1
|
Jiang S, Deng X, Ma L, Wang H, Wang X, Feng L, Zhu F, Xue S, Mohammad A. Standardized framework for assessing soil quality at antimony smelting site by considering microbial-induced resilience and heavy metal contamination. J Environ Sci (China) 2025; 148:306-320. [PMID: 39095167 DOI: 10.1016/j.jes.2023.12.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/23/2023] [Accepted: 12/26/2023] [Indexed: 08/04/2024]
Abstract
Antimony smelting activities damage the soil and vegetation surroundings while generating economic value. However, no standardized methods are available to diagnose the extent of soil degradation at antimony smelting sites. This study developed a standardized framework for assessing soil quality by considering microbial-induced resilience and heavy metal contamination at Xikuangshan antimony smelting site. The soil resilience index (SRI) and soil contamination index (SCI) were calculated by Minimum Data Set and geo-accumulation model, respectively. After standardized by a multi-criteria quantitative procedure of modified Nemerow's pollution index (NPI), the integrated assessment of soil quality index (SQI), which is the minimum of SRINPI and SCINPI, was achieved. The results showed that Sb and As were the prominent metal(loid) pollutants, and significant correlations between SQI and SRI indicated that the poor soil quality was mainly caused by the low level of soil resilience. The primary limiting factors of SRI were Fungi in high and middle contaminated areas, and Skermanella in low contaminated area, suggesting that the weak soil resilience was caused by low specific microbial abundances. Microbial regulation and phytoremediation are greatly required to improve the soil quality at antimony smelting sites from the perspectives of pollution control and resilience improvement. This study improves our understanding of ecological effects of antimony smelting sites and provides a theoretical basis for ecological restoration and sustainable development of mining areas.
Collapse
Affiliation(s)
- Shasha Jiang
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Xiaoyu Deng
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Liyuan Ma
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, China; School of Engineering, Cardiff University, Cardiff CF243AA, United Kingdom.
| | - Hongmei Wang
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Xingjie Wang
- School of Engineering, Cardiff University, Cardiff CF243AA, United Kingdom; Institute of Geological Survey, China University of Geosciences, Wuhan 430074, China
| | - Liang Feng
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Feng Zhu
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Shengguo Xue
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Arif Mohammad
- School of Engineering, Cardiff University, Cardiff CF243AA, United Kingdom
| |
Collapse
|
2
|
Teng J, Hou R, Dungait JAJ, Zhou G, Kuzyakov Y, Zhang J, Tian J, Cui Z, Zhang F, Delgado-Baquerizo M. Conservation agriculture improves soil health and sustains crop yields after long-term warming. Nat Commun 2024; 15:8785. [PMID: 39389978 PMCID: PMC11467207 DOI: 10.1038/s41467-024-53169-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 10/03/2024] [Indexed: 10/12/2024] Open
Abstract
Climate warming threatens global food security by exacerbating pressures on degraded soils under intensive crop production. Conservation agriculture is promoted as a sustainable solution that improves soil health and sustains crop yields in a changing climate, but these benefits may be affected by long-term warming. Here, we investigate the effects of conservation agriculture compared to conventional agriculture on 17 soil properties, microbial diversity and crop yields, during eight-years' experimental warming. An overall positive effect of warming on soil health over time under conservation agriculture is characterized by linear increases in soil organic carbon and microbial biomass carbon. Warming-triggered shifts in microbial biomass carbon and fungal diversity (saprogen richness) are directly linked to a 9.3% increase in wheat yields over eight years, but only under conservation agriculture. Overall, conservation agriculture results in an average 21% increase in soil health and supports similar levels of crop production after long-term warming compared to conventional agriculture. Our work provides insights into the potential benefits of conservation agriculture for long-term sustainable food production because improved soil health improves resilience to the effects of climate warming.
Collapse
Affiliation(s)
- Jialing Teng
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, China Agricultural University, 100193, Beijing, PR China
| | - Ruixing Hou
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences (CAS), 100101, Beijing, PR China
| | - Jennifer A J Dungait
- Geography, College of Life and Environmental Sciences, University of Exeter, Rennes Drive, Exeter, EX4 4RJ, UK
- Carbon Management Centre, SRUC-Scotland's Rural College, Edinburgh, EH9 3JG, UK
| | - Guiyao Zhou
- Laboratorio de Biodiversidad y Funcionamiento Ecosistémico. Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), Consejo Superior de Investigaciones Científicas (CSIC), 41012, Sevilla, Spain
| | - Yakov Kuzyakov
- Department of Soil Science of Temperate Ecosystems, University of Göttingen, 37077, Göttingen, Germany
| | - Jingbo Zhang
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, China Agricultural University, 100193, Beijing, PR China
| | - Jing Tian
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, China Agricultural University, 100193, Beijing, PR China.
| | - Zhenling Cui
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, China Agricultural University, 100193, Beijing, PR China.
| | - Fusuo Zhang
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, China Agricultural University, 100193, Beijing, PR China
| | - Manuel Delgado-Baquerizo
- Laboratorio de Biodiversidad y Funcionamiento Ecosistémico. Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), Consejo Superior de Investigaciones Científicas (CSIC), 41012, Sevilla, Spain.
| |
Collapse
|
3
|
Ortega R, Miralles I, Domene MA, Meca D, Del Moral F. Ecological practices increase soil fertility and microbial diversity under intensive farming. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176777. [PMID: 39378938 DOI: 10.1016/j.scitotenv.2024.176777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 09/30/2024] [Accepted: 10/04/2024] [Indexed: 10/10/2024]
Abstract
Intensive farming offers a potential solution to feed the growing population due to its high productivity. Conventional management (CO) based on inorganic fertilization practices degrades soil quality, but restorative practices including ecological intensification (EI) and organic management results in maintaining soil quality without compromising productivity. In this paper, two different management systems were evaluated: CO, based on inorganic fertilization, and EI, focused on providing organic nutrients to soils to support crops. EI increased soil fertility, together with higher alpha diversity indices, more differentially abundant amplicon sequence variant (ASVs) (247 EI vs. 165 CO) and indicator taxa (60 EI vs. 32 CO). Distinct bacterial taxa were associated with the different management systems, revealing their roles in soil processes and nutrient availability. In the CO treatment, indicator genera such as Nitrospira and Desulfarculaceae were linked to N fertilization and nitrite oxidation, while RB41 was associated with phosphorus availability. Ammoniphilus, PAUC26f, and BSV26 were also indicators of CO management. Conversely, EI treatment promoted bacteria involved in organic matter decomposition and nutrient cycling, such as Halomonas, Chryseolinea and Rhodobacteraceae. Gemmatimonas, Steroidobacter, Altererythrobacter, Acidibacter and Anseongella contribute to carbon and nitrogen cycling. Burkholderiaceae and Rhodopirellula play roles in phosphate solubilization and organic P mineralization, respectively. Numerous taxa with plant growth-promoting (PGP) attributes, such as BIrii41, Pseudomonas, and Lysobacter, were also identified as indicators of the EI treatment. EI associated bacteria were positively correlated with soil organic carbon contents, nitrates, and exchangeable bases, while negatively correlated with CO bacteria. A distance-based multivariate multiple regression (DistLM) demonstrated a strong relationship (r2 = 0.78) between soil physicochemical variables and bacterial community structure, with SOC explaining the most variations in the model. Other significant parameters included potassium (K), electrical conductivity (EC), and nitrates. The results suggest that EI promotes more sustainable soils in terms of fertility and microbial diversity.
Collapse
Affiliation(s)
- Raúl Ortega
- Department of Agronomy & Center for Intensive Mediterranean Agrosystems and Agri-food Biotechnology (CIAIMBITAL), University of Almeria, E-04120 Almería, Spain..
| | - Isabel Miralles
- Department of Agronomy & Center for Intensive Mediterranean Agrosystems and Agri-food Biotechnology (CIAIMBITAL), University of Almeria, E-04120 Almería, Spain
| | - Miguel Angel Domene
- Cajamar Research Station, Cajamar Foundation, Grupo Cooperativo Cajamar, Paraje Las Palmerillas 25, 04710 El Ejido, Almería, Spain
| | - David Meca
- Cajamar Research Station, Cajamar Foundation, Grupo Cooperativo Cajamar, Paraje Las Palmerillas 25, 04710 El Ejido, Almería, Spain
| | - Fernando Del Moral
- Department of Agronomy & Center for Intensive Mediterranean Agrosystems and Agri-food Biotechnology (CIAIMBITAL), University of Almeria, E-04120 Almería, Spain
| |
Collapse
|
4
|
Fernandez de Landa G, Alberoni D, Braglia C, Baffoni L, Fernandez de Landa M, Revainera PD, Quintana S, Zumpano F, Maggi MD, Di Gioia D. The Gut Microbiome of Two Wild Bumble Bee Species Native of South America: Bombus pauloensis and Bombus bellicosus. MICROBIAL ECOLOGY 2024; 87:121. [PMID: 39340556 PMCID: PMC11438738 DOI: 10.1007/s00248-024-02430-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 08/30/2024] [Indexed: 09/30/2024]
Abstract
South America is populated by a wide range of bumble bee species that represent an important source of biodiversity, supporting pollination services in natural and agricultural ecosystems. These pollinators provide unique specific microbial niches, populated by a wide number of microorganisms such as symbionts, environmental opportunistic bacteria, and pathogens. Recently, it was demonstrated how microbial populations are shaped by trophic resources and environmental conditions but also by anthropogenic pressure, which strongly affects microbes' functionality. This study is focused on the impact of different land uses (natural reserve, agroecosystem, and suburban) on the gut microbiome composition of two South American bumble bees, Bombus pauloensis and Bombus bellicosus. Gut microbial DNA extracted from collected bumble bees was sequenced on the Illumina MiSeq platform and correlated with land use. Nosema ceranae load was analyzed with qPCR and correlated with microbiome data. Significant differences in gut microbiome composition between the two wild bumble bee species were highlighted, with notable variations in α- and β-diversity across study sites. Bombus bellicosus showed a high abundance of Pseudomonas, a genus that includes environmental saprobes, and was found to be the second major taxa populating the gut microbiome, probably indicating the vulnerability of this host to environmental pollution. Pathogen analysis unveils a high prevalence of N. ceranae, with B. bellicosus showing higher susceptibility. Finally, Gilliamella exhibited a negative correlation with N. ceranae, suggesting a potential protective role of this commensal taxon. Our findings underscore the importance of considering microbial dynamics in pollinator conservation strategies, highlighting potential interactions between gut bacteria and pathogens in shaping bumble bee health.
Collapse
Affiliation(s)
- Gregorio Fernandez de Landa
- Facultad de Ciencias Exactas y Naturales, Centro Científico Tecnológico Mar del Plata, CONICET, Centro de Asociación Simple CIC PBA, Instituto de Investigaciones en Producción Sanidad y Ambiente (IIPROSAM), Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
- Centro de Investigaciones en Abejas Sociales, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
| | - Daniele Alberoni
- Dipartimento di Scienze e Tecnologie Agro-Alimentari, Università di Bologna, Viale Fanin 44, 40127, Bologna, Italy.
| | - Chiara Braglia
- Dipartimento di Scienze e Tecnologie Agro-Alimentari, Università di Bologna, Viale Fanin 44, 40127, Bologna, Italy
| | - Loredana Baffoni
- Dipartimento di Scienze e Tecnologie Agro-Alimentari, Università di Bologna, Viale Fanin 44, 40127, Bologna, Italy
| | - Mateo Fernandez de Landa
- Facultad de Ciencias Exactas y Naturales, Centro Científico Tecnológico Mar del Plata, CONICET, Centro de Asociación Simple CIC PBA, Instituto de Investigaciones en Producción Sanidad y Ambiente (IIPROSAM), Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
- Centro de Investigaciones en Abejas Sociales, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
| | - Pablo Damian Revainera
- Facultad de Ciencias Exactas y Naturales, Centro Científico Tecnológico Mar del Plata, CONICET, Centro de Asociación Simple CIC PBA, Instituto de Investigaciones en Producción Sanidad y Ambiente (IIPROSAM), Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
- Centro de Investigaciones en Abejas Sociales, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
| | - Silvina Quintana
- Facultad de Ciencias Exactas y Naturales, Centro Científico Tecnológico Mar del Plata, CONICET, Centro de Asociación Simple CIC PBA, Instituto de Investigaciones en Producción Sanidad y Ambiente (IIPROSAM), Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
- Centro de Investigaciones en Abejas Sociales, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
| | - Francisco Zumpano
- Facultad de Ciencias Exactas y Naturales, Instituto de Investigaciones Marinas y Costeras (IIMyC), Universidad Nacional de Mar del Plata-CONICET, Funes 3350, (7600), Mar del Plata, Argentina
| | - Matias Daniel Maggi
- Facultad de Ciencias Exactas y Naturales, Centro Científico Tecnológico Mar del Plata, CONICET, Centro de Asociación Simple CIC PBA, Instituto de Investigaciones en Producción Sanidad y Ambiente (IIPROSAM), Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
- Centro de Investigaciones en Abejas Sociales, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
| | - Diana Di Gioia
- Dipartimento di Scienze e Tecnologie Agro-Alimentari, Università di Bologna, Viale Fanin 44, 40127, Bologna, Italy
| |
Collapse
|
5
|
Thompson JB, Döring TF, Bowles TM, Kolb S, Bellingrath-Kimura SD, Reckling M. Seasonal soil health dynamics in soy-wheat relay intercropping. Sci Rep 2024; 14:18989. [PMID: 39160252 PMCID: PMC11333471 DOI: 10.1038/s41598-024-69903-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 08/09/2024] [Indexed: 08/21/2024] Open
Abstract
There is growing interest in intercropping as a practice to increase productivity per unit area and ecosystem functioning in agricultural systems. Relay intercropping with soy and winter wheat may benefit soil health due to increased diversity and longer undisturbed soil cover, yet this remains largely unstudied. Using a field experiment in Eastern Germany, we studied the temporal dynamics of chemical, biological, and physical indicators of soil health in the topsoil over a year of cultivation to detect early effects of soy-wheat relay intercropping compared to sole cropping. Indicators included microbial abundance, permanganate-oxidizable carbon, carbon fractions, pH, and water infiltration. Relay intercropping showed no unique soil health benefits compared to sole cropping, likely affected by drought that stressed intercropped soy. Relay intercropping did, however, maintain several properties of both sole crops including an increased MAOM C:N ratio and higher soil water infiltration. The MAOM C:N ratio increased by 4.2 and 6.2% in intercropping and sole soy and decreased by 5% in sole wheat. Average near-saturated soil water infiltration rates were 12.6, 14.9, and 6.0 cm hr-1 for intercropping, sole wheat, and sole soy, respectively. Cropping system did not consistently affect other indicators but we found temporal patterns of these indicators, showing their sensitivity to external changes.
Collapse
Affiliation(s)
- Jennifer B Thompson
- Leibniz Centre for Agricultural Landscape Research (ZALF), 15374, Müncheberg, Germany.
- Faculty of Life Science, Thaer-Institute of Agricultural and Horticultural Science, Humboldt-University of Berlin, 14195, Berlin, Germany.
| | - Thomas F Döring
- Institute of Crop Science and Resource Conservation, Agroecology and Organic Farming, University of Bonn, 53121, Bonn, Germany
| | - Timothy M Bowles
- Department of Environmental Science, Policy and Management, University of California, Berkeley, CA, USA
| | - Steffen Kolb
- Leibniz Centre for Agricultural Landscape Research (ZALF), 15374, Müncheberg, Germany
| | - Sonoko D Bellingrath-Kimura
- Leibniz Centre for Agricultural Landscape Research (ZALF), 15374, Müncheberg, Germany
- Faculty of Life Science, Thaer-Institute of Agricultural and Horticultural Science, Humboldt-University of Berlin, 14195, Berlin, Germany
| | - Moritz Reckling
- Leibniz Centre for Agricultural Landscape Research (ZALF), 15374, Müncheberg, Germany
- Department of Crop Production Ecology, Swedish University of Agricultural Sciences (SLU), Uppsala, Sweden
| |
Collapse
|
6
|
Colombi T, Pandey BK, Chawade A, Bennett MJ, Mooney SJ, Keller T. Root plasticity versus elasticity - when are responses acclimative? TRENDS IN PLANT SCIENCE 2024; 29:856-864. [PMID: 38355326 DOI: 10.1016/j.tplants.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/27/2023] [Accepted: 01/23/2024] [Indexed: 02/16/2024]
Abstract
Spatiotemporal soil heterogeneity and the resulting edaphic stress cycles can be decisive for crop growth. However, our understanding of the acclimative value of root responses to heterogeneous soil conditions remains limited. We outline a framework to evaluate the acclimative value of root responses that distinguishes between stress responses that are persistent and reversible upon stress release, termed 'plasticity' and 'elasticity', respectively. Using energy balances, we provide theoretical evidence that the advantage of plasticity over elasticity increases with the number of edaphic stress cycles and if responses lead to comparatively high energy gains. Our framework provides a conceptual basis for assessing the acclimative value of root responses to soil heterogeneity and can catalyse research on crop adaptations to heterogeneous belowground environments.
Collapse
Affiliation(s)
- Tino Colombi
- Department of Soil and Environment, Swedish University of Agricultural Sciences, P.O. Box 7014, 75007, Uppsala, Sweden.
| | - Bipin K Pandey
- School of Biosciences, University of Nottingham, Sutton Bonington, LE12 5RD, UK
| | - Aakash Chawade
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Sundsvägen 10, 23456 Alnarp, Sweden
| | - Malcolm J Bennett
- School of Biosciences, University of Nottingham, Sutton Bonington, LE12 5RD, UK
| | - Sacha J Mooney
- School of Biosciences, University of Nottingham, Sutton Bonington, LE12 5RD, UK
| | - Thomas Keller
- Department of Soil and Environment, Swedish University of Agricultural Sciences, P.O. Box 7014, 75007, Uppsala, Sweden; Department of Agroecology and Environment, Agroscope, Reckenholzstrasse 191, CH-8046, Zürich, Switzerland
| |
Collapse
|
7
|
Chen C, Li SL, Chen QL, Delgado-Baquerizo M, Guo ZF, Wang F, Xu YY, Zhu YG. Fertilization regulates global thresholds in soil bacteria. GLOBAL CHANGE BIOLOGY 2024; 30:e17466. [PMID: 39152655 DOI: 10.1111/gcb.17466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 06/26/2024] [Accepted: 07/15/2024] [Indexed: 08/19/2024]
Abstract
Global patterns in soil microbiomes are driven by non-linear environmental thresholds. Fertilization is known to shape the soil microbiome of terrestrial ecosystems worldwide. Yet, whether fertilization influences global thresholds in soil microbiomes remains virtually unknown. Here, utilizing optimized machine learning models with Shapley additive explanations on a dataset of 10,907 soil samples from 24 countries, we discovered that the microbial community response to fertilization is highly dependent on environmental contexts. Furthermore, the interactions among nitrogen (N) addition, pH, and mean annual temperature contribute to non-linear patterns in soil bacterial diversity. Specifically, we observed positive responses within a soil pH range of 5.2-6.6, with the influence of higher temperature (>15°C) on bacterial diversity being positive within this pH range but reversed in more acidic or alkaline soils. Additionally, we revealed the threshold effect of soil organic carbon and total nitrogen, demonstrating how temperature and N addition amount interacted with microbial communities within specific edaphic concentration ranges. Our findings underscore how complex environmental interactions control soil bacterial diversity under fertilization.
Collapse
Affiliation(s)
- Cai Chen
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Shu-Le Li
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Qing-Lin Chen
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, People's Republic of China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo, People's Republic of China
| | - Manuel Delgado-Baquerizo
- Laboratorio de Biodiversidad y Funcionamiento Ecosistémico, Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, Seville, Spain
| | - Zhao-Feng Guo
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, People's Republic of China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo, People's Republic of China
| | - Fenghua Wang
- School of Geographical Sciences, Hebei Normal University, Hebei Key Laboratory of Environmental Change and Ecological Construction, Hebei Experimental Teaching Demonstrating Center of Geographical Science, Shijiazhuang, People's Republic of China
| | - Yao-Yang Xu
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, People's Republic of China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo, People's Republic of China
| | - Yong-Guan Zhu
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, People's Republic of China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo, People's Republic of China
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, People's Republic of China
| |
Collapse
|
8
|
Su J, Mazei YA, Tsyganov AN, Chernyshov VA, Mazei NG, Saldaev DA, Yakimov BN. Multi-scale beta-diversity patterns in testate amoeba communities: species turnover and nestedness along a latitudinal gradient. Oecologia 2024; 205:691-707. [PMID: 39115695 DOI: 10.1007/s00442-024-05602-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 07/26/2024] [Indexed: 08/30/2024]
Abstract
The relationship between species diversity and spatial scale is a central topic in spatial community ecology. Latitudinal gradient is among the core mechanisms driving biodiversity distribution on most scales. Patterns of β-diversity along latitudinal gradient have been well studied for aboveground terrestrial and marine communities, whereas soil organisms remain poorly investigated in this regard. The West Siberian Plain is a good model to address diversity scale-dependence since the latitudinal gradient does not overlap with other possible factors such as elevational or maritime. Here, we collected 111 samples following hierarchical sampling (sub-zones, ecosystem types, microhabitat and replicate samples) and performed multi-scale partitioning of β-diversity of testate amoeba assemblages as a model of study. We found that among-ecosystem β-diversity is a leading scale in testate amoeba assemblages variation. Rare species determine β-diversity at all scale levels especially in the northern regions, where rare taxa almost exclusively accounted for the diversity at the ecosystem level. β-Diversity is generally dominated by the turnover component at all scales in lower latitudes, whereas nestedness prevailed at among-ecosystem scale in higher latitudes. These findings indicate that microbial assemblages in northern latitudes are spatially homogeneous and constrained by historical drivers at larger scales, whereas in southern regions, it is dominated by the turnover component both at the microhabitat and ecosystem scales and therefore determined by recent vegetation and environmental heterogeneity. Overall, we have provided the evidence for the existence of negative latitudinal gradient for among-ecosystem β-diversity but not for among-microhabitat and among-sample β-diversity for terrestrial testate amoeba communities.
Collapse
Affiliation(s)
- Jiahui Su
- Shenzhen MSU-BIT University, Shenzhen, 518172, China
- Lomonosov Moscow State University, Leninskie Gory 1, Moscow, 119991, Russia
| | - Yuri A Mazei
- Shenzhen MSU-BIT University, Shenzhen, 518172, China
- Lomonosov Moscow State University, Leninskie Gory 1, Moscow, 119991, Russia
- A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Leninskiy Ave. 33, Moscow, 117071, Russia
| | - Andrey N Tsyganov
- Lomonosov Moscow State University, Leninskie Gory 1, Moscow, 119991, Russia
- A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Leninskiy Ave. 33, Moscow, 117071, Russia
| | | | - Natalia G Mazei
- Lomonosov Moscow State University, Leninskie Gory 1, Moscow, 119991, Russia
| | - Damir A Saldaev
- Shenzhen MSU-BIT University, Shenzhen, 518172, China
- Lomonosov Moscow State University, Leninskie Gory 1, Moscow, 119991, Russia
| | - Basil N Yakimov
- Shenzhen MSU-BIT University, Shenzhen, 518172, China.
- Lobachevsky State University of Nizhny Novgorod, Pr. Gagarina 23, Nizhny Novgorod, 603950, Russia.
| |
Collapse
|
9
|
Jiang P, Wang Y, Zhang Y, Fei J, Rong X, Peng J, Yin L, Luo G. Intercropping enhances maize growth and nutrient uptake by driving the link between rhizosphere metabolites and microbiomes. THE NEW PHYTOLOGIST 2024; 243:1506-1521. [PMID: 38874414 DOI: 10.1111/nph.19906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 05/30/2024] [Indexed: 06/15/2024]
Abstract
Intercropping leads to different plant roots directly influencing belowground processes and has gained interest for its promotion of increased crop yields and resource utilization. However, the precise mechanisms through which the interactions between rhizosphere metabolites and the microbiome contribute to plant production remain ambiguous, thus impeding the understanding of the yield-enhancing advantages of intercropping. This study conducted field experiments (initiated in 2013) and pot experiments, coupled with multi-omics analysis, to investigate plant-metabolite-microbiome interactions in the rhizosphere of maize. Field-based data revealed significant differences in metabolite and microbiome profiles between the rhizosphere soils of maize monoculture and intercropping. In particular, intercropping soils exhibited higher microbial diversity and metabolite chemodiversity. The chemodiversity and composition of rhizosphere metabolites were significantly related to the diversity, community composition, and network complexity of soil microbiomes, and this relationship further impacted plant nutrient uptake. Pot-based findings demonstrated that the exogenous application of a metabolic mixture comprising key components enriched by intercropping (soyasapogenol B, 6-hydroxynicotinic acid, lycorine, shikimic acid, and phosphocreatine) significantly enhanced root activity, nutrient content, and biomass of maize in natural soil, but not in sterilized soil. Overall, this study emphasized the significance of rhizosphere metabolite-microbe interactions in enhancing yields in intercropping systems. It can provide new insights into rhizosphere controls within intensive agroecosystems, aiming to enhance crop production and ecosystem services.
Collapse
Affiliation(s)
- Pan Jiang
- College of Resources, Hunan Agricultural University, Changsha, 410128, China
| | - Yizhe Wang
- College of Resources, Hunan Agricultural University, Changsha, 410128, China
| | - Yuping Zhang
- College of Resources, Hunan Agricultural University, Changsha, 410128, China
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Changsha, 410128, China
- Hunan Provincial Key Laboratory of Farmland Pollution Control and Agricultural Resources Use, Changsha, 410128, China
| | - Jiangchi Fei
- College of Resources, Hunan Agricultural University, Changsha, 410128, China
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Changsha, 410128, China
- Hunan Provincial Key Laboratory of Farmland Pollution Control and Agricultural Resources Use, Changsha, 410128, China
| | - Xiangmin Rong
- College of Resources, Hunan Agricultural University, Changsha, 410128, China
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Changsha, 410128, China
- Hunan Provincial Key Laboratory of Farmland Pollution Control and Agricultural Resources Use, Changsha, 410128, China
| | - Jianwei Peng
- College of Resources, Hunan Agricultural University, Changsha, 410128, China
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Changsha, 410128, China
- Hunan Provincial Key Laboratory of Farmland Pollution Control and Agricultural Resources Use, Changsha, 410128, China
| | - Lichu Yin
- College of Resources, Hunan Agricultural University, Changsha, 410128, China
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Changsha, 410128, China
| | - Gongwen Luo
- College of Resources, Hunan Agricultural University, Changsha, 410128, China
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Changsha, 410128, China
- Hunan Provincial Key Laboratory of Farmland Pollution Control and Agricultural Resources Use, Changsha, 410128, China
| |
Collapse
|
10
|
Yan C, Yang Y, Song J, Shan F, Lyu X, Yan S, Wang C, Song Q, Ma C. Analysis of the beneficial effects of prior soybean cultivation to the field on corn yield and soil nitrogen content. FRONTIERS IN PLANT SCIENCE 2024; 15:1413507. [PMID: 39139723 PMCID: PMC11319277 DOI: 10.3389/fpls.2024.1413507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 07/09/2024] [Indexed: 08/15/2024]
Abstract
Corn-soybean rotation is a cropping pattern to optimize crop structure and improve resource use efficiency, and nitrogen (N) fertilizer application is an indispensable tool to increase corn yields. However, the effects of N fertilizer application levels on corn yield and soil N storage under corn-soybean rotation have not been systematically studied. The experimental located in the central part of the Songnen Plain, a split-zone experimental design was used with two planting patterns of continuous corn (CC) and corn-soybean rotations (RC) in the main zone and three N application rates of 0, 180, and 360 kg hm-2 of urea in the secondary zone. The research has shown that RC treatments can enhance plant growth and increase corn yield by 4.76% to 79.92% compared to CC treatments. The amount of N fertilizer applied has a negative correlation with yield increase range, and N application above 180 kg hm-2 has a significantly lower effect on corn yield increase. Therefore, a reduction in N fertilizer application may be appropriate. RC increased soil N storage by improving soil N-transforming enzyme activity, improving soil N content and the proportion of soil organic N fractions. Additionally, it can improve plant N use efficiency by 1.4%-5.6%. Soybeans grown in corn-soybean rotations systems have the potential to replace more than 180 kg hm-2 of urea application. Corn-soybean rotation with low N inputs is an efficient and sustainable agricultural strategy.
Collapse
Affiliation(s)
- Chao Yan
- College of Agriculture, Northeast Agricultural University, Harbin, China
| | - Yi Yang
- College of Agriculture, Northeast Agricultural University, Harbin, China
| | - Junming Song
- Chinese People’s Armed Police Force Non Commissioned Officer School, Hangzhou, China
| | - Fuxin Shan
- College of Agriculture, Northeast Agricultural University, Harbin, China
| | - Xiaochen Lyu
- College of Agriculture, Northeast Agricultural University, Harbin, China
| | - Shuangshuang Yan
- College of Agriculture, Northeast Agricultural University, Harbin, China
| | - Chang Wang
- College of Agriculture, Northeast Agricultural University, Harbin, China
| | - Qiulai Song
- Institute of Crop Cultivation and Tillage, Heilongjiang Academy of Agricultural Sciences, Harbin, Heilongjiang, China
| | - Chunmei Ma
- College of Agriculture, Northeast Agricultural University, Harbin, China
| |
Collapse
|
11
|
Kayiranga A, Isabwe A, Yao H, Shangguan H, Coulibaly JLK, Breed M, Sun X. Distribution patterns of soil bacteria, fungi, and protists emerge from distinct assembly processes across subcommunities. Ecol Evol 2024; 14:e11672. [PMID: 38988351 PMCID: PMC11236429 DOI: 10.1002/ece3.11672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/14/2024] [Accepted: 06/17/2024] [Indexed: 07/12/2024] Open
Abstract
Environmental change exerts a profound effect on soil microbial domains-including bacteria, fungi, and protists-that each perform vital ecological processes. While these microbial domains are ubiquitous and extremely diverse, little is known about how they respond to environmental changes in urban soil ecosystems and what ecological processes shape them. Here we investigated the community assembly processes governing bacteria, fungi, and protists through the lens of four distinct subcommunities: abundant, conditionally rare, conditionally abundant, and rare taxa. We show that transient taxa, including the conditionally rare and conditionally rare or abundant taxa, were the predominant subcommunities. Deterministic processes (e.g., environmental filtering) had major roles in structuring all subcommunities of fungi, as well as conditionally rare and abundant protists. Stochastic processes had strong effects in structuring all subcommunities of bacteria (except rare taxa) and conditionally rare protists. Overall, our study underscores the importance of complementing the traditional taxonomy of microbial domains with the subcommunity approach when investigating microbial communities in urban soil ecosystems.
Collapse
Affiliation(s)
- Alexis Kayiranga
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment Chinese Academy of Sciences Xiamen China
- University of Chinese Academy of Sciences Beijing China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control CAS Haixi Industrial Technology Innovation Center in Beilun Ningbo China
| | - Alain Isabwe
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment Chinese Academy of Sciences Xiamen China
| | - Haifeng Yao
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment Chinese Academy of Sciences Xiamen China
- University of Chinese Academy of Sciences Beijing China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control CAS Haixi Industrial Technology Innovation Center in Beilun Ningbo China
| | - Huayuan Shangguan
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment Chinese Academy of Sciences Xiamen China
- University of Chinese Academy of Sciences Beijing China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control CAS Haixi Industrial Technology Innovation Center in Beilun Ningbo China
| | - Justin Louis Kafana Coulibaly
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment Chinese Academy of Sciences Xiamen China
- University of Chinese Academy of Sciences Beijing China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control CAS Haixi Industrial Technology Innovation Center in Beilun Ningbo China
| | - Martin Breed
- College of Science and Engineering Flinders University Bedford Park South Australia Australia
| | - Xin Sun
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment Chinese Academy of Sciences Xiamen China
- University of Chinese Academy of Sciences Beijing China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control CAS Haixi Industrial Technology Innovation Center in Beilun Ningbo China
| |
Collapse
|
12
|
Hu H, Meng J, Zheng H, Cai H, Wang M, Luo Z, E Y, Li C, Wu Q, Yan Z, Lei Y. Relief effect of biochar on continuous cropping of tobacco through the reduction of p-hydroxybenzoic acid in soil. Heliyon 2024; 10:e33011. [PMID: 38994090 PMCID: PMC11238006 DOI: 10.1016/j.heliyon.2024.e33011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 06/12/2024] [Accepted: 06/12/2024] [Indexed: 07/13/2024] Open
Abstract
Biochar application to soil has proven to be an excellent approach for decreasing the concentration of auto-toxic compounds and promoting plant growth in continuous-cropping fields. However, the mechanisms underlying the action pathway among biochars, auto-toxic compounds and tobacco remain unknown. In this study, we conducted an experiment tracking the incidence rate of black rot and auto-toxic compounds for a 3-year continuous-cropping tobacco pot trial in response to biochar treatment intensity compared with that of non-biochar treatment. Biochar inhibited the incidence of black rot. Using ultra-high-performance liquid chromatography-mass spectrometry (UPLC‒MS/MS), we revealed that biochar can effectively decrease the concentration of p-hydroxybenzoic acid (PHA), which is associated with the incidence rate of black rot (R2 = 0.890, p < 0.05). The sorption kinetics and isotherm of PHA sorption on biochar indicate that the coexistence of heterogeneous and monolayer sorption plays an important role in the adsorption process. Using Molecular dynamics (MD), Density functional theory (DFT) and Independent gradient model (IGM) analyses, we provide evidence that van der Waals force (vdW), π-π bonds and H-bonds between biochar and PHAs are the dominant factors that affect adsorption capacity. Moreover, the molecular adsorption rate (Nbiochar: NPHAs = 1:4) was theoretically calculated. In contrast, biochar dramatically increased nutrient retention capacity and improved soil properties, further enhancing tobacco quality, including its agronomic and physiological traits. Therefore, we considered that biochar not only relieved continuous cropping but also improved soil properties suitable for tobacco growth. Together, we demonstrate that the action of biochar in continuously cropped soil improves soil traits and alleviates auto-toxic compound toxicity. These data contribute to the direction of modified biochar application to improve continuous-cropping soil.
Collapse
Affiliation(s)
- Haijun Hu
- Bijie Tobacco Company of Guizhou Province, Bijie, Guizhou, 551700, PR China
- Zunyi Normal College, Zunyi, 863002, PR China
| | - Jun Meng
- National Biochar Institute of Shenyang Agricultural University, Shenyang, 110866, PR China
| | - Huan Zheng
- Bijie Tobacco Company of Guizhou Province, Bijie, Guizhou, 551700, PR China
| | - Heqing Cai
- Bijie Tobacco Company of Guizhou Province, Bijie, Guizhou, 551700, PR China
| | - Maoxian Wang
- Bijie Tobacco Company of Guizhou Province, Bijie, Guizhou, 551700, PR China
| | - Zhenbao Luo
- Bijie Tobacco Company of Guizhou Province, Bijie, Guizhou, 551700, PR China
| | - Yang E
- Bijie Tobacco Company of Guizhou Province, Bijie, Guizhou, 551700, PR China
- National Biochar Institute of Shenyang Agricultural University, Shenyang, 110866, PR China
| | - Caibin Li
- Bijie Tobacco Company of Guizhou Province, Bijie, Guizhou, 551700, PR China
| | - Qiaoxue Wu
- Bijie Tobacco Company of Guizhou Province, Bijie, Guizhou, 551700, PR China
| | - Zhiqiang Yan
- Guizhou Rice Research Institute, Guiyang, 550016, PR China
| | - Yue Lei
- Guizhou Rice Research Institute, Guiyang, 550016, PR China
| |
Collapse
|
13
|
Zou M, Zhang Q, Li F, Chen L, Qiu Y, Yin Q, Zhou S. Impacts of multiple environmental factors on soil bacterial community assembly in heavy metal polluted paddy fields. Sci Rep 2024; 14:14696. [PMID: 38926471 PMCID: PMC11208537 DOI: 10.1038/s41598-024-65678-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 06/24/2024] [Indexed: 06/28/2024] Open
Abstract
Soil microorganisms play pivotal roles in driving essential biogeochemical processes in terrestrial ecosystems, and they are sensitive to heavy metal pollution. However, our understanding of multiple environmental factors interaction in heavy metal polluted paddy fields to shape microbial community assembly remain limited. In the current study, we used 16S rRNA amplicon sequencing to characterize the microbial community composition in paddy soils collected from a typical industry town in Taihu region, eastern China. The results revealed that Cd and Pb were the major pollutant, and Proteobacteria, Acidobacteria and Chloroflexi were the dominate indigenous bacterial phyla. Linear regression and random forest analysis demonstrated that soil pH was the most important predictor of bacterial diversity. Mantel analysis showed that bacterial community structure was mainly driven by pH, CEC, silt, sand, AK, total Cd and DTPA-Cd. The constructed bacterial co-occurrence network, utilizing a random matrix theory-based approach, exhibited non-random with scale-free and modularity features. The major modules within the networks also showed significant correlations with soil pH. Overall, our study indicated that soil physiochemical properties made predominant contribution to bacterial community diversity, structure and their association in Cd/Pb polluted paddy fields. These findings expand our knowledge of the key environmental drivers and co-occurrence patterns of bacterial community in polluted paddy fields.
Collapse
Affiliation(s)
- Mengmeng Zou
- School of Geography and Ocean Science, Nanjing University, 163 Xianlin Road, Nanjing, 210023, Jiangsu, People's Republic of China
- Key Laboratory of Coastal Zone Exploitation and Protection, Ministry of Natural Resources, Nanjing, 210024, People's Republic of China
| | - Qi Zhang
- School of Geography and Ocean Science, Nanjing University, 163 Xianlin Road, Nanjing, 210023, Jiangsu, People's Republic of China
- Key Laboratory of Coastal Zone Exploitation and Protection, Ministry of Natural Resources, Nanjing, 210024, People's Republic of China
| | - Fengchun Li
- Testing Center of Shandong Bureau of China Metallurgy and Geology, Jinan, 250014, People's Republic of China
| | - Long Chen
- School of Geography and Ocean Science, Nanjing University, 163 Xianlin Road, Nanjing, 210023, Jiangsu, People's Republic of China
- Key Laboratory of Coastal Zone Exploitation and Protection, Ministry of Natural Resources, Nanjing, 210024, People's Republic of China
| | - Yifei Qiu
- School of Geography and Ocean Science, Nanjing University, 163 Xianlin Road, Nanjing, 210023, Jiangsu, People's Republic of China
- Key Laboratory of Coastal Zone Exploitation and Protection, Ministry of Natural Resources, Nanjing, 210024, People's Republic of China
| | - Qiqi Yin
- School of Geography and Ocean Science, Nanjing University, 163 Xianlin Road, Nanjing, 210023, Jiangsu, People's Republic of China
- Key Laboratory of Coastal Zone Exploitation and Protection, Ministry of Natural Resources, Nanjing, 210024, People's Republic of China
| | - Shenglu Zhou
- School of Geography and Ocean Science, Nanjing University, 163 Xianlin Road, Nanjing, 210023, Jiangsu, People's Republic of China.
- Key Laboratory of Coastal Zone Exploitation and Protection, Ministry of Natural Resources, Nanjing, 210024, People's Republic of China.
| |
Collapse
|
14
|
Delaeter M, Magnin-Robert M, Randoux B, Lounès-Hadj Sahraoui A. Arbuscular Mycorrhizal Fungi as Biostimulant and Biocontrol Agents: A Review. Microorganisms 2024; 12:1281. [PMID: 39065050 PMCID: PMC11278648 DOI: 10.3390/microorganisms12071281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 06/16/2024] [Accepted: 06/18/2024] [Indexed: 07/28/2024] Open
Abstract
Arbuscular mycorrhizal fungi (AMF) are soil microorganisms living in symbiosis with most terrestrial plants. They are known to improve plant tolerance to numerous abiotic and biotic stresses through the systemic induction of resistance mechanisms. With the aim of developing more sustainable agriculture, reducing the use of chemical inputs is becoming a major concern. After providing an overview on AMF history, phylogeny, development cycle and symbiosis benefits, the current review aims to explore the potential of AMF as biostimulants and/or biocontrol agents. Nowadays, AMF inoculums are already increasingly used as biostimulants, improving mineral nutrient plant acquisition. However, their role as a promising tool in the biocontrol market, as an alternative to chemical phytosanitary products, is underexplored and underdiscussed. Thus, in the current review, we will address the mechanisms of mycorrhized plant resistance to biotic stresses induced by AMF, and highlight the various factors in favor of inoculum application, but also the challenges that remain to be overcome.
Collapse
Affiliation(s)
| | | | | | - Anissa Lounès-Hadj Sahraoui
- Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV, UR 4492), Université du Littoral Côte d’Opale, 50 Rue Ferdinand Buisson, 62228 Calais, France
| |
Collapse
|
15
|
Wang X, Yang Y, Nan Q, Guo JW, Tan Z, Shao X, Tian C. Barley farmland harbors a highly homogeneous soil bacterial community compared to wild ecosystems in the Qinghai-Xizang Plateau. Front Microbiol 2024; 15:1418161. [PMID: 38979541 PMCID: PMC11228161 DOI: 10.3389/fmicb.2024.1418161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 06/11/2024] [Indexed: 07/10/2024] Open
Abstract
Introduction Understanding patterns and processes of microbial biogeography in soils is important for monitoring ecological responses to human activities, particularly in ecologically vulnerable areas such as the Qinghai-Xizang Plateau. Highland barley is the staple food of local people and has mainly been cultivated along the Yarlung Zangbo River valley in Xizang. Methods Here we investigated soil bacterial communities from 33 sampling sites of highland barley farmland in this region and compared them to those from wild ecosystems including alpine tundra, meadow, forest, and swamp. Additionally, the effects of environmental factors on bacterial communities, as well as the relative importance of stochastic and deterministic processes in shaping the beta diversity of soil bacterial communities in alpine ecosystems were assessed. Results In contrast to soils of wild ecosystems, these farmland samples harbored a highly homogeneous bacterial community without significant correlations with geographic, elevation, and edaphic distances. Discriminant bacterial taxa identified for farmland samples belong to Acidobacteria, with Acidobacteria Gp4 as the dominant clade. Although Acidobacteria were the most abundant members in all ecosystems, characterized bacterial taxa of meadow and forest were members of other phyla such as Proteobacteria and Verrucomicrobia. pH and organic matter were major edaphic attributes shaping these observed patterns across ecosystems. Null model analyses revealed that the deterministic assembly was dominant in bacterial communities in highland barley farmland and tundra soils, whereas stochastic assembly also contributed a large fraction to the assembly of bacterial communities in forest, meadow and swamp soils. Discussion These findings provide an insight into the consequences of human activities and agricultural intensification on taxonomic homogenization of soil bacterial communities in the Qinghai-Xizang Plateau.
Collapse
Affiliation(s)
- Xiaolin Wang
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, China
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yibin Yang
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, China
| | - Qiong Nan
- Institute of Environmental Science and Technology, College of Environment and Resource Science, Zhejiang University, Hangzhou, China
| | - Jian-Wei Guo
- College of Agronomy and Life Sciences, Yunnan Urban Agricultural Engineering and Technological Research Center, Kunming University, Kunming, China
| | - Zhiyuan Tan
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, China
| | - Xiaoming Shao
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Changfu Tian
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
16
|
Louisson Z, Gutiérrez-Ginés MJ, Taylor M, Buckley HL, Hermans SM, Lear G. Soil conditions are a more important determinant of microbial community composition and functional potential than neighboring plant diversity. iScience 2024; 27:110056. [PMID: 38883816 PMCID: PMC11176639 DOI: 10.1016/j.isci.2024.110056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 04/14/2024] [Accepted: 05/17/2024] [Indexed: 06/18/2024] Open
Abstract
Replanting is an important tool for ecological recovery. Management strategies, such as planting areas with monocultures or species mixtures, have implications for restoration success. We used 16S and ITS rRNA gene amplicon sequencing and shotgun metagenomics to assess how the diversity of neighboring tree species impacted soil bacterial and fungal communities, and their functional potential, within the root zone of mānuka (Leptospermum scoparium) trees. We compared data from monoculture and mixed tree species plots and confirmed that soil microbial taxonomic and functional community profiles significantly differed (p < 0.001). Compared to the diversity of neighboring tree species within the plot, soil environmental conditions and geographic distance was more important for structuring the microbial communities. The bacterial communities appeared more impacted by soil conditions, while the fungal communities displayed stronger spatial structuring, possibly due to wider bacterial dispersal. The different mechanisms structuring bacterial and fungal communities could have implications for ecological restoration outcomes.
Collapse
Affiliation(s)
- Ziva Louisson
- School of Biological Sciences, University of Auckland, 3a Symonds Street, Auckland 1010, New Zealand
| | - Maria J Gutiérrez-Ginés
- Institute of Environmental Science and Research Ltd., 27 Creyke Road, Ilam, Christchurch 8041, New Zealand
| | - Matthew Taylor
- Waikato Regional Council, 160 Ward St, Hamilton 3204, New Zealand
| | - Hannah L Buckley
- School of Science, Auckland University of Technology, 34 St Paul Street, Auckland 1010, New Zealand
| | - Syrie M Hermans
- School of Science, Auckland University of Technology, 34 St Paul Street, Auckland 1010, New Zealand
| | - Gavin Lear
- School of Biological Sciences, University of Auckland, 3a Symonds Street, Auckland 1010, New Zealand
| |
Collapse
|
17
|
Wang S, Hadji-Thomas A, Adekunle A, Raghavan V. The exploitation of bio-electrochemical system and microplastics removal: Possibilities and perspectives. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 930:172737. [PMID: 38663611 DOI: 10.1016/j.scitotenv.2024.172737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/25/2024] [Accepted: 04/22/2024] [Indexed: 05/02/2024]
Abstract
Microplastic (MP) pollution has caused severe concern due to its harmful effect on human beings and ecosystems. Existing MP removal methods face many obstacles, such as high cost, high energy consumption, low efficiency, release of toxic chemicals, etc. Thus, it is crucial to find appropriate and sustainable methods to replace common MP removal approaches. Bio-electrochemical system (BES) is a sustainable clean energy technology that has been successfully applied to wastewater treatment, seawater desalination, metal removal, energy production, biosensors, etc. However, research reports on BES technology to eliminate MP pollution are limited. This paper reviews the mechanism, hazards, and common treatment methods of MP removal and discusses the application of BES systems to improve MP removal efficiency and sustainability. Firstly, the characteristics and limitations of common MP removal techniques are systematically summarized. Then, the potential application of BES technology in MP removal is explored. Furthermore, the feasibility and stability of the potential BES MP removal application are critically evalauted while recommendations for further research are proposed.
Collapse
Affiliation(s)
- Shuyao Wang
- Bioresource Engineering, Faculty of Agricultural and Environmental Sciences, McGill University, 21111 Lakeshore Road, Sainte-Anne-de-Bellevue, QC H9X 3V9, Canada.
| | - Andre Hadji-Thomas
- Bioresource Engineering, Faculty of Agricultural and Environmental Sciences, McGill University, 21111 Lakeshore Road, Sainte-Anne-de-Bellevue, QC H9X 3V9, Canada.
| | - Ademola Adekunle
- National Research Council of Canada, 6100 Avenue Royalmount, Montréal, QC H4P 2R2, Canada.
| | - Vijaya Raghavan
- Bioresource Engineering, Faculty of Agricultural and Environmental Sciences, McGill University, 21111 Lakeshore Road, Sainte-Anne-de-Bellevue, QC H9X 3V9, Canada.
| |
Collapse
|
18
|
Yan H, Wu S, Li P, Jin X, Shi D, Tu D, Zeng WA, Tan L. Tobacco crop rotation enhances the stability and complexity of microbial networks. Front Microbiol 2024; 15:1416256. [PMID: 38962123 PMCID: PMC11220274 DOI: 10.3389/fmicb.2024.1416256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 05/28/2024] [Indexed: 07/05/2024] Open
Abstract
Introduction The effects of continuous cropping and rotation cropping, two important tobacco cultivation practices, on soil microbial communities at different stages remain unclear. Different planting patterns have been shown to influence soil physical and chemical properties, which in turn can affect the composition and diversity of soil microbial communities. Methods In order to investigate the impact of different planting methods on soil microbial community structure, we selected two representative planting methods: continuous cropping (tobacco) and rotational cropping (tobacco-maize). These methods were chosen as the focal points of our research to explore the potential effects on soil microbial communities. High-throughput sequencing technology was employed to investigate the structure of soil microbial communities, as well as their relationships with soil environmental factors, by utilizing the 16S rRNA, ITS, and 18S genes. Furthermore, the interaction among microorganisms was explored through the application of the Random Matrix Theory (RMT) molecular ecological network approach. Results There was no significant difference in α diversity, but significant difference in β diversity based on Jaccard distance test. Compared to continuous cropping, crop rotation significantly increased the abundance of beneficial prokaryotes Verrucomicrobia and Rhodanobacter. These findings indicate that crop rotation promotes the enrichment of Verrucomicrobia and Rhodanobacter in the soil microbial community. AP and NH4-N had a greater effect on the community structure of prokaryotes and fungi in tobacco soil, while only AP had a greater effect on the community structure of protist. Molecular ecological network analysis showed that the network robustness and Cohesion of rotation were significantly higher than that of continuous cropping, indicating that the complexity and stability of molecular ecological networks were higher in the rotational, and the microbial communities cooperated more effectively, and the community structure was more stable. Discussion From this point of view, rotational cropping is more conducive to changing the composition of soil microbial community, enhancing the stability of microbial network structure, and enhancing the potential ecological functions in soil.
Collapse
Affiliation(s)
- Huilin Yan
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, Qinghai, China
| | - Shaolong Wu
- Tobacco Company of Hunan Province, Changsha, Hunan, China
| | - Ping Li
- Academy of Agriculture and Forestry Science of Qinghai University, Xining, Qinghai, China
| | - Xin Jin
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, Qinghai, China
| | - Dejun Shi
- Qinghai Province Grassland Improvement Experimental Station, Gonghe, Qinghai, China
| | - Danjia Tu
- Qinghai Province Grassland Improvement Experimental Station, Gonghe, Qinghai, China
| | - Wei-ai Zeng
- Changsha Tobacco Company of Hunan Province, Changsha, Hunan, China
| | - Lin Tan
- College of Plant Protection, Hunan Agricultural University, Changsha, Hunan, China
| |
Collapse
|
19
|
Islam MM, Jana SK, Sengupta S, Mandal S. Impact of Rhizospheric Microbiome on Rice Cultivation. Curr Microbiol 2024; 81:188. [PMID: 38780806 DOI: 10.1007/s00284-024-03703-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 04/13/2024] [Indexed: 05/25/2024]
Abstract
The rhizosphere niche is extremely important for the overall growth and development of plants. Evidently, it is necessary to understand the complete mechanism of plant microbe interactions of the rhizosphere for sustainable and low input productivity. To meet the increasing global food demand, rice (Oryza sativa L.) agriculture seeks optimal conditions. The unique oxic-anoxic interface of rice-growing soil has invited divergent microbes with dynamic biogeochemical cycles. This review provides the systematic analysis of microbes associated with the major biogeochemical cycles with the aim to generate better management strategies of rhizospheric microbiome in the field of rice agriculture. For instance, several methanogenic and methanotrophic bacteria in the rice rhizosphere make an equilibrium for methane concentration in the environment. The carbon sequestration in paddy soil is again done through many rhizospheric microorganisms that can directly assimilate CO2 with their photoautotrophic mode of nutrition. Also the phosphate solubilizing microbes remain to be the most important keys for the PGPR activity of the paddy ecosystem. In addition, rhizospheric microbiome remain crucial in degradation and solubilization of organo-sulfur and insoluble inorganic sulfides which can be taken by the plants. Further, this review elucidates on the advantages of using metagenomic and metaproteomic approaches as an alternative of traditional approaches to understand the overall metabolic pathways operational in paddy-field. These knowledges are expected to open new possibilities for designing the balanced microbiome used as inoculum for intensive farming and will eventually lead to exert positive impacts on rice cultivation.
Collapse
Affiliation(s)
- Md Majharul Islam
- Laboratory of Molecular Bacteriology, Department of Microbiology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, India
| | - Santosh Kumar Jana
- Laboratory of Molecular Bacteriology, Department of Microbiology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, India
| | - Subhadipa Sengupta
- Post Graduate Department of Botany, Bidhannagar College, EB -2, Sector 1, Salt Lake, Kolkata, 700064, India.
| | - Sukhendu Mandal
- Laboratory of Molecular Bacteriology, Department of Microbiology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, India.
| |
Collapse
|
20
|
Cao T, Shi M, Zhang J, Ji H, Wang X, Sun J, Chen Z, Li Q, Song X. Nitrogen fertilization practices alter microbial communities driven by clonal integration in Moso bamboo. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 924:171581. [PMID: 38461973 DOI: 10.1016/j.scitotenv.2024.171581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/03/2024] [Accepted: 03/06/2024] [Indexed: 03/12/2024]
Abstract
Nitrogen (N) fertilization is crucial for maintaining plant productivity. Clonal plants can share resources between connected ramets through clonal integration influencing microbial communities and regulating soil biogeochemical cycling, especially in the rhizosphere. However, the effect of various N fertilization practices on microbial communities in the rhizosphere of clonal ramets remain unknown. In this study, clonal fragments of Moso bamboo (Phyllostachys edulis), consisting of a parent ramet, an offspring ramet, and an interconnecting rhizome, were established in the field. NH4NO3 solution was applied to the parent, offspring ramets or rhizomes to investigate the effect of fertilization practices on the structure and function of rhizosphere microbial communities. The differences in N availability, microbial biomass and community composition, and abundance of nitrifying genes among rhizosphere soils of ramets gradually decreased during the rapid growth of Moso bamboo, irrespective of fertilization practice. The soil N availability variation, particularly in NO3-, caused by fertilization practices altered the rhizosphere microbial community. Soil N availability and stable microbial biomass N in parent fertilization were the highest, being 9.0 % and 18.7 %, as well as 60.8 % and 90.4 % higher than rhizome and offspring fertilizations, respectively. The microbial network nodes and links in rhizome fertilization were 1.8 and 7.5 times higher than in parent and offspring fertilization, respectively. However, the diversity of bacterial community and abundance of nitrifying and denitrifying genes were the highest in offspring fertilization among three practices, which may be associated with increased N loss. Collectively, the rhizosphere microbial community characteristics depended on fertilization practices by altering the clonal integration of N in Moso bamboo. Parent and rhizome fertilization were favorable for N retention in plant-soil system and resulted in more stable microbial functions than offspring fertilization. Our findings provide new insights into precision fertilization for the sustainable Moso bamboo forest management.
Collapse
Affiliation(s)
- Tingting Cao
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Man Shi
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Junbo Zhang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Hangxiang Ji
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Xiao Wang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Jilei Sun
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Zhenxiong Chen
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Quan Li
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Xinzhang Song
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao 266109, China.
| |
Collapse
|
21
|
Li T, Lan J, Wang Y, Sun L, Li Y, Zhao Z. Enhanced biotoxicity by co-exposure of aged polystyrene and ciprofloxacin: the adsorption and its influence factors. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:185. [PMID: 38695908 DOI: 10.1007/s10653-024-01961-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 03/18/2024] [Indexed: 06/17/2024]
Abstract
Microplastics (MPs), as emerging contaminants, usually experience aging processes in natural environments and further affect their interactions with coexisted contaminants, resulting in unpredictable ecological risks. Herein, the effect of MPs aging on their adsorption for coexisting antibiotics and their joint biotoxicity have been investigated. Results showed that the adsorption capacity of aged polystyrene (PS, 100 d and 50 d) for ciprofloxacin (CIP) was 1.10-4.09 times higher than virgin PS due to the larger BET surface area and increased oxygen-containing functional groups of aged PS. Following the increased adsorption capacity of aged PS, the joint toxicity of aged PS and CIP to Shewanella Oneidensis MR-1 (MR-1) was 1.03-1.34 times higher than virgin PS and CIP. Combined with the adsorption process, CIP posed higher toxicity to MR-1 compared to aged PS due to the rapid adsorption of aged PS for CIP in the first 12 h. After that, the adsorption process tended to be gentle and hence the joint toxicity to MR-1 was gradually dominated by aged PS. A similar transformation between the adsorption rate and the joint toxicity of PS and CIP was observed under different conditions. This study supplied a novel perception of the synergistic effects of PS aging and CIP on ecological health.
Collapse
Affiliation(s)
- Tongtong Li
- College of Environmental Science and Engineering, Qingdao University, Qingdao, 266071, China
| | - Jing Lan
- College of Environmental Science and Engineering, Qingdao University, Qingdao, 266071, China
| | - Yaoyao Wang
- College of Environmental Science and Engineering, Qingdao University, Qingdao, 266071, China
| | - Lulu Sun
- College of Environmental Science and Engineering, Qingdao University, Qingdao, 266071, China
| | - Yaru Li
- College of Environmental Science and Engineering, Qingdao University, Qingdao, 266071, China.
| | - Zongshan Zhao
- College of Environmental Science and Engineering, Qingdao University, Qingdao, 266071, China.
| |
Collapse
|
22
|
Peng Z, Johnson NC, Jansa J, Han J, Fang Z, Zhang Y, Jiang S, Xi H, Mao L, Pan J, Zhang Q, Feng H, Fan T, Zhang J, Liu Y. Mycorrhizal effects on crop yield and soil ecosystem functions in a long-term tillage and fertilization experiment. THE NEW PHYTOLOGIST 2024; 242:1798-1813. [PMID: 38155454 DOI: 10.1111/nph.19493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 12/04/2023] [Indexed: 12/30/2023]
Abstract
It is well understood that agricultural management influences arbuscular mycorrhizal (AM) fungi, but there is controversy about whether farmers should manage for AM symbiosis. We assessed AM fungal communities colonizing wheat roots for three consecutive years in a long-term (> 14 yr) tillage and fertilization experiment. Relationships among mycorrhizas, crop performance, and soil ecosystem functions were quantified. Tillage, fertilizers and continuous monoculture all reduced AM fungal richness and shifted community composition toward dominance of a few ruderal taxa. Rhizophagus and Dominikia were depressed by tillage and/or fertilization, and their abundances as well as AM fungal richness correlated positively with soil aggregate stability and nutrient cycling functions across all or no-tilled samples. In the field, wheat yield was unrelated to AM fungal abundance and correlated negatively with AM fungal richness. In a complementary glasshouse study, wheat biomass was enhanced by soil inoculum from unfertilized, no-till plots while neutral to depressed growth was observed in wheat inoculated with soils from fertilized and conventionally tilled plots. This study demonstrates contrasting impacts of low-input and conventional agricultural practices on AM symbiosis and highlights the importance of considering both crop yield and soil ecosystem functions when managing mycorrhizas for more sustainable agroecosystems.
Collapse
Affiliation(s)
- Zhenling Peng
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Nancy Collins Johnson
- School of Earth and Sustainability, Northern Arizona University, Flagstaff, AZ, 86001, USA
| | - Jan Jansa
- Laboratory of Fungal Biology, Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, 14220, Prague, Czech Republic
| | - Jiayao Han
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Zhou Fang
- School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Yali Zhang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Shengjing Jiang
- College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Hao Xi
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Lin Mao
- College of Life Sciences, Northwest Normal University, Lanzhou, 730070, China
| | - Jianbin Pan
- School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Qi Zhang
- School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Huyuan Feng
- School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Tinglu Fan
- Dryland Agriculture Institute, Gansu Academy of Agricultural Sciences, Lanzhou, 730070, China
| | - Jianjun Zhang
- Dryland Agriculture Institute, Gansu Academy of Agricultural Sciences, Lanzhou, 730070, China
| | - Yongjun Liu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| |
Collapse
|
23
|
Ghaly TM, Gillings MR, Rajabal V, Paulsen IT, Tetu SG. Horizontal gene transfer in plant microbiomes: integrons as hotspots for cross-species gene exchange. Front Microbiol 2024; 15:1338026. [PMID: 38741746 PMCID: PMC11089894 DOI: 10.3389/fmicb.2024.1338026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 04/08/2024] [Indexed: 05/16/2024] Open
Abstract
Plant microbiomes play important roles in plant health and fitness. Bacterial horizontal gene transfer (HGT) can influence plant health outcomes, driving the spread of both plant growth-promoting and phytopathogenic traits. However, community dynamics, including the range of genetic elements and bacteria involved in this process are still poorly understood. Integrons are genetic elements recently shown to be abundant in plant microbiomes, and are associated with HGT across broad phylogenetic boundaries. They facilitate the spread of gene cassettes, small mobile elements that collectively confer a diverse suite of adaptive functions. Here, we analysed 5,565 plant-associated bacterial genomes to investigate the prevalence and functional diversity of integrons in this niche. We found that integrons are particularly abundant in the genomes of Pseudomonadales, Burkholderiales, and Xanthomonadales. In total, we detected nearly 9,000 gene cassettes, and found that many could be involved in plant growth promotion or phytopathogenicity, suggesting that integrons might play a role in bacterial mutualistic or pathogenic lifestyles. The rhizosphere was enriched in cassettes involved in the transport and metabolism of diverse substrates, suggesting that they may aid in adaptation to this environment, which is rich in root exudates. We also found that integrons facilitate cross-species HGT, which is particularly enhanced in the phyllosphere. This finding may provide an ideal opportunity to promote plant growth by fostering the spread of genes cassettes relevant to leaf health. Together, our findings suggest that integrons are important elements in plant microbiomes that drive HGT, and have the potential to facilitate plant host adaptation.
Collapse
Affiliation(s)
- Timothy M. Ghaly
- School of Natural Sciences, Macquarie University, Sydney, NSW, Australia
| | | | - Vaheesan Rajabal
- School of Natural Sciences, Macquarie University, Sydney, NSW, Australia
- ARC Centre of Excellence in Synthetic Biology, Sydney, NSW, Australia
| | - Ian T. Paulsen
- School of Natural Sciences, Macquarie University, Sydney, NSW, Australia
- ARC Centre of Excellence in Synthetic Biology, Sydney, NSW, Australia
| | - Sasha G. Tetu
- School of Natural Sciences, Macquarie University, Sydney, NSW, Australia
- ARC Centre of Excellence in Synthetic Biology, Sydney, NSW, Australia
| |
Collapse
|
24
|
Liu X, Zhong L, Yang R, Wang H, Liu X, Xue W, Yang H, Shen Y, Li J, Sun Z. Modifying soil bacterial communities in saline mudflats with organic acids and substrates. Front Microbiol 2024; 15:1392441. [PMID: 38706968 PMCID: PMC11066327 DOI: 10.3389/fmicb.2024.1392441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 04/11/2024] [Indexed: 05/07/2024] Open
Abstract
Aims The high salinity of soil, nutrient scarcity, and poor aggregate structure limit the exploitation and utilization of coastal mudflat resources and the sustainable development of saline soil agriculture. In this paper, the effects of applying exogenous organic acids combined with biological substrate on the composition and diversity of soil bacterial community were studied in moderately saline mudflats in Jiangsu Province. Methods A combination of three exogenous organic acids (humic acid, fulvic acid, and citric acid) and four biological substrates (cottonseed hull, cow manure, grass charcoal, and pine needle) was set up set up on a coastal saline mudflat planted with a salt-tolerant forage grass, sweet sorghum. A total of 120 kg ha-1 of organic acids and 5,000 kg ha-1 of substrates were used, plus two treatments, CK without application of organic acids and substrates and CK0 in bare ground, for a total of 14 treatments. Results No significant difference was found in the alpha diversity of soil bacterial community among all treatments (p ≥ 0.05), with the fulvic acid composite pine needle (FPN) treatment showing the largest increase in each index. The beta diversity differed significantly (p < 0.05) among all treatments, and the difference between citric acid-grass charcoal (CGC) and CK treatments was greater than that of other treatments. All treatments were effective in increasing the number of bacterial ASVs and affecting the structural composition of the community. Citric acid-cow manure (CCM), FPN, and CGC treatments were found to be beneficial for increasing the relative abundance of Proteobacteria, Chloroflexi, and Actinobacteria, respectively. By contrast, all treatments triggered a decrease in the relative abundance of Acidobacteria. Conclusion Among the 12 different combinations of exogenous organic acid composite biomass substrates applied to the coastal beach, the CGC treatment was more conducive to increasing the relative abundance of the salt-tolerant bacteria Proteobacteria, Chloroflexi and Actinobacteria, and improving the community structure of soil bacteria. The FPN treatment was more conducive to increase the species diversity of the soil bacterial community and adjust the species composition of the bacterial community.
Collapse
Affiliation(s)
- Xiaoyu Liu
- College of Agro-grassland Science, Nanjing Agricultural University, Nanjing, China
| | - Liang Zhong
- School of Life Science, Nanjing University, Nanjing, China
| | - Ruixue Yang
- College of Agro-grassland Science, Nanjing Agricultural University, Nanjing, China
| | - Huiyan Wang
- College of Agro-grassland Science, Nanjing Agricultural University, Nanjing, China
| | - Xinbao Liu
- College of Agro-grassland Science, Nanjing Agricultural University, Nanjing, China
| | - Wei Xue
- College of Agro-grassland Science, Nanjing Agricultural University, Nanjing, China
| | - He Yang
- College of Agro-grassland Science, Nanjing Agricultural University, Nanjing, China
| | - Yixin Shen
- College of Agro-grassland Science, Nanjing Agricultural University, Nanjing, China
| | - Jianlong Li
- College of Agro-grassland Science, Nanjing Agricultural University, Nanjing, China
- School of Life Science, Nanjing University, Nanjing, China
| | - Zhengguo Sun
- College of Agro-grassland Science, Nanjing Agricultural University, Nanjing, China
- Nanjing University (Suzhou) High and New Technology Research Institute, Suzhou, China
| |
Collapse
|
25
|
Li W, Wu H, Hua J, Zhu C, Guo S. Arbuscular mycorrhizal fungi enhanced resistance to low-temperature weak-light stress in snapdragon ( Antirrhinum majus L.) through physiological and transcriptomic responses. FRONTIERS IN PLANT SCIENCE 2024; 15:1330032. [PMID: 38681217 PMCID: PMC11045995 DOI: 10.3389/fpls.2024.1330032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 03/25/2024] [Indexed: 05/01/2024]
Abstract
Introduction Low temperature (LT) and weak light (WL) seriously affects the yield and quality of snapdragon in winter greenhouse. Arbuscular mycorrhizal fungi (AMF) exert positive role in regulating growth and enhancing abiotic stress tolerance in plants. Nevertheless, the molecular mechanisms by AMF improve the LT combined with WL (LTWL) tolerance in snapdragon remain mostly unknown. Methods We compared the differences in root configuration, osmoregulatory substances, enzymatic and non-enzymatic antioxidant enzyme defense systems and transcriptome between AMF-inoculated and control groups under LT, WL, low light, and LTWL conditions. Results Our analysis showed that inoculation with AMF effectively alleviated the inhibition caused by LTWL stress on snapdragon root development, and significantly enhanced the contents of soluble sugars, soluble proteins, proline, thereby maintaining the osmotic adjustment of snapdragon. In addition, AMF alleviated reactive oxygen species damage by elevating the contents of AsA, and GSH, and the activities of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), ascorbate peroxidase (APX), dehydroascorbate reductase (DHAR), monodehydroascorbate reductase (MDHAR), and glutathione reductase (GR). RNA-seq analysis revealed that AMF regulated the expression of genes related to photosynthesis (photosystem I related proteins, photosystem II related proteins, chlorophyll a/b binding protein), active oxygen metabolism (POD, Fe-SOD, and iron/ascorbate family oxidoreductase), plant hormone synthesis (ARF5 and ARF16) and stress-related transcription factors gene (bHLH112, WRKY72, MYB86, WRKY53, WRKY6, and WRKY26) under LTWL stress. Discussion We concluded that mycorrhizal snapdragon promotes root development and LTWL tolerance by accumulation of osmoregulatory substances, activation of enzymatic and non-enzymatic antioxidant defense systems, and induction expression of transcription factor genes and auxin synthesis related genes. This study provides a theoretical basis for AMF in promoting the production of greenhouse plants in winter.
Collapse
Affiliation(s)
- Wei Li
- Country College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao, Shandong, China
- Institute of Mycorrhizal Biotechnology, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Haiying Wu
- Country College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao, Shandong, China
- Institute of Mycorrhizal Biotechnology, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Junkai Hua
- Country College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao, Shandong, China
- Institute of Mycorrhizal Biotechnology, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Chengshang Zhu
- Country College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao, Shandong, China
- Institute of Mycorrhizal Biotechnology, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Shaoxia Guo
- Country College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao, Shandong, China
- Institute of Mycorrhizal Biotechnology, Qingdao Agricultural University, Qingdao, Shandong, China
| |
Collapse
|
26
|
Rasmussen LV, Grass I, Mehrabi Z, Smith OM, Bezner-Kerr R, Blesh J, Garibaldi LA, Isaac ME, Kennedy CM, Wittman H, Batáry P, Buchori D, Cerda R, Chará J, Crowder DW, Darras K, DeMaster K, Garcia K, Gómez M, Gonthier D, Guzman A, Hidayat P, Hipólito J, Hirons M, Hoey L, James D, John I, Jones AD, Karp DS, Kebede Y, Kerr CB, Klassen S, Kotowska M, Kreft H, Llanque R, Levers C, Lizcano DJ, Lu A, Madsen S, Marques RN, Martins PB, Melo A, Nyantakyi-Frimpong H, Olimpi EM, Owen JP, Pantevez H, Qaim M, Redlich S, Scherber C, Sciligo AR, Snapp S, Snyder WE, Steffan-Dewenter I, Stratton AE, Taylor JM, Tscharntke T, Valencia V, Vogel C, Kremen C. Joint environmental and social benefits from diversified agriculture. Science 2024; 384:87-93. [PMID: 38574149 DOI: 10.1126/science.adj1914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 02/28/2024] [Indexed: 04/06/2024]
Abstract
Agricultural simplification continues to expand at the expense of more diverse forms of agriculture. This simplification, for example, in the form of intensively managed monocultures, poses a risk to keeping the world within safe and just Earth system boundaries. Here, we estimated how agricultural diversification simultaneously affects social and environmental outcomes. Drawing from 24 studies in 11 countries across 2655 farms, we show how five diversification strategies focusing on livestock, crops, soils, noncrop plantings, and water conservation benefit social (e.g., human well-being, yields, and food security) and environmental (e.g., biodiversity, ecosystem services, and reduced environmental externalities) outcomes. We found that applying multiple diversification strategies creates more positive outcomes than individual management strategies alone. To realize these benefits, well-designed policies are needed to incentivize the adoption of multiple diversification strategies in unison.
Collapse
Affiliation(s)
- Laura Vang Rasmussen
- Department of Geosciences and Natural Resource Management, University of Copenhagen, Copenhagen, Denmark
| | - Ingo Grass
- Department of Ecology of Tropical Agricultural Systems, University of Hohenheim, Stuttgart, Germany
- Center for Biodiversity and Integrative Taxonomy (KomBioTa), University of Hohenheim, Stuttgart, Germany
| | - Zia Mehrabi
- Department of Environmental Studies, University of Colorado Boulder, Boulder, CO, USA
- Better Planet Laboratory, University of Colorado Boulder, Boulder, CO, USA
- Mortenson Center for Global Engineering and Resilience, University of Colorado Boulder, Boulder, CO, USA
| | - Olivia M Smith
- Center for Global Change and Earth Observations, Michigan State University, East Lansing, MI, USA
- Ecology, Evolution, and Behavior Program, Michigan State University, East Lansing, MI, USA
| | | | - Jennifer Blesh
- School for Environment and Sustainability, University of Michigan, Ann Arbor, MI, USA
| | - Lucas Alejandro Garibaldi
- Universidad Nacional de Río Negro, Instituto de Investigaciones en Recursos Naturales, Agroecología y Desarrollo Rural, Río Negro, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Investigaciones en Recursos Naturales, Agroecología y Desarrollo Rural, Río Negro, Argentina
| | - Marney E Isaac
- Department of Physical and Environmental Sciences and Department of Global Development Studies, University of Toronto, Toronto, Ontario, Canada
| | | | - Hannah Wittman
- Centre for Sustainable Food Systems, University of British Columbia, Vancouver, British Columbia, Canada
- Institute for Resources, Environment and Sustainability, University of British Columbia, Vancouver, British Columbia, Canada
| | - Péter Batáry
- Lendület Landscape and Conservation Ecology, Institute of Ecology and Botany, HUN-REN Centre for Ecological Research, Vácrátót, Hungary
| | - Damayanti Buchori
- Department of Plant Protection, Bogor Agricultural University, Jalan Kamper, Kampus Darmaga, Bogor, Indonesia
| | - Rolando Cerda
- Centro Agronómico Tropical de Investigación y Enseñanza (CATIE), Turri Alba, Costa Rica
| | - Julián Chará
- Center for Research on Sustainable Agricultural Systems (CIPAV), Cali, Colombia
| | - David W Crowder
- Department of Entomology, Washington State University, Pullman, WA, USA
| | | | - Kathryn DeMaster
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA, USA
| | - Karina Garcia
- Department of Entomology, University of Kentucky, Lexington, KY, USA
| | - Manuel Gómez
- Federación Colombiana de Ganaderos (FEDEGAN), Bogotá, Columbia
| | - David Gonthier
- Department of Entomology, University of Kentucky, Lexington, KY, USA
| | - Aidee Guzman
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA, USA
| | - Purnama Hidayat
- Department of Plant Protection, IPB University, Bogor, Indonesia
| | - Juliana Hipólito
- Federal University of Bahia (UFBA), Biology Institute, Salvador, Brazil
- Universidade Federal de Viçosa, Conselho de Ensino, Pesquisa e Extensão, Universidade Federal de Viçosa, Campus Universitário, Viçosa, MG, Brazil
- Brazil Instituto Nacional de Pesquisas da Amazônia, INPA, Manaus, AM, Brazil
| | - Mark Hirons
- Environmental Change Institute, School of Geography and the Environment, University of Oxford, Oxford, UK
| | - Lesli Hoey
- Urban and Regional Planning Program, University of Michigan, Ann Arbor, MI, USA
| | - Dana James
- Centre for Sustainable Food Systems, University of British Columbia, Vancouver, British Columbia, Canada
- Institute for Resources, Environment and Sustainability, University of British Columbia, Vancouver, British Columbia, Canada
| | - Innocensia John
- Department of Agricultural Economics and Business, University of Dar es Salaam, Dar es Salaam, Tanzania
| | - Andrew D Jones
- School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Daniel S Karp
- Department of Wildlife, Fish, and Conservation Biology, University of California-Davis, Davis, CA, USA
| | - Yodit Kebede
- Eco&Sols, Université de Montpellier, IRD, CIRAD, INRAE, Institut Agro, Montpellier, France
| | | | - Susanna Klassen
- Centre for Sustainable Food Systems, University of British Columbia, Vancouver, British Columbia, Canada
- Institute for Resources, Environment and Sustainability, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Sociology, University of Victoria, Victoria, British Columbia, Canada
| | - Martyna Kotowska
- Department of Plant Ecology and Ecosystems Research, University of Göttingen, Göttingen, Germany
| | - Holger Kreft
- Biodiversity, Macroecology & Biogeography, University of Göttingen, Göttingen, Germany
| | | | - Christian Levers
- Institute for Resources, Environment and Sustainability, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Environmental Geography, Institute for Environmental Studies, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Thünen Institute of Biodiversity, Johann Heinrich von Thünen Institute - Federal Research Institute for Rural Areas, Forestry, and Fisheries, Braunschweig, Germany
| | - Diego J Lizcano
- The Nature Conservancy, Latin America North Andes and Central America Region, Bogota, Columbia
| | - Adrian Lu
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA, USA
| | - Sidney Madsen
- Department of Global Development, Cornell University, Ithaca, NY, USA
| | - Rosebelly Nunes Marques
- Applied Ecology Graduate Program, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, São Paulo, Brazil
| | - Pedro Buss Martins
- Applied Ecology Graduate Program, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, São Paulo, Brazil
| | - America Melo
- The Nature Conservancy, Latin America North Andes and Central America Region, Bogota, Columbia
| | | | | | - Jeb P Owen
- Department of Entomology, Washington State University, Pullman, WA, USA
| | - Heiber Pantevez
- Federación Colombiana de Ganaderos (FEDEGAN), Bogotá, Columbia
| | - Matin Qaim
- Center for Development Research (ZEF), University of Bonn, Bonn, Germany
| | - Sarah Redlich
- Department of Animal Ecology and Tropical Biology, Biocenter, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Christoph Scherber
- Leibniz Institute for the Analysis of Biodiversity Change (LIB), Museum Koenig, Centre for Biodiversity Monitoring and Conservation Science, Bonn, Germany
- Bonn Institute for Organismic Biology, Faculty of Mathematics and Natural Sciences, University of Bonn, Bonn, Germany
| | | | - Sieglinde Snapp
- Sustainable Agrifood Systems, International Maize and Wheat Improvement Center (CIMMYT), El Batan, Mexico
| | - William E Snyder
- Department of Entomology, University of Georgia, Athens, GA, USA
| | - Ingolf Steffan-Dewenter
- Department of Animal Ecology and Tropical Biology, Biocenter, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Anne Elise Stratton
- School for Environment and Sustainability, University of Michigan, Ann Arbor, MI, USA
- Sustainable Use of Natural Resources Department, Institute of Social Sciences in Agriculture, University of Hohenheim, Stuttgart, Germany
| | - Joseph M Taylor
- Department of Entomology, University of Georgia, Athens, GA, USA
| | - Teja Tscharntke
- Department of Agroecology, University of Göttingen, Göttingen, Germany
| | - Vivian Valencia
- Farming Systems Ecology Group, Wageningen University and Research, Wageningen, Netherlands
- Department of Environment, Agriculture and Geography at Bishop's University, Sherbrooke, Quebec, Canada
| | - Cassandra Vogel
- Department of Animal Ecology and Tropical Biology, Biocenter, Julius-Maximilians-University Würzburg, Würzburg, Germany
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Claire Kremen
- Institute for Resources, Environment and Sustainability, Biodiversity Research Centre and Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
27
|
Xiao S, Gao J, Wang Q, Huang Z, Zhuang G. SOC bioavailability significantly correlated with the microbial activity mediated by size fractionation and soil morphology in agricultural ecosystems. ENVIRONMENT INTERNATIONAL 2024; 186:108588. [PMID: 38527397 DOI: 10.1016/j.envint.2024.108588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/14/2024] [Accepted: 03/18/2024] [Indexed: 03/27/2024]
Abstract
Despite the fact that physical and chemical processes have been widely proposed to explicate the stabilization mechanisms of soil organic carbon (SOC), thebioavailability of SOC linked to soil physical structure, microbial community structure, and functional genes remains poorly understood. This study aims to investigate the SOC division based on bioavailability differences formed by physical isolation, and to clarify the relationships of SOC bioavailability with soil elements, pore characteristics, and microbial activity. Results revealed that soil element abundances such as SOC, TN, and DOC ranked in the same order as the soil porosity as clay > silt ≥ coarse sand > fine sand in both top and sub soil. In contrast to silt and clay, which had reduced SOC bioavailability, fine sand and coarse sand had dramatically enhanced SOC bioavailability compared to the bulk soil. The bacterial and fungal community structure was significantly influenced by particle size, porosity, and soil elements. Copiotrophic bacteria and functional genes were more prevalent in fine sand than clay, which also contained more oligotrophic bacteria. The SOC bioavailability was positively correlated with abundances of functional genes, C degradation genes, and copiotrophic bacteria, but negatively correlated with abundances of soil elements, porosity, oligotrophic bacteria, and microbial biomass (p < 0.05). This indicated that the soil physical structure divided SOC into pools with varying levels of bioavailability, with sand fractions having more bioavailable organic carbon than finer fractions. Copiotrophic Proteobacteria and oligotrophic Acidobacteria, Firmicutes, and Gemmatimonadetes made up the majority of the bacteria linked to SOC mineralization. Additionally, the fungi Mortierellomycota and Mucoromycota, which are mostly involved in SOC mineralization, may have the potential for oligotrophic metabolism. Our results indicated that particle-size fractionation could influence the SOC bioavailability by restricting SOC accessibility and microbial activity, thus having a significant impact on sustaining soil organic carbon reserves in temperate agricultural ecosystems, and provided a new research direction for organic carbon stability.
Collapse
Affiliation(s)
- Shujie Xiao
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jie Gao
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Qiuying Wang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zixuan Huang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 101400, China; Sino-Danish Center for Education and Research, Beijing 101400, China
| | - Guoqiang Zhuang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
28
|
Li C, Li X, Romdhane S, Cheng Y, Li G, Cao R, Li P, Xu J, Zhao Y, Yang Y, Jiao J, Hu F, Wu J, Li H, Philippot L. Deciphering the biotic and abiotic drivers of coalescence asymmetry between soil and manure microbiomes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 916:170180. [PMID: 38262533 DOI: 10.1016/j.scitotenv.2024.170180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 01/09/2024] [Accepted: 01/13/2024] [Indexed: 01/25/2024]
Abstract
Manure application improves soil fertility, yet its implications on the success of invasion of manure-borne microorganisms in the soil are poorly understood. Here, we assessed the importance of abiotic and biotic factors in modulating the extent to which manure-borne fungal and bacterial communities can invade resident soil microbial communities. For this purpose, we applied varying frequencies of two different amounts of manure to nine soils differing in physico-chemical properties, as well as in land-use history, over 180 days and monitored changes in bacterial and fungal communities. Variance partitioning revealed differential contributions of abiotic and biotic factors to invasion success, which together accounted for up to 82 % of the variance explained. We showed that the effects of interactions between biotic and abiotic factors increased with coalescence frequency and manure amount for the bacterial and fungal communities, respectively. Both abiotic and biotic factors were important for modulating coalescence asymmetry for the bacterial community, whereas abiotic factors had a greater effect on the fungal community. These results provide new insights into the drivers of coalescence events between manure and resident soil microbial communities. Moreover, our findings highlight the roles of the mixing ratio and frequency of coalescence events in modulating the survival of manure-borne microorganisms.
Collapse
Affiliation(s)
- Chunkai Li
- College of Chemical Engineering, Nanjing Forestry University, No. 159, Longpan Road, Nanjing, Jiangsu 210037, China; College of Resources and Environmental Sciences, Nanjing Agricultural University, Weigang, Nanjing, Jiangsu 210095, China.
| | - Xianping Li
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Weigang, Nanjing, Jiangsu 210095, China.
| | - Sana Romdhane
- Université Bourgogne Franche-Comté, INRAE, Institut Agro Dijon, Department of Agroécologie, Dijon 21000, France.
| | - Yanhong Cheng
- Key Laboratory of Red Soil Cultivated Land Conservation, Jiangxi Institute of Red Soil and Germplasm Resource, Nanchang, Jiangxi 331717, China
| | - Gen Li
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Weigang, Nanjing, Jiangsu 210095, China.
| | - Rui Cao
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Weigang, Nanjing, Jiangsu 210095, China.
| | - Peng Li
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Sciences, Huzhou University, Huzhou 313000, China
| | - Jingjing Xu
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Weigang, Nanjing, Jiangsu 210095, China.
| | - Yexin Zhao
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Weigang, Nanjing, Jiangsu 210095, China.
| | - Yang Yang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Weigang, Nanjing, Jiangsu 210095, China.
| | - Jiaguo Jiao
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Weigang, Nanjing, Jiangsu 210095, China.
| | - Feng Hu
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Weigang, Nanjing, Jiangsu 210095, China.
| | - Jun Wu
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Weigang, Nanjing, Jiangsu 210095, China.
| | - Huixin Li
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Weigang, Nanjing, Jiangsu 210095, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Weigang, Nanjing 210014, China.
| | - Laurent Philippot
- Université Bourgogne Franche-Comté, INRAE, Institut Agro Dijon, Department of Agroécologie, Dijon 21000, France.
| |
Collapse
|
29
|
Hu M, Huang Y, Liu L, Ren L, Li C, Yang R, Zhang Y. The effects of Micro/Nano-plastics exposure on plants and their toxic mechanisms: A review from multi-omics perspectives. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133279. [PMID: 38141304 DOI: 10.1016/j.jhazmat.2023.133279] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/05/2023] [Accepted: 12/13/2023] [Indexed: 12/25/2023]
Abstract
In recent years, plastic pollution has become a global environmental problem, posing a potential threat to agricultural ecosystems and human health, and may further exacerbate global food security problems. Studies have revealed that exposure to micro/nano-plastics (MPs/NPs) might cause various aspects of physiological toxicities, including plant biomass reduction, intracellular oxidative stress burst, photosynthesis inhibition, water and nutrient absorption reduction, cellular and genotoxicity, seed germination retardation, and that the effects were closely related to MP/NP properties (type, particle size, functional groups), exposure concentration, exposure duration and plant characteristics (species, tissue, growth stage). Based on a brief review of the physiological toxicity of MPs/NPs to plant growth, this paper comprehensively reviews the potential molecular mechanism of MPs/NPs on plant growth from perspectives of multi-omics, including transcriptome, metabolome, proteome and microbiome, thus to reveal the role of MPs/NPs in plant transcriptional regulation, metabolic pathway reprogramming, protein translational and post-translational modification, as well as rhizosphere microbial remodeling at multiple levels. Meanwhile, this paper also provides prospects for future research, and clarifies the future research directions and the technologies adopted.
Collapse
Affiliation(s)
- Mangu Hu
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yongxiang Huang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Lin Liu
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong 510640, China
| | - Lei Ren
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Chengyong Li
- School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, China; Shenzhen Institute of Guangdong Ocean University, Shenzhen 518108, China
| | - Rongchao Yang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China.
| | - Yueqin Zhang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China.
| |
Collapse
|
30
|
Kimotho RN, Maina S. Unraveling plant-microbe interactions: can integrated omics approaches offer concrete answers? JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:1289-1313. [PMID: 37950741 PMCID: PMC10901211 DOI: 10.1093/jxb/erad448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 11/08/2023] [Indexed: 11/13/2023]
Abstract
Advances in high throughput omics techniques provide avenues to decipher plant microbiomes. However, there is limited information on how integrated informatics can help provide deeper insights into plant-microbe interactions in a concerted way. Integrating multi-omics datasets can transform our understanding of the plant microbiome from unspecified genetic influences on interacting species to specific gene-by-gene interactions. Here, we highlight recent progress and emerging strategies in crop microbiome omics research and review key aspects of how the integration of host and microbial omics-based datasets can be used to provide a comprehensive outline of complex crop-microbe interactions. We describe how these technological advances have helped unravel crucial plant and microbial genes and pathways that control beneficial, pathogenic, and commensal plant-microbe interactions. We identify crucial knowledge gaps and synthesize current limitations in our understanding of crop microbiome omics approaches. We highlight recent studies in which multi-omics-based approaches have led to improved models of crop microbial community structure and function. Finally, we recommend holistic approaches in integrating host and microbial omics datasets to achieve precision and efficiency in data analysis, which is crucial for biotic and abiotic stress control and in understanding the contribution of the microbiota in shaping plant fitness.
Collapse
Affiliation(s)
- Roy Njoroge Kimotho
- Hebei Key Laboratory of Soil Ecology, Key Laboratory of Agricultural Water Resources, Centre for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang 050021, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Solomon Maina
- Elizabeth Macarthur Agricultural Institute, NSW Department of Primary Industries, Menangle, New South Wales 2568, Australia
| |
Collapse
|
31
|
Liu Y, Jin X, Huang S, Liu Y, Kong Z, Wu L, Ge G. Co-Occurrence Patterns of Soil Fungal and Bacterial Communities in Subtropical Forest-Transforming Areas. Curr Microbiol 2024; 81:64. [PMID: 38225342 DOI: 10.1007/s00284-023-03608-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 09/30/2021] [Indexed: 01/17/2024]
Abstract
Soil microbial communities are engineers of important biogeochemical processes and play a critical role in regulating the functions and stability of forest ecosystem. However, few studies have assessed microbial interactions during forest conversion, which is essential to the understanding of the structure and function of soil microbiome. Herein, we investigated the co-occurrence network pattern and putative functions of fungal and bacterial communities in forest-transforming areas (five sites that cover the typical forests) using high-throughput sequencing of the ITS genes and 16S rRNA. Our study showed that the bacterial network had higher average connectivity and more links than fungal network, which might indicate that the bacterial community had more complex internal interactions compared with fungal one. Alphaproteobacteria_unclassfied, Telmatobacter, 0319-6A21 and Latescibacteria_unclassfied were the keystone taxa in bacterial network. For the fungal community network, the keystone taxon was Ceratobasidium. A structural equation model indicated that the available potassium and total organic carbon were important soil environmental factors, which affected all microbial modules, including bacterial and fungi. Total nitrogen had significant effects on the bacterial module that contains a relatively rich group of nitrogen cycling functions, and pH influenced the bacterial module which have higher potential functions of carbon cycling. And, more fungal modules were directly affected by forest structure (S Tree) compared with bacterial ones. This study provides new insights into our understanding of the feedback of underground creatures to forest conversion and highlights the importance of microbial modules in the nutrient cycling process.
Collapse
Affiliation(s)
- Yajun Liu
- School of Life Science, Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang University, Nanchang, 330031, China
| | - Xin Jin
- School of Life Science, Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang University, Nanchang, 330031, China
| | - Shihao Huang
- School of Life Science, Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang University, Nanchang, 330031, China
| | - Yizhen Liu
- School of Life Science, Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang University, Nanchang, 330031, China
| | - Zhaoyu Kong
- School of Life Science, Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang University, Nanchang, 330031, China
| | - Lan Wu
- School of Life Science, Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang University, Nanchang, 330031, China.
| | - Gang Ge
- School of Life Science, Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang University, Nanchang, 330031, China
| |
Collapse
|
32
|
Chen CN, Liao CS, Tzou YM, Lin YT, Chang EH, Jien SH. Soil quality and microbial communities in subtropical slope lands under different agricultural management practices. Front Microbiol 2024; 14:1242217. [PMID: 38260898 PMCID: PMC10800392 DOI: 10.3389/fmicb.2023.1242217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 12/11/2023] [Indexed: 01/24/2024] Open
Abstract
Land degradation is a major threat to ecosystem. Long-term conventional farming practices can lead to severe soil degradation and a decline in crop productivity, which are challenging for both local and global communities. This study was conducted to clarify the responses on soil physicochemical properties and microbial communities to changes in farming practices. Slope land orchards under three agricultural management practices-conventional farming (CF), organic farming (OF), and ecofriendly farming (EFF)-were included in this study. We found that soil carbon stock increased by 3.6 and 5.1 times in surface soils (0-30 cm) under EFF and OF treatments, respectively. EFF and OF significantly increased the contents of total nitrogen by 0.33-0.46 g/kg, ammonia-N by 3.0-7.3 g/kg, and microbial biomass carbon by 0.56-1.04 g/kg but reduced those of pH by 0.6 units at least, and available phosphorous by 104-114 mg/kg. The application of phosphorous-containing herbicides and chemical fertilizers might increase the contents of phosphorous and nitrate in CF soil. High abundances of Acidobacteria and Actinobacteria were observed in EFF and OF soils, likely because of phosphorous deficiency in these soils. The abundance of fungi in OF soil indicated that plants' demand for available soil phosphorous induced the fungus-mediated mineralization of organic phosphorous. High abundances of Gammaproteobacteria, Planctomycetes, Firmicutes, and Nitrospirae were observed in CF soil, possibly because of the regular use of herbicides containing phosphorous and chemical fertilizers containing high total nitrogen contents.
Collapse
Affiliation(s)
- Ching-Nuo Chen
- Department of Civil Engineering, National Pingtung University of Science and Technology, Neipu, Taiwan
| | - Chien-Sen Liao
- Department of Biological Science and Technology, I-Shou University, Kaohsiung, Taiwan
| | - Yu-Min Tzou
- Department of Soil and Environmental Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Yu-Te Lin
- Department of Soil and Water Conservation, National Pingtung University of Science and Technology, Neipu, Taiwan
| | - Ed-Haun Chang
- MacKay Junior College of Medicine, Nursing and Management, Taipei, Taiwan
| | - Shih-Hao Jien
- Department of Soil and Environmental Sciences, National Chung Hsing University, Taichung, Taiwan
- Department of Soil and Water Conservation, National Pingtung University of Science and Technology, Neipu, Taiwan
| |
Collapse
|
33
|
Fontaine S, Abbadie L, Aubert M, Barot S, Bloor JMG, Derrien D, Duchene O, Gross N, Henneron L, Le Roux X, Loeuille N, Michel J, Recous S, Wipf D, Alvarez G. Plant-soil synchrony in nutrient cycles: Learning from ecosystems to design sustainable agrosystems. GLOBAL CHANGE BIOLOGY 2024; 30:e17034. [PMID: 38273527 DOI: 10.1111/gcb.17034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 10/14/2023] [Indexed: 01/27/2024]
Abstract
Redesigning agrosystems to include more ecological regulations can help feed a growing human population, preserve soils for future productivity, limit dependency on synthetic fertilizers, and reduce agriculture contribution to global changes such as eutrophication and warming. However, guidelines for redesigning cropping systems from natural systems to make them more sustainable remain limited. Synthetizing the knowledge on biogeochemical cycles in natural ecosystems, we outline four ecological systems that synchronize the supply of soluble nutrients by soil biota with the fluctuating nutrient demand of plants. This synchrony limits deficiencies and excesses of soluble nutrients, which usually penalize both production and regulating services of agrosystems such as nutrient retention and soil carbon storage. In the ecological systems outlined, synchrony emerges from plant-soil and plant-plant interactions, eco-physiological processes, soil physicochemical processes, and the dynamics of various nutrient reservoirs, including soil organic matter, soil minerals, atmosphere, and a common market. We discuss the relative importance of these ecological systems in regulating nutrient cycles depending on the pedoclimatic context and on the functional diversity of plants and microbes. We offer ideas about how these systems could be stimulated within agrosystems to improve their sustainability. A review of the latest advances in agronomy shows that some of the practices suggested to promote synchrony (e.g., reduced tillage, rotation with perennial plant cover, crop diversification) have already been tested and shown to be effective in reducing nutrient losses, fertilizer use, and N2 O emissions and/or improving biomass production and soil carbon storage. Our framework also highlights new management strategies and defines the conditions for the success of these nature-based practices allowing for site-specific modifications. This new synthetized knowledge should help practitioners to improve the long-term productivity of agrosystems while reducing the negative impact of agriculture on the environment and the climate.
Collapse
Affiliation(s)
- Sébastien Fontaine
- INRAE, VetAgro Sup, Université Clermont Auvergne, UMR Ecosystème Prairial, Clermont-Ferrand, France
| | - Luc Abbadie
- UPEC, CNRS, IRD, INRAE, Institut d'écologie et des sciences de l'environnement, IEES, Sorbonne Université, Paris, France
| | - Michaël Aubert
- UNIROUEN, INRAE, ECODIV-Rouen, Normandie Univ, Rouen, France
| | - Sébastien Barot
- UPEC, CNRS, IRD, INRAE, Institut d'écologie et des sciences de l'environnement, IEES, Sorbonne Université, Paris, France
| | - Juliette M G Bloor
- INRAE, VetAgro Sup, Université Clermont Auvergne, UMR Ecosystème Prairial, Clermont-Ferrand, France
| | | | - Olivier Duchene
- ISARA, Research Unit Agroecology and Environment, Lyon, France
| | - Nicolas Gross
- INRAE, VetAgro Sup, Université Clermont Auvergne, UMR Ecosystème Prairial, Clermont-Ferrand, France
| | | | - Xavier Le Roux
- INRAE UMR 1418, CNRS UMR 5557, VetAgroSup, Microbial Ecology Centre LEM, Université de Lyon, Villeurbanne, France
| | - Nicolas Loeuille
- UPEC, CNRS, IRD, INRAE, Institut d'écologie et des sciences de l'environnement, IEES, Sorbonne Université, Paris, France
| | - Jennifer Michel
- Plant Sciences, TERRA Teaching and Research Centre, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Sylvie Recous
- INRAE, FARE, Université de Reims Champagne-Ardenne, Reims, France
| | - Daniel Wipf
- Agroécologie, AgroSup Dijon, CNRS, Université de Bourgogne, INRAE, Université de Bourgogne Franche-Comté, Dijon, France
| | - Gaël Alvarez
- INRAE, VetAgro Sup, Université Clermont Auvergne, UMR Ecosystème Prairial, Clermont-Ferrand, France
| |
Collapse
|
34
|
Dai W, Liu Y, Yao D, Wang N, Shao J, Ye X, Cui Z, Zong H, Tian L, Chen X, Wang H. Biogeographic distribution, assembly processes and potential nutrient cycling functions of myxobacteria communities in typical agricultural soils in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167255. [PMID: 37741390 DOI: 10.1016/j.scitotenv.2023.167255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/26/2023] [Accepted: 09/20/2023] [Indexed: 09/25/2023]
Abstract
Predatory myxobacteria are important soil micropredators with the potential to regulate soil microbial community structure and ecosystem function. However, the biogeographic distribution patterns, assembly processes, and potential nutrient cycling functions of myxobacteria communities in typical agricultural soils in China are still poorly understood. High-throughput sequencing, phylogenetic zero modeling, and the multi-nutrient cycling index were used to assess the biogeographic distribution, assembly processes, and soil ecosystem functions of predation myxobacteria communities in typical agricultural soils of six long-term fertilization ecological experimental stations. The results demonstrated a hump-shaped distribution of myxobacteria α-diversity along the latitudinal gradient and significant differences in myxobacteria β-diversity in typical agricultural soils (P < 0.05). Bacterial richness, soil organic carbon, and pH were the most important predictors of myxobacteria α-diversity, whereas geographic factors and soil pH were the most significant ecological predictors of myxobacteria β-diversity. Myxobacteria community assembly is dominated by deterministic processes, especially homogeneous selection, primarily driven by soil pH and bacterial richness. In addition, we revealed the ecological significance of myxobacteria communities in typical agricultural soil microbial networks and the potential link between myxobacteria communities and soil nutrient cycling. These findings enhance our understanding of the biogeographic distribution, community assembly, ecological predictors, and relationships with soil nutrient cycling of myxobacteria communities in typical agricultural soils, paving the way for a more predictive understanding of the effect of predatory myxobacteria communities on soil ecosystem function, which is essential for the development of sustainable agriculture.
Collapse
Affiliation(s)
- Wei Dai
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100000, China; University of Chinese Academy of Sciences, Nanjing 211135, China
| | - Yang Liu
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100000, China; University of Chinese Academy of Sciences, Nanjing 211135, China
| | - Dandan Yao
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100000, China; University of Chinese Academy of Sciences, Nanjing 211135, China
| | - Ning Wang
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100000, China; University of Chinese Academy of Sciences, Nanjing 211135, China
| | - Jinpeng Shao
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100000, China; University of Chinese Academy of Sciences, Nanjing 211135, China
| | - Xianfeng Ye
- Key Laboratory of Agricultural Environmental Microbiology of Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhongli Cui
- Key Laboratory of Agricultural Environmental Microbiology of Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Hao Zong
- Shandong Linyi Tobacco Co., Ltd., Linyi 276000, Shandong, China
| | - Lei Tian
- Shandong Linyi Tobacco Co., Ltd., Linyi 276000, Shandong, China
| | - XiuZhai Chen
- Shandong Linyi Tobacco Co., Ltd., Linyi 276000, Shandong, China.
| | - Hui Wang
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100000, China; University of Chinese Academy of Sciences, Nanjing 211135, China.
| |
Collapse
|
35
|
Lu S, Hao J, Yang H, Chen M, Lian J, Chen Y, Brown RW, Jones DL, Wan Z, Wang W, Chang W, Wu D. Earthworms mediate the influence of polyethylene (PE) and polylactic acid (PLA) microplastics on soil bacterial communities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:166959. [PMID: 37696400 DOI: 10.1016/j.scitotenv.2023.166959] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/25/2023] [Accepted: 09/08/2023] [Indexed: 09/13/2023]
Abstract
There is a growing body of evidence that suggests that both biodegradable and conventional (non-degradable) microplastics (MP) are hazardous to soil health by affecting the delivery of key ecological functions such as litter decomposition, nutrient cycling and water retention. Specifically, soil fauna may be harmed by the presence of MPs while also being involved in their disintegration, degradation, migration and transfer in soil. Therefore, a comprehensive understanding of the interactions between MPs and soil fauna is essential. Here, we conducted a 120-day soil microcosm experiment applying polyethylene (PE) and polylactic acid (PLA), in the absence/presence of the earthworm Eisenia nordenskioldi to estimate the relative singular and combined impact of MPs and earthworms on the soil bacterial community. Our findings revealed contrasting effects of PE and PLA on the composition and diversity of soil bacteria. All treatments affected the community and network structure of the soil bacterial community. Compared to the control (no MPs or earthworms), PE decreased bacterial alpha diversity, while PLA increased it. Patescibacteria were found to be significantly abundant in the PE group whereas Actinobacteria and Gemmatimonadetes were more abundant in PE, and PLA and earthworms groups. The presence of earthworms appeared to mediate the impact of PE/PLA on soil bacteria, potentially through bacterial consumption or by altering soil properties (e.g., pH, aeration, C availability). Earthworm presence also appeared to promote the chemical aging of PLA. Collectively, our results provide novel insights into the soil-fauna-driven impact of degradable/nondegradable MPs exposure on the long-term environmental risks associated with soil microorganisms.
Collapse
Affiliation(s)
- Siyuan Lu
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, Jilin 130117, China
| | - Jiahua Hao
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, Jilin 130117, China
| | - Hao Yang
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, Jilin 130117, China
| | - Mengya Chen
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, Jilin 130117, China
| | - Jiapan Lian
- Ministry of Education (MOE) Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resources Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yalan Chen
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Robert W Brown
- School of Environmental and Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK
| | - Davey L Jones
- School of Environmental and Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK
| | - Zhuoma Wan
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, Jilin 130117, China
| | - Wei Wang
- Key Laboratory of Preparation and Applications of Environmental Friendly Materials, Ministry of Education, Jilin Normal University, Changchun 130103, China
| | - Wenjin Chang
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, Jilin 130117, China
| | - Donghui Wu
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, Jilin 130117, China; Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; Jilin Songnen Grassland Ecosystem National Observation and Research Station, Northeast Normal University, Changchun 130024, China; Key Laboratory of Vegetation Ecology, Ministry of Education, Northeast Normal University, Changchun 130024, China; Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun 130117, China.
| |
Collapse
|
36
|
Bender SF, Schulz S, Martínez-Cuesta R, Laughlin RJ, Kublik S, Pfeiffer-Zakharova K, Vestergaard G, Hartman K, Parladé E, Römbke J, Watson CJ, Schloter M, van der Heijden MGA. Simplification of soil biota communities impairs nutrient recycling and enhances above- and belowground nitrogen losses. THE NEW PHYTOLOGIST 2023; 240:2020-2034. [PMID: 37700504 DOI: 10.1111/nph.19252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 08/18/2023] [Indexed: 09/14/2023]
Abstract
Agriculture is a major source of nutrient pollution, posing a threat to the earth system functioning. Factors determining the nutrient use efficiency of plant-soil systems need to be identified to develop strategies to reduce nutrient losses while ensuring crop productivity. The potential of soil biota to tighten nutrient cycles by improving plant nutrition and reducing soil nutrient losses is still poorly understood. We manipulated soil biota communities in outdoor lysimeters, planted maize, continuously collected leachates, and measured N2 O- and N2 -gas emissions after a fertilization pulse to test whether differences in soil biota communities affected nutrient recycling and N losses. Lysimeters with strongly simplified soil biota communities showed reduced crop N (-20%) and P (-58%) uptake, strongly increased N leaching losses (+65%), and gaseous emissions (+97%) of N2 O and N2 . Soil metagenomic analyses revealed differences in the abundance of genes responsible for nutrient uptake, nitrate reduction, and denitrification that helped explain the observed nutrient losses. Soil biota are major drivers of nutrient cycling and reductions in the diversity or abundance of certain groups (e.g. through land-use intensification) can disrupt nutrient cycling, reduce agricultural productivity and nutrient use efficiency, and exacerbate environmental pollution and global warming.
Collapse
Affiliation(s)
- S Franz Bender
- Plant Soil Interactions, Division Agroecology and Environment, Agroscope, Reckenholzstrasse 191, CH-8046, Zürich, Switzerland
- Department of Plant and Microbial Biology, University of Zürich, Zollikerstrasse 107, CH-8008, Zürich, Switzerland
| | - Stefanie Schulz
- Research Unit for Comparative Microbiome Analysis (COMI), Helmholtz Zentrum München, Ingolstädter Landstraße 1, D-85764, Neuherberg, Germany
| | - Rubén Martínez-Cuesta
- Research Unit for Comparative Microbiome Analysis (COMI), Helmholtz Zentrum München, Ingolstädter Landstraße 1, D-85764, Neuherberg, Germany
- Technical University of Munich, Chair for Environmental Microbiology, Emil-Ramann-Straße 2, D-85354, Freising, Germany
| | - Ronald J Laughlin
- Agri-Environment Branch, Agri-Food & Biosciences Institute, Belfast, BT9 5PX, UK
| | - Susanne Kublik
- Research Unit for Comparative Microbiome Analysis (COMI), Helmholtz Zentrum München, Ingolstädter Landstraße 1, D-85764, Neuherberg, Germany
| | - Kristina Pfeiffer-Zakharova
- Research Unit for Comparative Microbiome Analysis (COMI), Helmholtz Zentrum München, Ingolstädter Landstraße 1, D-85764, Neuherberg, Germany
| | - Gisle Vestergaard
- Research Unit for Comparative Microbiome Analysis (COMI), Helmholtz Zentrum München, Ingolstädter Landstraße 1, D-85764, Neuherberg, Germany
- Section for Bioinformatics, Department of Health Technology, Technical University of Denmark, DK-2800, Lyngby, Denmark
| | - Kyle Hartman
- Plant Soil Interactions, Division Agroecology and Environment, Agroscope, Reckenholzstrasse 191, CH-8046, Zürich, Switzerland
| | - Eloi Parladé
- Departament de Genètica i Microbiologia, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Jörg Römbke
- ECT Ökotoxikologie GmbH, Böttgerstr. 2-14, D-65439, Flörsheim, Germany
| | - Catherine J Watson
- Agri-Environment Branch, Agri-Food & Biosciences Institute, Belfast, BT9 5PX, UK
| | - Michael Schloter
- Research Unit for Comparative Microbiome Analysis (COMI), Helmholtz Zentrum München, Ingolstädter Landstraße 1, D-85764, Neuherberg, Germany
- Technical University of Munich, Chair for Environmental Microbiology, Emil-Ramann-Straße 2, D-85354, Freising, Germany
| | - Marcel G A van der Heijden
- Plant Soil Interactions, Division Agroecology and Environment, Agroscope, Reckenholzstrasse 191, CH-8046, Zürich, Switzerland
- Department of Plant and Microbial Biology, University of Zürich, Zollikerstrasse 107, CH-8008, Zürich, Switzerland
| |
Collapse
|
37
|
Wang Y, Wang J, He Y, Qu M, Zhu W, Xue Y, Li J. Interkingdom ecological networks between plants and fungi drive soil multifunctionality across arid inland river basin. Mol Ecol 2023; 32:6939-6952. [PMID: 37902115 DOI: 10.1111/mec.17184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 08/31/2023] [Accepted: 10/17/2023] [Indexed: 10/31/2023]
Abstract
Despite the known collective contribution of above- (plants) and below-ground (soil fungi) biodiversity on multiple soil functions, how the associations among plant and fungal communities regulate soil multifunctionality (SMF) differentially remains unknown. Here, plant communities were investigated at 81 plots across a typical arid inland river basin, within which associated soil fungal communities and seven soil functions (nutrients storage and biological activity) were measured in surface (0-15 cm) and subsurface soil (15-30 cm). We evaluated the relative importance of species richness and biotic associations (reflected by network complexity) on SMF. Our results demonstrated that plant species richness and plant-fungus network complexity promoted SMF in surface and subsurface soil. SMF in two soil layers was mainly determined by plant-fungus network complexity, mean groundwater depth and soil variables, among which plant-fungus network complexity played a crucial role. Plant-fungus network complexity had stronger effects on SMF in surface soil than in subsurface soil. We present evidence that plant-fungus network complexity surpassed plant-fungal species richness in determining SMF in surface and subsurface soil. Moreover, plant-fungal species richness could not directly affect SMF. Greater plant-fungal species richness indirectly promoted SMF since they ensured greater plant-fungal associations. Collectively, we concluded that interkingdom networks between plants and fungi drive SMF even in different soil layers. Our findings enhanced our knowledge of the underlying mechanisms that above- and below-ground associations promote SMF in arid inland river basins. Future study should place more emphasis on the associations among plant and microbial communities in protecting soil functions under global changes.
Collapse
Affiliation(s)
- Yin Wang
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
- Ejina Institute of Populus euphratica, Beijing Forestry University, Alax, China
| | - Jianming Wang
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
- Ejina Institute of Populus euphratica, Beijing Forestry University, Alax, China
| | - Yicheng He
- China Agricultural University, Beijing, China
| | - Mengjun Qu
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
- Ejina Institute of Populus euphratica, Beijing Forestry University, Alax, China
| | - Weilin Zhu
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
- Ejina Institute of Populus euphratica, Beijing Forestry University, Alax, China
| | - Yujie Xue
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
- Ejina Institute of Populus euphratica, Beijing Forestry University, Alax, China
| | - Jingwen Li
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
- Ejina Institute of Populus euphratica, Beijing Forestry University, Alax, China
| |
Collapse
|
38
|
Lutz S, Bodenhausen N, Hess J, Valzano-Held A, Waelchli J, Deslandes-Hérold G, Schlaeppi K, van der Heijden MGA. Soil microbiome indicators can predict crop growth response to large-scale inoculation with arbuscular mycorrhizal fungi. Nat Microbiol 2023; 8:2277-2289. [PMID: 38030903 PMCID: PMC10730404 DOI: 10.1038/s41564-023-01520-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 10/11/2023] [Indexed: 12/01/2023]
Abstract
Alternative solutions to mineral fertilizers and pesticides that reduce the environmental impact of agriculture are urgently needed. Arbuscular mycorrhizal fungi (AMF) can enhance plant nutrient uptake and reduce plant stress; yet, large-scale field inoculation trials with AMF are missing, and so far, results remain unpredictable. We conducted on-farm experiments in 54 fields in Switzerland and quantified the effects on maize growth. Growth response to AMF inoculation was highly variable, ranging from -12% to +40%. With few soil parameters and mainly soil microbiome indicators, we could successfully predict 86% of the variation in plant growth response to inoculation. The abundance of pathogenic fungi, rather than nutrient availability, best predicted (33%) AMF inoculation success. Our results indicate that soil microbiome indicators offer a sustainable biotechnological perspective to predict inoculation success at the beginning of the growing season. This predictability increases the profitability of microbiome engineering as a tool for sustainable agricultural management.
Collapse
Affiliation(s)
- Stefanie Lutz
- Plant-Soil Interactions, Department of Agroecology and Environment, Agroscope, Zurich, Switzerland
| | - Natacha Bodenhausen
- Department of Soil Sciences, Research Institute of Organic Agriculture (FiBL), Frick, Switzerland
| | - Julia Hess
- Plant-Soil Interactions, Department of Agroecology and Environment, Agroscope, Zurich, Switzerland
| | - Alain Valzano-Held
- Plant-Soil Interactions, Department of Agroecology and Environment, Agroscope, Zurich, Switzerland
| | - Jan Waelchli
- Plant Microbe Interactions, Department of Environmental Sciences, University of Basel, Basel, Switzerland
| | - Gabriel Deslandes-Hérold
- Plant Microbe Interactions, Department of Environmental Sciences, University of Basel, Basel, Switzerland
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
- Plant Biochemistry, Institute of Molecular Plant Biology, ETH Zurich, Zurich, Switzerland
| | - Klaus Schlaeppi
- Plant Microbe Interactions, Department of Environmental Sciences, University of Basel, Basel, Switzerland.
| | - Marcel G A van der Heijden
- Plant-Soil Interactions, Department of Agroecology and Environment, Agroscope, Zurich, Switzerland.
- Department of Plant and Microbial Biology, University of Zürich, Zurich, Switzerland.
| |
Collapse
|
39
|
Tao S, Veen GFC, Zhang N, Yu T, Qu L. Tree and shrub richness modifies subtropical tree productivity by regulating the diversity and community composition of soil bacteria and archaea. MICROBIOME 2023; 11:261. [PMID: 37996939 PMCID: PMC10666335 DOI: 10.1186/s40168-023-01676-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 09/26/2023] [Indexed: 11/25/2023]
Abstract
BACKGROUND Declines in plant biodiversity often have negative consequences for plant community productivity, and it becomes increasingly acknowledged that this may be driven by shifts in soil microbial communities. So far, the role of fungal communities in driving tree diversity-productivity relationships has been well assessed in forests. However, the role of bacteria and archaea, which are also highly abundant in forest soils and perform pivotal ecosystem functions, has been less investigated in this context. Here, we investigated how tree and shrub richness affects stand-level tree productivity by regulating bacterial and archaeal community diversity and composition. We used a landscape-scale, subtropical tree biodiversity experiment (BEF-China) where tree (1, 2, or 4 species) and shrub richness (0, 2, 4, 8 species) were modified. RESULTS Our findings indicated a noteworthy decline in soil bacterial α-diversity as tree species richness increased from monoculture to 2- and 4- tree species mixtures, but a significant increase in archaeal α-diversity. Additionally, we observed that the impact of shrub species richness on microbial α-diversity was largely dependent on the level of tree species richness. The increase in tree species richness greatly reduced the variability in bacterial community composition and the complexity of co-occurrence network, but this effect was marginal for archaea. Both tree and shrub species richness increased the stand-level tree productivity by regulating the diversity and composition of bacterial community and archaeal diversity, with the effects being mediated via increases in soil C:N ratios. CONCLUSIONS Our findings provide insight into the importance of bacterial and archaeal communities in driving the relationship between plant diversity and productivity in subtropical forests and highlight the necessity for a better understanding of prokaryotic communities in forest soils. Video Abstract.
Collapse
Affiliation(s)
- Siqi Tao
- State Key Laboratory of Effecient Production of Forest Resources, Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing, 100083, People's Republic of China
- Ecological Observation and Research Station of Heilongjiang Sanjiang Plain Wetlands, National Forestry and Grassland Administration, 518000, Shuangyashan, People's Republic of China
| | - G F Ciska Veen
- Department of Terrestrial Ecology, Netherlands Institute of Ecology, Droevendaalstesteeg 10, Wageningen, 6708 PB, the Netherlands
| | - Naili Zhang
- State Key Laboratory of Effecient Production of Forest Resources, Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing, 100083, People's Republic of China.
- Ecological Observation and Research Station of Heilongjiang Sanjiang Plain Wetlands, National Forestry and Grassland Administration, 518000, Shuangyashan, People's Republic of China.
| | - Tianhe Yu
- Department of Biology, Mudanjiang Normal University, Mudanjiang, 157011, People's Republic of China
| | - Laiye Qu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Science, Beijing, 100085, People's Republic of China.
| |
Collapse
|
40
|
Chen S, Wang Y, Gao J, Chen X, Qi J, Peng Z, Chen B, Pan H, Liang C, Liu J, Wang Y, Wei G, Jiao S. Agricultural tillage practice and rhizosphere selection interactively drive the improvement of soybean plant biomass. PLANT, CELL & ENVIRONMENT 2023; 46:3542-3557. [PMID: 37564021 DOI: 10.1111/pce.14694] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 07/30/2023] [Accepted: 08/03/2023] [Indexed: 08/12/2023]
Abstract
Rhizosphere microbes play key roles in plant growth and productivity in agricultural systems. One of the critical issues is revealing the interaction of agricultural management (M) and rhizosphere selection effects (R) on soil microbial communities, root exudates and plant productivity. Through a field management experiment, we found that bacteria were more sensitive to the M × R interaction effect than fungi, and the positive effect of rhizosphere bacterial diversity on plant biomass existed in the bacterial three two-tillage system. In addition, inoculation experiments demonstrated that the nitrogen cycle-related isolate Stenotrophomonas could promote plant growth and alter the activities of extracellular enzymes N-acetyl- d-glucosaminidase and leucine aminopeptidase in rhizosphere soil. Microbe-metabolites network analysis revealed that hubnodes Burkholderia-Caballeronia-Paraburkholderia and Pseudomonas were recruited by specific root metabolites under the M × R interaction effect, and the inoculation of 10 rhizosphere-matched isolates further proved that these microbes could promote the growth of soybean seedlings. Kyoto Encyclopaedia of Genes and Genomes pathway analysis indicated that the growth-promoting mechanisms of these beneficial genera were closely related to metabolic pathways such as amino acid metabolism, melatonin biosynthesis, aerobactin biosynthesis and so on. This study provides field observation and experimental evidence to reveal the close relationship between beneficial rhizosphere microbes and plant productivity under the M × R interaction effect.
Collapse
Affiliation(s)
- Shi Chen
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Yang Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Jiamin Gao
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Xingyu Chen
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Jiejun Qi
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Ziheng Peng
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Beibei Chen
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Haibo Pan
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Chunling Liang
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Jiai Liu
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Yihe Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Gehong Wei
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Shuo Jiao
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| |
Collapse
|
41
|
Chen L, Han H, Wang C, Warren A, Ning Y. Exploring Microeukaryote Community Characteristics and Niche Differentiation in Arid Farmland Soil at the Northeastern Edge of the Tibetan Plateau. Microorganisms 2023; 11:2510. [PMID: 37894168 PMCID: PMC10609477 DOI: 10.3390/microorganisms11102510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/24/2023] [Accepted: 09/28/2023] [Indexed: 10/29/2023] Open
Abstract
The northeastern edge of the Tibetan Plateau exhibits diverse climate and landform variations, and has experienced substantial recent environmental changes, which may significantly impact local agricultural practices. Understanding the microeukaryote community structure within agricultural soils is crucial for finding out the biological responses to such changes and may guide future agricultural practices. In this study, we employed high-throughput amplicon sequencing to examine 29 agricultural soil samples from seven research areas around the northeastern edge of the Tibetan Plateau. The findings revealed that the predominant biological communities in these soils were characterized by a high abundance of Alveolata, Amoebozoa, and Rhizaria. Ascomycota displayed the highest relative abundance among fungal communities. Moreover, notable distinctions in microeukaryote community composition were observed among the study sites. Co-occurrence network analysis highlighted interactions between the biological communities. Furthermore, our results elucidated that deterministic and stochastic processes exerted diverse influences on the distribution of protozoan and fungal communities. This study provides valuable insight into the microeukaryote structure in the agricultural soils of the northeastern edge of the Tibetan Plateau, shedding light on the intricate relationships between environmental factors, microeukaryote communities, and agricultural productivity.
Collapse
Affiliation(s)
- Lingyun Chen
- College of Life Science, Northwest Normal University, Lanzhou 730070, China; (L.C.); (H.H.); (C.W.)
| | - Haifeng Han
- College of Life Science, Northwest Normal University, Lanzhou 730070, China; (L.C.); (H.H.); (C.W.)
| | - Chunhui Wang
- College of Life Science, Northwest Normal University, Lanzhou 730070, China; (L.C.); (H.H.); (C.W.)
| | - Alan Warren
- Department of Life Sciences, Natural History Museum, London SW7 5BD, UK;
| | - Yingzhi Ning
- College of Life Science, Northwest Normal University, Lanzhou 730070, China; (L.C.); (H.H.); (C.W.)
| |
Collapse
|
42
|
Liu R, Liang B, Zhao H, Zhao Y. Impacts of various amendments on the microbial communities and soil organic carbon of coastal saline-alkali soil in the Yellow River Delta. Front Microbiol 2023; 14:1239855. [PMID: 37779720 PMCID: PMC10539599 DOI: 10.3389/fmicb.2023.1239855] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/16/2023] [Indexed: 10/03/2023] Open
Abstract
The utilization of industrial and agricultural resources, such as desulfurization gypsum and straw, is increasingly favored to improve saline alkali land. However, there is still a lack of comprehensive study on the mechanism of organic carbon turnover under the conditions of desulfurization gypsum and straw application. We studied the changes in soil chemical performance, microbial diversity, and microbial community structure in soils with the addition of various levels of straw (no straw, S0; low straw, Sl; medium straw, Sm; and high straw, Sh) and gypsum (no gypsum, DG0; low gypsum, DGl; and high gypsum, DGh) in a 120-day incubation experiment. The bacterial and fungal community richness was higher in the SmDGl treatment than in the SmDG0 treatment. The microbial community evenness showed a similar pattern between the SmDGl and SmDG0 treatments. The combination of the straw and desulfurization gypsum treatments altered the relative abundance of the main bacterial phyla Bacteroidetes and Firmicutes and the dominant fungal class Sordariomycetes, which increased with the enhancement of the SOC ratio. The combination of the straw and desulfurization gypsum treatments, particularly SmDGl, significantly decreased the soil pH and exchangeable sodium percentage (ESP), while it increased the soil organic carbon, microbial biomass carbon, and activities of soil enzymes. Improvement in the soil salinization environment clearly drove the changes in bacterial α-diversity and community, particularly those in the soil carbon fractions and ESP. In conclusion, these findings provide a strong framework to determine the impact of application practices on soil restoration, and the information gained in this study will help to develop more sustainable and effective integrated strategies for the restoration of saline-alkali soil.
Collapse
Affiliation(s)
| | | | - Huili Zhao
- College of Resources and Environmental Engineering, Ludong University, Yantai, China
| | - Ying Zhao
- College of Resources and Environmental Engineering, Ludong University, Yantai, China
| |
Collapse
|
43
|
Behr JH, Kampouris ID, Babin D, Sommermann L, Francioli D, Kuhl-Nagel T, Chowdhury SP, Geistlinger J, Smalla K, Neumann G, Grosch R. Beneficial microbial consortium improves winter rye performance by modulating bacterial communities in the rhizosphere and enhancing plant nutrient acquisition. FRONTIERS IN PLANT SCIENCE 2023; 14:1232288. [PMID: 37711285 PMCID: PMC10498285 DOI: 10.3389/fpls.2023.1232288] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 08/03/2023] [Indexed: 09/16/2023]
Abstract
The beneficial effect of microbial consortium application on plants is strongly affected by soil conditions, which are influenced by farming practices. The establishment of microbial inoculants in the rhizosphere is a prerequisite for successful plant-microorganism interactions. This study investigated whether a consortium of beneficial microorganisms establishes in the rhizosphere of a winter crop during the vegetation period, including the winter growing season. In addition, we aimed for a better understanding of its effect on plant performance under different farming practices. Winter rye plants grown in a long-time field trial under conventional or organic farming practices were inoculated after plant emergence in autumn with a microbial consortium containing Pseudomonas sp. (RU47), Bacillus atrophaeus (ABi03) and Trichoderma harzianum (OMG16). The density of the microbial inoculants in the rhizosphere and root-associated soil was quantified in autumn and the following spring. Furthermore, the influence of the consortium on plant performance and on the rhizosphere bacterial community assembly was investigated using a multidisciplinary approach. Selective plating showed a high colonization density of individual microorganisms of the consortium in the rhizosphere and root-associated soil of winter rye throughout its early growth cycle. 16S rRNA gene amplicon sequencing showed that the farming practice affected mainly the rhizosphere bacterial communities in autumn and spring. However, the microbial consortium inoculated altered also the bacterial community composition at each sampling time point, especially at the beginning of the new growing season in spring. Inoculation of winter rye with the microbial consortium significantly improved the plant nutrient status and performance especially under organic farming. In summary, the microbial consortium showed sufficient efficacy throughout vegetation dormancy when inoculated in autumn and contributed to better plant performance, indicating the potential of microbe-based solutions in organic farming where nutrient availability is limited.
Collapse
Affiliation(s)
- Jan Helge Behr
- Leibniz Institute of Vegetable and Ornamental Crops (IGZ), Plant-Microbe Systems, Großbeeren, Germany
| | - Ioannis D. Kampouris
- Julius Kühn Institute (JKI) - Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Braunschweig, Germany
| | - Doreen Babin
- Julius Kühn Institute (JKI) - Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Braunschweig, Germany
| | - Loreen Sommermann
- Department of Agriculture, Ecotrophology and Landscape Development, Institute of Bioanalytical Sciences (IBAS), Anhalt University of Applied Sciences, Bernburg, Germany
| | - Davide Francioli
- Department of Nutritional Crop Physiology, Institute of Crop Science, University of Hohenheim, Stuttgart, Germany
- Department of Soil Science and Plant Nutrition, Hochschule Geisenheim University, Geisenheim, Germany
| | - Theresa Kuhl-Nagel
- Leibniz Institute of Vegetable and Ornamental Crops (IGZ), Plant-Microbe Systems, Großbeeren, Germany
| | - Soumitra Paul Chowdhury
- Institute for Network Biology, Helmholtz Zentrum München – German Research Center for Environmental Health, Neuherberg, Germany
| | - Joerg Geistlinger
- Department of Agriculture, Ecotrophology and Landscape Development, Institute of Bioanalytical Sciences (IBAS), Anhalt University of Applied Sciences, Bernburg, Germany
| | - Kornelia Smalla
- Julius Kühn Institute (JKI) - Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Braunschweig, Germany
| | - Günter Neumann
- Department of Nutritional Crop Physiology, Institute of Crop Science, University of Hohenheim, Stuttgart, Germany
| | - Rita Grosch
- Leibniz Institute of Vegetable and Ornamental Crops (IGZ), Plant-Microbe Systems, Großbeeren, Germany
| |
Collapse
|
44
|
Liu X, Liu H, Zhang Y, Liu C, Liu Y, Li Z, Zhang M. Organic amendments alter microbiota assembly to stimulate soil metabolism for improving soil quality in wheat-maize rotation system. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 339:117927. [PMID: 37075633 DOI: 10.1016/j.jenvman.2023.117927] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 03/20/2023] [Accepted: 04/10/2023] [Indexed: 05/03/2023]
Abstract
Straw retention (SR) and organic fertilizer (OF) application contribute to improve soil quality, but it is unclear how the soil microbial assemblage under organic amendments mediate soil biochemical metabolism pathways to perform it. This study collected soil samples from wheat field under different application of fertilizer (chemical fertilizer, as control; SR, and OF) in North China Plain, and systematically investigated the interlinkages among microbe assemblages, metabolites, and physicochemical properties. Results showed that the soil organic carbon (SOC) and permanganate oxidizable organic carbon (LOC) in soil samples followed the trend as OF > SR > control, and the activity of C-acquiring enzymes presented significantly positive correlation with SOC and LOC. In organic amendments, bacteria and fungi community were respectively dominated by deterministic and stochastic processes, while OF exerted more selective pressure on soil microbe. Compared with SR, OF had greater potential to boost the microbial community robustness through increasing the natural connectivity and stimulating fungal taxa activities in inter-kingdom microbial networks. Altogether 67 soil metabolites were significantly affected by organic amendments, most of them belonged to benzenoids (Ben), lipids and lipid-like molecules (LL), and organic acids and derivatives (OA). These metabolites were mainly derived from lipid and amino acid metabolism pathways. A list of keystone genera such as stachybotrys and phytohabitans were identified as important to soil metabolites, SOC, and C-acquiring enzyme activity. Structural equation modeling showed that soil quality properties were closely associated with LL, OA, and PP drove by microbial community assembly and keystone genera. Overall, these findings suggested that straw and organic fertilizer might drive keystone genera dominated by determinism to mediate soil lipid and amino acid metabolism for improving soil quality, which provided new insights into understanding the microbial-mediated biological process in amending soil quality.
Collapse
Affiliation(s)
- Xueqing Liu
- State Key Laboratory of Plant Environmental Resilience, Ministry of Education, Key Laboratory of Farming System, Ministry of Agriculture of China, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Hongrun Liu
- State Key Laboratory of Plant Environmental Resilience, Ministry of Education, Key Laboratory of Farming System, Ministry of Agriculture of China, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Yushi Zhang
- State Key Laboratory of Plant Environmental Resilience, Ministry of Education, Key Laboratory of Farming System, Ministry of Agriculture of China, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China.
| | - Churong Liu
- State Key Laboratory of Plant Environmental Resilience, Ministry of Education, Key Laboratory of Farming System, Ministry of Agriculture of China, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Yanan Liu
- State Key Laboratory of Plant Environmental Resilience, Ministry of Education, Key Laboratory of Farming System, Ministry of Agriculture of China, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Zhaohu Li
- State Key Laboratory of Plant Environmental Resilience, Ministry of Education, Key Laboratory of Farming System, Ministry of Agriculture of China, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Mingcai Zhang
- State Key Laboratory of Plant Environmental Resilience, Ministry of Education, Key Laboratory of Farming System, Ministry of Agriculture of China, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
45
|
Li N, Li J, Nie M, Wu M, Wu J. Effects of grazing prohibition on nirK- and nirS-type denitrifier communities in salt marshes. Front Microbiol 2023; 14:1233352. [PMID: 37564285 PMCID: PMC10411955 DOI: 10.3389/fmicb.2023.1233352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 06/21/2023] [Indexed: 08/12/2023] Open
Abstract
Introduction Grazing prohibition is an effective management practice to restore salt marsh functioning. However, the effects of grazing exclusion on denitrifying microbial communities and their controlling factors in salt marshes remain unclear. Methods In this study, we surveyed soil physicochemical properties and above- and below-ground biomass and using quantitative polymerase chain reaction and Illumina MiSeq high-throughput sequencing technology to determine the relative abundance, composition, and diversity of nitrite reductase nirS- and nirK-type denitrifying bacterial communities associated with grazing prohibition treatments and elevations. Results The abundance of nirS-type denitrifiers increased with grazing prohibition time, whereas the abundance of nirK-type denitrifiers remained unaltered. Moreover, nirS-type denitrifiers were more abundant and diverse than nirK-type denitrifiers in all treatments. Grazing prohibition significantly altered the operational taxonomic unit richness, abundance-based coverage estimator, and Chao1 indices of the nirS-type denitrifying bacterial communities, whereas it only minimally affected the structure of the nirK-type denitrifying bacterial community. Discussion The results imply that the nirS community, rather than nirK, should be the first candidate for use as an indicator in the process of salt marsh restoration after grazing prohibition. Substances of concern, total nitrogen, and salinity were the key environmental factors affecting the abundance and community composition of nirS and nirK denitrifiers. The findings of this study provide novel insights into the influence of the length of grazing prohibition and elevation on nirS- and nirK-type denitrifying bacterial community composition in salt marshes.
Collapse
Affiliation(s)
- Niu Li
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Coastal Ecosystems Research Station of Yangtze River Estuary, School of Life Sciences, Institute of Biodiversity Science and Institute of Eco-Chongming, Fudan University, Shanghai, China
- Wetland Ecosystem Research Station of Hangzhou Bay, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang, China
| | - Jingrou Li
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Coastal Ecosystems Research Station of Yangtze River Estuary, School of Life Sciences, Institute of Biodiversity Science and Institute of Eco-Chongming, Fudan University, Shanghai, China
| | - Ming Nie
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Coastal Ecosystems Research Station of Yangtze River Estuary, School of Life Sciences, Institute of Biodiversity Science and Institute of Eco-Chongming, Fudan University, Shanghai, China
| | - Ming Wu
- Wetland Ecosystem Research Station of Hangzhou Bay, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang, China
| | - Jihua Wu
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Coastal Ecosystems Research Station of Yangtze River Estuary, School of Life Sciences, Institute of Biodiversity Science and Institute of Eco-Chongming, Fudan University, Shanghai, China
| |
Collapse
|
46
|
Wei X, Fu T, He G, Zhong Z, Yang M, Lou F, He T. Types of vegetables shape composition, diversity, and co-occurrence networks of soil bacteria and fungi in karst areas of southwest China. BMC Microbiol 2023; 23:194. [PMID: 37468849 PMCID: PMC10354930 DOI: 10.1186/s12866-023-02929-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 07/03/2023] [Indexed: 07/21/2023] Open
Abstract
BACKGROUND Microorganisms are of significant importance in soil. Yet their association with specific vegetable types remains poorly comprehended. This study investigates the composition of bacterial and fungal communities in soil by employing high-throughput sequencing of 16 S rRNA genes and ITS rRNA genes while considering the cultivation of diverse vegetable varieties. RESULTS The findings indicate that the presence of cultivated vegetables influenced the bacterial and fungal communities leading to discernible alterations when compared to uncultivated soil. In particular, the soil of leafy vegetables (such as cabbage and kale) exhibited higher bacterial α-diversity than melon and fruit vegetable (such as cucumber and tomato), while fungal α-diversity showed an inverse pattern. The prevailing bacterial phyla in both leafy vegetable and melon and fruit vegetable soils were Proteobacteria, Acidobacteriota, Actinobacteriota, and Chloroflexi. In leafy vegetable soil, dominant fungal phyla included Ascomycota, Olpidiomycota, Mortierellomycota, and Basidiomycota whereas in melon and fruit vegetable soil. Ascomycota, Mortierellomycota, Basidiomycota, and Rozellomycota held prominence. Notably, the relative abundance of Ascomycota was lower in leafy vegetable soil compared to melon and fruit vegetable soil. Moreover, leafy vegetable soil exhibited a more complex and stable co-occurrence network in comparison to melon and fruit vegetable soil. CONCLUSION The findings enhance our understanding of how cultivated soil bacteria and fungi respond to human disturbance, thereby providing a valuable theoretical basis for soil health in degraded karst areas of southwest China.
Collapse
Affiliation(s)
- Xiaoliao Wei
- College of Agriculture, Guizhou University, Guiyang, 550025, PR China
| | - Tianling Fu
- Institute of New Rural Development, Engineering Key Laboratory for Pollution Control and Resource Reuse Technology of Mountain Livestock Breeding, Guizhou University, Huaxi District, Guiyang City, 550025, Guizhou Province, PR China
| | - Guandi He
- College of Agriculture, Guizhou University, Guiyang, 550025, PR China
| | - Zhuoyan Zhong
- College of Agriculture, Guizhou University, Guiyang, 550025, PR China
| | - Mingfang Yang
- College of Agriculture, Guizhou University, Guiyang, 550025, PR China
| | - Fei Lou
- College of Agriculture, Guizhou University, Guiyang, 550025, PR China
| | - Tengbing He
- College of Agriculture, Guizhou University, Guiyang, 550025, PR China.
- Institute of New Rural Development, Engineering Key Laboratory for Pollution Control and Resource Reuse Technology of Mountain Livestock Breeding, Guizhou University, Huaxi District, Guiyang City, 550025, Guizhou Province, PR China.
| |
Collapse
|
47
|
Wang Y, Liu Z, Hao X, Wang Z, Wang Z, Liu S, Tao C, Wang D, Wang B, Shen Z, Shen Q, Li R. Biodiversity of the beneficial soil-borne fungi steered by Trichoderma-amended biofertilizers stimulates plant production. NPJ Biofilms Microbiomes 2023; 9:46. [PMID: 37407614 DOI: 10.1038/s41522-023-00416-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 06/26/2023] [Indexed: 07/07/2023] Open
Abstract
The soil microbiota is critical to plant performance. Improving the ability of plant-associated soil probiotics is thus essential for establishing dependable and sustainable crop yields. Although fertilizer applications may provide an effective way of steering soil microbes, it is still unknown how the positive effects of soil-borne probiotics can be maximized and how their effects are mediated. This work aims to seek the ecological mechanisms involved in cabbage growth using bio-organic fertilizers. We conducted a long-term field experiment in which we amended soil with non-sterilized organic or sterilized organic fertilizer either containing Trichoderma guizhouense NJAU4742 or lacking this inoculum and tracked cabbage plant growth and the soil fungal community. Trichoderma-amended bio-organic fertilizers significantly increased cabbage plant biomass and this effect was attributed to changes in the resident fungal community composition, including an increase in the relative abundance and number of indigenous soil growth-promoting fungal taxa. We specifically highlight the fundamental role of the biodiversity and population density of these plant-beneficial fungal taxa in improving plant growth. Together, our results suggest that the beneficial effects of bio-organic fertilizer seem to be a combination of the biological inoculum within the organic amendment as well as the indirect promotion through effects on the diversity and composition of the soil resident plant-beneficial fungal microbiome.
Collapse
Affiliation(s)
- Yan Wang
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Laboratory of Bio-interactions and Crop Health, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, P. R. China
| | - Zhengyang Liu
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Laboratory of Bio-interactions and Crop Health, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, P. R. China
| | - Xinyi Hao
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Laboratory of Bio-interactions and Crop Health, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, P. R. China
- The Sanya Institute of Nanjing Agricultural University, Sanya, 572000, Hainan, P. R. China
| | - Ziqi Wang
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Laboratory of Bio-interactions and Crop Health, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, P. R. China
- The Sanya Institute of Nanjing Agricultural University, Sanya, 572000, Hainan, P. R. China
| | - Zhe Wang
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Laboratory of Bio-interactions and Crop Health, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, P. R. China
- The Sanya Institute of Nanjing Agricultural University, Sanya, 572000, Hainan, P. R. China
| | - Shanshan Liu
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Laboratory of Bio-interactions and Crop Health, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, P. R. China
| | - Chengyuan Tao
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Laboratory of Bio-interactions and Crop Health, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, P. R. China.
- The Sanya Institute of Nanjing Agricultural University, Sanya, 572000, Hainan, P. R. China.
| | - Dongsheng Wang
- Nanjing Institute of Vegetable Science, Nanjing, 210042, Jiangsu, P. R. China
| | - Bei Wang
- Nanjing Institute of Vegetable Science, Nanjing, 210042, Jiangsu, P. R. China
| | - Zongzhuan Shen
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Laboratory of Bio-interactions and Crop Health, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, P. R. China
- The Sanya Institute of Nanjing Agricultural University, Sanya, 572000, Hainan, P. R. China
| | - Qirong Shen
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Laboratory of Bio-interactions and Crop Health, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, P. R. China
- The Sanya Institute of Nanjing Agricultural University, Sanya, 572000, Hainan, P. R. China
| | - Rong Li
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Laboratory of Bio-interactions and Crop Health, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, P. R. China
- The Sanya Institute of Nanjing Agricultural University, Sanya, 572000, Hainan, P. R. China
| |
Collapse
|
48
|
Zeng J, Pan Y, Hu R, Liu F, Gu H, Ding J, Liu S, Liu S, Yang X, Peng Y, Tian Y, He Q, Wu Y, Yan Q, Shu L, He Z, Wang C. The vertically-stratified resistomes in mangrove sediments was driven by the bacterial diversity. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131974. [PMID: 37406521 DOI: 10.1016/j.jhazmat.2023.131974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 06/24/2023] [Accepted: 06/28/2023] [Indexed: 07/07/2023]
Abstract
Early evidence has elucidated that the spread of antibiotic (ARGs) and metal resistance genes (MRGs) are mainly attributed to the selection pressure in human-influenced environments. However, whether and how biotic and abiotic factors mediate the distribution of ARGs and MRGs in mangrove sediments under natural sedimentation is largely unclear. Here, we profiled the abundance and diversity of ARGs and MRGs and their relationships with sedimental microbiomes in 0-100 cm mangrove sediments. Our results identified multidrug-resistance and multimetal-resistance as the most abundant ARG and MRG classes, and their abundances generally decreased with the sediment depth. Instead of abiotic factors such as nutrients and antibiotics, the bacterial diversity was significantly negatively correlated with the abundance and diversity of resistomes. Also, the majority of resistance classes (e.g., multidrug and arsenic) were carried by more diverse bacterial hosts in deep layers with low abundances of resistance genes. Together, our results indicated that bacterial diversity was the most important biotic factor driving the vertical profile of ARGs and MRGs in the mangrove sediment. Given that there is a foreseeable increasing human impact on natural environments, this study emphasizes the important role of biodiversity in driving the abundance and diversity of ARGs and MRGs.
Collapse
Affiliation(s)
- Jiaxiong Zeng
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Yu Pan
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
| | - Ruiwen Hu
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Fei Liu
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Hang Gu
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Jijuan Ding
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Songfeng Liu
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Shengwei Liu
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Xueqin Yang
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Yisheng Peng
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Yun Tian
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Qiang He
- Department of Civil and Environmental Engineering, the University of Tennessee, Knoxville, TN, USA
| | - Yongjie Wu
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510530, China
| | - Qingyun Yan
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Longfei Shu
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Zhili He
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China.
| | - Cheng Wang
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
49
|
Albert S, Bloem E. Ecotoxicological methods to evaluate the toxicity of bio-based fertilizer application to agricultural soils - A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 879:163076. [PMID: 37003177 DOI: 10.1016/j.scitotenv.2023.163076] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 05/17/2023]
Abstract
A multitude of possible contaminants can be contained in bio-based fertilizers (BBFs) because of their complex matrix. The chemical characterization of BBFs is a challenging analytical task. Therefore, it is important for sustainable agricultural production to develop standard procedures to assess new bio-based fertilizers for possible hazards related to their application in order to guarantee their safety for soils organisms, plants and the environment. There is a huge number of ecotoxicological tests for aquatic and terrestrial organisms. They were developed for the evaluation of chemicals, pesticides and industrial wastes on aquatic systems and soil functioning. These tests can be useful for the assessment of BBFs. Ecotoxicological tests in comparison to chemical analysis have the advantage to capture the effects of all possible contaminants and metabolites available in the product. The bioavailability of toxic compounds and their interaction are recorded while the cause-and-effect-chain is not elucidated. Numerous ecotoxicological tests work with liquid media, capturing the effects of pollutants that can be mobilized. Hence, standardized procedures how to produce solvents from BBFs are mandatory. Moreover, tests using the original (solid) material are necessary in order to determine the toxicity of a given BBF in its application form and to cover the potential toxicity of non-soluble compounds. To date there are no rules how to determine the ecotoxicological potential of BBFs. A tiered approach of chemical analytical parameters in combination with a set of ecotoxicological tests and the measurement of sensitive soil indicators seem to be a promising experimental setup for the evaluation of BBFs. A decision tree for such an approach was developed. An extended ecotoxicological test strategy of BBFs is mandatory to identify the most promising raw materials and BBF processing technologies to end up with sustainable fertilizer products showing a high agronomic efficiency.
Collapse
Affiliation(s)
- Sophia Albert
- Julius Kühn-Institut (JKI), Federal Research Centre for Cultivated Plants, Institute for Crop and Soil Sciences, Bundesallee 58, 38116 Braunschweig, Germany
| | - Elke Bloem
- Julius Kühn-Institut (JKI), Federal Research Centre for Cultivated Plants, Institute for Crop and Soil Sciences, Bundesallee 58, 38116 Braunschweig, Germany.
| |
Collapse
|
50
|
Riedo J, Yokota A, Walther B, Bartolomé N, van der Heijden MGA, Bucheli TD, Walder F. Temporal dynamics of total and bioavailable fungicide concentrations in soil and their effect upon nine soil microbial markers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 878:162995. [PMID: 36948305 DOI: 10.1016/j.scitotenv.2023.162995] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/17/2023] [Accepted: 03/17/2023] [Indexed: 05/13/2023]
Abstract
Pesticides constitute an integral part of today's agriculture. Their widespread use leads to ubiquitous contamination of the environment, including soils. Soils are a precious resource providing vital functions to society - thus, it is of utmost importance to thoroughly assess the risk posed by widespread pesticide contamination. The exposure of non-target organisms to pesticides in soils is challenging to quantify since only a fraction of the total pesticide concentration is bioavailable. Here we measured and compared the bioavailable and total concentrations of three fungicides - boscalid, azoxystrobin, and epoxiconazole - and evaluated which concentration best predicts effects on nine microbial markers. The experiments were performed in three different soils at five time points over two months employing nearly 900 microcosms with a model plant. The total and bioavailable concentrations of azoxystrobin and boscalid decreased steadily during the trial to levels of 25 % and 8 % of the original concentration, respectively, while the concentration of epoxiconazole in soil nearly remained unchanged. The bioavailable fraction generally showed a slightly faster and more pronounced decline. The microbial markers varied in their sensitivity to the three fungicides. Specific microbial markers, such as arbuscular mycorrhizal fungi, and bacterial and archaeal ammonia oxidizers, were most sensitive to each of the fungicide treatments, making them suitable indicators for pesticide effects. Even though the responses were predominantly negative, they were also transient, and the impact was no longer evident after two months. Finally, the bioavailable fraction did not better predict the relationships between exposure and effect than the total concentration. This study demonstrates that key microbial groups are temporarily susceptible to a single fungicide application, pointing to the risk that repeated use of pesticides may disrupt vital soil functions such as nutrient cycling in agroecosystems.
Collapse
Affiliation(s)
- Judith Riedo
- Division of Agroecology and Environment, Agroscope, 8046 Zurich, Switzerland; Department of Plant and Microbial Biology, University of Zurich, 8008 Zurich, Switzerland
| | - Aya Yokota
- Division of Agroecology and Environment, Agroscope, 8046 Zurich, Switzerland
| | - Barbara Walther
- Division of Agroecology and Environment, Agroscope, 8046 Zurich, Switzerland
| | - Nora Bartolomé
- Division of Methods Development and Analytics, Agroscope, 8046 Zurich, Switzerland
| | - Marcel G A van der Heijden
- Division of Agroecology and Environment, Agroscope, 8046 Zurich, Switzerland; Department of Plant and Microbial Biology, University of Zurich, 8008 Zurich, Switzerland.
| | - Thomas D Bucheli
- Division of Methods Development and Analytics, Agroscope, 8046 Zurich, Switzerland.
| | - Florian Walder
- Division of Agroecology and Environment, Agroscope, 8046 Zurich, Switzerland.
| |
Collapse
|