900, South Africa; (T.H.G.M.); (E.L.V.)
| | - Theo H. G. Moundzounga
- Biosorption and Wastewater Treatment Research Laboratory, Department of Chemistry, Faculty of Applied and Computer Sciences, Vaal University of Technology, Vanderbijlpark 1900, South Africa; (T.H.G.M.); (E.L.V.)
| | - Ekemena O. Oseghe
- Institute for Nanotechnology and Water Sustainability, College of Science, Engineering and Technology, Florida Campus, University of South Africa, Johannesburg 1709, South Africa;
| | - Nils H. Haneklaus
- Institute of Chemical Technology, Freiberg University of Mining and Technology, Leipziger Straße 29, 09599 Freiberg, Germany;
- Td Lab Sustainable Mineral Resources, University for Continuing Education Krems, Dr.-Karl-Dorrek-Straße 30, 3500 Krems an der Donau, Austria
| | - Elvera L. Viljoen
- Biosorption and Wastewater Treatment Research Laboratory, Department of Chemistry, Faculty of Applied and Computer Sciences, Vaal University of Technology, Vanderbijlpark 1900, South Africa; (T.H.G.M.); (E.L.V.)
| | - Hendrik G. Brink
- Department of Chemical Engineering, Faculty of Engineering, Built Environment and Information Technology, University of Pretoria, Pretoria 0028, South Africa
| |
Collapse
|
50
|
The recent development of carbon dots as powerful green corrosion inhibitors: A prospective review. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.118124] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|