1
|
Lu Q, Xu Z, Zhang Q, Zhang Z, Zhang Y, Zhang T, Li J, Wang X. Foliar application of Fe-fulvic acid: A strategy to reduce heavy metal accumulation and enhance nutritional quality. Food Chem X 2024; 24:101904. [PMID: 39469282 PMCID: PMC11513662 DOI: 10.1016/j.fochx.2024.101904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 10/08/2024] [Accepted: 10/12/2024] [Indexed: 10/30/2024] Open
Abstract
Pepper is a key agricultural crop susceptible to accumulating heavy metals like cadmium (Cd) and barium (Ba), posing significant health risks. To address these issues, this study investigated the effects of foliar applications of fulvic acid (FA), Zn-fulvic acid (Zn-FA), and Fe-fulvic acid (Fe-FA) on Ba and Cd uptake in pepper tissues, as well as their impact on nutritional quality, biomass, and leaf enzyme activity. Results indicated that Fe-FA application significantly reduced Cd and Ba in pepper fruit by 25 % and 93 %, respectively. Additionally, Fe-FA enhanced pepper growth, increasing vitamin C and phenolic compounds by 136 % and 13 %, respectively. Metabolomics analysis revealed that Fe-FA application up-regulated 857 metabolites and down-regulated 1045 metabolites. Furthermore, Fe-FA primarily influenced amino acid, carbohydrate, and lipid metabolism, promoting pepper growth. These findings suggest that Fe-FA foliar application offers a promising strategy for reducing Ba and Cd accumulation in pepper fruits while enhancing its nutritional quality.
Collapse
Affiliation(s)
- Qinhui Lu
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, No.6 Ankang Road, Guian New Area, Guizhou, 561113, China
| | - Zhidong Xu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Qinghai Zhang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, No.6 Ankang Road, Guian New Area, Guizhou, 561113, China
| | - Zhi Zhang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, No.6 Ankang Road, Guian New Area, Guizhou, 561113, China
| | - Yuxin Zhang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, No.6 Ankang Road, Guian New Area, Guizhou, 561113, China
| | - Ting Zhang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, No.6 Ankang Road, Guian New Area, Guizhou, 561113, China
| | - Jun Li
- College of Environmental and Ecology, Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Xiaolin Wang
- Future Energy Center, School of Business, Society and Engineering, Mälardalen University, 722 23 Västerås, Sweden
| |
Collapse
|
2
|
Xu X, Peng C, Shao X, Gong K, Zhao X, Xie W, Zhang W, Tan J. Unveiling the impacts of biodegradable microplastics on cadmium toxicity, translocation, transformation, and metabolome in lettuce. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177669. [PMID: 39579896 DOI: 10.1016/j.scitotenv.2024.177669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/29/2024] [Accepted: 11/18/2024] [Indexed: 11/25/2024]
Abstract
Biodegradable microplastics (BMPs) may impact the environmental fate and ecotoxicity of Cd, but the effect mechanism in soil-plant system remain poorly understood. This study investigated the impact of BMPs (poly(lactic acid) (PLA) and poly(butylene adipate terephthalate) (PBAT) microplastics) on the Cd toxicity, translocation, transformation, and metabolome in lettuce (Lactuca sativa L.) by pot experiments. The results show that co-exposure to BMPs and Cd synergistically inhibited the shoot growth. 0.2 % PLA MPs enhanced but 2.5 % PLA MPs inhibited the photosynthesis; however, the dose of PBAT MPs was negatively correlated with the content of chlorophyll a. Moreover, the presence of 2.5 % PBAT MPs increased the nitrate content of leaves by 9.5 % compared to single Cd exposure. The partial least squares path model (PLS-PM) indicates that BMPs exacerbated the inhibitory effects of Cd on lettuce growth. PLA MPs enhanced K, Ca, Cu, and Zn accumulation in root stele, whereas PBAT MPs promoted Fe and Mn enrichment in epidermis. Furthermore, co-exposure resulted in higher inorganic and water-soluble Cd proportions in shoots. PLA MPs elevated Cd contents in cell wall fractions of both roots and shoots, while PBAT MPs increased Cd contents in shoot cell walls and root cells and soluble Cd ratio in shoots. BMPs enhanced Cd toxicity and bioaccumulation by downregulating the expression of ABC transporters and phenylpropanoid biosynthesis pathways, and the relative abundance of related metabolites.
Collapse
Affiliation(s)
- Xiang Xu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Cheng Peng
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| | - Xuechun Shao
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Kailin Gong
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xuan Zhao
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Wenwen Xie
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Wei Zhang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jiaqi Tan
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, United States.
| |
Collapse
|
3
|
Koyukan B, Arikan-Abdulveli B, Yildiztugay E, Ozfidan-Konakci C. The regulatory roles of a plant neurotransmitter, acetylcholine, on growth, PSII photochemistry and antioxidant systems in wheat exposed to cadmium and/or mercury stress. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 362:124978. [PMID: 39303933 DOI: 10.1016/j.envpol.2024.124978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 08/12/2024] [Accepted: 09/15/2024] [Indexed: 09/22/2024]
Abstract
Heavy metals increase in nature due to anthropogenic activities and negatively impact the growth, progress, and efficiency of plants. Among the toxic metal pollutants that can cause dangerous effects when accumulated by plants, mercury (Hg) and cadmium (Cd) were investigated in this study. These metals typically inhibit important enzymes and halt their functioning, thereby adversely affecting the capability of plants to achieve photosynthesis, respiration, and produce quality crops. Acetylcholine (ACh) serves as a potent neurotransmitter present in both primitive and advanced plant species. Its significant involvement in diverse metabolic processes, particularly in regulating growth and adaptation to stress, needs to be further elucidated. For this aim, effects of acetylcholine (ACh1, 10 μM; ACh2, 100 μM) were survey in Triticum aestivum under Hg and/or Cd stress (Hg, 50 μM; Cd, 100 μM). Wheat seedlings exhibited a growth retardation of about 24% under Hg or Cd stress. Combined stress conditions (Cd + Hg) resulted in a decrease in RWC by approximately 16%. Two different doses of ACh treatment to stressed plants positively affected growth parameters and regulated the water relations. Gas exchange was limited in stress groups, and the photochemical quantum competency of PSII (Fv/Fm) was suppressed. Cd + ACh1 and Cd + ACh2 treatments resulted in approximately 2-fold and 1.5-fold improvement in stomatal conductance and carbon assimilation rate, respectively. Similarly, improvement was observed with ACh treatments in wheat seedlings under Hg stress. Under Cd and/or Hg stress, high levels of H2O2 accumulated and lipid peroxidation occurred. According to our results, ACh treatment upon Cd and Hg stresses improved the activities of SOD, POX, and APX, thereby reducing oxidative damage. In conclusion, ACh treatment was found to ensure stress tolerance and limit the adverse effects caused by heavy metals.
Collapse
Affiliation(s)
- Buket Koyukan
- Department of Biotechnology, Selcuk University, Faculty of Science, Selcuklu, 42130, Konya, Turkey.
| | - Busra Arikan-Abdulveli
- Department of Biotechnology, Selcuk University, Faculty of Science, Selcuklu, 42130, Konya, Turkey.
| | - Evren Yildiztugay
- Department of Biotechnology, Selcuk University, Faculty of Science, Selcuklu, 42130, Konya, Turkey.
| | - Ceyda Ozfidan-Konakci
- Department of Molecular Biology and Genetics, Faculty of Science, Necmettin Erbakan University, Meram, 42090, Konya, Turkey.
| |
Collapse
|
4
|
Zhu Y, Li Q, Feng L, Dong Y, Zhang Y, Nurmaimaiti N, Mamut R. Phyllosphere bacterial community and metabolomic analysis revealed the mechanism of Cd tolerance in the bryophyte Tortella tortuosa (Hedw.) Limpr. FRONTIERS IN PLANT SCIENCE 2024; 15:1466659. [PMID: 39670261 PMCID: PMC11635300 DOI: 10.3389/fpls.2024.1466659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 10/25/2024] [Indexed: 12/14/2024]
Abstract
Introduction Phytoremediation is a safe and green technology for the remediation of heavy metal pollution, a global environmental problem. Bryophytes are well known for their special physiological properties, but there is little research on the use of bryophytes for phytoremediation. Methods In this indoor experiment, the impacts of 40 days of Cd pollution (1 (T1), 5 (T2), 10 (T3) mg·L-1) on Cd absorption, growth and physiological characteristics, and phyllosphere bacterial diversity of Tortella tortuosa were explored. Results The results showed that the maximum Cd absorption capacity of T. tortuosa was 5.0135 mg·kg-1. The contents of leaf chlorophyll a (Chl a) and chlorophyll b (Chl b) in T. tortuosa decreased (p < 0.05) with the increase of Cd concentration. Especially, the Chl a and Chl b contents of the T3 treatment reduced by 88% and 91%, respectively compared with those of the CK (Cd: 0 mg·L-1). The catalase (CAT) and peroxidase (POD) activities of the T3 treatment reduced by 55% and 85%, respectively (p < 0.05), and the malondialdehyde (MDA) content increased by 167%, compared with those of the CK. Under Cd exposure, Cyanobacteria (63.49%) and Proteobacteria (26.62%) were the dominant bacterial phyla. The highly abundant phyllosphere bacteria were negatively correlated with the Cd concentration, antioxidant enzyme activity, and chlorophyll content in T. tortuosa, and positively correlated with the relative abundances of Neomycin and N-Acetyl-L-Glutamic acid. Discussion Although the severe Cd pollution could affect the physiological and metabolic characteristics of T. tortuosa, T. tortuosa had a strong absorption capacity for Cd. Therefore, it could be used for phytoremediation of heavy metal pollution. This study will provide a reference for the remediation of soil heavy metal pollution.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Reyim Mamut
- Key Laboratory of Biological Resources and Genetic Engineering of Xinjiang, College of Life Science and Technology, Xinjiang University, Urumqi, China
| |
Collapse
|
5
|
Bočaj V, Pongrac P, Fischer S, Likar M. Species-Specific and Pollution-Induced Changes in Gene Expression and Metabolome of Closely Related Noccaea Species Under Natural Conditions. PLANTS (BASEL, SWITZERLAND) 2024; 13:3149. [PMID: 39599358 PMCID: PMC11597696 DOI: 10.3390/plants13223149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/05/2024] [Accepted: 11/07/2024] [Indexed: 11/29/2024]
Abstract
Hyperaccumulators within the Noccaea genus possess many promising genetic and metabolic adaptations that could be potentially exploited to support phytoremediation efforts and/or crop improvement and biofortification. Although hyperaccumulation is very common in this genus, individual species display specific traits as they can accumulate different elements (e.g., zinc, cadmium, and/or nickel). Moreover, there appears to be some populational variability with natural selection increasing the metal tolerance in metallicolous populations. Therefore, employing robust methods, such as integrated analysis of the transcriptome and metabolome, is crucial for uncovering pivotal candidate genes and pathways orchestrating the response to metal stress in Noccaea hyperaccumulators. Our study highlights several species-specific traits linked to the detoxification of metals and metal-induced oxidative stress in hyperaccumulating N. praecox when compared to a closely related model species, N. caerulescens, when grown in the field. Transcriptome analysis revealed distinct differences between the three studied natural Noccaea populations. Notably, we observed several pathways frequently connected to metal stress, i.e., glutathione metabolism, phenylpropanoid biosynthesis, and flavonoid biosynthesis, which were enriched. These differences were observed despite the relative evolutionary closeness of studied species, which emphasizes the importance of further expanding our knowledge on hyperaccumulators if we want to exploit their mechanisms for phytoremediation efforts or food quality improvements.
Collapse
Affiliation(s)
- Valentina Bočaj
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia; (V.B.); (P.P.)
| | - Paula Pongrac
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia; (V.B.); (P.P.)
- Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia
| | - Sina Fischer
- School of Biosciences, University of Nottingham, Loughborough LE12 5RD, UK;
| | - Matevž Likar
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia; (V.B.); (P.P.)
| |
Collapse
|
6
|
Zeeshan M, Iqbal A, Salam A, Hu Y, Khan AH, Wang X, Miao X, Chen X, Zhang Z, Zhang P. Zinc Oxide Nanoparticle-Mediated Root Metabolic Reprogramming for Arsenic Tolerance in Soybean. PLANTS (BASEL, SWITZERLAND) 2024; 13:3142. [PMID: 39599351 PMCID: PMC11597289 DOI: 10.3390/plants13223142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/06/2024] [Accepted: 11/07/2024] [Indexed: 11/29/2024]
Abstract
Arsenate (AsV) is absorbed and accumulated by plants, which can affect their physiological activities, disrupt gene expression, alter metabolite content, and influence growth. Despite the potential of zinc oxide nanoparticles (ZnONPs) to mitigate the adverse effects of arsenic stress in plants, the underlying mechanisms of ZnONPs-mediated detoxification of AsV, as well as the specific metabolites and metabolic pathways involved, remain largely unexplored. In this study, we demonstrated root metabolomic profiling of soybean germinating seedlings subjected to 25 μmol L-1 arsenate (Na2HAsO4) and ZnONPs at concentrations of 25 μmol L-1 (ZnO25) and 50 μmol L-1 (ZnO50). The objective of this study was to examine the effects on soybean root metabolomics under AsV toxicity. Metabolomic analysis indicated that 453, 501, and 460 metabolites were significantly regulated in response to AsV, ZnO25, and ZnO50 treatments, respectively, compared to the control. Pathway analysis of the differentially regulated metabolites (DRMs) revealed that the tricarboxylic acid (TCA) cycle, glutathione metabolism, proline and aldarate metabolism, and arginine and proline metabolism were the most statistically enriched pathways in ZnONPs-supplemented plants. These findings suggest that ZnONPs enhance the tolerance response to AsV. Collectively, our results support the hypothesis that ZnONPs fertilization could be a potential strategy for improving soybean crop resilience under AsV stress.
Collapse
Affiliation(s)
- Muhammad Zeeshan
- State Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou 510642, China; (M.Z.)
- Yingdong College of Biology and Agriculture, Shaoguan University, Shaoguan 512005, China
| | - Anas Iqbal
- Guangzhou Key Laboratory for Science and Technology of Fragrant Rice, Guangzhou 510642, China;
| | - Abdul Salam
- State Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou 510642, China; (M.Z.)
| | - Yuxin Hu
- College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China;
| | - Aamir Hamid Khan
- Department of Biogeography, Paleoecology and Nature conservation, Faculty of Biology and Environmental Protection, University of Lodz, 90-237 Lodz, Poland;
| | - Xin Wang
- State Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou 510642, China; (M.Z.)
| | - Xiaoran Miao
- State Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou 510642, China; (M.Z.)
| | - Xiaoyuan Chen
- Yingdong College of Biology and Agriculture, Shaoguan University, Shaoguan 512005, China
| | - Zhixiang Zhang
- State Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou 510642, China; (M.Z.)
| | - Peiwen Zhang
- State Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou 510642, China; (M.Z.)
- Yingdong College of Biology and Agriculture, Shaoguan University, Shaoguan 512005, China
| |
Collapse
|
7
|
Huang Y, Sun Z, Zhou X. WRKY Transcription Factors in Response to Metal Stress in Plants: A Review. Int J Mol Sci 2024; 25:10952. [PMID: 39456735 PMCID: PMC11506853 DOI: 10.3390/ijms252010952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/09/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024] Open
Abstract
Heavy metals in soil can inflict direct damage on plants growing within it, adversely affecting their growth height, root development, leaf area, and other physiological traits. To counteract the toxic impacts of heavy metals on plant growth and development, plants mitigate heavy metal stress through mechanisms such as metal chelation, vacuolar compartmentalization, regulation of transporters, and enhancement of antioxidant functions. WRKY transcription factors (TFs) play a crucial role in plant growth and development as well as in responses to both biotic and abiotic stresses; notably, heavy metal stress is classified as an abiotic stressor. An increasing number of studies have highlighted the significant role of WRKY proteins in regulating heavy metal stress across various levels. Upon the entry of heavy metal ions into plant root cells, the production of reactive oxygen species (ROS) is triggered, leading to the phosphorylation and activation of WRKY TFs through MAPK cascade signaling. Activated WRKY TFs then modulate various physiological processes by upregulating or downregulating the expression of downstream genes to confer heavy metal tolerance to plants. This review provides an overview of the research advancements regarding WRKY TFs in regulating heavy metal ion stress-including cadmium (Cd), arsenic (As), copper (Cu)-and aluminum (Al) toxicity.
Collapse
Affiliation(s)
| | | | - Xiangui Zhou
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518000, China; (Y.H.); (Z.S.)
| |
Collapse
|
8
|
Lu T, Wang L, Hu J, Wang W, Duan X, Qiu G. Enhanced reduction of Cd uptake by wheat plants using iron and manganese oxides combined with citrate in Cd-contaminated weakly alkaline arable soils. ENVIRONMENTAL RESEARCH 2024; 257:119392. [PMID: 38857857 DOI: 10.1016/j.envres.2024.119392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/25/2024] [Accepted: 06/07/2024] [Indexed: 06/12/2024]
Abstract
Iron (Fe) and manganese (Mn) oxides can be used to remediate Cd-polluted soils due to their excellent performance in heavy metal adsorption. However, their remediation capability is rather limited, and a higher content of available Mn and Fe in soils can reduce Cd accumulation in wheat plants due to the competitive absorption effect. In this study, goethite and cryptomelane were first respectively used to immobilize Cd in Cd-polluted weakly alkaline soils, and sodium citrate was then added to increase the content of available Mn and Fe content for further reduction of wheat Cd absorption. In the first season, the content of soil-available Cd and Cd in wheat plants significantly decreased when cryptomelane, goethite and their mixture were used as the remediation agents. Cryptomelane showed a better remediation effect, which could be attributed to its higher adsorption performance. The grain Cd content could be decreased from 0.35 mg kg-1 to 0.25 mg kg-1 when the content of cryptomelane was controlled at 0.5%. In the second season, when sodium citrate at 20 mmol kg-1 was further added to the soils with 0.5% cryptomelane treatment in the first season, the content of soil available Cd was increased by 14.8%, and the available Mn content was increased by 19.5%, leading to a lower Cd content in wheat grains (0.16 mg kg-1) probably due to the competitive absorption. This work provides a new strategy for the remediation of slightly Cd-polluted arable soils with safe and high-quality production of wheat.
Collapse
Affiliation(s)
- Tao Lu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Interdisciplinary Sciences Institute, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Li Wang
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Interdisciplinary Sciences Institute, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Jiwen Hu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Interdisciplinary Sciences Institute, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Weihua Wang
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Interdisciplinary Sciences Institute, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Xianjie Duan
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Interdisciplinary Sciences Institute, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Guohong Qiu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Interdisciplinary Sciences Institute, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China; Hubei Hongshan Laboratory, Wuhan, 430070, Hubei Province, China; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agriculture Genomics Institute at Shenzhen, Chinese Academy of Agriculture Science, Shenzhen, China.
| |
Collapse
|
9
|
Sharma I, Sharma S, Sharma V, Singh AK, Sharma A, Kumar A, Singh J, Sharma A. PGPR-Enabled bioremediation of pesticide and heavy metal-contaminated soil: A review of recent advances and emerging challenges. CHEMOSPHERE 2024; 362:142678. [PMID: 38908452 DOI: 10.1016/j.chemosphere.2024.142678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 06/24/2024]
Abstract
The excessive usage of agrochemicals, including pesticides, along with various reckless human actions, has ensued discriminating prevalence of pesticides and heavy metals (HMs) in crop plants and the environment. The enhanced exposure to these chemicals is a menace to living organisms. The pesticides may get bioaccumulated in the food chain, thereby leading to several deteriorative changes in the ecosystem health and a rise in the cases of some serious human ailments including cancer. Further, both HMs and pesticides cause some major metabolic disturbances in plants, which include oxidative burst, osmotic alterations and reduced levels of photosynthesis, leading to a decline in plant productivity. Moreover, the synergistic interaction between pesticides and HMs has a more serious impact on human and ecosystem health. Various attempts have been made to explore eco-friendly and environmentally sustainable methods of improving plant health under HMs and/or pesticide stress. Among these methods, the employment of PGPR can be a suitable and effective strategy for managing these contaminants and providing a long-term remedy. Although, the application of PGPR alone can alleviate HM-induced phytotoxicities; however, several recent reports advocate using PGPR with other micro- and macro-organisms, biochar, chelating agents, organic acids, plant growth regulators, etc., to further improve their stress ameliorative potential. Further, some PGPR are also capable of assisting in the degradation of pesticides or their sequestration, reducing their harmful effects on plants and the environment. This present review attempts to present the current status of our understanding of PGPR's potential in the remediation of pesticides and HMs-contaminated soil for the researchers working in the area.
Collapse
Affiliation(s)
- Indu Sharma
- Department of Life Sciences, University Institute of Sciences, Sant Baba Bhag Singh University, Jalandhar, Punjab, 144030, India
| | - Shivika Sharma
- Department of Molecular Biology and Genetic Engineering, Lovely Professional University, Jalandhar, Punjab, India
| | - Vikas Sharma
- Department of Molecular Biology and Genetic Engineering, Lovely Professional University, Jalandhar, Punjab, India
| | - Anil Kumar Singh
- Department of Agriculture Sciences, University Institute of Sciences, Sant Baba Bhag Singh University, Jalandhar, Punjab, 144030, India
| | - Aksh Sharma
- Department of Life Sciences, University Institute of Sciences, Sant Baba Bhag Singh University, Jalandhar, Punjab, 144030, India
| | - Ajay Kumar
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India
| | - Joginder Singh
- Department of Botany, Nagaland University, Hqrs. Lumami, Zunheboto, Nagaland, 798627, India.
| | - Ashutosh Sharma
- Faculty of Agricultural Sciences, DAV University, Jalandhar, Punjab, 144012, India.
| |
Collapse
|
10
|
Bartas M. Abiotic Stresses in Plants: From Molecules to Environment. Int J Mol Sci 2024; 25:8072. [PMID: 39125642 PMCID: PMC11311820 DOI: 10.3390/ijms25158072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
Plants face several challenges during their growth and development, including environmental factors (mainly abiotic ones), that can lead to/induce oxidative stress-specifically, adverse temperatures (both hot and cold), drought, salinity, radiation, nutrient deficiency (or excess), toxic metals, waterlogging, air pollution, and mechanical stimuli [...].
Collapse
Affiliation(s)
- Martin Bartas
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, 710 00 Ostrava, Czech Republic
| |
Collapse
|
11
|
Li X, Zeng G, Du X, Zhou R, Lian J, Liu J, Guo X, Tang Z. Effects of polyethylene and biodegradable microplastics on the physiology and metabolic profiles of dandelion. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 352:124116. [PMID: 38718962 DOI: 10.1016/j.envpol.2024.124116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/03/2024] [Accepted: 05/04/2024] [Indexed: 05/12/2024]
Abstract
Biodegradable plastics, such as poly(butylene adipate terephthalate) (PBAT) and polylactic acid (PLA), are potential alternatives to conventional polyethylene (PE), both of which are associated with the production of microplastics (MPs). However, the toxicity of these compounds on medicinal plants and their differential effects on plant morphophysiology remain unclear. This study supplemented soils with MPs sized at 200 μm at a rate of 1% w/w and incubated them for 50 days to investigate the impact of MPs on the growth and metabolites of dandelion (Taraxacum mongolicum Hand.-Mazz.). The results demonstrated that the investigated MPs decreased the growth of dandelion seedlings, induced oxidative stress, and altered the activity of antioxidant enzymes (superoxide dismutase, peroxidase, and catalase). Based on the comprehensive toxicity assessment results, the ecological toxicity was in the following order: PE MPs > PBAT MPs > PLA MPs. Metabolomics analyses revealed metabolic reprogramming in dandelion plants, leading to the enrichment of numerous differentially accumulated metabolites (DAMs) in the leaves. These pathways include carbohydrate metabolism, energy metabolism, and biosynthesis of secondary metabolites, suggesting that dandelions respond to MP stress by enhancing the activity of sugar, organic acid, and amino acid metabolic pathways. In addition, phenolic acids and flavonoids are critical for maintaining the balance in the antioxidant defense system. Our results provide substantial insights into the toxicity of biodegradable MPs to plants and shed light on plant defense and adaptation strategies. Further assessment of the safety of biodegradable MPs in terrestrial ecosystems is essential to provide guidance for environmentally friendly management.
Collapse
Affiliation(s)
- Xingfan Li
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, China; Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, 150040, China.
| | - Guangnian Zeng
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, China; Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, 150040, China
| | - Xinyi Du
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, China; Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, 150040, China
| | - Ranran Zhou
- Key Laboratory of Plant-Soil Interactions, Ministry of Education, College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, China Agricultural University, Beijing, China
| | - Jiapan Lian
- Ministry of Education (MOE) Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resources Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jia Liu
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, 150040, China
| | - Xiaorui Guo
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, China; Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, 150040, China.
| | - Zhonghua Tang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, China; Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, 150040, China
| |
Collapse
|
12
|
Fatnani D, Parida AK. Unravelling the halophyte Suaeda maritima as an efficient candidate for phytostabilization of cadmium and lead: Implications from physiological, ionomic, and metabolomic responses. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 212:108770. [PMID: 38823092 DOI: 10.1016/j.plaphy.2024.108770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 04/29/2024] [Accepted: 05/21/2024] [Indexed: 06/03/2024]
Abstract
Cadmium (Cd) and lead (Pb) are among the most toxic heavy metals affecting human health and crop yield. Suaeda maritima (L.) Dumort is an obligate halophyte that is well adapted to saline soil. The inbuilt salinity tolerance mechanisms of halophytes help them to survive in heavy metal-contaminated rhizospheric soil. In the present study, growth and ionomic responses, reactive oxygen species (ROS) accumulation, modulations of phytochelatins, antioxidative defense, and metabolomic responses were studied in S. maritima imposed to Cd and Pb stresses with an aim to elucidate Cd and Pb tolerance mechanisms and phytoremediation potential of this halophyte. Our results showed a reduction of biomass in S. maritima, which may serve as an energy conservation strategy for survival under heavy metal stress. The increased accumulation of ROS with concomitant higher expression of various antioxidative enzymes suggests the efficient scavenging of ROS. The metabolite profiling revealed significant up-regulation of sugars, sugar alcohols, amino acids, polyphenols, and organic acids under Cd and Pb stresses suggesting their possible role in osmotic balance, ionic homeostasis, ROS scavenging, and signal transduction for stress tolerance. In S. maritima, the translocation factors (Tf) are <1 in both Cd and Pb treatments, which indicates that this halophyte has high phytostabilization potential for Cd and Pb in roots and through restricted translocation of heavy metal ions to the aboveground part. The findings of this study offer comprehensive information on Cd and Pb tolerance mechanisms in S. maritima and suggest that this halophyte can detoxify the HMs through physiological, ionic, antioxidative, and metabolic regulations.
Collapse
Affiliation(s)
- Dhara Fatnani
- Plant Omics Division, CSIR- Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Gijubhai Badheka Marg, Bhavnagar, 364002, Gujarat, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Asish Kumar Parida
- Plant Omics Division, CSIR- Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Gijubhai Badheka Marg, Bhavnagar, 364002, Gujarat, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
13
|
Zhu S, Zhao W, Sheng L, Yang X, Mao H, Sun S, Chen Z. Integrated transcriptome and metabolomics analyses revealed key functional genes in Canna indica under Cr stress. Sci Rep 2024; 14:14090. [PMID: 38890328 PMCID: PMC11189463 DOI: 10.1038/s41598-024-64877-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 06/13/2024] [Indexed: 06/20/2024] Open
Abstract
Chromium (Cr) can interfere with plant gene expression, change the content of metabolites and affect plant growth. However, the molecular response mechanism of wetland plants at different time sequences under Cr stress has yet to be fully understood. In this study, Canna indica was exposed to 100 mg/kg Cr-contaminated soil for 0, 7, 14, and 21 days and analyzed using untargeted metabolomics (LC-MS) and transcriptomics. The results showed that Cr stress increased the activities of superoxide dismutase (SOD), ascorbate peroxidase (APX) and peroxidase (POD), the contents of glutathione (GSH), malondialdehyde (MDA), and oxygen free radical (ROS), and inhibited the biosynthesis of photosynthetic pigments, thus leading to changes in plant growth and biomass. Metabonomics analysis showed that Cr stress mainly affected 12 metabolic pathways, involving 38 differentially expressed metabolites, including amino acids, phenylpropane, and flavonoids. By transcriptome analysis, a total of 16,247 differentially expressed genes (DEGs, 7710 up-regulated genes, and 8537 down-regulated genes) were identified, among which, at the early stage of stress (Cr contaminate seven days), C. indica responds to Cr toxicity mainly through galactose, starch and sucrose metabolism. With the extension of stress time, plant hormone signal transduction and MAPK signaling pathway in C. indica in the Cr14 (Cr contaminate 14 days) treatment group were significantly affected. Finally, in the late stage of stress (Cr21), C. indica co-defuses Cr toxicity by activating its Glutathione metabolism and Phenylpropanoid biosynthesis. In conclusion, this study revealed the molecular response mechanism of C. indica to Cr stress at different times through multi-omics methods.
Collapse
Affiliation(s)
- Sixi Zhu
- College of Eco-Environment Engineering, The Karst Environmental Geological Hazard Prevention of Key Laboratory of State Ethnic Affairs Commission, Guizhou Minzu University, Guiyang, 550025, China.
| | - Wei Zhao
- College of Eco-Environment Engineering, The Karst Environmental Geological Hazard Prevention of Key Laboratory of State Ethnic Affairs Commission, Guizhou Minzu University, Guiyang, 550025, China
| | - Luying Sheng
- College of Eco-Environment Engineering, The Karst Environmental Geological Hazard Prevention of Key Laboratory of State Ethnic Affairs Commission, Guizhou Minzu University, Guiyang, 550025, China
| | - Xiuqin Yang
- College of Eco-Environment Engineering, The Karst Environmental Geological Hazard Prevention of Key Laboratory of State Ethnic Affairs Commission, Guizhou Minzu University, Guiyang, 550025, China
| | - Huan Mao
- College of Eco-Environment Engineering, The Karst Environmental Geological Hazard Prevention of Key Laboratory of State Ethnic Affairs Commission, Guizhou Minzu University, Guiyang, 550025, China
| | - Suxia Sun
- College of Eco-Environment Engineering, The Karst Environmental Geological Hazard Prevention of Key Laboratory of State Ethnic Affairs Commission, Guizhou Minzu University, Guiyang, 550025, China
| | - Zhongbing Chen
- Department of Applied Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcka 129, Praha-Suchdol, 16500, Czech Republic
| |
Collapse
|
14
|
Rachappanavar V, Kumar M, Negi N, Chowdhury S, Kapoor M, Singh S, Rustagi S, Rai AK, Shreaz S, Negi R, Yadav AN. Silicon derived benefits to combat biotic and abiotic stresses in fruit crops: Current research and future challenges. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 211:108680. [PMID: 38701606 DOI: 10.1016/j.plaphy.2024.108680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 03/19/2024] [Accepted: 04/29/2024] [Indexed: 05/05/2024]
Abstract
Fruit crops are frequently subjected to biotic and abiotic stresses that can significantly reduce the absorption and translocation of essential elements, ultimately leading to a decrease in crop yield. It is imperative to grow fruits and vegetables in areas prone to drought, salinity, and extreme high, and low temperatures to meet the world's minimum nutrient demand. The use of integrated approaches, including supplementation of beneficial elements like silicon (Si), can enhance plant resilience under various stresses. Silicon is the second most abundant element on the earth crust, following oxygen, which plays a significant role in development and promote plant growth. Extensive efforts have been made to explore the advantages of Si supplementation in fruit crops. The application of Si to plants reinforces the cell wall, providing additional support through enhancing a mechanical and biochemical processes, thereby improving the stress tolerance capacity of crops. In this review, the molecular and physiological mechanisms that explain the beneficial effects of Si supplementation in horticultural crop species have been discussed. The review describes the role of Si and its transporters in mitigation of abiotic stress conditions in horticultural plants.
Collapse
Affiliation(s)
- Vinaykumar Rachappanavar
- MS Swaminathan School of Agriculture, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh, India; Department of Seed Science and Technology, Dr YS Parmar University of Horticulture and Forestry, Nauni, Solan, Himachal Pradesh, India.
| | - Manish Kumar
- Department of Seed Science and Technology, Dr YS Parmar University of Horticulture and Forestry, Nauni, Solan, Himachal Pradesh, India
| | - Narender Negi
- ICAR-National Bureau of Plant Genetic Resources-Regional Station, Shimla, Phagli Shimla, Himachal Pradesh, India
| | - Sohini Chowdhury
- Chitkara Center for Research and Development, Chitkara University, Himachal Pradesh, India
| | - Monit Kapoor
- Centre of Research Impact and Outcome, University Institute of Engineering and Technology, Chitkara University, Rajpura, Punjab, India
| | - Sangram Singh
- Department of Biochemistry, Dr. Ram Manohar Lohia Avadh University, Faizabad, Uttar Pradesh, India
| | - Sarvesh Rustagi
- Department of Food Technology, School of Applied and Life Sciences, Uttaranchal University, Dehradun, Uttarakhand, India
| | - Ashutosh Kumar Rai
- Department of Biochemistry, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Kingdom of Saudi Arabia
| | - Sheikh Shreaz
- Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, PO Box 24885, 13109, Safat, Kuwait
| | - Rajeshwari Negi
- Department of Biotechnology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Sirmaur, Himachal Pradesh, India
| | - Ajar Nath Yadav
- Department of Biotechnology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Sirmaur, Himachal Pradesh, India.
| |
Collapse
|
15
|
Deng S, Zhang X, Zhu Y, Zhuo R. Recent advances in phyto-combined remediation of heavy metal pollution in soil. Biotechnol Adv 2024; 72:108337. [PMID: 38460740 DOI: 10.1016/j.biotechadv.2024.108337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 11/14/2023] [Accepted: 03/05/2024] [Indexed: 03/11/2024]
Abstract
The global industrialization and modernization have witnessed a rapid progress made in agricultural production, along with the issue of soil heavy metal (HM) pollution, which has posed severe threats to soil quality, crop yield, and human health. Phytoremediation, as an alternative to physical and chemical methods, offers a more cost-effective, eco-friendly, and aesthetically appealing means for in-situ remediation. Despite its advantages, traditional phytoremediation faces challenges, including variable soil physicochemical properties, the bioavailability of HMs, and the slow growth and limited biomass of plants used for remediation. This study presents a critical overview of the predominant plant-based HM remediation strategies. It expounds upon the mechanisms of plant absorption, translocation, accumulation, and detoxification of HMs. Moreover, the advancements and practical applications of phyto-combined remediation strategies, such as the addition of exogenous substances, genetic modification of plants, enhancement by rhizosphere microorganisms, and intensification of agricultural technologies, are synthesized. In addition, this paper also emphasizes the economic and practical feasibility of some strategies, proposing solutions to extant challenges in traditional phytoremediation. It advocates for the development of cost-effective, minimally polluting, and biocompatible exogenous substances, along with the careful selection and application of hyperaccumulating plants. We further delineate specific future research avenues, such as refining genetic engineering techniques to avoid adverse impacts on plant growth and the ecosystem, and tailoring phyto-combined strategies to diverse soil types and HM pollutants. These proposed directions aim to enhance the practical application of phytoremediation and its integration into a broader remediation framework, thereby addressing the urgent need for sustainable soil decontamination and protection of ecological and human health.
Collapse
Affiliation(s)
- Shaoxiong Deng
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha 410082, PR China
| | - Xuan Zhang
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha 410004, PR China
| | - Yonghua Zhu
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha 410082, PR China
| | - Rui Zhuo
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha 410082, PR China; Hunan Provincial Certified Enterprise Technology Center, Hunan Xiangjiao Liquor Industry Co., Ltd., Shaoyang 422000, PR China.
| |
Collapse
|
16
|
Chen M, Yu G, Qiu H, Jiang P, Zhong X, Liu J. Unveiling Metal Tolerance Mechanisms in Leersia hexandra Swartz under Cr/Ni Co-Pollution by Studying Endophytes and Plant Metabolites. Metabolites 2024; 14:231. [PMID: 38668359 PMCID: PMC11051720 DOI: 10.3390/metabo14040231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 04/12/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
Heavy metal pollution poses significant environmental challenges, and understanding how plants and endophytic bacteria interact to mitigate these challenges is of utmost importance. In this study, we investigated the roles of endophytic bacteria, particularly Chryseobacterium and Comamonas, in Leersia hexandra Swartz (L. hexandra) in response to chromium and nickel co-pollution. Our results demonstrated the remarkable tolerance of Chryseobacterium and Comamonas to heavy metals, and their potential to become dominant species in the presence of co-pollution. We observed a close relationship between these endophytic bacteria and the significant differences in metabolites, particularly carbohydrates, flavonoids, and amino acids in L. hexandra. These findings shed light on the potential of endophytic bacteria to promote the production of aspartic acid and other metabolites in plants as a response to abiotic stressors. Furthermore, our study presents a new direction for plant and bioremediation strategies in heavy metal pollution and enhances our understanding of L. hexandra's mechanisms for heavy metal tolerance.
Collapse
Affiliation(s)
- Mouyixing Chen
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China; (M.C.); (H.Q.); (J.L.)
| | - Guo Yu
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China;
| | - Hui Qiu
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China; (M.C.); (H.Q.); (J.L.)
| | - Pingping Jiang
- College of Earth Sciences, Guilin University of Technology, Guilin 541004, China
- Guangxi Key Laboratory of Exploration for Hidden Metallic Ore Deposits, Guilin 541004, China
| | - Xuemei Zhong
- College of Earth Sciences, Guilin University of Technology, Guilin 541004, China
- Guangxi Key Laboratory of Exploration for Hidden Metallic Ore Deposits, Guilin 541004, China
| | - Jie Liu
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China; (M.C.); (H.Q.); (J.L.)
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin 541004, China
| |
Collapse
|
17
|
Mo L, Fang L, Yao W, Nie J, Dai J, Liang Y, Qin L. LC-QTOF/MS-based non-targeted metabolomics to explore the toxic effects of di(2-ethylhexyl) phthalate (DEHP) on Brassica chinensis L. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 918:170817. [PMID: 38340818 DOI: 10.1016/j.scitotenv.2024.170817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/07/2024] [Accepted: 02/06/2024] [Indexed: 02/12/2024]
Abstract
Di(2-ethylhexyl) phthalate (DEHP) is a widely used plasticizer known to pose health risks to humans upon exposure. Recognizing the toxic nature of DEHP, our study aimed to elucidate the response mechanisms in Brassica chinensis L. (Shanghai Qing) when subjected to varying concentrations of DEHP (2 mg kg-1, 20 mg kg-1, and 50 mg kg-1), particularly under tissue stress. The findings underscored the substantial impact of DEHP treatment on the growth of Brassica chinensis L., with increased DEHP concentration leading to a notable decrease in chlorophyll levels and alterations in the content of antioxidant enzyme activities, particularly superoxide dismutase (SOD) and peroxidase (POD). Moreover, elevated DEHP concentrations correlated with increased malondialdehyde (MDA) levels. Our analysis detected a total of 507 metabolites in Brassica chinensis L., with 331 in shoots and 176 in roots, following DEHP exposure. There was a significant difference in the number of metabolites in shoots and roots, with 79 and 64 identified, respectively (VIP > 1, p < 0.05). Metabolic pathway enrichment in Brassica chinensis L. shoots revealed significant perturbations in valine, leucine, and isoleucine biosynthesis and degradation, aminoacyl-tRNA, and glucosinolate biosynthesis. In the roots of Brassica chinensis L., varying DEHP levels exerted a substantial impact on the biosynthesis of zeatin, ubiquinone terpenoids, propane, piperidine, and pyridine alkaloids, as well as glutathione metabolic pathways. Notably, DEHP's influence was more pronounced in the roots than in the shoots, with higher DEHP concentrations affecting a greater number of metabolic pathways. This experimental study provides valuable insights into the molecular mechanisms underlying DEHP-induced stress in Brassica chinensis L., with potential implications for human health and food safety.
Collapse
Affiliation(s)
- Lingyun Mo
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541006, China; Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin 541006, China.
| | - Liusen Fang
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541006, China
| | - Weihao Yao
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541006, China
| | - Jinfang Nie
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541006, China.
| | - Junfeng Dai
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541006, China
| | - YanPeng Liang
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin 541006, China
| | - Litang Qin
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541006, China.
| |
Collapse
|
18
|
Yang L, Kang Y, Li N, Wang Y, Mou H, Sun H, Ao T, Chen L, Chen W. Unlocking hormesis and toxic effects induced by cadmium in Polygonatum cyrtonema Hua based on morphology, physiology and metabolomics. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133447. [PMID: 38219579 DOI: 10.1016/j.jhazmat.2024.133447] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/02/2024] [Accepted: 01/03/2024] [Indexed: 01/16/2024]
Abstract
Traditional Chinese medicine materials (TCMMs) are widely planted and used, while cadmium (Cd) is a widespread pollutant that poses a potential risk to plant growth and human health. However, studies on the influences of Cd on TCMMs have been limited. Our study aims to reveal the antioxidation-related detoxification mechanism of Polygonatum cyrtonema Hua under Cd stress based on physiology and metabolomics. The results showed that Cd0.5 (total Cd: 0.91 mg/kg; effective Cd: 0.45 mg/kg) induced hormesis on the biomass of roots, tubers and aboveground parts with increases of 22.88%, 27.12% and 17.02%, respectively, and significantly increased the flavonoids content by 57.45%. Additionally, the metabolism of caffeine, glutamine, arginine and purine was upregulated to induce hormesis in Cd0.5, which enhanced the synthesis of resistant substances such as spermidine, choline, IAA and saponins. Under Cd2 stress, choline and IAA decreased, and fatty acid metabolites (such as peanut acid and linoleic acid) and 8-hydroxyguanosine increased in response to oxidative damage, resulting in a significant biomass decrease. Our findings further reveal the metabolic process of detoxification by antioxidants and excessive Cd damage in TCMMs, deepen the understanding of detoxification mechanisms related to antioxidation, and enrich the relevant theories of hormesis induced by Cd.
Collapse
Affiliation(s)
- Li Yang
- Key Laboratory of the Evaluation and Monitoring of Southwest Land Resources, Ministry of Education, Sichuan Normal University, Chengdu 610068, China; College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Yuchen Kang
- Institute for Disaster Management and Reconstruction, Sichuan University-The Hong Kong Polytechnic University, Chengdu 610207, China; College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Na Li
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Yuhao Wang
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Haiyan Mou
- Institute for Disaster Management and Reconstruction, Sichuan University-The Hong Kong Polytechnic University, Chengdu 610207, China
| | - Hui Sun
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Tianqi Ao
- State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, China
| | - Li Chen
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China.
| | - Wenqing Chen
- Institute for Disaster Management and Reconstruction, Sichuan University-The Hong Kong Polytechnic University, Chengdu 610207, China; College of Architecture and Environment, Sichuan University, Chengdu 610065, China; State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
19
|
Yang Y, Huang Y, Liu Y, Jiao G, Dai H, Liu X, Hughes SS. The migration and transformation mechanism of vanadium in a soil-pore water-maize system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 913:169563. [PMID: 38145672 DOI: 10.1016/j.scitotenv.2023.169563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 12/05/2023] [Accepted: 12/19/2023] [Indexed: 12/27/2023]
Abstract
The migration mechanism of vanadium (V) in the soil-pore water-maize system has not been revealed. This study conducted pot experiments under artificial control conditions to reveal V's distribution and transport mechanism under different growth stages and V content gradient stress. The V content in the soil pore water gradually increased by an order of magnitude. The V content of pore water in the no-plant group was higher than that in the plant group, indicating that the maize roots absorbed V. The V exists in the form of pentavalent oxygen anions, in which H2VO4- occupies the most significant proportion. With increasing V content, the root area, root number, root length, and tip number decreased significantly. The malondialdehyde content in maize leaves showed an increasing trend, indicating the degree of lipid peroxidation was gradually enhanced. The V content was in the order of root > leaf > stem > fruit and maturity stage > flowering stage > jointing stage, respectively. The transfer coefficient reached a maximum under natural conditions, and increased gradually with the growth. The results of synchrotron radiation X-ray absorption near edge structure (XANES) analysis showed that Fe in maize roots mainly comprised of Fe2O3 and Fe3O4. The Fe in the soil is primarily existed in lepidocrocite and Fe2O3. The μ-XRF analysis showed that V and Fe enriched in the roots with a positive relationship, indicating the synergistic absorption of V and Fe by roots. Part of the Fe2+ reduced V5+ to V4+ or V3+ in the forms of VO2+, V(OH)2+, or V(OH)3 (s), and fixed V at the root. Soil weak acid-soluble fraction V and soil total V were vital factors to maize extraction. This study provides new insights into V biogeochemical behavior and a scientific basis for correctly evaluating its ecological and human health risks.
Collapse
Affiliation(s)
- Ying Yang
- State Key Laboratory of Collaborative Control and Joint Remediation of Soil and Water Pollution, College of Ecology and Environment, Chengdu University of Technology, Chengdu, Sichuan 610059, China
| | - Yi Huang
- State Key Laboratory of Collaborative Control and Joint Remediation of Soil and Water Pollution, College of Ecology and Environment, Chengdu University of Technology, Chengdu, Sichuan 610059, China; State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, College of Geosciences, Chengdu University of Technology, Chengdu, Sichuan 610059, China.
| | - Yunhe Liu
- State Key Laboratory of Collaborative Control and Joint Remediation of Soil and Water Pollution, College of Ecology and Environment, Chengdu University of Technology, Chengdu, Sichuan 610059, China
| | - Ganghui Jiao
- State Key Laboratory of Collaborative Control and Joint Remediation of Soil and Water Pollution, College of Ecology and Environment, Chengdu University of Technology, Chengdu, Sichuan 610059, China
| | - Hao Dai
- State Key Laboratory of Collaborative Control and Joint Remediation of Soil and Water Pollution, College of Ecology and Environment, Chengdu University of Technology, Chengdu, Sichuan 610059, China
| | - Xiaowen Liu
- Center of Deep-Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Scott S Hughes
- Department of Geosciences, Idaho State University, Pocatello, ID 83209, USA
| |
Collapse
|
20
|
Wang N, Wang X, Chen L, Liu H, Wu Y, Huang M, Fang L. Biological roles of soil microbial consortium on promoting safe crop production in heavy metal(loid) contaminated soil: A systematic review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168994. [PMID: 38043809 DOI: 10.1016/j.scitotenv.2023.168994] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/08/2023] [Accepted: 11/27/2023] [Indexed: 12/05/2023]
Abstract
Heavy metal(loid) (HM) pollution of agricultural soils is a growing global environmental concern that affects planetary health. Numerous studies have shown that soil microbial consortia can inhibit the accumulation of HMs in crops. However, our current understanding of the effects and mechanisms of inhibition is fragmented. In this review, we summarise extant studies and knowledge to provide a comprehensive view of HM toxicity on crop growth and development at the biological, cellular and the molecular levels. In a meta-analysis, we find that microbial consortia can improve crop resistance and reduce HM uptake, which in turn promotes healthy crop growth, demonstrating that microbial consortia are more effective than single microorganisms. We then review three main mechanisms by which microbial consortia reduce the toxicity of HMs to crops and inhibit HMs accumulation in crops: 1) reducing the bioavailability of HMs in soil (e.g. biosorption, bioaccumulation and biotransformation); 2) improving crop resistance to HMs (e.g. facilitating the absorption of nutrients); and 3) synergistic effects between microorganisms. Finally, we discuss the prospects of microbial consortium applications in simultaneous crop safety production and soil remediation, indicating that they play a key role in sustainable agricultural development, and conclude by identifying research challenges and future directions for the microbial consortium to promote safe crop production.
Collapse
Affiliation(s)
- Na Wang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, The Research Center of Soil and Water Conservation and Ecological Environment, CAS and MOE, Yangling 712100, China; State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, CAS and MWR, Yangling 712100, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiangxiang Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Li Chen
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Hongjie Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Yanfang Wu
- Palm Eco-Town Development Co., Ltd., Zhengzhou 450000, China
| | - Min Huang
- Key Laboratory of Green Utilization of Critical Nonmetallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan 430070, China
| | - Linchuan Fang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, The Research Center of Soil and Water Conservation and Ecological Environment, CAS and MOE, Yangling 712100, China; State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, CAS and MWR, Yangling 712100, China; Key Laboratory of Green Utilization of Critical Nonmetallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan 430070, China.
| |
Collapse
|
21
|
Parera V, Pérez-Chaca MV, Gallardo LV, Gatica-Aguilar CV, Parera CA, Feresin GE. Adesmia pinifolia, a Native High-Andean Species, as a Potential Candidate for Phytoremediation of Cd and Hg. PLANTS (BASEL, SWITZERLAND) 2024; 13:464. [PMID: 38498429 PMCID: PMC10891624 DOI: 10.3390/plants13040464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/17/2024] [Accepted: 01/23/2024] [Indexed: 03/20/2024]
Abstract
This study highlights Adesmia pinifolia, a native high-Andean species, as a potential candidate for the phytoremediation of soils contaminated with Cd and Hg. In this work, a semi-hydronic assay with different doses of Cd (3, 4.5, and 6 mg L-1) and Hg (0.8, 1.2, and 1.6 mg L-1) was analysed to evaluate the establishment of plants, antioxidant defence systems, oxidative stress, and the ability to accumulate heavy metals. The results indicate high survival rates (>80%); however, Cd significantly reduced shoot and root biomass, while Hg increased root biomass with the 1.6 mg L-1 treatment. Cd and Hg tend to accumulate more in roots (2534.24 µg/g and 596.4 µg g-1, respectively) compared to shoots (398.53 µg g-1 and 140.8 µg g-1, respectively). A significant decrease in the bioconcentration factor of Cd and Hg in roots was observed as metal levels increased, reaching the maximum value at 3 mg L-1 (805.59 ± 54.38) and 0.8 mg L-1 (804.54 ± 38.09). The translocation factor, <1 for both metals, suggests that translocation from roots to shoots is limited. An overproduction of reactive oxygen species (ROS) was observed, causing lipid peroxidation and oxidative damage to plant membranes. Tolerance strategies against subsequent toxicity indicate that enhanced glutathione reductase (GR) activity and glutathione (GSH) accumulation modulate Cd and Hg accumulation, toxicity, and tolerance.
Collapse
Affiliation(s)
- Victoria Parera
- Instituto de Biotecnología, Facultad de Ingeniería, Universidad Nacional de San Juan, Av. Libertador General San Martin 1109 Oeste, San Juan 5400, Argentina;
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, Cuidad Autónoma de Buenos Aires (CABA) C1425FQB, Argentina;
| | - M. Verónica Pérez-Chaca
- Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis. Ejército de los Andes 950, San Luis 5700, Argentina; (M.V.P.-C.); (L.V.G.)
| | - Laura V. Gallardo
- Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis. Ejército de los Andes 950, San Luis 5700, Argentina; (M.V.P.-C.); (L.V.G.)
| | - Camila V. Gatica-Aguilar
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, Cuidad Autónoma de Buenos Aires (CABA) C1425FQB, Argentina;
- Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis. Ejército de los Andes 950, San Luis 5700, Argentina; (M.V.P.-C.); (L.V.G.)
| | - Carlos A. Parera
- Instituto Nacional de Tecnología Agropecuaria (INTA), Avenida Rivadavia 1439, Cuidad Autónoma de Buenos Aires (CABA) C1033AAE, Argentina;
| | - Gabriela E. Feresin
- Instituto de Biotecnología, Facultad de Ingeniería, Universidad Nacional de San Juan, Av. Libertador General San Martin 1109 Oeste, San Juan 5400, Argentina;
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, Cuidad Autónoma de Buenos Aires (CABA) C1425FQB, Argentina;
| |
Collapse
|
22
|
Thiruvengadam M, Chi HY, Kim SH. Impact of nanopollution on plant growth, photosynthesis, toxicity, and metabolism in the agricultural sector: An updated review. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 207:108370. [PMID: 38271861 DOI: 10.1016/j.plaphy.2024.108370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/26/2023] [Accepted: 01/11/2024] [Indexed: 01/27/2024]
Abstract
Nanotechnology provides distinct benefits to numerous industrial and commercial fields, and has developed into a discipline of intense interest to researchers. Nanoparticles (NPs) have risen to prominence in modern agriculture due to their use in agrochemicals, nanofertilizers, and nanoremediation. However, their potential negative impacts on soil and water ecosystems, as well as plant growth and physiology, have caused concern for researchers and policymakers. Concerns have been expressed regarding the ecological consequences and toxicity effects associated with nanoparticles as a result of their increased production and usage. Moreover, the accumulation of nanoparticles in the environment poses a risk, not only because of the possibility of plant damage but also because nanoparticles may infiltrate the food chain. In this review, we have documented the beneficial and detrimental effects of NPs on seed germination, shoot and root growth, plant biomass, and nutrient assimilation. Nanoparticles exert toxic effects by inducing ROS generation and stimulating cytotoxic and genotoxic effects, thereby leading to cell death in several plant species. We have provided possible mechanisms by which nanoparticles induce toxicity in plants. In addition to the toxic effects of NPs, we highlighted the importance of nanomaterials in the agricultural sector. Thus, understanding the structure, size, and concentration of nanoparticles that will improve plant growth or induce plant cell death is essential. This updated review reveals the multifaceted connection between nanoparticles, soil and water pollution, and plant biology in the context of agriculture.
Collapse
Affiliation(s)
- Muthu Thiruvengadam
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul 05029, Republic of Korea
| | - Hee Youn Chi
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul 05029, Republic of Korea
| | - Seung-Hyun Kim
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul 05029, Republic of Korea.
| |
Collapse
|
23
|
Guan TX, Lu ZP, Yue M, Li BG, Fu AG, Zhang XD, Li ZH. Accumulation of livestock manure-derived heavy metals in the Hexi Corridor oasis agricultural alkaline soil and bioavailability to Chinese cabbage (Brassica pekinensis L.) after 4-year continuous application. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 341:122969. [PMID: 37989408 DOI: 10.1016/j.envpol.2023.122969] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 10/26/2023] [Accepted: 11/14/2023] [Indexed: 11/23/2023]
Abstract
Hexi Corridor is one of the most important base of vegetable producing areas in China. Livestock manure (LM) applied to agricultural field could lead to soil heavy metal (HM) pollution. Previous studies have focused on HM pollution following LM application in acidic polluted soils; however, fewer studies have been conducted in alkaline unpolluted soils. A 4-year field vegetable production experiment was conducted using pig manure (PM) and chicken manure (CM) at five application rates (0, 15, 30, 45, and 60 t ha-1) to elucidate potential risks of HMs in an alkaline unpolluted soil in the Hexi Corridor oasis agricultural area and HM uptake by Chinese cabbage. The results showed that LM application caused a significant build-up of Cu, Zn, Pb, Cd, and Ni content in topsoil by 30.6-99.7%, 11.4-51.7%, 1.4-31.3%, 5.6-44.9%, 14%-40.8%, respectively. The Cd, Cu, Zn could potentially exceed the soil threshold in next 8-65 years after 15-60 t ha-1 LM application. Under LM treatment, the soil DTPA-extractable Cu, Zn, Fe, the acid-extractable fraction of Cu, Zn, Fe, Cd, Ni, and the Oxidable fraction of Cu, Zn, Fe, Mn, Cd, Ni significantly increased, but the DTPA-extractable Pb, Cd, the acid-extractable fraction of Pb, and the reducible fraction of Cd significantly decreased. Cu and Zn could migrate to the deeper soil and relatively increase in DTPA-extracted Cu, Zn were found in 20-40 cm soil depth after LM application. The pH and SOM could influence the bioavailability of HMs in soil. The bioaccumulation factor and transfer factor (TF) values were <1 except Mn (TF > 1). HMs in leaf did not approach the threshold for HM toxicity due to the "dilution effect". Recommend the type of manure was the PM and the annual PM application rate was 30 t ha-1 to ensure a 20-year period of clean production in alkaline unpolluted Fluvo-aqiuc vegetable soils.
Collapse
Affiliation(s)
- Tian-Xia Guan
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Sciences, Northwest University, Xi'an 710069, China; Key Laboratory of Hexi Corridor Resources Utilization of Gansu, College of Life Sciences and Engineering, Hexi University, Zhangye 734000, China
| | - Zhao-Ping Lu
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Ming Yue
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Bao-Guo Li
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Ai-Gen Fu
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Xu-Dong Zhang
- Key Laboratory of Terrestrial Ecological Process, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Zhong-Hu Li
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Sciences, Northwest University, Xi'an 710069, China.
| |
Collapse
|
24
|
Wang J, Liu W, Wang X, Zeb A, Wang Q, Mo F, Shi R, Liu J, Yu M, Li J, Zheng Z, Lian Y. Assessing stress responses in potherb mustard (Brassica juncea var. multiceps) exposed to a synergy of microplastics and cadmium: Insights from physiology, oxidative damage, and metabolomics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:167920. [PMID: 37863229 DOI: 10.1016/j.scitotenv.2023.167920] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/11/2023] [Accepted: 10/16/2023] [Indexed: 10/22/2023]
Abstract
Both microplastics (MPs) and cadmium (Cd) are common contaminants in farmland systems, is crucial for assessing their risks for human health and environment, and little research has focused on stress responses mechanisms of crops exposed to the combined pollution. The present study investigated the impact of polyethylene (PE) and polypropylene (PP) microplastics (MPs), in combination with Cd, on the physiological and metabolomic changes as well as rhizosphere soil of potherb mustard. Elevated levels of PEMPs and PPMPs were found to impede nutrient uptake in plants while promoting premature flowering, and the concomitant effect is lower crop yields. The substantial improvement in Cd bioavailability facilitated by MPs in rhizosphere soil, especially in high concentrations of MPs, then elevated bioavailability of Cd contributed to promoted Cd accumulation in plants, with distinct effects depending on the type and concentration of MPs. The presence of MPs Combined exposure to high concentrations of MPs and Cd resulted in alterations in plant physiology and metabolomics, including decreased biomass and photosynthetic parameters, elevated levels of reactive oxygen species primarily H2O2, increased antioxidant enzyme activities, and modifications in metabolite profiles. Overall, our study assessed the potential impact on food security (the availability of cadmium to plant) and crops stress responses regarding the contamination of MPs and Cd, providing new insights for future risk assessment in agriculture.
Collapse
Affiliation(s)
- Jianling Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Weitao Liu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China.
| | - Xue Wang
- College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Aurang Zeb
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Qi Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Fan Mo
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Ruiying Shi
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Jinzheng Liu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Miao Yu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Jiantao Li
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Zeqi Zheng
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Yuhang Lian
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| |
Collapse
|
25
|
Saini H, Panthri M, Khan E, Saxena S, Pandey A, Gupta M. Metabolomic profiling reveals key factors and associated pathways regulating the differential behavior of rice (Oryza sativa L.) genotypes exposed to geogenic arsenic. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:119. [PMID: 38183498 DOI: 10.1007/s10661-024-12300-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 01/02/2024] [Indexed: 01/08/2024]
Abstract
Arsenic (As) toxicity is an escalating problem; however, information about the metabolic events controlling the varied pattern of As accumulation in rice genotypes within their natural environment is still lacking. The present study is thus an advancement in unravelling the response of such rice genotypes. Soil-water-rice samples were analyzed for As accumulation using ICP-MS. Furthermore, we implemented metabolomics through LC-MS/MS and UHPLC to identify metabolic signatures regulating As content by observing the metalloid's composition in rice agrosystem. Results showed that rice genotypes differed significantly in their levels of metabolites, with Mini mansoori and Pioneer having the highest levels. Mini mansoori contained least As which might have been regulated by Ala, Ser, Glu, Phe, Asn, His, Ile, Lys, Gln, Trp, Tyr, chlorogenic, p-coumaric, trans-ferulic, rutin, morin, naringenin, kampferol, and myricetin, while Asp, Arg, Met, syringic, epigalocatechin, and apigenin contributed to the greater As acclimatization ability of Pioneer. Multivariate tools separated the rice genotypes into two major clusters: Pioneer-Mini mansoori and Damini-Sampoorna-Chintu. KEGG identified three major metabolic pathways (aminoacyl-tRNA, phenylpropanoid, and secondary metabolites biosynthesis route) linked with As tolerance and adaptation mechanisms in rice. Overall, these two genotypes symbolize their As hostile and accommodating attitudes probably due to the accumulated metabolites and the physicochemical attributes of the soil-water. Thus, thorough understanding of the metabolic reactions to As may facilitate the emergence of As tolerant/resilient genotypes. This will aid in the selection of molecular markers to cultivate healthier rice genotypes in As-contaminated areas.
Collapse
Affiliation(s)
- Himanshu Saini
- Ecotoxicogenomics Lab, Department of Biotechnology, Jamia Millia Islamia, New Delhi-25, India
| | - Medha Panthri
- Ecotoxicogenomics Lab, Department of Biotechnology, Jamia Millia Islamia, New Delhi-25, India
| | - Ehasanullah Khan
- Ecotoxicogenomics Lab, Department of Biotechnology, Jamia Millia Islamia, New Delhi-25, India
| | - Samiksha Saxena
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi-67, India
| | - Ashutosh Pandey
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi-67, India
| | - Meetu Gupta
- Ecotoxicogenomics Lab, Department of Biotechnology, Jamia Millia Islamia, New Delhi-25, India.
| |
Collapse
|
26
|
Kocaman A. Combined interactions of amino acids and organic acids in heavy metal binding in plants. PLANT SIGNALING & BEHAVIOR 2023; 18:2064072. [PMID: 35491815 PMCID: PMC9980588 DOI: 10.1080/15592324.2022.2064072] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/04/2022] [Accepted: 04/04/2022] [Indexed: 05/30/2023]
Abstract
This research focused on the different approaches to the transport and internal chelation of metals with amino acids and organic acids in plants. Therefore, in the first phase, the plants studied were identified the characteristics of the bioaccumulation factors. Steria pumila, Echium angustifolium, Typha angustifolia, Sisymbrium austriacum were identified as hyperaccumulators (Cd, Ni), accumulators (Pb, Sn, and Se), excluders (Cr, Hg). On the other hand, the Sisymbrium austriacum only showed the characteristic of the accumulator for Cr. In the second phase, the combined effects of amino acids and organic acids on the chelation of heavy metals in plants were tested by a multi-linear regression model. Related to our hypothesis, Amino acids; Gly and Leu (Cd), Trp and Ile (Pb), Asp, Ser, and Leu (Cr), Ser (Hg), Trp and Glu (Ni), Asp, Thr, and Gly (Sn), Asn and Leu (Se), Organic acids; Malonic and Malic acid (Cd), Malonic acid (Pb), Oxalic and Malic acid (Cr), Oxalic, Succinic, Citric and Butyric acid (Hg), Malonic and Malic acid (Ni), Malonic, Maleic, and Malic acid (Sn), Malonic and Citric acid (Se) were concluded that had combined effect for heavy metal's phytochelation ability into plants.
Collapse
Affiliation(s)
- Ayhan Kocaman
- Engineering Faculty, Environmental Engineering Department, Karabük University, Karabük, Turkey
| |
Collapse
|
27
|
Anjitha KS, Sarath NG, Sameena PP, Janeeshma E, Shackira AM, Puthur JT. Plant response to heavy metal stress toxicity: the role of metabolomics and other omics tools. FUNCTIONAL PLANT BIOLOGY : FPB 2023; 50:965-982. [PMID: 37995340 DOI: 10.1071/fp23145] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 10/31/2023] [Indexed: 11/25/2023]
Abstract
Metabolomic investigations offers a significant foundation for improved comprehension of the adaptability of plants to reconfigure the key metabolic pathways and their response to changing climatic conditions. Their application to ecophysiology and ecotoxicology help to assess potential risks caused by the contaminants, their modes of action and the elucidation of metabolic pathways associated with stress responses. Heavy metal stress is one of the most significant environmental hazards affecting the physiological and biochemical processes in plants. Metabolomic tools have been widely utilised in the massive characterisation of the molecular structure of plants at various stages for understanding the diverse aspects of the cellular functioning underlying heavy metal stress-responsive mechanisms. This review emphasises on the recent progressions in metabolomics in plants subjected to heavy metal stresses. Also, it discusses the possibility of facilitating effective management strategies concerning metabolites for mitigating the negative impacts of heavy metal contaminants on the growth and productivity of plants.
Collapse
Affiliation(s)
- K S Anjitha
- Plant Physiology and Biochemistry Division, Department of Botany, University of Calicut, C. U. Campus P.O., Malappuram, Kerala 673635, India
| | - Nair G Sarath
- Department of Botany, Mar Athanasius College, Kothamangalam, Ernakulam, Kerala 686666, India
| | - P P Sameena
- Department of Botany, PSMO College, Tirurangadi, Malappuram, Kerala 676306, India
| | - Edappayil Janeeshma
- Department of Botany, MES KEVEEYAM College, Valanchery, Malappuram, Kerala 676552, India
| | - A M Shackira
- Department of Botany, Sir Syed College, Kannur University, Kannur, Kerala 670142, India
| | - Jos T Puthur
- Plant Physiology and Biochemistry Division, Department of Botany, University of Calicut, C. U. Campus P.O., Malappuram, Kerala 673635, India
| |
Collapse
|
28
|
Zhai Y, Zhou L, Qi H, Gao P, Zhang C. Application of Visible/Near-Infrared Spectroscopy and Hyperspectral Imaging with Machine Learning for High-Throughput Plant Heavy Metal Stress Phenotyping: A Review. PLANT PHENOMICS (WASHINGTON, D.C.) 2023; 5:0124. [PMID: 38239738 PMCID: PMC10795768 DOI: 10.34133/plantphenomics.0124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 11/17/2023] [Indexed: 01/22/2024]
Abstract
Heavy metal pollution is becoming a prominent stress on plants. Plants contaminated with heavy metals undergo changes in external morphology and internal structure, and heavy metals can accumulate through the food chain, threatening human health. Detecting heavy metal stress on plants quickly, accurately, and nondestructively helps to achieve precise management of plant growth status and accelerate the breeding of heavy metal-resistant plant varieties. Traditional chemical reagent-based detection methods are laborious, destructive, time-consuming, and costly. The internal and external structures of plants can be altered by heavy metal contamination, which can lead to changes in plants' absorption and reflection of light. Visible/near-infrared (V/NIR) spectroscopy can obtain plant spectral information, and hyperspectral imaging (HSI) can obtain spectral and spatial information in simple, speedy, and nondestructive ways. These 2 technologies have been the most widely used high-throughput phenotyping technologies of plants. This review summarizes the application of V/NIR spectroscopy and HSI in plant heavy metal stress phenotype analysis as well as introduces the method of combining spectroscopy with machine learning approaches for high-throughput phenotyping of plant heavy metal stress, including unstressed and stressed identification, stress types identification, stress degrees identification, and heavy metal content estimation. The vegetation indexes, full-range spectra, and feature bands identified by different plant heavy metal stress phenotyping methods are reviewed. The advantages, limitations, challenges, and prospects of V/NIR spectroscopy and HSI for plant heavy metal stress phenotyping are discussed. Further studies are needed to promote the research and application of V/NIR spectroscopy and HSI for plant heavy metal stress phenotyping.
Collapse
Affiliation(s)
- Yuanning Zhai
- School of Information Engineering, Huzhou University, Huzhou 313000, China
| | - Lei Zhou
- College of Mechanical and Electronic Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Hengnian Qi
- School of Information Engineering, Huzhou University, Huzhou 313000, China
| | - Pan Gao
- College of Information Science and Technology, Shihezi University, Shihezi 832003, China
| | - Chu Zhang
- School of Information Engineering, Huzhou University, Huzhou 313000, China
| |
Collapse
|
29
|
Hao Y, Cai Z, Ma C, White JC, Cao Y, Chang Z, Xu X, Han L, Jia W, Zhao J, Xing B. Root Exposure of Graphitic Carbon Nitride (g-C 3N 4) Modulates Metabolite Profile and Endophytic Bacterial Community to Alleviate Cadmium- and Arsenate-Induced Phytotoxicity to Rice ( Oryza sativa L.). ACS NANO 2023; 17:19724-19739. [PMID: 37812587 DOI: 10.1021/acsnano.3c03066] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
To investigate the mechanisms by which g-C3N4 alleviates metal(loid)-induced phytotoxicity, rice seedlings were exposed to 100 and 250 mg/kg graphitic carbon nitride (g-C3N4) with or without coexposure to 10 mg/kg Cd and 50 mg/kg As for 30 days. Treatment with 250 mg/kg g-C3N4 significantly increased shoot and root fresh weight by 22.4-29.9%, reduced Cd and As accumulations in rice tissues by 20.6-26.6%, and elevated the content of essential nutrients (e.g., K, S, Mg, Cu, and Zn) compared to untreated controls. High-throughput sequencing showed that g-C3N4 treatment increased the proportion of plant-growth-promoting endophytic bacteria, including Streptomyces, Saccharimonadales, and Thermosporothrix, by 0.5-3.30-fold; these groups are known to be important to plant nutrient assimilation, as well as metal(loid) resistance and bioremediation. In addition, the population of Deinococcus was decreased by 72.3%; this genus is known to induce biotransformation As(V) to As(III). Metabolomics analyses highlighted differentially expressed metabolites (DEMs) involved in the metabolism of tyrosine metabolism, pyrimidines, and purines, as well as phenylpropanoid biosynthesis related to Cd/As-induced phytotoxicity. In the phenylpropanoid biosynthesis pathway, the increased expression of 4-coumarate (1.13-fold) and sinapyl alcohol (1.26-fold) triggered by g-C3N4 coexposure with Cd or As played a critical role in promoting plant growth and enhancing rice resistance against metal(loid) stresses. Our findings demonstrate the potential of g-C3N4 to enhance plant growth and minimize the Cd/As-induced toxicity in rice and provide a promising nanoenabled strategy for remediating heavy metal(loid)-contaminated soil.
Collapse
Affiliation(s)
- Yi Hao
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, People's Republic of China
- Stockbridge School of Agriculture, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Zeyu Cai
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, People's Republic of China
| | - Chuanxin Ma
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, People's Republic of China
- Stockbridge School of Agriculture, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
- The Connecticut Agricultural Experiment Station, New Haven, Connecticut 06511, United States
| | - Jason C White
- The Connecticut Agricultural Experiment Station, New Haven, Connecticut 06511, United States
| | - Yini Cao
- Faculty of Life Science and Technology, Central South University of Forestry and Technology, Changsha, Hunan 410004, People's Republic of China
| | - Zhaofeng Chang
- Yunnan Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming 650500, People's Republic of China
| | - Xinxin Xu
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, People's Republic of China
| | - Lanfang Han
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, People's Republic of China
| | - Weili Jia
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou 510006, People's Republic of China
| | - Jian Zhao
- Ministry of Education Key Laboratory of Marine Environment and Ecology, Institute of Coastal Environmental Pollution Control, and Institute for Advanced Ocean Study, Ocean University of China, Qingdao 266100, People's Republic of China
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| |
Collapse
|
30
|
Yu L, Tang S, Kang J, Korpelainen H, Li C. Responses of dioecious Populus to heavy metals: a meta-analysis. FORESTRY RESEARCH 2023; 3:25. [PMID: 39526266 PMCID: PMC11524290 DOI: 10.48130/fr-2023-0025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 10/06/2023] [Indexed: 11/16/2024]
Abstract
A total of 946 sets of comparative data were collected from 20 publications and a meta-analysis performed to evaluate the responses of growth, photosynthetic capacity, oxidative stress and antioxidants in Populus females and males under exposure to heavy metals, like Cu, Mn, Zn, Pb and Cd. It was found that heavy metals have negative effects on Populus growth and photosynthetic capacity, as the average total biomass, leaf biomass, stem biomass, root biomass and height decreased by 29.78%, 33.41%, 27.22%, 35.30% and 34.83%, respectively. Furthermore, total chl, P n, g s, E, C i decreased by 23.30%, 26.03%, 40.49%, 23.76% and 18.24%, respectively. In addition, heavy metals increased oxidative stress and antioxidant enzyme activities: the average values of TBARS, H2O2, [Formula: see text] and MDA increased by 51.39%, 55.79%, 64.67% and 48.92%, respectively, and proline, APX, NPT, POD, CAT and SOD increased by 68.91%, 64.81%, 68.40%, 57.34%, 77.30% and 49.01%, respectively. However, there were sex-specific responses to heavy metals: females suffered more negative effects, as they had significantly greater decreases in root biomass, R/S ratio, height and total chl, and significantly smaller increases in NPT and POD activities than males. The present meta-analysis shows the responses of Populus females and males to heavy metals on a regional scale, which is crucial for understanding the patterns of sexual dimorphism and sex ratio biases in Populus with increasing heavy metal pollution in the future.
Collapse
Affiliation(s)
- Lei Yu
- Department of Ecology, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Shuanglei Tang
- Department of Ecology, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Jieyu Kang
- Department of Ecology, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Helena Korpelainen
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, PO Box 27, FI-00014, Finland
| | - Chunyang Li
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
31
|
Qiao Z, Luo K, Zhou S, Fu M, Shao X, Gong K, Peng C, Zhang W. Response mechanism of lettuce (Lactuca sativa L.) under combined stress of Cd and DBDPE: An integrated physiological and metabolomics analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 887:164204. [PMID: 37196961 DOI: 10.1016/j.scitotenv.2023.164204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/11/2023] [Accepted: 05/12/2023] [Indexed: 05/19/2023]
Abstract
DBDPE and Cd are representative contaminants commonly found in electronic waste (e-waste), which tend to be gradually discharged and accumulated in the environment during e-waste dismantling, resulting in frequent outbreaks and detection of these pollutants. The toxicity of both chemicals to vegetables after combined exposure has not been determined. The accumulation and mechanisms of phytotoxicity of the two compounds, alone and in combination, were studied using lettuce. The results showed that the enrichment ability of Cd and DBDPE in root was significantly higher than that in aerial part. Exposure to 1 mg/L Cd + DBDPE reduced the toxicity of Cd to lettuce, while exposure to 5 mg/L Cd + DBDPE increased the toxicity of Cd to lettuce. The absorption of Cd in the underground part of lettuce of 5 mg/L Cd + DBDPE was significantly increased by 108.75 % compared to 5 mg/L Cd. The significant enhancement of antioxidant system activity in lettuce under 5 mg/L Cd + DBDPE exposure, and the root activity and total chlorophyll content were decreased by 19.62 % and 33.13 %, respectively, compared to the control. At the same time, the organelles and cell membranes of lettuce root and leaf were significantly damaged, which was significantly worse than that of single Cd and DBDPE treatment. Combined exposure significantly affected the pathways related to amino acid metabolism, carbon metabolism and ABC transport in lettuce. This study filled the safety gap of DBDPE and Cd combined exposure on vegetables and would provide a theoretical basis for the environmental behavior and toxicological study of DBDPE and Cd.
Collapse
Affiliation(s)
- Zhihua Qiao
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Kailun Luo
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Shanqi Zhou
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Mengru Fu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xuechun Shao
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Kailin Gong
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Cheng Peng
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Wei Zhang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
32
|
Zhang X, Zou G, Chu H, Shen Z, Zhang Y, Abbas MHH, Albogami BZ, Zhou L, Abdelhafez AA. Biochar applications for treating potentially toxic elements (PTEs) contaminated soils and water: a review. Front Bioeng Biotechnol 2023; 11:1258483. [PMID: 37662433 PMCID: PMC10472142 DOI: 10.3389/fbioe.2023.1258483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 08/03/2023] [Indexed: 09/05/2023] Open
Abstract
Environmental pollution with potentially toxic elements (PTEs) has become one of the critical and pressing issues worldwide. Although these pollutants occur naturally in the environment, their concentrations are continuously increasing, probably as a consequence of anthropic activities. They are very toxic even at very low concentrations and hence cause undesirable ecological impacts. Thus, the cleanup of polluted soils and water has become an obligation to ensure the safe handling of the available natural resources. Several remediation technologies can be followed to attain successful remediation, i.e., chemical, physical, and biological procedures; yet many of these techniques are expensive and/or may have negative impacts on the surroundings. Recycling agricultural wastes still represents the most promising economical, safe, and successful approach to achieving a healthy and sustainable environment. Briefly, biochar acts as an efficient biosorbent for many PTEs in soils and waters. Furthermore, biochar can considerably reduce concentrations of herbicides in solutions. This review article explains the main reasons for the increasing levels of potentially toxic elements in the environment and their negative impacts on the ecosystem. Moreover, it briefly describes the advantages and disadvantages of using conventional methods for soil and water remediation then clarifies the reasons for using biochar in the clean-up practice of polluted soils and waters, either solely or in combination with other methods such as phytoremediation and soil washing technologies to attain more efficient remediation protocols for the removal of some PTEs, e.g., Cr and As from soils and water.
Collapse
Affiliation(s)
- Xu Zhang
- Eco-Environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, China
- Shanghai Engineering Research Centre of Low-Carbon Agriculture, Shanghai, China
| | - Guoyan Zou
- Eco-Environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Shanghai Engineering Research Centre of Low-Carbon Agriculture, Shanghai, China
| | - Huaqiang Chu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, China
| | - Zheng Shen
- National Engineering Research Center of Protected Agriculture, Shanghai Engineering Research Center of Protected Agriculture, Tongji University, Shanghai, China
| | - Yalei Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, China
| | - Mohamed H. H. Abbas
- Soils and Water Department, Faculty of Agriculture, Soils and Water Department, Benha University, Benha, Egypt
| | - Bader Z. Albogami
- Department of Biology, Faculty of Arts and Sciences, Najran University, Najran, Saudi Arabia
| | - Li Zhou
- Eco-Environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Shanghai Engineering Research Centre of Low-Carbon Agriculture, Shanghai, China
| | - Ahmed A. Abdelhafez
- Soils and Water Department, Faculty of Agriculture, New Valley University, New Valley, Egypt
- National Committee of Soil Science, Academy of Scientific Research and Technology, Cairo, Egypt
| |
Collapse
|
33
|
Ran C, Liu Y, Li K, Wang C, Pu J, Sun H, Wang L. Combined pollution effects of Cu and benzotriazole in rice (Oryza sativa L.) verified by split-root experiment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:91997-92006. [PMID: 37479939 DOI: 10.1007/s11356-023-28695-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 07/05/2023] [Indexed: 07/23/2023]
Abstract
Although the combined effect of organic ligands and heavy metals in the environment on plants have been frequently reported, their complexed interaction in plants and the physiological effects remain to be revealed. Metal complexing agent benzotriazole (BTR) has extensive environmental pollution. In this study, root-splitting experiments were designed to identify the in vivo and in vitro effects of BTR on the accumulation and translocation of Cu in rice (Oryza sativa L.), and the concentrations and translocation factor (TF) of Cu and BTR in different parts of rice were measured. In the in vitro interaction treatments, low BTR concentrations enhanced Cu uptake and lateral transport in rice, while higher levels of BTR's exposure (i.e., ≥ 100 μM) resulted in opposite effects. Differently, significant increase in the lateral transport of Cu and vertical translocation of BTR in rice presented in the in vivo interaction treatments. TF of Cu from root A to root B (TFRA-RB) increased from 0.05 to 0.272 with the BTR concentration increasing from 0 to 100 μM, and higher TF of BTR from root to shoot (TFR-S), ranging from 1.00 to 1.75, compared with single BTR exposure treatments was observed. The phytotoxicity of BTR expressed by the catalase activity was significantly alleviated by the in vivo accumulated Cu in rice.
Collapse
Affiliation(s)
- Chunmei Ran
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China
| | - Yubin Liu
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China
| | - Ke Li
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China
| | - Chenye Wang
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China
| | - Jian Pu
- Institute for Future Initiatives, The University of Tokyo, Tokyo, 113-8654, Japan
| | - Hongwen Sun
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China
| | - Lei Wang
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China.
- , Tianjin, China.
| |
Collapse
|
34
|
Du D, Xiong H, Xu C, Zeng W, Li J, Dong G. Nutrient Metabolism Pathways Analysis and Key Candidate Genes Identification Corresponding to Cadmium Stress in Buckwheat through Multiomics Analysis. Genes (Basel) 2023; 14:1462. [PMID: 37510366 PMCID: PMC10378796 DOI: 10.3390/genes14071462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/05/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Fagopylum tatarium (L.) Gaertn (buckwheat) can be used both as medicine and food and is also an important food crop in barren areas and has great economic value. Exploring the molecular mechanisms of the response to cadmium (Cd) stress can provide the theoretical reference for improving the buckwheat yield and quality. In this study, perennial tartary buckwheat DK19 was used as the experimental material, its key metabolic pathways in the response to Cd stress were identified and verified through transcriptomic and metabolomic data analysis. In this investigation, 1798 metabolites were identified through non-targeted metabolomic analysis containing 1091 up-regulated and 984down-regulated metabolites after treatment. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis of differential metabolites was significantly enriched in galactose metabolism, glycerol metabolism, phenylpropane biosynthesis, glutathione metabolism, starch and sucrose metabolism. Linkage analysis detected 11 differentially expressed genes (DEGs) in the galactose metabolism pathway, 8 candidate DEGs in the lipid metabolism pathway, and 20 candidate DEGs in the glutathione metabolism pathway. The results of our study provided useful clues for genetically improving the resistance to cadmium by analyzing the molecular mechanism of cadmium tolerance in buckwheat.
Collapse
Affiliation(s)
- Dengxiang Du
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Hanxian Xiong
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Congping Xu
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Wanyong Zeng
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Jinhua Li
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Guoqing Dong
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| |
Collapse
|
35
|
Zainab N, Mehmood S, Amna Shafiq-Ur-Rehman, Munir A, Tanveer ZI, Nisa ZU, Imran M, Javed MT, Chaudhary HJ. Health risk assessment and bioaccumulation of potentially toxic metals from water, soil, and forages near coal mines of district Chakwal, Punjab, Pakistan. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:5441-5466. [PMID: 37029254 DOI: 10.1007/s10653-023-01531-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 03/03/2023] [Indexed: 06/19/2023]
Abstract
Water, forages, and soil contamination with potentially toxic metals (PTMs) through anthropogenic activities has become a significant environmental concern. It is crucial to find out the level of PTMs in water, soil, and forages near industrial areas. The PTMs enter the body of living organisms through these sources and have become a potential risk for humans and animals. Therefore, the present study aims at the health risk assessment of PTMs and their accumulation in soil, water, and forages of three tehsils (Kallar Kahar, Choa Saidan Shah, and Chakwal) in district Chakwal. Samples of wastewater, soil, and forages were collected from various sites of district Chakwal. PTMs detected in the present study were cadmium (Cd), chromium (Cr), lead (Pb), zinc (Zn), cobalt (Co), copper (Cu), and nickel (Ni), and their levels were measured through atomic absorption spectrophotometer (AAs GF95 graphite furnace auto sampler). Pollution load index (PLI), bio concentration factor (BCF), soil enrichment factors (EF), daily intake value (DIM), and health risk index (HRI) in sheep, cow, and buffalo were also analyzed. The results revealed that the mean concentration (mg/L) of Cd (0.72-0.91 mg/L), Cr (1.84-2.23 mg/L), Pb (0.95-3.22 mg/L), Co (0.74-2.93 mg/L), Cu (0.84-1.96 mg/L), and Ni (1.39-4.39 mg/L) in wastewater samples was higher than permissible limits set by WHO, NEQS, WWF, USEPA, and Pakistan in all three tehsils of district Chakwal. Similarly, in soil samples, concentrations of Cd (1.21-1.95 mg/kg), Cr (38.1-56.4 mg/kg), and Ni (28.3-55.9 mg/kg) were higher than their respective threshold values. The mean concentration of PTMs in forage samples (Parthenium hysterophorus, Mentha spicata, Justicia adhatoda, Calotropis procera, Xanthium strumarium, Amaranthaceae sp.) showed that maximum values of Cd (5.35-7.55 mg/kg), Cr (5.47-7.51 mg/kg), Pb (30-36 mg/kg), and Ni (12.6-57.5 mg/kg) were beyond their safe limit set for forages. PLI, BCF, and EF were > 1.0 for almost all the PTMs. The DIM and HRI for sheep were less than < 1.0 but for cows and buffalo were > 1.0. The current study showed that soil, water, and forages near coal mines area are contaminated with PTMs which enter the food chain and pose significant harm to humans and animals. In order to prevent their dangerous concentration in the food chain, regular assessment of PTMs present in soil, forages, irrigating water, and food is recommended.
Collapse
Affiliation(s)
- Nida Zainab
- Department of Plant Sciences, Quaid-I-Azam University, Islamabad, 45320, Pakistan
| | - Shehzad Mehmood
- Department of Plant Sciences, Quaid-I-Azam University, Islamabad, 45320, Pakistan
- Department of Environmental Sciences, Comsats University Islamabad, Vehari, 61100, Pakistan
| | - Amna Shafiq-Ur-Rehman
- Department of Plant Sciences, Quaid-I-Azam University, Islamabad, 45320, Pakistan
- Department of Department of Botany, University of Okara, Okara, 53900, Pakistan
- Department of Botany, Rawalpindi Women University, 6Th Road Satellite Town, Rawalpindi, Pakistan
| | - Adeela Munir
- Department of Plant Sciences, Quaid-I-Azam University, Islamabad, 45320, Pakistan
| | | | - Zaib Un Nisa
- Cotton Research Institute, Multan, Punjab, Pakistan
| | - Muhammad Imran
- Department of Environmental Sciences, Comsats University Islamabad, Vehari, 61100, Pakistan
| | - Muhammad Tariq Javed
- Department of Botany, Government College University, Faisalabad, 38000, Pakistan
| | | |
Collapse
|
36
|
Leng F, Zhang K, Hu S, Li S, Yu C, Wang Y. Exopolysaccharides of Serratia fonticola CPSE11 can alleviate the toxic effect of Cd 2+ on Codonopsis pilosula. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:80378-80392. [PMID: 37296251 DOI: 10.1007/s11356-023-28145-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 06/02/2023] [Indexed: 06/12/2023]
Abstract
In order to study the detoxification effect of microbial exopolysaccharides (EPS) on the heavy metal cadmium (Cd2+), this study took an EPS-producing Serratia fonticola CPSE11 (NZ_CP050171.1) isolated from Codonopsis pilosula root as the research object. The whole genome and EPS synthesis gene clusters of this strain were predicted and analyzed, the adsorption kinetics of EPS on Cd2+ were studied by using pseudo-first-order and second-order kinetic equations, the isothermal adsorption curves were simulated and analyzed by using the Langmuir isothermal adsorption equation, and the effects of Cd2+ and EPS on the growth of C. pilosula were explored by seed germination experiment and hydroponic experiment. The analysis revealed that this strain contained three gene clusters related to EPS synthesis, and the metabolic pathway for EPS synthesis was obtained on the basis of the whole genome analysis and microbial physiological metabolism. The molecular weight and monosaccharide composition of EPS were determined by HPLC analysis, which showed that EPS consisted of mannose, glucosamine, rhamnose, galactosamine, glucose, and galactose with a molar ratio of 1:1.74:4.57:3.96:14.04:10.28, with the molecular weight of 366,316.09 kDa. The adsorption process of EPS on Cd2+ was in accordance with the second-order kinetic model, and the results of seed germination experiments showed that EPS could promote seed germination and improve seed activity. In the hydroponic experiment, high concentration of Cd2+ (15 mg/L) caused toxic symptoms in C. pilosula, while the addition of EPS reduced the toxic effect of Cd2+ on C. pilosula, and the plant growth was significantly improved.
Collapse
Affiliation(s)
- Feifan Leng
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, 730050, China
| | - Kexin Zhang
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, 730050, China
| | - Shu Hu
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, 730050, China
| | - Shaowei Li
- National Ecological Research Station, Key Laboratory of Ecosystem Network Observation and Modelling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Chengqun Yu
- National Ecological Research Station, Key Laboratory of Ecosystem Network Observation and Modelling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yonggang Wang
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, 730050, China.
| |
Collapse
|
37
|
Cao Y, Du P, Zhang J, Ji J, Xu J, Liang B. Dopamine alleviates cadmium stress in apple trees by recruiting beneficial microorganisms to enhance the physiological resilience revealed by high-throughput sequencing and soil metabolomics. HORTICULTURE RESEARCH 2023; 10:uhad112. [PMID: 37577402 PMCID: PMC10419553 DOI: 10.1093/hr/uhad112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 05/16/2023] [Indexed: 08/15/2023]
Abstract
Dopamine has demonstrated promise as a stress-relief substance. However, the function of dopamine in Cd tolerance and its mechanism remains largely unknown. The current study was performed to investigate the mechanism of dopamine on alleviating apple Cd stress through regular application of CdCl2 and dopamine solution to potting soil. The results indicated that dopamine significantly reduced reactive oxygen species (ROS) and Cd accumulation and alleviated the inhibitory effect of Cd stress on the growth of apple plants through activation of the antioxidant system, enhancement of photosynthetic capacity, and regulation of gene expression related to Cd absorption and detoxification. The richness of the rhizosphere microbial community increased, and community composition and assembly were affected by dopamine treatment. Network analysis of microbial communities showed that the numbers of nodes and total links increased significantly after dopamine treatment, while the keystone species shifted. Linear discriminant analysis effect size indicated that some biomarkers were significantly enriched after dopamine treatment, suggesting that dopamine induced plants to recruit potentially beneficial microorganisms (Pseudoxanthomonas, Aeromicrobium, Bradyrhizobium, Frankia, Saccharimonadales, Novosphingobium, and Streptomyces) to resist Cd stress. The co-occurrence network showed several metabolites that were positively correlated with relative growth rate and negatively correlated with Cd accumulation, suggesting that potentially beneficial microorganisms may be attracted by several metabolites (L-threonic acid, profenamine, juniperic acid and (3β,5ξ,9ξ)-3,6,19-trihydroxyurs-12-en-28-oic acid). Our results demonstrate that dopamine alleviates Cd stress in apple trees by recruiting beneficial microorganisms to enhance the physiological resilience revealed. This study provides an effective means to reduce the harm to agricultural production caused by heavy metals.
Collapse
Affiliation(s)
- Yang Cao
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei 071001, China
| | - Peihua Du
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei 071001, China
| | - Jiran Zhang
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei 071001, China
| | - Jiahao Ji
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei 071001, China
| | - Jizhong Xu
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei 071001, China
| | - Bowen Liang
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei 071001, China
| |
Collapse
|
38
|
Yadav R, Singh G, Santal AR, Singh NP. Omics approaches in effective selection and generation of potential plants for phytoremediation of heavy metal from contaminated resources. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 336:117730. [PMID: 36921476 DOI: 10.1016/j.jenvman.2023.117730] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/27/2023] [Accepted: 03/10/2023] [Indexed: 06/18/2023]
Abstract
Soil and water pollution, rapid industrialization, contaminated irrigation-water, increased waste-production and surge in agricultural land leads to the accumulation of Heavy Metals (HM) with time. HM contamination has raised concern over the past years and new remediation strategies are required to deal with it. HM-contaminated soil is often used for the production of food, which makes a gateway for toxic metals into the food-chain, thereby affecting food security and human health. To avoid HM-toxicity, decontamination of important resources is essential. Therefore, exploring phytoremediation for the removal, decomposition and detoxification of hazardous metals from HM-contaminated sites is of great significance. Hyper-accumulator plants can efficiently remove HMs. However, despite many hyper-accumulator plant species, there is a research gap in the studies of phytotechnology. Hence biotechnological efforts advocating omics studies i.e. genomics, transcriptomics, proteomics, metabolomics and phenomics are in order, the purpose being to select and enhance a plant's potential for the process of phytoremediation to be more effective. There is a need to study newly developed high-efficiency hyper-accumulator plants as HM-decontaminator candidates for phytoremediation and phytomining. Therefore, this review focuses on various strategies and bio-technological methods for the removal of HM contaminants from sites, with emphasis on the advancement of phytoremediation, along with applications in cleaning up various toxic pollutants.
Collapse
Affiliation(s)
- Renu Yadav
- Department of Biotechnology, Central University of Haryana, Mahendergarh, Haryana, India
| | - Gagandeep Singh
- Department of Biotechnology, Central University of Haryana, Mahendergarh, Haryana, India
| | - Anita Rani Santal
- Department of Microbiology, Maharshi Dayanand University, Rohtak, 124001, Haryana, India.
| | - Nater Pal Singh
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak, 124001, Haryana, India.
| |
Collapse
|
39
|
Bernard E, Guéguen C. Molecular changes in phenolic compounds in Euglena gracilis cells grown under metal stress. FRONTIERS IN PLANT SCIENCE 2023; 14:1099375. [PMID: 37229138 PMCID: PMC10203486 DOI: 10.3389/fpls.2023.1099375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 04/21/2023] [Indexed: 05/27/2023]
Abstract
Metal presence in the aquatic ecosystem has increased and diversified over the last decades due to anthropogenic sources. These contaminants cause abiotic stress on living organisms that lead to the production of oxidizing molecules. Phenolic compounds are part of the defense mechanisms countering metal toxicity. In this study, the production of phenolic compounds by Euglena gracilis under three different metal stressors (i.e. cadmium, copper, or cobalt) at sub-lethal concentration was assessed using an untargeted metabolomic approach by mass spectrometry combined with neuronal network analysis (i.e. Cytoscape). The metal stress had a greater impact on molecular diversity than on the number of phenolic compounds. The prevalence of sulfur- and nitrogen-rich phenolic compounds were found in Cd- and Cu-amended cultures. Together these results confirm the impact of metallic stress on phenolic compounds production, which could be utilized to assess the metal contamination in natural waters.
Collapse
|
40
|
Cao H, Chen D, Kuang L, Yan T, Gao F, Wu D. Metabolomic analysis reveals the molecular responses to copper toxicity in rice (Oryza sativa). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 199:107727. [PMID: 37150010 DOI: 10.1016/j.plaphy.2023.107727] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 02/27/2023] [Accepted: 04/28/2023] [Indexed: 05/09/2023]
Abstract
Copper (Cu) is one of the essential microelements and widely participates in various pathways in plants, but excess Cu in plant cells could induce oxidative stress and harm plant growth. Rice (Oryza sativa) is a main crop food worldwide. The molecular mechanisms of rice in response to copper toxicity are still not well understood. In this study, two-week-old seedlings of the rice cultivar Nipponbare were treated with 100 μM Cu2+ (CuSO4) in the external solution for 10 days. Physiological analysis showed that excess Cu significantly inhibited the growth and biomass of rice seedlings. After Cu treatment, the contents of Mn and Zn were significantly reduced in the roots and shoots, while the Fe content was significantly increased in the roots. Meanwhile, the activities of antioxidant enzymes including SOD and POD were dramatically enhanced after Cu treatment. Based on metabolomic analysis using liquid chromatography-tandem mass spectrometry (LC-MS/MS) methods, 695 metabolites were identified in rice roots. Among these metabolites, 123 metabolites were up-regulated and 297 were down-regulated, respectively. The differential metabolites (DMs) include carboxylic acids and derivatives, benzene and substituted derivatives, carbonyl compounds, cinnamic acids and derivatives, fatty acyls and organ nitrogen compounds. KEGG analysis showed that these DMs were mainly enriched in TCA cycle, purine metabolism and starch and sucrose metabolism pathways. Many intermediates in the TCA cycle and purine metabolism were down-regulated, indicating a perturbed carbohydrate and nucleic acid metabolism. Taken together, the present study provides new insights into the mechanism of rice roots to Cu toxicity.
Collapse
Affiliation(s)
- Huan Cao
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
| | - Danyi Chen
- Department of Agronomy, Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou, 310058, China
| | - Liuhui Kuang
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
| | - Tao Yan
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
| | - Fei Gao
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
| | - Dezhi Wu
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, China.
| |
Collapse
|
41
|
Plant Metabolomics: An Overview of the Role of Primary and Secondary Metabolites against Different Environmental Stress Factors. Life (Basel) 2023; 13:life13030706. [PMID: 36983860 PMCID: PMC10051737 DOI: 10.3390/life13030706] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/02/2023] [Accepted: 02/28/2023] [Indexed: 03/08/2023] Open
Abstract
Several environmental stresses, including biotic and abiotic factors, adversely affect the growth and development of crops, thereby lowering their yield. However, abiotic factors, e.g., drought, salinity, cold, heat, ultraviolet radiations (UVr), reactive oxygen species (ROS), trace metals (TM), and soil pH, are extremely destructive and decrease crop yield worldwide. It is expected that more than 50% of crop production losses are due to abiotic stresses. Moreover, these factors are responsible for physiological and biochemical changes in plants. The response of different plant species to such stresses is a complex phenomenon with individual features for several species. In addition, it has been shown that abiotic factors stimulate multi-gene responses by making modifications in the accumulation of the primary and secondary metabolites. Metabolomics is a promising way to interpret biotic and abiotic stress tolerance in plants. The study of metabolic profiling revealed different types of metabolites, e.g., amino acids, carbohydrates, phenols, polyamines, terpenes, etc, which are accumulated in plants. Among all, primary metabolites, such as amino acids, carbohydrates, lipids polyamines, and glycine betaine, are considered the major contributing factors that work as osmolytes and osmoprotectants for plants from various environmental stress factors. In contrast, plant-derived secondary metabolites, e.g., phenolics, terpenoids, and nitrogen-containing compounds (alkaloids), have no direct role in the growth and development of plants. Nevertheless, such metabolites could play a significant role as a defense by protecting plants from biotic factors such as herbivores, insects, and pathogens. In addition, they can enhance the resistance against abiotic factors. Therefore, metabolomics practices are becoming essential and influential in plants by identifying different phytochemicals that are part of the acclimation responses to various stimuli. Hence, an accurate metabolome analysis is important to understand the basics of stress physiology and biochemistry. This review provides insight into the current information related to the impact of biotic and abiotic factors on variations of various sets of metabolite levels and explores how primary and secondary metabolites help plants in response to these stresses.
Collapse
|
42
|
Nguyen NH, Nguyen QT, Dang DH, Emery RJN. Phytohormones enhance heavy metal responses in Euglena gracilis: Evidence from uptake of Ni, Pb and Cd and linkages to hormonomic and metabolomic dynamics. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 320:121094. [PMID: 36682616 DOI: 10.1016/j.envpol.2023.121094] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/28/2022] [Accepted: 01/14/2023] [Indexed: 06/17/2023]
Abstract
Over the last decade, significant effort has been made to understand phytohormonal functions (e.g., cytokinins (CKs) and abscisic acid (ABA)) in metal stress responses of higher plants and algae. Despite the potential for these phytohormones to improve industrial remediation by Euglena gracilis (Euglenophyceae), no such roles have been elucidated for this highly adaptive species and its response to heavy metals. This study demonstrates that toxic metals (nickel, lead, cadmium) modify hormonal activity profiles (i.e., CK forms and their concentrations) in E. gracilis. Furthermore, exogenous ABA or CK (tZ) enabled higher metal uptake efficiency (i.e., 9.35% in lead and 9.2% in cadmium uptake with CK) and alleviated metal toxicity through the regulation of endogenous CKs (i.e., total CK, isoprenoid CK) and gibberellin (GAs, GA1 and GA3) levels. These responses suggest that E. gracilis regulates multiple phytohormone signals during metal stress acclimation. A deeper approach, using untargeted metabolomic analyses, gave more detailed insight into phytohormone-controlled pathways and associated modified metabolites, which were frequently related to metal accumulation and the physiological acclimation to metal presence. Significant changes in the levels of cellular metabolites, especially those involved in acclimation to metal stress, were under the influence of phytohormones in algal cells. When grown under metal stress conditions, the presence of exogenous ABA or CKs, caused changes in cellular metabolites which included those from: lipid pathways, riboflavin metabolism, the biosynthesis of cofactors/vitamins, and carbohydrate metabolism. Also, bioactive secondary metabolites (e.g., terpenoids, alkaloids, flavonoids, carotenoids) were modified in algal cells treated with phytohormones. Thus, the study gives a detailed view on the regulatory functions of ABA and CKs in algal metal bioremediation strategies, which are attributed to enhanced metal uptake and in the fine-tuning of plant hormone levels during metal stress response. The results can guide efforts to develop efficient, low-cost and environmentally friendly methods for bioremediation.
Collapse
Affiliation(s)
- Ngoc Hai Nguyen
- Trent University, Department of Biology, Peterborough, Canada.
| | | | - Duc Huy Dang
- Trent University, School of the Environment and Chemistry Department, Peterborough, Canada
| | - R J Neil Emery
- Trent University, Department of Biology, Peterborough, Canada
| |
Collapse
|
43
|
Fatnani D, Patel M, Parida AK. Regulation of chromium translocation to shoot and physiological, metabolomic, and ionomic adjustments confer chromium stress tolerance in the halophyte Suaeda maritima. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 320:121046. [PMID: 36627045 DOI: 10.1016/j.envpol.2023.121046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 10/17/2022] [Accepted: 01/06/2023] [Indexed: 06/17/2023]
Abstract
Chromium (Cr) is a highly toxic element adversely affecting the environment, cultivable lands, and human populations. The present study investigated the effects of Cr (VI) (100-400 μM) on plant morphology and growth, photosynthetic pigments, organic osmolytes, ionomics, and metabolomic dynamics of the halophyte Suaeda maritima to decipher the Cr tolerance mechanisms. Cr exposure reduced the growth and biomass in S. maritima. The photosynthetic pigments content significantly declined at higher Cr concentrations (400 μM). However, at lower Cr concentrations (100-300 μM), the photosynthetic pigments remained unaffected or increased. The results suggest that a high concentration of Cr exposure might have adverse effects on PS II in S. maritima. The enhanced uptake of Na+ in S. maritima imposed to Cr stress indicates that Na+ might have a pivotal role in osmotic adjustment, thereby maintaining water status under Cr stress. The proline content was significantly upregulated in Cr-treated plants suggesting its role in maintaining osmotic balance and scavenging ROS. The metabolomic analysis of control and 400 μM Cr treated plants led to the identification of 62 metabolites. The fold chain analysis indicated the upregulation of several metabolites, including phytohormones (SA and GA3), polyphenols (cinnamic acid, sinapic acid, coumaric acid, vanillic acid, and syringic acid), and amino acids (alanine, leucine, proline, methionine, and cysteine) under Cr stress. The upregulation of these metabolites suggests the enhanced metal chelation and sequestration in vacuoles, reducing oxidative stress by scavenging ROS and promoting photosynthesis by maintaining the chloroplast membrane structure and photosynthetic pigments. Furthermore, in S. maritima, Cr tolerance index (Ti) was more than 60% in all the treatments, and Cr bio-concentration factor (BCF) and translocation factor (Tf) values were all greater than 1.0, which clearly indicates the Cr-hyperaccumulator characteristics of this halophyte.
Collapse
Affiliation(s)
- Dhara Fatnani
- Plant Omics Division, CSIR- Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Gijubhai Badheka Marg, Bhavnagar, 364002, Gujarat, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Monika Patel
- Plant Omics Division, CSIR- Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Gijubhai Badheka Marg, Bhavnagar, 364002, Gujarat, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Asish Kumar Parida
- Plant Omics Division, CSIR- Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Gijubhai Badheka Marg, Bhavnagar, 364002, Gujarat, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
44
|
Jiao Z, Shi Y, Wang J, Wang Z, Zhang X, Jia X, Du Q, Niu J, Liu B, Du R, Ji G, Cao J, Lv P. Integration of transcriptome and metabolome analyses reveals sorghum roots responding to cadmium stress through regulation of the flavonoid biosynthesis pathway. FRONTIERS IN PLANT SCIENCE 2023; 14:1144265. [PMID: 36909379 PMCID: PMC9996021 DOI: 10.3389/fpls.2023.1144265] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
Cadmium (Cd) pollution is a serious threat to plant growth and human health. Although the mechanisms controlling the Cd response have been elucidated in other species, they remain unknown in Sorghum (Sorghum bicolor (L.) Moench), an important C4 cereal crop. Here, one-week-old sorghum seedlings were exposed to different concentrations (0, 10, 20, 50, 100, and 150 μM) of CdCl2 and the effects of these different concentrations on morphological responses were evaluated. Cd stress significantly decreased the activities of the enzymes peroxidase (POD), superoxide dismutase (SOD), glutathione S-transferase (GST) and catalase (CAT), and increased malondialdehyde (MDA) levels, leading to inhibition of plant height, decreases in lateral root density and plant biomass production. Based on these results, 10 μM Cd concentration was chosen for further transcription and metabolic analyses. A total of 2683 genes and 160 metabolites were found to have significant differential abundances between the control and Cd-treated groups. Multi-omics integrative analysis revealed that the flavonoid biosynthesis pathway plays a critical role in regulating Cd stress responses in sorghum. These results provide new insights into the mechanism underlying the response of sorghum to Cd.
Collapse
Affiliation(s)
- Zhiyin Jiao
- Institute of Millet Crops, Hebei Academy of Agriculture and Forestry Sciences/ Hebei Branch of National Sorghum Improvement center/ Key Laboratory of Genetic Improvement and Utilization for Featured Coarse Cereals (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs/ Key Laboratory of Minor Cereal Crops of Hebei Province, Shijiazhuang, China
| | - Yannan Shi
- Institute of Millet Crops, Hebei Academy of Agriculture and Forestry Sciences/ Hebei Branch of National Sorghum Improvement center/ Key Laboratory of Genetic Improvement and Utilization for Featured Coarse Cereals (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs/ Key Laboratory of Minor Cereal Crops of Hebei Province, Shijiazhuang, China
| | - Jinping Wang
- Institute of Millet Crops, Hebei Academy of Agriculture and Forestry Sciences/ Hebei Branch of National Sorghum Improvement center/ Key Laboratory of Genetic Improvement and Utilization for Featured Coarse Cereals (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs/ Key Laboratory of Minor Cereal Crops of Hebei Province, Shijiazhuang, China
| | - Zhifang Wang
- Institute of Millet Crops, Hebei Academy of Agriculture and Forestry Sciences/ Hebei Branch of National Sorghum Improvement center/ Key Laboratory of Genetic Improvement and Utilization for Featured Coarse Cereals (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs/ Key Laboratory of Minor Cereal Crops of Hebei Province, Shijiazhuang, China
| | - Xing Zhang
- Institute of Millet Crops, Hebei Academy of Agriculture and Forestry Sciences/ Hebei Branch of National Sorghum Improvement center/ Key Laboratory of Genetic Improvement and Utilization for Featured Coarse Cereals (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs/ Key Laboratory of Minor Cereal Crops of Hebei Province, Shijiazhuang, China
| | - Xinyue Jia
- Institute of Millet Crops, Hebei Academy of Agriculture and Forestry Sciences/ Hebei Branch of National Sorghum Improvement center/ Key Laboratory of Genetic Improvement and Utilization for Featured Coarse Cereals (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs/ Key Laboratory of Minor Cereal Crops of Hebei Province, Shijiazhuang, China
| | - Qi Du
- Institute of Millet Crops, Hebei Academy of Agriculture and Forestry Sciences/ Hebei Branch of National Sorghum Improvement center/ Key Laboratory of Genetic Improvement and Utilization for Featured Coarse Cereals (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs/ Key Laboratory of Minor Cereal Crops of Hebei Province, Shijiazhuang, China
| | - Jingtian Niu
- Institute of Millet Crops, Hebei Academy of Agriculture and Forestry Sciences/ Hebei Branch of National Sorghum Improvement center/ Key Laboratory of Genetic Improvement and Utilization for Featured Coarse Cereals (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs/ Key Laboratory of Minor Cereal Crops of Hebei Province, Shijiazhuang, China
| | - Bocheng Liu
- Institute of Millet Crops, Hebei Academy of Agriculture and Forestry Sciences/ Hebei Branch of National Sorghum Improvement center/ Key Laboratory of Genetic Improvement and Utilization for Featured Coarse Cereals (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs/ Key Laboratory of Minor Cereal Crops of Hebei Province, Shijiazhuang, China
| | - Ruiheng Du
- Institute of Millet Crops, Hebei Academy of Agriculture and Forestry Sciences/ Hebei Branch of National Sorghum Improvement center/ Key Laboratory of Genetic Improvement and Utilization for Featured Coarse Cereals (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs/ Key Laboratory of Minor Cereal Crops of Hebei Province, Shijiazhuang, China
| | - Guisu Ji
- Institute of Millet Crops, Hebei Academy of Agriculture and Forestry Sciences/ Hebei Branch of National Sorghum Improvement center/ Key Laboratory of Genetic Improvement and Utilization for Featured Coarse Cereals (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs/ Key Laboratory of Minor Cereal Crops of Hebei Province, Shijiazhuang, China
| | - Junfeng Cao
- Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Peng Lv
- Institute of Millet Crops, Hebei Academy of Agriculture and Forestry Sciences/ Hebei Branch of National Sorghum Improvement center/ Key Laboratory of Genetic Improvement and Utilization for Featured Coarse Cereals (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs/ Key Laboratory of Minor Cereal Crops of Hebei Province, Shijiazhuang, China
| |
Collapse
|
45
|
Alsherif EA, Yaghoubi Khanghahi M, Crecchio C, Korany SM, Sobrinho RL, AbdElgawad H. Understanding the Active Mechanisms of Plant ( Sesuvium portulacastrum L.) against Heavy Metal Toxicity. PLANTS (BASEL, SWITZERLAND) 2023; 12:676. [PMID: 36771762 PMCID: PMC9919468 DOI: 10.3390/plants12030676] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/25/2023] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
Through metabolic analysis, the present research seeks to reveal the defense mechanisms activated by a heavy metals-resistant plant, Sesuvium portulacastrum L. In this regard, shifting metabolisms in this plant were investigated in different heavy metals-contaminated experimental sites, which were 50, 100, 500, 1000, and 5000 m away from a man-fabricated sewage dumping lake, with a wide range of pollutant concentrations. Heavy metals contaminations in contaminated soil and their impact on mineral composition and microbial population were also investigated. The significant findings to emerge from this research were the modifications of nitrogen and carbon metabolisms in plant tissues to cope with heavy metal toxicity. Increased plant amylase enzymes activity in contaminated soils increased starch degradation to soluble sugars as a mechanism to mitigate stress impact. Furthermore, increased activity of sucrose phosphate synthase in contaminated plants led to more accumulation of sucrose. Moreover, no change in the content of sucrose hydrolyzing enzymes (vacuolar invertase and cytosolic invertase) in the contaminated sites can suggest the translocation of sucrose from shoot to root under stress. Similarly, although this study demonstrated a high level of malate in plants exposed to stress, caution must be applied in suggesting a strong link between organic acids and the activation of defense mechanisms in plants, since other key organic acids were not affected by stress. Therefore, activation of other defense mechanisms, especially antioxidant defense molecules including alpha and beta tocopherols, showed a greater role in protecting plants from heavy metals stress. Moreover, the increment in the content of some amino acids (e.g., glycine, alanine, glutamate, arginine, and ornithine) in plants under metal toxicity can be attributed to a high level of stress tolerance. Moreover, strategies in the excitation of the synthesis of the unsaturated fatty acids (oleic and palmitoleic) were involved in enhancing stress tolerance, which was unexpectedly associated with an increase in the accumulation of palmitic and stearic (saturated fatty acids). Taken together, it can be concluded that these multiple mechanisms were involved in the response to stress which may be cooperative and complementary with each other in inducing resistance to the plants.
Collapse
Affiliation(s)
- Emad A. Alsherif
- Biology Department, College of Science and Arts at Khulis, University of Jeddah, Jeddah 21959, Saudi Arabia
- Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Beni-Suef 62521, Egypt
| | - Mohammad Yaghoubi Khanghahi
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Amendola 165/A, 70126 Bari, Italy
| | - Carmine Crecchio
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Amendola 165/A, 70126 Bari, Italy
| | - Shereen Magdy Korany
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Renato Lustosa Sobrinho
- Department of Agronomy, Federal University of Technology—Paraná (UTFPR), Pato Branco 85503-390, PR, Brazil
| | - Hamada AbdElgawad
- Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Beni-Suef 62521, Egypt
- Integrated Molecular Plant Physiology Research, Department of Biology, University of Antwerp, 2000 Antwerp, Belgium
| |
Collapse
|
46
|
Naik B, Kumar V, Rizwanuddin S, Chauhan M, Choudhary M, Gupta AK, Kumar P, Kumar V, Saris PEJ, Rather MA, Bhuyan S, Neog PR, Mishra S, Rustagi S. Genomics, Proteomics, and Metabolomics Approaches to Improve Abiotic Stress Tolerance in Tomato Plant. Int J Mol Sci 2023; 24:3025. [PMID: 36769343 PMCID: PMC9918255 DOI: 10.3390/ijms24033025] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 01/30/2023] [Accepted: 02/01/2023] [Indexed: 02/09/2023] Open
Abstract
To explore changes in proteins and metabolites under stress circumstances, genomics, proteomics, and metabolomics methods are used. In-depth research over the previous ten years has gradually revealed the fundamental processes of plants' responses to environmental stress. Abiotic stresses, which include temperature extremes, water scarcity, and metal toxicity brought on by human activity and urbanization, are a major cause for concern, since they can result in unsustainable warming trends and drastically lower crop yields. Furthermore, there is an emerging reliance on agrochemicals. Stress is responsible for physiological transformations such as the formation of reactive oxygen, stomatal opening and closure, cytosolic calcium ion concentrations, metabolite profiles and their dynamic changes, expression of stress-responsive genes, activation of potassium channels, etc. Research regarding abiotic stresses is lacking because defense feedbacks to abiotic factors necessitate regulating the changes that activate multiple genes and pathways that are not properly explored. It is clear from the involvement of these genes that plant stress response and adaptation are complicated processes. Targeting the multigenicity of plant abiotic stress responses caused by genomic sequences, transcripts, protein organization and interactions, stress-specific and cellular transcriptome collections, and mutant screens can be the first step in an integrative approach. Therefore, in this review, we focused on the genomes, proteomics, and metabolomics of tomatoes under abiotic stress.
Collapse
Affiliation(s)
- Bindu Naik
- Department of Food Science and Technology, Graphic Era (Deemed to Be) University, Bell Road, Clement Town, Dehradun 248002, Uttarakhand, India
| | - Vijay Kumar
- Himalayan School of Biosciences, Swami Rama Himalayan University, Swami Rama Nagar, Jolly Grant, Dehradun 248014, Uttarakhand, India
| | - Sheikh Rizwanuddin
- Department of Life Sciences, Graphic Era (Deemed to Be) University, Bell Road, Clement Town, Dehradun 248002, Uttarakhand, India
| | - Mansi Chauhan
- Department of Life Sciences, Graphic Era (Deemed to Be) University, Bell Road, Clement Town, Dehradun 248002, Uttarakhand, India
| | - Megha Choudhary
- Himalayan School of Biosciences, Swami Rama Himalayan University, Swami Rama Nagar, Jolly Grant, Dehradun 248014, Uttarakhand, India
| | - Arun Kumar Gupta
- Department of Food Science and Technology, Graphic Era (Deemed to Be) University, Bell Road, Clement Town, Dehradun 248002, Uttarakhand, India
| | - Pankaj Kumar
- Department of Microbiology, Dolphin (PG) Institute of Biomedical and Natural Sciences, Dehradun 248007, Uttarakhand, India
| | - Vivek Kumar
- Himalayan School of Biosciences, Swami Rama Himalayan University, Swami Rama Nagar, Jolly Grant, Dehradun 248014, Uttarakhand, India
| | - Per Erik Joakim Saris
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, FI-00014 Helsinki, Finland
| | - Muzamil Ahmad Rather
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur 784028, Assam, India
| | - Shuvam Bhuyan
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur 784028, Assam, India
| | - Panchi Rani Neog
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur 784028, Assam, India
| | - Sadhna Mishra
- Faculty of Agricultural Sciences, GLA University, Mathura 281406, Uttar Pradesh, India
| | - Sarvesh Rustagi
- Department of Food Technology, Uttaranchal University, Dehradun 248007, Uttarakhand, India
| |
Collapse
|
47
|
Wang L, Yao Y, Wang J, Cui J, Wang X, Li X, Li Y, Ma L. Metabolomics analysis reveal the molecular responses of high CO 2 concentration improve resistance to Pb stress of Oryza sativa L. seedlings. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 251:114515. [PMID: 36628876 DOI: 10.1016/j.ecoenv.2023.114515] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 01/02/2023] [Accepted: 01/04/2023] [Indexed: 06/17/2023]
Abstract
Rice seedlings were exposed to two CO2 concentrations (400 ± 20 and 800 ± 20 μmol mol-1) and three PbNO3 concentrations (0, 50 and 100 µmol L-1) for 10 days to explore the regulatory mechanisms of elevated CO2 for Pb stress resistance. Electrical conductivity, MDA content, SOD, POD, CAT activities and metabolomics changes were studied. Results showed that: Pb stress damaged cell membrane system, electrical conductivity and MDA content increased 49.34 % and 73.27 %, respectively, and some antioxidant enzymes activities increased. Sugar, polyol, amino acid metabolism and fatty acid β-oxidation were all enhanced to improve osmotic adjustments, maintain cell membrane stability, supply energy, nitrogen assimilates and antioxidant capacity; Under composite treatments, cell membrane damage was reduced, activities of protective enzymes increased compared with only Pb stress, POD activity increased the most (49.14 %) under severe Pb composite treatment. High CO2 caused the enhance of cells antioxidant capacity, TCA cycle intermediate products contents and fatty acid desaturation under mild Pb stress. Many sugars, polyols and amino acids contents were increased as osmotic regulatory substances by high CO2 under severe Pb stress; Secondary metabolites played an important role under Pb stress and composite treatments. The object of this study is to provide a possible molecular mechanism of rice response to Pb stress under high CO2 in the future.
Collapse
Affiliation(s)
- Lanlan Wang
- College of Life Science, Shenyang Normal University, Shenyang, Liaoning 110034, China.
| | - Yuxi Yao
- College of Life Science, Shenyang Normal University, Shenyang, Liaoning 110034, China.
| | - Jiayu Wang
- College of Life Science, Shenyang Normal University, Shenyang, Liaoning 110034, China.
| | - Jinghui Cui
- College of Life Science, Shenyang Normal University, Shenyang, Liaoning 110034, China.
| | - Xuhao Wang
- College of Life Science, Shenyang Normal University, Shenyang, Liaoning 110034, China.
| | - Xuemei Li
- College of Life Science, Shenyang Normal University, Shenyang, Liaoning 110034, China.
| | - Yueying Li
- College of Life Science, Shenyang Normal University, Shenyang, Liaoning 110034, China.
| | - Lianju Ma
- College of Life Science, Shenyang Normal University, Shenyang, Liaoning 110034, China.
| |
Collapse
|
48
|
Huang R, Lv J, Chen J, Zhu Y, Zhu J, Wågberg T, Hu G. Three-dimensional porous high boron-nitrogen-doped carbon for the ultrasensitive electrochemical detection of trace heavy metals in food samples. JOURNAL OF HAZARDOUS MATERIALS 2023; 442:130020. [PMID: 36155296 DOI: 10.1016/j.jhazmat.2022.130020] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 08/28/2022] [Accepted: 09/16/2022] [Indexed: 05/29/2023]
Abstract
Exposure to even trace amounts of Cd(II) and Pb(II) in food can have serious effects on the human body. Therefore, the development of novel electrochemical sensors that can accurately detect the different toxicity levels of heavy metal ions in food is of great significance. Based on the principle of green chemistry, we propose a new type of boron and nitrogen co-doped carbon (BCN) material derived from a metal-organic framework material and study its synthesis, characterization, and heavy-metal ion detection ability. Under the optimum conditions, the BCN-modified glassy carbon electrode was studied using square-wave anodic stripping voltammetry, which showed good electrochemical responses to Cd(II) and Pb(II), with sensitivities as low as 0.459 and 0.509 μA/μM cm2, respectively. The sensor was successfully used to detect Cd(II) and Pb(II) in Beta vulgaris var. cicla L samples, which is consistent with the results obtained using inductively coupled plasma-mass spectrometry. It also has a strong selectivity for complex samples. This study provides a novel approach for the detection of heavy metal ions in food and greatly expands the application of heteroatom-doped metal-free carbon materials in detection platforms.
Collapse
Affiliation(s)
- Ruihua Huang
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China; Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China
| | - Jiapei Lv
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Jianbing Chen
- Research Academy of Non-metallic Mining Industry Development, Materials and Environmental Engineering College, Chizhou University, Chizhou 247000, China
| | - Yeling Zhu
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Jian Zhu
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China.
| | - Thomas Wågberg
- Department of Physics, Umeå University, Umeå 901 87, Sweden
| | - Guangzhi Hu
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China; Department of Physics, Umeå University, Umeå 901 87, Sweden.
| |
Collapse
|
49
|
Wang Z, Wang H, Wang H, Qin Y, Cui S, Wang G. Dual tolerance of ageratum (Ageratum conyzoides L.) to combined pollution of acid and cadmium: Field survey and pot experiment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 326:116677. [PMID: 36356537 DOI: 10.1016/j.jenvman.2022.116677] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 10/12/2022] [Accepted: 10/30/2022] [Indexed: 06/16/2023]
Abstract
A field survey and pot experiment were carried out to screen tolerant plants growing in cadmium (Cd)-polluted mining areas which were co-polluted with acid in soil, and the related physiological and biochemical mechanisms were also analyzed. Thirty-seven species of wild plants and their corresponding soil were collected from a farmland around the mining areas. Ageratum (Ageratum conyzoides L.) with strong Cd-accumulative ability was selected, and its tolerance experiment for acid and Cd with different levels were carried out separately or orthogonally, respectively. Furthermore, the activities of superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT), and the contents of malondialdehyde (MDA), photosynthetic pigments, soluble sugar and proline in its leaves were determined. The results showed that the Cd accumulation in ageratum and sticktight (Bidens pilosa L.) was relatively high, but the latter has been well documented, so we focused on ageratum in the present work. In pot experiment, ageratum grew normally at 100 mg kg-1 Cd in soil, and the Cd concentrations in its roots, stems and leaves were 75.37 ± 7.37, 31.01 ± 3.76 and 53.92 ± 10.05 mg kg-1, respectively. In the case of acid tolerance experiment, all plant individuals of ageratum grew normally when soil pH was over 3.5. In the orthogonal experiment, the Cd accumulation in this plant increased with the decrease of soil pH under the same Cd treatment. Under strong acid conditions, the activity of SOD in leaves of ageratum was increased significantly. When the Cd concentration was 10 mg kg-1 and the soil pH was 5.5 or 3.5, the activities of POD and CAT were significantly increased. In addition, based on stepwise regression analysis, the leaf Cd concentration was significantly positive correlated with the activities of SOD and POD in leaves of ageratum. Therefore, ageratum not only had a strong tolerance for Cd and acid pollution in soil, but also had a strong ability to accumulate Cd. As a common plant in the mining area, it has a great potential for the phytoremediation of Cd and acid co-contaminated soil.
Collapse
Affiliation(s)
- Zhongzhen Wang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China.
| | - Hongbin Wang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China.
| | - Haijuan Wang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China.
| | - Yongrong Qin
- Faculty of Chemical and Biological Engineering, Hechi University, Hechi, 547000, China.
| | - Suping Cui
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China.
| | - Guanghui Wang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China.
| |
Collapse
|
50
|
Gong B, Qiu H, Van Gestel CAM, Peijnenburg WJGM, He E. Increasing Temperatures Potentiate the Damage of Rare Earth Element Yttrium to the Crop Plant Triticum aestivum L. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:16390-16400. [PMID: 36524925 DOI: 10.1021/acs.jafc.2c05883] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Given that increasing temperature may aggravate the toxicity of pollutants, it is a daunting challenge to evaluate the realistic risks of rare earth elements (REEs) under global warming. Here, we studied how elevated temperatures (27 and 32 °C) impact the effect of yttrium (Y) on wheat plants (Triticum aestivum L.) at concentrations not causing effects (0, 0.5, and 1 μM) at the control temperature (22 °C) in a hydroponic system. After 14 days of exposure, significant inhibition (p < 0.05, 29.5%) of root elongation was observed only at 1 μM of Y at 32 °C. Exposure to Y at 27 °C showed no visible effects on root length, but induced significant (p < 0.05) metabolic disorders of a range of carbohydrates and amino acids related to galactose, phenylalanine, and glutamate metabolisms. Such cases were even shifted to substantial perturbation of the nucleotide pool reallocation involved in the disruption of purine and pyrimidine metabolism at 32 °C. These observations were regulated by sets of genes involved in these perturbed pathways. Using weighted gene co-expression network analysis, the disorder of nucleotide metabolism was shown to be responsible for the aggravated Y phytotoxicity at the extreme high temperature. Although the temperature fluctuation considered seems to be in an extreme range, unexpected implications driven by high temperature cannot be neglected. Our findings thus reduce the gaps of knowledge in REE toxicity to plants under future climate warming scenarios and highlight the importance of incorporating environmental temperature into the framework of the risk assessment of REEs.
Collapse
Affiliation(s)
- Bing Gong
- School of Geographic Sciences, East China Normal University, Shanghai 200241, China
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hao Qiu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Cornelis A M Van Gestel
- Amsterdam Institute for Life and Environment (A-LIFE), Faculty of Science, Vrije Universiteit, Amsterdam 1081 HV, The Netherlands
| | - Willie J G M Peijnenburg
- Institute of Environmental Sciences, Leiden University, Leiden 2333CC, the Netherlands
- National Institute of Public Health and the Environment, Center for the Safety of Substances and Products, Bilthoven 3720 BA, The Netherlands
| | - Erkai He
- School of Geographic Sciences, East China Normal University, Shanghai 200241, China
| |
Collapse
|