1
|
Orabi A, Shameli K, Protzer U, Moeini H. Adenoviral fiber-knob based vaccination elicits efficient neutralizing antibodies and T cell responses against adenovirus infection. Virol J 2024; 21:246. [PMID: 39370512 PMCID: PMC11457358 DOI: 10.1186/s12985-024-02520-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 09/25/2024] [Indexed: 10/08/2024] Open
Abstract
BACKGROUND Human adenoviruses (HAdVs) frequently cause common respiratory or gastrointestinal infections among children, adults, individuals with immune deficiencies, and other vulnerable populations with varying degree of symptoms, ranging from mild to server, and in some cases, even fatalities. Despite the significant clinical impact of HAdVs, there is currently no approved vaccine available. METHODS This study explores the potential of the adenovirus type 5 fiber knob (Ad5-FK) to stimulate the production of Ad-specific neutralizing antibodies and T-cell responses in mice. Based on structure predictions, we first expressed Ad5-FK in E. coli and confirmed the assembly of FK into its trimeric form. After testing the binding capability of the trimeric FK to susceptible cells, the immunogenicity of the protein in combination with the c-di-AMP adjuvant was assessed in BALB/c mice. RESULTS The purified Ad5-FK exhibited self-trimerization and maintained correct conformation akin to the authentic FK structure. This facilitated effective binding to susceptible HEK293 cells. Notably, the protein demonstrated significant inhibition of HEK293 cells infection by rAd5-GFP. Immunization of BALB/c mice with Ad5-FK, or Ad5-FK mixed with c-di-AMP yielded FK-specific antibodies with potent neutralization capacity. Significantly, Ad5-FK was found to elicit a vigorous CD4+ T-cell response in the immunized mice. CONCLUSION Our findings underscore the efficacy of FK-based vaccine in eliciting anti-Ad humoral immune response and CD4 T-cell immune reactions essential for protection against viral infections.
Collapse
Affiliation(s)
- Ahmed Orabi
- Institute of Virology, School of Medicine, Technical University of Munich, Munich, Germany.
- Department of Virology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt.
| | - Kamyar Shameli
- Institute of Virology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Ulrike Protzer
- Institute of Virology, School of Medicine, Technical University of Munich, Munich, Germany
- Institute of Virology, Helmholtz Munich, Munich, Germany
- German Center for Infection Research (DZIF), Munich partner Site, Munich, Germany
| | - Hassan Moeini
- Institute of Virology, School of Medicine, Technical University of Munich, Munich, Germany.
- German Center for Infection Research (DZIF), Munich partner Site, Munich, Germany.
| |
Collapse
|
2
|
Crawford R, Akmyradov C, Dachepally R, Prodhan P. Hospital Outcomes Among Children With Congenital Heart Disease and Adenovirus Pneumonia. Pediatr Infect Dis J 2024; 43:720-724. [PMID: 38564736 DOI: 10.1097/inf.0000000000004341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
BACKGROUND The aim of the study is to evaluate the mortality risk factors and hospitalization outcomes of adenovirus pneumonia in pediatric patients with congenital heart disease. METHODS In this retrospective multicenter cohort study utilizing the Pediatric Health Information System database, we analyzed congenital heart disease patients with adenovirus pneumonia from January 2004 to September 2018, categorizing them into shunts, obstructive lesions, cyanotic lesions and mixing lesions. Multivariate logistic regression analysis was employed to identify mortality risk factors with 2 distinct models to mitigate collinearity issues and the Mann-Whitney U test was used to compare the hospital length of stay between survivors and nonsurvivors across these variables. RESULTS Among 381 patients with a mean age of 3.2 years (range: 0-4 years), we observed an overall mortality rate of 12.1%, with the highest mortality of 15.1% noted in patients with shunts. Model 1 identified independent factors associated with increased mortality, including age 0-30 days (OR: 8.13, 95% CI: 2.57-25.67, P < 0.005), sepsis/shock (OR: 3.34, 95% CI: 1.42-7.83, P = 0.006), acute kidney failure (OR: 4.25, 95% CI: 2.05-13.43, P = 0.0005), shunts (OR: 2.95, 95% CI: 1.14-7.67, P = 0.03) and cardiac catheterization (OR: 6.04, 95% CI: 1.46-24.94, P = 0.01), and Model 2, extracorporeal membrane oxygenation (OR: 3.26, 95% CI: 1.35-7.87, P = 0.008). Nonsurvivors had a median hospital stay of 47 days compared to 15 days for survivors. CONCLUSION The study revealed a 12.1% mortality rate in adenoviral pneumonia among children with congenital heart disease, attributed to risk factors such as neonates, sepsis, acute kidney failure, shunts, cardiac catheterization, extracorporeal membrane oxygenation use and a 3-fold longer hospital stay for nonsurvivors compared to survivors.
Collapse
MESH Headings
- Humans
- Heart Defects, Congenital/mortality
- Heart Defects, Congenital/complications
- Retrospective Studies
- Male
- Infant
- Female
- Child, Preschool
- Infant, Newborn
- Risk Factors
- Length of Stay/statistics & numerical data
- Pneumonia, Viral/mortality
- Pneumonia, Viral/therapy
- Pneumonia, Viral/epidemiology
- Pneumonia, Viral/complications
- Hospitalization/statistics & numerical data
- Adenovirus Infections, Human/epidemiology
- Adenovirus Infections, Human/mortality
- Hospital Mortality
Collapse
Affiliation(s)
- Richard Crawford
- From the Department of Cardiology, University of Oklahoma, Oklahoma
| | | | - Rashmitha Dachepally
- Department of Cardiology and Pediatric Intensive Care, University of Arkansas for Medical Sciences, Arkansas
- Department of Pediatric Critical Care, University of Nebraska Medical Center
| | - Parthak Prodhan
- Department of Cardiology and Pediatric Intensive Care, University of Arkansas for Medical Sciences, Arkansas
| |
Collapse
|
3
|
Ma B, Tao M, Li Z, Zheng Q, Wu H, Chen P. Mucosal vaccines for viral diseases: Status and prospects. Virology 2024; 593:110026. [PMID: 38373360 DOI: 10.1016/j.virol.2024.110026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 02/08/2024] [Accepted: 02/12/2024] [Indexed: 02/21/2024]
Abstract
Virus-associated infectious diseases are highly detrimental to human health and animal husbandry. Among all countermeasures against infectious diseases, prophylactic vaccines, which developed through traditional or novel approaches, offer potential benefits. More recently, mucosal vaccines attract attention for their extraordinary characteristics compared to conventional parenteral vaccines, particularly for mucosal-related pathogens. Representatively, coronavirus disease 2019 (COVID-19), a respiratory disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), further accelerated the research and development efforts for mucosal vaccines by thoroughly investigating existing strategies or involving novel techniques. While several vaccine candidates achieved positive progresses, thus far, part of the current COVID-19 mucosal vaccines have shown poor performance, which underline the need for next-generation mucosal vaccines and corresponding platforms. In this review, we summarized the typical mucosal vaccines approved for humans or animals and sought to elucidate the underlying mechanisms of these successful cases. In addition, mucosal vaccines against COVID-19 that are in human clinical trials were reviewed in detail since this public health event mobilized all advanced technologies for possible solutions. Finally, the gaps in developing mucosal vaccines, potential solutions and prospects were discussed. Overall, rational application of mucosal vaccines would facilitate the establishing of mucosal immunity and block the transmission of viral diseases.
Collapse
Affiliation(s)
- Bingjie Ma
- College of Animal Science and Technology, Xinyang Agriculture and Forestry University, Xinyang, China
| | - Mengxiao Tao
- College of Animal Science and Technology, Xinyang Agriculture and Forestry University, Xinyang, China
| | - Zhili Li
- College of Animal Science and Technology, Xinyang Agriculture and Forestry University, Xinyang, China
| | - Quanfang Zheng
- College of Animal Science and Technology, Xinyang Agriculture and Forestry University, Xinyang, China
| | - Haigang Wu
- College of Animal Science and Technology, Xinyang Agriculture and Forestry University, Xinyang, China
| | - Peirong Chen
- College of Animal Science and Technology, Xinyang Agriculture and Forestry University, Xinyang, China.
| |
Collapse
|
4
|
Mazboudi R, Mulhall Maasz H, Resch MD, Wen K, Gottlieb P, Alimova A, Khayat R, Collins ND, Kuschner RA, Galarza JM. A recombinant virus-like particle vaccine against adenovirus-7 induces a potent humoral response. NPJ Vaccines 2023; 8:155. [PMID: 37821505 PMCID: PMC10567840 DOI: 10.1038/s41541-023-00754-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 10/02/2023] [Indexed: 10/13/2023] Open
Abstract
Adenoviruses (AdVs) cause infections in humans that range from mild to severe, and can cause outbreaks particularly in close contact settings. Several human AdV types have been identified, which can cause a wide array of clinical manifestations. AdV types 4 and 7 (AdV-4 and AdV-7), which are among the most commonly circulating types in the United States, are known to cause acute respiratory disease that can result in hospitalization and rarely, death. Currently, the only vaccines approved for use in humans are live virus vaccines against AdV-4 and AdV-7, though these vaccines are only authorized for use in U.S. military personnel. While they are efficacious, use of these live virus vaccines carries considerable risks of vaccine-associated viral shedding and recombination. Here, we present an alternative vaccination strategy against AdV-7 using the virus-like particle platform (AdVLP-7). We describe the production of stable recombinant AdVLP-7, and demonstrate that AdVLP-7 is structurally analogous to wild-type AdV-7 virions (WT AdV-7). Preclinical immunogenicity studies in mice show that AdVLP-7 elicits a potent humoral immune response, comparable to that observed in mice immunized with WT AdV-7. Specifically, AdVLP-7 induces high titers of antibodies against AdV-7-specific antigens that can effectively neutralize AdV-7.
Collapse
Affiliation(s)
- Ryan Mazboudi
- TechnoVax, Inc., 6 Westchester Plaza, Elmsford, NY, 10523, USA
| | | | - Matthew D Resch
- TechnoVax, Inc., 6 Westchester Plaza, Elmsford, NY, 10523, USA
| | - Ke Wen
- TechnoVax, Inc., 6 Westchester Plaza, Elmsford, NY, 10523, USA
| | - Paul Gottlieb
- CUNY School of Medicine, The City College of New York, New York, NY, 10031, USA
| | - Aleksandra Alimova
- CUNY School of Medicine, The City College of New York, New York, NY, 10031, USA
| | - Reza Khayat
- Department of Chemistry and Biochemistry, The City College of New York, New York, NY, 10031, USA
| | - Natalie D Collins
- Viral Diseases Branch, Walter Reed Army Institute for Research, Silver Spring, MD, 20910, USA
| | - Robert A Kuschner
- Viral Diseases Branch, Walter Reed Army Institute for Research, Silver Spring, MD, 20910, USA
| | - Jose M Galarza
- TechnoVax, Inc., 6 Westchester Plaza, Elmsford, NY, 10523, USA.
| |
Collapse
|
5
|
Goffin E, Du X, Hemmi S, Machiels B, Gillet L. A Single Oral Immunization with a Replication-Competent Adenovirus-Vectored Vaccine Protects Mice from Influenza Respiratory Infection. J Virol 2023; 97:e0013523. [PMID: 37338377 PMCID: PMC10373536 DOI: 10.1128/jvi.00135-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 05/23/2023] [Indexed: 06/21/2023] Open
Abstract
The development of effective and flexible vaccine platforms is a major public health challenge, especially in the context of influenza vaccines that have to be renewed every year. Adenoviruses (AdVs) are easy to produce and have a good safety and efficacy profile when administered orally, as demonstrated by the long-term use of oral AdV-4 and -7 vaccines in the U.S. military. These viruses therefore appear to be the ideal backbone for the development of oral replicating vector vaccines. However, research into these vaccines is limited by the ineffectiveness of human AdV replication in laboratory animals. The use of mouse AdV type 1 (MAV-1) in its natural host allows infection to be studied under replicating conditions. Here, we orally vaccinated mice with a MAV-1 vector expressing influenza hemagglutinin (HA) to assess the protection conferred against an intranasal challenge of influenza. We showed that a single oral immunization with this vaccine generates influenza-specific and -neutralizing antibodies and completely protects mice against clinical signs and viral replication, similar to traditional inactivated vaccines. IMPORTANCE Given the constant threat of pandemics and the need for annual vaccination against influenza and possibly emerging agents such as SARS-CoV-2, new types of vaccines that are easier to administer and therefore more widely accepted are a critical public health need. Here, using a relevant animal model, we have shown that replicative oral AdV vaccine vectors can help make vaccination against major respiratory diseases more available, better accepted, and therefore more effective. These results could be of major importance in the coming years in the fight against seasonal or emerging respiratory diseases such as COVID-19.
Collapse
Affiliation(s)
- Emeline Goffin
- Laboratory of Immunology and Vaccinology, Faculty of Veterinary Medicine, FARAH, ULiège, Liège, Belgium
| | - Xiang Du
- Laboratory of Immunology and Vaccinology, Faculty of Veterinary Medicine, FARAH, ULiège, Liège, Belgium
| | - Silvio Hemmi
- Department of Molecular Life Sciences, University of Zürich, Zürich, Switzerland
| | - Bénédicte Machiels
- Laboratory of Immunology and Vaccinology, Faculty of Veterinary Medicine, FARAH, ULiège, Liège, Belgium
| | - Laurent Gillet
- Laboratory of Immunology and Vaccinology, Faculty of Veterinary Medicine, FARAH, ULiège, Liège, Belgium
| |
Collapse
|
6
|
Collins ND, Beaty S, Wallace E, Li Y, Sanborn M, Yang Y, Adhikari A, Shabram P, Warfield K, Karasavvas N, Kuschner RA, Hang J. Differential Genome Replication of a Unique Single-Amino-Acid Mutation in the Adenovirus-4 Component of the Live Oral Adenovirus Type 4 and Type 7 Vaccine. Vaccines (Basel) 2023; 11:1144. [PMID: 37514960 PMCID: PMC10385111 DOI: 10.3390/vaccines11071144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/15/2023] [Accepted: 06/19/2023] [Indexed: 07/30/2023] Open
Abstract
The FDA-approved Adenovirus Type 4 and Type 7 Vaccine, Live, Oral is highly effective and essential in preventing acute respiratory diseases (ARDs) in U.S. military recruits. Our study revealed the presence of a previously undetected mutation, not found in the wild-type human adenovirus type 4 (HAdV-4) component of the licensed vaccine, which contains an amino acid substitution (P388T) in the pre-terminal protein (pTP). This study demonstrated that replication of the T388 HAdV-4 vaccine mutant virus is favored over the wild type in WI-38 cells, the cell type utilized in vaccine manufacturing. However, results from serial human stool specimens of vaccine recipients support differential genome replication in the gastrointestinal tract (GI), demonstrated by the steady decline of the percentage of mutant T388 vaccine virus. Since vaccine efficacy depends upon GI replication and the subsequent immune response, the mutation can potentially impact vaccine efficacy.
Collapse
Affiliation(s)
- Natalie D Collins
- Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Shannon Beaty
- Emergent BioSolutions, Inc., Gaithersburg, MD 20879, USA
| | - Elana Wallace
- Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Yuanzhang Li
- Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Mark Sanborn
- Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Yu Yang
- Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Anima Adhikari
- Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Paul Shabram
- Emergent BioSolutions, Inc., Gaithersburg, MD 20879, USA
| | - Kelly Warfield
- Emergent BioSolutions, Inc., Gaithersburg, MD 20879, USA
| | - Nicos Karasavvas
- Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Robert A Kuschner
- Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Jun Hang
- Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| |
Collapse
|
7
|
Beaty S, Collins N, Karasavvas N, Kuschner R, Hang J, Adhikari A, Maljkovic Berry I, Fung C, Walls S, Betancourt E, Mendy J, Lock M, Gierman E, Bennett S, Shabram P, Warfield K. A Phase 1 Two-Arm, Randomized, Double-Blind, Active-Controlled Study of Live, Oral Plasmid-Derived Adenovirus Type 4 and Type 7 Vaccines in Seronegative Adults. Vaccines (Basel) 2023; 11:1091. [PMID: 37376480 PMCID: PMC10301169 DOI: 10.3390/vaccines11061091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/08/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
PXVX0047 is an investigational vaccine developed for active immunization to prevent febrile acute respiratory disease (ARD) caused by adenovirus serotypes 4 (Ad4) and 7 (Ad7). PXVX0047 consists of a modernized, plasmid-derived vaccine that was generated using a virus isolated from Wyeth Ad4 and Ad7 vaccine tablets. A phase 1 two-arm, randomized, double-blind, active-controlled study was conducted to evaluate the safety profile and immunogenicity of the investigational adenovirus vaccines. The two components of PXVX0047 were administered orally together in a single dose to 11 subjects. For comparison, three additional subjects received the Ad4/Ad7 vaccine that is currently in use by the US military. The results of this study show that the tolerability and immunogenicity of the PXVX0047 Ad7 component are comparable with that of the control Ad4/Ad7 vaccine; however, the immunogenicity of the PXVX0047 Ad4 component was lower than expected. Clinical trial number NCT03160339.
Collapse
Affiliation(s)
- Shannon Beaty
- Emergent BioSolutions Inc., Gaithersburg, MD 20879, USA
| | - Natalie Collins
- Walter Reed Army Institute of Research, Bethesda, MD 20814, USA; (N.C.)
| | - Nicos Karasavvas
- Walter Reed Army Institute of Research, Bethesda, MD 20814, USA; (N.C.)
| | - Robert Kuschner
- Walter Reed Army Institute of Research, Bethesda, MD 20814, USA; (N.C.)
| | - Jun Hang
- Walter Reed Army Institute of Research, Bethesda, MD 20814, USA; (N.C.)
| | - Anima Adhikari
- Walter Reed Army Institute of Research, Bethesda, MD 20814, USA; (N.C.)
| | | | - Christian Fung
- Walter Reed Army Institute of Research, Bethesda, MD 20814, USA; (N.C.)
| | - Shannon Walls
- Walter Reed Army Institute of Research, Bethesda, MD 20814, USA; (N.C.)
| | | | - Jason Mendy
- Emergent BioSolutions Inc., Gaithersburg, MD 20879, USA
| | - Michael Lock
- Emergent BioSolutions Inc., Gaithersburg, MD 20879, USA
| | - Emma Gierman
- Emergent BioSolutions Inc., Gaithersburg, MD 20879, USA
| | - Sean Bennett
- Emergent BioSolutions Inc., Gaithersburg, MD 20879, USA
| | - Paul Shabram
- Emergent BioSolutions Inc., Gaithersburg, MD 20879, USA
| | | |
Collapse
|
8
|
Iskander J, Blanchet S, Springer C, Rockwell P, Thomas D, Pillai S. Enhanced Adenovirus Vaccine Safety Surveillance in Military Setting, United States. Emerg Infect Dis 2023; 29:1283-1285. [PMID: 37209695 DOI: 10.3201/eid2906.230331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2023] Open
Abstract
The US Coast Guard Academy began adenovirus vaccination of incoming cadets in 2022. Of 294 vaccine recipients, 15%-20% had mild respiratory or systemic symptoms within 10 days postvaccination but no serious adverse events after 90 days. Our findings support the continued use of adenovirus vaccines in congregate military settings.
Collapse
|
9
|
Biškup UG, Steyer A, Lusa L, Strle F, Pokorn M, Mrvič T, Grosek Š, Petrovec M, Jevšnik Virant M. Molecular Typing of Mastadenoviruses in Simultaneously Collected Nasopharyngeal Swabs and Stool Samples from Children Hospitalized for Acute Bronchiolitis, Acute Gastroenteritis, and Febrile Seizures. Microorganisms 2023; 11:microorganisms11030780. [PMID: 36985353 PMCID: PMC10058226 DOI: 10.3390/microorganisms11030780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/23/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
This study determines and compares the frequency of human mastadenovirus (HAdV) presence in children with acute bronchiolitis (AB), acute gastroenteritis (AGE), and febrile seizures (FS), ascertains types of HAdVs associated with each individual syndrome and contrasts the findings with a control group of children. The presence of HAdVs was ascertained in simultaneously collected nasopharyngeal (NP) swabs and stool samples amplifying the hexon gene by RT-PCR; these were sequenced to determine the types of HAdVs. HAdVs were grouped into eight different genotypes. Of these, three (F40, F41, and A31) were found solely in stool samples, whereas the others (B3, C1, C2, C5, and C6) were found in both stool samples and NP swabs. The most common genotypes in NP swabs were C2 (found in children with AGE and FS) and C1 (only in children with FS), whereas in stool samples genotypes F41 (in children with AGE) and C2 (in children with AGE and FS) prevailed, and C2 was simultaneously present in both samples. HAdVs were more often detected in stool samples than in NP swabs in patients (with the highest estimated viral load in stool samples in children with AB and AGE) and healthy controls and were more common in NP swabs in children with AGE than in children with AB. In most patients, the characterized genotypes in NP swabs and stool samples were in concordance.
Collapse
Affiliation(s)
- Urška Glinšek Biškup
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Zaloška 4, 1000 Ljubljana, Slovenia
| | - Andrej Steyer
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Zaloška 4, 1000 Ljubljana, Slovenia
- National Laboratory of Health, Environment and Food, Prvomajska 1, 2000 Maribor, Slovenia
| | - Lara Lusa
- Department of Mathematics, Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska, Glagoljaška 8, 6000 Koper, Slovenia
- Institute for Biostatistics and Medical Informatics, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1104 Ljubljana, Slovenia
| | - Franc Strle
- Department of Infectious Diseases, University Medical Centre Ljubljana, Japljeva 2, 1525 Ljubljana, Slovenia
| | - Marko Pokorn
- Department of Infectious Diseases, University Medical Centre Ljubljana, Japljeva 2, 1525 Ljubljana, Slovenia
- Division of Pediatrics, Ljubljana University Medical Center, Bohoričeva 20, 1000 Ljubljana, Slovenia
- Department of Paediatrics, Faculty of Medicine, University of Ljubljana, Bohoričeva 20, 1000 Ljubljana, Slovenia
| | - Tatjana Mrvič
- Department of Infectious Diseases, University Medical Centre Ljubljana, Japljeva 2, 1525 Ljubljana, Slovenia
| | - Štefan Grosek
- Department of Paediatrics, Faculty of Medicine, University of Ljubljana, Bohoričeva 20, 1000 Ljubljana, Slovenia
- Neonatology Section, Department of Perinatology, Division of Obstetrics and Gynecology, University Medical Centre Ljubljana, Šlajmerjeva 3, 1000 Ljubljana, Slovenia
- Department of Pediatric Intensive Therapy, Division of Pediatrics, University Medical Centre Ljubljana, Bohoričeva 20, 1000 Ljubljana, Slovenia
| | - Miroslav Petrovec
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Zaloška 4, 1000 Ljubljana, Slovenia
| | - Monika Jevšnik Virant
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Zaloška 4, 1000 Ljubljana, Slovenia
| |
Collapse
|
10
|
Armas F, Chandra F, Lee WL, Gu X, Chen H, Xiao A, Leifels M, Wuertz S, Alm EJ, Thompson J. Contextualizing Wastewater-Based surveillance in the COVID-19 vaccination era. ENVIRONMENT INTERNATIONAL 2023; 171:107718. [PMID: 36584425 PMCID: PMC9783150 DOI: 10.1016/j.envint.2022.107718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 12/16/2022] [Accepted: 12/22/2022] [Indexed: 06/17/2023]
Abstract
SARS-CoV-2 wastewater-based surveillance (WBS) offers a tool for cost-effective oversight of a population's infections. In the past two years, WBS has proven to be crucial for managing the pandemic across different geographical regions. However, the changing context of the pandemic due to high levels of COVID-19 vaccination warrants a closer examination of its implication towards SARS-CoV-2 WBS. Two main questions were raised: 1) Does vaccination cause shedding of viral signatures without infection? 2) Does vaccination affect the relationship between wastewater and clinical data? To answer, we review historical reports of shedding from viral vaccines in use prior to the COVID-19 pandemic including for polio, rotavirus, influenza and measles infection and provide a perspective on the implications of different COVID-19 vaccination strategies with regard to the potential shedding of viral signatures into the sewershed. Additionally, we reviewed studies that looked into the relationship between wastewater and clinical data and how vaccination campaigns could have affected the relationship. Finally, analyzing wastewater and clinical data from the Netherlands, we observed changes in the relationship concomitant with increasing vaccination coverage and switches in dominant variants of concern. First, that no vaccine-derived shedding is expected from the current commercial pipeline of COVID-19 vaccines that may confound interpretation of WBS data. Secondly, that breakthrough infections from vaccinated individuals contribute significantly to wastewater signals and must be interpreted in light of the changing dynamics of shedding from new variants of concern.
Collapse
Affiliation(s)
- Federica Armas
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, Singapore; Campus for Research Excellence and Technological Enterprise (CREATE), Singapore
| | - Franciscus Chandra
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, Singapore; Campus for Research Excellence and Technological Enterprise (CREATE), Singapore
| | - Wei Lin Lee
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, Singapore; Campus for Research Excellence and Technological Enterprise (CREATE), Singapore
| | - Xiaoqiong Gu
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, Singapore; Campus for Research Excellence and Technological Enterprise (CREATE), Singapore
| | - Hongjie Chen
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, Singapore; Campus for Research Excellence and Technological Enterprise (CREATE), Singapore
| | - Amy Xiao
- Department of Biological Engineering, Massachusetts Institute of Technology, USA; Center for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology
| | - Mats Leifels
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore
| | - Stefan Wuertz
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, Singapore
| | - Eric J Alm
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, Singapore; Campus for Research Excellence and Technological Enterprise (CREATE), Singapore; Department of Biological Engineering, Massachusetts Institute of Technology, USA; Center for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology; Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| | - Janelle Thompson
- Campus for Research Excellence and Technological Enterprise (CREATE), Singapore; Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore; Asian School of the Environment, Nanyang Technological University, Singapore.
| |
Collapse
|
11
|
Montesinos-Guevara C, Buitrago-Garcia D, Felix ML, Guerra CV, Hidalgo R, Martinez-Zapata MJ, Simancas-Racines D. Vaccines for the common cold. Cochrane Database Syst Rev 2022; 12:CD002190. [PMID: 36515550 PMCID: PMC9749450 DOI: 10.1002/14651858.cd002190.pub6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND The common cold is a spontaneously remitting infection of the upper respiratory tract, characterised by a runny nose, nasal congestion, sneezing, cough, malaise, sore throat, and fever (usually < 37.8 ºC). Whilst the common cold is generally not harmful, it is a cause of economic burden due to school and work absenteeism. In the United States, economic loss due to the common cold is estimated at more than USD 40 billion per year, including an estimate of 70 million workdays missed by employees, 189 million school days missed by children, and 126 million workdays missed by parents caring for children with a cold. Additionally, data from Europe show that the total cost per episode may be up to EUR 1102. There is also a large expenditure due to inappropriate antimicrobial prescription. Vaccine development for the common cold has been difficult due to antigenic variability of the common cold viruses; even bacteria can act as infective agents. Uncertainty remains regarding the efficacy and safety of interventions for preventing the common cold in healthy people, thus we performed an update of this Cochrane Review, which was first published in 2011 and updated in 2013 and 2017. OBJECTIVES To assess the clinical effectiveness and safety of vaccines for preventing the common cold in healthy people. SEARCH METHODS We searched the Cochrane Central Register of Controlled Trials (CENTRAL) (April 2022), MEDLINE (1948 to April 2022), Embase (1974 to April 2022), CINAHL (1981 to April 2022), and LILACS (1982 to April 2022). We also searched three trials registers for ongoing studies, and four websites for additional trials (April 2022). We did not impose any language or date restrictions. SELECTION CRITERIA Randomised controlled trials (RCTs) of any virus vaccine compared with placebo to prevent the common cold in healthy people. DATA COLLECTION AND ANALYSIS We used Cochrane's Screen4Me workflow to assess the initial search results. Four review authors independently performed title and abstract screening to identify potentially relevant studies. We retrieved the full-text articles for those studies deemed potentially relevant, and the review authors independently screened the full-text reports for inclusion in the review, recording reasons for exclusion of the excluded studies. Any disagreements were resolved by discussion or by consulting a third review author when needed. Two review authors independently collected data on a data extraction form, resolving any disagreements by consensus or by involving a third review author. We double-checked data transferred into Review Manager 5 software. Three review authors independently assessed risk of bias using RoB 1 tool as outlined in the Cochrane Handbook for Systematic Reviews of Interventions. We carried out statistical analysis using Review Manager 5. We did not conduct a meta-analysis, and we did not assess publication bias. We used GRADEpro GDT software to assess the certainty of the evidence and to create a summary of findings table. MAIN RESULTS: We did not identify any new RCTs for inclusion in this update. This review includes one RCT conducted in 1965 with an overall high risk of bias. The RCT included 2307 healthy young men in a military facility, all of whom were included in the analyses, and compared the effect of three adenovirus vaccines (live, inactivated type 4, and inactivated type 4 and 7) against a placebo (injection of physiological saline or gelatin capsule). There were 13 (1.14%) events in 1139 participants in the vaccine group, and 14 (1.19%) events in 1168 participants in the placebo group. Overall, we do not know if there is a difference between the adenovirus vaccine and placebo in reducing the incidence of the common cold (risk ratio 0.95, 95% confidence interval 0.45 to 2.02; very low-certainty evidence). Furthermore, no difference in adverse events when comparing live vaccine preparation with placebo was reported. We downgraded the certainty of the evidence to very low due to unclear risk of bias, indirectness because the population of this study was only young men, and imprecision because confidence intervals were wide and the number of events was low. The included study did not assess vaccine-related or all-cause mortality. AUTHORS' CONCLUSIONS: This Cochrane Review was based on one study with very low-certainty evidence, which showed that there may be no difference between the adenovirus vaccine and placebo in reducing the incidence of the common cold. We identified a need for well-designed, adequately powered RCTs to investigate vaccines for the common cold in healthy people. Future trials on interventions for preventing the common cold should assess a variety of virus vaccines for this condition, and should measure such outcomes as common cold incidence, vaccine safety, and mortality (all-cause and related to the vaccine).
Collapse
Affiliation(s)
- Camila Montesinos-Guevara
- Cochrane Ecuador, Centro de Investigación en Salud Pública y Epidemiología Clínica (CISPEC), Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito, Ecuador
| | - Diana Buitrago-Garcia
- Institute of Social and Preventive Medicine (ISPM), Graduate School of Health Sciences, University of Bern, Bern, Switzerland
| | - Maria L Felix
- Departamento de Neonatología, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito, Ecuador
| | - Claudia V Guerra
- Cochrane Ecuador, Centro de Investigación en Salud Pública y Epidemiología Clínica (CISPEC), Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito, Ecuador
| | - Ricardo Hidalgo
- Cochrane Ecuador, Centro de Investigación en Salud Pública y Epidemiología Clínica (CISPEC), Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito, Ecuador
| | - Maria José Martinez-Zapata
- Cochrane Ecuador, Centro de Investigación en Salud Pública y Epidemiología Clínica (CISPEC), Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito, Ecuador
- Iberoamerican Cochrane Centre, Biomedical Research Institute Sant Pau (IIB Sant Pau), CIBER Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain
| | - Daniel Simancas-Racines
- Cochrane Ecuador, Centro de Investigación en Salud Pública y Epidemiología Clínica (CISPEC), Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito, Ecuador
| |
Collapse
|
12
|
Yu J, Collins ND, Mercado NB, McMahan K, Chandrashekar A, Liu J, Anioke T, Chang A, Giffin VM, Hope DL, Sellers D, Nampanya F, Gardner S, Barrett J, Wan H, Velasco J, Teow E, Cook A, Van Ry A, Pessaint L, Andersen H, Lewis MG, Hofer C, Burke DS, Barkei EK, King HAD, Subra C, Bolton D, Modjarrad K, Michael NL, Barouch DH. Protective Efficacy of Gastrointestinal SARS-CoV-2 Delivery against Intranasal and Intratracheal SARS-CoV-2 Challenge in Rhesus Macaques. J Virol 2022; 96:e0159921. [PMID: 34705557 PMCID: PMC8791250 DOI: 10.1128/jvi.01599-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 10/26/2021] [Indexed: 12/21/2022] Open
Abstract
Live oral vaccines have been explored for their protective efficacy against respiratory viruses, particularly for adenovirus serotypes 4 and 7. The potential of a live oral vaccine against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), however, remains unclear. In this study, we assessed the immunogenicity of live SARS-CoV-2 delivered to the gastrointestinal tract in rhesus macaques and its protective efficacy against intranasal and intratracheal SARS-CoV-2 challenge. Postpyloric administration of SARS-CoV-2 by esophagogastroduodenoscopy resulted in limited virus replication in the gastrointestinal tract and minimal to no induction of mucosal antibody titers in rectal swabs, nasal swabs, and bronchoalveolar lavage fluid. Low levels of serum neutralizing antibodies were induced and correlated with modestly diminished viral loads in nasal swabs and bronchoalveolar lavage fluid following intranasal and intratracheal SARS-CoV-2 challenge. Overall, our data show that postpyloric inoculation of live SARS-CoV-2 is weakly immunogenic and confers partial protection against respiratory SARS-CoV-2 challenge in rhesus macaques. IMPORTANCE SARS-CoV-2 remains a global threat, despite the rapid deployment but limited coverage of multiple vaccines. Alternative vaccine strategies that have favorable manufacturing timelines, greater ease of distribution, and improved coverage may offer significant public health benefits, especially in resource-limited settings. Live oral vaccines have the potential to address some of these limitations; however, no studies have yet been conducted to assess the immunogenicity and protective efficacy of a live oral vaccine against SARS-CoV-2. Here, we report that oral administration of live SARS-CoV-2 in nonhuman primates may offer prophylactic benefits, but the formulation and route of administration will require further optimization.
Collapse
Affiliation(s)
- Jingyou Yu
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | | | - Noe B. Mercado
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Katherine McMahan
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Abishek Chandrashekar
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Jinyan Liu
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Tochi Anioke
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Aiquan Chang
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Victoria M. Giffin
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - David L. Hope
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Daniel Sellers
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Felix Nampanya
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Sarah Gardner
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Julia Barrett
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Huahua Wan
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | | | | | | | | | | - Christian Hofer
- Veterinary Services Program, Center for Enabling Capabilities, Walter Reed Army Institute for Research, Silver Spring, Maryland, USA
| | - Donald S. Burke
- Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Erica K. Barkei
- Veterinary Services Program, Center for Enabling Capabilities, Walter Reed Army Institute for Research, Silver Spring, Maryland, USA
| | - Hannah A. D. King
- Henry Jackson Foundation, Bethesda, Maryland, USA
- Military HIV Research Program, Center for Infectious Disease Research, Walter Reed Army Institute for Research, Silver Spring, Maryland, USA
| | - Caroline Subra
- Henry Jackson Foundation, Bethesda, Maryland, USA
- Military HIV Research Program, Center for Infectious Disease Research, Walter Reed Army Institute for Research, Silver Spring, Maryland, USA
| | - Diane Bolton
- Henry Jackson Foundation, Bethesda, Maryland, USA
- Military HIV Research Program, Center for Infectious Disease Research, Walter Reed Army Institute for Research, Silver Spring, Maryland, USA
| | - Kayvon Modjarrad
- Emerging Infectious Diseases Branch, Center for Infectious Disease Research, Walter Reed Army Institute for Research, Silver Spring, Maryland, USA
| | - Nelson L. Michael
- Center for Infectious Disease Research, Walter Reed Army Institute for Research, Silver Spring, Maryland, USA
| | - Dan H. Barouch
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, USA
| |
Collapse
|
13
|
Focosi D, Maggi F, Casadevall A. Mucosal Vaccines, Sterilizing Immunity, and the Future of SARS-CoV-2 Virulence. Viruses 2022; 14:187. [PMID: 35215783 PMCID: PMC8878800 DOI: 10.3390/v14020187] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/15/2022] [Accepted: 01/17/2022] [Indexed: 02/01/2023] Open
Abstract
Sterilizing immunity after vaccination is desirable to prevent the spread of infection from vaccinees, which can be especially dangerous in hospital settings while managing frail patients. Sterilizing immunity requires neutralizing antibodies at the site of infection, which for respiratory viruses such as SARS-CoV-2 implies the occurrence of neutralizing IgA in mucosal secretions. Systemic vaccination by intramuscular delivery induces no or low-titer neutralizing IgA against vaccine antigens. Mucosal priming or boosting, is needed to provide sterilizing immunity. On the other side of the coin, sterilizing immunity, by zeroing interhuman transmission, could confine SARS-CoV-2 in animal reservoirs, preventing spontaneous attenuation of virulence in humans as presumably happened with the endemic coronaviruses. We review here the pros and cons of each vaccination strategy, the current mucosal SARS-CoV-2 vaccines under development, and their implications for public health.
Collapse
Affiliation(s)
- Daniele Focosi
- North-Western Tuscany Blood Bank, Pisa University Hospital, 56124 Pisa, Italy
| | - Fabrizio Maggi
- Department of Medicine and Surgery, University of Insubria, 21100 Varese, Italy;
| | - Arturo Casadevall
- Department of Medicine, Johns Hopkins School of Public Health and School of Medicine, Baltimore, MD 21218, USA;
| |
Collapse
|
14
|
Guo J, Zhang Y, Zhang Y, Zhang C, Zhu C, Xing M, Wang X, Zhou D. A bivalent live-attenuated vaccine candidate elicits protective immunity against human adenovirus types 4 and 7. Emerg Microbes Infect 2021; 10:1947-1959. [PMID: 34520320 PMCID: PMC8477930 DOI: 10.1080/22221751.2021.1981157] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Human adenovirus types 4 (HAdV4) and 7 (HAdV7) often lead to severe respiratory diseases and occur epidemically in children, adults, immune deficiency patients, and other groups, leading to mild or severe symptoms and even death. However, no licensed adenovirus vaccine has been approved in the market for general use. E3 genes of adenovirus are generally considered nonessential for virulence and replication; however, a few studies have demonstrated that the products of these genes are also functional. In this study, most of the E3 genes were deleted, and two E3-deleted recombinant adenoviruses (ΔE3-rAdVs) were constructed as components of the vaccine. After E3 deletion, the replication efficiencies and cytopathogenicity of ΔE3-rAdVs were reduced, indicating that ΔE3-rAdVs were attenuated after E3 genes deletion. Furthermore, single immunization with live-attenuated bivalent vaccine candidate protects mice against challenge with wild-type human adenovirus types 4 and 7, respectively. Vaccinated mice demonstrated remarkably decreased viral loads in the lungs and less lung pathology compared to the control animals. Taken together, our study confirms the possibility of the two live-attenuated viruses as a vaccine for clinic use and illustrates a novel strategy for the construction of an adenovirus vaccine.
Collapse
Affiliation(s)
- Jingao Guo
- University of Chinese Academy of Sciences, Beijing, People's Republic of China.,Chinese Academy of Sciences, Institut Pasteur of Shanghai, Shanghai, People's Republic of China
| | - Youbin Zhang
- Department of Emergency Surgery, First Hospital of Soochow University, Suzhou, People's Republic of China
| | - Yan Zhang
- University of Chinese Academy of Sciences, Beijing, People's Republic of China.,Chinese Academy of Sciences, Institut Pasteur of Shanghai, Shanghai, People's Republic of China
| | - Chao Zhang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, People's Republic of China
| | - Caihong Zhu
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, People's Republic of China
| | - Man Xing
- Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, People's Republic of China
| | - Xiang Wang
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, People's Republic of China
| | - Dongming Zhou
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, People's Republic of China.,Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, People's Republic of China
| |
Collapse
|
15
|
Coleman KK, Robie ER, Abdelgadir A, Kozhumam AS, Binder RA, Gray GC. Six Decades of Human Adenovirus Type 4 Infections Reviewed: Increasing Infections Among Civilians Are a Matter of Concern. Clin Infect Dis 2021; 73:740-746. [PMID: 33693635 DOI: 10.1093/cid/ciab146] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 02/12/2021] [Indexed: 12/18/2022] Open
Abstract
Human adenovirus type 4 (HAdV-E4) frequently causes epidemics among military and civilian populations. We conducted a systematic review of 144 peer-reviewed articles reporting HAdV-E4 infections, published during the years 1960 - 2020. More than 24,500 HAdV-E4 infections, including 27 associated deaths, were documented. HAdV-E4 infections were reported from all geographic regions of the world except Central America and the Caribbean. The number of publications reporting civilian infections tripled in the last decade, with a steady increase in reported civilian infections over time. Infections commonly caused respiratory and ocular disease. North America reported the most infections, followed by Asia and Europe. The majority of deaths were reported in the USA, followed by China and Singapore. Civilians seem to increasingly suffer HAdV-E4 disease, with recent epidemics among U.S. college students. Public health officials should consider seeking emergency use authorization for the adenovirus vaccine such that it might be available to mitigate civilian epidemics.
Collapse
Affiliation(s)
- Kristen K Coleman
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore.,Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Emily R Robie
- Duke Global Health Institute, Duke University, Durham, North Carolina, USA.,Division of Infectious Diseases, Duke University School of Medicine, Durham, North Carolina, USA
| | - Anfal Abdelgadir
- Duke Global Health Institute, Duke University, Durham, North Carolina, USA.,Division of Infectious Diseases, Duke University School of Medicine, Durham, North Carolina, USA
| | - Arthi S Kozhumam
- Duke Global Health Institute, Duke University, Durham, North Carolina, USA
| | - Raquel A Binder
- Duke Global Health Institute, Duke University, Durham, North Carolina, USA.,Division of Infectious Diseases, Duke University School of Medicine, Durham, North Carolina, USA
| | - Gregory C Gray
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore.,Duke Global Health Institute, Duke University, Durham, North Carolina, USA.,Division of Infectious Diseases, Duke University School of Medicine, Durham, North Carolina, USA.,Global Health Research Center, Duke Kunshan University, Kunshan, China
| |
Collapse
|
16
|
Kang J, Ismail AM, Dehghan S, Rajaiya J, Allard MW, Lim HC, Dyer DW, Chodosh J, Seto D. Genomics-based re-examination of the taxonomy and phylogeny of human and simian Mastadenoviruses: an evolving whole genomes approach, revealing putative zoonosis, anthroponosis, and amphizoonosis. Cladistics 2020; 36:358-373. [PMID: 34618969 DOI: 10.1111/cla.12422] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/28/2020] [Indexed: 02/06/2023] Open
Abstract
With the advent of high-resolution and cost-effective genomics and bioinformatics tools and methods contributing to a large database of both human (HAdV) and simian (SAdV) adenoviruses, a genomics-based re-evaluation of their taxonomy is warranted. Interest in these particular adenoviruses is growing in part due to the applications of both in gene transfer protocols, including gene therapy and vaccines, as well in oncolytic protocols. In particular, the re-evaluation of SAdVs as appropriate vectors in humans is important as zoonosis precludes the assumption that human immune system may be naïve to these vectors. Additionally, as important pathogens, adenoviruses are a model organism system for understanding viral pathogen emergence through zoonosis and anthroponosis, particularly among the primate species, along with recombination, host adaptation, and selection, as evidenced by one long-standing human respiratory pathogen HAdV-4 and a recent re-evaluation of another, HAdV-76. The latter reflects the insights on amphizoonosis, defined as infections in both directions among host species including "other than human", that are possible with the growing database of nonhuman adenovirus genomes. HAdV-76 is a recombinant that has been isolated from human, chimpanzee, and bonobo hosts. On-going and potential impacts of adenoviruses on public health and translational medicine drive this evaluation of 174 whole genome sequences from HAdVs and SAdVs archived in GenBank. The conclusion is that rather than separate HAdV and SAdV phylogenetic lineages, a single, intertwined tree is observed with all HAdVs and SAdVs forming mixed clades. Therefore, a single designation of "primate adenovirus" (PrAdV) superseding either HAdV and SAdV is proposed, or alternatively, keeping HAdV for human adenovirus but expanding the SAdV nomenclature officially to include host species identification as in ChAdV for chimpanzee adenovirus, GoAdV for gorilla adenovirus, BoAdV for bonobo adenovirus, and ad libitum.
Collapse
Affiliation(s)
- June Kang
- Bioinformatics and Computational Biology Program, School of Systems Biology, George Mason University, Manassas, VA, 20110, USA
| | - Ashrafali Mohamed Ismail
- Department of Ophthalmology, Howe Laboratory, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, 02114, USA
| | - Shoaleh Dehghan
- Bioinformatics and Computational Biology Program, School of Systems Biology, George Mason University, Manassas, VA, 20110, USA.,Chemistry Department, American University, Washington, DC, 20016, USA
| | - Jaya Rajaiya
- Department of Ophthalmology, Howe Laboratory, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, 02114, USA
| | - Marc W Allard
- Division of Microbiology (HFS-710), Center for Food Safety & Applied Nutrition, US Food & Drug Administration, College Park, MD, 20740, USA
| | - Haw Chuan Lim
- Department of Biology, George Mason University Manassas, VA, 20110, USA
| | - David W Dyer
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - James Chodosh
- Department of Ophthalmology, Howe Laboratory, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, 02114, USA
| | - Donald Seto
- Bioinformatics and Computational Biology Program, School of Systems Biology, George Mason University, Manassas, VA, 20110, USA
| |
Collapse
|
17
|
Collins ND, Adhikari A, Yang Y, Kuschner RA, Karasavvas N, Binn LN, Walls SD, Graf PCF, Myers CA, Jarman RG, Hang J. Live Oral Adenovirus Type 4 and Type 7 Vaccine Induces Durable Antibody Response. Vaccines (Basel) 2020; 8:vaccines8030411. [PMID: 32718082 PMCID: PMC7564809 DOI: 10.3390/vaccines8030411] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/18/2020] [Accepted: 07/21/2020] [Indexed: 11/26/2022] Open
Abstract
Human adenoviruses (AdV) are mostly associated with minimal pathology. However, more severe respiratory tract infections and acute respiratory diseases, most often caused by AdV-4 and AdV-7, have been reported. The only licensed vaccine in the United States, live oral AdV-4 and AdV-7 vaccine, is indicated for use in the military, nearly exclusively in recruit populations. The excellent safety profile and prominent antibody response of the vaccine is well established by placebo-controlled clinical trials, while, long-term immunity of vaccination has not been studied. Serum samples collected over 6 years from subjects co-administered live oral AdV-4 and AdV-7 vaccine in 2011 were evaluated to determine the duration of the antibody response. Group geometric mean titers (GMT) at 6 years post vaccination compared to previous years evaluated were not significantly different for either AdV-4 or AdV-7 vaccine components. There were no subjects that demonstrated waning neutralization antibody (NAb) titers against AdV-4 and less than 5% of subjects against AdV-7. Interestingly, there were subjects that had a four-fold increase in NAb titers against either AdV-4 or AdV-7, at various time points post vaccination, suggesting either homotypic or heterotypic re-exposure. This investigation provided strong evidence that the live oral AdV-4 and AdV-7 vaccine induced long-term immunity to protect from AdV-4 and AdV-7 infections.
Collapse
Affiliation(s)
- Natalie D. Collins
- Viral Diseases Branch, Walter Reed Army Institute for Research, Silver Spring, MD 20910, USA; (A.A.); (Y.Y.); (R.A.K.); (N.K.); (L.N.B.); (S.D.W.); (R.G.J.); (J.H.)
- Correspondence: ; Tel.: +1-301-319-3062
| | - Anima Adhikari
- Viral Diseases Branch, Walter Reed Army Institute for Research, Silver Spring, MD 20910, USA; (A.A.); (Y.Y.); (R.A.K.); (N.K.); (L.N.B.); (S.D.W.); (R.G.J.); (J.H.)
| | - Yu Yang
- Viral Diseases Branch, Walter Reed Army Institute for Research, Silver Spring, MD 20910, USA; (A.A.); (Y.Y.); (R.A.K.); (N.K.); (L.N.B.); (S.D.W.); (R.G.J.); (J.H.)
| | - Robert A. Kuschner
- Viral Diseases Branch, Walter Reed Army Institute for Research, Silver Spring, MD 20910, USA; (A.A.); (Y.Y.); (R.A.K.); (N.K.); (L.N.B.); (S.D.W.); (R.G.J.); (J.H.)
| | - Nicos Karasavvas
- Viral Diseases Branch, Walter Reed Army Institute for Research, Silver Spring, MD 20910, USA; (A.A.); (Y.Y.); (R.A.K.); (N.K.); (L.N.B.); (S.D.W.); (R.G.J.); (J.H.)
| | - Leonard N. Binn
- Viral Diseases Branch, Walter Reed Army Institute for Research, Silver Spring, MD 20910, USA; (A.A.); (Y.Y.); (R.A.K.); (N.K.); (L.N.B.); (S.D.W.); (R.G.J.); (J.H.)
| | - Shannon D. Walls
- Viral Diseases Branch, Walter Reed Army Institute for Research, Silver Spring, MD 20910, USA; (A.A.); (Y.Y.); (R.A.K.); (N.K.); (L.N.B.); (S.D.W.); (R.G.J.); (J.H.)
| | - Paul C. F. Graf
- Naval Health Research Center, San Diego, CA 92186, USA; (P.C.F.G.); (C.A.M.)
- U.S. Navy Medical Research Unit Six, Lima 07006, Peru
| | | | - Richard G. Jarman
- Viral Diseases Branch, Walter Reed Army Institute for Research, Silver Spring, MD 20910, USA; (A.A.); (Y.Y.); (R.A.K.); (N.K.); (L.N.B.); (S.D.W.); (R.G.J.); (J.H.)
| | - Jun Hang
- Viral Diseases Branch, Walter Reed Army Institute for Research, Silver Spring, MD 20910, USA; (A.A.); (Y.Y.); (R.A.K.); (N.K.); (L.N.B.); (S.D.W.); (R.G.J.); (J.H.)
| |
Collapse
|
18
|
Nebeluk N, Foster TP. Design, validation and evaluation of a SYBR green-based quantitative PCR array for comprehensive analysis of adenovirus type 5 transcriptional patterns. J Virol Methods 2020; 281:113880. [PMID: 32413477 DOI: 10.1016/j.jviromet.2020.113880] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 04/14/2020] [Accepted: 04/27/2020] [Indexed: 12/13/2022]
Abstract
The adenoviral genome encodes coordinately expressed early and late gene transcriptional units that specify a complex collection of extensively spliced overlapping mRNAs. These complexities confound the generation of compatible, validated and optimized qPCR assays that permit comprehensive evaluation of adenoviral transcription. We have developed and evaluated a compilation of qPCR assays that represent the majority of the human adenovirus 5 (hAdV5) genome and allow for absolute and relative quantification of transcriptional activity. A panel of specific adenovirus gene primer pairs was designed through computational modeling to be compatible under a single reaction condition, precisely amplify spliced transcript products within each gene class, and not result in cellular or viral RNA/DNA background amplification. Primer pairs and reaction conditions were optimized to generate a single amplification product that was specific for its target amplicon with minimal intra-assay variability. The specificity of target amplicons was confirmed by dissociation curve analysis, gel electrophoresis and sequencing. In all, thirty-two primer sets representing specific gene products, as well as, pan early and late gene regions were validated under identical amplification conditions, thereby enabling a comprehensive assessment of adenoviral transcription within a single plate array. In order to generate positive control templates and to facilitate absolute quantification of gene expression, all target amplicons were cloned to create gene target-specific standards. These plasmid amplicon controls demonstrated that the SYBR qPCR assays exhibited optimal amplification efficiencies with a high sensitivity of detection to less than 10 copies and a linear amplification across at least eight orders of magnitude. The effectiveness and utility of the comprehensive adenoviral transcriptional array was assessed by investigating the changes in Ad5Wt gene expression at 72 versus 24 h post infection. Predictably, overall gene expression was globally increased at 72 h post infection; however, levels of E2 and Late transcripts exhibited the greatest increased expression, reflecting their necessity at this time point for genomic replication and virion assembly. Taken together, these data demonstrate that the adenoviral qPCR transcriptional array is a modular, scalable, and cost-effective method to comprehensively and accurately assess hAdV5 gene transcription. This array is broadly applicable to facilitate: adenoviral vector development; assessment of cell complementation of knockout viruses; antiviral mechanism of action evaluation; next-generation sequencing data validation.
Collapse
Affiliation(s)
- Nazary Nebeluk
- Department of Microbiology, Immunology, and Parasitology, USA
| | - Timothy P Foster
- Department of Microbiology, Immunology, and Parasitology, USA; Department of Ophthalmology, USA; The Stanley S. Scott Cancer Center, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA; The Louisiana Vaccine Center, New Orleans, LA, 70112, USA.
| |
Collapse
|
19
|
McNeil MM, Paradowska-Stankiewicz I, Miller ER, Marquez PL, Seshadri S, Collins LC, Cano MV. Adverse events following adenovirus type 4 and type 7 vaccine, live, oral in the Vaccine Adverse Event Reporting System (VAERS), United States, October 2011-July 2018. Vaccine 2019; 37:6760-6767. [PMID: 31548014 PMCID: PMC9250693 DOI: 10.1016/j.vaccine.2019.08.087] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 08/14/2019] [Accepted: 08/30/2019] [Indexed: 11/29/2022]
Abstract
BACKGROUND In March 2011, the U.S. Food and Drug Administration licensed adenovirus type 4 and type 7 vaccine, live, oral (Barr Labs, Inc.) (adenovirus vaccine) for use in military personnel 17 through 50 years of age. The vaccine was first universally administered to U.S. military recruits in October 2011. We investigated adverse event (AE) reports following the adenovirus vaccine submitted to the Vaccine Adverse Event Reporting System (VAERS). METHODS We searched the VAERS database for U.S. reports among persons who received adenovirus vaccine during October 2011 through July 2018 including participants in a military observational study. We reviewed all serious reports and accompanying medical records. We compared the proportion of serious reports in a proxy military recruit population and reviewed all reports of suspected allergic reactions following adenovirus vaccination. RESULTS During the analytic period, VAERS received 100 reports following adenovirus vaccination; 39 (39%) were classified as serious and of these, 17 (44%) were from the observational study. One death was reported. Males accounted for 72% of reports. Median age of vaccinees was 19 years (range 17-32). The most frequently reported serious AEs were Guillain Barré syndrome (GBS) (n = 12) and anaphylaxis (n = 8); of these, two GBS and all the anaphylaxis reports were reported in the observational study. Reports documented concurrent receipt of multiple other vaccines (95%) and penicillin G (IM Pen G) or other antibiotics (50%). CONCLUSIONS The reporting rate for serious AEs was higher than with other vaccines administered in the comparison military recruit population (39% vs 18%); however, we identified no unexpected or concerning pattern of adenovirus vaccine AEs. Co-administration of vaccines and IM Pen G was commonly reported in this military population. These exposures may have contributed to the GBS and anaphylaxis outcomes observed with the adenovirus vaccine. Future adenovirus vaccine safety studies in a population without these co-administrations would be helpful in clarifying the vaccine's safety profile.
Collapse
Affiliation(s)
- Michael M McNeil
- Immunization Safety Office, Division of Healthcare Quality Promotion (DHQP), National Center for Zoonotic and Emerging Infectious Diseases (NCZEID), Centers for Disease Control and Prevention (CDC), Atlanta, GA 30329, USA.
| | - Iwona Paradowska-Stankiewicz
- Immunization Safety Office, Division of Healthcare Quality Promotion (DHQP), National Center for Zoonotic and Emerging Infectious Diseases (NCZEID), Centers for Disease Control and Prevention (CDC), Atlanta, GA 30329, USA
| | - Elaine R Miller
- Immunization Safety Office, Division of Healthcare Quality Promotion (DHQP), National Center for Zoonotic and Emerging Infectious Diseases (NCZEID), Centers for Disease Control and Prevention (CDC), Atlanta, GA 30329, USA
| | - Paige L Marquez
- Immunization Safety Office, Division of Healthcare Quality Promotion (DHQP), National Center for Zoonotic and Emerging Infectious Diseases (NCZEID), Centers for Disease Control and Prevention (CDC), Atlanta, GA 30329, USA
| | - Srihari Seshadri
- Immunization Healthcare Division, Public Health Division, Defense Health Agency, Falls Church, VA 22042, USA
| | - Limone C Collins
- Immunization Healthcare Division, Public Health Division, Defense Health Agency, Falls Church, VA 22042, USA
| | - Maria V Cano
- Immunization Safety Office, Division of Healthcare Quality Promotion (DHQP), National Center for Zoonotic and Emerging Infectious Diseases (NCZEID), Centers for Disease Control and Prevention (CDC), Atlanta, GA 30329, USA
| |
Collapse
|
20
|
A Zoonotic Adenoviral Human Pathogen Emerged through Genomic Recombination among Human and Nonhuman Simian Hosts. J Virol 2019; 93:JVI.00564-19. [PMID: 31243128 DOI: 10.1128/jvi.00564-19] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 06/18/2019] [Indexed: 12/14/2022] Open
Abstract
Genomics analysis of a historically intriguing and predicted emergent human adenovirus (HAdV) pathogen, which caused pneumonia and death, provides insight into a novel molecular evolution pathway involving "ping-pong" zoonosis and anthroponosis. The genome of this promiscuous pathogen is embedded with evidence of unprecedented multiple, multidirectional, stable, and reciprocal cross-species infections of hosts from three species (human, chimpanzee, and bonobo). This recombinant genome, typed as HAdV-B76, is identical to two recently reported simian AdV (SAdV) genomes isolated from chimpanzees and bonobos. Additionally, the presence of a critical adenoviral replication element found in HAdV genomes, in addition to genes that are highly similar to counterparts in other HAdVs, reinforces its potential as a human pathogen. Reservoirs in nonhuman hosts may explain periods of apparent absence and then reemergence of human adenoviral pathogens, as well as present pathways for the genesis of those thought to be newly emergent. The nature of the HAdV-D76 genome has implications for the use of SAdVs as gene delivery vectors in human gene therapy and vaccines, selected to avoid preexisting and potentially fatal host immune responses to HAdV.IMPORTANCE An emergent adenoviral human pathogen, HAdV-B76, associated with a fatality in 1965, shows a remarkable degree of genome identity with two recently isolated simian adenoviruses that contain cross-species genome recombination events from three hosts: human, chimpanzee, and bonobo. Zoonosis (nonhuman-to-human transmission) and anthroponosis (human to nonhuman transmission) may play significant roles in the emergence of human adenoviral pathogens.
Collapse
|
21
|
Oral Vaccination with Replication-Competent Adenovirus in Mice Reveals Dissemination of the Viral Vaccine beyond the Gastrointestinal Tract. J Virol 2019; 93:JVI.00237-19. [PMID: 30996103 DOI: 10.1128/jvi.00237-19] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 04/13/2019] [Indexed: 01/11/2023] Open
Abstract
Since the 1970s, replication-competent human adenoviruses 4 and 7 have been used as oral vaccines to protect U.S. soldiers against the severe respiratory diseases caused by these viruses. These vaccines are thought to establish a digestive tract infection conferring protection against respiratory challenge through antibodies. The success of these vaccines makes replication-competent adenoviruses attractive candidates for use as oral vaccine vectors. However, the inability of human adenoviruses to replicate efficiently in laboratory animals has hampered the study of such vectors. Here, we used mouse adenovirus type 1 (MAV-1) in mice to study oral replication-competent adenovirus-based vaccines. We show that MAV-1 oral administration provides protection that recapitulates the protection against homologous respiratory challenge observed with adenovirus 4 and 7 vaccines. Moreover, live oral MAV-1 vaccine better protected against a respiratory challenge than inactivated vaccines. This protection was linked not only with the presence of MAV-1-specific antibodies but also with a better recruitment of effector CD8 T cells. However, unexpectedly, we found that such oral replication-competent vaccine systemically spread all over the body. Our results therefore support the use of MAV-1 to study replication-competent oral adenovirus-based vaccines but also highlight the fact that those vaccines can disseminate widely in the body.IMPORTANCE Replication-competent adenoviruses appear to be promising vectors for the development of oral vaccines in humans. However, the study and development of these vaccines suffer from the lack of any reliable animal model. In this study, mouse adenovirus type 1 was used to develop a small-animal model for oral replication-competent adenovirus vaccines. While this model reproduced in mice what is observed with human adenovirus oral vaccines, it also highlighted that oral immunization with such a replication-competent vaccine is associated with the systemic spread of the virus. This study is therefore of major importance for the future development of such vaccine platforms and their use in large human populations.
Collapse
|
22
|
Mennechet FJD, Paris O, Ouoba AR, Salazar Arenas S, Sirima SB, Takoudjou Dzomo GR, Diarra A, Traore IT, Kania D, Eichholz K, Weaver EA, Tuaillon E, Kremer EJ. A review of 65 years of human adenovirus seroprevalence. Expert Rev Vaccines 2019; 18:597-613. [PMID: 31132024 DOI: 10.1080/14760584.2019.1588113] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Introduction: Human adenovirus (HAdV)-derived vectors have been used in numerous pre-clinical and clinical trials during the last 40 years. Current research in HAdV-based vaccines focuses on improving transgene immunogenicity and safety. Because pre-existing humoral immunity against HAdV types correlate with reduced vaccine efficacy and safety, many groups are exploring the development of HAdV types vectors with lower seroprevalence. However, global seroepidemiological data are incomplete. Areas covered: The goal of this review is to centralize 65 years of research on (primarily) HAdV epidemiology. After briefly addressing adenovirus biology, we chronical HAdV seroprevalence studies and highlight major milestones. Finally, we analyze data from about 50 studies with respect to HAdVs types that are currently used in the clinic, or are in the developmental pipeline. Expert opinion: Vaccination is among the most efficient tools to prevent infectious disease. HAdV-based vaccines have undeniable potential, but optimization is needed and antivector immunity remains a challenge if the same vectors are to be administrated to different populations. Here, we identify gaps in our knowledge and the need for updated worldwide epidemiological data.
Collapse
Affiliation(s)
- Franck J D Mennechet
- a Institut de Génétique Moléculaire de Montpellier , University of Montpellier - CNRS , Montpellier , France
| | - Océane Paris
- a Institut de Génétique Moléculaire de Montpellier , University of Montpellier - CNRS , Montpellier , France
| | - Aline Raissa Ouoba
- a Institut de Génétique Moléculaire de Montpellier , University of Montpellier - CNRS , Montpellier , France.,b UMR 1058, Pathogenesis and Control of Chronic Infections , INSERM - University of Montpellier - Establishment Français du Sang - Centre Hospitalier Universitaire de Montpellier , Montpellier , France.,c Département des sciences et de la recherche clinique , Centre Muraz , Bobo-Dioulasso , Burkina Faso
| | - Sofia Salazar Arenas
- a Institut de Génétique Moléculaire de Montpellier , University of Montpellier - CNRS , Montpellier , France
| | - Sodiomon B Sirima
- d Centre National de Recherche et de Formation sur le Paludisme , Ouagadougou , Burkina Faso.,e Groupe de Recherche Action en Santé (GRAS) , Ouagadougou , Burkina Faso
| | - Guy R Takoudjou Dzomo
- f Complexe Hospitalo Universitaire « Le Bon Samaritain » , N'Djamena , Republic of Chad
| | - Amidou Diarra
- d Centre National de Recherche et de Formation sur le Paludisme , Ouagadougou , Burkina Faso
| | - Isidore T Traore
- c Département des sciences et de la recherche clinique , Centre Muraz , Bobo-Dioulasso , Burkina Faso
| | - Dramane Kania
- c Département des sciences et de la recherche clinique , Centre Muraz , Bobo-Dioulasso , Burkina Faso
| | - Karsten Eichholz
- a Institut de Génétique Moléculaire de Montpellier , University of Montpellier - CNRS , Montpellier , France
| | - Eric A Weaver
- g University of Nebraska-Lincoln, School of Biological Sciences , Lincoln , NE , USA
| | - Edouard Tuaillon
- b UMR 1058, Pathogenesis and Control of Chronic Infections , INSERM - University of Montpellier - Establishment Français du Sang - Centre Hospitalier Universitaire de Montpellier , Montpellier , France
| | - Eric J Kremer
- a Institut de Génétique Moléculaire de Montpellier , University of Montpellier - CNRS , Montpellier , France
| |
Collapse
|
23
|
Bullard BL, Corder BN, Weaver EA. A Single-Cycle Adenovirus Type 7 Vaccine for Prevention of Acute Respiratory Disease. Viruses 2019; 11:E413. [PMID: 31058858 PMCID: PMC6563269 DOI: 10.3390/v11050413] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 04/30/2019] [Accepted: 05/01/2019] [Indexed: 11/23/2022] Open
Abstract
Adenovirus type 7 (Ad7) infection is associated with acute respiratory disease (ARD), especially in military recruits living in close quarters. Recently, several outbreaks of Ad7 infections have occurred in civilian populations, with some cases leading to death. However, the current Ad7 vaccine is licensed for use only in military recruits because it utilizes an orally delivered wild type virus which is shed in the stool for 28 days after immunization. This poses a safety risk due to the possibility of virus spread to vulnerable populations. To address the need for a safer Ad7 vaccine for use in civilian populations, we developed a single-cycle Ad7 virus (scAd7). This scAd7 virus is deleted for the Ad7 fiber protein, so that viruses produced outside of complementing cells lines lack this essential structural protein and have severely reduced infectivity. In vitro studies in noncomplementing A549 cells showed that the scAd7 virus has genomic DNA replication kinetics and Ad7 hexon expression similar to a replication-competent virus; however, virus progeny produced after infection has impaired infectivity. Therefore, this scAd7 virus combines the safety advantages of a replication-defective virus with the increased Ad7 gene expression of a replication-competent virus. Due to these advantages, we believe that scAd7 viruses should be further studied as an alternative, safer Adenovirus 7 vaccine.
Collapse
Affiliation(s)
- Brianna L Bullard
- School of Biological Sciences, Nebraska Center for Virology, University of Nebraska, Lincoln, NE 68503, USA.
| | - Brigette N Corder
- School of Biological Sciences, Nebraska Center for Virology, University of Nebraska, Lincoln, NE 68503, USA.
| | - Eric A Weaver
- School of Biological Sciences, Nebraska Center for Virology, University of Nebraska, Lincoln, NE 68503, USA.
| |
Collapse
|
24
|
Panozzo CA, Pourmalek F, Brauchli Pernus Y, Pileggi GS, Woerner A, Bonhoeffer J. Arthritis and arthralgia as an adverse event following immunization: A systematic literature review. Vaccine 2019; 37:372-383. [DOI: 10.1016/j.vaccine.2018.06.067] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 06/26/2018] [Accepted: 06/29/2018] [Indexed: 11/29/2022]
|
25
|
Stephenson KE, Keefer MC, Bunce CA, Frances D, Abbink P, Maxfield LF, Neubauer GH, Nkolola J, Peter L, Lane C, Park H, Verlinde C, Lombardo A, Yallop C, Havenga M, Fast P, Treanor J, Barouch DH. First-in-human randomized controlled trial of an oral, replicating adenovirus 26 vector vaccine for HIV-1. PLoS One 2018; 13:e0205139. [PMID: 30427829 PMCID: PMC6235250 DOI: 10.1371/journal.pone.0205139] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Accepted: 09/04/2018] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Live, attenuated viral vectors that express HIV-1 antigens are being investigated as an approach to generating durable immune responses against HIV-1 in humans. We recently developed a replication-competent, highly attenuated Ad26 vector that expresses mosaic HIV-1 Env (rcAd26.MOS1.HIV-Env, "rcAd26"). Here we present the results of a first-in-human, placebo-controlled clinical trial to test the safety, immunogenicity and mucosal shedding of rcAd26 given orally. METHODS Healthy adults were randomly assigned to receive a single oral dose of vaccine or placebo at 5:1 ratio in a dosage escalation of 10^8 to 10^11 rcAd26 VP (nominal doses) at University of Rochester Medical Center, Rochester, NY, USA. Participants were isolated and monitored for reactogenicity for 10 days post-vaccination, and adverse events were recorded up to day 112. Rectal and oropharyngeal secretions were evaluated for shedding of the vaccine. Humoral and cellular immune responses were measured. Household contacts were monitored for secondary vaccine transmission. RESULTS We enrolled 22 participants and 11 household contacts between February 7 and June 24, 2015. 18 participants received one dose of HIV-1 vaccine and 4 participants received placebo. The vaccine caused only mild to moderate adverse events. No vaccine-related SAEs were observed. No infectious rcAd26 viral particles were detected in rectal or oropharyngeal secretions from any participant. Env-specific ELISA and ELISPOT responses were undetectable. No household contacts developed vaccine-induced HIV-1 seropositivity or vaccine-associated illness. CONCLUSIONS The highly attenuated rcAd26.MOS1.HIV-Env vaccine was well tolerated up to 10^11 VP in healthy, HIV-1-uninfected adults, though the single dose was poorly immunogenic suggesting the replicative capacity of the vector was too attenuated. There was no evidence of shedding of infectious virus or secondary vaccine transmission following the isolation period. These data suggest the use of less attenuated viral vectors in future studies of live, oral HIV-1 vaccines. TRIAL REGISTRATION ClinicalTrials.gov NCT02366013.
Collapse
Affiliation(s)
- Kathryn E. Stephenson
- Center for Virology and Vaccine Research, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Michael C. Keefer
- University of Rochester Medical Center, School of Medicine and Dentistry, Rochester, New York, United States of America
| | - Catherine A. Bunce
- University of Rochester Medical Center, School of Medicine and Dentistry, Rochester, New York, United States of America
| | - Doreen Frances
- University of Rochester Medical Center, School of Medicine and Dentistry, Rochester, New York, United States of America
| | - Peter Abbink
- Center for Virology and Vaccine Research, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
| | - Lori F. Maxfield
- Center for Virology and Vaccine Research, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
| | - George H. Neubauer
- Center for Virology and Vaccine Research, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
| | - Joseph Nkolola
- Center for Virology and Vaccine Research, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
| | - Lauren Peter
- Center for Virology and Vaccine Research, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
| | - Christopher Lane
- University of Rochester Medical Center, School of Medicine and Dentistry, Rochester, New York, United States of America
| | - Harriet Park
- International AIDS Vaccine Initiative, New York, New York, United States of America
| | - Carl Verlinde
- International AIDS Vaccine Initiative, New York, New York, United States of America
| | - Angela Lombardo
- International AIDS Vaccine Initiative, New York, New York, United States of America
| | | | | | - Patricia Fast
- International AIDS Vaccine Initiative, New York, New York, United States of America
| | - John Treanor
- University of Rochester Medical Center, School of Medicine and Dentistry, Rochester, New York, United States of America
| | - Dan H. Barouch
- Center for Virology and Vaccine Research, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, United States of America
| |
Collapse
|
26
|
Detection and molecular characterization of enteric viruses in children with acute gastroenteritis in Northern Italy. INFECTION GENETICS AND EVOLUTION 2018; 60:35-41. [DOI: 10.1016/j.meegid.2018.02.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 02/07/2018] [Accepted: 02/09/2018] [Indexed: 01/21/2023]
|
27
|
Holly MK, Smith JG. Adenovirus Infection of Human Enteroids Reveals Interferon Sensitivity and Preferential Infection of Goblet Cells. J Virol 2018; 92:e00250-18. [PMID: 29467318 PMCID: PMC5899204 DOI: 10.1128/jvi.00250-18] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 02/14/2018] [Indexed: 12/27/2022] Open
Abstract
Human adenoviruses (HAdV) are significant human pathogens. Although only a subset of HAdV serotypes commonly cause gastroenteritis in humans, most HAdV species replicate in the gastrointestinal tract. Knowledge of the complex interaction between HAdVs and the human intestinal epithelium has been limited by the lack of a suitable cell culture system containing relevant cell types. Recently, this need has been met by the stable and prolonged cultivation of primary intestinal epithelial cells as enteroids. Human enteroids have been used to reveal novel and interesting aspects of rotavirus, norovirus, and enterovirus replication, prompting us to explore their suitability for HAdV culture. We found that both prototype strains and clinical isolates of enteric and nonenteric HAdVs productively replicate in human enteroids. HAdV-5p, a respiratory pathogen, and HAdV-41p, an enteric pathogen, are both sensitive to type I and III interferons in human enteroid monolayers but not A549 cells. Interestingly, HAdV-5p, but not HAdV-41p, preferentially infected goblet cells. And, HAdV-5p but not HAdV-41p was potently neutralized by the enteric human alpha-defensin HD5. These studies highlight new facets of HAdV biology that are uniquely revealed by primary intestinal epithelial cell culture.IMPORTANCE Enteric adenoviruses are a significant cause of childhood gastroenteritis worldwide, yet our understanding of their unique biology is limited. Here we report robust replication of both prototype and clinical isolates of enteric and respiratory human adenoviruses in enteroids, a primary intestinal cell culture system. Recent studies have shown that other fastidious enteric viruses replicate in human enteroids. Therefore, human enteroids may provide a unified platform for culturing enteric viruses, potentially enabling isolation of a greater diversity of viruses from patients. Moreover, both the ability of interferon to restrict respiratory and enteric adenoviruses and a surprising preference of a respiratory serotype for goblet cells demonstrate the power of this culture system to uncover aspects of adenovirus biology that were previously unattainable with standard cell lines.
Collapse
Affiliation(s)
- Mayumi K Holly
- Department of Microbiology, University of Washington, Seattle, Washington, USA
| | - Jason G Smith
- Department of Microbiology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
28
|
Abstract
Adenoviridae is a family of double-stranded DNA viruses that are a significant cause of upper respiratory tract infections in children and adults. Less commonly, the adenovirus family can cause a variety of gastrointestinal, ophthalmologic, genitourinary, and neurologic diseases. Most adenovirus infections are self-limited in the immunocompetent host and are treated with supportive measures. Fatal infections can occur in immunocompromised patients and less frequently in the healthy. Adenoviral vectors are being studied for novel biomedical applications including gene therapy and immunization. In this review we will focus on the spectrum of adenoviral infections in humans.
Collapse
Affiliation(s)
- Subrat Khanal
- Department of Medicine, State University of New York, Upstate Medical University, Syracuse, NY 13210, USA.
| | - Pranita Ghimire
- Department of Medicine, State University of New York, Upstate Medical University, Syracuse, NY 13210, USA.
| | - Amit S Dhamoon
- Department of Medicine, State University of New York, Upstate Medical University, Syracuse, NY 13210, USA.
| |
Collapse
|
29
|
|
30
|
An Overview of History, Evolution, and Manufacturing of Various Generations of Vaccines. ACTA ACUST UNITED AC 2017. [DOI: 10.5812/jamm.12315] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
31
|
Iaconelli M, Valdazo-González B, Equestre M, Ciccaglione AR, Marcantonio C, Della Libera S, La Rosa G. Molecular characterization of human adenoviruses in urban wastewaters using next generation and Sanger sequencing. WATER RESEARCH 2017; 121:240-247. [PMID: 28550812 DOI: 10.1016/j.watres.2017.05.039] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 05/17/2017] [Accepted: 05/19/2017] [Indexed: 05/18/2023]
Abstract
Human adenoviruses (HAdVs) are of major public health importance and are associated with a variety of clinical manifestations, including gastroenteritis, respiratory, ocular and urinary tract infections. To study the occurrence, prevalence and diversity of HAdV species and types circulating in Italy, we conducted a large-scale molecular-epidemiological investigation, a yearlong monitoring of 22 wastewater treatment plants, covering 10 Italian regions, representative of northern, central, and southern Italy. A total of 141 raw sewage samples were collected from January to December 2013, and processed to detect and characterize by phylogenetic analysis a fragment of the hexon coding region of HAdVs. Nested PCR results showed the presence of HAdVs in 85 out of 141 samples (60% of samples). Fifty-nine samples were characterized by conventional Sanger sequencing as belonging to four HAdV species and four types: A (type 12, 5 samples), B (type 3, 8 samples), C (type 5, 1 sample) and F (type 41, 45 samples). The remaining 26 samples could not be characterized because of uninterpretable (mixed) electropherograms suggesting the presence of multiple species and/or types. Pools of characterized and uncharacterized PCR amplicons were further analyzed by next-generation sequencing (NGS). NGS results revealed a marked HAdV diversity with 16 additional types detected beyond the four types found by Sanger sequencing. Overall, 19 types were identified, belonging to HAdV species A-F: types 12 and 31 (species A), type 3 (species B), types 1, 2, and 5 (species C), types 9, 17, 24, 26, 37, 38, 42, 44, 48, and 70 (species D), type 4 (species E), and types 40 and 41(species F). An untypeable HAdV was also detected, showing similar percentages of identity with more than one prototype (types 15, 30, 56, and 59). Our findings documented the circulation of a wide variety of species and types in raw sewage, potentially able to affect other surface water environments and hence human health. Next-generation sequencing proved to be an effective strategy for HAdV genotyping in wastewater samples. It was able to detect a wide range of "less prevalent" types unidentified by conventional Sanger sequencing, confirming that studies based on conventional technologies may grossly underestimate the existence of some, possibly less common, types. Knowledge of the distribution of HAdV species and types would improve our understanding of waterborne HAdV-related health risks.
Collapse
Affiliation(s)
- M Iaconelli
- Istituto Superiore di Sanità, Department of Environment and Health, Rome, Italy
| | - B Valdazo-González
- The National Institute for Biological Standards and Control, Potters Bar, United Kingdom
| | - M Equestre
- Istituto Superiore di Sanità, Department of Cell Biology and Neurosciences, Rome, Italy
| | - A R Ciccaglione
- Istituto Superiore di Sanità, Department of Infectious, Parasitic and Immune-Mediated Diseases, Rome, Italy
| | - C Marcantonio
- Istituto Superiore di Sanità, Department of Infectious, Parasitic and Immune-Mediated Diseases, Rome, Italy
| | - S Della Libera
- Istituto Superiore di Sanità, Department of Environment and Health, Rome, Italy
| | - G La Rosa
- Istituto Superiore di Sanità, Department of Environment and Health, Rome, Italy.
| |
Collapse
|
32
|
Veer M, Abdulmassih R, Como J, Min Z, Bhanot N. Adenoviral nephritis in a renal transplant recipient: Case report and literature review. Transpl Infect Dis 2017; 19. [PMID: 28467620 DOI: 10.1111/tid.12716] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 01/06/2017] [Accepted: 02/06/2017] [Indexed: 11/27/2022]
Abstract
Adenovirus (AdV) infections in transplant recipients may cause invasive disease. We present a case of granulomatous interstitial nephritis secondary to AdV infection in a renal transplant recipient that was initially interpreted as acute graft rejection on histopathology. Specific testing based on clinical suspicion, however, aided in making an accurate diagnosis. We present a retrospective review of all cases of AdV infection in renal transplant recipients to date, and analyze outcomes based on different treatment modalities for this disease.
Collapse
Affiliation(s)
- Manik Veer
- Department of Internal Medicine, Allegheny General Hospital, Pittsburgh, PA, USA
| | - Rasha Abdulmassih
- Division of Infectious Disease, Allegheny General Hospital, Pittsburgh, PA, USA
| | - James Como
- Division of Infectious Disease, Allegheny General Hospital, Pittsburgh, PA, USA
| | - Zaw Min
- Division of Infectious Disease, Allegheny General Hospital, Pittsburgh, PA, USA
| | - Nitin Bhanot
- Division of Infectious Disease, Allegheny General Hospital, Pittsburgh, PA, USA
| |
Collapse
|
33
|
Simancas‐Racines D, Franco JVA, Guerra CV, Felix ML, Hidalgo R, Martinez‐Zapata MJ. Vaccines for the common cold. Cochrane Database Syst Rev 2017; 5:CD002190. [PMID: 28516442 PMCID: PMC6481390 DOI: 10.1002/14651858.cd002190.pub5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND The common cold is a spontaneously remitting infection of the upper respiratory tract, characterised by a runny nose, nasal congestion, sneezing, cough, malaise, sore throat, and fever (usually < 37.8º C). The widespread morbidity caused by the common cold worldwide is related to its ubiquitousness rather than its severity. The development of vaccines for the common cold has been difficult because of antigenic variability of the common cold virus and the indistinguishable multiple other viruses and even bacteria acting as infective agents. There is uncertainty regarding the efficacy and safety of interventions for preventing the common cold in healthy people. This is an update of a Cochrane review first published in 2011 and previously updated in 2013. OBJECTIVES To assess the clinical effectiveness and safety of vaccines for preventing the common cold in healthy people. SEARCH METHODS We searched the Cochrane Central Register of Controlled Trials (CENTRAL) (September 2016), MEDLINE (1948 to September 2016), Embase (1974 to September 2016), CINAHL (1981 to September 2016), and LILACS (1982 to September 2016). We also searched three trials registers for ongoing studies and four websites for additional trials (February 2017). We included no language or date restrictions. SELECTION CRITERIA Randomised controlled trials (RCTs) of any virus vaccines compared with placebo to prevent the common cold in healthy people. DATA COLLECTION AND ANALYSIS Two review authors independently evaluated methodological quality and extracted trial data. We resolved disagreements by discussion or by consulting a third review author. MAIN RESULTS We found no additional RCTs for inclusion in this update. This review includes one RCT dating from the 1960s with an overall high risk of bias. The RCT included 2307 healthy participants, all of whom were included in analyses. This trial compared the effect of an adenovirus vaccine against placebo. No statistically significant difference in common cold incidence was found: there were 13 (1.14%) events in 1139 participants in the vaccines group and 14 (1.19%) events in 1168 participants in the placebo group (risk ratio 0.95, 95% confidence interval 0.45 to 2.02; P = 0.90). No adverse events related to the live vaccine were reported. The quality of the evidence was low due to limitations in methodological quality and a wide 95% confidence interval. AUTHORS' CONCLUSIONS This Cochrane Review was based on one study with low-quality evidence. We found no conclusive results to support the use of vaccines for preventing the common cold in healthy people compared with placebo. We identified a need for well-designed, adequately powered RCTs to investigate vaccines for the common cold in healthy people. Any future trials on medical treatments for preventing the common cold should assess a variety of virus vaccines for this condition. Outcome measures should include common cold incidence, vaccine safety, and mortality related to the vaccine.
Collapse
Affiliation(s)
- Daniel Simancas‐Racines
- Universidad Tecnológica EquinoccialCochrane Ecuador, Centro de Investigación en Salud Pública y Epidemiología Clínica (CISPEC), Facultad de Ciencias de la Salud Eugenio EspejoQuitoEcuador
| | - Juan VA Franco
- Instituto Universitario del Hospital ItalianoArgentine Cochrane CentrePotosí 4234Buenos AiresBuenos AiresBuenos AiresArgentinaC1199ACL
| | - Claudia V Guerra
- Universidad Tecnológica EquinoccialFacultad de Ciencias de la Salud Eugenio EspejoAvenida Mariana de Jesús y OccidentalQuitoPichinchaEcuador593
| | - Maria L Felix
- Universidad Tecnológica EquinoccialDepartment of NeonatologyAv. Mariana de Jesús y OccidentalQuitoPichinchaEcuador593
| | - Ricardo Hidalgo
- Universidad Tecnológica EquinoccialFacultad de Ciencias de la Salud Eugenio EspejoAvenida Mariana de Jesús y OccidentalQuitoPichinchaEcuador593
| | - Maria José Martinez‐Zapata
- CIBER Epidemiología y Salud Pública (CIBERESP)Iberoamerican Cochrane Centre, Biomedical Research Institute Sant Pau (IIB Sant Pau)Sant Antoni Maria Claret 167Pavilion 18BarcelonaCatalunyaSpain08025
- Universidad Tecnológica EquinoccialCochrane Ecuador. Centro de Investigación en Salud Pública y Epidemiología Clínica (CISPEC). Facultad de Ciencias de la Salud Eugenio EspejoAvenida República de El Salvador 733 y Portugal Edificio Gabriela 3. Of. 403 Casilla Postal 17‐17‐525QuitoEcuador
| | | |
Collapse
|
34
|
Hang J, Vento TJ, Norby EA, Jarman RG, Keiser PB, Kuschner RA, Binn LN. Adenovirus type 4 respiratory infections with a concurrent outbreak of coxsackievirus A21 among United States Army Basic Trainees, a retrospective viral etiology study using next-generation sequencing. J Med Virol 2017; 89:1387-1394. [PMID: 28198541 DOI: 10.1002/jmv.24792] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 01/30/2017] [Indexed: 11/09/2022]
Abstract
Human adenoviruses (HAdV), in particular types 4 and 7, frequently cause acute respiratory disease (ARD) during basic military training. HAdV4 and HAdV7 vaccines reduced the ARD risk in U.S. military. It is important to identify other respiratory pathogens and assess their potential impact on military readiness. In 2002, during a period when the HAdV vaccines were not available, throat swabs were taken from trainees (n = 184) with respiratory infections at Fort Jackson, South Carolina. Viral etiology was investigated initially with viral culture and neutralization assay and recently in this study by sequencing the viral isolates. Viral culture and neutralization assays identified 90 HAdV4 isolates and 27 additional cultures that showed viral cytopathic effects (CPE), including some with picornavirus-like CPE. Next-generation sequencing confirmed these results and determined viral genotypes, including 77 HAdV4, 4 HAdV3, 1 HAdV2, 17 coxsackievirus A21 (CAV21), and 1 enterovirus D68. Two samples were positive for both HAdV4 and CAV21. The identified genotypes are phylogenetically close to but distinct from those found during other years or in other military/non-military sites. HAdV4 is the predominant respiratory pathogen in unvaccinated military trainee. HAdV4 has temporal and demographic variability. CAV21 is a significant respiratory pathogen and needs to be evaluated for its current significance in military basic trainees.
Collapse
Affiliation(s)
- Jun Hang
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland
| | - Todd J Vento
- Preventive Medicine Department, Walter Reed Army Institute of Research, Silver Spring, Maryland
| | - Erica A Norby
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland
| | - Richard G Jarman
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland
| | - Paul B Keiser
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland
| | - Robert A Kuschner
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland
| | - Leonard N Binn
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland
| |
Collapse
|
35
|
Associations of Adenovirus Genotypes in Korean Acute Gastroenteritis Patients with Respiratory Symptoms and Intussusception. BIOMED RESEARCH INTERNATIONAL 2017; 2017:1602054. [PMID: 28255553 PMCID: PMC5309414 DOI: 10.1155/2017/1602054] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Revised: 12/16/2016] [Accepted: 12/27/2016] [Indexed: 02/07/2023]
Abstract
Human adenoviruses (HAdVs) cause a wide range of diseases, including respiratory infections and gastroenteritis, and have more than 65 genotypes. To investigate the current genotypes of circulating HAdV strains, we performed molecular genotyping of HAdVs in the stool from patients with acute gastroenteritis and tried to determine their associations with clinical symptoms. From June 2014 to May 2016, 3,901 fecal samples were tested for an AdV antigen, and 254 samples (6.5%) yielded positive results. Genotyping using PCR and sequencing of the capsid hexon gene was performed for 236 AdV antigen-positive fecal specimens. HAdV-41, of species F, was the most prevalent genotype (60.6%), followed by HAdV-2 of species C (13.8%). Other genotypes, including HAdV-3, HAdV-1, HAdV-5, HAdV-6, HAdV-31, HAdV-40, HAdV-12, and HAdV-55, were also detected. Overall, 119 patients (50.4%) showed concomitant respiratory symptoms, and 32 patients (13.6%) were diagnosed with intussusception. HAdV-1 and HAdV-31 were significantly associated with intussusception (P < 0.05). Our results demonstrate the recent changes in trends of circulating AdV genotypes associated with gastroenteritis in Korea, which should be of value for improving the diagnosis and developing new detection, treatment, and prevention strategies for broad application in clinical laboratories.
Collapse
|
36
|
Choudhry A, Mathena J, Albano JD, Yacovone M, Collins L. Safety evaluation of adenovirus type 4 and type 7 vaccine live, oral in military recruits. Vaccine 2016; 34:4558-4564. [DOI: 10.1016/j.vaccine.2016.07.033] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 07/02/2016] [Accepted: 07/18/2016] [Indexed: 11/26/2022]
|
37
|
Peng Y, Lai M, Lou Y, Liu Y, Wang H, Zheng X. Efficient induction of cross-presentating human B cell by transduction with human adenovirus type 7 vector. Immunol Lett 2015; 169:41-51. [PMID: 26620361 DOI: 10.1016/j.imlet.2015.11.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 10/22/2015] [Accepted: 11/14/2015] [Indexed: 10/22/2022]
Abstract
Although human autologous B cells represent a promising alternative to dendritic cells (DCs) for easy large-scale preparation, the naive human B cells are always poor at antigen presentation. The safe and effective usage record of human adenovirus type 7 (HAdV7) live vaccines makes it attractive as a promising vaccine vector candidate. To investigate whether HAdV7 vector could be used to induce the human B cells cross-presentation, in the present study, we constructed the E3-defective recombinant HAdV7 vector encoding green fluorescent protein (GFP) and carcinoembryonic antigen (CEA). We demonstrated that naive human B cells can efficiently be transduced, and that the MAPKs/NF-κB pathway can be activated by recombinant HAdV7. We proved that cytokine TNF-α, IL-6 and IL-10, surface molecule MHC class I and the CD86, antigen-processing machinery (APM) compounds ERp57, TAP-1, and TAP-2. were upregulated in HAdV7 transduced human B cells. We also found that CEA-specific IFNγ expression, degranulation, and in vitro and ex vivo cytotoxicities are induced in autologous CD8(+) T cells presensitized by HAd7CEA modified human B cells. Meanwhile, our evidences clearly show that Toll-like receptors 9 (TLR9) antagonist IRS 869 significantly eliminated most of the HAdV7 initiated B cell activation and CD8(+) T cells response, supporting the role and contribution of TLR9 signaling in HAdV7 induced human B cell cross-presentation. Besides a better understanding of the interactions between recombinant HAdV7 and human naive B cells, to our knowledge, the present study provides the first evidence to support the use of HAdV7-modified B cells as a vehicle for vaccines and immunotherapy.
Collapse
Affiliation(s)
- Ying Peng
- Department of Laboratory Medicine, The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Meimei Lai
- Department of Laboratory Medicine, The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; School of Laboratory Medicine,Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou, Zhejiang, China
| | - Yunyan Lou
- Department of Laboratory Medicine, The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; School of Laboratory Medicine,Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou, Zhejiang, China
| | - Yanqing Liu
- Department of Laboratory Medicine, The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; School of Laboratory Medicine,Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou, Zhejiang, China
| | - Huiyan Wang
- Department of Laboratory Medicine, The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; School of Laboratory Medicine,Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou, Zhejiang, China
| | - Xiaoqun Zheng
- Department of Laboratory Medicine, The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; School of Laboratory Medicine,Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou, Zhejiang, China.
| |
Collapse
|
38
|
Ma Q, Tian X, Jiang Z, Huang J, Liu Q, Lu X, Luo Q, Zhou R. Neutralizing epitopes mapping of human adenovirus type 14 hexon. Vaccine 2015; 33:6659-65. [PMID: 26546264 DOI: 10.1016/j.vaccine.2015.10.117] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 10/16/2015] [Accepted: 10/19/2015] [Indexed: 11/16/2022]
Abstract
Human adenoviruses 14 (HAdV-14) caused several clusters of acute respiratory disease (ARD) outbreaks in both civilian and military settings. The identification of the neutralizing epitopes of HAdV-14 is important for the surveillance and control of infection. Since the previous studies had indicated that the adenoviruses neutralizing epitopes were likely to be exposed on the surface of the hexon, four epitope peptides, A14R1 (residues 141-157), A14R2 (residues 181-189), A14R4 (residues 252-260) and A14R7 (residues 430-442) were predicted and mapped onto the 3D structures of hexon by homology modeling approach. Then the four peptides were synthesized, and all the four putative epitopes were identified as neutralizing epitopes by enzyme-linked immunosorbent assay (ELISA) and neutralization tests (NT). Finally we incorporated the four epitopes into human adenoviruses 3 (HAdV-3) vectors using the "antigen capsid-incorporation" strategy, and two chimeric adenoviruses, A14R2A3 and A14R4A3, were successfully obtained which displayed A14R2 and A14R4 respectively on the hexon surface of HAdV-3 virions. Further analysis showed that the two chimeric viruses antiserum could neutralize both HAdV-14 and HAdV-3 infection. The neutralization titers of anti-A14R4A3 group were significantly higher than the anti-KLH-A14R4 group (P=0.0442). These findings have important implications for the development of peptide-based broadly protective HAdV-14 and HAdV-3 bivalent vaccine.
Collapse
Affiliation(s)
- Qiang Ma
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510230, China; Dongguan Institute of Pediatrics, Dongguan Children's Hospital, Dongguan 523325, China.
| | - Xingui Tian
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510230, China; Dongguan Institute of Pediatrics, Dongguan Children's Hospital, Dongguan 523325, China.
| | - Zaixue Jiang
- Dongguan Institute of Pediatrics, Dongguan Children's Hospital, Dongguan 523325, China.
| | - Junfeng Huang
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China.
| | - Qian Liu
- Dongguan Institute of Pediatrics, Dongguan Children's Hospital, Dongguan 523325, China.
| | - Xiaomei Lu
- Dongguan Institute of Pediatrics, Dongguan Children's Hospital, Dongguan 523325, China.
| | - Qingming Luo
- Dongguan Institute of Pediatrics, Dongguan Children's Hospital, Dongguan 523325, China.
| | - Rong Zhou
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510230, China.
| |
Collapse
|
39
|
Perry LN, McMullen KL, Coon R, Blair PJ, Brice GT. Live adenovirus types 4 and 7 not detected in the blood of vaccine recipients. J Clin Virol 2015; 73:25-26. [PMID: 26521226 DOI: 10.1016/j.jcv.2015.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 10/05/2015] [Accepted: 10/13/2015] [Indexed: 11/19/2022]
Affiliation(s)
- Lori N Perry
- Naval Health Research Center, San Diego, CA, USA.
| | | | | | | | - Gary T Brice
- Naval Health Research Center, San Diego, CA, USA
| |
Collapse
|
40
|
Daifalla N, Cayabyab MJ, Xie E, Kim HB, Tzipori S, Stashenko P, Duncan M, Campos-Neto A. Commensal Streptococcus mitis is a unique vector for oral mucosal vaccination. Microbes Infect 2015; 17:237-42. [PMID: 25522856 PMCID: PMC4346494 DOI: 10.1016/j.micinf.2014.11.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 10/21/2014] [Accepted: 11/10/2014] [Indexed: 02/08/2023]
Abstract
The development of vaccine approaches that induce mucosal and systemic immune responses is critical for the effective prevention of several infections. Here, we report on the use of the abundant human oral commensal bacterium Streptococcus mitis as a delivery vehicle for mucosal immunization. Using homologous recombination we generated a stable rS. mitis expressing a Mycobacterium tuberculosis protein (Ag85b). Oral administration of rS. mitis in gnotobiotic piglets resulted in efficient oral colonization and production of oral and systemic anti-Ag85b specific IgA and IgG antibodies. These results support that the commensal S. mitis is potentially a useful vector for mucosal vaccination.
Collapse
Affiliation(s)
| | | | - Emily Xie
- The Forsyth Institute, Cambridge, MA, United states
| | - Hyeun Bum Kim
- Cummings School of Veterinary Medicine at Tufts, Grafton, MA, United states; Department of Animal Resources Science at Dankook University, Cheonan, South Korea
| | - Saul Tzipori
- Cummings School of Veterinary Medicine at Tufts, Grafton, MA, United states
| | | | | | | |
Collapse
|
41
|
Han S. Clinical vaccine development. Clin Exp Vaccine Res 2015; 4:46-53. [PMID: 25648742 PMCID: PMC4313108 DOI: 10.7774/cevr.2015.4.1.46] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 12/28/2014] [Accepted: 12/31/2014] [Indexed: 11/15/2022] Open
Abstract
Vaccination is regarded as one of the biggest triumphs in the history of medicine. We are living in the most successful period of vaccine development. The accumulation of multidisciplinary knowledge and the investment of massive funding have enabled the development of vaccines against many infectious diseases as well as other diseases including malignant tumors. The paradigm of clinical vaccine evaluation and licensure has also been modernized based on scientific improvements and historical experience. However, there remain a number of hurdles to overcome. Continuous efforts are focused on increasing the efficacy and reducing the risks related to vaccine use. Cutting-edge knowledge about immunology and microbiology is being rapidly translated to vaccine development. Thus, physicians and others involved in the clinical development of vaccines should have sufficient understanding of the recent developmental trends in vaccination and the diseases of interest.
Collapse
Affiliation(s)
- Seunghoon Han
- Department of Pharmacology, College of Medicine, The Catholic University of Korea, Seoul, Korea. ; Department of Clinical Pharmacology and Therapeutics, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
42
|
|
43
|
Adenovirus type 4 and 7 vaccination or adenovirus type 4 respiratory infection elicits minimal cross-reactive antibody responses to nonhuman adenovirus vaccine vectors. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2014; 21:783-6. [PMID: 24623627 DOI: 10.1128/cvi.00011-14] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Antivector immunity may limit the immunogenicity of adenovirus vector vaccines. We tested sera from individuals immunized with adenovirus type 4 and 7 (Ad4 and Ad7, respectively) vaccine or naturally infected with Ad4 for their ability to neutralize a panel of E1-deleted human and chimpanzee adenoviruses (ChAd). Small statistically significant increases in titers to ChAd63, ChAd3, human Ad35, and human Ad5 were observed. Neutralizing antibodies elicited by Ad4 infection or immunization results in a small amount of adenovirus cross-reactivity.
Collapse
|
44
|
Yu P, Ma C, Nawaz M, Han L, Zhang J, Du Q, Zhang L, Feng Q, Wang J, Xu J. Outbreak of acute respiratory disease caused by human adenovirus type 7 in a military training camp in Shaanxi, China. Microbiol Immunol 2014; 57:553-60. [PMID: 23734976 PMCID: PMC7168384 DOI: 10.1111/1348-0421.12074] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Revised: 05/27/2013] [Accepted: 05/29/2013] [Indexed: 11/30/2022]
Abstract
Outbreaks of ARD associated with HAdV have been reported in military populations in many countries. Here, we report an ARD outbreak caused by HAdV‐7 in a military training camp in Shaanxi Province, China, from February to March of 2012. Epidemic data and samples from the patients were collected, and viral nucleotides from samples and viral isolations were detected and sequenced. IgG and IgA antibodies against HAdV, and the neutralization antibodies against the viral strain isolated in this outbreak, were detected. Epidemiological study showed that all personnel affected were males with an average age of 19.1 years. Two peaks appeared on the epicurve and there was an 8‐day interval between peaks. Laboratory results of viral nucleotide detection carried out with clinical specimens were positive for HAdV (83.33%, 15/18). Further study through serum antibody assay, virus isolation and phylogenetic analysis showed that HAdV‐7 was the etiological agent responsible for the outbreak. IgA antibody began to appear on the 4th day after the onset and showed 100% positivity on the 8th day. The virus strain in the present outbreak was highly similar to the virus isolated in Hanzhong Shaanxi in 2009. We conclude that HAdV‐7 was the pathogen corresponding to the outbreak, and this is the first report of an ARD outbreak caused by HAdV‐7 in military persons in China. Vaccine development, as well as enhanced epidemiological and virological surveillance of HAdV infections in China should be emphasized.
Collapse
Affiliation(s)
- Pengbo Yu
- Department of Immunology and Pathogenic Biology, Key Laboratory of Environment and Genes Related to Diseases, Chinese Ministry of Education, School of Medicine, Xi'an Jiaotong University, 76 West Yanta Road, Xi'an, Shaanxi 710061, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Wattal C, Khardori N. The Mighty World of Microbes: An Overview. HOSPITAL INFECTION PREVENTION 2014. [PMCID: PMC7120817 DOI: 10.1007/978-81-322-1608-7_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The world of microbes on our planet is vast and diverse. This includes the normal bacterial flora present on the skin and mucous membranes of humans. The human microbiome project (HMP) was launched by NIH in 2007 as a part of a road map for medical research. The HMP serves as a template for researchers who are studying more than 1,000 microbial genomes with a focus on their role in health and disease. The study samples have been derived from five human body regions that are known to be inhabited by microbial flora. These include the gastrointestinal tract, female urogenital tract, mouth, nose, and skin. The techniques being used include finger printing, sequencing, dynamic range, and comparison of multiple samples. It is now well accepted that there are more microbial cells than human cells in the human body. Just the gastrointestinal tract harbors more than tenfold microbial cells than the number of human cells in the entire body. The understanding of the relationship between microbes and humans is at best rudimentary at this point in time. Similarly, the relationship between humans and microbes in the environment and environmental surfaces is poorly understood except for a few pathogenic microbes.
Collapse
Affiliation(s)
- Chand Wattal
- Clinical Microbiology & Immunology, Sir Ganga Ram Hospital, New Delhi, India
| | - Nancy Khardori
- Department of Internal Medicine, Eastern Virginia Medical School, Virginia, USA
| |
Collapse
|
46
|
|
47
|
Abstract
BACKGROUND The common cold is a spontaneously remitting infection of the upper respiratory tract, characterised by a runny nose, nasal congestion, sneezing, cough, malaise, sore throat and fever (usually < 37.8˚C). The widespread morbidity it causes worldwide is related to its ubiquitousness rather than its severity. The development of vaccines for the common cold has been difficult because of antigenic variability of the common cold virus and the indistinguishable multiple other viruses and even bacteria acting as infective agents. There is uncertainty regarding the efficacy and safety of interventions for preventing the common cold in healthy people. OBJECTIVES To assess the clinical effectiveness and safety of vaccines for preventing the common cold in healthy people. SEARCH METHODS We searched CENTRAL (2012, Issue 12), MEDLINE (1948 to January week 1, 2013), EMBASE (1974 to January 2013), CINAHL (1981 to January 2013) and LILACS (1982 to January 2013). SELECTION CRITERIA Randomised controlled trials (RCTs) of any virus vaccines to prevent the common cold in healthy people. DATA COLLECTION AND ANALYSIS Two review authors independently evaluated methodological quality and extracted trial data. Disagreements were resolved by discussion or by consulting a third review author. MAIN RESULTS This review included one RCT with 2307 healthy participants; all of them were analysed. This trial compared the effect of an adenovirus vaccine against a placebo. No statistically significant difference in common cold incidence was found: there were 13 events in 1139 participants in the vaccines group and 14 events in 1168 participants in the placebo group; risk ratio (RR) 0.95, 95% confidence interval (CI) 0.45 to 2.02, P = 0.90). No adverse events related to the live vaccine were reported. AUTHORS' CONCLUSIONS This Cochrane review has found a lack of evidence on the effects of vaccines for the common cold in healthy people. Only one RCT was found and this did not show differences between comparison groups; it also had a high risk of bias. There are no conclusive data to support the use of vaccines for preventing the common cold in healthy people. We identified the need for well-designed, adequately powered RCTs to investigate vaccines for the common cold in healthy people. Unless RCTs provide evidence of a treatment effect and the trade-off between potential benefits and harms is established, policy-makers, clinicians and academics should not recommend the use of vaccines for preventing the common cold in healthy people. Any future trials on medical treatments for preventing the common cold should assess a variety of virus vaccines for this condition. Outcome measures should include common cold incidence, vaccine safety and mortality related to the vaccine.
Collapse
Affiliation(s)
- Daniel Simancas-Racines
- Facultad de Ciencias de la Salud Eugenio Espejo, Universidad Tecnológica Equinoccial, Quito, Ecuador.
| | | | | |
Collapse
|
48
|
Dehghan S, Seto J, Liu EB, Walsh MP, Dyer DW, Chodosh J, Seto D. Computational analysis of four human adenovirus type 4 genomes reveals molecular evolution through two interspecies recombination events. Virology 2013; 443:197-207. [PMID: 23763770 DOI: 10.1016/j.virol.2013.05.014] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 05/03/2013] [Accepted: 05/09/2013] [Indexed: 11/17/2022]
Abstract
Computational analysis of human adenovirus type 4 (HAdV-E4), a pathogen that is the only HAdV member of species E, provides insights into its zoonotic origin and molecular adaptation. Its genome encodes a domain of the major capsid protein, hexon, from HAdV-B16 recombined into the genome chassis of a simian adenovirus. Genomes of two recent field strains provide a clue to its adaptation to the new host: recombination of a NF-I binding site motif, which is required for efficient viral replication, from another HAdV genome. This motif is absent in the chimpanzee adenoviruses and the HAdV-E4 prototype, but is conserved amongst other HAdVs. This is the first report of an interspecies recombination event for HAdVs, and the first documentation of a lateral partial gene transfer from a chimpanzee AdV. The potential for such recombination events are important when considering chimpanzee adenoviruses as candidate gene delivery vectors for human patients.
Collapse
Affiliation(s)
- Shoaleh Dehghan
- Chemistry Department, American University, Washington, D.C. 20016, USA; Bioinformatics and Computational Biology Program, School of Systems Biology, George Mason University, Manassas, VA 20110, USA
| | | | | | | | | | | | | |
Collapse
|
49
|
Prospects for oral replicating adenovirus-vectored vaccines. Vaccine 2013; 31:3236-43. [PMID: 23707160 DOI: 10.1016/j.vaccine.2013.05.016] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 05/06/2013] [Accepted: 05/07/2013] [Indexed: 12/22/2022]
Abstract
Orally delivered replicating adenovirus (Ad) vaccines have been used for decades to prevent adenovirus serotype 4 and 7 respiratory illness in military recruits, demonstrating exemplary safety and high efficacy. That experience suggests that oral administration of live recombinant Ads (rAds) holds promise for immunization against other infectious diseases, including those that have been refractory to traditional vaccination methods. Live rAds can express intact antigens from free-standing transgenes during replication in infected cells. Alternatively, antigenic epitopes can be displayed on the rAd capsid itself, allowing presentation of the epitope to the immune system both prior to and during replication of the virus. Such capsid-display rAds offer a novel vaccine approach that could be used either independently of or in combination with transgene expression strategies to provide a new tool in the search for protection from infectious disease.
Collapse
|
50
|
A phase 3, randomized, double-blind, placebo-controlled study of the safety and efficacy of the live, oral adenovirus type 4 and type 7 vaccine, in U.S. military recruits. Vaccine 2013; 31:2963-71. [PMID: 23623865 DOI: 10.1016/j.vaccine.2013.04.035] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Revised: 02/02/2013] [Accepted: 04/11/2013] [Indexed: 11/21/2022]
Abstract
Adenovirus (ADV) types 4 (ADV-4) and 7 (ADV-7) are presently the major cause of febrile acute respiratory disease (ARD) in U.S. military recruits. We conducted a multi-center, randomized, double-blind, placebo-controlled phase 3 study of the new vaccine to assess its safety and efficacy. Healthy adults at two basic training sites were randomly assigned to receive either vaccine (two enteric-coated tablets consisting of no less than 4.5 log10 TCID50 of live ADV-4 or ADV-7) or placebo in a 3:1 ratio. Volunteers were observed throughout the approximate eight weeks of their basic training and also returned for four scheduled visits. The primary endpoints were prevention of febrile ARD due to ADV-4 and seroconversion of neutralizing serum antibodies to ADV-7, which was not expected to circulate in the study population during the course of the trial. A total of 4151 volunteers were enrolled and 4040 (97%) were randomized and included in the primary analysis (110 were removed prior to randomization and one was removed after randomization due to inability to swallow tablets). A total of 49 ADV-4 febrile ARD cases were identified with 48 in the placebo group and 1 in the vaccine group (attack rates of 4.76% and 0.03%, respectively). Vaccine efficacy was 99.3% (95% CI, 96.0-99.9; P<0.001). Seroconversion rates for vaccine recipients for ADV-4 and ADV-7 were 94.5% (95% CI, 93.4-95.5%) and 93.8% (95% CI: 93.4-95.2%), respectively. The vaccine was well tolerated as compared to placebo. We conclude that the new live, oral ADV-4 and ADV-7 vaccine is safe and effective for use in groups represented by the study population.
Collapse
|