1
|
Graaf-Rau A, Schmies K, Breithaupt A, Ciminski K, Zimmer G, Summerfield A, Sehl-Ewert J, Lillie-Jaschniski K, Helmer C, Bielenberg W, Grosse Beilage E, Schwemmle M, Beer M, Harder T. Reassortment incompetent live attenuated and replicon influenza vaccines provide improved protection against influenza in piglets. NPJ Vaccines 2024; 9:127. [PMID: 39003272 PMCID: PMC11246437 DOI: 10.1038/s41541-024-00916-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 06/24/2024] [Indexed: 07/15/2024] Open
Abstract
Swine influenza A viruses (swIAV) cause an economically important respiratory disease in modern pig production. Continuous virus transmission and antigenic drift are difficult to control in enzootically infected pig herds. Here, antibody-positive piglets from a herd enzootically infected with swIAV H1N2 (clade 1 A.3.3.2) were immunized using a homologous prime-boost vaccination strategy with novel live attenuated influenza virus (LAIV) based on a reassortment-incompetent bat influenza-swIAV chimera or a vesicular stomatitis virus-based replicon vaccine. Challenge infection of vaccinated piglets by exposure to H1N2 swIAV-infected unvaccinated seeder pigs showed that both LAIV and replicon vaccine markedly reduced virus replication in the upper and lower respiratory tract, respectively, compared to piglets immunized with commercial heterologous or autologous adjuvanted whole-inactivated virus vaccines. Our novel vaccines may aid in interrupting continuous IAV transmission chains in large enzootically infected pig herds, improve the health status of the animals, and reduce the risk of zoonotic swIAV transmission.
Collapse
Affiliation(s)
- Annika Graaf-Rau
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Greifswald, Germany.
| | - Kathrin Schmies
- Field Station for Epidemiology, University of Veterinary Medicine Hannover, Foundation, Bakum, Germany
| | - Angele Breithaupt
- Department of Experimental Animal Facilities and Biorisk Management, Friedrich-Loeffler- Institut, Greifswald, Insel Riems, Germany
| | - Kevin Ciminski
- Institute of Virology, Medical Center University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Gert Zimmer
- Institute of Virology and Immunology, Bern & Mittelhaeusern, Switzerland, and Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Artur Summerfield
- Institute of Virology and Immunology, Bern & Mittelhaeusern, Switzerland, and Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Julia Sehl-Ewert
- Department of Experimental Animal Facilities and Biorisk Management, Friedrich-Loeffler- Institut, Greifswald, Insel Riems, Germany
| | | | - Carina Helmer
- SAN Group Biotech Germany GmbH, Hoeltinghausen, Germany
| | | | - Elisabeth Grosse Beilage
- Field Station for Epidemiology, University of Veterinary Medicine Hannover, Foundation, Bakum, Germany
| | - Martin Schwemmle
- Institute of Virology, Medical Center University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Greifswald, Germany
| | - Timm Harder
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Greifswald, Germany
| |
Collapse
|
2
|
Vreman S, van der Heijden EMDL, Ravesloot L, Ludwig IS, van den Brand JMA, Harders F, Kampfraath AA, Egberink HF, Gonzales JL, Oreshkova N, Broere F, van der Poel WHM, Gerhards NM. Immune Responses and Pathogenesis following Experimental SARS-CoV-2 Infection in Domestic Cats. Viruses 2023; 15:v15051052. [PMID: 37243138 DOI: 10.3390/v15051052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 05/28/2023] Open
Abstract
Several reports demonstrated the susceptibility of domestic cats to SARS-CoV-2 infection. Here, we describe a thorough investigation of the immune responses in cats after experimental SARS-CoV-2 inoculation, along with the characterization of infection kinetics and pathological lesions. Specific pathogen-free domestic cats (n = 12) were intranasally inoculated with SARS-CoV-2 and subsequently sacrificed on DPI (days post-inoculation) 2, 4, 7 and 14. None of the infected cats developed clinical signs. Only mild histopathologic lung changes associated with virus antigen expression were observed mainly on DPI 4 and 7. Viral RNA was present until DPI 7, predominantly in nasal and throat swabs. The infectious virus could be isolated from the nose, trachea and lungs until DPI 7. In the swab samples, no biologically relevant SARS-CoV-2 mutations were observed over time. From DPI 7 onwards, all cats developed a humoral immune response. The cellular immune responses were limited to DPI 7. Cats showed an increase in CD8+ cells, and the subsequent RNA sequence analysis of CD4+ and CD8+ subsets revealed a prominent upregulation of antiviral and inflammatory genes on DPI 2. In conclusion, infected domestic cats developed a strong antiviral response and cleared the virus within the first week after infection without overt clinical signs and relevant virus mutations.
Collapse
Affiliation(s)
- Sandra Vreman
- Wageningen Bioveterinary Research, Wageningen University & Research, 8221 RA Lelystad, The Netherlands
| | - Elisabeth M D L van der Heijden
- Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands
| | - Lars Ravesloot
- Wageningen Bioveterinary Research, Wageningen University & Research, 8221 RA Lelystad, The Netherlands
| | - Irene S Ludwig
- Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands
| | - Judith M A van den Brand
- Division of Pathology, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands
| | - Frank Harders
- Wageningen Bioveterinary Research, Wageningen University & Research, 8221 RA Lelystad, The Netherlands
| | - Andries A Kampfraath
- Wageningen Bioveterinary Research, Wageningen University & Research, 8221 RA Lelystad, The Netherlands
| | - Herman F Egberink
- Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands
| | - Jose L Gonzales
- Wageningen Bioveterinary Research, Wageningen University & Research, 8221 RA Lelystad, The Netherlands
| | - Nadia Oreshkova
- Wageningen Bioveterinary Research, Wageningen University & Research, 8221 RA Lelystad, The Netherlands
| | - Femke Broere
- Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands
| | - Wim H M van der Poel
- Wageningen Bioveterinary Research, Wageningen University & Research, 8221 RA Lelystad, The Netherlands
| | - Nora M Gerhards
- Wageningen Bioveterinary Research, Wageningen University & Research, 8221 RA Lelystad, The Netherlands
| |
Collapse
|
3
|
Abstract
Globally swine influenza is one of the most important diseases of the pig industry, with various subtypes of swine influenza virus co-circulating in the field. Swine influenza can not only cause large economic losses for the pig industry but can also lead to epidemics or pandemics in the human population. We provide an overview of the pathogenic characteristics of the disease, diagnosis, risk factors for the occurrence on pig farms, impact on pigs and humans and methods to control it. This review is designed to promote understanding of the epidemiology of swine influenza which will benefit the control of the disease in both pigs and humans.
Collapse
Affiliation(s)
- Yin Li
- School of Veterinary Medicine, Murdoch University, Perth, WA Australia.,Commonwealth Scientific and Industrial Research Organisation, St. Lucia, QLD Australia
| | - Ian Robertson
- School of Veterinary Medicine, Murdoch University, Perth, WA Australia.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070 China.,Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Huazhong Agricultural University, Wuhan, 430070 China
| |
Collapse
|
4
|
Raynor PC, Adesina A, Aboubakr HA, Yang M, Torremorell M, Goyal SM. Comparison of samplers collecting airborne influenza viruses: 1. Primarily impingers and cyclones. PLoS One 2021; 16:e0244977. [PMID: 33507951 PMCID: PMC7842955 DOI: 10.1371/journal.pone.0244977] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 12/21/2020] [Indexed: 12/21/2022] Open
Abstract
Researchers must be able to measure concentrations, sizes, and infectivity of virus-containing particles in animal agriculture facilities to know how far infectious virus-containing particles may travel through air, where they may deposit in the human or animal respiratory tract, and the most effective ways to limit exposures to them. The objective of this study was to evaluate a variety of impinger and cyclone aerosol or bioaerosol samplers to determine approaches most suitable for detecting and measuring concentrations of virus-containing particles in air. Six impinger/cyclone air samplers, a filter-based sampler, and a cascade impactor were used in separate tests to collect artificially generated aerosols of MS2 bacteriophage and swine and avian influenza viruses. Quantification of infectious MS2 coliphage was carried out using a double agar layer procedure. The influenza viruses were titrated in cell cultures to determine quantities of infectious virus. Viral RNA was extracted and used for quantitative real time RT-PCR, to provide total virus concentrations for all three viruses. The amounts of virus recovered and the measured airborne virus concentrations were calculated and compared among the samplers. Not surprisingly, high flow rate samplers generally collected greater quantities of virus than low flow samplers. However, low flow rate samplers generally measured higher, and likely more accurate, airborne concentrations of Infectious virus and viral RNA than high flow samplers. To assess airborne viruses in the field, a two-sampler approach may work well. A suitable high flow sampler may provide low limits of detection to determine if any virus is present in the air. If virus is detected, a suitable lower flow sampler may measure airborne virus concentrations accurately.
Collapse
Affiliation(s)
- Peter C. Raynor
- Division of Environmental Health Sciences, University of Minnesota, School of Public Health, Minneapolis, Minnesota, United States of America
| | - Adepeju Adesina
- Division of Environmental Health Sciences, University of Minnesota, School of Public Health, Minneapolis, Minnesota, United States of America
| | - Hamada A. Aboubakr
- University of Minnesota, College of Veterinary Medicine, Veterinary Population Medicine Department, St. Paul, Minnesota, United States of America
| | - My Yang
- University of Minnesota, College of Veterinary Medicine, Veterinary Population Medicine Department, St. Paul, Minnesota, United States of America
| | - Montserrat Torremorell
- University of Minnesota, College of Veterinary Medicine, Veterinary Population Medicine Department, St. Paul, Minnesota, United States of America
| | - Sagar M. Goyal
- University of Minnesota, College of Veterinary Medicine, Veterinary Population Medicine Department, St. Paul, Minnesota, United States of America
| |
Collapse
|
5
|
Wu JY, Zhu YS, Guo C, Xia Y, Guo ZM, Li QL, Lu JH. A Comparative Study of Associated Microbiota Between Pig Farm and Pig Slaughterhouse in Guangdong, China. Curr Microbiol 2020; 77:3310-3320. [PMID: 32915289 PMCID: PMC7485193 DOI: 10.1007/s00284-020-02187-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 08/26/2020] [Indexed: 12/11/2022]
Abstract
The goal of this study was to compare the microbiota in different pig-present settings in China. Bioaerosol samples from pig farms and slaughterhouses and nasal samples from pig farmers and slaughterhouse workers were collected in Guangdong, southern China. The bacterial genomic DNA was isolated and subjected to 16S sequencing. The data were analyzed using QIIME2 with the DADA2 pipeline. A total of 14,923,551 clean reads and 2785 operational taxonomic units (OTUs) were obtained, which were mostly grouped into 4 phyla (Proteobacteria, Bacteroidetes, Firmicutes, and Actinobacteria) and 220 families. The microbiota richness of nasal samples in pig-present workers was higher than that of bioaerosols collected in the vicinity of the pig enclosures. There were 31.7% (620/1954) shared OTUs between pig farm bioaerosols and pig farmers which was higher than that between pig slaughterhouses and slaughterhouse workers (23.4%, 364/1553) (p < 0.001). Acinetobacter and Pseudomonas were the most abundant in pig-present bioaerosols, and Staphylococcus, Pseudomonas, and Corynebacterium were dominant bacterial genus in pig farmers. The bacterial patterns are also specific to the location of sample collected. The results suggest that bioaerosol microbiota interact with human nasal microbes in the vicinity of the pig farm enclosures, providing the basis for further analysis of microbial transmission across hosts in pig-present settings.
Collapse
Affiliation(s)
- Jian-Yong Wu
- School of Public Health, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Yan-Shan Zhu
- School of Public Health, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Cheng Guo
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, 10032, USA
| | - Yao Xia
- School of Public Health, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Zhong-Min Guo
- Laboratory Animal Center, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Qian-Lin Li
- School of Public Health, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Jia-Hai Lu
- School of Public Health, Sun Yat-Sen University, Guangzhou, 510080, China.
- Key Laboratory for Tropical Disease Control of Ministry of Education, Sun Yat-Sen University, Guangzhou, 510080, China.
- One Health Center of Excellence for Research & Training, Sun Yat-Sen University, Guangzhou, 510080, China.
| |
Collapse
|
6
|
Li Y, Edwards J, Huang B, Shen C, Cai C, Wang Y, Zhang G, Robertson I. Risk of zoonotic transmission of swine influenza at the human-pig interface in Guangdong Province, China. Zoonoses Public Health 2020; 67:607-616. [PMID: 32506781 DOI: 10.1111/zph.12723] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 03/24/2020] [Accepted: 04/25/2020] [Indexed: 12/27/2022]
Abstract
A cross-sectional survey was conducted from 2015 to 2018 to assess the risk of zoonotic influenza to humans at the human-pig interface in Guangdong Province, south China. One hundred and fifty-three pig farmers, 21 pig traders and 16 pig trade workers were recruited using convenience sampling and surveyed at local pig farms, live pig markets and slaughterhouses, respectively. Questionnaires were administered to collect information on the biosecurity and trading practices adopted and their knowledge and beliefs about swine influenza (SI). Most (12 of 16) trade workers said they would enter piggeries to collect pigs and only six of 11 said they were always asked to go through an on-farm disinfection procedure before entry. Only 33.7% of the interviewees believed that SI could infect humans, although pig farmers were more likely to believe this than traders and trade workers (p < .01). Several unsafe practices were reported by interviewees. 'Having vaccination against seasonal flu' (OR = 3.05, 95% CI: 1.19-8.93), 'Believe that SI can cause death in pigs' (no/yes: OR = 8.69, 95% CI: 2.71-36.57; not sure/yes: OR = 4.46, 95% CI: 1.63-14.63) and 'Keep on working when getting mild flu symptoms' (OR = 3.80, 95% CI: 1.38-11.46) were significantly and positively correlated to 'lacking awareness of the zoonotic risk of SI'. 'Lacking awareness of the zoonotic risk of SI' (OR = 3.19, 95% CI: 1.67-6.21), 'Keep on working when getting mild flu symptoms' (OR = 3.59, 95% CI: 1.57-8.63) and 'Don't know SI as a pig disease' (OR = 3.48, 95% CI: 1.02-16.45) were significantly and positively correlated to 'not using personal protective equipment when contacting pigs'. The findings of this study would benefit risk mitigation against potential pandemic SI threats in the human-pig interface in China.
Collapse
Affiliation(s)
- Yin Li
- School of Veterinary Medicine, Murdoch University, Perth, WA, Australia.,China Animal Health and Epidemiology Center, Qingdao, China
| | - John Edwards
- School of Veterinary Medicine, Murdoch University, Perth, WA, Australia.,China Animal Health and Epidemiology Center, Qingdao, China
| | - Baoxu Huang
- School of Veterinary Medicine, Murdoch University, Perth, WA, Australia.,China Animal Health and Epidemiology Center, Qingdao, China
| | - Chaojian Shen
- China Animal Health and Epidemiology Center, Qingdao, China
| | - Chang Cai
- School of Veterinary Medicine, Murdoch University, Perth, WA, Australia
| | - Youming Wang
- China Animal Health and Epidemiology Center, Qingdao, China
| | - Guihong Zhang
- South China Agriculture University, Guangzhou, China
| | - Ian Robertson
- School of Veterinary Medicine, Murdoch University, Perth, WA, Australia.,Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Hubei Province, China
| |
Collapse
|
7
|
Masoumeh M, Shuran L, Qinzhen Z, Guanle D, Zhen L, Keping Y. Performance evaluation of a new micro gas cyclone using simulation and experimental studies to capture indoor fine particles. ADV POWDER TECHNOL 2019. [DOI: 10.1016/j.apt.2019.03.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
8
|
Li Y, Edwards J, Wang Y, Zhang G, Cai C, Zhao M, Huang B, Robertson ID. Prevalence, distribution and risk factors of farmer reported swine influenza infection in Guangdong Province, China. Prev Vet Med 2019; 167:1-8. [PMID: 31027710 DOI: 10.1016/j.prevetmed.2019.03.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 02/12/2019] [Accepted: 03/13/2019] [Indexed: 01/27/2023]
Abstract
A cross-sectional study was undertaken to better understand the husbandry, management and biosecurity practices of pig farms in Guangdong Province (GD), China to identify risk factors for farmer reported swine influenza (SI) on their farms. Questionnaires were administered to 153 owners/managers of piggeries (average of 7 from each of the 21 prefectures in GD). Univariable and multivariable logistic regression analyses were used to identify risk factors for farmer reported SI in piggeries during the six months preceding the questionnaire administration. The ability of wild birds to enter piggeries (OR 2.50, 95% CI: 1.01-6.16), the presence of poultry on a pig-farm (OR 3.24, 95% CI: 1.52-6.94) and no biosecurity measures applied to workers before entry to the piggery (OR 2.65, 95% CI: 1.04-6.78) were found to increase the likelihood of SI being reported by farmers in a multivariable logistic regression model. The findings of this study highlight the importance of understanding the local pig industry and the practices adopted when developing control measures to reduce the risk of SI to pig farms.
Collapse
Affiliation(s)
- Y Li
- China Animal Health and Epidemiology Center, Qingdao, Shandong, PR China; School of Veterinary Medicine, Murdoch University, Perth, WA, Australia.
| | - J Edwards
- China Animal Health and Epidemiology Center, Qingdao, Shandong, PR China; School of Veterinary Medicine, Murdoch University, Perth, WA, Australia
| | - Y Wang
- China Animal Health and Epidemiology Center, Qingdao, Shandong, PR China
| | - G Zhang
- South China Agriculture University, Guangzhou, Guangdong, PR China
| | - C Cai
- School of Veterinary Medicine, Murdoch University, Perth, WA, Australia
| | - M Zhao
- Department of Agriculture of Guangdong Province, Guangzhou, Guangdong, PR China
| | - B Huang
- China Animal Health and Epidemiology Center, Qingdao, Shandong, PR China
| | - I D Robertson
- School of Veterinary Medicine, Murdoch University, Perth, WA, Australia; China-Australia Joint Research and Training Center for Veterinary Epidemiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, PR China
| |
Collapse
|
9
|
Neira V, Allerson M, Corzo C, Culhane M, Rendahl A, Torremorell M. Detection of influenza A virus in aerosols of vaccinated and non-vaccinated pigs in a warm environment. PLoS One 2018; 13:e0197600. [PMID: 29782527 PMCID: PMC5962048 DOI: 10.1371/journal.pone.0197600] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 05/04/2018] [Indexed: 01/15/2023] Open
Abstract
The 2009 influenza pandemic, the variant H3N2v viruses in agricultural fairs and the zoonotic poultry H5N9 infections in China have highlighted the constant threat that influenza A viruses (IAV) present to people and animals. In this study we evaluated the effect of IAV vaccination on aerosol shedding in pigs housed in warm environmental conditions. Thirty-six, three-week old weaned pigs were obtained from an IAV negative herd and were randomly allocated to one of 4 groups: 1) a homologous vaccine group, 2) a heterologous multivalent vaccine group, 3) a heterologous monovalent group and, 4) a non-vaccinated group. After vaccination pigs were challenged with the triple reassortant A/Sw/IA/00239/04 H1N1 virus. Environmental temperature and relative humidity were recorded throughout the study. Nasal swabs, oral fluids and air samples were collected daily. All samples were tested by RRT-PCR and virus isolation was attempted on positive samples. Average temperature and relative humidity throughout the study were 27°C (80°F) and 53%, respectively. A significantly higher proportion of infected pigs was detected in the non-vaccinated than in the vaccinated group. Lower levels of nasal virus shedding were found in vaccinated groups compared to non-vaccinated group and IAV was not detected in air samples of any of the vaccinated groups. In contrast, positive air samples were detected in the non-vaccinated group at 1, 2 and 3 days post infection although the overall levels were considered low most likely due to the elevated environmental temperature. In conclusion, both the decrease in shedding and the increase in environmental temperature may have contributed to the inability to detect airborne IAV in vaccinated pigs.
Collapse
Affiliation(s)
- Victor Neira
- Departamento de Medicina Preventiva, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, La Pintana, Santiago, Chile
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota, United States of America
| | - Matt Allerson
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota, United States of America
| | - Cesar Corzo
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota, United States of America
| | - Marie Culhane
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota, United States of America
| | - Aaron Rendahl
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota, United States of America
| | - Montserrat Torremorell
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota, United States of America
- * E-mail:
| |
Collapse
|
10
|
Prospective surveillance for influenza. virus in Chinese swine farms. Emerg Microbes Infect 2018; 7:87. [PMID: 29765021 PMCID: PMC5954049 DOI: 10.1038/s41426-018-0086-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 03/11/2018] [Accepted: 04/11/2018] [Indexed: 12/23/2022]
Abstract
Pork production in China is rapidly increasing and swine production operations are expanding in size and number. However, the biosecurity measures necessary to prevent swine disease transmission, particularly influenza A viruses (IAV) that can be zoonotic, are often inadequate. Despite this risk, few studies have attempted to comprehensively study IAV ecology in swine production settings. Here, we present environmental and animal sampling data collected in the first year of an ongoing five-year prospective epidemiological study to assess IAV ecology as it relates to swine workers, their pigs, and the farm environment. From March 2015 to February 2016, we collected 396 each of environmental swab, water, bioaerosol, and fecal/slurry samples, as well as 3300 pig oral secretion samples from six farms in China. The specimens were tested with molecular assays for IAV. Of these, 46 (11.6%) environmental swab, 235 (7.1%) pig oral secretion, 23 (5.8%) water, 20 (5.1%) bioaerosol, and 19 (4.8%) fecal/slurry specimens were positive for influenza A by qRT-PCR. Risk factors for IAV detection among collected samples were identified using bivariate logistic regression. Overall, these first year data suggest that IAV is quite ubiquitous in the swine production environment and demonstrate an association between the different types of environmental sampling used. Given the mounting evidence that some of these viruses freely move between pigs and swine workers, and that mixing of these viruses can yield progeny viruses with pandemic potential, it seems imperative that routine surveillance for novel IAVs be conducted in commercial swine farms.
Collapse
|
11
|
Ferreira JB, Grgić H, Friendship R, Nagy É, Poljak Z. Influence of microclimate conditions on the cumulative exposure of nursery pigs to swine influenza A viruses. Transbound Emerg Dis 2017; 65:e145-e154. [PMID: 28940764 DOI: 10.1111/tbed.12701] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Indexed: 12/12/2022]
Abstract
The objective of this study was to investigate the association between environmental temperature and humidity and the presence of antibodies for two specific strains of swine influenza viruses: A/SW/ON/105-56/12/H3N2 (H3N2_D) and A/SW/ON/84/2012/H1N1 (H1N1_P). A cross-sectional study was performed in a commercial farm, and a total of 450 pigs at 10 weeks of age were blood sampled, by sampling 10 pigs per week for 45 weeks corresponding to 45 batches. Exposure of pigs to H3N2_D and H1N1_P virus was assessed by haemagglutination inhibition assay (HI), and a result of ≥1:40 was considered as indication of a positive exposure status for a specific strain. The selection of those two viruses was based on the fact that H1N1 was the dominant virus in Ontario herds, and H3N2 had been previously isolated in this particular farm. Environmental conditions were recorded through a portable device every 5 min and then summarized using descriptive statistics. The association between HI titres and environmental microconditions, in the nursery, was evaluated through random effect linear and logistic regression. The results showed that the prevalence for H1N1_P was high throughout the study (≥70%); however, for H3N2_D, the seroprevalence declined by the end of the study period. Results also showed an association between cumulative exposure to the viruses and temperature and relative humidity (p < .05). These results suggest that microclimate conditions can influence transmission patterns of influenza viruses in swine barns, and that even a herd with relatively simple demographics could have persistent and cocirculation of two different influenza A viruses IAV strains.
Collapse
Affiliation(s)
- J B Ferreira
- Department of Population Medicine, University of Guelph, Guelph, ON, Canada
| | - H Grgić
- Department of Population Medicine, University of Guelph, Guelph, ON, Canada
| | - R Friendship
- Department of Population Medicine, University of Guelph, Guelph, ON, Canada
| | - É Nagy
- Department of Pathobiology, University of Guelph, Guelph, ON, Canada
| | - Z Poljak
- Department of Population Medicine, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
12
|
Anderson BD, Lednicky JA, Torremorell M, Gray GC. The Use of Bioaerosol Sampling for Airborne Virus Surveillance in Swine Production Facilities: A Mini Review. Front Vet Sci 2017; 4:121. [PMID: 28798919 PMCID: PMC5529434 DOI: 10.3389/fvets.2017.00121] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 07/10/2017] [Indexed: 12/30/2022] Open
Abstract
Modern swine production facilities typically house dense populations of pigs and may harbor a variety of potentially zoonotic viruses that can pass from one pig generation to another and periodically infect human caretakers. Bioaerosol sampling is a common technique that has been used to conduct microbial risk assessments in swine production, and other similar settings, for a number of years. However, much of this work seems to have been focused on the detection of non-viral microbial agents (i.e., bacteria, fungi, endotoxins, etc.), and efforts to detect viral aerosols in pig farms seem sparse. Data generated by such studies would be particularly useful for assessments of virus transmission and ecology. Here, we summarize the results of a literature review conducted to identify published articles related to bioaerosol generation and detection within swine production facilities, with a focus on airborne viruses. We identified 73 scientific reports, published between 1991 and 2017, which were included in this review. Of these, 19 (26.7%) used sampling methodology for the detection of viruses. Our findings show that bioaerosol sampling methodologies in swine production settings have predominately focused on the detection of bacteria and fungi, with no apparent standardization between different approaches. Information, specifically regarding virus aerosol burden in swine production settings, appears to be limited. However, the number of viral aerosol studies has markedly increased in the past 5 years. With the advent of new sampling technologies and improved diagnostics, viral bioaerosol sampling could be a promising way to conduct non-invasive viral surveillance among swine farms.
Collapse
Affiliation(s)
- Benjamin D Anderson
- Division of Infectious Diseases, School of Medicine, Global Health Institute, Duke University, Durham, NC, United States.,Department of Environmental and Global Health, College of Public Health & Health Professions, Emerging Pathogens Institute, University of Florida, Gainesville, FL, United States
| | - John A Lednicky
- Department of Environmental and Global Health, College of Public Health & Health Professions, Emerging Pathogens Institute, University of Florida, Gainesville, FL, United States
| | - Montserrat Torremorell
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota-Twin Cities, Saint Paul, MN, United States
| | - Gregory C Gray
- Division of Infectious Diseases, School of Medicine, Global Health Institute, Duke University, Durham, NC, United States
| |
Collapse
|
13
|
Pileri E, Martín-Valls GE, Díaz I, Allepuz A, Simon-Grifé M, García-Saenz A, Casal J, Mateu E. Estimation of the transmission parameters for swine influenza and porcine reproductive and respiratory syndrome viruses in pigs from weaning to slaughter under natural conditions. Prev Vet Med 2017; 138:147-155. [PMID: 28237230 DOI: 10.1016/j.prevetmed.2017.01.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 01/10/2017] [Accepted: 01/15/2017] [Indexed: 01/16/2023]
Abstract
In the present study, the transmission parameters of swine influenza virus (SIV) and porcine reproductive and respiratory virus (PRRSV) have been calculated using the basic reproductive rate (R) parameter in two commercial pig farms (F1 and F2). In order to do this, a serological (PRRSV genotype 1 and SIV) and virological (SIV) follow-up of a batch of animals was carried out weekly from 3 weeks of age until the age of slaughter on each farm. Results of the analysis for SIV and PRRSV showed different transmission profiles depending on the farm, the pathogen, and time of transmission. In F1, transmission of both viruses was detected throughout the sampling. The Rt (R for a given period of time) value for SIV ranged from 1.5 [0.9-2.3] to 3.6 [2.3-4.9] from farrowing to the beginning of the fattening period, and the Rt value for PRRSV was 3.3 [2.9-4.3] to 3.5 [2.8-4.1] from farrowing until the slaughter age. These results indicated that both viruses were transmitted enzootically in that farm for these periods of time. A different transmission pattern with a higher incidence was also observed during the fattening period in F1 (after 15 weeks of age) for SIV, coinciding with the entrance of a new subtype. In this case, R value for SIV reached 3.3 [1.65-4.9]. On the other hand, in F2, SIV and PRRSV seemed to be restricted to the fattening period. R reached a value of 6.4 [4.1-8.8] for SIV and 7.1 [3.5-10.6] for PRRSV. These findings suggest a different origin of the virus, as well as a more epidemic circulation, especially for SIV, where most of the new cases were observed in a one week period. In conclusion, the present study offers a reliable estimation of the range of Rt values for SIV and genotype 1 PRRSV transmission under field conditions, suggesting that enzootic circulations of both viruses are similar in terms of transmission, probably higher for PRRSV, but also that transmission of SIV is more efficient (or epidemic) than transmission of a genotype 1 PRRSV isolate in naïve animals given the new cases observed in only in F2.
Collapse
Affiliation(s)
- Emanuela Pileri
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain,; Departament de Sanitat i d'Anatomia Animals, Universitat Autònoma de Barcelona, 08193 Bellaterra (Cerdanyola del Vallès), Spain
| | - Gerard E Martín-Valls
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain,; Departament de Sanitat i d'Anatomia Animals, Universitat Autònoma de Barcelona, 08193 Bellaterra (Cerdanyola del Vallès), Spain.
| | - Ivan Díaz
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Alberto Allepuz
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain,; Departament de Sanitat i d'Anatomia Animals, Universitat Autònoma de Barcelona, 08193 Bellaterra (Cerdanyola del Vallès), Spain.
| | - Meritxell Simon-Grifé
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Ariadna García-Saenz
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain,; Departament de Sanitat i d'Anatomia Animals, Universitat Autònoma de Barcelona, 08193 Bellaterra (Cerdanyola del Vallès), Spain
| | - Jordi Casal
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain,; Departament de Sanitat i d'Anatomia Animals, Universitat Autònoma de Barcelona, 08193 Bellaterra (Cerdanyola del Vallès), Spain
| | - Enric Mateu
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain,; Departament de Sanitat i d'Anatomia Animals, Universitat Autònoma de Barcelona, 08193 Bellaterra (Cerdanyola del Vallès), Spain
| |
Collapse
|
14
|
Cador C, Hervé S, Andraud M, Gorin S, Paboeuf F, Barbier N, Quéguiner S, Deblanc C, Simon G, Rose N. Maternally-derived antibodies do not prevent transmission of swine influenza A virus between pigs. Vet Res 2016; 47:86. [PMID: 27530456 PMCID: PMC4988049 DOI: 10.1186/s13567-016-0365-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 07/20/2016] [Indexed: 12/22/2022] Open
Abstract
A transmission experiment involving 5-week-old specific-pathogen-free (SPF) piglets, with (MDA(+)) or without maternally-derived antibodies (MDA(-)), was carried out to evaluate the impact of passive immunity on the transmission of a swine influenza A virus (swIAV). In each group (MDA(+)/MDA(-)), 2 seeders were placed with 4 piglets in direct contact and 5 in indirect contact (3 replicates per group). Serological kinetics (ELISA) and individual viral shedding (RT-PCR) were monitored for 28 days after infection. MDA waning was estimated using a nonlinear mixed-effects model and survival analysis. Differential transmission rates were estimated depending on the piglets' initial serological status and contact structure (direct contact with pen-mates or indirect airborne contact). The time to MDA waning was 71.3 [52.8-92.1] days on average. The airborne transmission rate was 1.41 [0.64-2.63] per day. The compared shedding pattern between groups showed that MDA(+) piglets had mainly a reduced susceptibility to infection compared to MDA(-) piglets. The resulting reproduction number estimated in MDA(+) piglets (5.8 [1.4-18.9]), although 3 times lower than in MDA(-) piglets (14.8 [6.4-27.1]), was significantly higher than 1. Such an efficient and extended spread of swIAV at the population scale in the presence of MDAs could contribute to swIAV persistence on farms, given the fact that the period when transmission is expected to be impacted by the presence of MDAs can last up to 10 weeks.
Collapse
Affiliation(s)
- Charlie Cador
- Swine Epidemiology and Welfare Research Unit, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), BP 53, 22440, Ploufragan, France. .,Université Bretagne Loire, Rennes, France.
| | - Séverine Hervé
- Swine Virology Immunology Research Unit, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), BP 53, 22440, Ploufragan, France.,Université Bretagne Loire, Rennes, France
| | - Mathieu Andraud
- Swine Epidemiology and Welfare Research Unit, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), BP 53, 22440, Ploufragan, France.,Université Bretagne Loire, Rennes, France
| | - Stéphane Gorin
- Swine Virology Immunology Research Unit, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), BP 53, 22440, Ploufragan, France.,Université Bretagne Loire, Rennes, France
| | - Frédéric Paboeuf
- SPF Pig Production and Experimental Unit, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), BP 53, 22440, Ploufragan, France.,Université Bretagne Loire, Rennes, France
| | - Nicolas Barbier
- Swine Virology Immunology Research Unit, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), BP 53, 22440, Ploufragan, France.,Université Bretagne Loire, Rennes, France
| | - Stéphane Quéguiner
- Swine Virology Immunology Research Unit, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), BP 53, 22440, Ploufragan, France.,Université Bretagne Loire, Rennes, France
| | - Céline Deblanc
- Swine Virology Immunology Research Unit, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), BP 53, 22440, Ploufragan, France.,Université Bretagne Loire, Rennes, France
| | - Gaëlle Simon
- Swine Virology Immunology Research Unit, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), BP 53, 22440, Ploufragan, France.,Université Bretagne Loire, Rennes, France
| | - Nicolas Rose
- Swine Epidemiology and Welfare Research Unit, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), BP 53, 22440, Ploufragan, France.,Université Bretagne Loire, Rennes, France
| |
Collapse
|
15
|
Haig CW, Mackay WG, Walker JT, Williams C. Bioaerosol sampling: sampling mechanisms, bioefficiency and field studies. J Hosp Infect 2016; 93:242-55. [PMID: 27112048 PMCID: PMC7124364 DOI: 10.1016/j.jhin.2016.03.017] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2015] [Accepted: 03/15/2016] [Indexed: 11/21/2022]
Abstract
Investigations into the suspected airborne transmission of pathogens in healthcare environments have posed a challenge to researchers for more than a century. With each pathogen demonstrating a unique response to environmental conditions and the mechanical stresses it experiences, the choice of sampling device is not obvious. Our aim was to review bioaerosol sampling, sampling equipment, and methodology. A comprehensive literature search was performed, using electronic databases to retrieve English language papers on bioaerosol sampling. The review describes the mechanisms of popular bioaerosol sampling devices such as impingers, cyclones, impactors, and filters, explaining both their strengths and weaknesses, and the consequences for microbial bioefficiency. Numerous successful studies are described that point to best practice in bioaerosol sampling, from the use of small personal samplers to monitor workers' pathogen exposure through to large static samplers collecting airborne microbes in various healthcare settings. Of primary importance is the requirement that studies should commence by determining the bioefficiency of the chosen sampler and the pathogen under investigation within laboratory conditions. From such foundations, sampling for bioaerosol material in the complexity of the field holds greater certainty of successful capture of low-concentration airborne pathogens. From the laboratory to use in the field, this review enables the investigator to make informed decisions about the choice of bioaerosol sampler and its application.
Collapse
Affiliation(s)
- C W Haig
- Institute of Healthcare Associated Infection, University of the West of Scotland, Paisley, UK.
| | - W G Mackay
- Institute of Healthcare Associated Infection, University of the West of Scotland, Paisley, UK
| | - J T Walker
- Public Health England, National Infection Service, Biosafety Unit, Porton Down, UK
| | - C Williams
- Institute of Healthcare Associated Infection, University of the West of Scotland, Paisley, UK
| |
Collapse
|
16
|
Perera HKK, Vijaykrishna D, Premarathna AG, Jayamaha CJS, Wickramasinghe G, Cheung CL, Yeung MF, Poon LLM, Perera AKC, Barr IG, Guan Y, Peiris M. Molecular epidemiology of influenza A(H1N1)pdm09 virus among humans and swine, Sri Lanka. Emerg Infect Dis 2016; 20:2080-4. [PMID: 25417652 PMCID: PMC4257816 DOI: 10.3201/eid2012.140842] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
After multiple discrete introductions of influenza A(H1N1)pdm09 virus into Sri Lanka, the virus was transmitted among humans, then swine. The spread of virus between geographically distant swine farms is consistent with virus dispersal associated with a vehicle used for swine transportation, although this remains unproven.
Collapse
|
17
|
Anderson BD, Ma M, Xia Y, Wang T, Shu B, Lednicky JA, Ma MJ, Lu J, Gray GC. Bioaerosol Sampling in Modern Agriculture: A Novel Approach for Emerging Pathogen Surveillance? J Infect Dis 2016; 214:537-45. [PMID: 27190187 DOI: 10.1093/infdis/jiw180] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 04/27/2016] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Modern agricultural practices create environmental conditions conducive to the emergence of novel pathogens. Current surveillance efforts to assess the burden of emerging pathogens in animal production facilities in China are sparse. In Guangdong Province pig farms, we compared bioaerosol surveillance for influenza A virus to surveillance in oral pig secretions and environmental swab specimens. METHODS During the 2014 summer and fall/winter seasons, we used 3 sampling techniques to study 5 swine farms weekly for influenza A virus. Samples were molecularly tested for influenza A virus, and positive specimens were further characterized with culture. Risk factors for influenza A virus positivity for each sample type were assessed. RESULTS Seventy-one of 354 samples (20.1%) were positive for influenza A virus RNA by real-time reverse-transcription polymerase chain reaction analysis. Influenza A virus positivity in bioaerosol samples was a statistically significant predictor for influenza A virus positivity in pig oral secretion and environmental swab samples. Temperature of <20°C was a significant predictor of influenza A virus positivity in bioaerosol samples. DISCUSSIONS Climatic factors and routine animal husbandry practices may increase the risk of human exposure to aerosolized influenza A viruses in swine farms. Data suggest that bioaerosol sampling in pig barns may be a noninvasive and efficient means to conduct surveillance for novel influenza viruses.
Collapse
Affiliation(s)
- Benjamin D Anderson
- Department of Environmental & Global Health, College of Public Health & Health Professions, University of Florida, Gainesville Division of Infectious Diseases, School of Medicine and Global Health Institute, Duke University, Durham, North Carolina Department of Medical Statistics and Epidemiology, One Health Research Center, School of Public Health, Sun Yat-sen University, Guangzhou
| | - Mengmeng Ma
- Department of Medical Statistics and Epidemiology, One Health Research Center, School of Public Health, Sun Yat-sen University, Guangzhou
| | - Yao Xia
- Department of Medical Statistics and Epidemiology, One Health Research Center, School of Public Health, Sun Yat-sen University, Guangzhou
| | - Tao Wang
- Zhongshan Center for Disease Control and Prevention Zhongshan Institute, School of Public Health, Sun Yat-sen University, Guangdong Province
| | - Bo Shu
- Zhongshan Center for Disease Control and Prevention Zhongshan Institute, School of Public Health, Sun Yat-sen University, Guangdong Province
| | - John A Lednicky
- Department of Environmental & Global Health, College of Public Health & Health Professions, University of Florida, Gainesville
| | - Mai-Juan Ma
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology
| | - Jiahai Lu
- Department of Medical Statistics and Epidemiology, One Health Research Center, School of Public Health, Sun Yat-sen University, Guangzhou Zhongshan Center for Disease Control and Prevention Zhongshan Institute, School of Public Health, Sun Yat-sen University, Guangdong Province Key Laboratory for Tropical Disease Control, Sun Yat-sen University, Ministry of Education, Guangzhou, Guangdong Province, China
| | - Gregory C Gray
- Division of Infectious Diseases, School of Medicine and Global Health Institute, Duke University, Durham, North Carolina
| |
Collapse
|
18
|
O’Brien KM, Nonnenmann MW. Airborne Influenza A Is Detected in the Personal Breathing Zone of Swine Veterinarians. PLoS One 2016; 11:e0149083. [PMID: 26867129 PMCID: PMC4750959 DOI: 10.1371/journal.pone.0149083] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 01/26/2016] [Indexed: 01/14/2023] Open
Abstract
The 2009 H1N1 pandemic emphasized a need to evaluate zoonotic transmission of influenza A in swine production. Airborne influenza A virus has been detected in swine facilities during an outbreak. However, the personal exposure of veterinarians treating infected swine has not been characterized. Two personal bioaerosol samplers, the NIOSH bioaerosol sampler and the personal high-flow inhalable sampler head (PHISH), were placed in the breathing zone of veterinarians treating swine infected with either H1N1 or H3N2 influenza A. A greater number of viral particles were recovered from the NIOSH bioaerosol sampler (2094 RNA copies/m3) compared to the PHISH sampler (545 RNA copies/m3). In addition, the majority of viral particles were detected by the NIOSH bioaerosol sampler in the >4 μm size fraction. These results suggest that airborne influenza A virus is present in the breathing zone of veterinarians treating swine, and the aerosol route of zoonotic transmission of influenza virus should be further evaluated among agricultural workers.
Collapse
Affiliation(s)
- Kate M. O’Brien
- Department of Occupational and Environmental Health, College of Public Health, University of Iowa, Iowa City, Iowa, United States of America
| | - Matthew W. Nonnenmann
- Department of Occupational and Environmental Health, College of Public Health, University of Iowa, Iowa City, Iowa, United States of America
- * E-mail:
| |
Collapse
|
19
|
Alonso C, Raynor PC, Davies PR, Morrison RB, Torremorell M. Evaluation of an electrostatic particle ionization technology for decreasing airborne pathogens in pigs. AEROBIOLOGIA 2015; 32:405-419. [PMID: 27616810 PMCID: PMC4996881 DOI: 10.1007/s10453-015-9413-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 11/23/2015] [Indexed: 05/22/2023]
Abstract
Influenza A virus (IAV), porcine reproductive and respiratory syndrome virus (PRRSV), porcine epidemic diarrhea virus (PEDV) and Staphylococcus aureus are important swine pathogens capable of being transmitted via aerosols. The electrostatic particle ionization system (EPI) consists of a conductive line that emits negative ions that charge particles electrically resulting in the settling of airborne particles onto surfaces and potentially decreasing the risk of pathogen dissemination. The objectives of this study were to determine the effect of the EPI system on the quantity and viability of IAV, PRRSV, PEDV and S. aureus in experimentally generated aerosols and in aerosols generated by infected animals. Efficiency at removing airborne particles was evaluated as a function of particle size (ranging from 0.4 to 10 µm), distance from the source of ions (1, 2 and 3 m) and relative air humidity (RH 30 vs. 70 %). Aerosols were sampled with the EPI system "off" and "on." Removal efficiency was significantly greater for all pathogens when the EPI line was the closest to the source of aerosols. There was a greater reduction for larger particles ranging between 3.3 and 9 µm, which varied by pathogen. Overall airborne pathogen reduction ranged between 0.5 and 1.9 logs. Viable pathogens were detected with the EPI system "on," but there was a trend to reducing the quantity of viable PRRSV and IAV. There was not a significant effect on the pathogens removal efficiency based on the RH conditions tested. In summary, distance to the source of ions, type of pathogen and particle size influenced the removal efficiency of the EPI system. The reduction in infectious agents in the air by the EPI technology could potentially decrease the microbial exposure for pigs and people in confinement livestock facilities.
Collapse
Affiliation(s)
- Carmen Alonso
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, 385 ASVM, 1988 Fitch Ave, Saint Paul, MN 55108 USA
| | - Peter C. Raynor
- Division of Environmental Health Sciences, School of Public Health, University of Minnesota, Saint Paul, MN USA
| | - Peter R. Davies
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, 385 ASVM, 1988 Fitch Ave, Saint Paul, MN 55108 USA
| | - Robert B. Morrison
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, 385 ASVM, 1988 Fitch Ave, Saint Paul, MN 55108 USA
| | - Montserrat Torremorell
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, 385 ASVM, 1988 Fitch Ave, Saint Paul, MN 55108 USA
| |
Collapse
|
20
|
Nitipong H, Douglas M, Matteo C, Montserrat T, Meggan EC, Benjamin H, John D. Bayesian estimation to test accuracy for influenza A infection via respiratory clinical signs in the absence of a gold standard. ACTA ACUST UNITED AC 2015. [DOI: 10.5897/jvmah2015.0410] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
21
|
Haig C, Hursthouse A, Mcilwain S, Sykes D. An empirical investigation into the influence of pressure drop on particle behaviour in small scale reverse-flow cyclones. POWDER TECHNOL 2015. [DOI: 10.1016/j.powtec.2015.02.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
22
|
Yao M, Lv J, Huang R, Yang Y, Chai T. Determination of infective dose of H9N2 Avian Influenza virus in different routes: aerosol, intranasal, and gastrointestinal. Intervirology 2014; 57:369-74. [PMID: 25341409 DOI: 10.1159/000365925] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Low pathogenic H9N2 avian influenza virus (AIV) has been spreading worldwide, leading to huge economic losses to poultry husbandry, but few studies were concerned about its aerosol infection. METHODS This study compared the infective doses of H9N2 AIV to chickens by three different routes, aerosol infection, intranasal and gastrointestinal infection, and determination of the results was conducted by detecting virus shedding and seroconversion of chickens. RESULTS The results indicated that chickens were susceptible to H9N2 AIV with a different infection rate which depended on the route of inoculation. H9N2 AIV media aerosol-infective dose (aID₅₀) to chickens was about 491 TCID₅₀, intranasal infection was 398 TCID₅₀, and gastrointestinal infection was 19,952 TCID₅₀. CONCLUSION The infection ability of H9N2 AIV to chickens was related to its way of invading. The respiratory infection ability was about 40 times more effective than gastrointestinal infection, which suggested that urgent attention should be paid to environmental disinfection to block airborne transmission of influenza virus.
Collapse
Affiliation(s)
- Meiling Yao
- Zaozhuang Vocational College, Shandong Agricultural University, Shandong, PR China
| | | | | | | | | |
Collapse
|
23
|
Nikitin N, Petrova E, Trifonova E, Karpova O. Influenza virus aerosols in the air and their infectiousness. Adv Virol 2014; 2014:859090. [PMID: 25197278 PMCID: PMC4147198 DOI: 10.1155/2014/859090] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 07/11/2014] [Accepted: 07/25/2014] [Indexed: 12/15/2022] Open
Abstract
Influenza is one of the most contagious and rapidly spreading infectious diseases and an important global cause of hospital admissions and mortality. There are some amounts of the virus in the air constantly. These amounts is generally not enough to cause disease in people, due to infection prevention by healthy immune systems. However, at a higher concentration of the airborne virus, the risk of human infection increases dramatically. Early detection of the threshold virus concentration is essential for prevention of the spread of influenza infection. This review discusses different approaches for measuring the amount of influenza A virus particles in the air and assessing their infectiousness. Here we also discuss the data describing the relationship between the influenza virus subtypes and virus air transmission, and distribution of viral particles in aerosol drops of different sizes.
Collapse
Affiliation(s)
- Nikolai Nikitin
- Department of Virology, Lomonosov Moscow State University, 1/12 Leninskie Gory, Moscow 119234, Russia
| | - Ekaterina Petrova
- Department of Virology, Lomonosov Moscow State University, 1/12 Leninskie Gory, Moscow 119234, Russia
| | - Ekaterina Trifonova
- Department of Virology, Lomonosov Moscow State University, 1/12 Leninskie Gory, Moscow 119234, Russia
| | - Olga Karpova
- Department of Virology, Lomonosov Moscow State University, 1/12 Leninskie Gory, Moscow 119234, Russia
| |
Collapse
|
24
|
Alonso C, Goede DP, Morrison RB, Davies PR, Rovira A, Marthaler DG, Torremorell M. Evidence of infectivity of airborne porcine epidemic diarrhea virus and detection of airborne viral RNA at long distances from infected herds. Vet Res 2014; 45:73. [PMID: 25017790 PMCID: PMC4347589 DOI: 10.1186/s13567-014-0073-z] [Citation(s) in RCA: 116] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 06/16/2014] [Indexed: 11/29/2022] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) spread rapidly after being diagnosed in the USA in April 2013. In this study we assessed whether PEDV could become airborne and if so, whether the virus was infectious. Air samples were collected both from a room containing experimentally infected pigs and at various distances from the outside of swine farms experiencing acute PEDV outbreaks. Results indicated presence of infectious PEDV in the air from experimentally infected pigs and genetic material of PEDV was detected up to 10 miles downwind from naturally infected farms. Airborne transmission should be considered as a potential route for PEDV dissemination.
Collapse
Affiliation(s)
- Carmen Alonso
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, Saint Paul, Minnesota, USA.
| | - Dane P Goede
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, Saint Paul, Minnesota, USA.
| | - Robert B Morrison
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, Saint Paul, Minnesota, USA.
| | - Peter R Davies
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, Saint Paul, Minnesota, USA.
| | - Albert Rovira
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, Saint Paul, Minnesota, USA.
| | - Douglas G Marthaler
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, Saint Paul, Minnesota, USA.
| | - Montserrat Torremorell
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, Saint Paul, Minnesota, USA.
| |
Collapse
|
25
|
Kong W, Ye J, Guan S, Liu J, Pu J. Epidemic status of Swine influenza virus in china. Indian J Microbiol 2014; 54:3-11. [PMID: 24426160 PMCID: PMC3889855 DOI: 10.1007/s12088-013-0419-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Accepted: 06/26/2013] [Indexed: 01/30/2023] Open
Abstract
As one of the most significant swine diseases, in recent years, swine influenza (SI) has had an immense impact on public health and has raised extensive public concerns in China. Swine are predisposed to both avian and human influenza virus infections, between that and/or swine influenza viruses, genetic reassortment could occur. This analysis aims at introducing the history of swine influenza virus, the serological epidemiology of swine influenza virus infection, the clinical details of swine influenza, the development of vaccines against swine influenza and controlling the situation of swine influenza in China. Considering the elaborate nature of swine influenza, a more methodical surveillance should be further implemented.
Collapse
Affiliation(s)
- Weili Kong
- />Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, 100193 China
| | - Jiahui Ye
- />Key Laboratory of Animal Disease Control and Prevention of the Ministry of Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642 China
| | - Shangsong Guan
- />Key Laboratory of Animal Disease Control and Prevention of the Ministry of Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642 China
| | - Jinhua Liu
- />Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, 100193 China
| | - Juan Pu
- />Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, 100193 China
| |
Collapse
|
26
|
Corzo CA, Culhane M, Dee S, Morrison RB, Torremorell M. Airborne detection and quantification of swine influenza a virus in air samples collected inside, outside and downwind from swine barns. PLoS One 2013; 8:e71444. [PMID: 23951164 PMCID: PMC3738518 DOI: 10.1371/journal.pone.0071444] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Accepted: 07/03/2013] [Indexed: 11/19/2022] Open
Abstract
Airborne transmission of influenza A virus (IAV) in swine is speculated to be an important route of virus dissemination, but data are scarce. This study attempted to detect and quantify airborne IAV by virus isolation and RRT-PCR in air samples collected under field conditions. This was accomplished by collecting air samples from four acutely infected pig farms and locating air samplers inside the barns, at the external exhaust fans and downwind from the farms at distances up to 2.1 km. IAV was detected in air samples collected in 3 out of 4 farms included in the study. Isolation of IAV was possible from air samples collected inside the barn at two of the farms and in one farm from the exhausted air. Between 13% and 100% of samples collected inside the barns tested RRT-PCR positive with an average viral load of 3.20E+05 IAV RNA copies/m³ of air. Percentage of exhaust positive air samples also ranged between 13% and 100% with an average viral load of 1.79E+04 RNA copies/m³ of air. Influenza virus RNA was detected in air samples collected between 1.5 and 2.1 Km away from the farms with viral levels significantly lower at 4.65E+03 RNA copies/m³. H1N1, H1N2 and H3N2 subtypes were detected in the air samples and the hemagglutinin gene sequences identified in the swine samples matched those in aerosols providing evidence that the viruses detected in the aerosols originated from the pigs in the farms under study. Overall our results indicate that pigs can be a source of IAV infectious aerosols and that these aerosols can be exhausted from pig barns and be transported downwind. The results from this study provide evidence of the risk of aerosol transmission in pigs under field conditions.
Collapse
Affiliation(s)
- Cesar A. Corzo
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, Saint Paul, Minnesota, United States of America
| | - Marie Culhane
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, Saint Paul, Minnesota, United States of America
- University of Minnesota Veterinary Diagnostic Laboratory, Saint Paul, Minnesota, United States of America
| | - Scott Dee
- Pipestone Veterinary Clinic, Pipestone, Minnesota, United States of America
| | - Robert B. Morrison
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, Saint Paul, Minnesota, United States of America
| | - Montserrat Torremorell
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, Saint Paul, Minnesota, United States of America
| |
Collapse
|