1
|
Moghadasi M, Taherimoghaddam M, Babaeenezhad E, Birjandi M, Kaviani M, Moradi Sarabi M. MicroRNA-34a and promoter methylation contribute to peroxisome proliferator-activated receptor gamma gene expression in patients with type 2 diabetes. Diabetes Metab Syndr 2024; 18:103156. [PMID: 39522431 DOI: 10.1016/j.dsx.2024.103156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/30/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
AIMS This study aimed to investigate the roles of DNA methylation and miR-34a in the regulation of peroxisome proliferator-activated receptor gamma (PPARγ) in patients with type 2 diabetes (T2D). METHODS We investigated the methylation status of four regions of the PPARγ promoter and PPARγ expression in a panel of 84 T2D patients using methylation-specific PCR (MSP) and RT-qPCR, respectively. Moreover, we quantified DNA methyltransferases (DNMTs) expression and global DNA methylation levels by RT-qPCR and ELISA, respectively. We measured the expression levels of miR-34a and protein expression of PPARγ by stem-loop RT-qPCR and ELISA, respectively. RESULTS We found significant DNA hypermethylation in the R2 and R3 regions of the PPARγ promoter in people with diabetes. Functionally, this was associated with a significant reduction in PPARγ expression. In addition, we observed a significant increase in 5-methylcytosine levels in people with diabetes. A marked increase in circulating miR-34a in the early stages of T2D (up to 10 years) and a significant decrease in circulating miR-34a with increasing diabetes duration from 10 years after the onset of diabetes. Interestingly, upregulation of DNA methyltransferases 1 (DNMT1), DNMT3A, and DNMT3B was observed in people with diabetes, and the average expression of DNMTs was negatively correlated with circulating miR-34a levels. In contrast, the serum protein level of PPARγ, a direct target of miR-34a, increased considerably with diabetes duration and showed a negative correlation with circulating miR-34a, cholesterol, triglyceride, and low-density lipoprotein. CONCLUSION PPARγ promoter hypermethylation and miR-34a upregulation are associated with T2D pathogenesis through PPARγ dysregulation.
Collapse
Affiliation(s)
- Mona Moghadasi
- Nutritional Health Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran; Department Clinical Biochemistry and Genetics, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Mozhgan Taherimoghaddam
- Nutritional Health Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran; Department Clinical Biochemistry and Genetics, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Esmaeel Babaeenezhad
- Nutritional Health Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran; Department Clinical Biochemistry and Genetics, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Mehdi Birjandi
- Hepatitis Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran; Department of Biostatistics and Epidemiology, School of Health and Nutrition, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Mozhgan Kaviani
- Department of Internal Medicine, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Mostafa Moradi Sarabi
- Department Clinical Biochemistry and Genetics, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran; Hepatitis Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran.
| |
Collapse
|
2
|
Shi Z, Li X, Zhang L, Xie J, Zhong F, Guo Z, Gao Z, Wang J, Mahto RK, Li Y, Wang S, Chang B, Stanton RC, Yang J. Alterations of urine microRNA-7977/G6PD level in patients with diabetic kidney disease and its association with dysfunction of albumin-induced autophagy in proximal epithelial tubular cells. Am J Physiol Endocrinol Metab 2024; 327:E512-E523. [PMID: 39140974 PMCID: PMC11482262 DOI: 10.1152/ajpendo.00399.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 06/20/2024] [Accepted: 07/25/2024] [Indexed: 08/15/2024]
Abstract
Diabetic kidney disease (DKD) remains as one of the leading long-term complications of type 2 diabetic mellitus (T2DM). Studies have shown that decreased expression of glucose-6-phosphate dehydrogenase (G6PD) plays an important role in DKD. However, the upstream and downstream pathways of G6PD downregulation leading to DKD have not been elucidated. We conducted a series of studies including clinical study, animal studies, and in vitro studies to explore this. First, a total of 90 subjects were evaluated including 30 healthy subjects, 30 patients with T2DM, and 30 patients with DKD. The urinary G6PD activity and its association with the clinical markers were analyzed. Multivariate linear regression analysis was used to analyze the risk factors of urinary G6PD in these patients. Then, microRNAs that were differentially expressed in urine and could bind and degrade G6PD were screened and verified in patients with DKD. After that, high glucose (HG)-cultured human kidney cells (HK-2) and Zucker diabetic fatty (ZDF) rats were used to test the roles of miR-7977/G6PD/albumin-induced autophagy in DKD. Beclin and P62 were used as markers of kidney autophagy indicators. A dual-luciferase reporter assay system was used to test the binding of G6PD by mir-7977. The plasma and urinary G6PD activity were decreased significantly in patients with DKD, accompanied by increased urinary mir-7977 level. The fasting plasma glucose (FPG), triglyceride (TG), low-density lipoprotein cholesterol (LDL-C), and urinary albumin excretion were independent predictors of urinary G6PD activity, according to multiple linear regression analysis. The increased expression of miR-7977 and decreased expression of G6PD were also found in the kidney of ZDF rats with early renal tubular damage. The correlation analysis showed that beclin protein expression levels were positively correlated with kidney G6PD activity, whereas P62 protein expression was negatively correlated with kidney G6PD activity in rats. In HK-2 cells cultured with normal situation, a low level of albumin could induce autophagy along with the stimulation of G6PD, although this was impaired under high glucose. Overexpression of G6PD reversed albumin-induced autophagy in HK-2 cells under high glucose. Further study revealed that G6PD was a downstream target of miR-7977. Inhibition of miR-7977 expression led to significantly increased expression of G6PD and reversed the effects of high glucose on albumin-induced autophagy. In conclusion, our study supports a new mechanism of G6PD downregulation in DKD. Therapeutic measures targeting the miR-7977/G6PD/autophagy signaling pathway may help in the prevention and treatment of DKD.NEW & NOTEWORTHY This study provides new evidence that reduced glucose-6-phosphate dehydrogenase (G6PD) may damage the endocytosis of renal tubular epithelial cells by reducing albumin-induced autophagy. More importantly, for the first time, our study has provided evidence from humans that the decrease in urinary G6PD activity is positively associated with renal injury, and abnormal glucose and lipid metabolism may be important reasons for reduced G6PD levels. Increased miR-7977 may at least in part explain the downregulation of G6PD.
Collapse
Affiliation(s)
- Zhenzhen Shi
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang, Institute of Nephrology; Department of Endocrinology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, People's Republic of China
- Characteristics Medical Center of Chinese People's Armed Police Force, Tianjin, People's Republic of China
| | - Xinran Li
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang, Institute of Nephrology; Department of Endocrinology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, People's Republic of China
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, People's Republic of China
| | - Liyi Zhang
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, People's Republic of China
| | - Jinlan Xie
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, People's Republic of China
| | - Feifei Zhong
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, People's Republic of China
| | - Zhenhong Guo
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, People's Republic of China
| | - Zhongai Gao
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, People's Republic of China
| | - Jingyu Wang
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, People's Republic of China
| | - Roshan Kumar Mahto
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, People's Republic of China
| | - Yuan Li
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, People's Republic of China
| | - Shenglan Wang
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, People's Republic of China
| | - Baocheng Chang
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, People's Republic of China
| | - Robert C Stanton
- Kidney and Hypertension Section, Joslin Diabetes Center, Boston, Massachusetts, United States
- Division of Nephrology, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States
| | - Juhong Yang
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang, Institute of Nephrology; Department of Endocrinology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, People's Republic of China
| |
Collapse
|
3
|
Odimegwu CL, Uwaezuoke SN, Chikani UN, Mbanefo NR, Adiele KD, Nwolisa CE, Eneh CI, Ndiokwelu CO, Okpala SC, Ogbuka FN, Odo KE, Ohuche IO, Obiora-Izuka CE. Targeting the Epigenetic Marks in Type 2 Diabetes Mellitus: Will Epigenetic Therapy Be a Valuable Adjunct to Pharmacotherapy? Diabetes Metab Syndr Obes 2024; 17:3557-3576. [PMID: 39323929 PMCID: PMC11423826 DOI: 10.2147/dmso.s479077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 08/03/2024] [Indexed: 09/27/2024] Open
Abstract
Although genetic, environmental, and lifestyle factors largely contribute to type 2 diabetes mellitus (T2DM) risk, the role of epigenetics in its pathogenesis is now well established. The epigenetic mechanisms in T2DM mainly consist of DNA methylation, histone modifications and regulation by noncoding RNAs (ncRNAs). For instance, DNA methylation at CpG islands in the promoter regions of specific genes encoding insulin signaling and glucose metabolism suppresses these genes. Modulating the enzyme mediators of these epigenetic marks aims to restore standard gene expression patterns and improve glycemic control. In targeting these epigenetic marks, using epigenetic drugs such as DNA methyltransferase (DNAMT), histone deacetylase (HDAC) and histone acetyltransferase (HAT) inhibitors has led to variable success in humans and experimental murine models. Specifically, the United States' Food and Drug Administration (US FDA) has approved DNAMT inhibitors like 5-azacytidine and 5-aza-2'-deoxycytidine for use in diabetic retinopathy: a T2DM microvascular complication. These DNAMT inhibitors block the genes for methylation of mitochondrial superoxide dismutase 2 (SOD2) and matrix metallopeptidase 9 (MMP-9): the epigenetic marks in diabetic retinopathy. Traditional pharmacotherapy with metformin also have epigenetic effects in T2DM and positively alter disease outcomes when combined with epigenetic drugs like DNAMT and HDAC inhibitors, raising the prospect of using epigenetic therapy as a valuable adjunct to pharmacotherapy. However, introducing small interfering RNAs (siRNAs) in cells to silence specific target genes remains in the exploratory phase. Future research should focus on regulating gene expression in T2DM using long noncoding RNA (lncRNA) molecules, another type of ncRNA. This review discusses the epigenetics of T2DM and that of its macro- and microvascular complications, and the potential benefits of combining epigenetic therapy with pharmacotherapy for optimal results.
Collapse
Affiliation(s)
- Chioma Laura Odimegwu
- Department of Pediatrics, the University of Nigeria Teaching Hospital (UNTH), Ituku-Ozalla Enugu, Nigeria
| | - Samuel Nkachukwu Uwaezuoke
- Department of Pediatrics, the University of Nigeria Teaching Hospital (UNTH), Ituku-Ozalla Enugu, Nigeria
| | - Ugo N Chikani
- Department of Pediatrics, the University of Nigeria Teaching Hospital (UNTH), Ituku-Ozalla Enugu, Nigeria
| | - Ngozi Rita Mbanefo
- Department of Pediatrics, the University of Nigeria Teaching Hospital (UNTH), Ituku-Ozalla Enugu, Nigeria
| | - Ken Daberechi Adiele
- Department of Pediatrics, the University of Nigeria Teaching Hospital (UNTH), Ituku-Ozalla Enugu, Nigeria
| | | | - Chizoma Ihuarula Eneh
- Department of Pediatrics, Enugu State University Teaching Hospital (ESUTH), Enugu, Nigeria
| | - Chibuzo Obiora Ndiokwelu
- Department of Pediatrics, the University of Nigeria Teaching Hospital (UNTH), Ituku-Ozalla Enugu, Nigeria
| | - Somkenechi C Okpala
- Department of Pediatrics, the University of Nigeria Teaching Hospital (UNTH), Ituku-Ozalla Enugu, Nigeria
| | - Francis N Ogbuka
- Department of Pediatrics, Enugu State University Teaching Hospital (ESUTH), Enugu, Nigeria
| | - Kenneth E Odo
- Department of Pediatrics, the University of Nigeria Teaching Hospital (UNTH), Ituku-Ozalla Enugu, Nigeria
| | | | | |
Collapse
|
4
|
Travagliante G, Gaeta M, Gangemi CMA, Alaimo S, Ferro A, Purrello R, D'Urso A. Interactions between achiral porphyrins and a mature miRNA. NANOSCALE 2024; 16:5137-5148. [PMID: 38305723 DOI: 10.1039/d3nr05504c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Recent discoveries have revealed that mature miRNAs could form highly ordered structures similar to aptamers, suggesting diverse functions beyond mRNA recognition and degradation. This study focuses on understanding the secondary structures of human miR-26b-5p (UUCAAGUAAUUCAGGAUAGGU) using circular dichroism (CD) and chiroptical probes; in particular, four achiral porphyrins were utilized to both act as chiroptical probes and influence miRNA thermodynamic stability. Various spectroscopic techniques, including UV-Vis, fluorescence, resonance light scattering (RLS), electronic circular dichroism (ECD), and CD melting, were employed to study their interactions. UV-Vis titration revealed that meso-tetrakis(4-N-methylpyridyl) porphyrin (H2T4) and meso-tetrakis(4-carboxyphenylspermine) porphyrin (H2TCPPSpm4) formed complexes with distinct binding stoichiometries up to 6 : 1 and 3 : 1 ratios, respectively, and these results were supported by RLS and fluorescence, while the zinc(II) derivative porphyrin ZnT4 exhibited a weaker interaction. ZnTCPPSpm4 formed aggregates in PBS with higher organization in the presence of miRNA. CD titrations displayed an induced CD signal in the Soret region for every porphyrin investigated, indicating that they can be used as chiroptical probes for miR-26b-5p. Lastly, CD melting experiments revealed that at a 1 : 1 ratio, porphyrins did not significantly affect miRNA stability, except for H2TCPPSpm4. However, at a 3 : 1 ratio, all porphyrins, except ZnTCPPSpm4, exhibited a strong destabilizing effect on miRNA secondary structures. These findings shed light on the structural versatility of miR-26b-5p and highlight the potential of porphyrins as chiroptical probes and modulators of miRNA stability.
Collapse
Affiliation(s)
- Gabriele Travagliante
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Viale A. Doria 6, 95125, Catania, Italy.
| | - Massimiliano Gaeta
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Viale A. Doria 6, 95125, Catania, Italy.
| | - Chiara M A Gangemi
- Dipartimento di Scienze chimiche, biologiche, farmaceutiche e ambientali, Università degli Studi di Messina, V.le Ferdinando Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Salvatore Alaimo
- Dipartimento di Medicina Clinica e Sperimentale, c/o Dipartimento di Matematica e Informatica, Università degli Studi di Catania, Viale A. Doria 6, 95125, Catania, Italy
| | - Alfredo Ferro
- Dipartimento di Medicina Clinica e Sperimentale, c/o Dipartimento di Matematica e Informatica, Università degli Studi di Catania, Viale A. Doria 6, 95125, Catania, Italy
| | - Roberto Purrello
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Viale A. Doria 6, 95125, Catania, Italy.
| | - Alessandro D'Urso
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Viale A. Doria 6, 95125, Catania, Italy.
| |
Collapse
|
5
|
Li Z, Zhao W, Wang M, Hussain MZ, Mahjabeen I. Role of microRNAs deregulation in initiation of rheumatoid arthritis: A retrospective observational study. Medicine (Baltimore) 2024; 103:e36595. [PMID: 38241560 PMCID: PMC10798721 DOI: 10.1097/md.0000000000036595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 11/21/2023] [Indexed: 01/21/2024] Open
Abstract
Rheumatoid arthritis (RA) is a joint disorder and is considered an important public health concern nowadays. So, identifying novel biomarkers and treatment modalities is urgently needed to improve the health standard of RA patients. Factors involved in RA pathogenesis are genetic/epigenetic modification, environment, and lifestyle. In the case of epigenetic modification, the expression deregulation of microRNAs and the role of histone deacetylase (HDAC) in RA is an important aspect that needs to be addressed. The present study is designed to evaluate the expression pattern of microRNAs related to the HDAC family. Five microRNAs, miR-92a-3p, miR-455-3p, miR-222, miR-140, and miR-146a related to the HDAC family were selected for the present study. Real-time polymerase chain reaction was used to estimate the level of expression of the above-mentioned microRNAs in 150 patients of RA versus 150 controls. Oxidative stress level and histone deacetylation status were measured using the enzyme-linked immunosorbent assay. Statistical analysis showed significant downregulation (P < .0001) of selected microRNAs in RA patients versus controls. Significantly raised level of HDAC (P < .0001) and 8-hydroxy-2'-deoxyguanosine (P < .0001) was observed in patients versus controls. A good diagnostic potential of selected microRNAs in RA was shown by the receiver operating curve analysis. The current study showed a significant role of deregulated expression of the above-mentioned microRNAs in RA initiation and can act as an excellent diagnostic marker for this disease.
Collapse
Affiliation(s)
- Zengxin Li
- Department of Bone Surgery, Department of Orthopaedic Surgery Ⅱ, Affiliated Hospital of Beihua University, Jilin, China
| | - Wen Zhao
- Department of Orthopaedics, The first Affiliated Hospital of Chengdu Medical College, Chengdu City, Sichuan Province, China
| | - Mengchang Wang
- Department of Rehabilitation Medicine, Traditional Chinese Medical Hospital of HuZhou, Huzhou, Zhejiang, China
| | | | - Ishrat Mahjabeen
- Cancer Genetics and Epigenetics Lab, Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| |
Collapse
|
6
|
Bhaskara M, Anjorin O, Wang M. Mesenchymal Stem Cell-Derived Exosomal microRNAs in Cardiac Regeneration. Cells 2023; 12:2815. [PMID: 38132135 PMCID: PMC10742005 DOI: 10.3390/cells12242815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/01/2023] [Accepted: 12/05/2023] [Indexed: 12/23/2023] Open
Abstract
Mesenchymal stem cell (MSC)-based therapy is one of the most promising modalities for cardiac repair. Accumulated evidence suggests that the therapeutic value of MSCs is mainly attributable to exosomes. MSC-derived exosomes (MSC-Exos) replicate the beneficial effects of MSCs by regulating various cellular responses and signaling pathways implicated in cardiac regeneration and repair. miRNAs constitute an important fraction of exosome content and are key contributors to the biological function of MSC-Exo. MSC-Exo carrying specific miRNAs provides anti-apoptotic, anti-inflammatory, anti-fibrotic, and angiogenic effects within the infarcted heart. Studying exosomal miRNAs will provide an important insight into the molecular mechanisms of MSC-Exo in cardiac regeneration and repair. This significant information can help optimize cell-free treatment and overcome the challenges associated with MSC-Exo therapeutic application. In this review, we summarize the characteristics and the potential mechanisms of MSC-derived exosomal miRNAs in cardiac repair and regeneration.
Collapse
Affiliation(s)
| | | | - Meijing Wang
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
7
|
Liu C, Chen J, Liang J, Xu T, Zhang X. Advancements in artificial micro/nanomotors for nucleic acid biosensing: a review of recent progress. NANOSCALE 2023; 15:13172-13186. [PMID: 37548348 DOI: 10.1039/d3nr02443a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Artificial micro/nanomotors represent a class of well-designed tools that exhibit dynamic motion and remote-control capabilities, endowing them with the capacity to perform complex tasks at the micro/nanoscale. Their utilization in nucleic acid biosensing has been paid significant attention, owing to their ability to facilitate targeted delivery of detection probes to designated sites and enhance hybridization between detection probes and target nucleic acids, thereby improving the sensitivity and specificity of biosensing. Within this comprehensive overview, we elucidate the advancement of nucleic acid biosensing through the integration of micro/nanomotors over the past decade. In particular, we provide an in-depth exploration of the diverse applications of micro/nanomotors in nucleic acid biosensing, including fluorescence recovery-based biosensing, velocity change-based biosensing, and aggregation-enhanced biosensing. Additionally, we outline the remaining challenges that impede the practical application of artificial micro/nanomotors in nucleic acid detection, and offer personal insights into prospective avenues for future development. By overcoming these obstacles, we anticipate that artificial micro/nanomotors will revolutionize conventional nucleic acid detection methodologies, providing enhanced sensitivity and reduced diagnostic timeframes, thereby facilitating more effective disease diagnosis.
Collapse
Affiliation(s)
- Conghui Liu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China.
- Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen, 518060, China
| | - Jingyu Chen
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Jiahui Liang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Tailin Xu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China.
- Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen, 518060, China
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Xueji Zhang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China.
- Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen, 518060, China
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
8
|
Goncalves BDS, Meadows A, Pereira DG, Puri R, Pillai SS. Insight into the Inter-Organ Crosstalk and Prognostic Role of Liver-Derived MicroRNAs in Metabolic Disease Progression. Biomedicines 2023; 11:1597. [PMID: 37371692 PMCID: PMC10295788 DOI: 10.3390/biomedicines11061597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/19/2023] [Accepted: 05/27/2023] [Indexed: 06/29/2023] Open
Abstract
Dysfunctional hepatic metabolism has been linked to numerous diseases, including non-alcoholic fatty liver disease, the most common chronic liver disorder worldwide, which can progress to hepatic fibrosis, and is closely associated with insulin resistance and cardiovascular diseases. In addition, the liver secretes a wide array of metabolites, biomolecules, and microRNAs (miRNAs) and many of these secreted factors exert significant effects on metabolic processes both in the liver and in peripheral tissues. In this review, we summarize the involvement of liver-derived miRNAs in biological processes with an emphasis on delineating the communication between the liver and other tissues associated with metabolic disease progression. Furthermore, the review identifies the primary molecular targets by which miRNAs act. These consolidated findings from numerous studies provide insight into the underlying mechanism of various metabolic disease progression and suggest the possibility of using circulatory miRNAs as prognostic predictors and therapeutic targets for improving clinical intervention strategies.
Collapse
Affiliation(s)
- Bruno de Souza Goncalves
- Department of Surgery and Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25701, USA
| | - Avery Meadows
- Department of Surgery and Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25701, USA
| | - Duane G Pereira
- Department of Surgery and Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25701, USA
| | - Raghav Puri
- Department of Surgery and Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25701, USA
| | - Sneha S Pillai
- Department of Surgery and Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25701, USA
| |
Collapse
|
9
|
Rudge MVC, Alves FCB, Hallur RLS, Oliveira RG, Vega S, Reyes DRA, Floriano JF, Prudencio CB, Garcia GA, Reis FVDS, Emanueli C, Fuentes G, Cornejo M, Toledo F, Valenzuela-Hinrichsen A, Guerra C, Grismaldo A, Valero P, Barbosa AMP, Sobrevia L. Consequences of the exposome to gestational diabetes mellitus. Biochim Biophys Acta Gen Subj 2023; 1867:130282. [PMID: 36436753 DOI: 10.1016/j.bbagen.2022.130282] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/14/2022] [Accepted: 11/16/2022] [Indexed: 11/26/2022]
Abstract
The exposome is the cumulative measure of environmental influences and associated biological responses throughout the lifespan, including those from the environment, diet, behaviour, and endogenous processes. The exposome concept and the 2030 Agenda for the Sustainable Development Goals (SDGs) from the United Nations are the basis for understanding the aetiology and consequences of non-communicable diseases, including gestational diabetes mellitus (GDM). Pregnancy may be developed in an environment with adverse factors part of the immediate internal medium for fetus development and the external medium to which the pregnant woman is exposed. The placenta is the interface between maternal and fetal compartments and acts as a protective barrier or easing agent to transfer exposome from mother to fetus. Under and over-nutrition in utero, exposure to adverse environmental pollutants such as heavy metals, endocrine-disrupting chemicals, pesticides, drugs, pharmaceuticals, lifestyle, air pollutants, and tobacco smoke plays a determinant role in the development of GDM. This phenomenon is worsened by metabolic stress postnatally, such as obesity which increases the risk of GDM and other diseases. Clinical risk factors for GDM development include its aetiology. It is proposed that knowledge-based interventions to change the potential interdependent ecto-exposome and endo-exposome could avoid the occurrence and consequences of GDM.
Collapse
Affiliation(s)
- Marilza V C Rudge
- Department of Gynaecology and Obstetrics, Botucatu Medical School, São Paulo State University (UNESP), 18618-687 Botucatu, São Paulo, Brazil.
| | - Fernanda C B Alves
- Department of Gynaecology and Obstetrics, Botucatu Medical School, São Paulo State University (UNESP), 18618-687 Botucatu, São Paulo, Brazil
| | - Raghavendra L S Hallur
- Department of Gynaecology and Obstetrics, Botucatu Medical School, São Paulo State University (UNESP), 18618-687 Botucatu, São Paulo, Brazil; Centre for Biotechnology, Pravara Institute of Medical Sciences (DU), Loni-413736, Rahata Taluk, Ahmednagar District, Maharashtra, India
| | - Rafael G Oliveira
- Department of Gynaecology and Obstetrics, Botucatu Medical School, São Paulo State University (UNESP), 18618-687 Botucatu, São Paulo, Brazil
| | - Sofia Vega
- Department of Gynaecology and Obstetrics, Botucatu Medical School, São Paulo State University (UNESP), 18618-687 Botucatu, São Paulo, Brazil; Cellular and Molecular Physiology Laboratory (CMPL), Department of Obstetrician, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile
| | - David R A Reyes
- Department of Gynaecology and Obstetrics, Botucatu Medical School, São Paulo State University (UNESP), 18618-687 Botucatu, São Paulo, Brazil
| | - Juliana F Floriano
- Department of Gynaecology and Obstetrics, Botucatu Medical School, São Paulo State University (UNESP), 18618-687 Botucatu, São Paulo, Brazil
| | - Caroline B Prudencio
- Department of Gynaecology and Obstetrics, Botucatu Medical School, São Paulo State University (UNESP), 18618-687 Botucatu, São Paulo, Brazil
| | - Gabriela A Garcia
- São Paulo State University (UNESP), School of Sciences, Postgraduate Program in Materials Science and Technology (POSMAT), 17033-360 Bauru, São Paulo, Brazil
| | - Fabiana V D S Reis
- Department of Gynaecology and Obstetrics, Botucatu Medical School, São Paulo State University (UNESP), 18618-687 Botucatu, São Paulo, Brazil
| | - Costanza Emanueli
- National Heart and Lung Institute, Imperial College London, London SW3 6LY, UK
| | - Gonzalo Fuentes
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, 9713GZ Groningen, The Netherlands; Faculty of Health Sciences, Universidad de Talca, Talca 3460000, Chile; Cellular and Molecular Physiology Laboratory (CMPL), Department of Obstetrician, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile
| | - Marcelo Cornejo
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, 9713GZ Groningen, The Netherlands; Faculty of Health Sciences, Universidad de Talca, Talca 3460000, Chile; Faculty of Health Sciences, Universidad de Antofagasta, Antofagasta 02800, Chile; Cellular and Molecular Physiology Laboratory (CMPL), Department of Obstetrician, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile
| | - Fernando Toledo
- Faculty of Basic Sciences, Universidad del Bío-Bío, Chillán 3780000, Chile; Cellular and Molecular Physiology Laboratory (CMPL), Department of Obstetrician, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile
| | - Andrés Valenzuela-Hinrichsen
- Cellular and Molecular Physiology Laboratory (CMPL), Department of Obstetrician, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile
| | - Catalina Guerra
- Cellular and Molecular Physiology Laboratory (CMPL), Department of Obstetrician, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile
| | - Adriana Grismaldo
- Tecnologico de Monterrey, Eutra, The Institute for Obesity Research (IOR), School of Medicine and Health Sciences, Monterrey, Nuevo León 64710, Mexico; Cellular and Molecular Physiology Laboratory (CMPL), Department of Obstetrician, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile
| | - Paola Valero
- Faculty of Health Sciences, Universidad de Talca, Talca 3460000, Chile; Cellular and Molecular Physiology Laboratory (CMPL), Department of Obstetrician, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile
| | - Angelica M P Barbosa
- Department of Gynaecology and Obstetrics, Botucatu Medical School, São Paulo State University (UNESP), 18618-687 Botucatu, São Paulo, Brazil; Department of Physiotherapy and Occupational Therapy, School of Philosophy and Sciences, São Paulo State University (UNESP), 17525-900 Marília, São Paulo, Brazil
| | - Luis Sobrevia
- Department of Gynaecology and Obstetrics, Botucatu Medical School, São Paulo State University (UNESP), 18618-687 Botucatu, São Paulo, Brazil; Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, 9713GZ Groningen, The Netherlands; Tecnologico de Monterrey, Eutra, The Institute for Obesity Research (IOR), School of Medicine and Health Sciences, Monterrey, Nuevo León 64710, Mexico; Department of Physiology, Faculty of Pharmacy, Universidad de Sevilla, Seville E-41012, Spain; University of Queensland Centre for Clinical Research (UQCCR), Faculty of Medicine and Biomedical Sciences, University of Queensland, Herston QLD 4029, Queensland, Australia; Cellular and Molecular Physiology Laboratory (CMPL), Department of Obstetrician, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile.
| |
Collapse
|
10
|
Gangadaran P, Madhyastha H, Madhyastha R, Rajendran RL, Nakajima Y, Watanabe N, Velikkakath AKG, Hong CM, Gopi RV, Muthukalianan GK, Valsala Gopalakrishnan A, Jeyaraman M, Ahn BC. The emerging role of exosomes in innate immunity, diagnosis and therapy. Front Immunol 2023; 13:1085057. [PMID: 36726968 PMCID: PMC9885214 DOI: 10.3389/fimmu.2022.1085057] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/16/2022] [Indexed: 01/17/2023] Open
Abstract
Exosomes, which are nano-sized transport bio-vehicles, play a pivotal role in maintaining homeostasis by exchanging genetic or metabolic information between different cells. Exosomes can also play a vital role in transferring virulent factors between the host and parasite, thereby regulating host gene expression and the immune interphase. The association of inflammation with disease development and the potential of exosomes to enhance or mitigate inflammatory pathways support the notion that exosomes have the potential to alter the course of a disease. Clinical trials exploring the role of exosomes in cancer, osteoporosis, and renal, neurological, and pulmonary disorders are currently underway. Notably, the information available on the signatory efficacy of exosomes in immune-related disorders remains elusive and sporadic. In this review, we discuss immune cell-derived exosomes and their application in immunotherapy, including those against autoimmune connective tissue diseases. Further, we have elucidated our views on the major issues in immune-related pathophysiological processes. Therefore, the information presented in this review highlights the role of exosomes as promising strategies and clinical tools for immune regulation.
Collapse
Affiliation(s)
- Prakash Gangadaran
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, Republic of Korea
| | - Harishkumar Madhyastha
- Department of Cardiovascular Physiology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Radha Madhyastha
- Department of Cardiovascular Physiology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Ramya Lakshmi Rajendran
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, Republic of Korea
| | - Yuichi Nakajima
- Department of Cardiovascular Physiology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Nozomi Watanabe
- Department of Cardiovascular Physiology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Anoop Kumar G. Velikkakath
- Center for System Biology and Molecular Medicine, Yenepoya Research center, Yenepoya (Deemed to be University), Mangaluru, Karnataka, India
| | - Chae Moon Hong
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, Republic of Korea
| | - Rahul Velikkakath Gopi
- Department of Tissue Engineering and Regeneration Technologies, Sree Chitra Thirunal Institute of Medical Sciences and Technology, Thiruvananthapuram, India
| | | | | | - Madhan Jeyaraman
- Department of Orthopaedics, Faculty of Medicine, Sri Lalithambigai Medical College and Hospital, Dr MGR Educational and Research Institute, Chennai, Tamil Nadu, India
| | - Byeong-Cheol Ahn
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, Republic of Korea
| |
Collapse
|
11
|
Franco S, Llibre JM, Jou T, Tural C, Martínez MA. Normalization of circulating plasma levels of miRNAs in HIV-1/HCV co-infected patients following direct-acting antiviral-induced sustained virologic response. Heliyon 2023; 9:e12686. [PMID: 36685382 PMCID: PMC9852662 DOI: 10.1016/j.heliyon.2022.e12686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 12/21/2022] [Accepted: 12/21/2022] [Indexed: 01/05/2023] Open
Abstract
In a previous recent work, we recognized three plasma circulating microRNAs (miRNAs)-miR-100-5p_iso3p:-2, miR-122-5p, and miR-192-5p-that correlate largely with liver fibrosis evolution in human immunodeficiency virus type 1 (HIV-1)/hepatitis C virus (HCV) co-infected patients. Here, we investigated whether levels of these three circulating miRNAs can be associated to liver disease evolution in HIV-1/HCV co-infected patients which have achieved HCV sustained virologic response (SVR) 12 weeks after finishing treatment. Eighty-one chronic HIV-1/HCV co-infected patients were longitudinally recruited at baseline (T0) of DAA therapy and 12 weeks (T12) after finishing therapy. At T0 most of the study patients displayed transient elastography values linked to an advanced stage of liver fibrosis (F0-1 9%, F2 11%, F3 32%, F4 48%). Significant reductions in the levels of circulating miR-100-5p_iso3p:-2, miR-122-5p, and miR-192-5p were detected at T12 in SVR patients, in the overall cohort (P < 0.0001, P < 0.0001, and P = 0.0008, respectively) and in patients with advanced (F3-4) liver fibrosis (p < 0.0001, p < 0.0001, and P = 0.0011, respectively). Of note, no significant reduction in the study miRNA levels was found at T12 in patients who did not achieve SVR (P = 0.8750, P = 0.1250, and P = 0.1260, respectively). HCV-cured patients, in contrast to non-responders, significantly reduced their liver stiffness after two years of achieving SVR (p < 0.0001). DAA-induced SVR is linked with a significant reduction in circulating levels of miR-100-5p_iso3p:-2, miR-122-5p, and miR-192-5p. Our results indicate that miRNA plasma levels may be a useful biomarker of liver damage progression in HIV-1/HCV co-infected individuals that reach DAA-induced SVR.
Collapse
Affiliation(s)
- Sandra Franco
- IrsiCaixa, Hospital Universitari Germans Trias i Pujol, Universitat Autònoma de Barcelona (UAB), Badalona, Spain
| | - Josep M. Llibre
- Infectious Disease Department, Hospital Universitari Germans Trias i Pujol, Badalona, Spain,Fundació LLuita Contra les Infeccions, Badalona, Spain
| | - Toni Jou
- Fundació LLuita Contra les Infeccions, Badalona, Spain
| | - Cristina Tural
- Internal Medicine Department, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
| | - Miguel Angel Martínez
- IrsiCaixa, Hospital Universitari Germans Trias i Pujol, Universitat Autònoma de Barcelona (UAB), Badalona, Spain,Corresponding author. Fundació irsiCaixa, Hospital Universitari Germans Trias i Pujol, 08916, Badalona, Spain.
| |
Collapse
|
12
|
Lin X, Cheng L, Wan Y, Yan Y, Zhang Z, Li X, Wu J, Wang X, Xu M. Ang II Controls the Expression of Mapkap1 by miR-375 and Affects the Function of Islet β Cells. Endocr Metab Immune Disord Drug Targets 2023; 23:1186-1200. [PMID: 36748222 PMCID: PMC10514520 DOI: 10.2174/1871530323666230206121715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 01/13/2023] [Accepted: 01/18/2023] [Indexed: 02/08/2023]
Abstract
BACKGROUND The RAS system is involved in the regulation of islet function, but its regulation remains unclear. OBJECTIVE This study investigates the role of an islet-specific miR-375 in the effect of RAS system on islet β-cells. METHODS miR-375 mimics and inhibitors were transfected into insulin-secreting MIN6 cells in the presence or absence of RAS component. RESULTS Compared to control, in Ang II-treated MIN6 cells, miR-375 mimic transfection results in a decrement in cell viability and Akt-Ser levels (0.739±0.05 vs. 0.883±0.06 and 0.40±0.04 vs. 0.79±0.04, respectively), while the opposite occurred in miR-375 inhibitor-transfected cells (1.032±0.11 vs. 0.883±0.06 and 0.98±0.05 vs. 0.79±0.04, respectively, P<0.05). Mechanistically, transfection of miR- 375 mimics into Ang II-treated MIN6 cells significantly reduced the expression of Mapkap1 protein (0.97±0.15 vs. 0.63±0.06, P<0.05); while miR-375 inhibitor-transfected cells elevated Mapkap1 expression level (0.35±0.11 vs. 0.90±0.05, P<0.05), without changes in mRNA expression. Transfection of miR-375 specific inhibitors TSB-Mapkap1 could elevate Mapkap1 (1.62±0.02 vs. 0.68±0.01, P<0.05), while inhibition of Mapkap1 could significantly reduce the level of Akt-Ser473 phosphorylation (0.60±0.14 vs. 1.80±0.27, P<0.05). CONCLUSION The effects of Ang II on mouse islet β cells were mediated by miR-375 through miR- 375/Mapkap 1 axis. This targeted regulation may occur by affecting Akt phosphorylation of β cells. These results may provide new ideas and a scientific basis for further development of miRNA-targeted islet protection measures.
Collapse
Affiliation(s)
- Xiuhong Lin
- Department of Clinical Nutrition, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, No. 107 Yanjiangxi Road, Guangzhou, Guangdong, 510120, People’s Republic of China
| | - Lin Cheng
- Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, No. 107 Yanjiangxi Road, Guangzhou, Guangdong, 510120, People’s Republic of China, China
| | - Yan Wan
- Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, No. 107 Yanjiangxi Road, Guangzhou, Guangdong, 510120, People’s Republic of China, China
| | - Yuerong Yan
- Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, No. 107 Yanjiangxi Road, Guangzhou, Guangdong, 510120, People’s Republic of China, China
| | - Zhuo Zhang
- Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, No. 107 Yanjiangxi Road, Guangzhou, Guangdong, 510120, People’s Republic of China, China
| | - Xiaohui Li
- Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, No. 107 Yanjiangxi Road, Guangzhou, Guangdong, 510120, People’s Republic of China, China
| | - Jiayun Wu
- Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, No. 107 Yanjiangxi Road, Guangzhou, Guangdong, 510120, People’s Republic of China, China
| | - Xiaoyi Wang
- Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, No. 107 Yanjiangxi Road, Guangzhou, Guangdong, 510120, People’s Republic of China, China
| | - Mingtong Xu
- Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, No. 107 Yanjiangxi Road, Guangzhou, Guangdong, 510120, People’s Republic of China, China
| |
Collapse
|
13
|
Abstract
Zhao Y, Liu C, Zhang X, Yan X. Angelica polysaccharide alleviates TNF-α-induced MIN6 cell damage a through the up-regulation microRNA-143. BioFactors. 2022;49:200. https://doi.org/10.1002/biof.1588 This article, published online on 20 November 2019 in Wiley Online Library, has been retracted by agreement between the International Union of Biochemistry and Molecular Biology, the Editor in Chief (Dr. Angelo Azzi), and Wiley Periodicals LLC. The retraction has been agreed following an investigation based on allegations raised by a third party. Evidence for image manipulation was found in figures 1, 2, 4, and 5. As a result, the conclusions of this article are considered to be invalid.
Collapse
|
14
|
Song Y, He C, Jiang Y, Yang M, Xu Z, Yuan L, Zhang W, Xu Y. Bulk and single-cell transcriptome analyses of islet tissue unravel gene signatures associated with pyroptosis and immune infiltration in type 2 diabetes. Front Endocrinol (Lausanne) 2023; 14:1132194. [PMID: 36967805 PMCID: PMC10034023 DOI: 10.3389/fendo.2023.1132194] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 02/21/2023] [Indexed: 03/12/2023] Open
Abstract
INTRODUCTION Type 2 diabetes (T2D) is a common chronic heterogeneous metabolic disorder. However, the roles of pyroptosis and infiltrating immune cells in islet dysfunction of patients with T2D have yet to be explored. In this study, we aimed to explore potential crucial genes and pathways associated with pyroptosis and immune infiltration in T2D. METHODS To achieve this, we performed a conjoint analysis of three bulk RNA-seq datasets of islets to identify T2D-related differentially expressed genes (DEGs). After grouping the islet samples according to their ESTIMATE immune scores, we identified immune- and T2D-related DEGs. A clinical prediction model based on pyroptosis-related genes for T2D was constructed. Weighted gene co-expression network analysis was performed to identify genes positively correlated with pyroptosis-related pathways. A protein-protein interaction network was established to identify pyroptosis-related hub genes. We constructed miRNA and transcriptional networks based on the pyroptosis-related hub genes and performed functional analyses. Single-cell RNA-seq (scRNA-seq) was conducted using the GSE153885 dataset. Dimensionality was reduced using principal component analysis and t-distributed statistical neighbor embedding, and cells were clustered using Seurat. Different cell types were subjected to differential gene expression analysis and gene set enrichment analysis (GSEA). Cell-cell communication and pseudotime trajectory analyses were conducted using the samples from patients with T2D. RESULTS We identified 17 pyroptosis-related hub genes. We determined the abundance of 13 immune cell types in the merged matrix and found that these cell types were correlated with the 17 pyroptosis-related hub genes. Analysis of the scRNA-seq dataset of 1892 islet samples from patients with T2D and controls revealed 11 clusters. INS and IAPP were determined to be pyroptosis-related and candidate hub genes among the 11 clusters. GSEA of the 11 clusters demonstrated that the myc, G2M checkpoint, and E2F pathways were significantly upregulated in clusters with several differentially enriched pathways. DISCUSSION This study elucidates the gene signatures associated with pyroptosis and immune infiltration in T2D and provides a critical resource for understanding of islet dysfunction and T2D pathogenesis.
Collapse
Affiliation(s)
- Yaxian Song
- Department of Endocrinology, Yunnan Province Clinical Medical Center for Endocrine and Metabolic Disease, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Chen He
- Department of Geriatric Medicine, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yan Jiang
- Department of Endocrinology, Yunnan Province Clinical Medical Center for Endocrine and Metabolic Disease, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Mengshi Yang
- Department of Endocrinology, Yunnan Province Clinical Medical Center for Endocrine and Metabolic Disease, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Zhao Xu
- Department of Endocrinology, Yunnan Province Clinical Medical Center for Endocrine and Metabolic Disease, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Lingyan Yuan
- Department of Endocrinology, Yunnan Province Clinical Medical Center for Endocrine and Metabolic Disease, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Wenhua Zhang
- Department of Endocrinology, Yunnan Province Clinical Medical Center for Endocrine and Metabolic Disease, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yushan Xu
- Department of Endocrinology, Yunnan Province Clinical Medical Center for Endocrine and Metabolic Disease, The First Affiliated Hospital of Kunming Medical University, Kunming, China
- *Correspondence: Yushan Xu,
| |
Collapse
|
15
|
Changes in subcutaneous adipose tissue microRNA expression in response to exercise training in obese African women. Sci Rep 2022; 12:18408. [PMID: 36319747 PMCID: PMC9626597 DOI: 10.1038/s41598-022-23290-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 10/29/2022] [Indexed: 11/06/2022] Open
Abstract
The mechanisms that underlie exercise-induced adaptations in adipose tissue have not been elucidated, yet, accumulating studies suggest an important role for microRNAs (miRNAs). This study aimed to investigate miRNA expression in gluteal subcutaneous adipose tissue (GSAT) in response to a 12-week exercise intervention in South African women with obesity, and to assess depot-specific differences in miRNA expression in GSAT and abdominal subcutaneous adipose tissue (ASAT). In addition, the association between exercise-induced changes in miRNA expression and metabolic risk was evaluated. Women underwent 12-weeks of supervised aerobic and resistance training (n = 19) or maintained their regular physical activity during this period (n = 12). Exercise-induced miRNAs were identified in GSAT using Illumina sequencing, followed by analysis of differentially expressed miRNAs in GSAT and ASAT using quantitative real-time PCR. Associations between the changes (pre- and post-exercise training) in miRNA expression and metabolic parameters were evaluated using Spearman's correlation tests. Exercise training significantly increased the expression of miR-155-5p (1.5-fold, p = 0.045), miR-329-3p (2.1-fold, p < 0.001) and miR-377-3p (1.7-fold, p = 0.013) in GSAT, but not in ASAT. In addition, a novel miRNA, MYN0617, was identified in GSAT, with low expression in ASAT. The exercise-induced differences in miRNA expression were correlated with each other and associated with changes in high-density lipoprotein concentrations. Exercise training induced adipose-depot specific miRNA expression within subcutaneous adipose tissue depots from South African women with obesity. The significance of the association between exercise-induced miRNAs and metabolic risk warrants further investigation.
Collapse
|
16
|
Palihaderu PADS, Mendis BILM, Premarathne JMKJK, Dias WKRR, Yeap SK, Ho WY, Dissanayake AS, Rajapakse IH, Karunanayake P, Senarath U, Satharasinghe DA. Therapeutic Potential of miRNAs for Type 2 Diabetes Mellitus: An Overview. Epigenet Insights 2022; 15:25168657221130041. [PMID: 36262691 PMCID: PMC9575458 DOI: 10.1177/25168657221130041] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 09/14/2022] [Indexed: 11/05/2022] Open
Abstract
MicroRNA(miRNA)s have been identified as an emerging class for therapeutic
interventions mainly due to their extracellularly stable presence in humans and
animals and their potential for horizontal transmission and action. However,
treating Type 2 diabetes mellitus using this technology has yet been in a
nascent state. MiRNAs play a significant role in the pathogenesis of Type 2
diabetes mellitus establishing the potential for utilizing miRNA-based
therapeutic interventions to treat the disease. Recently, the administration of
miRNA mimics or antimiRs in-vivo has resulted in positive modulation of glucose
and lipid metabolism. Further, several cell culture-based interventions have
suggested beta cell regeneration potential in miRNAs. Nevertheless, few such
miRNA-based therapeutic approaches have reached the clinical phase. Therefore,
future research contributions would identify the possibility of miRNA
therapeutics for tackling T2DM. This article briefly reported recent
developments on miRNA-based therapeutics for treating Type 2 Diabetes mellitus,
associated implications, gaps, and recommendations for future studies.
Collapse
Affiliation(s)
- PADS Palihaderu
- Department of Basic Veterinary
Sciences, Faculty of Veterinary Medicine and Animal Science, University of
Peradeniya, Peradeniya, Sri Lanka
| | - BILM Mendis
- Department of Basic Veterinary
Sciences, Faculty of Veterinary Medicine and Animal Science, University of
Peradeniya, Peradeniya, Sri Lanka
| | - JMKJK Premarathne
- Department of Livestock and Avian
Sciences, Faculty of Livestock, Fisheries, and Nutrition, Wayamba University of Sri
Lanka, Makandura, Gonawila (NWP), Sri Lanka
| | - WKRR Dias
- Department of North Indian Music,
Faculty of Music, University of the Visual and Performing Arts, Colombo, Sri
Lanka
| | - Swee Keong Yeap
- China-ASEAN College of Marine Sciences,
Xiamen University Malaysia Campus, Jalan Sunsuria, Bandar Sunsuria, Sepang,
Selangor, Malaysia
| | - Wan Yong Ho
- Division of Biomedical Sciences,
Faculty of Medicine and Health Sciences, University of Nottingham (Malaysia Campus),
Semenyih, Malaysia
| | - AS Dissanayake
- Department of Clinical Medicine,
Faculty of Medicine, University of Ruhuna, Galle, Sri Lanka
| | - IH Rajapakse
- Department of Psychiatry, Faculty of
Medicine, University of Ruhuna, Galle, Sri Lanka
| | - P Karunanayake
- Department of Clinical Medicine,
Faculty of Medicine, University of Colombo, Colombo, Sri Lanka
| | - U Senarath
- Department of Community Medicine,
Faculty of Medicine, University of Colombo, Colombo, Sri Lanka
| | - DA Satharasinghe
- Department of Basic Veterinary
Sciences, Faculty of Veterinary Medicine and Animal Science, University of
Peradeniya, Peradeniya, Sri Lanka,DA Satharasinghe, Department of Basic
Veterinary Sciences, Faculty of Veterinary Medicine and Animal Science,
University of Peradeniya, Peradeniya, 20400, Sri Lanka.
| |
Collapse
|
17
|
Babu P, Palaniappan A. miR2Trait: an integrated resource for investigating miRNA-disease associations. PeerJ 2022; 10:e14146. [PMID: 36217386 PMCID: PMC9547587 DOI: 10.7717/peerj.14146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 09/07/2022] [Indexed: 01/21/2023] Open
Abstract
MicroRNAs are key components of cellular regulatory networks, and breakdown in miRNA function causes cascading effects leading to pathophenotypes. A better understanding of the role of miRNAs in diseases is essential for human health. Here, we have devised a method for comprehensively mapping the associations between miRNAs and diseases by merging on a common key between two curated omics databases. The resulting bidirectional resource, miR2Trait, is more detailed than earlier catalogs, uncovers new relationships, and includes analytical utilities to interrogate and extract knowledge from these datasets. miR2Trait provides resources to compute the disease enrichment of a user-given set of miRNAs and analyze the miRNA profile of a specified diseasome. Reproducible examples demonstrating use-cases for each of these resource components are illustrated. Furthermore we used these tools to construct pairwise miRNA-miRNA and disease-disease enrichment networks, and identified 23 central miRNAs that could underlie major regulatory functions in the human genome. miR2Trait is available as an open-source command-line interface in Python3 (URL: https://github.com/miR2Trait) with a companion wiki documenting the scripts and data resources developed, under MIT license for commercial and non-commercial use. A minimal web-based implementation has been made available at https://sas.sastra.edu/pymir18. Supplementary information is available at: https://doi.org/10.6084/m9.figshare.8288825.v3.
Collapse
Affiliation(s)
- Poornima Babu
- Department of Bioinformatics, School of Chemical and Biotechnology, SASTRA University, Thanjavur, Tamil Nadu, India
| | - Ashok Palaniappan
- Department of Bioinformatics, School of Chemical and Biotechnology, SASTRA University, Thanjavur, Tamil Nadu, India
| |
Collapse
|
18
|
Park HR, Lee SE, Yi Y, Moon S, Yoon H, Kang CW, Kim J, Park YS. Integrated analysis of miRNA and mRNA expression profiles in diabetic mouse kidney treated to Korean Red Ginseng. Mol Cell Toxicol 2022. [DOI: 10.1007/s13273-022-00272-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
19
|
Vigili de Kreutzenberg S, Giannella A, Ceolotto G, Faggin E, Cappellari R, Mazzucato M, Fraccaro C, Tarantini G, Avogaro A, Fadini GP. A miR-125/Sirtuin-7 pathway drives the pro-calcific potential of myeloid cells in diabetic vascular disease. Diabetologia 2022; 65:1555-1568. [PMID: 35708762 PMCID: PMC9345831 DOI: 10.1007/s00125-022-05733-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 03/22/2022] [Indexed: 11/03/2022]
Abstract
AIMS/HYPOTHESIS Ectopic calcification is a typical feature of diabetic vascular disease and resembles an accelerated ageing phenotype. We previously found an excess of myeloid calcifying cells in diabetic individuals. We herein examined molecular and cellular pathways linking atherosclerotic calcification with calcification by myeloid cells in the diabetic milieu. METHODS We first examined the associations among coronary calcification, myeloid calcifying cell levels and mononuclear cell gene expression in a cross-sectional study of 87 participants with type 2 diabetes undergoing elective coronary angiography. Then, we undertook in vitro studies on mesenchymal stem cells and the THP-1 myeloid cell line to verify the causal relationships of the observed associations. RESULTS Coronary calcification was associated with 2.8-times-higher myeloid calcifying cell levels (p=0.037) and 50% elevated expression of the osteogenic gene RUNX2 in mononuclear cells, whereas expression of Sirtuin-7 (SIRT7) was inversely correlated with calcification. In standard differentiation assays of mesenchymal stem cells, SIRT7 knockdown activated the osteogenic program and worsened calcification, especially in the presence of high (20 mmol/l) glucose. In the myeloid cell line THP-1, SIRT7 downregulation drove a pro-calcific phenotype, whereas SIRT7 overexpression prevented high-glucose-induced calcification. Through the Janus kinase (JAK)/signal transducer and activator of transcription (STAT) pathway, high glucose induced miR-125b-5p, which in turn targeted SIRT7 in myeloid cells and was directly associated with coronary calcification. CONCLUSIONS/INTERPRETATION We describe a new pathway elicited by high glucose through the JAK/STAT cascade, involving regulation of SIRT7 by miR-125b-5p and driving calcification by myeloid cells. This pathway is associated with coronary calcification in diabetic individuals and may be a target against diabetic vascular disease. DATA AVAILABILITY RNA sequencing data are deposited in GEO (accession number GSE193510; https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE193510 ).
Collapse
Affiliation(s)
| | | | - Giulio Ceolotto
- Department of Medicine - DIMED, University of Padova, Padova, Italy
| | | | - Roberta Cappellari
- Department of Medicine - DIMED, University of Padova, Padova, Italy
- Veneto Institute of Molecular Medicine, Padova, Italy
| | - Marta Mazzucato
- Department of Medicine - DIMED, University of Padova, Padova, Italy
| | - Chiara Fraccaro
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Giuseppe Tarantini
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Angelo Avogaro
- Department of Medicine - DIMED, University of Padova, Padova, Italy
| | - Gian Paolo Fadini
- Department of Medicine - DIMED, University of Padova, Padova, Italy.
- Veneto Institute of Molecular Medicine, Padova, Italy.
| |
Collapse
|
20
|
Wander PL, Enquobahrie DA, Bammler TK, MacDonald JW, Srinouanprachanh S, Kaleru T, Khakpour D, Trikudanathan S. Associations of plasma miRNAs with waist circumference and insulin resistance among women with polycystic ovary syndrome - Pilot study. Mol Cell Endocrinol 2022; 554:111723. [PMID: 35843386 PMCID: PMC9552972 DOI: 10.1016/j.mce.2022.111723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/08/2022] [Accepted: 07/11/2022] [Indexed: 11/25/2022]
Abstract
BACKGROUND Insulin resistance (IR) and central obesity are common in polycystic ovary syndrome (PCOS), but pathomechanisms for IR in PCOS are not established. Circulating microRNAs (miRNAs) are non-invasive biomarkers of epigenetic regulation that may contribute to the pathogenesis of IR and central adiposity in PCOS. METHODS We conducted a pilot study to examine associations of circulating miRNAs with IR and central adiposity among women with PCOS (n = 11) using high-throughput miRNA sequencing. We fit generalized linear models examining associations of waist circumference and HOMA-IR with plasma miRNAs. We used false discovery rate (FDR)-adjusted cutoff p < 0.1 to correct for multiple testing. We used miRDB's Gene Ontology (GO) tool to identify predicted pathways for top hits. RESULTS Mean age and BMI of participants were 27.9 years and 32.5 kg/m2, respectively. Lower levels of miR-1294 were associated with higher waist circumference (β = -0.10, FDR = 0.095). While no miRNAs were associated with HOMA-IR at our FDR cut off <0.1, 11 miRNAs were associated with waist circumference and 14 miRNAs with HOMA-IR at unadjusted p < 0.01, including members of the highly conserved miR-17/92 cluster and miR-1294 (β = -0.10, p < 0.001). The GO analysis of miR-1294 identified 54 overrepresented pathways, including "negative regulation of insulin receptor signaling" (FDR = 0.019), and 6 underrepresented pathways. CONCLUSIONS Plasma miR-1294 along with members of the miR-17/92 cluster and miRNAs involved in insulin signaling may be associated with central obesity and insulin resistance in PCOS. Larger studies among women with and without PCOS are needed to validate these findings.
Collapse
Affiliation(s)
- Pandora L Wander
- Veterans Affairs Puget Sound Health Care System, Seattle, WA, United States; Division of General Internal Medicine, University of Washington, Seattle, WA, United States.
| | - Daniel A Enquobahrie
- Department of Epidemiology, University of Washington, Seattle, WA, United States
| | - Theo K Bammler
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, United States
| | - James W MacDonald
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, United States
| | - Sengkeo Srinouanprachanh
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, United States
| | - Thanmai Kaleru
- Division of Metabolism, Endocrinology, and Nutrition, University of Washington, Seattle, WA, United States
| | - Dori Khakpour
- Division of Metabolism, Endocrinology, and Nutrition, University of Washington, Seattle, WA, United States
| | - Subbulaxmi Trikudanathan
- Division of Metabolism, Endocrinology, and Nutrition, University of Washington, Seattle, WA, United States
| |
Collapse
|
21
|
Lu H, Yang J, Li J, Yuan H. MiR-190 ameliorates glucotoxicity-induced dysfunction and apoptosis of pancreatic β-cells by inhibiting NOX2-mediated reactive oxygen species production. PeerJ 2022; 10:e13849. [PMID: 35971429 PMCID: PMC9375543 DOI: 10.7717/peerj.13849] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 07/15/2022] [Indexed: 01/18/2023] Open
Abstract
Glucotoxicity-induced pancreatic β-cell failure contributes to the development of type 2 diabetes mellitus (T2DM). Accumulating evidence reveals that miRNAs play a critical role in regulating pancreatic β-cell function and survival. In this study, we employed a self-assembled cell microarray (SAMcell)-based functional screening assay to identify miRNAs that are capable of regulating the dysfunction of β-cells induced by glucotoxicity. Among 62 conserved miRNAs we tested, miR-190 was identified as a candidate regulator that could effectively restore insulin expression in NIT-1 cells under high-glucose (HG) stimulation. Further analyses demonstrated that miR-190 was significantly down-regulated in HG-treated NIT-1 cells, as well as in the pancreas of diabetic mice. Mechanistic studies showed that Cybb is the direct target gene of miR-190, which encodes the gp91phox protein, a subunit of the NOX2 complex. Furthermore, both miR-190 overexpression and Cybb knockdown inhibited apoptosis and improved glucose-stimulated insulin secretion (GSIS) in HG-stimulated NIT-1 cells by attenuating the excessive production of reactive oxygen species (ROS). More importantly, a targeted delivery of mPEG-PCL-g-PDMAEMA nanoparticles/miR-190 complexes (PECgD NPs/miR-190) to the pancreas significantly ameliorated hyperglycemia, decreased fasting serum insulin levels, and improved glucose tolerance in diabetic mice. Taken together, our findings suggest that the miR-190/Cybb axis plays an important role in glucotoxicity-induced pancreatic β-cell failure. Restoring miR-190 expression levels may be a possible therapeutic strategy to protect β-cells in T2DM.
Collapse
Affiliation(s)
- Huinan Lu
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, P.R. China,Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China,Peking-Tsinghua Center for Life Sciences, Beijing, China,Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, China
| | - Junyu Yang
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, China
| | - Juan Li
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, China
| | - Huiping Yuan
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, P.R. China
| |
Collapse
|
22
|
Kara G, Arun B, Calin GA, Ozpolat B. miRacle of microRNA-Driven Cancer Nanotherapeutics. Cancers (Basel) 2022; 14:3818. [PMID: 35954481 PMCID: PMC9367393 DOI: 10.3390/cancers14153818] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 07/28/2022] [Accepted: 08/04/2022] [Indexed: 12/23/2022] Open
Abstract
MicroRNAs (miRNAs) are non-protein-coding RNA molecules 20-25 nucleotides in length that can suppress the expression of genes involved in numerous physiological processes in cells. Accumulating evidence has shown that dysregulation of miRNA expression is related to the pathogenesis of various human diseases and cancers. Thus, stragegies involving either restoring the expression of tumor suppressor miRNAs or inhibiting overexpressed oncogenic miRNAs hold potential for targeted cancer therapies. However, delivery of miRNAs to tumor tissues is a challenging task. Recent advances in nanotechnology have enabled successful tumor-targeted delivery of miRNA therapeutics through newly designed nanoparticle-based carrier systems. As a result, miRNA therapeutics have entered human clinical trials with promising results, and they are expected to accelerate the transition of miRNAs from the bench to the bedside in the next decade. Here, we present recent perspectives and the newest developments, describing several engineered natural and synthetic novel miRNA nanocarrier formulations and their key in vivo applications and clinical trials.
Collapse
Affiliation(s)
- Goknur Kara
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA
- Department of Chemistry, Biochemistry Division, Ordu University, Ordu 52200, Turkey
| | - Banu Arun
- Department of Breast Medical Oncology, MD Anderson Cancer Center, The University of Texas, Houston, TX 77030, USA
| | - George A. Calin
- Department of Translational Molecular Pathology, MD Anderson Cancer Center, The University of Texas, Houston, TX 77030, USA
| | - Bulent Ozpolat
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA
- Houston Methodist Neal Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
23
|
Circulating MicroRNAs as a Tool for Diagnosis of Liver Disease Progression in People Living with HIV-1. Viruses 2022; 14:v14061118. [PMID: 35746590 PMCID: PMC9227922 DOI: 10.3390/v14061118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 05/20/2022] [Indexed: 02/07/2023] Open
Abstract
MicroRNAs (miRNAs) are small, non-coding RNAs that post-transcriptionally regulate gene expression by binding specific cell mRNA targets, preventing their translation. miRNAs are implicated in the regulation of important physiological and pathological pathways. Liver disease, including injury, fibrosis, metabolism dysregulation, and tumor development disrupts liver-associated miRNAs. In addition to their effect in the originating tissue, miRNAs can also circulate in body fluids. miRNA release is an important form of intercellular communication that plays a role in the physiological and pathological processes underlying multiple diseases. Circulating plasma levels of miRNAs have been identified as potential disease biomarkers. One of the main challenges clinics face is the lack of available noninvasive biomarkers for diagnosing and predicting the different stages of liver disease (e.g., nonalcoholic fatty liver disease and nonalcoholic steatohepatitis), particularly among individuals infected with human immunodeficiency virus type 1 (HIV-1). Liver disease is a leading cause of death unrelated to acquired immunodeficiency syndrome (AIDS) among people living with HIV-1 (PLWH). Here, we review and discuss the utility of circulating miRNAs as biomarkers for early diagnosis, prognosis, and assessment of liver disease in PLWH. Remarkably, the identification of dysregulated miRNA expression may also identify targets for new therapeutics.
Collapse
|
24
|
Tumolo MR, Panico A, De Donno A, Mincarone P, Leo CG, Guarino R, Bagordo F, Serio F, Idolo A, Grassi T, Sabina S. The expression of microRNAs and exposure to environmental contaminants related to human health: a review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2022; 32:332-354. [PMID: 32393046 DOI: 10.1080/09603123.2020.1757043] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 04/14/2020] [Indexed: 06/11/2023]
Abstract
Environmental contaminants exposure may lead to detrimental changes to the microRNAs (miRNAs) expression resulting in several health effects. miRNAs, small non-coding RNAs that regulate gene expression, have multiple transcript targets and thereby regulate several signalling molecules. Even a minor alteration in the abundance of one miRNA can have deep effects on global gene expression. Altered patterns of miRNAs can be responsible for changes linked to various health outcomes, suggesting that specific miRNAs are activated in pathophysiological processes. In this review, we provide an overview of studies investigating the impact of air pollution, organic chemicals, and heavy metals on miRNA expression and the potential biologic effects on humans.Abbreviations: AHRR, aryl-hydrocarbon receptor repressor; AHR, aryl-hydrocarbon receptor; As, arsenic; BCL2, B-cell lymphoma 2; BCL2L11, B-cell lymphoma 2 like 11; BCL6, B-cell lymphoma 6; BPA, bisphenol A; CVD, cardiovascular diseases; CD40, cluster of differentiation 40; CCND1, Cyclin D1; CDKN1A, cyclin-dependent kinase inhibitor 1A; Cr, chromium; CTBP1, C-terminal binding protein 1; CXCL12, C-X-C motif chemokine ligand 12; DAZAP1, deleted in azoospermia associated protein 1; DEP, diesel exhaust particles; EGFR, epidermal growth factor receptor; eNOS, endothelial nitric oxide synthase; EVs, extracellular vesicles; FAK, focal adhesion kinase; FAS, fas cell surface death receptor; FOXO, forkhead box O; HbA1c, glycated hemoglobin; Hg, mercury; HLA-A, human leukocyte antigen A; HMGB, high-mobility group protein B; IFNAR2, interferon alpha receptor subunit 2; IL-6, interleukin-6; IRAK1, interleukin 1 receptor associated kinase 1; JAK/STAT, janus kinase/signal transducers and activators of transcription; MAPK, mitogen-activated protein kinase; miRNAs, microRNAs; MVs, microvesicles; NCDs, noncommunicable diseases; NFAT, nuclear factor of activated T cells; NFkB, nuclear factor kappa B; NRF2, nuclear factor, erythroid-derived 2; NRG3, neuregulin 3; O3, ozone; OP, organophosphorus pesticides; PAHs, polycyclic aromatic hydrocarbons; Pb, lead; PCBs, polychlorinated biphenyls; PDCD4, programmed cell death 4; PDGFB, platelet derived growth factor subunit beta; PDGFR, platelet-derived growth factor receptor; PI3K/Akt, phosphoinositide-3-kinase/protein kinase B; PKA, protein kinase A; PM, particulate matter; PRKCQ, protein kinase C theta; PTEN, phosphatase and tensin homolog; SORT1, sortilin 1; TGFβ, transforming growth factor-β; TLR, toll-like receptor; TNF, tumor necrosis factors; TRAF1, tumor necrosis factors-receptor associated factors 1; TRAP, traffic-related air pollution; TREM1, triggering receptor expressed on myeloid cells 1; TRIAP1, TP53 regulated inhibitor of apoptosis 1; VCAM-1, vascular cell adhesion molecule 1; VEGFA, vascular endothelial growth factor A; XRCC2, X-ray repair cross complementing 2; YBX2, Y-box-binding protein 2; ZEB1, zinc finger E-box-binding homeobox 1; ZEB2, zinc finger E-box-binding homeobox 2; 8-OH-dG, 8-hydroxy-guanine.
Collapse
Affiliation(s)
- Maria Rosaria Tumolo
- National Research Council, Institute for Research on Population and Social Policies, Research Unit of Brindisi, Brindisi, Italy
| | - Alessandra Panico
- Department of Biological and Environmental Sciences and Technology, University of Salento, Lecce, Italy
| | - Antonella De Donno
- Department of Biological and Environmental Sciences and Technology, University of Salento, Lecce, Italy
| | - Pierpaolo Mincarone
- National Research Council, Institute for Research on Population and Social Policies, Research Unit of Brindisi, Brindisi, Italy
| | - Carlo Giacomo Leo
- National Research Council, Institute of Clinical Physiology, Branch of Lecce, Lecce, Italy
| | - Roberto Guarino
- National Research Council, Institute of Clinical Physiology, Branch of Lecce, Lecce, Italy
| | - Francesco Bagordo
- Department of Biological and Environmental Sciences and Technology, University of Salento, Lecce, Italy
| | - Francesca Serio
- Department of Biological and Environmental Sciences and Technology, University of Salento, Lecce, Italy
| | - Adele Idolo
- Department of Biological and Environmental Sciences and Technology, University of Salento, Lecce, Italy
| | - Tiziana Grassi
- Department of Biological and Environmental Sciences and Technology, University of Salento, Lecce, Italy
| | - Saverio Sabina
- National Research Council, Institute of Clinical Physiology, Branch of Lecce, Lecce, Italy
| |
Collapse
|
25
|
Pérez-García A, Torrecilla-Parra M, Fernández-de Frutos M, Martín-Martín Y, Pardo-Marqués V, Ramírez CM. Posttranscriptional Regulation of Insulin Resistance: Implications for Metabolic Diseases. Biomolecules 2022; 12:biom12020208. [PMID: 35204710 PMCID: PMC8961590 DOI: 10.3390/biom12020208] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 01/14/2022] [Accepted: 01/17/2022] [Indexed: 12/14/2022] Open
Abstract
Insulin resistance defines an impairment in the biologic response to insulin action in target tissues, primarily the liver, muscle, adipose tissue, and brain. Insulin resistance affects physiology in many ways, causing hyperglycemia, hypertension, dyslipidemia, visceral adiposity, hyperinsulinemia, elevated inflammatory markers, and endothelial dysfunction, and its persistence leads to the development metabolic disease, including diabetes, obesity, cardiovascular disease, or nonalcoholic fatty liver disease (NAFLD), as well as neurological disorders such as Alzheimer’s disease. In addition to classical transcriptional factors, posttranscriptional control of gene expression exerted by microRNAs and RNA-binding proteins constitutes a new level of regulation with important implications in metabolic homeostasis. In this review, we describe miRNAs and RBPs that control key genes involved in the insulin signaling pathway and related regulatory networks, and their impact on human metabolic diseases at the molecular level, as well as their potential use for diagnosis and future therapeutics.
Collapse
|
26
|
Bahreini F, Rayzan E, Rezaei N. MicroRNAs and Diabetes Mellitus Type 1. Curr Diabetes Rev 2022; 18:e021421191398. [PMID: 33588736 DOI: 10.2174/1573399817666210215111201] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 12/11/2020] [Accepted: 01/07/2021] [Indexed: 11/22/2022]
Abstract
Type 1 diabetes mellitus is a multifactorial, progressive, autoimmune disease with a strong genetic feature that can affect multiple organs, including the kidney, eyes, and nerves. Early detection of type 1 diabetes can help critically to avoid serious damages to these organs. MicroRNAs are small RNA molecules that act in post-transcriptional gene regulation by attaching to the complementary sequence in the 3'-untranslated region of their target genes. Alterations in the expression of microRNA coding genes are extensively reported in several diseases, such as type 1 diabetes. Presenting non-invasive biomarkers for early detection of type 1 diabetes by quantifying microRNAs gene expression level can be a significant step in biotechnology and medicine. This review discusses the area of microRNAs dysregulation in type 1 diabetes and affected molecular mechanisms involved in pancreatic islet cell formation and dysregulation in the expression of inflammatory elements as well as pro-inflammatory cytokines.
Collapse
Affiliation(s)
- Farbod Bahreini
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Elham Rayzan
- Research Center for Immunodeficiencies (RCID), Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- International Hematology/Oncology of Pediatrics Experts (IHOPE), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Nima Rezaei
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Research Center for Immunodeficiencies (RCID), Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
27
|
Palihaderu PADS, Mendis BILM, Premarathne JMKJK, Dias WKRR, Yeap SK, Ho WY, Dissanayake AS, Rajapakse IH, Karunanayake P, Senarath U, Satharasinghe DA. Potential role of microRNAs in selective hepatic insulin resistance: From paradox to the paradigm. Front Endocrinol (Lausanne) 2022; 13:1028846. [PMID: 36479211 PMCID: PMC9720316 DOI: 10.3389/fendo.2022.1028846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 10/31/2022] [Indexed: 11/22/2022] Open
Abstract
The paradoxical action of insulin on hepatic glucose metabolism and lipid metabolism in the insulin-resistant state has been of much research interest in recent years. Generally, insulin resistance would promote hepatic gluconeogenesis and demote hepatic de novo lipogenesis. The underlying major drivers of these mechanisms were insulin-dependent, via FOXO-1-mediated gluconeogenesis and SREBP1c-mediated lipogenesis. However, insulin-resistant mouse models have shown high glucose levels as well as excess lipid accumulation. As suggested, the inert insulin resistance causes the activation of the FOXO-1 pathway promoting gluconeogenesis. However, it does not affect the SREBP1c pathway; therefore, cells continue de novo lipogenesis. Many hypotheses were suggested for this paradoxical action occurring in insulin-resistant rodent models. A "downstream branch point" in the insulin-mediated pathway was suggested to act differentially on the FOXO-1 and SREBP1c pathways. MicroRNAs have been widely studied for their action of pathway mediation via suppressing the intermediate protein expressions. Many in vitro studies have postulated the roles of hepato-specific expressions of miRNAs on insulin cascade. Thus, miRNA would play a pivotal role in selective hepatic insulin resistance. As observed, there were confirmations and contradictions between the outcomes of gene knockout studies conducted on selective hepatic insulin resistance and hepato-specific miRNA expression studies. Furthermore, these studies had evaluated only the effect of miRNAs on glucose metabolism and few on hepatic de novo lipogenesis, limiting the ability to conclude their role in selective hepatic insulin resistance. Future studies conducted on the role of miRNAs on selective hepatic insulin resistance warrant the understanding of this paradoxical action of insulin.
Collapse
Affiliation(s)
| | | | | | | | - Swee Keong Yeap
- China-ASEAN College of Marine Sciences, Xiamen University Malaysia, Sepang, Selangor, Malaysia
| | - Wan Yong Ho
- Faculty of Sciences and Engineering, University of Nottingham Malaysia, Semenyih, Malaysia
| | | | | | - Panduka Karunanayake
- Department of Clinical Medicine, Faculty of Medicine, University of Colombo, Colombo, Sri Lanka
| | - Upul Senarath
- Department of Community Medicine, Faculty of Medicine, University of Colombo, Colombo, Sri Lanka
| | - Dilan Amila Satharasinghe
- Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine and Animal Science, University of Peradeniya, Peradeniya, Sri Lanka
- *Correspondence: Dilan Amila Satharasinghe,
| |
Collapse
|
28
|
Cione E, Cannataro R, Gallelli L, De Sarro G, Caroleo MC. Exosome microRNAs in Metabolic Syndrome as Tools for the Early Monitoring of Diabetes and Possible Therapeutic Options. Pharmaceuticals (Basel) 2021; 14:ph14121257. [PMID: 34959658 PMCID: PMC8706321 DOI: 10.3390/ph14121257] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/26/2021] [Accepted: 11/30/2021] [Indexed: 02/07/2023] Open
Abstract
Exosomes are nano-sized extracellular vesicles produced and released by almost all cell types. They play an essential role in cell-cell communications by delivering cellular bioactive compounds such as functional proteins, metabolites, and nucleic acids, including microRNA, to recipient cells. Thus, they are involved in various physio-pathological conditions. Exosome-miRNAs are associated with numerous diseases, including type 2 diabetes, a complex multifactorial metabolic disorder linked to obesity. In addition, exosome-miRNAs are emerging as essential regulators in the progression of diabetes, principally for pancreatic β-cell injury and insulin resistance. Here, we have clustered the recent findings concerning exosome-miRNAs associated with β-cell dysfunction to provide a novel approach for the early diagnosis and therapy of diabetes.
Collapse
Affiliation(s)
- Erika Cione
- Department of Pharmacy, Health and Nutritional Sciences, Department of Excellence 2018-2022, University of Calabria, Ed. Polifunzionale, Arcavacata di Rende, 87036 Rende, CS, Italy;
- GalaScreen Laboratories, University of Calabria, Ed. Polifunzionale, Arcavacata di Rende, 87036 Rende, CS, Italy;
- Correspondence:
| | - Roberto Cannataro
- GalaScreen Laboratories, University of Calabria, Ed. Polifunzionale, Arcavacata di Rende, 87036 Rende, CS, Italy;
| | - Luca Gallelli
- Department of Health Science, University of Catanzaro and Operative Unit of Clinical Pharmacology and Pharmacovigilance, Mater Domini Hospital, 88100 Catanzaro, CZ, Italy; (L.G.); (G.D.S.)
| | - Giovambattista De Sarro
- Department of Health Science, University of Catanzaro and Operative Unit of Clinical Pharmacology and Pharmacovigilance, Mater Domini Hospital, 88100 Catanzaro, CZ, Italy; (L.G.); (G.D.S.)
| | - Maria Cristina Caroleo
- Department of Pharmacy, Health and Nutritional Sciences, Department of Excellence 2018-2022, University of Calabria, Ed. Polifunzionale, Arcavacata di Rende, 87036 Rende, CS, Italy;
- GalaScreen Laboratories, University of Calabria, Ed. Polifunzionale, Arcavacata di Rende, 87036 Rende, CS, Italy;
| |
Collapse
|
29
|
Franco S, Buccione D, Tural C, Martinez MA. Circulating microRNA signatures that predict liver fibrosis progression in patients with HIV-1/hepatitis C virus coinfections. AIDS 2021; 35:1355-1363. [PMID: 33813557 DOI: 10.1097/qad.0000000000002895] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVE The lack of available biomarkers for diagnosing and predicting different stages of liver disease with a noninvasive strategy is currently one of the main challenges that clinicians are facing. Recent evidence indicates that the plasma levels of specific microRNAs (miRNAs) may be significantly altered in patients with liver injury, including those with HIV type 1 (HIV-1) infections. DESIGN/METHODS Large-scale deep sequencing analysis of small RNA expression was performed on plasma samples from 46 patients with HIV-1/hepatitis C virus (HCV) coinfections that did not exhibit liver fibrosis at the time of sampling. RESULTS A total of 1065 different miRNAs were identified. After a mean of 10.3 years, 26 out of the 46 patients developed liver fibrosis (stage F2-4) and 20 remained without signs of liver fibrosis (stage F0-1). We identified a signature of seven miRNAs: 100-5p, 192-5p, 99a-5p, 122-5p, 125b-2-3p, 1246 and 194-5p, which were highly correlated with progression to liver fibrosis. These seven miRNAs detected liver fibrosis progression with an area under the curve (AUC) of 0.910-0.806. Two miRNAs, 100-5p and 192-5p, which displayed the best AUC values, yielded a sensitivity of 88% and a specificity of 85% for detecting liver fibrosis progression. CONCLUSION Our results demonstrated that circulating miRNA levels had potential in predicting liver fibrosis progression before the clinical detection of liver fibrosis or significant clinical signs, such as elevated liver transaminases or platelets. Thus, our results might facilitate predictions of liver injury progression in patients with HIV-1-infections.
Collapse
Affiliation(s)
| | - Daniela Buccione
- Internal Medicine Department, Hospital Universitari Germans Trias i Pujol, Universitat Autònoma de Barcelona (UAB), Badalona, Spain
| | - Cristina Tural
- Internal Medicine Department, Hospital Universitari Germans Trias i Pujol, Universitat Autònoma de Barcelona (UAB), Badalona, Spain
| | | |
Collapse
|
30
|
He X, Kuang G, Wu Y, Ou C. Emerging roles of exosomal miRNAs in diabetes mellitus. Clin Transl Med 2021; 11:e468. [PMID: 34185424 PMCID: PMC8236118 DOI: 10.1002/ctm2.468] [Citation(s) in RCA: 109] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 06/01/2021] [Accepted: 06/07/2021] [Indexed: 12/14/2022] Open
Abstract
Exosomes are small extracellular vesicles 40-160 nm in diameter that are secreted by almost all cell types. Exosomes can carry diverse cargo including RNA, DNA, lipids, proteins, and metabolites. Exosomes transfer substances and information between cells by circulating in body fluids and are thus involved in diverse physiological and pathological processes in the human body. Recent studies have closely associated exosomal microRNAs (miRNAs) with various human diseases, including diabetes mellitus (DM), which is a complex multifactorial metabolic disorder disease. Exosomal miRNAs are emerging as pivotal regulators in the progression of DM, mainly in terms of pancreatic β-cell injury and insulin resistance. Exosomal miRNAs are closely associated with DM-associated complications, such as diabetic retinopathy (DR), diabetic nephropathy (DN), and diabetic cardiomyopathy (DCM), etc. Further investigations of the mechanisms of action of exosomal miRNAs and their role in DM will be valuable for the thorough understanding of the physiopathological process of DM. Here, we have summarized recent findings regarding exosomal miRNAs associated with DM to provide a new strategy for identifying potential diagnostic biomarkers and drug targets for the early diagnosis and treatment, respectively, of DM.
Collapse
Affiliation(s)
- Xiaoyun He
- Department of Pathology, Xiangya HospitalCentral South UniversityChangshaHunan410008China
- Departments of Ultrasound Imaging, Xiangya HospitalCentral South UniversityChangshaHunan410008China
| | - Gaoyan Kuang
- Department of OrthopedicsThe First Affiliated Hospital of Hunan University of Chinese MedicineChangshaHunan410007China
- Postdoctoral Research WorkstationHinye Pharmaceutical Co. LtdChangshaHunan410331China
| | - Yongrong Wu
- Hunan university of Chinese MedicineChangshaHunan410208China
| | - Chunlin Ou
- Department of Pathology, Xiangya HospitalCentral South UniversityChangshaHunan410008China
| |
Collapse
|
31
|
Shi Q, Yao H. Signature RNAS and related regulatory roles in type 1 diabetes mellitus based on competing endogenous RNA regulatory network analysis. BMC Med Genomics 2021; 14:133. [PMID: 34006268 PMCID: PMC8130321 DOI: 10.1186/s12920-021-00931-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 03/04/2021] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Our study aimed to investigate signature RNAs and their potential roles in type 1 diabetes mellitus (T1DM) using a competing endogenous RNA regulatory network analysis. METHODS Expression profiles of GSE55100, deposited from peripheral blood mononuclear cells of 12 T1DM patients and 10 normal controls, were downloaded from the Gene Expression Omnibus to uncover differentially expressed long non-coding RNAs (lncRNAs), mRNAs, and microRNAs (miRNAs). The ceRNA regulatory network was constructed, then functional and pathway enrichment analysis was conducted. AT1DM-related ceRNA regulatory network was established based on the Human microRNA Disease Database to carry out pathway enrichment analysis. Meanwhile, the T1DM-related pathways were retrieved from the Comparative Toxicogenomics Database (CTD). RESULTS In total, 847 mRNAs, 41 lncRNAs, and 38 miRNAs were significantly differentially expressed. The ceRNA regulatory network consisted of 12 lncRNAs, 10 miRNAs, and 24 mRNAs. Two miRNAs (hsa-miR-181a and hsa-miR-1275) were screened as T1DM-related miRNAs to build the T1DM-related ceRNA regulatory network, in which genes were considerably enriched in seven pathways. Moreover, three overlapping pathways, including the phosphatidylinositol signaling system (involving PIP4K2A, INPP4A, PIP4K2C, and CALM1); dopaminergic synapse (involving CALM1 and PPP2R5C); and the insulin signaling pathway (involving CBLB and CALM1) were revealed by comparing with T1DM-related pathways in the CTD, which involved four lncRNAs (LINC01278, TRG-AS1, MIAT, and GAS5-AS1). CONCLUSION The identified signature RNAs may serve as important regulators in the pathogenesis of T1DM.
Collapse
Affiliation(s)
- Qinghong Shi
- Department of Clinical Laboratory, The Third Hospital of Jilin University, No. 126, Xiantai Street, Changchun, 130033 Jilin China
| | - Hanxin Yao
- Department of Clinical Laboratory, The First Hospital of Jilin University, No. 1, Xinmin Street, Chaoyang District, Changchun, 130021 Jilin China
| |
Collapse
|
32
|
Chantzichristos D, Svensson PA, Garner T, Glad CA, Walker BR, Bergthorsdottir R, Ragnarsson O, Trimpou P, Stimson RH, Borresen SW, Feldt-Rasmussen U, Jansson PA, Skrtic S, Stevens A, Johannsson G. Identification of human glucocorticoid response markers using integrated multi-omic analysis from a randomized crossover trial. eLife 2021; 10:62236. [PMID: 33821793 PMCID: PMC8024021 DOI: 10.7554/elife.62236] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 02/25/2021] [Indexed: 12/17/2022] Open
Abstract
Background: Glucocorticoids are among the most commonly prescribed drugs, but there is no biomarker that can quantify their action. The aim of the study was to identify and validate circulating biomarkers of glucocorticoid action. Methods: In a randomized, crossover, single-blind, discovery study, 10 subjects with primary adrenal insufficiency (and no other endocrinopathies) were admitted at the in-patient clinic and studied during physiological glucocorticoid exposure and withdrawal. A randomization plan before the first intervention was used. Besides mild physical and/or mental fatigue and salt craving, no serious adverse events were observed. The transcriptome in peripheral blood mononuclear cells and adipose tissue, plasma miRNAomic, and serum metabolomics were compared between the interventions using integrated multi-omic analysis. Results: We identified a transcriptomic profile derived from two tissues and a multi-omic cluster, both predictive of glucocorticoid exposure. A microRNA (miR-122-5p) that was correlated with genes and metabolites regulated by glucocorticoid exposure was identified (p=0.009) and replicated in independent studies with varying glucocorticoid exposure (0.01 ≤ p≤0.05). Conclusions: We have generated results that construct the basis for successful discovery of biomarker(s) to measure effects of glucocorticoids, allowing strategies to individualize and optimize glucocorticoid therapy, and shedding light on disease etiology related to unphysiological glucocorticoid exposure, such as in cardiovascular disease and obesity. Funding: The Swedish Research Council (Grant 2015-02561 and 2019-01112); The Swedish federal government under the LUA/ALF agreement (Grant ALFGBG-719531); The Swedish Endocrinology Association; The Gothenburg Medical Society; Wellcome Trust; The Medical Research Council, UK; The Chief Scientist Office, UK; The Eva Madura’s Foundation; The Research Foundation of Copenhagen University Hospital; and The Danish Rheumatism Association. Clinical trial number: NCT02152553. Several diseases, including asthma, arthritis, some skin conditions, and cancer, are treated with medications called glucocorticoids, which are synthetic versions of human hormones. These drugs are also used to treat people with a condition call adrenal insufficiency who do not produce enough of an important hormone called cortisol. Use of glucocorticoids is very common, the proportion of people in a given country taking them can range from 0.5% to 21% of the population depending on the duration of the treatment. But, like any medication, glucocorticoids have both benefits and risks: people who take glucocorticoids for a long time have an increased risk of diabetes, obesity, cardiovascular disease, and death. Because of the risks associated with taking glucocorticoids, it is very important for physicians to tailor the dose to each patient’s needs. Doing this can be tricky, because the levels of glucocorticoids in a patient’s blood are not a good indicator of the medication’s activity in the body. A test that can accurately measure the glucocorticoid activity could help physicians personalize treatment and reduce harmful side effects. As a first step towards developing such a test, Chantzichristos et al. identified a potential way to measure glucocorticoid activity in patient’s blood. In the experiments, blood samples were collected from ten patients with adrenal insufficiency both when they were on no medication, and when they were taking a glucocorticoid to replace their missing hormones. Next, the blood samples were analyzed to determine which genes were turned on and off in each patient with and without the medication. They also compared small molecules in the blood called metabolites and tiny pieces of genetic material called microRNAs that turn genes on and off. The experiments revealed networks of genes, metabolites, and microRNAs that are associated with glucocorticoid activity, and one microRNA called miR-122-5p stood out as a potential way to measure glucocorticoid activity. To verify this microRNA’s usefulness, Chantzichristos et al. looked at levels of miR-122-5p in people participating in three other studies and confirmed that it was a good indicator of the glucocorticoid activity. More research is needed to confirm Chantzichristos et al.’s findings and to develop a test that can be used by physicians to measure glucocorticoid activity. The microRNA identified, miR-122-5p, has been previously linked to diabetes, so studying it further may also help scientists understand how taking glucocorticoids may increase the risk of developing diabetes and related diseases.
Collapse
Affiliation(s)
- Dimitrios Chantzichristos
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine at Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Endocrinology, Diabetology and Metabolism, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Per-Arne Svensson
- Department of Molecular and Clinical Medicine, Institute of Medicine at Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Institute of Health and Care Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Terence Garner
- Division of Developmental Biology & Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Camilla Am Glad
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine at Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Endocrinology, Diabetology and Metabolism, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Brian R Walker
- Clinical and Translational Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom.,BHF/University Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom
| | - Ragnhildur Bergthorsdottir
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine at Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Endocrinology, Diabetology and Metabolism, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Oskar Ragnarsson
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine at Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Endocrinology, Diabetology and Metabolism, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Penelope Trimpou
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine at Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Endocrinology, Diabetology and Metabolism, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Roland H Stimson
- BHF/University Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom
| | - Stina W Borresen
- Department of Medical Endocrinology and Metabolism, Copenhagen University Hospital, Copenhagen, Denmark.,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ulla Feldt-Rasmussen
- Department of Medical Endocrinology and Metabolism, Copenhagen University Hospital, Copenhagen, Denmark.,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Per-Anders Jansson
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine at Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Stanko Skrtic
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine at Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Innovation Strategies and External Liaison, Pharmaceutical Technologies and Development, Gothenburg, Sweden
| | - Adam Stevens
- Division of Developmental Biology & Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Gudmundur Johannsson
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine at Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Endocrinology, Diabetology and Metabolism, Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
33
|
Gajeton J, Krukovets I, Yendamuri R, Verbovetskiy D, Vasanji A, Sul L, Stenina‐Adognravi O. miR-467 regulates inflammation and blood insulin and glucose. J Cell Mol Med 2021; 25:2549-2562. [PMID: 33566451 PMCID: PMC7933977 DOI: 10.1111/jcmm.16224] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 09/24/2020] [Accepted: 10/18/2020] [Indexed: 12/12/2022] Open
Abstract
Obesity is associated with inflammation and insulin resistance (IR), but the regulation of insulin sensitivity (IS) and connections between IS and inflammation remain unclear. We investigated the role of miR-467a-5p, a miRNA induced by hyperglycaemia, in regulating inflammation and blood glucose handling. We previously demonstrated that miR-467a-5p is induced by hyperglycaemia and inhibits the production of thrombospondin-1 (TSP-1), a protein implicated in regulating inflammation. To investigate the role of miR-467 in blood glucose handling and tissue inflammation, WT C57BL/6 mice were fed chow or Western diet from 5 to 32 weeks of age and injected weekly with miR-467a-5p antagonist. Inhibiting miR-467a-5p resulted in 47% increase in macrophage infiltration and increased Il6 levels in adipose tissue, higher plasma insulin levels (98 ng/mL vs 63 ng/mL), and 17% decrease in glucose clearance without increase in weight or HDL/LDL. The antagonist effect was lost in mice on Western diet. Mice lacking TSP-1 lost some but not all of the miR-467 effects, suggesting Thbs1 (and other unknown transcripts) are targeted by miR-467 to regulate inflammation. miR-467a-5p provides a physiological feedback when blood glucose is elevated to avoid inflammation and increased blood glucose and insulin levels, which may prevent IR.
Collapse
Affiliation(s)
- Jasmine Gajeton
- Department of Cardiovascular and Metabolic SciencesCleveland ClinicClevelandOHUSA
- Department of Molecular MedicineCase Western Reserve UniversityClevelandOHUSA
| | - Irene Krukovets
- Department of Cardiovascular and Metabolic SciencesCleveland ClinicClevelandOHUSA
| | - Revanth Yendamuri
- Department of Cardiovascular and Metabolic SciencesCleveland ClinicClevelandOHUSA
- Present address:
Northeast Ohio Medical UniversityRootstownOHUSA
| | - Dmitriy Verbovetskiy
- Department of Cardiovascular and Metabolic SciencesCleveland ClinicClevelandOHUSA
| | | | - Lidiya Sul
- Department of Cardiovascular and Metabolic SciencesCleveland ClinicClevelandOHUSA
- Present address:
Ohio University Heritage College of Osteopathic MedicineAthensOHUSA
| | - Olga Stenina‐Adognravi
- Department of Cardiovascular and Metabolic SciencesCleveland ClinicClevelandOHUSA
- Department of Molecular MedicineCase Western Reserve UniversityClevelandOHUSA
| |
Collapse
|
34
|
Abstract
Exosomes are nanoscale extracellular vesicles that can transport cargos of proteins, lipids, DNA, various RNA species and microRNAs (miRNAs). Exosomes can enter cells and deliver their contents to recipient cell. Owing to their cargo exosomes can transfer different molecules to the target cells and change the phenotype of these cells. The fate of the contents of an exosome depends on its target destination. Various mechanisms for exosome uptake by target cells have been proposed, but the mechanisms responsible for exosomes internalization into cells are still debated. Exosomes exposed cells produce labeled protein kinases, which are expressed by other cells. This means that these kinases are internalized by exosomes, and transported into the cytoplasm of recipient cells. Many studies have confirmed that exosomes are not only secreted by living cells, but also internalized or accumulated by the other cells. The "next cell hypothesis" supports the notion that exosomes constitute communication vehicles between neighboring cells. By this mechanism, exosomes participate in the development of diabetes and its associated complications, critically contribute to the spreading of neuronal damage in Alzheimer's disease, and non-proteolysed form of Fas ligand (mFasL)-bearing exosomes trigger the apoptosis of T lymphocytes. Furthermore, exosomes derived from human B lymphocytes induce antigen-specific major histocompatibility complex (MHC) class II-restricted T cell responses. Interestingly, exosomes secreted by cancer cells have been demonstrated to express tumor antigens, as well as immune suppressive molecules. This process is defined as "exosome-immune suppression" concept. The interplay via the exchange of exosomes between cancer cells and between cancer cells and the tumor stroma promote the transfer of oncogenes and onco-miRNAs from one cell to other. Circulating exosomes that are released from hypertrophic adipocytes are effective in obesity-related complications. On the other hand, the "inflammasome-induced" exosomes can activate inflammatory responses in recipient cells. In this chapter protein kinases-related checkpoints are emphasized considering the regulation of exosome biogenesis, secretory traffic, and their impacts on cell death, tumor growth, immune system, and obesity.
Collapse
Affiliation(s)
- Atilla Engin
- Department of General Surgery, Faculty of Medicine, Gazi University, Ankara, Turkey.
| |
Collapse
|
35
|
Swimming training attenuates pancreatic apoptosis through miR-34a/Sirtu in1/P53 Axis in high-fat diet and Streptozotocin-induced Type-2 diabetic rats. J Diabetes Metab Disord 2021; 19:1439-1446. [PMID: 33520845 DOI: 10.1007/s40200-020-00670-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 10/20/2020] [Indexed: 10/23/2022]
Abstract
Objective The present study sought to evaluate the miR-34a/Sirtuin1/p53 pro-apoptotic pathway, and reveal its modulation in diabetic rats undergoing swimming exercise. Methods Twenty-eight male Wistar rats were divided into four groups. They were inducted to develop diabetes by injection of streptozotocin. After 12 weeks of swimming, the pancreatic tissue of these rats were removed to be evaluated for the expression level of Sitruin1/P53/miR-34a through qPCR. Results Findings indicated a marked rise in the expression of miR-34 and P53 (P < 0.01) as well as a significant decrease in expression of Sitruin1 (P < 0.01) in the diabetic group. In contrast, swimming resulted in a significant decrease in miR-34a expression (P < 0.01), and a prominent rise in the level of Sitruin1 in the swimming-trained-diabetic group (P < 0.01). Additionally, high, moderate and low apoptosis rate were observed in the pancreatic tissue of the diabetic, swimming-trained diabetic, and control groups, respectively. Conclusion Our findings suggested a correlation between pancreatic tissue apoptosis rate and miR-34a/Sitruin1/p53 signaling, that was subject to modulation by training. Graphical abstract
Collapse
|
36
|
Huang F, Zhu P, Wang J, Chen J, Lin W. Postnatal overfeeding induces hepatic microRNA-221 expression and impairs the PI3K/AKT pathway in adult male rats. Pediatr Res 2021; 89:143-149. [PMID: 32305038 DOI: 10.1038/s41390-020-0877-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 03/14/2020] [Accepted: 03/19/2020] [Indexed: 11/09/2022]
Abstract
BACKGROUND Increasing evidence suggests that postnatal overfeeding induces childhood obesity, which is strongly associated with metabolic syndrome. Insulin resistance is a risk factor for metabolic syndrome. MicroRNA-221 (miR-221) is involved in the development of obesity and has been reported to negatively regulate insulin sensitivity. However, the underlying mechanism remains unclear. METHODS Rats raised in small litters (SLs, three pups/dam, n = 10) and normal litters (NLs, 10 pups/dam, n = 10) were used to model early postnatal overfeeding and act as controls, respectively. miR-221 and proteins related to the phosphoinositide 3-kinases (PI3K)/protein kinase B (AKT) pathway were assessed in the liver. RESULTS Early postnatal overfeeding significantly increased body weight, visceral fat index, blood glucose, serum triglycerides, and the homeostasis model assessment of insulin resistance at 9 weeks. Real-time polymerase chain reaction (PCR) and western blot analysis revealed that postnatal overfeeding induced insulin receptor and insulin receptor substrate 2 expression, but decreased PI3K and AKT phosphorylation in the liver. Quantitative real-time PCR showed that hepatic miR-221 was significantly overexpressed in the SL group. CONCLUSIONS These results indicate that postnatal overfeeding induces hepatic miR-221 overexpression and impairs the PI3K/AKT signal pathway, which may cause insulin resistance. IMPACT We first report postnatal overfeeding induces hepatic miR-221 expression. Postnatal overfeeding impairs PI3K/AKT pathway in the liver of adult rats. Postnatal overfeeding induces obesity and high blood glucose. Avoidance of overfeeding during early postnatal life may prevent obesity and T2DM.
Collapse
Affiliation(s)
- Fang Huang
- School of Public Health, Fujian Medical University, Fuzhou, Fujian, China.
| | - Pingping Zhu
- School of Public Health, Fujian Medical University, Fuzhou, Fujian, China
| | - Jingwen Wang
- School of Public Health, Fujian Medical University, Fuzhou, Fujian, China
| | - Jie Chen
- School of Public Health, Fujian Medical University, Fuzhou, Fujian, China
| | - Wenting Lin
- School of Public Health, Fujian Medical University, Fuzhou, Fujian, China
| |
Collapse
|
37
|
Bahrami G, Sajadimajd S, Mohammadi B, Hatami R, Miraghaee S, Keshavarzi S, Khazaei M, Madani SH. Anti-diabetic effect of a novel oligosaccharide isolated from Rosa canina via modulation of DNA methylation in Streptozotocin-diabetic rats. Daru 2020; 28:581-590. [PMID: 32748125 PMCID: PMC7704860 DOI: 10.1007/s40199-020-00363-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Accepted: 07/28/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Diabetes mellitus (DM) is a well-known clinical entity with various late complications. There is a surge of research aiming to use the medical herb in the management of DM. OBJECTIVE This study aimed to investigate whether the alleviation of DM by an isolated compound from Rosa canina is mediated by DNA methylation in STZ-diabetic rats. METHODS Sixty adult Wistar male rats were classified into control, diabetic and treatment groups. Rats were treated with STZ (40 mg/kg), metformin (500 mg/kg), and oligosaccharide fraction (OF; 10, 20 and 30 mg/kg) isolated from Rosa canina. DNA was extracted from the blood and pancreas to determine DNA methylation using the Global DNA Methylation kit. The expressions of DNA methyltransferases (Dnmts), PDX1, Ins1, GCK and PTP1B2 were determined by using qRT-PCR. RESULTS The significant blood glucose-lowering potential of OF was associated with a reduced level of global DNA methylation (p < 0.05). The expression levels of Dnmts 1 and 3α increased in the pancreas and blood from diabetic rats compared to control group which declined by OF treatment (p < 0.05). Paradoxically, the expression of Dnmt 3β augmented in the pancreas and blood of OF group compared to diabetic ones (p < 0.05). Besides, the expressions of Pdx1, PTP1B2, Ins1 and GCK increased in OF-treated rats compared to diabetic groups. CONCLUSION Results revealed that DNA methylation plays a causal role in the effectiveness of the isolated OF. Furthermore, the possible regenerative potential of oligosaccharide in diabetic rats may have contributed to the modulation of DNA methylation.
Collapse
Affiliation(s)
- Gholamreza Bahrami
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
- School of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Soraya Sajadimajd
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Bahareh Mohammadi
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Razieh Hatami
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Shahram Miraghaee
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Samira Keshavarzi
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mozafar Khazaei
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Seyed Hamid Madani
- Molecular Pathology Research Center, Clinical Research Development Center, Imam Reza Hospital, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
38
|
Faheem A, Rehman K, Jabeen K, Akash MSH. Nicotine-mediated upregulation of microRNA-141 expression determines adipokine-intervened insulin resistance. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2020; 80:103506. [PMID: 33002592 DOI: 10.1016/j.etap.2020.103506] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 08/10/2020] [Accepted: 09/25/2020] [Indexed: 06/11/2023]
Abstract
MicroRNAs (miRNAs) are non-coding RNAs that are associated with adipokine homeostasis and insulin resistance. Whereas, smoking can disturb metabolic homeostasis. Present study was aimed to investigate the level of miRNA-141 in experimental animal model that were exposed with graded doses of nicotine. We further aimed to investigate the possible interplay of miRNA-141 expression change with adipokine homeostasis and occurrence of insulin resistance in nicotine-exposed experimental animals. Nicotine (0.5, 1.0, 3.0 and 6.0 mg/Kg) was administered to early adolescent; postnatal days ranging from 25 to 30 Wistar rats for one month. Serum was analyzed for leptin, adipokines, IL-6, MDA, HbA1c, insulin, G6PDH, hexokinase, and lipid profile. While miRNA-141 expression level was determined in plasma. Higher doses of nicotine were associated with higher glucose, HbA1c, leptin, IL-6, MDA and lipids levels, while, insulin, adiponectin, G6PDH, hexokinase and HDL levels were lower. Higher doses of nicotine also impaired glucose tolerance and exhibited significant increase in miR-141 expression signifying that nicotine exposure may influence adipokines regulation altering glycemic profile. This is accompanied with aggravated inflammatory responses where genetic expression of miRNA-141 can be an accessible biomarker for metabolic disturbances with insulin resistance and glucose intolerance.
Collapse
Affiliation(s)
- Amna Faheem
- Institute of Physiology and Pharmacology, University of Agriculture, Faisalabad, Pakistan
| | - Kanwal Rehman
- Institute of Physiology and Pharmacology, University of Agriculture, Faisalabad, Pakistan; Department of Pharmacy, University of Agriculture, Faisalabad, Pakistan.
| | - Komal Jabeen
- Institute of Physiology and Pharmacology, University of Agriculture, Faisalabad, Pakistan; Department of Pharmacy, University of Agriculture, Faisalabad, Pakistan
| | | |
Collapse
|
39
|
Wang L, Chen Y, Zhang N, Chen W, Zhang Y, Gao R. QIMCMDA: MiRNA-Disease Association Prediction by q-Kernel Information and Matrix Completion. Front Genet 2020; 11:594796. [PMID: 33193744 PMCID: PMC7643770 DOI: 10.3389/fgene.2020.594796] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 09/21/2020] [Indexed: 12/27/2022] Open
Abstract
Studies have shown that microRNAs (miRNAs) are closely associated with many human diseases, but we have not yet fully understand the role and potential molecular mechanisms of miRNAs in the process of disease development. However, ordinary biological experiments often require higher costs, and computational methods can be used to quickly and effectively predict the potential miRNA-disease association effect at a lower cost, and can be used as a useful reference for experimental methods. For miRNA-disease association prediction, we have proposed a new method called Matrix completion algorithm based on q-kernel information (QIMCMDA). We use fivefold cross-validation and leave-one-out cross-validation to prove the effectiveness of QIMCMDA. LOOCV shows that AUC can reach 0.9235, and its performance is significantly better than other commonly used technologies. In addition, we applied QIMCMDA to case studies of three human diseases, and the results show that our method performs well in inferring potential interaction between miRNAs and diseases. It is expected that QIMCMDA will become an excellent supplement in the field of biomedical research in the future.
Collapse
Affiliation(s)
- Lin Wang
- School of Mathematics and Statistics, Shandong University, Jinan, China
| | - Yaguang Chen
- School of Mathematics and Statistics, Shandong University, Jinan, China
| | - Naiqian Zhang
- School of Mathematics and Statistics, Shandong University, Jinan, China
| | - Wei Chen
- School of Mathematics and Statistics, Shandong University, Jinan, China
| | - Yusen Zhang
- School of Mathematics and Statistics, Shandong University, Jinan, China
| | - Rui Gao
- School of Control Science and Engineering, Shandong University, Jinan, China
| |
Collapse
|
40
|
Lin YCD, Huang HY, Shrestha S, Chou CH, Chen YH, Chen CR, Hong HC, Li J, Chang YA, Chiew MY, Huang YR, Tu SJ, Sun TH, Weng SL, Tseng CP, Huang HD. Multi-omics profiling reveals microRNA-mediated insulin signaling networks. BMC Bioinformatics 2020; 21:389. [PMID: 32938376 PMCID: PMC7496206 DOI: 10.1186/s12859-020-03678-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Background MicroRNAs (miRNAs) play a key role in mediating the action of insulin on cell growth and the development of diabetes. However, few studies have been conducted to provide a comprehensive overview of the miRNA-mediated signaling network in response to glucose in pancreatic beta cells. In our study, we established a computational framework integrating multi-omics profiles analyses, including RNA sequencing (RNA-seq) and small RNA sequencing (sRNA-seq) data analysis, inverse expression pattern analysis, public data integration, and miRNA targets prediction to illustrate the miRNA-mediated regulatory network at different glucose concentrations in INS-1 pancreatic beta cells (INS-1), which display important characteristics of the pancreatic beta cells. Results We applied our computational framework to the expression profiles of miRNA/mRNA of INS-1, at different glucose concentrations. A total of 1437 differentially expressed genes (DEGs) and 153 differentially expressed miRNAs (DEmiRs) were identified from multi-omics profiles. In particular, 121 DEmiRs putatively regulated a total of 237 DEGs involved in glucose metabolism, fatty acid oxidation, ion channels, exocytosis, homeostasis, and insulin gene regulation. Moreover, Argonaute 2 immunoprecipitation sequencing, qRT-PCR, and luciferase assay identified Crem, Fn1, and Stc1 are direct targets of miR-146b and elucidated that miR-146b acted as a potential regulator and promising target to understand the insulin signaling network. Conclusions In this study, the integration of experimentally verified data with system biology framework extracts the miRNA network for exploring potential insulin-associated miRNA and their target genes. The findings offer a potentially significant effect on the understanding of miRNA-mediated insulin signaling network in the development and progression of pancreatic diabetes.
Collapse
Affiliation(s)
- Yang-Chi-Dung Lin
- School of Life and Health Sciences, The Chinese University of Hong Kong, Longgang District, Shenzhen, 518172, Guangdong Province, China.,Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Longgang District, Shenzhen, 518172, Guangdong Province, China
| | - Hsi-Yuan Huang
- School of Life and Health Sciences, The Chinese University of Hong Kong, Longgang District, Shenzhen, 518172, Guangdong Province, China.,Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Longgang District, Shenzhen, 518172, Guangdong Province, China
| | - Sirjana Shrestha
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu, 300, Taiwan.,Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, 300, Taiwan
| | - Chih-Hung Chou
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu, 300, Taiwan.,Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, 300, Taiwan
| | - Yen-Hua Chen
- Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY, 10021, USA
| | - Chi-Ru Chen
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, 300, Taiwan
| | - Hsiao-Chin Hong
- School of Life and Health Sciences, The Chinese University of Hong Kong, Longgang District, Shenzhen, 518172, Guangdong Province, China.,Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Longgang District, Shenzhen, 518172, Guangdong Province, China
| | - Jing Li
- School of Life and Health Sciences, The Chinese University of Hong Kong, Longgang District, Shenzhen, 518172, Guangdong Province, China.,Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Longgang District, Shenzhen, 518172, Guangdong Province, China
| | - Yi-An Chang
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu, 300, Taiwan
| | - Men-Yee Chiew
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, 300, Taiwan
| | - Ya-Rong Huang
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu, 300, Taiwan
| | - Siang-Jyun Tu
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu, 300, Taiwan
| | - Ting-Hsuan Sun
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, 300, Taiwan
| | - Shun-Long Weng
- Department of Obstetrics and Gynecology, Hsinchu Mackay Memorial Hospital, Hsinchu, 300, Taiwan
| | - Ching-Ping Tseng
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, 300, Taiwan.
| | - Hsien-Da Huang
- School of Life and Health Sciences, The Chinese University of Hong Kong, Longgang District, Shenzhen, 518172, Guangdong Province, China. .,Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Longgang District, Shenzhen, 518172, Guangdong Province, China. .,Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, 300, Taiwan.
| |
Collapse
|
41
|
Liang YZ, Li JJH, Xiao HB, He Y, Zhang L, Yan YX. Identification of stress-related microRNA biomarkers in type 2 diabetes mellitus: A systematic review and meta-analysis. J Diabetes 2020; 12:633-644. [PMID: 29341487 DOI: 10.1111/1753-0407.12643] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 10/30/2017] [Accepted: 01/09/2018] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Many studies have investigated microRNAs (miRNAs) in the detection of type 2 diabetes mellitus (T2DM). Herein, the dysregulated direction of stress-related miRNAs used as biomarkers of T2DM are summarized and analyzed. METHODS PubMed, EMBASE, ISI Web of Science, and three Chinese databases were searched for case-control miRNA profiling studies about T2DM. A meta-analysis under a random effect was performed. Subgroup analysis was conducted based on different tissues and species. Sensitivity analysis was conducted to confirm the robustness among studies. The effect size was pooled using ln odds ratios (ORs), 95% confidence intervals (95% CIs), and P-values. RESULTS The present meta-analysis included 39 case-control studies with a total of 494 miRNAs. Only 33 miRNAs were reported in three or more studies and, of these, 18 were inconsistent in their direction of dysregulation. Two significantly dysregulated miRNAs (let-7 g and miR-155) were identified in the meta-analysis. Four miRNAs (miR-142-3p, miR-155, miR-21, and miR-34c-5p) were dysregulated in patients with T2DM, whereas five miRNAs (miR-146a, miR-199a-3p, miR-200b, miR-29b and miR-30e) were dysregulated in animal models of diabetes. In addition, two dysregulated miRNAs (miR-146a and miR-21) were highly cornea specific and heart specific. In sensitivity analysis, only miR-155 was still significantly dysregulated after removing studies with small sample sizes. CONCLUSIONS The present meta-analysis revealed that 16 stress-related miRNAs were significantly dysregulated in T2DM. MiR-148b, miR-223, miR-130a, miR-19a, miR-26b and miR-27b were selected as potential circulating biomarkers of T2DM. In addition, miR-146a and miR-21 were identified as potential tissue biomarkers of T2DM.
Collapse
Affiliation(s)
- Ying-Zhi Liang
- Department of Epidemiology and Biostatistics, School of Public Health, Capital Medical University, Beijing, China
- Municipal Key Laboratory of Clinical Epidemiology, Beijing, China
| | - Jia-Jiang-Hui Li
- Department of Epidemiology and Biostatistics, School of Public Health, Capital Medical University, Beijing, China
- Municipal Key Laboratory of Clinical Epidemiology, Beijing, China
| | - Huan-Bo Xiao
- Department of Preventive Medicine, Yanjing Medical College, Capital Medical University, Beijing, China
| | - Yan He
- Department of Epidemiology and Biostatistics, School of Public Health, Capital Medical University, Beijing, China
- Municipal Key Laboratory of Clinical Epidemiology, Beijing, China
| | - Ling Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Capital Medical University, Beijing, China
- Municipal Key Laboratory of Clinical Epidemiology, Beijing, China
| | - Yu-Xiang Yan
- Department of Epidemiology and Biostatistics, School of Public Health, Capital Medical University, Beijing, China
- Municipal Key Laboratory of Clinical Epidemiology, Beijing, China
| |
Collapse
|
42
|
Kaur P, Kotru S, Singh S, Behera BS, Munshi A. Role of miRNAs in the pathogenesis of T2DM, insulin secretion, insulin resistance, and β cell dysfunction: the story so far. J Physiol Biochem 2020; 76:485-502. [PMID: 32749641 DOI: 10.1007/s13105-020-00760-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Accepted: 07/29/2020] [Indexed: 01/24/2023]
Abstract
Diabetes, the most common endocrine disorder, also known as a silent killer disease, is characterized by uncontrolled hyperglycemia. According to the International Diabetes Federation, there were 451 million people with diabetes mellitus worldwide in 2017. It is a multifactorial syndrome caused by genetic as well as environmental factors. Noncoding RNAs, especially the miRNAs, play a significant role in the development as well as the progression of the disease. This is on account of insulin resistance or defects in β cell function. Various miRNAs including miR-7, miR-9, miR-16, miR-27, miR-24, miR-29, miR-124a, miR-135, miR-130a, miR-144, miR-181a, and miR-375 and many more have been associated with insulin resistance and other pathogenic conditions leading to the development of the disease. These miRNAs play significant roles in various pathways underlying insulin resistance such as PI3K, AKT/GSK, and mTOR. The main target genes of these miRNAs are FOXO1, FOXA2, STAT3, and PTEN. The miRNAs carry out important functions in insulin target tissues like the adipose tissue, liver, and muscle. MiRNAs miR-9, miR-375, and miR-124a, are also associated with the secretion of insulin from pancreatic cells. There is an interplay between the miRNAs and pancreatic cell growth, especially the miRNAs affecting development and proliferation of these cells. Most of the miRNAs target more than one gene which not only justifies their use as biomarkers but also their therapeutic potential. The current review has been compiled with an aim to discuss the role of various miRNAs involved in various pathogenic mechanisms including insulin resistance, insulin secretion, and the β cell dysfunction.
Collapse
Affiliation(s)
- Prabhsimran Kaur
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, 151001, India
| | - Sushil Kotru
- Max Endocrinology, Diabetes and Obesity Care Centre, Max Superspeciality Hospital, Bathinda, 151001, India
| | - Sandeep Singh
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, 151001, India
| | - Bidwan Sekhar Behera
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, 151001, India
| | - Anjana Munshi
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, 151001, India.
| |
Collapse
|
43
|
Exosomal MicroRNA Expression Profiling Analysis of the Effects of Lycium Barbarum Polysaccharide on Gestational Diabetes Mellitus Mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:2953502. [PMID: 32802120 PMCID: PMC7414337 DOI: 10.1155/2020/2953502] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 07/04/2020] [Accepted: 07/07/2020] [Indexed: 12/26/2022]
Abstract
Objective Gestational diabetes mellitus (GDM) is a pathological condition, affecting an increasing number of pregnant women worldwide. Safe and effective treatment for GDM is very important for the public health. In this study, we utilized a high-fat diet-induced GDM model to evaluate the effects of LBP on GDM and examined the changes of exosomal microRNA expression profiling to decipher the potential underlying mechanism of LBP. Methods Female C57BL/6J mice were fed a control diet, HFD, or 150 mg/kg LBP-supplemented HFD for 6 weeks before conception and throughout gestation. Oral glucose tolerance test and plasma lipid levels were determined, and liver histopathology was assessed. Sequencing was used to define the microRNA expression profiling of plasma exosomes in the three groups of mice, and protein expression levels of the candidate target genes were analyzed. Results LBP significantly relieved glucose intolerance, abnormal plasma lipid levels, and pathomorphological changes of liver histopathology in HFD-induced GDM mice. Moreover, we found that this effect of LBP was mediated by downregulation of the increase of 6 miRNAs (miR-93-3p, miR-188-5p, miR-466k, miR-1188-5p, miR-7001-3p, and miR-7115-5p) and reversing the increase of the protein expression of CPT1A, which is the target gene of miR-188-5p. Conclusions Our findings provide novel insights into the biological activities of LBP in the treatment of GDM.
Collapse
|
44
|
Li XF, Zhang SH, Liu GF, Yu SN. miR-363 Alleviates Detrusor Fibrosis via the TGF-β1/Smad Signaling Pathway by Targeting Col1a2 in Rat Models of STZ-Induced T2DM. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 22:1142-1153. [PMID: 33294298 PMCID: PMC7695978 DOI: 10.1016/j.omtn.2020.07.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 07/06/2020] [Indexed: 01/13/2023]
Abstract
Dysregulated expression of microRNAs (miRNAs or miRs) has been implicated in the pathophysiology of type 2 diabetes mellitus (T2DM). However, their underlying role in the complication of detrusor fibrosis remains poorly understood. Therefore, this study aimed to examine the potential functional relevance of miR-363 in detrusor fibrosis of rats with streptozotocin (STZ)-induced T2DM through the predicted target gene collagen type I alpha 2 (Col1a2). Immunohistochemical analysis found an increase in the positive expression of collagen type III alpha 1 (Col3a1) and Col1a2 in detrusor tissues, where miR-363 expression was decreased. Next, gain- and loss-of-function experiments were performed to clarify the effects of miR-363 and Col1a2 on the activities of bladder detrusor cells. Of note, binding affinity between miR-363 and Col1a2 was verified by a dual-luciferase reporter gene assay and RNA immunoprecipitation (RIP) assay. Upregulated miR-363 inhibited Col1a2 expression, which led to increased expression of B-cell lymphoma 2 (Bcl-2) and Smad7 and accelerated cell viability, along with decreases in cell apoptosis and Col3a1, Bcl-2-associated X protein (Bax), transforming growth factor (TGF)-β1, and Smad4 expressions. In conclusion, miR-363 upregulation reduces detrusor fibrosis in rats with STZ-induced T2DM through suppression of the TGF-β1/Smad signaling pathway by targeting Col1a2. Therefore, our study provided further insights for the development of new therapeutic targets for T2DM.
Collapse
Affiliation(s)
- Xue-Feng Li
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Changchun 130033, P.R. China
| | - Shu-Hua Zhang
- Operation Room, China-Japan Union Hospital of Jilin University, Changchun 130033, P.R. China
| | - Gui-Feng Liu
- Department of Radiology, China-Japan Union Hospital of Jilin University, Changchun 130033, P.R. China
| | - Shao-Nan Yu
- Department of Radiology, China-Japan Union Hospital of Jilin University, Changchun 130033, P.R. China
| |
Collapse
|
45
|
Pheiffer C, Dias S, Rheeder P, Adam S. MicroRNA Profiling in HIV-Infected South African Women with Gestational Diabetes Mellitus. Mol Diagn Ther 2020; 23:499-505. [PMID: 31111446 DOI: 10.1007/s40291-019-00404-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Recently, we reported that the microRNAs (miRNAs) miR-20a-5p and-to a lesser extent-miR-222-3p hold potential as biomarkers for gestational diabetes mellitus (GDM) in human immunodeficiency virus (HIV)-negative South African women. METHODS In this preliminary study, we measured the expression of these miRNAs in HIV-positive women (GDM 15, non-GDM 52; median 26.0 weeks; range 16-30). RESULTS Although the same trend of decreased expression of miR-20a-5p (1.5-fold decrease) and miR-222-3p (1.4-fold decrease) was observed in sera of women with and without GDM, these differences were not statistically significant. Stratification according to antiretroviral treatment (ART) confirmed decreased expression of miR-20a-5p and miR-222-3p in ART-naïve and ART-treated women with GDM, although again this was not statistically significant. CONCLUSION Our results demonstrate that HIV infection modifies the expression of miR-20a-5p and miR-222-3p in women with GDM. Importantly, this study highlights the complexities of miRNA profiling and the need for GDM biomarker discovery in both HIV-infected and uninfected individuals, particularly in South Africa, where approximately 30% of pregnancies are complicated by HIV. Further studies to elucidate the mechanisms that underlie these miRNA differences are needed.
Collapse
Affiliation(s)
- Carmen Pheiffer
- Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council, Francie Van Zijl Drive, Tygerberg, Western Cape, 7505, South Africa. .,Division of Medical Physiology, Faculty of Health Sciences, Stellenbosch University, Tygerberg, South Africa.
| | - Stephanie Dias
- Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council, Francie Van Zijl Drive, Tygerberg, Western Cape, 7505, South Africa.,Department of Obstetrics and Gynecology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Paul Rheeder
- Department of Internal Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Sumaiya Adam
- Department of Obstetrics and Gynecology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
46
|
Michell DL, Zhao S, Allen RM, Sheng Q, Vickers KC. Pervasive Small RNAs in Cardiometabolic Research: Great Potential Accompanied by Biological and Technical Barriers. Diabetes 2020; 69:813-822. [PMID: 32312897 PMCID: PMC7171967 DOI: 10.2337/dbi19-0015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 02/21/2020] [Indexed: 12/19/2022]
Abstract
Advances in small RNA sequencing have revealed the enormous diversity of small noncoding RNA (sRNA) classes in mammalian cells. At this point, most investigators in diabetes are aware of the success of microRNA (miRNA) research and appreciate the importance of posttranscriptional gene regulation in glycemic control. Nevertheless, miRNAs are just one of multiple classes of sRNAs and likely represent only a minor fraction of sRNA sequences in a given cell. Despite the widespread appreciation of sRNAs, very little research into non-miRNA sRNA function has been completed, likely due to some major barriers that present unique challenges for study. To emphasize the importance of sRNA research in cardiometabolic diseases, we highlight the success of miRNAs and competitive endogenous RNAs in cholesterol and glucose metabolism. Moreover, we argue that sequencing studies have demonstrated that miRNAs are just the tip of the iceberg for sRNAs. We are likely standing at the precipice of immense discovery for novel sRNA-mediated gene regulation in cardiometabolic diseases. To realize this potential, we must first address critical barriers with an open mind and refrain from viewing non-miRNA sRNA function through the lens of miRNAs, as they likely have their own set of distinct regulatory factors and functional mechanisms.
Collapse
Affiliation(s)
- Danielle L Michell
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Shilin Zhao
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN
| | - Ryan M Allen
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Quanhu Sheng
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN
| | - Kasey C Vickers
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| |
Collapse
|
47
|
Han N, Fang HY, Jiang JX, Xu Q. Downregulation of microRNA-873 attenuates insulin resistance and myocardial injury in rats with gestational diabetes mellitus by upregulating IGFBP2. Am J Physiol Endocrinol Metab 2020; 318:E723-E735. [PMID: 31910027 DOI: 10.1152/ajpendo.00555.2018] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Gestational diabetes mellitus (GDM) is a metabolic disorder characterized by insulin resistance, and patients with GDM have a higher risk of cardiovascular disease. Multiple microRNAs (miRNAs) are reported to be involved in the regulation of myocardial injury. Moreover, miR-873 was predicted to target insulin-like growth factor binding protein 2 (IGFBP2) through bioinformatic analysis, which was further confirmed using a luciferase assay. Thus, our objective was to assess whether microRNA-873 (miR-873) affects insulin resistance and myocardial injury in an established GDM rat model. The GDM rats were treated with miR-875 mimic or inhibitor or IGFBP2 siRNA. The effects of miR-875 and IGFBP2 on the cardiac function, insulin resistance, and myocardial injury were evaluated by hemodynamic measurements, determination of biochemical indices of myocardium and serum, and insulin homeostatic model assessment. The results indicated that downregulation of miR-873 upregulated the expression of IGFBP2 and promoted the activation of phosphatidylinositol-3 kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) axis. With downregulation of miR-873 in GDM rats, the cardiac function was improved and the myocardial apoptosis was inhibited, coupled with elevated activity of superoxide dismutase, carbon monoxide synthase, and the nitric oxide content. In addition, the inhibition of miR-873 in GDM rats modulated the insulin resistance and reduced myocardial apoptosis. Overall, the data showed that inhibition of miR-873 by targeting IGFBP2 may regulate the insulin resistance and curtail myocardial injury in GDM rats through activating the PI3K/AKT/mTOR axis, thus providing a potential means of impeding the progression of GDM.
Collapse
Affiliation(s)
- Na Han
- Department of Obstetrics, Qingdao Women and Children's Hospital, Qingdao, People's Republic of China
| | - Hai-Yan Fang
- Department of Obstetrics, Qingdao Women and Children's Hospital, Qingdao, People's Republic of China
| | - Jie-Xuan Jiang
- Department of Obstetrics, Qingdao Women and Children's Hospital, Qingdao, People's Republic of China
| | - Qian Xu
- Department of Obstetrics, Qingdao Women and Children's Hospital, Qingdao, People's Republic of China
| |
Collapse
|
48
|
Díaz M, Bassols J, López-Bermejo A, de Zegher F, Ibáñez L. Low Circulating Levels of miR-451a in Girls with Polycystic Ovary Syndrome: Different Effects of Randomized Treatments. J Clin Endocrinol Metab 2020; 105:5626384. [PMID: 31730174 DOI: 10.1210/clinem/dgz204] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Accepted: 11/13/2019] [Indexed: 02/06/2023]
Abstract
CONTEXT Polycystic ovary syndrome (PCOS) is a prevalent disorder in adolescent girls, purportedly driven by hepato-visceral fat excess, and often followed by subfertility and type 2 diabetes. OBJECTIVE We studied the baseline microRNA (miRNA) profile of girls with PCOS, and the effects of a randomized treatment with an oral contraceptive (OC) or with spironolactone-pioglitazone-metformin (SPIOMET, aiming at loss of hepato-visceral fat excess) for 1 year. DESIGN & PATIENTS The miRNA profile was assessed by RNA sequencing in girls with PCOS who had participated in a randomized, open-label, single-center, pilot study (n = 31; age 15.7 years, body mass index (BMI) 23.1 kg/m2). Healthy age- and BMI-matched girls (n = 13) served as controls. Differentially expressed miRNAs were validated by RT-qPCR in the entire study population. Post-treatment ovulation rates were assessed by salivary progesterone in PCOS girls. SETTING Endocrinology Department, University Hospital. RESULTS Girls with PCOS, compared with controls, had markedly reduced concentrations of circulating miR-451a, miR-652-3p, miR-106b-5p, and miR-206; pathway enrichment analysis showed that these miRNAs target genes involved in energy homeostasis and cell cycle control. In the present study, miR-451a could diagnose PCOS with 100% sensitivity and 100% specificity. SPIOMET (but not OC) was accompanied by on-treatment normalization of the miRNA profile in girls with PCOS; miR-451a concentrations after 1 year on OC or SPIOMET treatment associated closely (r = 0.66; P < .0001) with post-treatment ovulation rates. CONCLUSION SPIOMET treatment for 1 year normalizes the miRNA profile of girls with PCOS. Circulating miR-451a may become a biomarker to guide the diagnosis and treatment of PCOS in adolescence.
Collapse
Affiliation(s)
- Marta Díaz
- Institut de Recerca Pediàtric Hospital Sant Joan de Déu, University of Barcelona, Esplugues, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), ISCIII, Madrid, Spain
| | - Judit Bassols
- Maternal-Fetal Metabolic Research Group, Girona Institute for Biomedical Research (IDIBGI), Salt, Spain
| | - Abel López-Bermejo
- Pediatric Endocrinology Research Group, Girona Institute for Biomedical Research (IDIBGI) and Dr. Josep Trueta Hospital, Girona, Spain
| | - Francis de Zegher
- Department of Development & Regeneration, University of Leuven, Leuven, Belgium
| | - Lourdes Ibáñez
- Institut de Recerca Pediàtric Hospital Sant Joan de Déu, University of Barcelona, Esplugues, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), ISCIII, Madrid, Spain
| |
Collapse
|
49
|
Antioxidant Effects and Mechanisms of Medicinal Plants and Their Bioactive Compounds for the Prevention and Treatment of Type 2 Diabetes: An Updated Review. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:1356893. [PMID: 32148647 PMCID: PMC7042557 DOI: 10.1155/2020/1356893] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 12/31/2019] [Accepted: 01/16/2020] [Indexed: 12/14/2022]
Abstract
Diabetes mellitus is a metabolic disorder that majorly affects the endocrine gland, and it is symbolized by hyperglycemia and glucose intolerance owing to deficient insulin secretory responses and beta cell dysfunction. This ailment affects as many as 451 million people worldwide, and it is also one of the leading causes of death. In spite of the immense advances made in the development of orthodox antidiabetic drugs, these drugs are often considered not successful for the management and treatment of T2DM due to the myriad side effects associated with them. Thus, the exploration of medicinal herbs and natural products as therapeutic sources for the treatment of T2DM is promoted because they have little or no side effects. Bioactive molecules isolated from natural sources have been proven to lower blood glucose levels via regulating one or more of the following mechanisms: improvement of beta cell function, insulin resistance, glucose (re)absorption, and glucagon-like peptide-1 homeostasis. In recent times, the mechanisms of action of different bioactive molecules with antidiabetic properties and phytochemistry are gaining a lot of attention in the area of drug discovery. This review article presents an update of the findings from clinical research into medicinal plant therapy for T2DM.
Collapse
|
50
|
Pan G, Liu Q, Xin H, Liu J. The key regulation of miR-124-3p during reprogramming of primary mouse hepatocytes into insulin-producing cells. Biochem Biophys Res Commun 2020; 522:315-321. [PMID: 31761319 DOI: 10.1016/j.bbrc.2019.11.058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Accepted: 11/08/2019] [Indexed: 12/22/2022]
Abstract
Based on the action of small molecule compounds, the efficiency of differentiation of mouse primary hepatocytes into insulin-producing cells (IPCs) was improved by changing the expression of miR-124-2p. Hepatocytes were transfected with microRNA-124-3p (miR-124-3p) mimic or inhibitor, followed by a chemical-defined culture system for maturation of IPCs. Then, detect the expression of insulin-related genes and protein and insulin secretion of each stage during differentiation. The expression of Foxa2, PDX1, NeuroD, insulin1, and insulin2 in IPCs in the miR-124-3p inhibition expression group was significantly upregulated, while the results were opposite in the miR-124-3p overexpression group. The results of cell immunofluorescence and glucose stimulation in vitro of the miR-124-3p inhibition expression group showed that the expression of insulin, PDX1, and C-peptide was increased, and the differentiation efficiency was higher than those of the control group and overexpression group. The primary mouse hepatocytes were successfully reprogrammed into IPCs by small-molecule compounds. We found that miR-124-3p plays a negative regulatory role in the differentiation of hepatocytes into IPCs in vitro. Inhibition of miR-124-3p expression significantly increased the expression of FOXA2 and PDX1, promoted the differentiation of hepatocytes into IPCs, and increased the induction efficiency.
Collapse
Affiliation(s)
- Gui Pan
- Department of Endocrinology, The Second Affiliated Hospital of Nanchang University, Nanchang, China; Department of Respiratory, People's Hospital of Jingdezhen of Jiangxi Province, Jingdezhen, China
| | - Quanwen Liu
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, China
| | - Hongbo Xin
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, China
| | - Jianping Liu
- Department of Endocrinology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.
| |
Collapse
|