1
|
Dumont H, Roux-Sibilon A, Goffaux V. Horizontal face information is the main gateway to the shape and surface cues to familiar face identity. PLoS One 2024; 19:e0311225. [PMID: 39374235 PMCID: PMC11458052 DOI: 10.1371/journal.pone.0311225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 09/16/2024] [Indexed: 10/09/2024] Open
Abstract
Humans preferentially rely on horizontal cues when recognizing face identity. The reasons for this preference are largely elusive. Past research has proposed the existence of two main sources of face identity information: shape and surface reflectance. The access to surface and shape is disrupted by picture-plane inversion while contrast negation selectively impedes access to surface cues. Our objective was to characterize the shape versus surface nature of the face information conveyed by the horizontal range. To do this, we tracked the effects of inversion and negation in the orientation domain. Participants performed an identity recognition task using orientation-filtered (0° to 150°, 30° steps) pictures of familiar male actors presented either in a natural upright position and contrast polarity, inverted, or negated. We modelled the inversion and negation effects across orientations with a Gaussian function using a Bayesian nonlinear mixed-effects modelling approach. The effects of inversion and negation showed strikingly similar orientation tuning profiles, both peaking in the horizontal range, with a comparable tuning strength. These results suggest that the horizontal preference of human face recognition is due to this range yielding a privileged access to shape and surface cues, i.e. the two main sources of face identity information.
Collapse
Affiliation(s)
- Helene Dumont
- Psychological Sciences Research Institute (IPSY), UC Louvain, Louvain-la-Neuve, Belgium
| | - Alexia Roux-Sibilon
- Psychological Sciences Research Institute (IPSY), UC Louvain, Louvain-la-Neuve, Belgium
- Université Clermont Auvergne, CNRS, LAPSCO, Clermont-Ferrand, France
| | - Valérie Goffaux
- Psychological Sciences Research Institute (IPSY), UC Louvain, Louvain-la-Neuve, Belgium
- Institute of Neuroscience (IONS), UC Louvain, Louvain-la-Neuve, Belgium
| |
Collapse
|
2
|
Rokni D, Ben-Shaul Y. Object-oriented olfaction: challenges for chemosensation and for chemosensory research. Trends Neurosci 2024; 47:834-848. [PMID: 39245626 DOI: 10.1016/j.tins.2024.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 08/02/2024] [Accepted: 08/16/2024] [Indexed: 09/10/2024]
Abstract
Many animal species use olfaction to extract information about objects in their environment. Yet, the specific molecular signature that any given object emits varies due to various factors. Here, we detail why such variability makes chemosensory-mediated object recognition such a hard problem, and we propose that a major function of the elaborate chemosensory network is to overcome it. We describe previous work addressing different elements of the problem and outline future research directions that we consider essential for a full understanding of object-oriented olfaction. In particular, we call for extensive representation of olfactory object variability in chemical, behavioral, and electrophysiological analyses. While written with an emphasis on macrosmatic mammalian species, our arguments apply to all organisms that employ chemosensation to navigate complex environments.
Collapse
Affiliation(s)
- Dan Rokni
- Department of Medical Neurobiology, The Hebrew University Faculty of Medicine, Institute for Medical Research, Israel-Canada (IMRIC), Jerusalem, Israel.
| | - Yoram Ben-Shaul
- Department of Medical Neurobiology, The Hebrew University Faculty of Medicine, Institute for Medical Research, Israel-Canada (IMRIC), Jerusalem, Israel.
| |
Collapse
|
3
|
Warren MR, Young LJ, Liu RC. Vocal recognition of partners by female prairie voles. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.24.604991. [PMID: 39091789 PMCID: PMC11291111 DOI: 10.1101/2024.07.24.604991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Recognizing conspecifics is vitally important for differentiating kin, mates, offspring and social threats.1 Although often reliant upon chemical or visual cues, individual recognition across the animal kingdom is also facilitated by unique acoustic signatures in vocalizations.2-4 However, amongst the large Muroidea superfamily of rodents that encompasses laboratory species amenable to neurobiological studies, there is scant behavioral evidence for individual vocal recognition despite individual acoustic variation.5-10 Playback studies have found evidence for coarse communicative functions like mate attraction and territorial defense, but limited finer ability to discriminate known individuals' vocalizations.11-17 Such a capacity would be adaptive for species that form lifelong pair bonds requiring partner identification across timescales, distances and sensory modalities, so to improve the chance of finding individual vocal recognition in a Muroid rodent, we investigated vocal communication in the prairie vole (Microtus ochrogaster) - one of the few socially monogamous mammals.18 We found that the ultrasonic vocalizations of adult prairie voles can communicate individual identity. Even though the vocalizations of individual males change after cohabitating with a female to form a bond, acoustic variation across individuals is greater than within an individual so that vocalizations of different males in a common context are identifiable above chance. Critically, females behaviorally discriminate their partner's vocalizations over a stranger's, even if emitted to another stimulus female. These results establish the acoustic and behavioral foundation for individual vocal recognition in prairie voles, where neurobiological tools19-22 enable future studies revealing its causal neural mechanisms.
Collapse
Affiliation(s)
- Megan R. Warren
- Department of Biology, Emory University, Atlanta, GA, USA
- Center for Translational Social Neuroscience, Emory National Primate Research Center, Atlanta, GA, USA
| | - Larry J. Young
- Center for Translational Social Neuroscience, Emory National Primate Research Center, Atlanta, GA, USA
- Department of Psychiatry and Behavioral Science, Emory University School of Medicine, Atlanta, GA, USA
| | - Robert C. Liu
- Department of Biology, Emory University, Atlanta, GA, USA
- Center for Translational Social Neuroscience, Emory National Primate Research Center, Atlanta, GA, USA
| |
Collapse
|
4
|
Loning H, Griffith SC, Naguib M. The ecology of zebra finch song and its implications for vocal communication in multi-level societies. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230191. [PMID: 38768203 PMCID: PMC11391294 DOI: 10.1098/rstb.2023.0191] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/30/2024] [Accepted: 04/16/2024] [Indexed: 05/22/2024] Open
Abstract
Acoustic signalling is crucial in affecting movements and in social interactions. In species with dynamic social structures, such as multi-level societies, acoustic signals can provide a key mechanism allowing individuals to identify and find or avoid each other and to exchange information. Yet, if the spacing between individuals regularly exceeds the maximum signalling range, the relation between movements and signals becomes more complex. As the best-studied songbird in captivity, the zebra finch (Taeniopygia castanotis) is a species with individually distinct songs that are audible over just a few metres and a widely ranging dynamic multi-level social organization in the wild, raising questions on the actual role of its song in social cohesion and coordination. Here, we provide an overview of birdsong in social organizations (networks) and use the ecology of the zebra finch and male song to discuss how singing can facilitate social cohesion and coordination in species where the signal range is very short. We raise the question of the extent to which zebra finches are a representative species to understand the function of song in communication, and we broaden current views on the function of birdsong and its individual signature. This article is part of the theme issue 'The power of sound: unravelling how acoustic communication shapes group dynamics'.
Collapse
Affiliation(s)
- Hugo Loning
- Behavioural Ecology Group, Wageningen University & Research , 6708 WD, The Netherlands
| | - Simon C Griffith
- School of Natural Sciences, Macquarie University , Sydney, New South Wales 2109, Australia
- School of Biological, Earth & Environmental Sciences, University of New South Wales , Sydney, New South Wales 2052, Australia
| | - Marc Naguib
- Behavioural Ecology Group, Wageningen University & Research , 6708 WD, The Netherlands
| |
Collapse
|
5
|
Aspesi D, Cornil CA. Role of neuroestrogens in the regulation of social behaviors - From social recognition to mating. Neurosci Biobehav Rev 2024; 161:105679. [PMID: 38642866 DOI: 10.1016/j.neubiorev.2024.105679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/12/2024] [Accepted: 04/15/2024] [Indexed: 04/22/2024]
Abstract
In this mini-review, we summarize the brain distribution of aromatase, the enzyme catalyzing the synthesis of estrogens from androgens, and the mechanisms responsible for regulating estrogen production within the brain. Understanding this local synthesis of estrogens by neurons is pivotal as it profoundly influences various facets of social behavior. Neuroestrogen action spans from the initial processing of socially pertinent sensory cues to integrating this information with an individual's internal state, ultimately resulting in the manifestation of either pro-affiliative or - aggressive behaviors. We focus here in particular on aggressive and sexual behavior as the result of correct individual recognition of intruders and potential mates. The data summarized in this review clearly point out the crucial role of locally synthesized estrogens in facilitating rapid adaptation to the social environment in rodents and birds of both sexes. These observations not only shed light on the evolutionary significance but also indicate the potential implications of these findings in the realm of human health, suggesting a compelling avenue for further investigation.
Collapse
Affiliation(s)
- Dario Aspesi
- Center for Behavioral Neuroscience, Georgia State University, Atlanta, GA 30303, USA
| | | |
Collapse
|
6
|
Jernigan CM, Freiwald WA, Sheehan MJ. Neural correlates of individual facial recognition in a social wasp. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.11.589095. [PMID: 38659842 PMCID: PMC11042187 DOI: 10.1101/2024.04.11.589095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Individual recognition is critical for social behavior across species. Whether recognition is mediated by circuits specialized for social information processing has been a matter of debate. Here we examine the neurobiological underpinning of individual visual facial recognition in Polistes fuscatus paper wasps. Front-facing images of conspecific wasps broadly increase activity across many brain regions relative to other stimuli. Notably, we identify a localized subpopulation of neurons in the protocerebrum which show specialized selectivity for front-facing wasp images, which we term wasp cells. These wasp cells encode information regarding the facial patterns, with ensemble activity correlating with facial identity. Wasp cells are strikingly analogous to face cells in primates, indicating that specialized circuits are likely an adaptive feature of neural architecture to support visual recognition.
Collapse
Affiliation(s)
- Christopher M. Jernigan
- Laboratory for Animal Social Evolution and Recognition, Department of Neurobiology and Behavior, Cornell University; Ithaca, NY, 14853, USA
| | - Winrich A. Freiwald
- Laboratory of Neural Systems, The Rockefeller University, New York, NY 10065, USA
| | - Michael J. Sheehan
- Laboratory for Animal Social Evolution and Recognition, Department of Neurobiology and Behavior, Cornell University; Ithaca, NY, 14853, USA
| |
Collapse
|
7
|
Grieves LA, Brady AL, Slater GF, Quinn JS. Chemical Profiles Differ between Communal Breeding Groups in a Highly Social Bird. Am Nat 2024; 203:490-502. [PMID: 38489779 DOI: 10.1086/729221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2024]
Abstract
AbstractGregarious species must distinguish group members from nongroup members. Olfaction is important for group recognition in social insects and mammals but rarely studied in birds, despite birds using olfaction in social contexts from species discrimination to kin recognition. Olfactory group recognition requires that groups have a signature odor, so we tested for preen oil and feather chemical similarity in group-living smooth-billed anis (Crotophaga ani). Physiology affects body chemistry, so we also tested for an effect of egg-laying competition, as a proxy for reproductive status, on female chemical similarity. Finally, the fermentation hypothesis for chemical recognition posits that host-associated microbes affect host odor, so we tested for covariation between chemicals and microbiota. Group members were more chemically similar across both body regions. We found no chemical differences between sexes, but females in groups with less egg-laying competition had more similar preen oil, suggesting that preen oil contains information about reproductive status. There was no overall covariation between chemicals and microbes; instead, subsets of microbes could mediate olfactory cues in birds. Preen oil and feather chemicals showed little overlap and may contain different information. This is the first demonstration of group chemical signatures in birds, a finding of particular interest given that smooth-billed anis live in nonkin breeding groups. Behavioral experiments are needed to test whether anis can distinguish group members from nongroup members using odor cues.
Collapse
|
8
|
Lu B, Qiu X, Yang W, Yao Z, Ma X, Deng S, Zhang Q, Fu J, Qi Y. Genetic Basis and Evolutionary Forces of Sexually Dimorphic Color Variation in a Toad-Headed Agamid Lizard. Mol Biol Evol 2024; 41:msae054. [PMID: 38466135 PMCID: PMC10963123 DOI: 10.1093/molbev/msae054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 02/17/2024] [Accepted: 03/04/2024] [Indexed: 03/12/2024] Open
Abstract
In the animal kingdom, sexually dimorphic color variation is a widespread phenomenon that significantly influences survival and reproductive success. However, the genetic underpinnings of this variation remain inadequately understood. Our investigation into sexually dimorphic color variation in the desert-dwelling Guinan population of the toad-headed agamid lizard (Phrynocephalus putjatai) utilized a multidisciplinary approach, encompassing phenotypic, ultrastructural, biochemical, genomic analyses, and behavioral experiments. Our findings unveil the association between distinct skin colorations and varying levels of carotenoid and pteridine pigments. The red coloration in males is determined by a genomic region on chromosome 14, housing four pigmentation genes: BCO2 and three 6-pyruvoyltetrahydropterin synthases. A Guinan population-specific nonsynonymous single nucleotide polymorphism in BCO2 is predicted to alter the electrostatic potential within the binding domain of the BCO2-β-carotene complex, influencing their interaction. Additionally, the gene MAP7 on chromosome 2 emerges as a potential contributor to the blue coloration in subadults and adult females. Sex-specific expression patterns point to steroid hormone-associated genes (SULT2B1 and SRD5A2) as potential upstream regulators influencing sexually dimorphic coloration. Visual modeling and field experiments support the potential selective advantages of vibrant coloration in desert environments. This implies that natural selection, potentially coupled with assortative mating, might have played a role in fixing color alleles, contributing to prevalence in the local desert habitat. This study provides novel insights into the genetic basis of carotenoid and pteridine-based color variation, shedding light on the evolution of sexually dimorphic coloration in animals. Moreover, it advances our understanding of the driving forces behind such intricate coloration patterns.
Collapse
Affiliation(s)
- Bin Lu
- Chengdu Institute of Biology, Chinese Academy of Sciences, 610041 Chengdu, Sichuan, China
| | - Xia Qiu
- Chengdu Institute of Biology, Chinese Academy of Sciences, 610041 Chengdu, Sichuan, China
- College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Weizhao Yang
- Chengdu Institute of Biology, Chinese Academy of Sciences, 610041 Chengdu, Sichuan, China
| | - Zhongyi Yao
- Chengdu Institute of Biology, Chinese Academy of Sciences, 610041 Chengdu, Sichuan, China
| | - Xiaofeng Ma
- Chengdu Institute of Biology, Chinese Academy of Sciences, 610041 Chengdu, Sichuan, China
| | - Shunyan Deng
- Chengdu Institute of Biology, Chinese Academy of Sciences, 610041 Chengdu, Sichuan, China
| | - Qi Zhang
- Chengdu Institute of Biology, Chinese Academy of Sciences, 610041 Chengdu, Sichuan, China
| | - Jinzhong Fu
- Chengdu Institute of Biology, Chinese Academy of Sciences, 610041 Chengdu, Sichuan, China
- Department of Integrative Biology, University of Guelph, Guelph, ON N1G2W1, Canada
| | - Yin Qi
- Chengdu Institute of Biology, Chinese Academy of Sciences, 610041 Chengdu, Sichuan, China
| |
Collapse
|
9
|
Lewis LS, Wessling EG, Kano F, Stevens JMG, Call J, Krupenye C. Bonobos and chimpanzees remember familiar conspecifics for decades. Proc Natl Acad Sci U S A 2023; 120:e2304903120. [PMID: 38109542 PMCID: PMC10756267 DOI: 10.1073/pnas.2304903120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 10/10/2023] [Indexed: 12/20/2023] Open
Abstract
Recognition and memory of familiar conspecifics provides the foundation for complex sociality and is vital to navigating an unpredictable social world [Tibbetts and Dale, Trends Ecol. Evol. 22, 529-537 (2007)]. Human social memory incorporates content about interactions and relationships and can last for decades [Sherry and Schacter, Psychol. Rev. 94, 439-454 (1987)]. Long-term social memory likely played a key role throughout human evolution, as our ancestors increasingly built relationships that operated across distant space and time [Malone et al., Int. J. Primatol. 33, 1251-1277 (2012)]. Although individual recognition is widespread among animals and sometimes lasts for years, little is known about social memory in nonhuman apes and the shared evolutionary foundations of human social memory. In a preferential-looking eye-tracking task, we presented chimpanzees and bonobos (N = 26) with side-by-side images of a previous groupmate and a conspecific stranger of the same sex. Apes' attention was biased toward former groupmates, indicating long-term memory for past social partners. The strength of biases toward former groupmates was not impacted by the duration apart, and our results suggest that recognition may persist for at least 26 y beyond separation. We also found significant but weak evidence that, like humans, apes may remember the quality or content of these past relationships: apes' looking biases were stronger for individuals with whom they had more positive histories of social interaction. Long-lasting social memory likely provided key foundations for the evolution of human culture and sociality as they extended across time, space, and group boundaries.
Collapse
Affiliation(s)
- Laura S. Lewis
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA02138
- School of Psychology & Neuroscience, University of St Andrews, St AndrewsKY16 9AX, United Kingdom
| | - Erin G. Wessling
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA02138
- School of Psychology & Neuroscience, University of St Andrews, St AndrewsKY16 9AX, United Kingdom
| | - Fumihiro Kano
- Kumamoto Sanctuary, Wildlife Research Center, Kyoto University, Kumamoto862-0911, Japan
- Center for the Advanced Study of Collective Behavior, University of Konstanz, Konstanz78457, Germany
| | - Jeroen M. G. Stevens
- Behavioural Ecology and Ecophysiology, Department of Biology, University of Antwerp, AntwerpBE-2000, Belgium
- Centre for Research and Conservation, Royal Zoological Society of Antwerp, Antwerp2018, Belgium
| | - Josep Call
- School of Psychology & Neuroscience, University of St Andrews, St AndrewsKY16 9AX, United Kingdom
| | - Christopher Krupenye
- School of Psychology & Neuroscience, University of St Andrews, St AndrewsKY16 9AX, United Kingdom
- Department of Psychological & Brain Sciences, Johns Hopkins University, Baltimore, MD21218
| |
Collapse
|
10
|
Williams HJ, Sridhar VH, Hurme E, Gall GE, Borrego N, Finerty GE, Couzin ID, Galizia CG, Dominy NJ, Rowland HM, Hauber ME, Higham JP, Strandburg-Peshkin A, Melin AD. Sensory collectives in natural systems. eLife 2023; 12:e88028. [PMID: 38019274 PMCID: PMC10686622 DOI: 10.7554/elife.88028] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 11/10/2023] [Indexed: 11/30/2023] Open
Abstract
Groups of animals inhabit vastly different sensory worlds, or umwelten, which shape fundamental aspects of their behaviour. Yet the sensory ecology of species is rarely incorporated into the emerging field of collective behaviour, which studies the movements, population-level behaviours, and emergent properties of animal groups. Here, we review the contributions of sensory ecology and collective behaviour to understanding how animals move and interact within the context of their social and physical environments. Our goal is to advance and bridge these two areas of inquiry and highlight the potential for their creative integration. To achieve this goal, we organise our review around the following themes: (1) identifying the promise of integrating collective behaviour and sensory ecology; (2) defining and exploring the concept of a 'sensory collective'; (3) considering the potential for sensory collectives to shape the evolution of sensory systems; (4) exploring examples from diverse taxa to illustrate neural circuits involved in sensing and collective behaviour; and (5) suggesting the need for creative conceptual and methodological advances to quantify 'sensescapes'. In the final section, (6) applications to biological conservation, we argue that these topics are timely, given the ongoing anthropogenic changes to sensory stimuli (e.g. via light, sound, and chemical pollution) which are anticipated to impact animal collectives and group-level behaviour and, in turn, ecosystem composition and function. Our synthesis seeks to provide a forward-looking perspective on how sensory ecologists and collective behaviourists can both learn from and inspire one another to advance our understanding of animal behaviour, ecology, adaptation, and evolution.
Collapse
Affiliation(s)
- Hannah J Williams
- Max Planck Institute of Animal BehaviorKonstanzGermany
- Centre for the Advanced Study of Collective Behaviour, University of KonstanzKonstanzGermany
- Biology Department, University of KonstanzKonstanzGermany
| | - Vivek H Sridhar
- Max Planck Institute of Animal BehaviorKonstanzGermany
- Centre for the Advanced Study of Collective Behaviour, University of KonstanzKonstanzGermany
- Biology Department, University of KonstanzKonstanzGermany
| | - Edward Hurme
- Max Planck Institute of Animal BehaviorKonstanzGermany
- Centre for the Advanced Study of Collective Behaviour, University of KonstanzKonstanzGermany
- Biology Department, University of KonstanzKonstanzGermany
| | - Gabriella E Gall
- Max Planck Institute of Animal BehaviorKonstanzGermany
- Centre for the Advanced Study of Collective Behaviour, University of KonstanzKonstanzGermany
- Biology Department, University of KonstanzKonstanzGermany
- Zukunftskolleg, University of KonstanzKonstanzGermany
| | | | | | - Iain D Couzin
- Max Planck Institute of Animal BehaviorKonstanzGermany
- Centre for the Advanced Study of Collective Behaviour, University of KonstanzKonstanzGermany
- Biology Department, University of KonstanzKonstanzGermany
| | - C Giovanni Galizia
- Biology Department, University of KonstanzKonstanzGermany
- Zukunftskolleg, University of KonstanzKonstanzGermany
| | - Nathaniel J Dominy
- Zukunftskolleg, University of KonstanzKonstanzGermany
- Department of Anthropology, Dartmouth CollegeHanoverUnited States
| | - Hannah M Rowland
- Max Planck Research Group Predators and Toxic Prey, Max Planck Institute for Chemical EcologyJenaGermany
| | - Mark E Hauber
- Department of Evolution, Ecology, and Behavior, School of Integrative Biology, University of Illinois at Urbana-ChampaignUrbana-ChampaignUnited States
| | - James P Higham
- Zukunftskolleg, University of KonstanzKonstanzGermany
- Department of Anthropology, New York UniversityNew YorkUnited States
| | - Ariana Strandburg-Peshkin
- Max Planck Institute of Animal BehaviorKonstanzGermany
- Centre for the Advanced Study of Collective Behaviour, University of KonstanzKonstanzGermany
- Biology Department, University of KonstanzKonstanzGermany
| | - Amanda D Melin
- Zukunftskolleg, University of KonstanzKonstanzGermany
- Department of Anthropology and Archaeology, University of CalgaryCalgaryCanada
- Alberta Children’s Hospital Research Institute, University of CalgaryCalgaryCanada
| |
Collapse
|
11
|
Yasuda CI, Koga T. Male Pagurus minutus hermit crabs use multiple types of information in decisions to give up male-male contests. Sci Rep 2023; 13:20654. [PMID: 38001142 PMCID: PMC10673833 DOI: 10.1038/s41598-023-47947-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 11/20/2023] [Indexed: 11/26/2023] Open
Abstract
Organisms use information to make adaptive decisions in various contexts, including aggression. Potentially weaker, but better-informed, contestants should give up earlier to reduce fighting costs by using information related to their own lower success such as their size relative to their opponent and past contest outcomes to make this choice. Here, we examined whether intruders of the hermit crab Pagurus minutus could use information about their (1) smaller size, (2) past contest defeats, (3) opponent's past wins, or (4) relationship in the dominance hierarchy to their opponent when making a decision to give up during male-male contests for a female. In all trials, we randomly matched a smaller intruder with a larger opponent that was guarding a female. Our analyses suggest that P. minutus intruders can use all four types of information to decide whether to give up a contest without escalation or decrease its duration after escalation; it is the first species of Pagurus reported to do so, and the second reported to be able to distinguish familiar opponents from others in the context of male-male contests. These findings demonstrate the importance of cognitive abilities in minimizing costs when competing for vital resources.
Collapse
Affiliation(s)
- Chiaki I Yasuda
- Faculty of Education, Wakayama University, Sakaedani, Wakayama, 640-8510, Japan.
- Graduate School of Fisheries Sciences, Hokkaido University, Minato-cho, Hakodate, Hokkaido, 041-8611, Japan.
| | - Tsunenori Koga
- Faculty of Education, Wakayama University, Sakaedani, Wakayama, 640-8510, Japan
| |
Collapse
|
12
|
Onaga J, Soma M. Eyes of love: Java sparrows increase eye ring conspicuousness when pair-bonded. PLoS One 2023; 18:e0292074. [PMID: 37878547 PMCID: PMC10599526 DOI: 10.1371/journal.pone.0292074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 09/12/2023] [Indexed: 10/27/2023] Open
Abstract
Conspicuous facial features, such as blushing in primates, can communicate social/emotional/physiological states in animals. However, the role of bare facial features is less well studied in birds than in humans or primates. We investigate the Java sparrow, which is characterised by conspicuous rings of swollen and blushed bare skin around the eye. Eye rings show no clear sex difference, although the swelling is associated with breeding. Java sparrows are socially monogamous, with mutual courtships and long-term pair-bonding. Therefore, it is plausible that eye rings function in within-pair communication. Specifically, do eye rings reflect psychophysiological conditions after pair formation? We assessed variations in ring thickness in pair-bonded birds and compared them with single birds and pairs of non-bonded individuals. Over the 12-week experimental period, pair-bonded males and females had an increased ring thickness, unlike the controls. We suggest eye rings convey breeding motivations or serve as fertility signals. This would be of great importance for ensuring reproductive synchrony in tropical birds like the Java sparrow. Our results contribute to understanding the evolution of facial ornamentation in birds, which was often overlooked in the past studies.
Collapse
Affiliation(s)
- Jenna Onaga
- Biosystems Science Course, Graduate School of Life Science, Hokkaido University, Sapporo, Japan
| | - Masayo Soma
- Department of Biology, Faculty of Science, Hokkaido University, Sapporo, Japan
| |
Collapse
|
13
|
Bugnyar T. Why are ravens smart? Exploring the social intelligence hypothesis. JOURNAL OF ORNITHOLOGY 2023; 165:15-26. [PMID: 38225936 PMCID: PMC10787684 DOI: 10.1007/s10336-023-02111-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/01/2023] [Accepted: 09/07/2023] [Indexed: 01/17/2024]
Abstract
Ravens and other corvids are renowned for their 'intelligence'. For long, this reputation has been based primarily on anecdotes but in the last decades experimental evidence for impressive cognitive skills has accumulated within and across species. While we begin to understand the building blocks of corvid cognition, the question remains why these birds have evolved such skills. Focusing on Northern Ravens Corvus corax, I here try to tackle this question by relating current hypotheses on brain evolution to recent empirical data on challenges faced in the birds' daily life. Results show that foraging ravens meet several assumptions for applying social intelligence: (1) they meet repeatedly at foraging sites, albeit individuals have different site preferences and vary in grouping dynamics; (1) foraging groups are structured by dominance rank hierarchies and social bonds; (3) individual ravens memorize former group members and their relationship valence over years, deduce third-party relationships and use their social knowledge in daily life by supporting others in conflicts and intervening in others' affiliations. Hence, ravens' socio-cognitive skills may be strongly shaped by the 'complex' social environment experienced as non-breeders.
Collapse
Affiliation(s)
- Thomas Bugnyar
- Department of Behavioral and Cognitive Biology, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria
- Konrad Lorenz Forschungsstelle, Core Faculty for Behavior and Cognition, University of Vienna, Fischerau 13, 4645 Grünau im Almtal, Austria
| |
Collapse
|
14
|
Smeele SQ, Senar JC, Aplin LM, McElreath MB. Evidence for vocal signatures and voice-prints in a wild parrot. ROYAL SOCIETY OPEN SCIENCE 2023; 10:230835. [PMID: 37800160 PMCID: PMC10548090 DOI: 10.1098/rsos.230835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 09/04/2023] [Indexed: 10/07/2023]
Abstract
In humans, identity is partly encoded in a voice-print that is carried across multiple vocalizations. Other species also signal vocal identity in calls, such as shown in the contact call of parrots. However, it remains unclear to what extent other call types in parrots are individually distinct, and whether there is an analogous voice-print across calls. Here we test if an individual signature is present in other call types, how stable this signature is, and if parrots exhibit voice-prints across call types. We recorded 5599 vocalizations from 229 individually marked monk parakeets (Myiopsitta monachus) over a 2-year period in Barcelona, Spain. We examined five distinct call types, finding evidence for an individual signature in three. We further show that in the contact call, while birds are individually distinct, the calls are more variable than previously assumed, changing over short time scales (seconds to minutes). Finally, we provide evidence for voice-prints across multiple call types, with a discriminant function being able to predict caller identity across call types. This suggests that monk parakeets may be able to use vocal cues to recognize conspecifics, even across vocalization types and without necessarily needing active vocal signatures of identity.
Collapse
Affiliation(s)
- Simeon Q. Smeele
- Cognitive and Cultural Ecology Research Group, Max Planck Institute of Animal Behavior, Radolfzell, Germany
- Department of Human Behavior, Ecology and Culture, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Department of Biology, University of Konstanz, Konstanz, Germany
| | | | - Lucy M. Aplin
- Cognitive and Cultural Ecology Research Group, Max Planck Institute of Animal Behavior, Radolfzell, Germany
- Department of Evolutionary Biology and Environmental Science, University of Zurich, Zurich, Switzerland
- Division of Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, Australia
| | - Mary Brooke McElreath
- Cognitive and Cultural Ecology Research Group, Max Planck Institute of Animal Behavior, Radolfzell, Germany
- Department of Human Behavior, Ecology and Culture, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| |
Collapse
|
15
|
Kidawa D, Wojczulanis-Jakubas K, Jakubas D, Palme R, Barcikowski M. Mine or my neighbours' offspring: an experimental study on parental discrimination of offspring in a colonial seabird, the little auk Alle alle. Sci Rep 2023; 13:15088. [PMID: 37699973 PMCID: PMC10497497 DOI: 10.1038/s41598-023-41925-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 09/04/2023] [Indexed: 09/14/2023] Open
Abstract
Individual recognition (IR) abilities may result from various ecological and naturally selected features of a species. Complex IR mechanisms should develop when the risk of misidentification of a chick is high. For colonial seabirds, the ability to identify their own brood is crucial to ensure parental fitness. Vocalizations seem to be a key component of most parent-offspring interactions, although few studies have assessed the interindividual differences in seabird chick calls and their potential usage in IR. The little auk (Alle alle), which breeds in dense colonies, constitutes a perfect model for testing IR. In this study, we (1) examined chick calls at different stages of the nesting period, and (2) cross-fostered chicks to examine the rate of acceptance/nonacceptance of chicks by parents. We found significant interindividual differences in chick begging and fledging calls. Surprisingly, all cross-fostered chicks in our experiments were accepted by their foster parents, and male parents were as equally likely to accept cross-fostered chicks as females, even though the sexes would be expected to differ in offspring recognition due to different postfledging interactions with the chick. The revealed individuality of chick calls suggests the potential for chick vocal recognition in the studied species, but parent birds may disregard the individual characteristics enabling chick discrimination. This may take place as long as the chick is found in the nest because of the high likelihood that the chick present there is the focal one. However, IR during and after fledging requires further study. Studying the complexity of IR mechanisms is important for better understanding various avian social relationships and interactions.
Collapse
Affiliation(s)
- Dorota Kidawa
- Department of Vertebrate Ecology and Zoology, Faculty of Biology, University of Gdańsk, ul. Wita Stwosza 59, 80-308, Gdańsk, Poland.
| | - Katarzyna Wojczulanis-Jakubas
- Department of Vertebrate Ecology and Zoology, Faculty of Biology, University of Gdańsk, ul. Wita Stwosza 59, 80-308, Gdańsk, Poland
| | - Dariusz Jakubas
- Department of Vertebrate Ecology and Zoology, Faculty of Biology, University of Gdańsk, ul. Wita Stwosza 59, 80-308, Gdańsk, Poland
| | - Rupert Palme
- Department for Biomedical Sciences, University of Veterinary Medicine, Veterinärplatz 1, 1210, Vienna, Austria
| | - Mateusz Barcikowski
- Department of Vertebrate Ecology and Zoology, Faculty of Biology, University of Gdańsk, ul. Wita Stwosza 59, 80-308, Gdańsk, Poland
| |
Collapse
|
16
|
Jensen TR, Zeiträg C, Osvath M. The selfish preen: absence of allopreening in Palaeognathae and its socio-cognitive implications. Anim Cogn 2023; 26:1467-1476. [PMID: 37256500 PMCID: PMC10442270 DOI: 10.1007/s10071-023-01794-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 05/21/2023] [Accepted: 05/22/2023] [Indexed: 06/01/2023]
Abstract
Preening behaviours are widespread in extant birds. While most birds appear to autopreen (self-directed preening), allopreening (preening directed at conspecifics) seems to have emerged only in certain species, but across many families. Allopreening has been hypothesised to reinforce mutual relationships and cooperation between individuals, and to underpin various socio-cognitive abilities. Palaeognathae is a bird group exhibiting neurocognitively plesiomorphic traits compared to other birds. They share many features with non-avian paravian dinosaurs and are thus important for the study of cognitive evolution in birds. Despite this, and the important correlation of allopreening with many complicated social behaviours, allopreening has not been systematically studied in Palaeognathae. Therefore, we examined the preening behaviours in four species of palaeognaths: common ostriches (Struthio camelus), greater rheas (Rhea americana), emus (Dromaius novaehollandiae), and elegant crested tinamous (Eudromia elegans). We compared findings with common ravens (Corvus corax), a neognath species known for its allopreening and complex social cognition. We found autopreening, but no allopreening, in the palaeognath species, while both autopreening and allopreening was found in common ravens. The absence of allopreening in Palaeognathae suggests an emergence of this behaviour within Neognathae. We contextualise our results in relation to the socio-cognitive underpinnings of allopreening and its implications for the understanding of the evolution of socio-cognitive abilities in non-avian paravian dinosaurs and early birds.
Collapse
Affiliation(s)
- Thomas Rejsenhus Jensen
- Department of Philosophy, Cognitive Science, Cognitive Zoology Group, Lund University, Lund, Sweden.
| | - Claudia Zeiträg
- Department of Philosophy, Cognitive Science, Cognitive Zoology Group, Lund University, Lund, Sweden
| | - Mathias Osvath
- Department of Philosophy, Cognitive Science, Cognitive Zoology Group, Lund University, Lund, Sweden
| |
Collapse
|
17
|
Deen B, Schwiedrzik CM, Sliwa J, Freiwald WA. Specialized Networks for Social Cognition in the Primate Brain. Annu Rev Neurosci 2023; 46:381-401. [PMID: 37428602 PMCID: PMC11115357 DOI: 10.1146/annurev-neuro-102522-121410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2023]
Abstract
Primates have evolved diverse cognitive capabilities to navigate their complex social world. To understand how the brain implements critical social cognitive abilities, we describe functional specialization in the domains of face processing, social interaction understanding, and mental state attribution. Systems for face processing are specialized from the level of single cells to populations of neurons within brain regions to hierarchically organized networks that extract and represent abstract social information. Such functional specialization is not confined to the sensorimotor periphery but appears to be a pervasive theme of primate brain organization all the way to the apex regions of cortical hierarchies. Circuits processing social information are juxtaposed with parallel systems involved in processing nonsocial information, suggesting common computations applied to different domains. The emerging picture of the neural basis of social cognition is a set of distinct but interacting subnetworks involved in component processes such as face perception and social reasoning, traversing large parts of the primate brain.
Collapse
Affiliation(s)
- Ben Deen
- Psychology Department & Tulane Brain Institute, Tulane University, New Orleans, Louisiana, USA
| | - Caspar M Schwiedrzik
- Neural Circuits and Cognition Lab, European Neuroscience Institute Göttingen, A Joint Initiative of the University Medical Center Göttingen and the Max Planck Society; Perception and Plasticity Group, German Primate Center, Leibniz Institute for Primate Research; and Leibniz-Science Campus Primate Cognition, Göttingen, Germany
| | - Julia Sliwa
- Sorbonne Université, Institut du Cerveau, ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, Paris, France
| | - Winrich A Freiwald
- Laboratory of Neural Systems and The Price Family Center for the Social Brain, The Rockefeller University, New York, NY, USA;
- The Center for Brains, Minds and Machines, Cambridge, Massachusetts, USA
| |
Collapse
|
18
|
Smith-Vidaurre G, Pérez-Marrufo V, Hobson EA, Salinas-Melgoza A, Wright TF. Individual identity information persists in learned calls of introduced parrot populations. PLoS Comput Biol 2023; 19:e1011231. [PMID: 37498847 PMCID: PMC10374045 DOI: 10.1371/journal.pcbi.1011231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 06/01/2023] [Indexed: 07/29/2023] Open
Abstract
Animals can actively encode different types of identity information in learned communication signals, such as group membership or individual identity. The social environments in which animals interact may favor different types of information, but whether identity information conveyed in learned signals is robust or responsive to social disruption over short evolutionary timescales is not well understood. We inferred the type of identity information that was most salient in vocal signals by combining computational tools, including supervised machine learning, with a conceptual framework of "hierarchical mapping", or patterns of relative acoustic convergence across social scales. We used populations of a vocal learning species as a natural experiment to test whether the type of identity information emphasized in learned vocalizations changed in populations that experienced the social disruption of introduction into new parts of the world. We compared the social scales with the most salient identity information among native and introduced range monk parakeet (Myiopsitta monachus) calls recorded in Uruguay and the United States, respectively. We also evaluated whether the identity information emphasized in introduced range calls changed over time. To place our findings in an evolutionary context, we compared our results with another parrot species that exhibits well-established and distinctive regional vocal dialects that are consistent with signaling group identity. We found that both native and introduced range monk parakeet calls displayed the strongest convergence at the individual scale and minimal convergence within sites. We did not identify changes in the strength of acoustic convergence within sites over time in the introduced range calls. These results indicate that the individual identity information in learned vocalizations did not change over short evolutionary timescales in populations that experienced the social disruption of introduction. Our findings point to exciting new research directions about the robustness or responsiveness of communication systems over different evolutionary timescales.
Collapse
Affiliation(s)
- Grace Smith-Vidaurre
- Department of Biology, New Mexico State University, Las Cruces, New Mexico, United States of America
- Laboratory of Neurogenetics of Language, Rockefeller University, New York, New York, United States of America
- Rockefeller University Field Research Center, Millbrook, New York, United States of America
- Department of Biological Sciences, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Valeria Pérez-Marrufo
- Department of Biology, New Mexico State University, Las Cruces, New Mexico, United States of America
- Department of Biology, Syracuse University, Syracuse, New York, United States of America
| | - Elizabeth A. Hobson
- Department of Biological Sciences, University of Cincinnati, Cincinnati, Ohio, United States of America
| | | | - Timothy F. Wright
- Department of Biology, New Mexico State University, Las Cruces, New Mexico, United States of America
| |
Collapse
|
19
|
Levey DJ, Poulsen JR, Schaeffer AP, Deochand ME, Oswald JA, Robinson SK, Londoño GA. Wild mockingbirds distinguish among familiar humans. Sci Rep 2023; 13:10259. [PMID: 37355713 PMCID: PMC10290633 DOI: 10.1038/s41598-023-36225-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 05/31/2023] [Indexed: 06/26/2023] Open
Abstract
Although individuals of some species appear able to distinguish among individuals of a second species, an alternative explanation is that individuals of the first species may simply be distinguishing between familiar and unfamiliar individuals of the second species. In that case, they would not be learning unique characteristics of any given heterospecific, as commonly assumed. Here we show that female Northern Mockingbirds (Mimus polyglottos) can quickly learn to distinguish among different familiar humans, flushing sooner from their nest when approached by people who pose increasingly greater threats. These results demonstrate that a common small songbird has surprising cognitive abilities, which likely facilitated its widespread success in human-dominated habitats. More generally, urban wildlife may be more perceptive of differences among humans than previously imagined.
Collapse
Affiliation(s)
- Douglas J Levey
- Division of Environmental Biology, National Science Foundation, 2415 Eisenhower Ave, Alexandria, VA, 22314, USA.
| | - John R Poulsen
- Nicholas School of the Environment, Duke University, Durham, NC, 27708, USA
| | - Andrew P Schaeffer
- Florida Museum of Natural History, University of Florida, Gainesville, FL, 32611, USA
| | - Michelle E Deochand
- Florida Museum of Natural History, University of Florida, Gainesville, FL, 32611, USA
| | - Jessica A Oswald
- Florida Museum of Natural History, University of Florida, Gainesville, FL, 32611, USA
- Department of Biology, University of Nevada, Reno, NV, 89557, USA
| | - Scott K Robinson
- Florida Museum of Natural History, University of Florida, Gainesville, FL, 32611, USA
| | - Gustavo A Londoño
- Florida Museum of Natural History, University of Florida, Gainesville, FL, 32611, USA.
- Departamento de Ciencias Biológicas, Universidad Icesi, Cali, Colombia.
| |
Collapse
|
20
|
Beltrão P, Gomes ACR, Cardoso GC. Bullying as an advertisement of social dominance in common waxbills. Proc Biol Sci 2023; 290:20230206. [PMID: 37312555 PMCID: PMC10265017 DOI: 10.1098/rspb.2023.0206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 05/25/2023] [Indexed: 06/15/2023] Open
Abstract
Bullying consists of preferentially attacking individuals lowest in the dominance hierarchy, and its functions are unclear because the most subordinate individuals do not pose social challenges to the aggressor. Instead, conflict is expected mostly between individuals of similar dominance rank or socially distant (i.e. weakly associated), among whom dominance relationships may not be well established. A possible function of bullying is that it may be used as a low-risk strategy of showing-off dominance to relevant third parties. To study this hypothesis, we monitored aggressions during feeding, the composition of audiences, dominance hierarchy and social network of common waxbills (Estrilda astrild) in an open-air mesocosm, and tested (i) whether their aggressions show a pattern of bullying, and (ii) whether audience effects influence aggressiveness. Waxbills showed bullying, most often attacking the lowest ranking individuals rather than socially distant individuals or those of similar dominance rank, and aggressions increased when the audience included socially distant individuals, indicating a signalling function of bullying. Showing-off dominance in the presence of socially distant individuals may be a strategy to manage dominance hierarchies, avoiding direct fights with potentially dangerous opponents in the audience. We suggest that bullying is a safe manner of managing dominance hierarchies, by signalling dominance status to potential opponents.
Collapse
Affiliation(s)
- Patrícia Beltrão
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661 Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485–661 Vairão, Portugal
| | - Ana Cristina R. Gomes
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661 Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485–661 Vairão, Portugal
| | - Gonçalo C. Cardoso
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661 Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485–661 Vairão, Portugal
| |
Collapse
|
21
|
Coss RG, Tyler CL. African jewel fish (Hemichromis bimaculatus) distinguish individual faces based on their unique iridophore patterns. Anim Cogn 2023:10.1007/s10071-023-01790-1. [PMID: 37269406 DOI: 10.1007/s10071-023-01790-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 04/28/2023] [Accepted: 05/22/2023] [Indexed: 06/05/2023]
Abstract
Previous research has shown that African jewel fish (Hemichromis bimaculatus) recognize pair-bonded mates during their exchanges of egg-guarding duties. The current research examined the perceptual cues for face recognition by comparing two face models displaying anatomically realistic arrangements of blue iridophores derived from discriminant function analysis of distinct sibling groups. Four groups each consisting of 9 subadults were examined using a narrow compartment restraining lateral movement where face models were presented at eye level for eight trials. Because respiratory movement of the operculum can mechanically displace the eye thereby shifting the retinal image, jewel fish reduce their respiration rate during increased attention. When two experimental groups were presented with the same face models on four trials following initial model presentations, both groups exhibited stable respiration rates indicative of model habituation. When the habituated face models were switched to novel face models on the fifth trial, the rates of respiration decreased as measured by reliable increases in the elapsed times of opercular beats. Switching the models back to the habituated models on the sixth trial caused reliable decreases in the elapsed times of opercular beats, resembling the earlier trials for the habituated models. Switching the face models again to the formerly novel models on the seventh trial produced respiration rates that resembled those of the habituated models. The two control groups viewing the same models for all eight trials exhibited no substantial change in respiration rates. Together, these findings indicate that jewel fish can learn to recognize novel faces displaying unique arrangements of iridorphores after one trial of exposure.
Collapse
Affiliation(s)
- Richard G Coss
- Department of Psychology, University of California, Davis, CA, 95616, USA.
- , 807 Falcon Avenue, Davis, CA, 95616, USA.
| | - Carol Lee Tyler
- Department of Psychology, University of California, Davis, CA, USA
- , 1313 West Hellman Ave, Alhambra, CA, 91803, USA
| |
Collapse
|
22
|
Suwandschieff E, Mundry R, Kull K, Kreuzer L, Schwing R. 'Do I know you?' Categorizing individuals on the basis of familiarity in kea ( Nestor notabilis). ROYAL SOCIETY OPEN SCIENCE 2023; 10:230228. [PMID: 37351495 PMCID: PMC10282571 DOI: 10.1098/rsos.230228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/30/2023] [Indexed: 06/24/2023]
Abstract
Categorizing individuals on the basis of familiarity is an adaptive way of dealing with the complexity of the social environment. It requires the use of conceptual familiarity and is considered higher order learning. Although, it is common among many species, ecological need might require and facilitate individual differentiation among heterospecifics. This may be true for laboratory populations just as much as for domesticated species and those that live in urban contexts. However, with the exception of a few studies, populations of laboratory animals have generally been given less attention. The study at hand, therefore, addressed the question whether a laboratory population of kea parrots (Nestor notabilis) were able to apply the concept of familiarity to differentiate between human faces in a two-choice discrimination task on the touchscreen. The results illustrated that the laboratory population of kea were indeed able to differentiate between familiar and unfamiliar human faces in a two-choice discrimination task. The results provide novel empirical evidence on abstract categorization capacities in parrots while at the same time providing further evidence of representational insight in kea.
Collapse
Affiliation(s)
- Elisabeth Suwandschieff
- Research Station Haidlhof, Comparative Cognition, Messerli Research Institute, University of Veterinary Medicine, Vienna, Austria
| | - Roger Mundry
- Research Station Haidlhof, Comparative Cognition, Messerli Research Institute, University of Veterinary Medicine, Vienna, Austria
- Platform Bioinformatics and Biostatistics, University of Veterinary Medicine, Vienna, Austria
- Cognitive Ethology Laboratory, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
- Department for Primate Cognition, Georg-August-University Göttingen, Göttingen, Germany
- Leibniz-ScienceCampus Primate Cognition, Göttingen, Germany
| | - Kristina Kull
- Research Station Haidlhof, Comparative Cognition, Messerli Research Institute, University of Veterinary Medicine, Vienna, Austria
- Division of Livestock Sciences, Department of Sustainable Agricultural Systems, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Lena Kreuzer
- Research Station Haidlhof, Comparative Cognition, Messerli Research Institute, University of Veterinary Medicine, Vienna, Austria
| | - Raoul Schwing
- Research Station Haidlhof, Comparative Cognition, Messerli Research Institute, University of Veterinary Medicine, Vienna, Austria
| |
Collapse
|
23
|
Langbein J, Moreno-Zambrano M, Siebert K. How do goats "read" 2D-images of familiar and unfamiliar conspecifics? Front Psychol 2023; 14:1089566. [PMID: 37275711 PMCID: PMC10236219 DOI: 10.3389/fpsyg.2023.1089566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 05/02/2023] [Indexed: 06/07/2023] Open
Abstract
To study individual recognition in animals, discrimination tasks are often conducted by presenting 2D images of real conspecifics. However, animals may discriminate the images merely as visual stimulus combinations without establishing referential relationships to the individuals depicted. In the current study, we investigated whether goats are able to discriminate photos of familiar and unfamiliar conspecifics, whether they not only process the photos as visual stimuli, but also understand them as virtual copies of real conspecifics and whether they grasp the concept of familiarity. Using a computer-controlled learning device, in three tests, goats of two experimental groups (A and B) had to discriminate portrait (Te1), profile (Te2) or headless body photos (Te3) of conspecifics. Tests were presented as 4-choice tasks, with one photo from Group A (rewarded) plus three photos from Group B (distractors). That is, the rewarded photo was familiar to Group A, but unfamiliar to Group B. Finally, in a reversal test (Te4) we reversed this principle. The goats learned the discriminations in Te1 to Te3 within two (Te1 and Te2) and three training days (Te3), respectively, and they needed between 91 [CL (66, 126)] and 174 [CL (126, 241)] trials to reach the learning criterion, with no statistically significant differences between the groups. In Te4, in contrast, the animals took 403 [Group A; CL (291, 557)] and 385 [Group B; CL (286, 519)] trials, respectively, to learn the task. The lack of spontaneous preferences for the photo of the familiar conspecific in the pretests of Te1 to Te3 in Group A, as well as the lack of differences in the number of trials to learn the discriminations between both groups, do not at first glance suggest that the goats established a correspondence between real conspecifics and their 2D representations. However, the higher number of trials in Te4 suggests that both groups formed the learning rule of choosing either the known (Group A) or the unknown goat (Group B) over the course of Te1 to Te3 and then failed after the rule was reversed, providing evidence that goats can associate 2D photos of conspecifics with real animals.
Collapse
Affiliation(s)
- Jan Langbein
- Research Institute for Farm Animal Biology, Institute of Behavioural Physiology, Dummerstorf, Germany
| | - Mauricio Moreno-Zambrano
- Research Institute for Farm Animal Biology, Institute of Genetics and Biometry, Dummerstorf, Germany
| | - Katrin Siebert
- Research Institute for Farm Animal Biology, Institute of Behavioural Physiology, Dummerstorf, Germany
| |
Collapse
|
24
|
Aspesi D, Bass N, Kavaliers M, Choleris E. The role of androgens and estrogens in social interactions and social cognition. Neuroscience 2023:S0306-4522(23)00151-3. [PMID: 37080448 DOI: 10.1016/j.neuroscience.2023.03.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 03/02/2023] [Accepted: 03/28/2023] [Indexed: 04/22/2023]
Abstract
Gonadal hormones are becoming increasingly recognized for their effects on cognition. Estrogens, in particular, have received attention for their effects on learning and memory that rely upon the functioning of various brain regions. However, the impacts of androgens on cognition are relatively under investigated. Testosterone, as well as estrogens, have been shown to play a role in the modulation of different aspects of social cognition. This review explores the impact of testosterone and other androgens on various facets of social cognition including social recognition, social learning, social approach/avoidance, and aggression. We highlight the relevance of considering not only the actions of the most commonly studied steroids (i.e., testosterone, 17β-estradiol, and dihydrotestosterone), but also that of their metabolites and precursors, which interact with a plethora of different receptors and signalling molecules, ultimately modulating behaviour. We point out that it is also essential to investigate the effects of androgens, their precursors and metabolites in females, as prior studies have mostly focused on males. Overall, a comprehensive analysis of the impact of steroids such as androgens on behaviour is fundamental for a full understanding of the neural mechanisms underlying social cognition, including that of humans.
Collapse
Affiliation(s)
- Dario Aspesi
- Department of Psychology and Neuroscience Program, University of Guelph
| | - Noah Bass
- Department of Psychology and Neuroscience Program, University of Guelph
| | - Martin Kavaliers
- Department of Psychology and Neuroscience Program, University of Guelph; Department of Psychology, University of Western Ontario, London, Canada; Graduate Program in Neuroscience, University of Western Ontario, London, Canada
| | - Elena Choleris
- Department of Psychology and Neuroscience Program, University of Guelph.
| |
Collapse
|
25
|
Yu K, Wood WE, Johnston LG, Theunissen FE. Lesions to Caudomedial Nidopallium Impair Individual Vocal Recognition in the Zebra Finch. J Neurosci 2023; 43:2579-2596. [PMID: 36859308 PMCID: PMC10082456 DOI: 10.1523/jneurosci.0643-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 02/20/2023] [Accepted: 02/23/2023] [Indexed: 03/03/2023] Open
Abstract
Many social animals can recognize other individuals by their vocalizations. This requires a memory system capable of mapping incoming acoustic signals to one of many known individuals. Using the zebra finch, a social songbird that uses songs and distance calls to communicate individual identity (Elie and Theunissen, 2018), we tested the role of two cortical-like brain regions in a vocal recognition task. We found that the rostral region of the Cadomedial Nidopallium (NCM), a secondary auditory region of the avian pallium, was necessary for maintaining auditory memories for conspecific vocalizations in both male and female birds, whereas HVC (used as a proper name), a premotor areas that gates auditory input into the vocal motor and song learning pathways in male birds (Roberts and Mooney, 2013), was not. Both NCM and HVC have previously been implicated for processing the tutor song in the context of song learning (Sakata and Yazaki-Sugiyama, 2020). Our results suggest that NCM might not only store songs as templates for future vocal imitation but also songs and calls for perceptual discrimination of vocalizers in both male and female birds. NCM could therefore operate as a site for auditory memories for vocalizations used in various facets of communication. We also observed that new auditory memories could be acquired without intact HVC or NCM but that for these new memories NCM lesions caused deficits in either memory capacity or auditory discrimination. These results suggest that the high-capacity memory functions of the avian pallial auditory system depend on NCM.SIGNIFICANCE STATEMENT Many aspects of vocal communication require the formation of auditory memories. Voice recognition, for example, requires a memory for vocalizers to identify acoustical features. In both birds and primates, the locus and neural correlates of these high-level memories remain poorly described. Previous work suggests that this memory formation is mediated by high-level sensory areas, not traditional memory areas such as the hippocampus. Using lesion experiments, we show that one secondary auditory brain region in songbirds that had previously been implicated in storing song memories for vocal imitation is also implicated in storing vocal memories for individual recognition. The role of the neural circuits in this region in interpreting the meaning of communication calls should be investigated in the future.
Collapse
Affiliation(s)
- Kevin Yu
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley California 94720
| | - William E Wood
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley California 94720
| | - Leah G Johnston
- Herbert Wertheim School of Optometry and Vision Science, University of California, Berkeley, Berkeley California 94720
| | - Frederic E Theunissen
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley California 94720
- Departments of Psychology
- Integrative Biology, University of California, Berkeley, Berkeley California 94720
| |
Collapse
|
26
|
Sogawa S, Fukushima R, Sowersby W, Awata S, Kawasaka K, Kohda M. Male Guppies Recognize Familiar Conspecific Males by Their Face. Zoolog Sci 2023; 40:168-174. [PMID: 37042696 DOI: 10.2108/zs220088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 02/20/2023] [Indexed: 04/13/2023]
Abstract
Individual recognition is a necessary cognitive ability for the maintenance of stable social relationships. Recent studies have shown that like primates, some fish species can distinguish familiar fish from unfamiliar strangers via face-recognition. However, the taxa of the studied fish species are restricted (within Perciformes) and the visual signal used for the recognition of fish remains unclear. Here, we investigated the visual signal for individual-recognition in males of a sexually dichromatic guppy (Poecilia reticulata, Cyprinodontiformes). Using guppy males, we examined the hypothesis that fish distinguish between familiar individuals and unknown strangers by their faces rather than by body coloration. We randomly presented focal fish with four types of composite photo-models: familiar (familiar-face and familiar-body = F/F), stranger (stranger-face and stranger-body = S/S), familiar face combined with stranger body (F/S) and stranger face combined with familiar body (S/F). Focal males infrequently attacked familiar-face models but frequently attacked stranger-face models, regardless of body types. These behavioral reactions indicate that guppy males discriminate between familiar and stranger males by their face, not body coloration with wide variation. Importantly, male faces contain clear individual-variation in white/metallic colored patches on the operculum visible for humans. Considering the photo-model, our results suggest that these patches might be an important visual stimulus for face-recognition in guppy males, like some cichlids. Comparative examination among males of different guppy variants, including wild type phenotype, suggests that the face color-patch is stable regardless of variation in body color, with a different genetic mechanism potentially underlying face and body colors.
Collapse
Affiliation(s)
- Shumpei Sogawa
- Laboratory of Animal Sociology, Department of Biology and Geosciences, Graduate School of Science, Osaka City University, Osaka, Japan
- Laboratory of Animal Sociology, Department of Biology, Graduate School of Science, Osaka Metropolitan University, Osaka, Japan
| | - Rio Fukushima
- Laboratory of Animal Sociology, Department of Biology and Geosciences, Graduate School of Science, Osaka City University, Osaka, Japan
| | - Will Sowersby
- Laboratory of Animal Sociology, Department of Biology and Geosciences, Graduate School of Science, Osaka City University, Osaka, Japan
- Laboratory of Animal Sociology, Department of Biology, Graduate School of Science, Osaka Metropolitan University, Osaka, Japan
| | - Satoshi Awata
- Laboratory of Animal Sociology, Department of Biology and Geosciences, Graduate School of Science, Osaka City University, Osaka, Japan
- Laboratory of Animal Sociology, Department of Biology, Graduate School of Science, Osaka Metropolitan University, Osaka, Japan
| | - Kento Kawasaka
- Laboratory of Animal Sociology, Department of Biology and Geosciences, Graduate School of Science, Osaka City University, Osaka, Japan
- Laboratory of Animal Sociology, Department of Biology, Graduate School of Science, Osaka Metropolitan University, Osaka, Japan
| | - Masanori Kohda
- Laboratory of Animal Sociology, Department of Biology and Geosciences, Graduate School of Science, Osaka City University, Osaka, Japan,
- Laboratory of Animal Sociology, Department of Biology, Graduate School of Science, Osaka Metropolitan University, Osaka, Japan
| |
Collapse
|
27
|
Jernigan CM, Stafstrom JA, Zaba NC, Vogt CC, Sheehan MJ. Color is necessary for face discrimination in the Northern paper wasp, Polistes fuscatus. Anim Cogn 2023; 26:589-598. [PMID: 36245014 PMCID: PMC9974887 DOI: 10.1007/s10071-022-01691-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 09/02/2022] [Accepted: 09/19/2022] [Indexed: 11/01/2022]
Abstract
Visual individual recognition requires animals to distinguish among conspecifics based on appearance. Though visual individual recognition has been reported in a range of taxa including primates, birds, and insects, the features that animals require to discriminate between individuals are not well understood. Northern paper wasp females, Polistes fuscatus, possess individually distinctive color patterns on their faces, which mediate individual recognition. However, it is currently unclear what role color plays in the facial recognition system of this species. Thus, we sought to test two possible roles of color in wasp facial recognition. On one hand, color may be important simply because it creates a pattern. If this is the case, then wasps should perform similarly when discriminating color or grayscale images of the same faces. Alternatively, color itself may be important for recognition of an image as a "face", which would predict poorer performance on grayscale discrimination relative to color images. We found wasps performed significantly better when discriminating between color faces compared to grayscale versions of the same faces. In fact, wasps trained on grayscale faces did not perform better than chance, indicating that color is necessary for the recognition of an image as a face by the wasp visual system.
Collapse
Affiliation(s)
- Christopher M Jernigan
- Laboratory for Animal Social Evolution and Recognition, Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, USA.
| | - Jay A Stafstrom
- Laboratory for Animal Social Evolution and Recognition, Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, USA
| | - Natalie C Zaba
- Laboratory for Animal Social Evolution and Recognition, Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, USA
| | - Caleb C Vogt
- Laboratory for Animal Social Evolution and Recognition, Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, USA
| | - Michael J Sheehan
- Laboratory for Animal Social Evolution and Recognition, Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
28
|
Bienboire-Frosini C, Marcet-Rius M, Orihuela A, Domínguez-Oliva A, Mora-Medina P, Olmos-Hernández A, Casas-Alvarado A, Mota-Rojas D. Mother-Young Bonding: Neurobiological Aspects and Maternal Biochemical Signaling in Altricial Domesticated Mammals. Animals (Basel) 2023; 13:ani13030532. [PMID: 36766424 PMCID: PMC9913798 DOI: 10.3390/ani13030532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/27/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
Mother-young bonding is a type of early learning where the female and their newborn recognize each other through a series of neurobiological mechanisms and neurotransmitters that establish a behavioral preference for filial individuals. This process is essential to promote their welfare by providing maternal care, particularly in altricial species, animals that require extended parental care due to their limited neurodevelopment at birth. Olfactory, auditory, tactile, and visual stimuli trigger the neural integration of multimodal sensory and conditioned affective associations in mammals. This review aims to discuss the neurobiological aspects of bonding processes in altricial mammals, with a focus on the brain structures and neurotransmitters involved and how these influence the signaling during the first days of the life of newborns.
Collapse
Affiliation(s)
- Cécile Bienboire-Frosini
- Department of Molecular Biology and Chemical Communication, Research Institute in Semiochemistry and Applied Ethology (IRSEA), 84400 Apt, France
| | - Míriam Marcet-Rius
- Animal Behaviour and Welfare Department, Research Institute in Semiochemistry and Applied Ethology (IRSEA), 84400 Apt, France
| | - Agustín Orihuela
- Facultad de Ciencias Agropecuarias, Universidad Autónoma del Estado de Morelos, Cuernavaca 62209, Mexico
| | - Adriana Domínguez-Oliva
- Neurophysiology, Behavior and Animal Welfare Assessment, DPAA, Universidad Autónoma Metropolitana, Xochimilco Campus, Mexico City 04960, Mexico
| | - Patricia Mora-Medina
- Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de Mexico (UNAM), Cuautitlán Izcalli 54740, Mexico
| | - Adriana Olmos-Hernández
- Division of Biotechnology—Bioterio and Experimental Surgery, Instituto Nacional de Rehabilitación-Luis Guillermo Ibarra Ibarra (INR-LGII), Tlalpan, Mexico City 14389, Mexico
| | - Alejandro Casas-Alvarado
- Neurophysiology, Behavior and Animal Welfare Assessment, DPAA, Universidad Autónoma Metropolitana, Xochimilco Campus, Mexico City 04960, Mexico
| | - Daniel Mota-Rojas
- Neurophysiology, Behavior and Animal Welfare Assessment, DPAA, Universidad Autónoma Metropolitana, Xochimilco Campus, Mexico City 04960, Mexico
- Correspondence:
| |
Collapse
|
29
|
Umeed R, Lucchini K, Santos PJ, Attademo F, Luna F, Normande I, Bezerra B. Vocal complexity in Antillean manatees (Trichechus manatus manatus). BEHAVIOUR 2022. [DOI: 10.1163/1568539x-bja10199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Abstract
Vocal complexity can be expressed through variations in repertoire size, structure, and individual manatee repertoires. Here we aimed to assess the complexity of the vocal behaviour of Antillean manatees living in captivity (i.e., artificial pools) and in reintroduction enclosures (i.e., natural enclosures placed in an estuarine area). Specifically, we evaluated: (i) the structure of vocalisations to assess whether they had variants; (ii) the variation in call production (rate and pattern) between groups with different configurations; (iii) whether individuality occurred in vocalisation structure. We found four categories of vocalisations, of which two had different variants. Not all study groups produced all call categories and variants. Older and younger males in the reintroduction enclosures had the highest call rates compared to captive females and captive males. The vocal and behavioural patterns differed between groups. Squeak call structure differed between individuals. Such vocal complexity may aid manatees in adapting to their dynamic social and structural environment, facilitating communication.
Collapse
Affiliation(s)
- Rebecca Umeed
- Programa de Pós-Graduação em Biologia Animal, Departamento de Zoologia, Universidade Federal de Pernambuco, Pernambuco, Brazil
| | - Karen Lucchini
- Programa de Pós-Graduação em Biologia Animal, Departamento de Zoologia, Universidade Federal de Pernambuco, Pernambuco, Brazil
- Instituto Chico Mendes de Conservação da Biodiversidade/Centro Nacional de Pesquisa e Conservação de Mamíferos Aquáticos (ICMBio/CMA), Santos, São Paulo, Brazil
| | - Paulo J.P. Santos
- Programa de Pós-Graduação em Biologia Animal, Departamento de Zoologia, Universidade Federal de Pernambuco, Pernambuco, Brazil
| | - Fernanda Attademo
- Instituto Chico Mendes de Conservação da Biodiversidade/Centro Nacional de Pesquisa e Conservação de Mamíferos Aquáticos (ICMBio/CMA), Santos, São Paulo, Brazil
| | - Fabia Luna
- Instituto Chico Mendes de Conservação da Biodiversidade/Centro Nacional de Pesquisa e Conservação de Mamíferos Aquáticos (ICMBio/CMA), Santos, São Paulo, Brazil
| | - Iran Normande
- Instituto Chico Mendes de Conservação da Biodiversidade/Reserva Extrativista Marinha da Lagoa do Jequiá, Jequiá da Praia, Alagoas, Brazil
- Programa de Pós-graduação em Diversidade Biológica e Conservação nos Trópicos, Laboratório de Biologia Marinha e Conservação e Laboratório de Conservação no Século XXI, Universidade Federal de Alagoas, Alagoas, Brasil
| | - Bruna Bezerra
- Programa de Pós-Graduação em Biologia Animal, Departamento de Zoologia, Universidade Federal de Pernambuco, Pernambuco, Brazil
| |
Collapse
|
30
|
Tan X, Lin A, Sun K, Jin L, Feng J. Greater Horseshoe Bats Recognize the Sex and Individual Identity of Conspecifics from Their Echolocation Calls. Animals (Basel) 2022; 12:ani12243490. [PMID: 36552410 PMCID: PMC9774574 DOI: 10.3390/ani12243490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/06/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022] Open
Abstract
The echolocation calls of bats are mainly used for navigation and foraging; however, they may also contain social information about the emitter and facilitate social interactions. In this study, we recorded the echolocation calls of greater horseshoe bats (Rhinolophus ferrumequinum) and analyzed the acoustic parameter differences between the sexes and among individuals. Then, we performed habituation-discrimination playback experiments to test whether greater horseshoe bats could recognize the sex and individual identity of conspecifics from their echolocation calls. The results showed that there were significant differences in the echolocation call parameters between sexes and among individuals. When we switched playback files from a habituated stimuli to a dishabituated stimuli, the tested bats exhibited obvious behavioral responses, including nodding, ear or body movement, and echolocation emission. The results showed that R. ferrumequinum can recognize the sex and individual identity of conspecifics from their echolocation calls alone, which indicates that the echolocation calls of R. ferrumequinum may have potential communication functions. The results of this study improve our understanding of the communication function of the echolocation calls of bats.
Collapse
Affiliation(s)
- Xiao Tan
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun 130000, China
| | - Aiqing Lin
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun 130000, China
| | - Keping Sun
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun 130000, China
| | - Longru Jin
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun 130000, China
- Jilin Provincial Engineering Laboratory of Avian Ecology and Conservation Genetics, Northeast Normal University, Changchun 130000, China
- Correspondence: (L.J.); (J.F.); Tel./Fax: +86-0431-85098097 (J.F.)
| | - Jiang Feng
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun 130000, China
- College of Life Science, Jilin Agricultural University, Changchun 130000, China
- Correspondence: (L.J.); (J.F.); Tel./Fax: +86-0431-85098097 (J.F.)
| |
Collapse
|
31
|
Savagian A, Riehl C. Group chorusing as an intragroup signal in the greater ani, a communally breeding bird. Ethology 2022. [DOI: 10.1111/eth.13345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Affiliation(s)
- Amanda Savagian
- Department of Ecology and Evolutionary Biology Princeton University Princeton New Jersey USA
| | - Christina Riehl
- Department of Ecology and Evolutionary Biology Princeton University Princeton New Jersey USA
| |
Collapse
|
32
|
Type and amount of social experience influences individual face learning in paper wasps. Behav Ecol Sociobiol 2022. [DOI: 10.1007/s00265-022-03257-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
33
|
Grieco F. Vocal behaviour reveals asymmetries in neighbour relationships in a semi-colonial raptor, the Eurasian Scops Owl Otus scops. BEHAVIOUR 2022. [DOI: 10.1163/1568539x-bja10188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Abstract
Territorial animals often reduce aggression towards familiar neighbours compared to unfamiliar conspecifics. However, variation in the response to different neighbours is less known. In this work, I examined the territorial behaviour of male scops owls during countersinging interactions with two familiar neighbours and I asked whether vocal behaviour of the focal male reflected dear-enemy relationships. Analysis revealed that the focal male’s vocal frequency was associated with (1) the degree of instability of the territory boundary shared with a neighbour and (2) the motivation to persist in the dyadic interaction with that neighbour. Patterns of movement directed to specific individuals suggest that scops owls do discriminate between neighbours. A case of partial territory takeover was observed that was accompanied by temporal changes in vocal frequency in one of the opponents, confirming that vocal frequency is a flexible, context-dependent feature of the relationship of neighbouring scops owls.
Collapse
Affiliation(s)
- Fabrizio Grieco
- Independent Researcher, Rietveldlaan 64, 6708 SB Wageningen, The Netherlands
| |
Collapse
|
34
|
The form and function of chimpanzee buttress drumming. Anim Behav 2022. [DOI: 10.1016/j.anbehav.2022.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
35
|
Colour Variation in the Crocodile Lizard (Shinisaurus crocodilurus) and Its Relationship to Individual Quality. BIOLOGY 2022; 11:biology11091314. [PMID: 36138793 PMCID: PMC9495974 DOI: 10.3390/biology11091314] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 08/30/2022] [Accepted: 08/30/2022] [Indexed: 11/19/2022]
Abstract
Simple Summary This study examines colour variation in the highly endangered crocodile lizard, Shinisaurus crocodilurus. Both males and females vary in the extent to which their throats and venters are red. Their colouration is easily visible to a lizard receiver, and we found evidence that colour signals individual quality. Females with red venters had larger heads while females with red throats had greater bite force. In males, redder individuals were older. Finally, we found links between colour and fitness in males but not females. Aspects of male colouration were linked to reproductive output such that they sired offspring from heavier litters. The potential fitness consequences of colour should be considered in captive breeding and release programs. Abstract Colour plays a key role in animal social communication including as an indicator of individual quality. Using spectrophotometry, we examined colour variation in the throat and venter of the crocodile lizard (Shinisaurus crocodilurus), an endangered species native to southern China and northern Vietnam. We detected two broad colour variants, individuals with and without red, for each body region and each sex. A cluster analysis of spectral colour measurements (hue, chroma, luminance) revealed discrete throat and ventral morphs when measured in a single snapshot in time. However, photographic evidence revealed that the amount of red relative to body size increased as they got older. Individuals with red were equally likely to be male or female and throat colour was unrelated to ventral colour. Therefore, it is premature to claim that crocodile lizards have discrete colour morphs. We used visual modelling to show that the throat and venter were easily discriminable to a lizard visual system, suggesting they function in social communication. We also asked whether colour variation signalled individual quality. Females with red throats had greater bite force while males with red throats were older. In addition, females with red venters had larger heads. We also detected differences in morphology linked to colour. Females with red throats had slender bodies and longer tails, while individuals lacking red on their throats were stouter and had shorter tails. Finally, throat and ventral colour were unrelated to reproductive output (litter size and mass) in females. Males with greater ventral luminance contrast sired offspring from litters with greater litter mass (including stillborns), while males with greater ventral chromatic contrast sired offspring whose collective live mass (excluding stillborns) was greater. Males with greater luminance contrast also sired more live offspring (excluding stillborns). Collectively, these results suggest that male ventral colour signals individual quality in males. Conservation initiatives should take colour variation into account when planning future captive breeding and release programs for this endangered species.
Collapse
|
36
|
Morandi K, Lindholm AK, Lee DE, Bond ML. Phenotypic matching by spot pattern potentially mediates female giraffe social associations. J Zool (1987) 2022. [DOI: 10.1111/jzo.13009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- K. Morandi
- Department of Evolutionary Biology and Environmental Studies University of Zurich Zurich Switzerland
| | - A. K. Lindholm
- Department of Evolutionary Biology and Environmental Studies University of Zurich Zurich Switzerland
| | - D. E. Lee
- Wild Nature Institute Concord NH USA
- Department of Biology Pennsylvania State University University Park PA USA
| | - M. L. Bond
- Department of Evolutionary Biology and Environmental Studies University of Zurich Zurich Switzerland
- Wild Nature Institute Concord NH USA
| |
Collapse
|
37
|
Gilby IC, Machanda ZP. Advanced cognition in wild chimpanzees: lessons from observational studies. Curr Opin Behav Sci 2022. [DOI: 10.1016/j.cobeha.2022.101183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
38
|
N'zoulou Kiminou D, Mehon FG, Stephan C. Vocal recognition of alarm calls in wild putty-nosed monkeys, Cercopithecus nictitans. Anim Behav 2022. [DOI: 10.1016/j.anbehav.2022.06.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
39
|
Selection levels on vocal individuality: strategic use or byproduct. Curr Opin Behav Sci 2022. [DOI: 10.1016/j.cobeha.2022.101140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
40
|
Weise C, Ortiz CC, Tibbetts EA. Paper wasps form abstract concept of 'same and different'. Proc Biol Sci 2022; 289:20221156. [PMID: 35855600 PMCID: PMC9297017 DOI: 10.1098/rspb.2022.1156] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Concept formation requires animals to learn and use abstract rules that transcend the characteristics of specific stimuli. Abstract concepts are often associated with high levels of cognitive sophistication, so there has been much interest in which species can form and use concepts. A key abstract concept is that of sameness and difference, where stimuli are classified as either the same as or different than an original stimulus. Here, we used a simultaneous two-item same-different task to test whether paper wasps (Polistes fuscatus) can learn and apply a same-different concept. We trained wasps by simultaneously presenting pairs of same or different stimuli (e.g. colours). Then, we tested whether wasps could apply the concept to new stimuli of the same type (e.g. new colours) and to new stimulus types (e.g. odours). We show that wasps learned a general concept of sameness or difference and applied it to new samples and types of stimuli. Notably, wasps were able to transfer the learned rules to new stimuli in a different sensory modality. Therefore, P. fuscatus can classify stimuli based on their relationships and apply abstract concepts to novel stimulus types. These results indicate that abstract concept learning may be more widespread than previously thought.
Collapse
Affiliation(s)
- Chloe Weise
- Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 7347633564, USA
| | - Christian Cely Ortiz
- Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 7347633564, USA
| | - Elizabeth A. Tibbetts
- Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 7347633564, USA
| |
Collapse
|
41
|
Lehmann KDS, Jensen FH, Gersick AS, Strandburg-Peshkin A, Holekamp KE. Long-distance vocalizations of spotted hyenas contain individual, but not group, signatures. Proc Biol Sci 2022; 289:20220548. [PMID: 35855604 PMCID: PMC9297016 DOI: 10.1098/rspb.2022.0548] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
In animal societies, identity signals are common, mediate interactions within groups, and allow individuals to discriminate group-mates from out-group competitors. However, individual recognition becomes increasingly challenging as group size increases and as signals must be transmitted over greater distances. Group vocal signatures may evolve when successful in-group/out-group distinctions are at the crux of fitness-relevant decisions, but group signatures alone are insufficient when differentiated within-group relationships are important for decision-making. Spotted hyenas are social carnivores that live in stable clans of less than 125 individuals composed of multiple unrelated matrilines. Clan members cooperate to defend resources and communal territories from neighbouring clans and other mega carnivores; this collective defence is mediated by long-range (up to 5 km range) recruitment vocalizations, called whoops. Here, we use machine learning to determine that spotted hyena whoops contain individual but not group signatures, and that fundamental frequency features which propagate well are critical for individual discrimination. For effective clan-level cooperation, hyenas face the cognitive challenge of remembering and recognizing individual voices at long range. We show that serial redundancy in whoop bouts increases individual classification accuracy and thus extended call bouts used by hyenas probably evolved to overcome the challenges of communicating individual identity at long distance.
Collapse
Affiliation(s)
- Kenna D. S. Lehmann
- School of Biological Sciences, University of Nebraska—Lincoln, 1101T Street, Lincoln, NE 68588, USA
| | - Frants H. Jensen
- Department of Biology, Syracuse University, 107 College Place, Syracuse, NY 13244, USA,Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
| | - Andrew S. Gersick
- Dept of Ecology and Evolutionary Biology, Princeton University, 106A Guyot Hall, Princeton, NJ 08544, USA
| | - Ariana Strandburg-Peshkin
- Biology Department, University of Konstanz, Universitätsstrasse 10, 78464 Konstanz, Germany,Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Universitätsstrasse 10, 78464 Konstanz, Germany,Department for the Ecology of Animal Societies, Max Planck Institute of Animal Behaviour, Bücklestrasse 5a, 78467 Konstanz, Germany
| | - Kay E. Holekamp
- Department of Integrative Biology, Michigan State University, 288 Farm Lane, East Lansing, MI 48824 USA,Ecology, Evolution, and Behavior Program, Michigan State University, 293 Farm Lane, East Lansing, MI 48824, USA
| |
Collapse
|
42
|
No reproductive fitness benefits of dear enemy behaviour in a territorial songbird. Behav Ecol Sociobiol 2022. [DOI: 10.1007/s00265-022-03199-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
43
|
Investigating temporal coordination in the duet contributions of a pair-living small ape. Behav Ecol Sociobiol 2022. [DOI: 10.1007/s00265-022-03193-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
44
|
Clark FE, Dunn JC. From Soundwave to Soundscape: A Guide to Acoustic Research in Captive Animal Environments. Front Vet Sci 2022; 9:889117. [PMID: 35782565 PMCID: PMC9244380 DOI: 10.3389/fvets.2022.889117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 05/23/2022] [Indexed: 11/17/2022] Open
Abstract
Sound is a complex feature of all environments, but captive animals' soundscapes (acoustic scenes) have been studied far less than those of wild animals. Furthermore, research across farms, laboratories, pet shelters, and zoos tends to focus on just one aspect of environmental sound measurement: its pressure level or intensity (in decibels). We review the state of the art of captive animal acoustic research and contrast this to the wild, highlighting new opportunities for the former to learn from the latter. We begin with a primer on sound, aimed at captive researchers and animal caregivers with an interest (rather than specific expertise) in acoustics. Then, we summarize animal acoustic research broadly split into measuring sound from animals, or their environment. We guide readers from soundwave to soundscape and through the burgeoning field of conservation technology, which offers new methods to capture multiple features of complex, gestalt soundscapes. Our review ends with suggestions for future research, and a practical guide to sound measurement in captive environments.
Collapse
Affiliation(s)
- Fay E. Clark
- Behavioural Ecology Research Group, School of Life Sciences, Anglia Ruskin University, Cambridge, United Kingdom
- School of Psychological Science, Faculty of Life Sciences, University of Bristol, Bristol, United Kingdom
- *Correspondence: Fay E. Clark
| | - Jacob C. Dunn
- Behavioural Ecology Research Group, School of Life Sciences, Anglia Ruskin University, Cambridge, United Kingdom
- Biological Anthropology, Department of Archaeology, University of Cambridge, Cambridge, United Kingdom
- Department of Cognitive Biology, University of Vienna, Vienna, Austria
| |
Collapse
|
45
|
Kashash Y, Smarsh G, Zilkha N, Yovel Y, Kimchi T. Alone, in the dark: The extraordinary neuroethology of the solitary blind mole rat. eLife 2022; 11:78295. [PMID: 35674717 PMCID: PMC9177142 DOI: 10.7554/elife.78295] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 05/12/2022] [Indexed: 11/13/2022] Open
Abstract
On the social scale, the blind mole rat (BMR; Spalax ehrenbergi) is an extreme. It is exceedingly solitary, territorial, and aggressive. BMRs reside underground, in self-excavated tunnels that they rarely leave. They possess specialized sensory systems for social communication and navigation, which allow them to cope with the harsh environmental conditions underground. This review aims to present the blind mole rat as an ideal, novel neuroethological model for studying aggressive and solitary behaviors. We discuss the BMR's unique behavioral phenotype, particularly in the context of 'anti-social' behaviors, and review the available literature regarding its specialized sensory adaptations to the social and physical habitat. To date, the neurobiology of the blind mole rat remains mostly unknown and holds a promising avenue for scientific discovery. Unraveling the neural basis of the BMR's behavior, in comparison to that of social rodents, can shed important light on the underlying mechanisms of psychiatric disorders in humans, in which similar behaviors are displayed.
Collapse
Affiliation(s)
- Yael Kashash
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Grace Smarsh
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel.,School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Noga Zilkha
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Yossi Yovel
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Tali Kimchi
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
46
|
Gonçalves C, Kareklas K, Teles MC, Varela SAM, Costa J, Leite RB, Paixão T, Oliveira RF. Phenotypic architecture of sociality and its associated genetic polymorphisms in zebrafish. GENES, BRAIN, AND BEHAVIOR 2022; 21:e12809. [PMID: 35524578 PMCID: PMC9744564 DOI: 10.1111/gbb.12809] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 04/02/2022] [Accepted: 04/06/2022] [Indexed: 12/11/2022]
Abstract
Sociality relies on motivational and cognitive components that may have evolved independently, or may have been linked by phenotypic correlations driven by a shared selective pressure for increased social competence. Furthermore, these components may be domain-specific or of general-domain across social and non-social contexts. Here, we used zebrafish to test if the motivational and cognitive components of social behavior are phenotypically linked and if they are domain specific or of general domain. The behavioral phenotyping of zebrafish in social and equivalent non-social tests shows that the motivational (preference) and cognitive (memory) components of sociality: (1) are independent from each other, hence not supporting the occurrence of a sociality syndrome; and (2) are phenotypically linked to non-social traits, forming two general behavioral modules, suggesting that sociality traits have been co-opted from general-domain motivational and cognitive traits. Moreover, the study of the association between single nucleotide polymorphisms (SNPs) and each behavioral module further supports this view, since several SNPs from a list of candidate "social" genes, are statistically associated with the motivational, but not with the cognitive, behavioral module. Together, these results support the occurrence of general-domain motivational and cognitive behavioral modules in zebrafish, which have been co-opted for the social domain.
Collapse
Affiliation(s)
- Claúdia Gonçalves
- Integrative Behavioural Biology LaboratoryGulbenkian Institute of ScienceOeirasPortugal
| | - Kyriacos Kareklas
- Integrative Behavioural Biology LaboratoryGulbenkian Institute of ScienceOeirasPortugal
| | - Magda C. Teles
- Integrative Behavioural Biology LaboratoryGulbenkian Institute of ScienceOeirasPortugal
| | - Susana A. M. Varela
- Integrative Behavioural Biology LaboratoryGulbenkian Institute of ScienceOeirasPortugal
| | - João Costa
- Integrative Behavioural Biology LaboratoryGulbenkian Institute of ScienceOeirasPortugal
| | - Ricardo B. Leite
- Integrative Behavioural Biology LaboratoryGulbenkian Institute of ScienceOeirasPortugal
| | - Tiago Paixão
- Integrative Behavioural Biology LaboratoryGulbenkian Institute of ScienceOeirasPortugal
| | - Rui F. Oliveira
- Integrative Behavioural Biology LaboratoryGulbenkian Institute of ScienceOeirasPortugal,Department of BiosciencesISPA‐Instituto UniversitárioLisbonPortugal,Champalimaud Neuroscience Program, Champalimaud FoundationLisbonPortugal
| |
Collapse
|
47
|
Individual recognition and long-term memory of inanimate interactive agents and humans in dogs. Anim Cogn 2022; 25:1427-1442. [PMID: 35513745 PMCID: PMC9652224 DOI: 10.1007/s10071-022-01624-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/30/2022] [Accepted: 04/05/2022] [Indexed: 11/26/2022]
Abstract
Investigation of individual recognition (IR) is difficult due to the lack of proper control of cues and previous experiences of subjects. Utilization of artificial agents (Unidentified Moving Objects: UMOs) may offer a better approach than using conspecifics or humans as partners. In Experiment 1, we investigated whether dogs are able to develop IR of UMOs (that is stable for at least 24 h) or that they only retain a more generalised memory about them. The UMO helped dogs to obtain an unreachable ball and played with them. One day, one week or one month later, we tested whether dogs display specific behaviour toward the familiar UMO over unfamiliar ones (four-way choice test). Dogs were also re-tested in the same helping context and playing interaction. Subjects did not approach the familiar UMO sooner than the others; however, they gazed at the familiar UMO earlier during re-testing of the problem solving task, irrespectively of the delay. In Experiment 2, we repeated the same procedure with human partners, applying a two-way choice test after a week delay, to study whether lack of IR was specific to the UMO. Dogs did not approach the familiar human sooner than the unfamiliar, but they gazed at the familiar partner earlier during re-testing. Thus, dogs do not seem to recognise an individual UMO or human after a short experience, but they remember the interaction with the novel partner in general, even after a long delay. We suggest that dogs need more experience with a specific social partner for the development of long-term memory.
Collapse
|
48
|
Individuality in Roars of Black-and-Gold Howler Monkeys (Alouatta caraya). INT J PRIMATOL 2022. [DOI: 10.1007/s10764-022-00290-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
49
|
Ponte G, Chiandetti C, Edelman DB, Imperadore P, Pieroni EM, Fiorito G. Cephalopod Behavior: From Neural Plasticity to Consciousness. Front Syst Neurosci 2022; 15:787139. [PMID: 35495582 PMCID: PMC9039538 DOI: 10.3389/fnsys.2021.787139] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/22/2021] [Indexed: 11/18/2022] Open
Abstract
It is only in recent decades that subjective experience - or consciousness - has become a legitimate object of scientific inquiry. As such, it represents perhaps the greatest challenge facing neuroscience today. Subsumed within this challenge is the study of subjective experience in non-human animals: a particularly difficult endeavor that becomes even more so, as one crosses the great evolutionary divide between vertebrate and invertebrate phyla. Here, we explore the possibility of consciousness in one group of invertebrates: cephalopod molluscs. We believe such a review is timely, particularly considering cephalopods' impressive learning and memory abilities, rich behavioral repertoire, and the relative complexity of their nervous systems and sensory capabilities. Indeed, in some cephalopods, these abilities are so sophisticated that they are comparable to those of some higher vertebrates. Following the criteria and framework outlined for the identification of hallmarks of consciousness in non-mammalian species, here we propose that cephalopods - particularly the octopus - provide a unique test case among invertebrates for examining the properties and conditions that, at the very least, afford a basal faculty of consciousness. These include, among others: (i) discriminatory and anticipatory behaviors indicating a strong link between perception and memory recall; (ii) the presence of neural substrates representing functional analogs of thalamus and cortex; (iii) the neurophysiological dynamics resembling the functional signatures of conscious states in mammals. We highlight the current lack of evidence as well as potentially informative areas that warrant further investigation to support the view expressed here. Finally, we identify future research directions for the study of consciousness in these tantalizing animals.
Collapse
Affiliation(s)
- Giovanna Ponte
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples, Italy
| | | | - David B. Edelman
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH, United States
- Association for Cephalopod Research ‘CephRes' a non-profit Organization, Naples, Italy
| | - Pamela Imperadore
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples, Italy
| | | | - Graziano Fiorito
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples, Italy
| |
Collapse
|
50
|
Tumulty JP, Fouilloux CA, Vallejos JG, Bee MA. Predicting and measuring decision rules for social recognition in a Neotropical frog. Am Nat 2022; 200:E77-E92. [DOI: 10.1086/720279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|