1
|
Brüggemann Y, Klöhn M, Wedemeyer H, Steinmann E. Hepatitis E virus: from innate sensing to adaptive immune responses. Nat Rev Gastroenterol Hepatol 2024; 21:710-725. [PMID: 39039260 DOI: 10.1038/s41575-024-00950-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/29/2024] [Indexed: 07/24/2024]
Abstract
Hepatitis E virus (HEV) infections are a major cause of acute viral hepatitis in humans worldwide. In immunocompetent individuals, the majority of HEV infections remain asymptomatic and lead to spontaneous clearance of the virus, and only a minority of individuals with infection (5-16%) experience symptoms of acute viral hepatitis. However, HEV infections can cause up to 30% mortality in pregnant women, become chronic in immunocompromised patients and cause extrahepatic manifestations. A growing body of evidence suggests that the host immune response to infection with different HEV genotypes is a critical determinant of distinct HEV infection outcomes. In this Review, we summarize key components of the innate and adaptive immune responses to HEV, including the underlying immunological mechanisms of HEV associated with acute and chronic liver failure and interactions between T cell and B cell responses. In addition, we discuss the current status of vaccines against HEV and raise outstanding questions regarding the immune responses induced by HEV and treatment of the disease, highlighting areas for future investigation.
Collapse
Affiliation(s)
- Yannick Brüggemann
- Department of Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany
| | - Mara Klöhn
- Department of Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany
| | - Heiner Wedemeyer
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
- German Center for Infection Research (DZIF), Partner Sites Hannover-Braunschweig, Hannover, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| | - Eike Steinmann
- Department of Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany.
- German Center for Infection Research (DZIF), External Partner Site, Bochum, Germany.
| |
Collapse
|
2
|
Zhang J, Zheng Z, Xia N. Prophylactic Hepatitis E Vaccine. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1417:227-245. [PMID: 37223870 DOI: 10.1007/978-981-99-1304-6_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The hepatitis E has been increasingly recognized as an underestimated global disease burden in recent years. Subpopulations with more serious infection associated damage or death include pregnant women, patients with basic liver diseases, and elderly persons. Vaccine would be the most effective means for prevention of HEV infection. The lack of an efficient cell culture system for HEV makes the development of classic inactive or attenuated vaccine infeasible. Hence, the recombinant vaccine approaches are explored deeply. The neutralizing sites are located almost exclusively in the capsid protein, pORF2, of the virion. Based on pORF2, many vaccine candidates showed potential of protecting primate animals, two of them were tested in human and evidenced to be well-tolerated in adults and highly efficacious in preventing hepatitis E. The world's first hepatitis E vaccine, Hecolin® (HEV 239 vaccine), was licensed in China and launched in 2012.
Collapse
Affiliation(s)
- Jun Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, China.
| | - Zizheng Zheng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, China
| | - Ningshao Xia
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, China
| |
Collapse
|
3
|
Zeng Y, Song F, Luo G, Yang H, Li C, Liu W, Li T, Zhang S, Wang Y, Huang C, Ge S, Zhang J, Xia N. Generation and characterization of mouse monoclonal antibodies against the VP4 protein of group A human rotaviruses. Antiviral Res 2022; 207:105407. [PMID: 36152816 DOI: 10.1016/j.antiviral.2022.105407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 08/29/2022] [Accepted: 09/01/2022] [Indexed: 12/01/2022]
Abstract
Human rotaviruses (RVs) are the leading cause of severe diarrhea in infants and young children worldwide. Among the structural proteins, as a spike protein, rotavirus VP4 plays a key role in both viral attachment and penetration. Currently, studies on monoclonal antibodies (mAbs) against VP4 are limited. In this study, mice were immunized with truncated VP4* to produce murine mAbs. In total, 50 mAbs were produced and characterized. Twenty-four mAbs were genotype-specific and 20 mAbs recognized the common VP4 epitopes shared by P[8], P[4], and P[6] viruses. Thirty-five of the 50 mAbs were neutralizing mAbs, among which nine mAbs could neutralize all three P-genotype RVs, and 10 neutralizing mAbs exhibited conformational sensitivity. Ten mAbs recognized dominant neutralizing epitopes, including the broadly neutralizing mAb 9C4 recognized conformational epitope. Further investigation shows that S376 and S464 are key amino acids for 9C4 binding, however, the exact binding sites of 9C4 remain to be fully defined. Overall, this panel of mAbs has demonstrated utility as immunodiagnostic and research reagents, and could potentially serve as crucial tools for exploring the neutralizing mechanisms and quality control of VP4* protein-based RV subunit vaccines. Further evaluation of cross-neutralizing mAbs could not only improve the understanding of the heterotypic protection conferred by RV vaccines, but also facilitate the development of broadly protective RV vaccines.
Collapse
Affiliation(s)
- Yuanjun Zeng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, People's Republic of China
| | - Feibo Song
- The Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, People's Republic of China
| | - Guoxing Luo
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, People's Republic of China
| | - Han Yang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, People's Republic of China
| | - Cao Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, People's Republic of China
| | - Wei Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, People's Republic of China
| | - Tingdong Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, People's Republic of China.
| | - Shiyin Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, People's Republic of China
| | - Yingbin Wang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, People's Republic of China.
| | - Chenghao Huang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, People's Republic of China
| | - Shengxiang Ge
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, People's Republic of China.
| | - Jun Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, People's Republic of China
| | - Ningshao Xia
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, People's Republic of China; The Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, People's Republic of China
| |
Collapse
|
4
|
Gordeychuk I, Kyuregyan K, Kondrashova A, Bayurova E, Gulyaev S, Gulyaeva T, Potemkin I, Karlsen A, Isaeva O, Belyakova A, Lyashenko A, Sorokin A, Chumakov A, Morozov I, Isaguliants M, Ishmukhametov A, Mikhailov M. Immunization with recombinant ORF2 p551 protein protects common marmosets (Callithrix jacchus) against homologous and heterologous hepatitis E virus challenge. Vaccine 2022; 40:89-99. [PMID: 34836660 DOI: 10.1016/j.vaccine.2021.11.042] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/18/2021] [Accepted: 11/14/2021] [Indexed: 12/23/2022]
Abstract
BACKGROUND Hepatitis E virus (HEV) is a major causative agent of acute hepatitis worldwide, prompting continuous HEV vaccine efforts. Vaccine development is hampered by the lack of convenient animal models susceptible to infection with different HEV genotypes. We produced recombinant open reading frame 2 protein (pORF2; p551) of HEV genotype (GT) 3 and assessed its immunogenicity and protectivity against HEV challenge in common marmosets (Callithrix jacchus, CM). METHODS p551 with consensus sequence corresponding to amino acid residues 110-660 of HEV GT3 pORF2 was expressed in E. coli and purified by affinity chromatography. CMs were immunized intramuscularly with 20 μg of p551 VLPs with alum adjuvant (n = 4) or adjuvant alone (n = 2) at weeks 0, 3, 7 and 19. At week 27, p551-immunized and control animals were challenged with HEV GT1 or GT3 and thereafter longitudinally screened for markers of liver function, anti-HEV IgG and HEV RNA in feces and sera. RESULTS Purified p551 formed VLPs with particle size of 27.71 ± 2.42 nm. Two immunizations with p551 induced anti-HEV IgG mean titer of 1:1810. Immunized CMs challenged with homologous and heterologous HEV genotype did not develop HEV infection during the follow-up. Control CMs infected with both HEV GT1 and GT3 demonstrated signs of HEV infection with virus shedding and elevation of the levels of liver enzymes. High levels of anti-HEV IgG persisted in vaccinated CMs and control CMs that resolved HEV infection, for up to two years post challenge. CONCLUSIONS CMs are shown to be a convenient laboratory animal model susceptible to infection with HEV GT1 and GT3. Immunization with HEV GT3 ORF2/p551 triggers potent anti-HEV antibody response protecting CMs from homologous and heterologous HEV challenge. This advances p551 in VLPs as a prototype vaccine against HEV.
Collapse
Affiliation(s)
- Ilya Gordeychuk
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, Moscow 108819, Russia; Institute for Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University, Moscow 127994, Russia.
| | - Karen Kyuregyan
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, Moscow 108819, Russia; I.I. Mechnikov Research Institute of Vaccines and Sera, Moscow 105064, Russia; Russian Medical Academy of Continuous Professional Education, Moscow 125993, Russia.
| | - Alla Kondrashova
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, Moscow 108819, Russia; Institute for Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University, Moscow 127994, Russia
| | - Ekaterina Bayurova
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, Moscow 108819, Russia.
| | - Stanislav Gulyaev
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, Moscow 108819, Russia.
| | - Tatiana Gulyaeva
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, Moscow 108819, Russia.
| | - Ilya Potemkin
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, Moscow 108819, Russia; I.I. Mechnikov Research Institute of Vaccines and Sera, Moscow 105064, Russia; Russian Medical Academy of Continuous Professional Education, Moscow 125993, Russia.
| | - Anastasia Karlsen
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, Moscow 108819, Russia; I.I. Mechnikov Research Institute of Vaccines and Sera, Moscow 105064, Russia; Russian Medical Academy of Continuous Professional Education, Moscow 125993, Russia; N.F. Gamaleya Federal Research Center for Epidemiology & Microbiology, Moscow 123098, Russia
| | - Olga Isaeva
- I.I. Mechnikov Research Institute of Vaccines and Sera, Moscow 105064, Russia; Russian Medical Academy of Continuous Professional Education, Moscow 125993, Russia.
| | - Alla Belyakova
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, Moscow 108819, Russia.
| | - Anna Lyashenko
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, Moscow 108819, Russia.
| | - Alexey Sorokin
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, Moscow 108819, Russia
| | - Alexey Chumakov
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, Moscow 108819, Russia; Institute for Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University, Moscow 127994, Russia
| | - Igor Morozov
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, Moscow 108819, Russia.
| | - Maria Isaguliants
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, Moscow 108819, Russia; N.F. Gamaleya Federal Research Center for Epidemiology & Microbiology, Moscow 123098, Russia; Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17177 Stockholm, Sweden.
| | - Aydar Ishmukhametov
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, Moscow 108819, Russia; Institute for Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University, Moscow 127994, Russia.
| | - Mikhail Mikhailov
- I.I. Mechnikov Research Institute of Vaccines and Sera, Moscow 105064, Russia; Russian Medical Academy of Continuous Professional Education, Moscow 125993, Russia.
| |
Collapse
|
5
|
Antigenic Characterization of ORF2 and ORF3 Proteins of Hepatitis E Virus (HEV). Viruses 2021; 13:v13071385. [PMID: 34372591 PMCID: PMC8310276 DOI: 10.3390/v13071385] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/09/2021] [Accepted: 07/13/2021] [Indexed: 11/17/2022] Open
Abstract
To evaluate the antigenic properties of Hepatitis E Virus (HEV) Open Reading Frame 2 and 3 (ORF2 and ORF3) codified proteins, we expressed different portions of ORF2 and the entire ORF3 in E. coli, a truncated ORF2, was also expressed in baculovirus. A panel of 37 monoclonal antibodies (MAbs) was raised against ORF2 (1-660 amino acids) and MAbs were mapped and characterized using the ORF2 expressed portions. Selected HEV positive and negative swine sera were used to evaluate ORF2 and ORF3 antigens' immunogenicity. The MAbs were clustered in six groups identifying six antigenic regions along the ORF2. Only MAbs binding to the sixth ORF2 antigenic region (394-608 aa) were found to compete with HEV positive sera and efficiently catch the recombinant antigen expressed in baculovirus. The ORF2 portion from 394-608 aa demonstrated to include most immunogenic epitopes with 85% of HEV positive swine sera reacting against the region from 461-544 aa. Only 5% of the selected HEV sera reacted against the ORF3 antigen.
Collapse
|
6
|
A broadly cross-reactive monoclonal antibody against hepatitis E virus capsid antigen. Appl Microbiol Biotechnol 2021; 105:4957-4973. [PMID: 34129082 PMCID: PMC8236046 DOI: 10.1007/s00253-021-11342-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 04/28/2021] [Accepted: 05/09/2021] [Indexed: 12/27/2022]
Abstract
Abstract To generate a hepatitis E virus (HEV) genotype 3 (HEV-3)–specific monoclonal antibody (mAb), the Escherichia coli–expressed carboxy-terminal part of its capsid protein was used to immunise BALB/c mice. The immunisation resulted in the induction of HEV-specific antibodies of high titre. The mAb G117-AA4 of IgG1 isotype was obtained showing a strong reactivity with the homologous E. coli, but also yeast-expressed capsid protein of HEV-3. The mAb strongly cross-reacted with ratHEV capsid protein derivatives produced in both expression systems and weaker with an E. coli–expressed batHEV capsid protein fragment. In addition, the mAb reacted with capsid protein derivatives of genotypes HEV-2 and HEV-4 and common vole hepatitis E virus (cvHEV), produced by the cell-free synthesis in Chinese hamster ovary (CHO) and Spodoptera frugiperda (Sf21) cell lysates. Western blot and line blot reactivity of the mAb with capsid protein derivatives of HEV-1 to HEV-4, cvHEV, ratHEV and batHEV suggested a linear epitope. Use of truncated derivatives of ratHEV capsid protein in ELISA, Western blot, and a Pepscan analysis allowed to map the epitope within a partially surface-exposed region with the amino acid sequence LYTSV. The mAb was also shown to bind to human patient–derived HEV-3 from infected cell culture and to hare HEV-3 and camel HEV-7 capsid proteins from transfected cells by immunofluorescence assay. The novel mAb may serve as a useful tool for further investigations on the pathogenesis of HEV infections and might be used for diagnostic purposes. Key points • The antibody showed cross-reactivity with capsid proteins of different hepeviruses. • The linear epitope of the antibody was mapped in a partially surface-exposed region. • The antibody detected native HEV-3 antigen in infected mammalian cells. Supplementary Information The online version contains supplementary material available at 10.1007/s00253-021-11342-7.
Collapse
|
7
|
Hepatitis E Virus Capsid Antigen (HEV-Ag) - A practical diagnostic biomarker in the HEV outbreak scenario. J Clin Virol 2020; 134:104692. [PMID: 33316568 DOI: 10.1016/j.jcv.2020.104692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 11/10/2020] [Accepted: 11/11/2020] [Indexed: 11/20/2022]
Abstract
BACKGROUND The increased global incidence of hepatitis E virus (HEV) infections, warrants accurate and affordable diagnostics across different geographical regions. The soluble and highly conserved HEV open reading frame 2 (ORF2) capsid antigen (HEV-Ag) is detectable in self-limited acute enteric hepatitis by HEV-Ag ELISA which is a promising serological assay in settings where HEV-RNA testing is not feasible. Our aim was to assess the HEV-Ag biomarker in an HEV outbreak in a low income country. METHODS A prospective single center longitudinal study during HEV outbreaks in the Chittagong, Bangladesh region between October 2018 and October 2019 was conducted based on recruitment of acute jaundice cases with clinical signs and symptoms of suspect HEV infections. Acute HEV infection was defined as a positive test result for anti-HEV IgM antibodies. RESULTS Forty four of the 51 enrolled enteric hepatitis cases (86 %) were confirmed HEV by anti-HEV IgM ELISA at day 0 hospital entry. The anti-HEV-IgM and IgG were positive in all patients and did not reveal significant differences; neither between the time points day 0 and follow-up hospitalization on day 2-6 or day 7-10 nor between RNA-positive (n = 36) versus RNAnegative (n = 8) HEV groups. The HEV-Ag positivity was higher in viral RNA-positive (29/36, 81 %) than the viral RNA-negative (1/8, 12 %) group, p < 0.001 and the HEV-Ag levels positively correlated with viremia, r = 0.77, p < 0.0001. All non-HEV cases; n = 7 tested negative anti-HEV IgM and HEV-Ag and 5 of 7 (71 %) tested anti-HAV IgM positive. CONCLUSIONS The HEV-Ag ELISA is a reliable and practical diagnostic tool in this acute HEV outbreak.
Collapse
|
8
|
Progress in the Production of Virus-Like Particles for Vaccination against Hepatitis E Virus. Viruses 2020; 12:v12080826. [PMID: 32751441 PMCID: PMC7472025 DOI: 10.3390/v12080826] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/16/2020] [Accepted: 07/28/2020] [Indexed: 12/13/2022] Open
Abstract
Hepatitis E virus (HEV), a pathogen that causes acute viral hepatitis, is a small icosahedral, quasi-enveloped, positive ssRNA virus. Its genome has three open reading frames (ORFs), with ORF1 and ORF3 encoding for nonstructural and regulatory proteins, respectively, while ORF2 is translated into the structural, capsid protein. ORF2 is most widely used for vaccine development in viral hepatitis. Hepatitis E virus-like particles (VLPs) are potential vaccine candidates against HEV infection. VLPs are composed of capsid subunits mimicking the natural configuration of the native virus but lack the genetic material needed for replication. As a result, VLPs are unable to replicate and cause disease, constituting safe vaccine platforms. Currently, the recombinant VLP-based vaccine Hecolin® against HEV is only licensed in China. Herein, systematic information about the expression of various HEV ORF2 sequences and their ability to form VLPs in different systems is provided.
Collapse
|
9
|
Li K, Dong F, Gao F, Bian L, Sun S, Du R, Hu Y, Mao Q, Zheng H, Wu X, Liang Z. Effect of freezing on recombinant hepatitis E vaccine. Hum Vaccin Immunother 2020; 16:1545-1553. [PMID: 31809644 PMCID: PMC7482780 DOI: 10.1080/21645515.2019.1694327] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 11/13/2019] [Indexed: 12/19/2022] Open
Abstract
Studies have revealed that vaccines are more often exposed to sub-zero temperatures during cold chain transportation than what was previously known. Such exposure might be detrimental to the potency of temperature-sensitive vaccines. The aim of this study was to evaluate the impact of exposure to freezing on the physicochemical properties and biological activities of recombinant hepatitis E (rHE) vaccine. Changes in rHE vaccine due to freezing temperatures were analyzed with regard to sedimentation rate, antigenicity, and antibody affinity and potency. The freezing temperature of rHE was measured, then rHE vaccine was exposed to freezing temperatures below -10°C.Significant increase of sedimentation rate was noted, according to shake test and massed precipitates. In addition, the binding affinity of rHE vaccine to six specific monoclonal antibodies was significantly reduced and the in vivo potency for eliciting a protective IgG response was also partially lost, especially for anti-HEV neutralizing antibodies. Altogether, our work indicates that exposure of rHE vaccine to a temperature below -10°C results in the loss of structural integrity and biological potency of rHE vaccine.
Collapse
Affiliation(s)
- Kelei Li
- Division of Hepatitis Virus Vaccines, National Institute for Food and Drug Control, Beijing, China
- Research and Development Center, Minhai Biotechnology Co. Ltd, Beijing, China
| | - Fangyu Dong
- The Second Department of Research, Lanzhou Institute of Biological Products Co. Ltd, Lanzhou, China
| | - Fan Gao
- Division of Hepatitis Virus Vaccines, National Institute for Food and Drug Control, Beijing, China
| | - Lianlian Bian
- Division of Hepatitis Virus Vaccines, National Institute for Food and Drug Control, Beijing, China
| | - Shiyang Sun
- Division of Hepatitis Virus Vaccines, National Institute for Food and Drug Control, Beijing, China
| | - Ruixiao Du
- Division of Hepatitis Virus Vaccines, National Institute for Food and Drug Control, Beijing, China
| | - Yalin Hu
- Quality Assurance Department, Hualan Biological Engineering Inc, Xinxiang, China
| | - Qunying Mao
- Division of Hepatitis Virus Vaccines, National Institute for Food and Drug Control, Beijing, China
| | - Haifa Zheng
- Research and Development Center, Minhai Biotechnology Co. Ltd, Beijing, China
| | - Xing Wu
- Division of Hepatitis Virus Vaccines, National Institute for Food and Drug Control, Beijing, China
| | - Zhenglun Liang
- Division of Hepatitis Virus Vaccines, National Institute for Food and Drug Control, Beijing, China
| |
Collapse
|
10
|
Gupta J, Kaul S, Srivastava A, Kaushik N, Ghosh S, Sharma C, Batra G, Banerjee M, Shalimar, Nayak B, Ranjith-Kumar CT, Surjit M. Expression, Purification and Characterization of the Hepatitis E Virus Like-Particles in the Pichia pastoris. Front Microbiol 2020; 11:141. [PMID: 32117160 PMCID: PMC7017414 DOI: 10.3389/fmicb.2020.00141] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 01/21/2020] [Indexed: 12/12/2022] Open
Abstract
Hepatitis E virus (HEV) is associated with acute hepatitis disease, which may lead to chronic disease in immunocompromised individuals. The disease is particularly severe among pregnant women (20-30% mortality). The only licensed vaccine against HEV, which is available in China, is the Escherichia coli purified recombinant virus-like particles (VLPs) encompassing the 368-660 amino acids (aa) of the viral ORF2 protein. The viral capsid is formed by the ORF2 protein, which harbors three glycosylation sites. Baculo virus expression system has been employed to generate a glycosylated VLP, which encompasses 112-608aa of the ORF2 protein. Here, we sought to produce a recombinant VLP containing 112-608aa of the ORF2 protein in Pichia pastoris (P. pastoris) expression system. The cDNA sequence encoding 112-608aa of the ORF2 protein was fused with the α-mating factor secretion signal coding sequence (for release of the fusion protein to the culture medium) and cloned into the yeast vector pPICZα. Optimum expression of recombinant protein was obtained at 72 h induction in 1.5% methanol using inoculum density (A600) of 80 and at pH-3.0 of the culture medium. Identity of the purified protein was confirmed by mass spectrometry analysis. Further studies revealed the glycosylation pattern and VLP nature of the purified protein. Immunization of BALB/c mice with these VLPs induced potent immune response as evidenced by the high ORF2 specific IgG titer and augmented splenocyte proliferation in a dose dependent manner. 112-608aa ORF2 VLPs produced in P. pastoris appears to be a suitable candidate for development of diagnostic and prophylactic reagents against the hepatitis E.
Collapse
Affiliation(s)
- Jyoti Gupta
- Virology Laboratory, Vaccine and Infectious Disease Research Centre, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, India
| | - Sheetal Kaul
- Virology Laboratory, Vaccine and Infectious Disease Research Centre, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, India
- International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Akriti Srivastava
- Virology Laboratory, Vaccine and Infectious Disease Research Centre, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, India
| | - Neha Kaushik
- Centre for Bio-Design and Diagnostics, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, India
- School of Life Sciences, Manipal University, Manipal, India
| | - Sukanya Ghosh
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi, India
| | - Chandresh Sharma
- Centre for Bio-Design and Diagnostics, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, India
| | - Gaurav Batra
- Centre for Bio-Design and Diagnostics, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, India
| | - Manidipa Banerjee
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi, India
| | - Shalimar
- Department of Gastroenterology, All India Institute of Medical Sciences, New Delhi, India
| | - Baibaswata Nayak
- Department of Gastroenterology, All India Institute of Medical Sciences, New Delhi, India
| | - C. T. Ranjith-Kumar
- Virology Laboratory, Vaccine and Infectious Disease Research Centre, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, India
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, New Delhi, India
| | - Milan Surjit
- Virology Laboratory, Vaccine and Infectious Disease Research Centre, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, India
| |
Collapse
|
11
|
Abstract
During pathogenic invasion, neutralizing antibodies (nAbs) are involved in regulating immune clearance and evoking the host-protective response. We previously reported a highly potent nAb 8C11 against HEV, an RNA virus with an icosahedral capsid and associated with abundant acute hepatitis. Structural analysis demonstrates that the binding of 8C11 to HEV VLPs would result in tremendous spatial clashing with the capsid. Cryo-EM analysis showed that 8C11 binding leads to complete disorder of the outer rim of the VLP at earlier stages (∼15 min) and causes the dissociation of HEV VLPs into homodimer species within 2 h. Similar 8C11-mediated dissociation was observed for the native HEV virion. Our results categorize a viral neutralization mechanism and suggest a strategy to generate 8C11-like antibodies. In adaptive immunity, organisms produce neutralizing antibodies (nAbs) to eliminate invading pathogens. Here, we explored whether viral neutralization could be attained through the physical disruption of a virus upon nAb binding. We report the neutralization mechanism of a potent nAb 8C11 against the hepatitis E virus (HEV), a nonenveloped positive-sense single-stranded RNA virus associated with abundant acute hepatitis. The 8C11 binding flanks the protrusion spike of the HEV viruslike particles (VLPs) and leads to tremendous physical collision between the antibody and the capsid, dissociating the VLPs into homodimer species within 2 h. Cryo-electron microscopy reconstruction of the dissociation intermediates at an earlier (15-min) stage revealed smeared protrusion spikes and a loss of icosahedral symmetry with the capsid core remaining unchanged. This structural disruption leads to the presence of only a few native HEV virions in the ultracentrifugation pellet and exposes the viral genome. Conceptually, we propose a strategy to raise collision-inducing nAbs against single spike moieties that feature in the context of the entire pathogen at positions where the neighboring space cannot afford to accommodate an antibody. This rationale may facilitate unique vaccine development and antimicrobial antibody design.
Collapse
|
12
|
Aggarwal R, Goel A. Natural History, Clinical Manifestations, and Pathogenesis of Hepatitis E Virus Genotype 1 and 2 Infections. Cold Spring Harb Perspect Med 2019; 9:a032136. [PMID: 29735580 PMCID: PMC6601454 DOI: 10.1101/cshperspect.a032136] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Infection with genotype 1 or 2 hepatitis E virus (HEV) results primarily from human-to-human transmission through the fecal-oral route in low-resource countries. It presents primarily as "acute viral hepatitis" syndrome, usually a self-limiting illness. A few cases progress to acute liver failure, a serious illness with high fatality. Clinical disease is infrequent among children. Infection during pregnancy is associated with a higher risk of symptomatic disease, severe liver injury, and mortality. Severe disease is also encountered in persons with preexisting chronic liver disease. Some cases have associated extrahepatic features, particularly acute pancreatitis and neurological manifestations. Chronic infection appears to be extremely infrequent with these HEV genotypes. The exact pathogenesis of liver injury remains unknown, although the host immune response appears to be important for viral clearance as well as for induction of liver injury. Hormonal and immune factors appear to be responsible for the severe disease during pregnancy.
Collapse
Affiliation(s)
- Rakesh Aggarwal
- Department of Gastroenterology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, India
| | - Amit Goel
- Department of Gastroenterology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, India
| |
Collapse
|
13
|
Chen S, Huang X, Li Y, Wang X, Pan H, Lin Z, Zheng Q, Li S, Zhang J, Xia N, Zhao Q. Altered antigenicity and immunogenicity of human papillomavirus virus-like particles in the presence of thimerosal. Eur J Pharm Biopharm 2019; 141:221-231. [PMID: 31154067 DOI: 10.1016/j.ejpb.2019.05.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 05/07/2019] [Accepted: 05/28/2019] [Indexed: 11/25/2022]
Abstract
Thimerosal has been widely used as a preservative in human vaccines for decades. Thimerosal, a thiol capping agent with ethyl mercury being the active degradant, could have impacts on the vaccine potency due to potential thiol modification. The effects on the antigenicity and immunogenicity of human papillomavirus (HPV) virus-like particles (VLPs) in the presence of thimerosal was studied. In general, reduced binding activity was observed between HPV antigens and monoclonal antibodies (mAbs) upon thimerosal treatment, accompanied by reduced protein conformational stability. The immunogenicity of a pentavalent vaccine formulation (HPV6, HPV11, HPV16, HPV18 and hepatitis E virus) with or without thimerosal was studied in mice. The functional antibody titres, as well as the binding titres, were determined, showing a substantial decrease for vaccine formulations containing thimerosal for HPV16/18. Similarly, epitope-specific competition assays using specific and functional mAbs as tracers also showed a significant reduction in immunogenicity for HPV16/18 in the presence of thimerosal. Structural alterations in the capsid protein for HPV18 were observed with cryo-electron microscopy and 3-dimensional reconstruction in the comparative structural analysis. The results should alert scientists in formulation development field on the choice for vaccine preservatives, in particular for thiol-containing antigens.
Collapse
Affiliation(s)
- Siyi Chen
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China; School of Life Science, Xiamen University, Xiamen, China
| | - Xiaofen Huang
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
| | - Yike Li
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
| | - Xin Wang
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
| | - Huirong Pan
- Xiamen Innovax Biotech Company, Ltd, Xiamen, China
| | - Zhijie Lin
- Xiamen Innovax Biotech Company, Ltd, Xiamen, China
| | - Qingbing Zheng
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
| | - Shaowei Li
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China; School of Life Science, Xiamen University, Xiamen, China
| | - Jun Zhang
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
| | - Ningshao Xia
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China; School of Life Science, Xiamen University, Xiamen, China.
| | - Qinjian Zhao
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China.
| |
Collapse
|
14
|
Hepatitis E vaccine candidate harboring a non-particulate immunogen of E2 fused with CRM197 fragment A. Antiviral Res 2019; 164:154-161. [PMID: 30802475 DOI: 10.1016/j.antiviral.2019.02.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Revised: 01/27/2019] [Accepted: 02/19/2019] [Indexed: 12/16/2022]
Abstract
The Hepatitis E vaccine (Hecolin, licensed in China) harbors a potent particulate immunogen, p239, designed from a 26-aa N-terminal extension of its poorly immunogenic parental protein, E2. Although an effective vaccine, we sought to design a fusion protein in a non-particulate form that could improve the delivery and immunogenicity of E2 epitopes. The non-toxic mutant of diphtheria toxin, CRM197 (Cross-Reacting Material 197) has been successfully used as a carrier protein for conjugated vaccines to enhance the immunogenicity of polysaccharides. Here, we designed a fusion non-particulate protein of E2 and the catalytic domain (fragment A) of CRM197 and evaluated its antigenicity, immunogenicity and disease prevention efficacy in primates. This fusion protein, named CRM197(A)-E2, was bacterially expressed and purified by chromatography. CRM197(A)-E2 presented as a homodimer in solution, similar to its parental E2 protein, and exhibited excellent antigenicity against representative neutralizing monoclonal antibodies, like E2 and p239. However, CRM197(A)-E2 manifested higher immunogenicity in mice compared with that achieved by the particulate p239, as indicated by the 10-times lower ED50 value and 2-log higher HEV-specific antibody level that could persist for at least 28 weeks. In addition, both the 1 μg and 10 μg doses of CRM197(A)-E2 adjuvanted with aluminum could protect vaccinated monkeys against HEV challenge, matching that achieved with only the higher (10 μg) dose of the p239 vaccine. These results suggest that the CRM197 fragment A alone serves as an intra-molecular adjuvant to remarkably enhance the immunogenicity of the target of interest in a non-particulate form. These findings may pave the way for rational vaccine design, especially in cases where particulates are not accessible.
Collapse
|
15
|
Liu C, Cai W, Yin X, Tang Z, Wen G, Ambardekar C, Li X, Ying D, Feng Z, Zheng Z, Xia N. An Optimized High-Throughput Neutralization Assay for Hepatitis E Virus (HEV) Involving Detection of Secreted Porf2. Viruses 2019; 11:v11010064. [PMID: 30650547 PMCID: PMC6356577 DOI: 10.3390/v11010064] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 01/05/2019] [Accepted: 01/13/2019] [Indexed: 01/01/2023] Open
Abstract
Hepatitis E virus (HEV) is a common cause of acute hepatitis worldwide. Current methods for evaluating the neutralizing activity of HEV-specific antibodies include immunofluorescence focus assays (IFAs) and real-time PCR, which are insensitive and operationally complicated. Here, we developed a high-throughput neutralization assay by measuring secreted pORF2 levels using an HEV antigen enzyme-linked immunosorbent assay (ELISA) kit based on the highly replicating HEV genotype (gt) 3 strain Kernow. We evaluated the neutralizing activity of HEV-specific antibodies and the sera of vaccinated individuals (n = 15) by traditional IFA and the novel assay simultaneously. A linear regression analysis shows that there is a high degree of correlation between the two assays. Furthermore, the anti-HEV IgG levels exhibited moderate correlation with the neutralizing titers of the sera of vaccinated individuals, indicating that immunization with gt 1 can protect against gt 3 Kernow infection. We then determined specificity of the novel assay and the potential threshold of neutralizing capacity using anti-HEV IgG positive sera (n = 27) and anti-HEV IgG negative sera (n = 23). The neutralizing capacity of anti-HEV IgG positive sera was significantly stronger than that of anti-HEV IgG negative. In addition, ROC curve analysis shows that the potential threshold of neutralizing capacity of sera was 8.07, and the sensitivity and specificity of the novel assay was 88.6% and 100%, respectively. Our results suggest that the neutralization assay using the antigen ELISA kit could be a useful tool for HEV clinical research.
Collapse
Affiliation(s)
- Chang Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, Xiamen University, Xiamen 361102, Fujian, China.
| | - Wei Cai
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, Xiamen University, Xiamen 361102, Fujian, China.
| | - Xin Yin
- Center for Vaccines and Immunity, The Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA.
| | - Zimin Tang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen 361102, Fujian, China.
| | - Guiping Wen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen 361102, Fujian, China.
| | - Charuta Ambardekar
- Center for Vaccines and Immunity, The Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA.
| | - Xinlei Li
- Center for Vaccines and Immunity, The Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA.
| | - Dong Ying
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, Xiamen University, Xiamen 361102, Fujian, China.
| | - Zongdi Feng
- Center for Vaccines and Immunity, The Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA.
- Department of Pediatrics, the Ohio State University College of Medicine, Columbus, OH 43205, USA.
| | - Zizheng Zheng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen 361102, Fujian, China.
| | - Ningshao Xia
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, Xiamen University, Xiamen 361102, Fujian, China.
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen 361102, Fujian, China.
| |
Collapse
|
16
|
Life cycle and morphogenesis of the hepatitis E virus. Emerg Microbes Infect 2018; 7:196. [PMID: 30498191 PMCID: PMC6265337 DOI: 10.1038/s41426-018-0198-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 11/01/2018] [Accepted: 11/05/2018] [Indexed: 12/19/2022]
Abstract
Hepatitis E virus (HEV) is transmitted primarily via contaminated water and food by the fecal oral route and causes epidemics in developing countries. In industrialized countries, zoonotic transmission of HEV is prevalent. In addition, HEV is the major cause of acute hepatitis in healthy adults and can cause chronic hepatitis in immunocompromised patients, with pregnant HEV-infected women having increased mortality rates of approximately 25%. HEV was once an understudied and neglected virus. However, in recent years, the safety of blood products with respect to HEV has increasingly been considered to be a public health problem. The establishment of HEV infection models has enabled significant progress to be made in understanding its life cycle. HEV infects cells via a receptor (complex) that has yet to be identified. The HEV replication cycle is initiated immediately after the (+) stranded RNA genome is released into the cell cytosol. Subsequently, infectious viral particles are released by the ESCRT complex as quasi-enveloped viruses (eHEVs) into the serum, whereas feces and urine contain only nonenveloped infectious viral progeny. The uncoating of the viral envelope takes place in the biliary tract, resulting in the generation of a nonenveloped virus that is more resistant to environmental stress and possesses a higher infectivity than that of eHEV. This review summarizes the current knowledge regarding the HEV life cycle, viral morphogenesis, established model systems and vaccine development.
Collapse
|
17
|
Multifaceted characterization of recombinant protein-based vaccines: An immunochemical toolbox for epitope-specific analyses of the hepatitis E vaccine. Vaccine 2018; 36:7650-7658. [PMID: 30396752 DOI: 10.1016/j.vaccine.2018.10.089] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 10/25/2018] [Accepted: 10/26/2018] [Indexed: 01/22/2023]
Abstract
The integrity of functional epitopes is a critical quality attribute for recombinant protein based vaccines since the presence of these native-like epitopes is the structural basis for vaccines to elicit functional antibodies. To demonstrate the quality and quantity of functional epitopes on vaccine antigens, a toolbox of assessing antigen characteristics is essential. Among the physicochemical, biophysical, immunochemical and in vivo potency analyses, the epitope-specific assays are most critical assessment of the antigen functionality. In this study, we used hepatitis E virus vaccine as an example to illustrated how the monoclonal antibody (mAb) based immunochemical assays were established for in-depth and multifaceted antigen characterization. A large panel of mAbs were developed and characterized using epitope clustering analysis. A subset of these mAbs recognizing non-overlapping epitopes were chosen to be used for assay development. Orthogonal methods, including surface plasma resonance-based BIAcore, solution competitive ELISA and sandwich ELISA, were developed for the antigenicity assessment. The sandwich ELISA with a pair of mAbs, recognizing two different epitopes, was used to assess the accelerated antigen stability, showing enhanced stability with adjuvant adsorption. Such a sandwich ELISA with robust performance has the potentials to be used for in vitro potency analysis to replace animal-based potency assay as product release test. In summary, using hepatitis E vaccine as an example, we demonstrated the importance and establishment of a mAb-based immunochemical toolbox for multifaceted antigen characterization. This is particularly important to demonstrate the successful reconstruction of the native-like and functional epitopes on a recombinant antigen post expression and purification. These epitope-specific and multifaceted assays serve as critical tools for process monitoring or lot consistency tests in support of vaccine development and manufacturing.
Collapse
|
18
|
Abstract
Soon after the 1991 molecular cloning of hepatitis E virus (HEV), recombinant viral capsid antigens were expressed and tested in nonhuman primates for protection against liver disease and infection. Two genotype 1 subunit vaccine candidates entered clinical development: a 56 kDA vaccine expressed in insect cells and HEV 239 vaccine expressed in Escherichia coli Both were highly protective against hepatitis E and acceptably safe. The HEV 239 vaccine was approved in China in 2011, but it is not yet prequalified by the World Health Organization, a necessary step for introduction into those low- and middle-income countries where the disease burden is highest. Nevertheless, the stage is set for the final act in the hepatitis E vaccine story-policymaking, advocacy, and pilot introduction of vaccine in at-risk populations, in which it is expected to be cost-effective.
Collapse
Affiliation(s)
- Bruce L Innis
- Center for Vaccine Innovation and Access, PATH, Washington, D.C. 20001
| | - Julia A Lynch
- International Vaccine Institute, SNU Research Park, Gwanak-gu, Seoul 08826, Korea
| |
Collapse
|
19
|
Zhang Z, Zhang F, Bai S, Qiao J, Shen H, Huang F, Gao S, Li S, Gu Y, Xia N. Characterization and epitope mapping of a panel of monoclonal antibodies against HIV‐1 matrix protein. Biotechnol Appl Biochem 2018; 65:807-815. [DOI: 10.1002/bab.1662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 04/09/2018] [Indexed: 11/11/2022]
Affiliation(s)
- Zhiqing Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular DiagnosticsSchool of Public HealthXiamen University Xiamen People's Republic of China
| | - Feng Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular DiagnosticsSchool of Public HealthXiamen University Xiamen People's Republic of China
| | - Shimeng Bai
- National Institute of Diagnostics and Vaccine Development in Infectious DiseaseSchool of Life SciencesXiamen University Xiamen People's Republic of China
| | - Jiaming Qiao
- State Key Laboratory of Molecular Vaccinology and Molecular DiagnosticsSchool of Public HealthXiamen University Xiamen People's Republic of China
| | - Honglin Shen
- National Institute of Diagnostics and Vaccine Development in Infectious DiseaseSchool of Life SciencesXiamen University Xiamen People's Republic of China
| | - Fang Huang
- National Institute of Diagnostics and Vaccine Development in Infectious DiseaseSchool of Life SciencesXiamen University Xiamen People's Republic of China
| | - Shuangquan Gao
- State Key Laboratory of Molecular Vaccinology and Molecular DiagnosticsSchool of Public HealthXiamen University Xiamen People's Republic of China
| | - Shaowei Li
- State Key Laboratory of Molecular Vaccinology and Molecular DiagnosticsSchool of Public HealthXiamen University Xiamen People's Republic of China
- National Institute of Diagnostics and Vaccine Development in Infectious DiseaseSchool of Life SciencesXiamen University Xiamen People's Republic of China
| | - Ying Gu
- State Key Laboratory of Molecular Vaccinology and Molecular DiagnosticsSchool of Public HealthXiamen University Xiamen People's Republic of China
- National Institute of Diagnostics and Vaccine Development in Infectious DiseaseSchool of Life SciencesXiamen University Xiamen People's Republic of China
| | - Ningshao Xia
- State Key Laboratory of Molecular Vaccinology and Molecular DiagnosticsSchool of Public HealthXiamen University Xiamen People's Republic of China
- National Institute of Diagnostics and Vaccine Development in Infectious DiseaseSchool of Life SciencesXiamen University Xiamen People's Republic of China
| |
Collapse
|
20
|
Ankcorn M, Moreira F, Ijaz S, Symes A, Buckland MS, Workman S, Warburton F, Tedder RS, Lowe DM. Absence of Persistent Hepatitis E Virus Infection in Antibody-Deficient Patients Is Associated With Transfer of Antigen-Neutralizing Antibodies From Immunoglobulin Products. J Infect Dis 2018; 219:245-253. [DOI: 10.1093/infdis/jiy504] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 08/16/2018] [Indexed: 02/07/2023] Open
Affiliation(s)
- Mike Ankcorn
- Blood Borne Virus Unit, Virus Reference Department, Public Health England
- Transfusion Microbiology, National Health Service Blood and Transplant
| | - Fernando Moreira
- Department of Clinical Immunology, Royal Free London National Health Service Foundation Trust
| | - Samreen Ijaz
- Blood Borne Virus Unit, Virus Reference Department, Public Health England
| | - Andrew Symes
- Department of Clinical Immunology, Royal Free London National Health Service Foundation Trust
| | - Matthew S Buckland
- Department of Clinical Immunology, Royal Free London National Health Service Foundation Trust
- Institute of Immunity and Transplantation, University College London, Royal Free Campus
| | - Sarita Workman
- Department of Clinical Immunology, Royal Free London National Health Service Foundation Trust
| | - Fiona Warburton
- Statistics, Modelling, and Economics Department, Public Health England
| | - Richard S Tedder
- Blood Borne Virus Unit, Virus Reference Department, Public Health England
- Transfusion Microbiology, National Health Service Blood and Transplant
- Division of Infection and Immunity, University College London, London, United Kingdom
| | - David M Lowe
- Department of Clinical Immunology, Royal Free London National Health Service Foundation Trust
- Institute of Immunity and Transplantation, University College London, Royal Free Campus
| |
Collapse
|
21
|
Generation in yeast and antigenic characterization of hepatitis E virus capsid protein virus-like particles. Appl Microbiol Biotechnol 2017; 102:185-198. [PMID: 29143081 DOI: 10.1007/s00253-017-8622-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 10/29/2017] [Accepted: 10/31/2017] [Indexed: 12/30/2022]
Abstract
Hepatitis E is a globally distributed human disease caused by hepatitis E virus (HEV). In Europe, it spreads through undercooked pork meat or other products and with blood components through transfusions. There are no approved or golden standard serologic systems for HEV diagnostics. Commercially available HEV tests often provide inconsistent results which may differ among the assays. In this study, we describe generation in yeast and characterization of HEV genotype 3 (HEV-3) and rat HEV capsid proteins self-assembled into virus-like particles (VLPs) and the development of HEV-specific monoclonal antibodies (MAbs). Full-length HEV-3 and rat HEV capsid proteins and their truncated variants comprising amino acids (aa) 112-608 were produced in yeast S. cerevisiae. The yeast-expressed rat HEV capsid protein was found to be glycosylated. The full-length HEV-3 capsid protein and both full-length and truncated rat HEV capsid proteins were capable to self-assemble into VLPs. All recombinant proteins contained HEV genotype-specific linear epitopes and cross-reactive conformational epitopes recognized by serum antibodies from HEV-infected reservoir animals. Two panels of MAbs against HEV-3 and rat HEV capsid proteins were generated. Their cross-reactivity pattern was investigated by Western blot, ELISA, and immunofluorescence assay on HEV-3-infected cell cultures. The analysis revealed cross-reactive, genotype-specific, and virus-reactive MAbs. MAb epitopes were localized within S, M, and P domains of HEV-3 and rat HEV capsid proteins. Yeast-generated recombinant VLPs of HEV-3 and rat HEV capsid proteins and HEV-specific MAbs might be employed to develop novel HEV detection systems.
Collapse
|
22
|
Wen GP, Tang ZM, Wang SL, Ji WF, Cai W, Zhang X, Huang SJ, Wu T, Zhang J, Zheng ZZ, Xia NS. Classification of human and zoonotic group hepatitis E virus (HEV) using antigen detection. Appl Microbiol Biotechnol 2017; 101:8585-8594. [PMID: 29038976 DOI: 10.1007/s00253-017-8526-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 08/24/2017] [Accepted: 09/07/2017] [Indexed: 01/10/2023]
Abstract
Hepatitis E virus (HEV) is one of the major pathogens that cause acute viral hepatitis. The human (genotypes 1 and 2) and zoonotic (genotypes 3 and 4) groups of HEV present different epidemiology and clinical features. In this study, we developed a classification method for rapidly classifying HEV into human or zoonotic groups that combines a general antigen test with a zoonotic group-specific antigen test. Evaluation of serial samples from HEV-infected rhesus monkeys indicated that HEV antigen-positive samples can be classified using the antigen-based classification method. The antigen-based classification method was evaluated further on 55 genotyped samples from acute hepatitis E patients, including 9 human and 46 zoonotic groups. The novel method was completely consistent with the sequencing results: 9/9 for the human groups (100%, 95% confidence interval [CI] 66.4-100%) and 46/46 for the zoonotic groups (100%, 95% CI 92.3-100%). This method was also successfully used for the clustering of some samples that could not be clustered by sequencing. Compared with the sequencing-based method, this method is less time-consuming, less expensive, and less technically complex and is therefore ideal for large numbers of samples. In conclusion, this study provides a convenient and sensitive method for classifying different groups of HEV, and it has potentially important public health applications, especially in underdeveloped areas that cannot afford the high cost of nucleic acid testing.
Collapse
Affiliation(s)
- Gui-Ping Wen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, XiangAn South Road, Xiamen, 361102, Fujian, People's Republic of China
| | - Zi-Min Tang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, XiangAn South Road, Xiamen, 361102, Fujian, People's Republic of China
| | - Si-Ling Wang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, XiangAn South Road, Xiamen, 361102, Fujian, People's Republic of China
| | - Wen-Fang Ji
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, XiangAn South Road, Xiamen, 361102, Fujian, People's Republic of China.,School of Life Sciences, Xiamen University, XiangAn South Road, Xiamen, 361102, Fujian, People's Republic of China
| | - Wei Cai
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, XiangAn South Road, Xiamen, 361102, Fujian, People's Republic of China.,School of Life Sciences, Xiamen University, XiangAn South Road, Xiamen, 361102, Fujian, People's Republic of China
| | - Xu Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, XiangAn South Road, Xiamen, 361102, Fujian, People's Republic of China
| | - Shou-Jie Huang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, XiangAn South Road, Xiamen, 361102, Fujian, People's Republic of China
| | - Ting Wu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, XiangAn South Road, Xiamen, 361102, Fujian, People's Republic of China
| | - Jun Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, XiangAn South Road, Xiamen, 361102, Fujian, People's Republic of China
| | - Zi-Zheng Zheng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, XiangAn South Road, Xiamen, 361102, Fujian, People's Republic of China.
| | - Ning-Shao Xia
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, XiangAn South Road, Xiamen, 361102, Fujian, People's Republic of China. .,School of Life Sciences, Xiamen University, XiangAn South Road, Xiamen, 361102, Fujian, People's Republic of China.
| |
Collapse
|
23
|
Zhang J, Zhao Q, Xia N. Prophylactic Hepatitis E Vaccine. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 948:223-246. [PMID: 27738988 DOI: 10.1007/978-94-024-0942-0_13] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Hepatitis E has been increasingly recognized as an underestimated global disease burden in recent years. Subpopulations with more serious infection-associated damage or death include pregnant women, patients with basic liver diseases, and elderly persons. Vaccine would be the most effective means for prevention of HEV infection. The lack of an efficient cell culture system for HEV makes the development of classic inactive or attenuated vaccine infeasible. Hence, the recombinant vaccine approaches are explored deeply. The neutralizing sites are located almost exclusively in the capsid protein, pORF2, of the virion. Based on pORF2, many vaccine candidates showed potential of protecting primate animals; two of them were tested in human and evidenced to be well tolerated in adults and highly efficacious in preventing hepatitis E. The world's first hepatitis E vaccine, Hecolin® (HEV 239 vaccine), was licensed in China and launched in 2012.
Collapse
Affiliation(s)
- Jun Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, China.
| | - Qinjian Zhao
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, China
| | - Ningshao Xia
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, China
| |
Collapse
|
24
|
Phage-displayed peptides that mimic epitopes of hepatitis E virus capsid. Med Microbiol Immunol 2017; 206:301-309. [PMID: 28434129 DOI: 10.1007/s00430-017-0507-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 04/17/2017] [Indexed: 12/17/2022]
Abstract
Hepatitis E is an emerging zoonotic infection of increasing public health threat for the UK, especially for immunosuppressed individuals. A human recombinant vaccine has been licensed only in China and is not clear whether it protects against hepatitis E virus (HEV) genotype 3, the most prevalent in Europe. The aim of this study was to use phage display technology as a tool to identify peptides that mimic epitopes of HEV capsid (mimotopes). We identified putative linear and conformational mimotopes using sera from Scottish blood donors that have the immunological imprint of past HEV infection. Four mimotopes did not have homology with the primary sequence of HEV ORF2 capsid but competed effectively with a commercial HEV antigen for binding to anti-HEV reference serum. When the reactivity profile of each mimotope was compared with Wantai HEV-IgG ELISA, the most sensitive HEV immunoassay, mimotopes showed 95.2-100% sensitivity while the specificity ranged from 81.5 to 95.8%. PepSurf algorithm was used to map affinity-selected peptides onto the ORF2 crystal structure of HEV genotype 3, which predicted that these four mimototopes are clustered in the P domain of ORF2 capsid, near conformational epitopes of anti-HEV neutralising monoclonal antibodies. These HEV mimotopes may have potential applications in the design of structural vaccines and the development of new diagnostic tests.
Collapse
|
25
|
Wu X, Chen P, Lin H, Su Y, Hao X, Cao Y, Li L, Zhu F, Liang Z. Dynamics of 8G12 competitive antibody in "prime-boost" vaccination of Hepatitis E vaccine. Hum Vaccin Immunother 2017; 13:1-6. [PMID: 28272983 DOI: 10.1080/21645515.2017.1291105] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Hepatitis E virus still poses a great threat to public health worldwide. To date, Hecolin® is the only licensed HEV vaccine in China. Total anti-HEV antibody has been used to reflect vaccine induced immune response in clinical trials for the lack of robust HEV neutralizing antibody detection methods. In this study, we applied a broad neutralizing mouse monoclonal antibody 8G12 to develop a competitive ELSIA assay and quantified 8G12 competitive antibody (8G12-like antibody) in serum samples. The presence of 8G12-like antibody was detected both from participants from HEV vaccine clinical trial and mice immunized with HEV vaccine. Furthermore, 8G12-like antibody was found to have a similar dynamic pattern as anti-HEV antibody during "prime-boost" vaccination, and the proportion of 8G12-like antibody in anti-HEV antibody increased along boost vaccination. Together with previously reported finding that 8G12 could block the most binding of HEV vaccine induced serum antibody to vaccine antigen, we proposed that 8G12-like antibody might be a promising surrogate for vaccine induced HEV neutralizing antibody and had potential to be used as a convenient indicator for HEV vaccine potency evaluation.
Collapse
Affiliation(s)
- Xing Wu
- a National Institutes for Food and Drug Control , Beijing , China
| | - Pan Chen
- a National Institutes for Food and Drug Control , Beijing , China
| | - Huijuan Lin
- b R&D Department , Shanghai Institute of Biological Products Co., Ltd. , Shanghai , China
| | - Yao Su
- c Changchun Institute of Biological Products Co. Ltd., China National Biotech Corporation , Changchun , China
| | - Xiaotian Hao
- a National Institutes for Food and Drug Control , Beijing , China
| | - Yufeng Cao
- c Changchun Institute of Biological Products Co. Ltd., China National Biotech Corporation , Changchun , China
| | - Li Li
- c Changchun Institute of Biological Products Co. Ltd., China National Biotech Corporation , Changchun , China
| | - Fengcai Zhu
- d Jiangsu Provincial Center for Disease Prevention and Control , Nanjing , China
| | - Zhenglun Liang
- a National Institutes for Food and Drug Control , Beijing , China
| |
Collapse
|
26
|
Zhang X, Wei M, Sun G, Wang X, Li M, Lin Z, Li Z, Li Y, Fang M, Zhang J, Li S, Xia N, Zhao Q. Real-time stability of a hepatitis E vaccine (Hecolin®) demonstrated with potency assays and multifaceted physicochemical methods. Vaccine 2016; 34:5871-5877. [PMID: 27793484 DOI: 10.1016/j.vaccine.2016.10.045] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Revised: 10/14/2016] [Accepted: 10/17/2016] [Indexed: 12/21/2022]
Abstract
The first prophylactic vaccine against hepatitis E virus (HEV), Hecolin®, was licensed in China. Recombinant p239 virus-like particle (VLP) is its active component with dimeric protein as the basic building block harboring the immuno dominant and neutralizing epitopes. The real time and real condition stability of the prefilled syringes for the vaccine was demonstrated using both in vivo mouse potency and in vitro antigenicity assays. A total of 12 lots of Hecolin® were assessed with a set of assays after storage at 2-8°C for 24months. The particle characteristics of p239 VLP recovered from the aluminum-containing adjuvant was assessed with different methods including analytical ultracentrifugation, high performance size exclusion chromatography and transmission electron microscopy. The thermal and conformational stability of the adsorbed antigen was assessed using differential scanning calorimetry. The protein integrity of the recovered p239 antigen was demonstrated using SDS-PAGE with silvering staining, LC-MS and MALDI-TOF MS. Most importantly, the binding activity to the neutralizing antibody or vaccine antigenicity was measured using an epitope-specific and real-time SPR assay and a monoclonal antibody-based sandwich ELISA. Taken together, the overall good stability of the Hecolin® prefilled syringes was demonstrated with unaltered molecular and functional attributes after storage at 2-8°C for 24months.
Collapse
Affiliation(s)
- Xiao Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, Fujian 361005, PR China; School of Public Health, Xiamen University, Xiamen, Fujian 361005, PR China
| | - Minxi Wei
- Xiamen Innovax Biotech Co., Ltd, Xiamen, Fujian 361005, PR China
| | - Guang Sun
- Xiamen Innovax Biotech Co., Ltd, Xiamen, Fujian 361005, PR China
| | - Xin Wang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, Fujian 361005, PR China; School of Public Health, Xiamen University, Xiamen, Fujian 361005, PR China
| | - Min Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, Fujian 361005, PR China; School of Public Health, Xiamen University, Xiamen, Fujian 361005, PR China
| | - Zhijie Lin
- Xiamen Innovax Biotech Co., Ltd, Xiamen, Fujian 361005, PR China
| | - Zhongyi Li
- Xiamen Innovax Biotech Co., Ltd, Xiamen, Fujian 361005, PR China
| | - Yufang Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, Fujian 361005, PR China; School of Public Health, Xiamen University, Xiamen, Fujian 361005, PR China
| | - Mujin Fang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, Fujian 361005, PR China; School of Public Health, Xiamen University, Xiamen, Fujian 361005, PR China
| | - Jun Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, Fujian 361005, PR China; School of Public Health, Xiamen University, Xiamen, Fujian 361005, PR China
| | - Shaowei Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, Fujian 361005, PR China; School of Public Health, Xiamen University, Xiamen, Fujian 361005, PR China; School of Life Science, Xiamen University, Xiamen, Fujian 361005, PR China
| | - Ningshao Xia
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, Fujian 361005, PR China; School of Public Health, Xiamen University, Xiamen, Fujian 361005, PR China; School of Life Science, Xiamen University, Xiamen, Fujian 361005, PR China.
| | - Qinjian Zhao
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, Fujian 361005, PR China; School of Public Health, Xiamen University, Xiamen, Fujian 361005, PR China.
| |
Collapse
|
27
|
Abstract
INTRODUCTION Infection with hepatitis E virus (HEV) is the commonest cause of acute hepatitis worldwide. HEV was discovered in 1980s and is known to have small non-enveloped virions with single-stranded RNA genome of positive polarity. In recent years. In recent years, availability of new information has changed our understanding of this virus and the pathogenesis of the related disease. AREAS COVERED This article reviews the current knowledge about structure, genomic organization, taxonomy, genetic epidemiology, host specificity and replication of the human HEV and of various closely-related viruses that infect other animals. In addition, the models available for the study of HEV infection, the available information on the pathogenesis of this infection and the techniques available for its diagnosis are also reviewed. Expert commentary: A circulating, enveloped form of the human HEV has been recently recognized. Originally believed to naturally infect only humans and possibly primates, HEV-like viruses are now known to infect several vertebrate animals. Based on this, phylogenetic classification of these viruses has recently been revised. In vitro replicons and infection systems have been developed, which have improved our understanding about the virus and the pathogenesis of infection with it. Recent development of mouse models with chimeric livers that contain human hepatocytes provides another avenue for further advancement of this knowledge.
Collapse
Affiliation(s)
- Rakesh Aggarwal
- a Department of Gastroenterology , Sanjay Gandhi Postgraduate Institute of Medical Sciences , Lucknow , India
| | - Amit Goel
- a Department of Gastroenterology , Sanjay Gandhi Postgraduate Institute of Medical Sciences , Lucknow , India
| |
Collapse
|
28
|
Cai W, Tang ZM, Wen GP, Wang SL, Ji WF, Yang M, Ying D, Zheng ZZ, Xia NS. A high-throughput neutralizing assay for antibodies and sera against hepatitis E virus. Sci Rep 2016; 6:25141. [PMID: 27122081 PMCID: PMC4848499 DOI: 10.1038/srep25141] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 04/11/2016] [Indexed: 12/12/2022] Open
Abstract
Hepatitis E virus (HEV) is the aetiological agent of enterically transmitted hepatitis. The traditional methods for evaluating neutralizing antibody titres against HEV are real-time PCR and the immunofluorescence foci assay (IFA), which are poorly repeatable and operationally complicated, factors that limit their applicability to high-throughput assays. In this study, we developed a novel high-throughput neutralizing assay based on biotin-conjugated p239 (HEV recombinant capsid proteins, a.a. 368–606) and staining with allophycocyanin-conjugated streptavidin (streptavidin APC) to amplify the fluorescence signal. A linear regression analysis indicated that there was a high degree of correlation between IFA and the novel assay. Using this method, we quantitatively evaluated the neutralization of sera from HEV-infected and vaccinated macaques. The anti-HEV IgG level had good concordance with the neutralizing titres of macaque sera. However, the neutralization titres of the sera were also influenced by anti-HEV IgM responses. Further analysis also indicated that, although vaccination with HEV vaccine stimulated higher anti-HEV IgG and neutralization titres than infection with HEV in macaques, the proportions of neutralizing antibodies in the infected macaques’ sera were higher than in the vaccinated macaques with the same anti-HEV IgG levels. Thus, the infection more efficiently stimulated neutralizing antibody responses.
Collapse
Affiliation(s)
- Wei Cai
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, Xiamen University, Xiamen, Fujian 361005, PR China
| | - Zi-Min Tang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, Fujian 361005, PR China
| | - Gui-Ping Wen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, Fujian 361005, PR China
| | - Si-Ling Wang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, Fujian 361005, PR China
| | - Wen-Fang Ji
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, Xiamen University, Xiamen, Fujian 361005, PR China
| | - Min Yang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, Xiamen University, Xiamen, Fujian 361005, PR China
| | - Dong Ying
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, Xiamen University, Xiamen, Fujian 361005, PR China
| | - Zi-Zheng Zheng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, Fujian 361005, PR China
| | - Ning-Shao Xia
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, Xiamen University, Xiamen, Fujian 361005, PR China.,State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, Fujian 361005, PR China
| |
Collapse
|
29
|
Kobayashi T, Takahashi M, Jirintai S, Nagashima S, Nishizawa T, Okamoto H. Characterization and epitope mapping of monoclonal antibodies raised against rat hepatitis E virus capsid protein: An evaluation of their neutralizing activity in a cell culture system. J Virol Methods 2016; 233:78-88. [PMID: 26992654 DOI: 10.1016/j.jviromet.2016.03.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Revised: 03/10/2016] [Accepted: 03/12/2016] [Indexed: 01/23/2023]
Abstract
Hepatitis E virus (HEV) is the causative agent of acute hepatitis. Rat HEV is a recently discovered virus related to, but distinct from, human HEV. Since laboratory rats can be reproducibly infected with rat HEV and a cell culture system has been established for rat HEV, this virus may be used as a surrogate virus for human HEV, enabling studies on virus replication and mechanism of infection. However, monoclonal antibodies (MAbs) against rat HEV capsid (ORF2) protein are not available. In this study, 12 murine MAbs were generated against a recombinant ORF2 protein of rat HEV (rRatHEV-ORF2: amino acids 101-644) and were classified into at least six distinct groups by epitope mapping and a cross-reactivity analysis with human HEV ORF2 proteins. Two non-cross-reactive MAbs recognizing the protruding (P) domain detected both non-denatured and denatured rRatHEV-ORF2 protein and efficiently captured cell culture-produced rat HEV particles that had been treated with deoxycholate and trypsin, but not those without prior treatment. In addition, these two MAbs were able to efficiently neutralize replication of cell culture-generated rat HEV particles without lipid membranes (but not those with lipid membranes) in a cell culture system, similar to human HEV.
Collapse
Affiliation(s)
- Tominari Kobayashi
- Division of Virology, Department of Infection and Immunity, Jichi Medical University School of Medicine, 3311-1 Yakushiji, Shimotsuke-Shi, Tochigi 329-0498, Japan
| | - Masaharu Takahashi
- Division of Virology, Department of Infection and Immunity, Jichi Medical University School of Medicine, 3311-1 Yakushiji, Shimotsuke-Shi, Tochigi 329-0498, Japan
| | - Suljid Jirintai
- Division of Virology, Department of Infection and Immunity, Jichi Medical University School of Medicine, 3311-1 Yakushiji, Shimotsuke-Shi, Tochigi 329-0498, Japan
| | - Shigeo Nagashima
- Division of Virology, Department of Infection and Immunity, Jichi Medical University School of Medicine, 3311-1 Yakushiji, Shimotsuke-Shi, Tochigi 329-0498, Japan
| | - Tsutomu Nishizawa
- Division of Virology, Department of Infection and Immunity, Jichi Medical University School of Medicine, 3311-1 Yakushiji, Shimotsuke-Shi, Tochigi 329-0498, Japan
| | - Hiroaki Okamoto
- Division of Virology, Department of Infection and Immunity, Jichi Medical University School of Medicine, 3311-1 Yakushiji, Shimotsuke-Shi, Tochigi 329-0498, Japan.
| |
Collapse
|
30
|
Xia M, Wei C, Wang L, Cao D, Meng XJ, Jiang X, Tan M. A trivalent vaccine candidate against hepatitis E virus, norovirus, and astrovirus. Vaccine 2016; 34:905-13. [PMID: 26778421 PMCID: PMC4732564 DOI: 10.1016/j.vaccine.2015.12.068] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 12/25/2015] [Accepted: 12/30/2015] [Indexed: 02/07/2023]
Abstract
Hepatitis E virus (HEV), norovirus (NoV), and astrovirus (AstV) are enterically-transmitted viral pathogens causing epidemic or endemic hepatitis (HEV) and gastroenteritis (NoV and AstV) respectively in humans, leading to significant morbidity and mortality worldwide. While a recombinant subunit vaccine against HEVs is available in China, there is no commercial vaccine or antiviral against NoV or AstV. We report here our development of a trivalent vaccine against the three viral pathogens through our new polymer vaccine technology. All HEV, NoV, and AstV are non-enveloped RNA viruses covered by a protein capsid, featuring surface protruding (P) proteins that are responsible for virus-host interaction. These dimeric P proteins elicit neutralizing antibody and are good targets for subunit vaccine development. The trivalent subunit vaccine was developed by fusion of the dimeric P domains of the three viruses together that formed tetramers. This trivalent vaccine elicited significantly higher antibody responses in mice against all three P domains than those induced by a mixture of the three free P domains (mixed vaccine). Furthermore, the post-immune antisera of the trivalent vaccine showed significantly higher neutralizing titers against HEV infection in cell culture and higher blocking activity against NoV binding to HBGA ligands than those of the post-immune sera of the mixed vaccine. Thus, the trivalent vaccine is a promising vaccine candidate against HEV, NoV, and AstV.
Collapse
Affiliation(s)
- Ming Xia
- Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Chao Wei
- Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Leyi Wang
- Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Dianjun Cao
- Department of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Xiang-Jin Meng
- Department of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Xi Jiang
- Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Ming Tan
- Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States.
| |
Collapse
|
31
|
Wang X, Li M, Li S, Wu T, Zhang J, Xia N, Zhao Q. Prophylaxis against hepatitis E: at risk populations and human vaccines. Expert Rev Vaccines 2016; 15:815-27. [PMID: 26775537 DOI: 10.1586/14760584.2016.1143365] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Hepatitis E is an emerging global disease caused by hepatitis E virus (HEV) infection. While in developing countries the infection was primarily due to poor sanitary conditions through intake of contaminated water or undercooked meats of infected animals, increasing cases of chronic hepatitis E resulting in rapidly progressive liver cirrhosis and end-stage liver disease have been reported in organ transplant patients or in immune compromised patients in developed countries. Fortunately, hepatitis E is now a vaccine preventable disease with a HEV239 based vaccine licensed for human use. Much work is needed to enable its use outside China. This review recounted the development process of the vaccine, outlined the critical quality attributes of the vaccine antigen and, most importantly, listed the populations at risk for HEV infection and the subsequent disease. These at risk populations could benefit the most from the vaccination if the vaccine is widely adopted.
Collapse
Affiliation(s)
- Xin Wang
- a State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases , Xiamen University , Xiamen , PR China.,b School of Public Health , Xiamen University , Xiamen , PR China
| | - Min Li
- a State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases , Xiamen University , Xiamen , PR China.,b School of Public Health , Xiamen University , Xiamen , PR China
| | - Shaowei Li
- a State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases , Xiamen University , Xiamen , PR China.,b School of Public Health , Xiamen University , Xiamen , PR China.,c School of Life Science , Xiamen University , Xiamen , PR China
| | - Ting Wu
- a State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases , Xiamen University , Xiamen , PR China.,b School of Public Health , Xiamen University , Xiamen , PR China.,c School of Life Science , Xiamen University , Xiamen , PR China
| | - Jun Zhang
- a State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases , Xiamen University , Xiamen , PR China.,b School of Public Health , Xiamen University , Xiamen , PR China.,c School of Life Science , Xiamen University , Xiamen , PR China
| | - Ningshao Xia
- a State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases , Xiamen University , Xiamen , PR China.,b School of Public Health , Xiamen University , Xiamen , PR China.,c School of Life Science , Xiamen University , Xiamen , PR China
| | - Qinjian Zhao
- a State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases , Xiamen University , Xiamen , PR China.,b School of Public Health , Xiamen University , Xiamen , PR China
| |
Collapse
|
32
|
Li SW, Zhao Q, Wu T, Chen S, Zhang J, Xia NS. The development of a recombinant hepatitis E vaccine HEV 239. Hum Vaccin Immunother 2016; 11:908-14. [PMID: 25714510 DOI: 10.1080/21645515.2015.1008870] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Hepatitis E virus (HEV) infection is one of the main causes of acute hepatitis worldwide. A recombinant hepatitis E vaccine, HEV 239, has been licensed in China for immunizing adults of 16 y old and above. The vaccine antigen contains pORF2 aa 368 - 606 of the HEV genotype 1 expressed in E. coli. The quality of the vaccine is controlled through a combination of biophysical, biochemical and immunochemical methods. The vaccine is well tolerated in adults. The efficacy of the HEV 239 vaccine against symptomatic and asymptomatic infection had been proven to be high during a Phase III clinical trial and long-term follow up. The safety and efficacy of HEV 239 vaccine in certain high-risk populations remains to be further investigated.
Collapse
Affiliation(s)
- Shao-Wei Li
- a National Institute of Diagnostics and Vaccine Development in Infectious Diseases ; Xiamen University ; Xiamen , PR China
| | | | | | | | | | | |
Collapse
|
33
|
Jain NK, Sahni N, Kumru OS, Joshi SB, Volkin DB, Russell Middaugh C. Formulation and stabilization of recombinant protein based virus-like particle vaccines. Adv Drug Deliv Rev 2015; 93:42-55. [PMID: 25451136 DOI: 10.1016/j.addr.2014.10.023] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 10/15/2014] [Accepted: 10/18/2014] [Indexed: 02/06/2023]
Abstract
Vaccine formulation development has traditionally focused on improving antigen storage stability and compatibility with conventional adjuvants. More recently, it has also provided an opportunity to modify the interaction and presentation of an antigen/adjuvant to the immune system to better stimulate the desired immune responses for maximal efficacy. In the last decade, there has been a paradigm shift in vaccine antigen and formulation design involving an improved physical understanding of antigens and a better understanding of the immune system. In addition, the discovery of novel adjuvants and delivery systems promises to further improve the design of new, more effective vaccines. Here we describe some of the fundamental aspects of formulation design applicable to virus-like-particle based vaccine antigens (VLPs). Case studies are presented for commercially approved VLP vaccines as well as some investigational VLP vaccine candidates. An emphasis is placed on the biophysical analysis of vaccines to facilitate formulation and stabilization of these particulate antigens.
Collapse
|
34
|
You M, Xin L, Yang Y, Zhang X, Chen Y, Yu H, Li S, Zhang J, An Z, Luo W, Xia N. Investigation of a special neutralizing epitope of HEV E2s. Protein Cell 2015; 5:950-3. [PMID: 25416205 PMCID: PMC4259887 DOI: 10.1007/s13238-014-0115-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Min You
- National institute of diagnostics and vaccine development in infectious diseases, Xiamen University, Xiamen, 361105, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Zhao M, Li XJ, Tang ZM, Yang F, Wang SL, Cai W, Zhang K, Xia NS, Zheng ZZ. A Comprehensive Study of Neutralizing Antigenic Sites on the Hepatitis E Virus (HEV) Capsid by Constructing, Clustering, and Characterizing a Tool Box. J Biol Chem 2015; 290:19910-22. [PMID: 26085097 DOI: 10.1074/jbc.m115.649764] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Indexed: 01/31/2023] Open
Abstract
The hepatitis E virus (HEV) ORF2 encodes a single structural capsid protein. The E2s domain (amino acids 459-606) of the capsid protein has been identified as the major immune target. All identified neutralizing epitopes are located on this domain; however, a comprehensive characterization of antigenic sites on the domain is lacking due to its high degree of conformation dependence. Here, we used the statistical software SPSS to analyze cELISA (competitive ELISA) data to classify monoclonal antibodies (mAbs), which recognized conformational epitopes on E2s domain. Using this novel analysis method, we identified various conformational mAbs that recognized the E2s domain. These mAbs were distributed into 6 independent groups, suggesting the presence of at least 6 epitopes. Twelve representative mAbs covering the six groups were selected as a tool box to further map functional antigenic sites on the E2s domain. By combining functional and location information of the 12 representative mAbs, this study provided a complete picture of potential neutralizing epitope regions and immune-dominant determinants on E2s domain. One epitope region is located on top of the E2s domain close to the monomer interface; the other is located on the monomer side of the E2s dimer around the groove zone. Besides, two non-neutralizing epitopes were also identified on E2s domain that did not stimulate neutralizing antibodies. Our results help further the understanding of protective mechanisms induced by the HEV vaccine. Furthermore, the tool box with 12 representative mAbs will be useful for studying the HEV infection process.
Collapse
Affiliation(s)
- Min Zhao
- From the State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, and
| | - Xiao-Jing Li
- From the State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, and
| | - Zi-Min Tang
- the School of Public Health, Xiamen University, Xiamen, Fujian 361005, People's Republic of China
| | - Fan Yang
- the School of Public Health, Xiamen University, Xiamen, Fujian 361005, People's Republic of China
| | - Si-Ling Wang
- the School of Public Health, Xiamen University, Xiamen, Fujian 361005, People's Republic of China
| | - Wei Cai
- From the State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, and
| | - Ke Zhang
- the School of Public Health, Xiamen University, Xiamen, Fujian 361005, People's Republic of China
| | - Ning-Shao Xia
- From the State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, and the School of Public Health, Xiamen University, Xiamen, Fujian 361005, People's Republic of China
| | - Zi-Zheng Zheng
- the School of Public Health, Xiamen University, Xiamen, Fujian 361005, People's Republic of China
| |
Collapse
|
36
|
Tang ZM, Tang M, Zhao M, Wen GP, Yang F, Cai W, Wang SL, Zheng ZZ, Xia NS. A novel linear neutralizing epitope of hepatitis E virus. Vaccine 2015; 33:3504-11. [PMID: 26051517 DOI: 10.1016/j.vaccine.2015.05.065] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2015] [Revised: 05/14/2015] [Accepted: 05/23/2015] [Indexed: 01/21/2023]
Abstract
Hepatitis E virus (HEV) is a serious public health problem that causes acute hepatitis in humans and is primarily transmitted through fecal and oral routes. The major anti-HEV antibody responses are against conformational epitopes located in a.a. 459-606 of HEV pORF2. All reported neutralization epitopes are present on the dimer domain constructed by this peptide. While looking for a neutralizing monoclonal antibody (MAb)-recognized linear epitope, we found a novel neutralizing linear epitope (L2) located in a.a. 423-437 of pORF2. Moreover, epitope L2 is proved non-immunodominant in the HEV-infection process. Using the hepatitis B virus core protein (HBc) as a carrier to display this novel linear epitope, we show herein that this epitope could induce a neutralizing antibody response against HEV in mice and could protect rhesus monkeys from HEV infection. Collectively, our results showed a novel non-immunodominant linear neutralizing epitope of hepatitis E virus, which provided additional insight of HEV vaccine.
Collapse
Affiliation(s)
- Zi-Min Tang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, Fujian 361005, PR China
| | - Ming Tang
- School of Life Sciences, Xiamen University, Xiamen, Fujian 361005, PR China
| | - Min Zhao
- School of Life Sciences, Xiamen University, Xiamen, Fujian 361005, PR China
| | - Gui-Ping Wen
- School of Life Sciences, Xiamen University, Xiamen, Fujian 361005, PR China
| | - Fan Yang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, Fujian 361005, PR China
| | - Wei Cai
- School of Life Sciences, Xiamen University, Xiamen, Fujian 361005, PR China
| | - Si-Ling Wang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, Fujian 361005, PR China
| | - Zi-Zheng Zheng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, Fujian 361005, PR China.
| | - Ning-Shao Xia
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, Fujian 361005, PR China; School of Life Sciences, Xiamen University, Xiamen, Fujian 361005, PR China.
| |
Collapse
|
37
|
Lessons from hepatitis E vaccine design. Curr Opin Virol 2015; 11:130-6. [PMID: 25913817 DOI: 10.1016/j.coviro.2015.04.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 04/01/2015] [Accepted: 04/06/2015] [Indexed: 12/29/2022]
Abstract
Acute hepatitis E is still a major public health issue, especially in developing countries, and hepatitis E virus (HEV) infection will likely only be preventable through prophylactic vaccines. In this review, we describe the lessons learnt from developing the first commercial hepatitis E vaccine (Hecolin), launched to market in China in 2012. The antigenicity and immunogenicity of VLP immunogens concomitant with the scalable Escherichia coli system and our large-scale clinical verification resulted in the success of our vaccine. The structures of the HEV capsid protein in complex with different antibodies provide important molecular insights into capsid assembly and antibody neutralization of the virus, providing a paradigm for B-cell epitope-based vaccine design.
Collapse
|
38
|
Gu Y, Tang X, Zhang X, Song C, Zheng M, Wang K, Zhang J, Ng MH, Hew CL, Li S, Xia N, Sivaraman J. Structural basis for the neutralization of hepatitis E virus by a cross-genotype antibody. Cell Res 2015; 25:604-20. [PMID: 25793314 DOI: 10.1038/cr.2015.34] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 11/17/2014] [Accepted: 12/23/2014] [Indexed: 12/26/2022] Open
Abstract
Hepatitis E virus (HEV), a non-enveloped, positive-sense, single-stranded RNA virus, is a major cause of enteric hepatitis. Classified into the family Hepeviridae, HEV comprises four genotypes (genotypes 1-4), which belong to a single serotype. We describe a monoclonal antibody (mAb), 8G12, which equally recognizes all four genotypes of HEV, with ∼ 2.53-3.45 nM binding affinity. The mAb 8G12 has a protective, neutralizing capacity, which can significantly block virus infection in host cells. Animal studies with genotypes 1, 3 and 4 confirmed the cross-genotype neutralizing capacity of 8G12 and its effective prevention of hepatitis E disease. The complex crystal structures of 8G12 with the HEV E2s domain (the most protruded region of the virus capsid) of the abundant genotypes 1 and 4 were determined at 4.0 and 2.3 Å resolution, respectively. These structures revealed that 8G12 recognizes both genotypes through the epitopes in the E2s dimerization region. Structure-based mutagenesis and cell-model assays with virus-like particles identified several conserved residues (Glu549, Lys554 and Gly591) that are essential for 8G12 neutralization. Moreover, the epitope of 8G12 is identified as a key epitope involved in virus-host interactions. These findings will help develop a common strategy for the prevention of the most abundant form of HEV infection.
Collapse
Affiliation(s)
- Ying Gu
- 1] State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, Xiamen University, Xiamen, Fujian 361005, China [2] National Institute of Diagnostics and Vaccine Development in Infectious Disease, School of Public Health, Xiamen University, Xiamen, Fujian 361005, China
| | - Xuhua Tang
- 1] Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore [2] Current address: Institute of Molecular and Cell Biology, Singapore 138673, Singapore
| | - Xiao Zhang
- National Institute of Diagnostics and Vaccine Development in Infectious Disease, School of Public Health, Xiamen University, Xiamen, Fujian 361005, China
| | - Cuiling Song
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, Xiamen University, Xiamen, Fujian 361005, China
| | - Minghua Zheng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, Xiamen University, Xiamen, Fujian 361005, China
| | - Kaihang Wang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, Xiamen University, Xiamen, Fujian 361005, China
| | - Jun Zhang
- National Institute of Diagnostics and Vaccine Development in Infectious Disease, School of Public Health, Xiamen University, Xiamen, Fujian 361005, China
| | - Mun-Hon Ng
- 1] State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, Xiamen University, Xiamen, Fujian 361005, China [2] National Institute of Diagnostics and Vaccine Development in Infectious Disease, School of Public Health, Xiamen University, Xiamen, Fujian 361005, China
| | - Choy-Leong Hew
- 1] Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore [2] Current address: Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore
| | - Shaowei Li
- 1] State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, Xiamen University, Xiamen, Fujian 361005, China [2] National Institute of Diagnostics and Vaccine Development in Infectious Disease, School of Public Health, Xiamen University, Xiamen, Fujian 361005, China
| | - Ningshao Xia
- 1] State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, Xiamen University, Xiamen, Fujian 361005, China [2] National Institute of Diagnostics and Vaccine Development in Infectious Disease, School of Public Health, Xiamen University, Xiamen, Fujian 361005, China
| | - J Sivaraman
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore
| |
Collapse
|
39
|
Haffar S, Bazerbachi F, Lake JR. Making the case for the development of a vaccination against hepatitis E virus. Liver Int 2015; 35:311-6. [PMID: 24836400 DOI: 10.1111/liv.12590] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Accepted: 05/11/2014] [Indexed: 01/03/2023]
Abstract
Hepatitis E virus (HEV) infection is a global problem that affects 20 million individuals, and cause acute hepatitis in 3.5 million, with approximately 70,000 deaths worldwide per year. While the acute disease is generally self-limited, however, it may progress to fatal fulminant liver failure in certain individuals. Contaminated water supplies disseminate this virus through the faecal-oral route, and swine is thought to be its zoonotic reservoir. Attempts have been made to develop effective HEV vaccines, and two candidates have undergone successful clinical trials. In this review, we discuss HEV epidemiology, genotypes, microbiological structure, as well as the most recent advances in vaccination developments.
Collapse
Affiliation(s)
- Samir Haffar
- Department of Gastroenterology, Al-Mouassat University Hospital, Damascus, Syria
| | | | | |
Collapse
|
40
|
Zhang Y, Li M, Yang F, Li Y, Zheng Z, Zhang X, Lin Q, Wang Y, Li S, Xia N, Zhang J, Zhao Q. Comparable quality attributes of hepatitis E vaccine antigen with and without adjuvant adsorption-dissolution treatment. Hum Vaccin Immunother 2015; 11:1129-39. [PMID: 26018442 PMCID: PMC4514398 DOI: 10.1080/21645515.2015.1009343] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2014] [Revised: 10/24/2014] [Accepted: 11/08/2014] [Indexed: 12/17/2022] Open
Abstract
Most vaccines require adjuvants for antigen stabilization and immune potentiation. Aluminum-based adjuvants are the most widely used adjuvants for human vaccines. Previous reports demonstrated the preservation of antigen conformation and other antigen characteristics after recovery from adjuvanted Hepatitis B and human papillomavirus vaccines. In this study, we used a combination of various physiochemical and immunochemical methods to analyze hepatitis E vaccine antigen quality attributes after recovery from adjuvants. All biochemical and biophysical methods showed similar characteristics of the p239 protein after recovery from adjuvanted vaccine formulation compared to the antigen in solution which never experienced adsorption/desorption process. Most importantly, we demonstrated full preservation of key antigen epitopes post-recovery from adjuvanted vaccine using a panel of murine monoclonal antibodies as exquisite probes. Antigenicity of p239 was probed with a panel of 9 mAbs using competition/blocking ELISA, surface plasmon resonance and sandwich ELISA methods. These multifaceted analyses demonstrated the preservation of antigen key epitopes and comparable protein thermal stability when adsorbed on adjuvants or of the recovered antigen post-dissolution treatment. A better understanding of the antigen conformation in adjuvanted vaccine will enhanced our knowledge of antigen-adjuvant interactions and facilitate an improved process control and development of stable vaccine formulation.
Collapse
Affiliation(s)
- Yue Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics; National Institute of Diagnostics and Vaccine Development in Infectious Diseases; Xiamen University; Xiamen, Fujian, PR China
- School of Life Science; Xiamen University; Xiamen, Fujian, PR China
| | - Min Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics; National Institute of Diagnostics and Vaccine Development in Infectious Diseases; Xiamen University; Xiamen, Fujian, PR China
- School of Public Health; Xiamen University; Xiamen, Fujian, PR China
| | - Fan Yang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics; National Institute of Diagnostics and Vaccine Development in Infectious Diseases; Xiamen University; Xiamen, Fujian, PR China
- School of Public Health; Xiamen University; Xiamen, Fujian, PR China
| | - Yufang Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics; National Institute of Diagnostics and Vaccine Development in Infectious Diseases; Xiamen University; Xiamen, Fujian, PR China
- School of Public Health; Xiamen University; Xiamen, Fujian, PR China
| | - Zizheng Zheng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics; National Institute of Diagnostics and Vaccine Development in Infectious Diseases; Xiamen University; Xiamen, Fujian, PR China
- School of Public Health; Xiamen University; Xiamen, Fujian, PR China
| | - Xiao Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics; National Institute of Diagnostics and Vaccine Development in Infectious Diseases; Xiamen University; Xiamen, Fujian, PR China
- School of Public Health; Xiamen University; Xiamen, Fujian, PR China
| | - Qingshan Lin
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics; National Institute of Diagnostics and Vaccine Development in Infectious Diseases; Xiamen University; Xiamen, Fujian, PR China
- School of Life Science; Xiamen University; Xiamen, Fujian, PR China
| | - Ying Wang
- China National Center for Biotechnology Development; Beijing, PR China
| | - Shaowei Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics; National Institute of Diagnostics and Vaccine Development in Infectious Diseases; Xiamen University; Xiamen, Fujian, PR China
- School of Life Science; Xiamen University; Xiamen, Fujian, PR China
- School of Public Health; Xiamen University; Xiamen, Fujian, PR China
| | - Ningshao Xia
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics; National Institute of Diagnostics and Vaccine Development in Infectious Diseases; Xiamen University; Xiamen, Fujian, PR China
- School of Life Science; Xiamen University; Xiamen, Fujian, PR China
- School of Public Health; Xiamen University; Xiamen, Fujian, PR China
| | - Jun Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics; National Institute of Diagnostics and Vaccine Development in Infectious Diseases; Xiamen University; Xiamen, Fujian, PR China
- School of Public Health; Xiamen University; Xiamen, Fujian, PR China
| | - Qinjian Zhao
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics; National Institute of Diagnostics and Vaccine Development in Infectious Diseases; Xiamen University; Xiamen, Fujian, PR China
- School of Public Health; Xiamen University; Xiamen, Fujian, PR China
| |
Collapse
|
41
|
Abstract
Hepatitis E virus (HEV) is a serious public health problem. The commonly used tests that are specific for current HEV infection diagnosis include the detection of anti-HEV IgM and HEV RNA. Here, we report an improved enzyme-linked immunosorbent assay (ELISA) method for HEV antigen detection with a linear range equivalent to 6.3 × 10(3) to 9.2 × 10(5) RNA copies per ml. The monoclonal antibody (MAb) 12F12, a high-ability MAb that binds HEV virus, was selected as the capture antibody from a panel of 95 MAbs. The positive period of HEV antigenemia in infected monkeys using this test was, on average, 3 weeks longer than previously reported and covered the majority of the acute phase. The positive detection rates of IgM, RNA, and new antigen from the first serum samples collected from 16 confirmed acute hepatitis E patients were 81% (13/16), 81% (13/16), and 100% (16/16), respectively. In three patients, the initial serum specimens that tested negative for IgM, despite the presence of symptoms of acute hepatitis and elevated alanine aminotransferase (ALT) levels, were positive for HEV antigen and HEV RNA. In contrast, the serum samples of the three RNA-negative patients were antigen positive (and IgM positive), possibly due to the degradation of HEV nucleic acids. Our results suggest that this new antigen detection method has acceptable concordance with RNA detection and could serve as an important tool for diagnosing acute hepatitis E.
Collapse
|
42
|
Pezzoni G, Caminiti A, Stercoli L, Grazioli S, Galletti G, Santi A, Tamba M, Brocchi E. Comparison of three in-house ELISAs for the detection of hepatitis E virus infection in pigs under field conditions. J Virol Methods 2014; 207:95-103. [PMID: 25010789 DOI: 10.1016/j.jviromet.2014.06.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 06/25/2014] [Accepted: 06/27/2014] [Indexed: 01/21/2023]
Abstract
Hepatitis E virus (HEV) is a RNA non-enveloped virus that comprises four genotypes. The genome of HEV is organized into three Open Reading Frames (ORFs), and the ORF2 is responsible for encoding capsid proteins. HEV can infect a wide range of hosts, and pigs are considered the main reservoir. HEV infection is considered a zoonosis and it is responsible for acute hepatitis in humans, especially in developing countries. The development of a blocking ELISA would be of high value for screening purpose, because there is no need of species specific reagents. The present study was conducted to assess three in-house ELISAs for the detection of HEV infection in 779 sera collected from breeding and fattening farms under field conditions. Two assays were indirect ELISAs, while the third was a blocking ELISA. Two different recombinant antigens were generated from specific sequences of the HEV-ORF2, and a Latent Class approach in a Bayesian framework was used to evaluate the diagnostic accuracy of each ELISA. Because the three ELISAs cannot be thought of as independent, all possible dependence structures were modelled starting from the general case of conditional independence to the most complex situation of three mutually dependent assays. Results showed that none of the three ELISAs was significantly superior to the others in terms of sensitivity (posterior median value ranging from 89% to 94%, all 95% posterior credible intervals (95%PCI) overlapped). In terms of specificity, one of the indirect ELISAs was superior to blocking ELISA (posterior median indirect ELISA: 99%, 95%PCI: 98-100%; blocking ELISA: 90%; 95%PCI: 86-94%). However, this difference could be due to the potential wider spectrum of antibodies that blocking ELISA can actually detect.
Collapse
Affiliation(s)
- Giulia Pezzoni
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia-Romagna, Via Bianchi 9, 25124 Brescia, Italy.
| | - Antonino Caminiti
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia-Romagna, Via Bianchi 9, 25124 Brescia, Italy.
| | - Lidia Stercoli
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia-Romagna, Via Bianchi 9, 25124 Brescia, Italy.
| | - Santina Grazioli
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia-Romagna, Via Bianchi 9, 25124 Brescia, Italy.
| | - Giorgio Galletti
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia-Romagna, Via Bianchi 9, 25124 Brescia, Italy.
| | - Annalisa Santi
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia-Romagna, Via Bianchi 9, 25124 Brescia, Italy.
| | - Marco Tamba
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia-Romagna, Via Bianchi 9, 25124 Brescia, Italy.
| | - Emiliana Brocchi
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia-Romagna, Via Bianchi 9, 25124 Brescia, Italy.
| |
Collapse
|
43
|
Robust manufacturing and comprehensive characterization of recombinant hepatitis E virus-like particles in Hecolin(®). Vaccine 2014; 32:4039-50. [PMID: 24892250 DOI: 10.1016/j.vaccine.2014.05.064] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 05/02/2014] [Accepted: 05/20/2014] [Indexed: 12/28/2022]
Abstract
The hepatitis E virus (HEV) vaccine, Hecolin(®), was licensed in China for the prevention of HEV infection and HEV-related diseases with demonstrated safety and efficacy [1,2]. The vaccine is composed of a truncated HEV capsid protein, p239, as the sole antigen encoded by open reading frame 2 and produced using Escherichia coli platform. The production of this virus-like particle (VLP) form of the antigen was successfully scaled up 50-fold from a bench scale to a manufacturing scale. Product consistency was demonstrated using a combination of biophysical, biochemical and immunochemical methods, which revealed comparable antigen characteristics among different batches. Particle size of the nanometer scale particulate antigen and presence of key epitopes on the particle surface are two prerequisites for an efficacious VLP-based vaccine. The particle size was monitored by several different methods, which showed diameters between 20 and 30nm for the p239 particles. The thermal stability and aggregation propensity of the antigen were assessed using differential scanning calorimetry and cloud point assay under heat stress conditions. Key epitopes on the particulate antigen were analyzed using a panel of murine anti-HEV monoclonal antibodies (mAbs). The immuno reactivity to the mAbs among the different antigen lots was highly consistent when analyzed quantitatively using a surface plasmon resonance technique. Using a sandwich ELISA to probe the integrity of two different epitopes in the antigen, the specific antigenicity of multiple batches was assessed to demonstrate consistency in these critical product attributes. Overall, our findings showed that the antigen production process is robust and scalable during the manufacturing of Hecolin(®).
Collapse
|
44
|
Wei M, Zhang X, Yu H, Tang ZM, Wang K, Li Z, Zheng Z, Li S, Zhang J, Xia N, Zhao Q. Bacteria expressed hepatitis E virus capsid proteins maintain virion-like epitopes. Vaccine 2014; 32:2859-65. [PMID: 24662711 DOI: 10.1016/j.vaccine.2014.02.025] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The protein encoded by ORF2 in hepatitis E virus (HEV) is the only capsid protein for this single-stranded RNA virus. It was previously shown that 148 aa (aa 459-606) was needed for dimer formation, whereas 239 aa (aa 368-606) was necessary to form virus-like particles (VLPs). The self-assembled VLPs of p239 were characterized with a series of methods including high performance size-exclusion chromatography to demonstrate the particulate nature of purified and properly refolded p239. A neutralizing and protective mouse monoclonal antibody (mAb) 8C11 was previously shown to bind three discontinuous peptide segments in the dimer. In addition to the good binding activity to recombinant dimeric form, E2s or E2, and VLP form p239, we demonstrated that 8C11 was able to capture the authentic HEV virions. The capability of virus capturing was demonstrated with a titration curve from 10(5) to 10(7) HEV genome copies, making binding activity to 8C11 a surrogate marker of virion-like epitopes on recombinant VLPs as well as vaccine efficacy in eliciting protective and neutralizing antibodies. Taken together, it was demonstrated that Escherichia coli expressed pORF2 proteins, p239 in particular, maintain the virion-like epitopes on VLP surface. This is consistent with the fact that p239 was demonstrated to be an effective prophylactic vaccine (recently licensed as Hecolin(®) in China) against HEV-induced hepatitis in a large scale clinical trial.
Collapse
Affiliation(s)
- Minxi Wei
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen 361005, Fujian PR China; School of Life Sciences, Xiamen University, Xiamen 361005, Fujian, PR China
| | - Xiao Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen 361005, Fujian PR China; School of Public Health, Xiamen University, Xiamen 361005, Fujian PR China
| | - Hai Yu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen 361005, Fujian PR China; School of Public Health, Xiamen University, Xiamen 361005, Fujian PR China; School of Life Sciences, Xiamen University, Xiamen 361005, Fujian, PR China
| | - Zi-Min Tang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen 361005, Fujian PR China; School of Life Sciences, Xiamen University, Xiamen 361005, Fujian, PR China
| | - Kaihang Wang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen 361005, Fujian PR China; School of Life Sciences, Xiamen University, Xiamen 361005, Fujian, PR China
| | - Zhongyi Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen 361005, Fujian PR China; School of Life Sciences, Xiamen University, Xiamen 361005, Fujian, PR China
| | - Zizheng Zheng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen 361005, Fujian PR China; School of Public Health, Xiamen University, Xiamen 361005, Fujian PR China; School of Life Sciences, Xiamen University, Xiamen 361005, Fujian, PR China
| | - Shaowei Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen 361005, Fujian PR China; School of Public Health, Xiamen University, Xiamen 361005, Fujian PR China; School of Life Sciences, Xiamen University, Xiamen 361005, Fujian, PR China
| | - Jun Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen 361005, Fujian PR China; School of Public Health, Xiamen University, Xiamen 361005, Fujian PR China; School of Life Sciences, Xiamen University, Xiamen 361005, Fujian, PR China
| | - Ningshao Xia
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen 361005, Fujian PR China; School of Public Health, Xiamen University, Xiamen 361005, Fujian PR China; School of Life Sciences, Xiamen University, Xiamen 361005, Fujian, PR China.
| | - Qinjian Zhao
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen 361005, Fujian PR China; School of Public Health, Xiamen University, Xiamen 361005, Fujian PR China.
| |
Collapse
|
45
|
Wang L, Cao D, Wei C, Meng XJ, Jiang X, Tan M. A dual vaccine candidate against norovirus and hepatitis E virus. Vaccine 2014; 32:445-52. [PMID: 24291540 PMCID: PMC3898346 DOI: 10.1016/j.vaccine.2013.11.064] [Citation(s) in RCA: 161] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 11/06/2013] [Accepted: 11/15/2013] [Indexed: 02/07/2023]
Abstract
Norovirus (NoV) and hepatitis E virus (HEV) are both enterically-transmitted viruses causing gastroenteritis and hepatitis, respectively, in humans. While a vaccine against HEVs recently became available in China, there is no prophylactic or therapeutic approach against NoVs. Both NoV and HEV have surface protrusions formed by dimers of the protruding (P) domains of the viral capsids, which is responsible for virus-host interactions and eliciting viral neutralizing antibody. We developed in this study a bivalent vaccine against the two viruses through a recently developed polyvalent complex platform. The dimeric P domains of NoV and HEV were fused together, designated as NoV P(-)-HEV P, which was then linked with the dimeric glutathione-S-transferase (GST). After expression and purification in E. coli, the GST-NoV P(-)-HEV P fusion protein assembled into polyvalent complexes with a mean size of 1.8μm, while the NoV P(-)-HEV P formed oligomers ranging from 100 to 420kDa. Mouse immunization study demonstrated that both GST-NoV P(-)-HEV P and NoV P(-)-HEV P complexes induced significantly higher antibody titers to NoV P(-) and HEV P, respectively, than those induced by a mixture of the NoV P(-) and HEV P dimers. Furthermore, the complex-induced antisera exhibited significantly higher neutralizing activity against HEV infection in HepG2/3A cells and higher blocking activity on NoV P particles binding to HBGA receptors than those of the dimer-induced antisera. Thus, GST-NoV P(-)-HEV P and NoV P(-)-HEV P complexes are promising dual vaccine candidates against both NoV and HEV.
Collapse
Affiliation(s)
- Leyi Wang
- Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, United States
| | - Dianjun Cao
- Department of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States
| | - Chao Wei
- Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, United States
| | - Xiang-Jin Meng
- Department of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States
| | - Xi Jiang
- Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, United States; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Ming Tan
- Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, United States; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States.
| |
Collapse
|
46
|
Xu C, Wang RY, Schechterly CA, Ge S, Shih JW, Xia NS, Luban NLC, Alter HJ. An assessment of hepatitis E virus (HEV) in US blood donors and recipients: no detectable HEV RNA in 1939 donors tested and no evidence for HEV transmission to 362 prospectively followed recipients. Transfusion 2013; 53:2505-11. [PMID: 23829163 DOI: 10.1111/trf.12326] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 05/28/2013] [Accepted: 05/28/2013] [Indexed: 02/06/2023]
Abstract
BACKGROUND Hepatitis E virus (HEV) infection has become relevant to blood transfusion practice because isolated cases of blood transmission have been reported and because HEV has been found to cause chronic infection and severe liver disease in immunocompromised patients. STUDY DESIGN AND METHODS We tested for immunoglobulin (Ig)G and IgM antibodies to the HEV and for HEV RNA in 1939 unselected volunteer US blood donors. Subsequently, we tested the same variables in pre- and serial posttransfusion samples from 362 prospectively followed blood recipients to assess transfusion risk. RESULTS IgG anti-HEV seroprevalence in the total 1939 donations was 18.8%: 916 of these donations were made in 2006 at which time the seroprevalence was 21.8% and the remaining 1023 donations were in 2012 when the seroprevalence had decreased to 16.0% (p < 0.01). A significant (p < 0.001) stepwise increase in anti-HEV seroprevalence was seen with increasing age. Eight of 1939 donations (0.4%) tested anti-HEV IgM positive; no donation was HEV RNA positive. Two recipients had an apparent anti-HEV seroconversion, but temporal relationships and linked donor testing showed that these were not transfusion-transmitted HEV infections. CONCLUSION No transfusion-transmitted HEV infections were observed in 362 prospectively followed blood recipients despite an anti-HEV seroprevalence among donations exceeding 16%.
Collapse
Affiliation(s)
- Chenyu Xu
- Department of Transfusion Medicine, Warren G. Magnuson Clinical Center, National Institutes of Health, Bethesda, Maryland; National Institute of Diagnostics and Vaccine Development in Infectious Disease, School of Public Health, Xiamen University, Xiamen, Fujian, China; Department of Laboratory Medicine, Center for Cancer and Blood Diseases, Children's National Medical Center; Department of Pediatrics, School of Medicine and Health Sciences, George Washington University, Washington, DC
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Zhao Q, Zhang J, Wu T, Li SW, Ng MH, Xia NS, Shih JWK. Antigenic determinants of hepatitis E virus and vaccine-induced immunogenicity and efficacy. J Gastroenterol 2013; 48:159-68. [PMID: 23149436 PMCID: PMC3698418 DOI: 10.1007/s00535-012-0701-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Accepted: 10/08/2012] [Indexed: 02/07/2023]
Abstract
There is emerging evidence for an under-recognized hepatitis E virus (HEV) as a human pathogen. Among different reasons for this neglect are the unsatisfactory performance and under-utilization of commercial HEV diagnostic kits; for instance, the number of anti-HEV IgM kits marketed in China is about one-fifth of that of hepatitis A kits. Over the last two decades, substantial progress has been achieved in furthering our knowledge on the HEV-specific immune responses, antigenic features of HEV virions, and development of serological assays and more recently prophylactic vaccines. This review will focus on presenting the evidence of the importance of HEV infection for certain cohorts such as pregnant women, the key antigenic determinants of the virus, and immunogenicity and clinical efficacy conferred by a newly developed prophylactic vaccine. Robust immunogenicity, greater than 195-fold and approximately 50-fold increase of anti-HEV IgG level in seronegative and seropositive vaccinees, respectively, as well as impressive clinical efficacy of this vaccine was demonstrated. The protection rate against the hepatitis E disease and the virus infection was shown to be 100% (95% CI 75-100) and 78% (95% CI 66-86), respectively.
Collapse
Affiliation(s)
- Qinjian Zhao
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, 422 Siming South Road, Xiamen, 361005 People’s Republic of China
| | - Jun Zhang
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, 422 Siming South Road, Xiamen, 361005 People’s Republic of China
| | - Ting Wu
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, 422 Siming South Road, Xiamen, 361005 People’s Republic of China
| | - Shao-Wei Li
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, 422 Siming South Road, Xiamen, 361005 People’s Republic of China
| | - Mun-Hon Ng
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, 422 Siming South Road, Xiamen, 361005 People’s Republic of China
| | - Ning-Shao Xia
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, 422 Siming South Road, Xiamen, 361005 People’s Republic of China
| | - James Wai-Kuo Shih
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, 422 Siming South Road, Xiamen, 361005 People’s Republic of China
| |
Collapse
|
48
|
Abstract
Hepatitis E, caused by infection with hepatitis E virus (HEV), is a common cause of enterically-transmitted acute hepatitis in developing countries. Occasional cases of sporadic hepatitis E have been increasingly recognized in developed countries over the past decade. These cases differ from those in developing countries in being possibly caused by zoonotic transmission, often affecting people with a suppressed immune system and occasionally leading to persistent HEV infection. The commonly used tests for HEV infection include detection of IgM and IgG anti-HEV antibodies and detection of HEV RNA. IgM anti-HEV antibodies can be detected during the first few months after HEV infection, whereas IgG anti-HEV antibodies represent either recent or remote exposure. The presence of HEV RNA indicates current infection, whether acute or chronic. Although several diagnostic assays for anti-HEV antibodies are available, they have undergone fairly limited testing and often provide discordant results, particularly for IgG antibodies. Thus, although the available antibody assays might be useful for case diagnosis in areas with high disease endemicity, their use for case diagnosis in areas with low endemicity and for seroprevalence studies remains problematic. Improved validation of existing anti-HEV antibody assays or development of new assays with superior performance characteristics is urgently needed.
Collapse
Affiliation(s)
- Rakesh Aggarwal
- Department of Gastroenterology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, India.
| |
Collapse
|
49
|
Jariyapong P, Xing L, van Houten NE, Li TC, Weerachatyanukul W, Hsieh B, Moscoso CG, Chen CC, Niikura M, Cheng RH. Chimeric hepatitis E virus-like particle as a carrier for oral-delivery. Vaccine 2012; 31:417-24. [PMID: 23107594 DOI: 10.1016/j.vaccine.2012.10.073] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2012] [Revised: 10/12/2012] [Accepted: 10/19/2012] [Indexed: 12/22/2022]
Abstract
Oral delivery with virus-like particles (VLPs) is advantageous because of the inherited entry pathway from their parental viral capsids, which enables VLP to withstand the harsh and enzymatic environment associated with human digestive tract. However, the repeat use of this system is challenged by the self-immunity. In order to overcome this problem, we engineered the recombinant capsid protein of hepatitis E virus by inserting p18 peptide, derived from the V3 loop of HIV-1 gp120, into the antibody-binding site. The chimeric VLP resembled the tertiary and quaternary structures of the wild type VLP and specifically reacted with an HIV-1 antibody against V3 loop. Different from the wild type VLP, the chimeric VLP was vulnerable to trypsin cleavage although it appeared as intact particle, suggesting that the intermolecular forces of attraction between the recombinant capsid proteins are strong enough to maintain the VLP icosahedral arrangement. Importantly, this VLP containing the V3 loop did not react with anti-HEV antibodies, in correspondence to the mutation at its antibody-binding site. Therefore, the insertion of peptides at the surface antigenic site could allow VLPs to escape pre-existing anti-HEV humoral immunity.
Collapse
Affiliation(s)
- Pitchanee Jariyapong
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616, United States
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Wu T, Li SW, Zhang J, Ng MH, Xia NS, Zhao Q. Hepatitis E vaccine development: a 14 year odyssey. Hum Vaccin Immunother 2012; 8:823-7. [PMID: 22699438 DOI: 10.4161/hv.20042] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The first prophylactic vaccine, Hecolin®, against hepatitis E virus (HEV) infection and the HEV associated disease was approved by China's State Food and Drug Administration (SFDA) in December 2011. Key milestones during the 14-year HEV vaccine development are summarized in this commentary. After years of innovative research the recombinant virus-like particle (VLP) based antigen with virion-like epitopes was successfully produced in E. coli production platform on a commercial scale. Safety and efficacy of this vaccine was demonstrated in a large scale phase III clinical trial.
Collapse
Affiliation(s)
- Ting Wu
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, China
| | | | | | | | | | | |
Collapse
|