1
|
Cuellar-Quimbaya AF, Muñoz AL, Yepez-Perez Y, C IDJ, Rodríguez AK, Segura NA, Bello F, Losada-Barragán M. Quantitative detection of chikungunya, Zika, and dengue viruses by one-step real-time PCR in different cell substrates. Braz J Microbiol 2024; 55:1083-1090. [PMID: 38424268 PMCID: PMC11153482 DOI: 10.1007/s42770-023-01226-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 12/20/2023] [Indexed: 03/02/2024] Open
Abstract
Chikungunya (CHIKV), Zika (ZIKV), and dengue viruses (DENV) are vector-borne pathogens that cause emerging and re-emerging epidemics throughout tropical and subtropical countries. The symptomatology is similar among these viruses and frequently co-circulates in the same areas, making the diagnosis arduous. Although there are different methods for detecting and quantifying pathogens, real-time reverse transcription-polymerase chain reaction (real-time RT-qPCR) has become a leading technique for detecting viruses. However, the currently developed assays frequently involve probes and high-cost reagents, limiting access in low-income countries. Therefore, this study aims to design and evaluate a quantitative one-step RT-qPCR assay to detect CHIKV, ZIKV, and DENV with high specificity, reproducibility, and low cost in multiple cell substrates. We established a DNA intercalating green dye-based RT-qPCR test that targets nsP1 of CHIKV, and NS5 gene of ZIKV, and DENV for the amplification reaction. The assay exhibited a high specificity confirmed by the melting curve analysis. No cross-reactivity was observed between the three viruses or unspecific amplification of host RNA. The sensitivity of the reaction was evaluated for each virus assay, getting a limit of detection of one RNA copy per virus. Standard curves were constructed, obtaining a reaction efficiency of ~ 100%, a correlation coefficient (R2) of ~ 0.97, and a slope of -3.3. The coefficient of variation (CV) ranged from 0.02 to 1.43. In addition, the method was optimized for viral quantification and tested in Vero, BHK-21, C6/36, LULO, and the Aedes cell lines. Thus, the DNA intercalating green dye-based RT-qPCR assay was a highly specific, sensitive, reproducible, and effective method for detecting and quantifying CHIKV, ZIKV, and DENV in different cell substrates that could also be applied in clinical samples.
Collapse
Affiliation(s)
- Andrés F Cuellar-Quimbaya
- Faculty of Science, Universidad Antonio Nariño (UAN), Sede Circunvalar. Cra. 3 Este # 47A - 15, 110231, Bogotá, Colombia
| | - Ana Luisa Muñoz
- Faculty of Science, Universidad Antonio Nariño (UAN), Sede Circunvalar. Cra. 3 Este # 47A - 15, 110231, Bogotá, Colombia
- Fundación Banco Nacional de Sangre Hemolife, Bogotá, Colombia
| | - Yoelis Yepez-Perez
- PhD Program in Biomedical and Biological Sciences, Universidad del Rosario, 111321, Bogotá, Colombia
| | - Ingrid DJiménez C
- Faculty of Science, Universidad Pedagógica y Tecnológica de Colombia (UPTC), 150003, Tunja, Colombia
| | - Anny K Rodríguez
- Faculty of Science, Universidad Antonio Nariño (UAN), Sede Circunvalar. Cra. 3 Este # 47A - 15, 110231, Bogotá, Colombia
| | - Nidya Alexandra Segura
- Faculty of Science, Universidad Pedagógica y Tecnológica de Colombia (UPTC), 150003, Tunja, Colombia
| | - Felio Bello
- Faculty of Agricultural and Livestock Sciences, Program of Veterinary Medicine, Universidad de La Salle, 110141, Bogotá, Colombia
| | - Mónica Losada-Barragán
- Faculty of Science, Universidad Antonio Nariño (UAN), Sede Circunvalar. Cra. 3 Este # 47A - 15, 110231, Bogotá, Colombia.
| |
Collapse
|
2
|
Madewell ZJ, Hernandez-Romieu AC, Wong JM, Zambrano LD, Volkman HR, Perez-Padilla J, Rodriguez DM, Lorenzi O, Espinet C, Munoz-Jordan J, Frasqueri-Quintana VM, Rivera-Amill V, Alvarado-Domenech LI, Sainz D, Bertran J, Paz-Bailey G, Adams LE. Sentinel Enhanced Dengue Surveillance System - Puerto Rico, 2012-2022. MORBIDITY AND MORTALITY WEEKLY REPORT. SURVEILLANCE SUMMARIES (WASHINGTON, D.C. : 2002) 2024; 73:1-29. [PMID: 38805389 PMCID: PMC11152364 DOI: 10.15585/mmwr.ss7303a1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Problem/Condition Dengue is the most prevalent mosquitoborne viral illness worldwide and is endemic in Puerto Rico. Dengue's clinical spectrum can range from mild, undifferentiated febrile illness to hemorrhagic manifestations, shock, multiorgan failure, and death in severe cases. The disease presentation is nonspecific; therefore, various other illnesses (e.g., arboviral and respiratory pathogens) can cause similar clinical symptoms. Enhanced surveillance is necessary to determine disease prevalence, to characterize the epidemiology of severe disease, and to evaluate diagnostic and treatment practices to improve patient outcomes. The Sentinel Enhanced Dengue Surveillance System (SEDSS) was established to monitor trends of dengue and dengue-like acute febrile illnesses (AFIs), characterize the clinical course of disease, and serve as an early warning system for viral infections with epidemic potential. Reporting Period May 2012-December 2022. Description of System SEDSS conducts enhanced surveillance for dengue and other relevant AFIs in Puerto Rico. This report includes aggregated data collected from May 2012 through December 2022. SEDSS was launched in May 2012 with patients with AFIs from five health care facilities enrolled. The facilities included two emergency departments in tertiary acute care hospitals in the San Juan-Caguas-Guaynabo metropolitan area and Ponce, two secondary acute care hospitals in Carolina and Guayama, and one outpatient acute care clinic in Ponce. Patients arriving at any SEDSS site were eligible for enrollment if they reported having fever within the past 7 days. During the Zika epidemic (June 2016-June 2018), patients were eligible for enrollment if they had either rash and conjunctivitis, rash and arthralgia, or fever. Eligibility was expanded in April 2020 to include reported cough or shortness of breath within the past 14 days. Blood, urine, nasopharyngeal, and oropharyngeal specimens were collected at enrollment from all participants who consented. Diagnostic testing for dengue virus (DENV) serotypes 1-4, chikungunya virus, Zika virus, influenza A and B viruses, SARS-CoV-2, and five other respiratory viruses was performed by the CDC laboratory in San Juan. Results During May 2012-December 2022, a total of 43,608 participants with diagnosed AFI were enrolled in SEDSS; a majority of participants (45.0%) were from Ponce. During the surveillance period, there were 1,432 confirmed or probable cases of dengue, 2,293 confirmed or probable cases of chikungunya, and 1,918 confirmed or probable cases of Zika. The epidemic curves of the three arboviruses indicate dengue is endemic; outbreaks of chikungunya and Zika were sporadic, with case counts peaking in late 2014 and 2016, respectively. The majority of commonly identified respiratory pathogens were influenza A virus (3,756), SARS-CoV-2 (1,586), human adenovirus (1,550), respiratory syncytial virus (1,489), influenza B virus (1,430), and human parainfluenza virus type 1 or 3 (1,401). A total of 5,502 participants had confirmed or probable arbovirus infection, 11,922 had confirmed respiratory virus infection, and 26,503 had AFI without any of the arboviruses or respiratory viruses examined. Interpretation Dengue is endemic in Puerto Rico; however, incidence rates varied widely during the reporting period, with the last notable outbreak occurring during 2012-2013. DENV-1 was the predominant virus during the surveillance period; sporadic cases of DENV-4 also were reported. Puerto Rico experienced large outbreaks of chikungunya that peaked in 2014 and of Zika that peaked in 2016; few cases of both viruses have been reported since. Influenza A and respiratory syncytial virus seasonality patterns are distinct, with respiratory syncytial virus incidence typically reaching its annual peak a few weeks before influenza A. The emergence of SARS-CoV-2 led to a reduction in the circulation of other acute respiratory viruses. Public Health Action SEDSS is the only site-based enhanced surveillance system designed to gather information on AFI cases in Puerto Rico. This report illustrates that SEDSS can be adapted to detect dengue, Zika, chikungunya, COVID-19, and influenza outbreaks, along with other seasonal acute respiratory viruses, underscoring the importance of recognizing signs and symptoms of relevant diseases and understanding transmission dynamics among these viruses. This report also describes fluctuations in disease incidence, highlighting the value of active surveillance, testing for a panel of acute respiratory viruses, and the importance of flexible and responsive surveillance systems in addressing evolving public health challenges. Various vector control strategies and vaccines are being considered or implemented in Puerto Rico, and data from ongoing trials and SEDSS might be integrated to better understand epidemiologic factors underlying transmission and risk mitigation approaches. Data from SEDSS might guide sampling strategies and implementation of future trials to prevent arbovirus transmission, particularly during the expansion of SEDSS throughout the island to improve geographic representation.
Collapse
|
3
|
Frumence E, Wilkinson DA, Klitting R, Vincent M, Mnemosyme N, Grard G, Traversier N, Li-Pat-Yuen G, Heaugwane D, Souply L, Giry C, Paty MC, Collet L, Gérardin P, Thouillot F, De Lamballerie X, Jaffar-Bandjee MC. Dynamics of emergence and genetic diversity of dengue virus in Reunion Island from 2012 to 2022. PLoS Negl Trop Dis 2024; 18:e0012184. [PMID: 38768248 PMCID: PMC11142707 DOI: 10.1371/journal.pntd.0012184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 05/31/2024] [Accepted: 05/01/2024] [Indexed: 05/22/2024] Open
Abstract
BACKGROUND Dengue is a major public health concern in Reunion Island, marked by recurrent epidemics, including successive outbreaks of dengue virus serotypes 1 and 2 (DENV1 and DENV2) with over 70,000 cases confirmed since 2017. METHODOLOGY/PRINCIPAL FINDINGS In this study, we used Oxford Nanopore NGS technology for sequencing virologically-confirmed samples and clinical isolates collected between 2012 and 2022 to investigate the molecular epidemiology and evolution of DENV in Reunion Island. Here, we generated and analyzed a total of 499 DENV1, 360 DENV2, and 18 DENV3 sequences. By phylogenetic analysis, we show that different genotypes and variants of DENV have circulated in the past decade that likely originated from Seychelles, Mayotte and Southeast Asia and highly affected areas in Asia and Africa. CONCLUSIONS/SIGNIFICANCE DENV sequences from Reunion Island exhibit a high genetic diversity which suggests regular introductions of new viral lineages from various Indian Ocean islands. The insights from our phylogenetic analysis may inform local health authorities about the endemicity of DENV variants circulating in Reunion Island and may improve dengue management and surveillance. This work emphasizes the importance of strong local coordination and collaboration to inform public health stakeholders in Reunion Island, neighboring areas, and mainland France.
Collapse
Affiliation(s)
- Etienne Frumence
- Centre National de Référence Arbovirus Associé, CHU de la Réunion Site Nord, Saint-Denis, Réunion, France
- Laboratoire de microbiologie, CHU de la Réunion-Site Nord, Saint-Denis, Réunion, France
| | - David A. Wilkinson
- UMR ASTRE, CIRAD, INRAE, Université de Montpellier, Plateforme technologique CYROI, Sainte-Clotilde, Réunion, France
| | - Raphaelle Klitting
- Unité des Virus Émergents (UVE), Aix-Marseille Univ, IRD 190, INSERM 1207, Marseille, France
- CNR des Arbovirus, Marseille, France
| | | | - Nicolas Mnemosyme
- Laboratoire de microbiologie, CHU de la Réunion-Site Nord, Saint-Denis, Réunion, France
| | | | - Nicolas Traversier
- Centre National de Référence Arbovirus Associé, CHU de la Réunion Site Nord, Saint-Denis, Réunion, France
- Laboratoire de microbiologie, CHU de la Réunion-Site Nord, Saint-Denis, Réunion, France
| | - Ghislaine Li-Pat-Yuen
- Centre National de Référence Arbovirus Associé, CHU de la Réunion Site Nord, Saint-Denis, Réunion, France
- Laboratoire de microbiologie, CHU de la Réunion-Site Nord, Saint-Denis, Réunion, France
| | - Diana Heaugwane
- Laboratoire de microbiologie, CHU de la Réunion-Site Nord, Saint-Denis, Réunion, France
| | - Laurent Souply
- Laboratoire de microbiologie, CHU de la Réunion-Site Nord, Saint-Denis, Réunion, France
| | - Claude Giry
- Centre National de Référence Arbovirus Associé, CHU de la Réunion Site Nord, Saint-Denis, Réunion, France
- Laboratoire de microbiologie, CHU de la Réunion-Site Nord, Saint-Denis, Réunion, France
| | | | | | | | - Patrick Gérardin
- INSERM CIC 1410, CHU de la Réunion, Saint-Pierre, Réunion, France
| | | | - Xavier De Lamballerie
- Unité des Virus Émergents (UVE), Aix-Marseille Univ, IRD 190, INSERM 1207, Marseille, France
- CNR des Arbovirus, Marseille, France
| | - Marie-Christine Jaffar-Bandjee
- Centre National de Référence Arbovirus Associé, CHU de la Réunion Site Nord, Saint-Denis, Réunion, France
- Laboratoire de microbiologie, CHU de la Réunion-Site Nord, Saint-Denis, Réunion, France
| |
Collapse
|
4
|
Tejo AM, Hamasaki DT, Menezes LM, Ho YL. Severe dengue in the intensive care unit. JOURNAL OF INTENSIVE MEDICINE 2024; 4:16-33. [PMID: 38263966 PMCID: PMC10800775 DOI: 10.1016/j.jointm.2023.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 06/19/2023] [Accepted: 07/24/2023] [Indexed: 01/25/2024]
Abstract
Dengue fever is considered the most prolific vector-borne disease in the world, with its transmission rate increasing more than eight times in the last two decades. While most cases present mild to moderate symptoms, 5% of patients can develop severe disease. Although the mechanisms are yet not fully comprehended, immune-mediated activation leading to excessive cytokine expression is suggested as a cause of the two main findings in critical patients: increased vascular permeability that may shock and thrombocytopenia, and coagulopathy that can induce hemorrhage. The risk factors of severe disease include previous infection by a different serotype, specific genotypes associated with more efficient replication, certain genetic polymorphisms, and comorbidities such as diabetes, obesity, and cardiovascular disease. The World Health Organization recommends careful monitoring and prompt hospitalization of patients with warning signs or propensity for severe disease to reduce mortality. This review aims to update the diagnosis and management of patients with severe dengue in the intensive care unit.
Collapse
Affiliation(s)
- Alexandre Mestre Tejo
- Intensive Care Unit, Department of Intensive Medicine of the Cancer Institute of the State of São Paulo, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Debora Toshie Hamasaki
- Transfusion Medicine and Cell Therapy Department, A.C. Camargo Cancer Center, São Paulo, Brazil
| | - Letícia Mattos Menezes
- Intensive Care Unit of Infectious Disease Department, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Yeh-Li Ho
- Intensive Care Unit of Infectious Disease Department, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
5
|
Zong K, Li W, Xu Y, Zhao X, Cao R, Yan H, Li X. Design, Synthesis, Evaluation and Molecular Dynamics Simulation of Dengue Virus NS5-RdRp Inhibitors. Pharmaceuticals (Basel) 2023; 16:1625. [PMID: 38004490 PMCID: PMC10674617 DOI: 10.3390/ph16111625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/08/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
Dengue virus (DENV) is a major mosquito-borne human pathogen in tropical countries; however, there are currently no targeted antiviral treatments for DENV infection. Compounds 27 and 29 have been reported to be allosteric inhibitors of DENV RdRp with potent inhibitory effects. In this study, the structures of compounds 27 and 29 were optimized using computer-aided drug design (CADD) approaches. Nine novel compounds were synthesized based on rational considerations, including molecular docking scores, free energy of binding to receptor proteins, predicted Absorption, Distribution, Metabolism, Excretion, and Toxicity (ADMET) parameters, structural diversity, and feasibility of synthesis. Subsequently, the anti-DENV activity was assessed. In the cytopathic effect (CPE) assay conducted on BHK-21 cells using the DENV2 NGC strain, both SW-b and SW-d demonstrated comparable or superior activity against DENV2, with IC50 values of 3.58 ± 0.29 μM and 23.94 ± 1.00 μM, respectively, compared to that of compound 27 (IC50 = 19.67 ± 1.12 μM). Importantly, both SW-b and SW-d exhibited low cytotoxicity, with CC50 values of 24.65 μmol and 133.70 μmol, respectively, resulting in selectivity indices of 6.89 and 5.58, respectively. Furthermore, when compared to the positive control compound 3'-dATP (IC50 = 30.09 ± 8.26 μM), SW-b and SW-d displayed superior inhibitory activity in an enzyme inhibitory assay, with IC50 values of 11.54 ± 1.30 μM and 13.54 ± 0.32 μM, respectively. Molecular dynamics (MD) simulations elucidated the mode of action of SW-b and SW-d, highlighting their ability to enhance π-π packing interactions between benzene rings and residue W795 in the S1 fragment, compared to compounds 27 and 29. Although the transacylsulphonamide fragment reduced the interaction between T794 and NH, it augmented the interaction between R729 and T794. In summary, our study underscores the potential of SW-b and SW-d as allosteric inhibitors targeting the DENV NS5 RdRp domain. However, further in vivo studies are warranted to assess their pharmacology and toxicity profiles.
Collapse
Affiliation(s)
- Keli Zong
- Faculty of Environment and Life, Beijing University of Technology, 100 Pingleyuan, Beijing 100124, China;
- Beijing Institute of Pharmacology and Toxicology, 27 Taiping Road, Beijing 100850, China; (W.L.); (Y.X.); (R.C.)
| | - Wei Li
- Beijing Institute of Pharmacology and Toxicology, 27 Taiping Road, Beijing 100850, China; (W.L.); (Y.X.); (R.C.)
| | - Yijie Xu
- Beijing Institute of Pharmacology and Toxicology, 27 Taiping Road, Beijing 100850, China; (W.L.); (Y.X.); (R.C.)
| | - Xu Zhao
- Department of Hepatology, Fifth Medical Center of Chinese PLA General Hospital, 100 West Fourth Ring Road, Beijing 100071, China;
| | - Ruiyuan Cao
- Beijing Institute of Pharmacology and Toxicology, 27 Taiping Road, Beijing 100850, China; (W.L.); (Y.X.); (R.C.)
| | - Hong Yan
- Faculty of Environment and Life, Beijing University of Technology, 100 Pingleyuan, Beijing 100124, China;
| | - Xingzhou Li
- Beijing Institute of Pharmacology and Toxicology, 27 Taiping Road, Beijing 100850, China; (W.L.); (Y.X.); (R.C.)
| |
Collapse
|
6
|
Litov AG, Okhezin EV, Kholodilov IS, Polienko AE, Karganova GG. Quantitative Polymerase Chain Reaction System for Alongshan Virus Detection. Methods Protoc 2023; 6:79. [PMID: 37736962 PMCID: PMC10514782 DOI: 10.3390/mps6050079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/22/2023] [Accepted: 08/30/2023] [Indexed: 09/23/2023] Open
Abstract
The recently discovered Jingmenvirus group includes viruses with a segmented genome, RNA of a positive polarity, and several proteins with distant homology to the proteins of the members of the genus Orthoflavivirus. Some Jingmenvirus group members, namely the Alongshan virus (ALSV) and Jingmen tick virus, are reported to be tick-borne human pathogens that can cause a wide variety of symptoms. The ALSV is widely distributed in Eurasia, yet no reliable assay that can detect it exists. We describe a qPCR system for ALSV detection. Our data showed that this system can detect as little as 104 copies of the ALSV in a sample. The system showed no amplification of the common tick-borne viruses circulating in Eurasia, i.e., the Yanggou tick virus-which is another Jingmenvirus group member-or some known members of the genus Orthoflavivirus. The qPCR system was tested and had no nonspecific signal for the Ixodes ricinus, I. persulcatus, Dermacentor reticulatus, D. marginatus, Haemaphysalis concinna, and H. japonica ticks. The qPCR system had no nonspecific signal for human and sheep serum as well. Overall, the qPCR system described here can be used for reliable and quantitative ALSV detection.
Collapse
Affiliation(s)
- Alexander G. Litov
- Laboratory of Biology of Arboviruses, FSASI “Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of RAS” (Institute of Poliomyelitis), 108819 Moscow, Russia; (E.V.O.); (I.S.K.); (A.E.P.); (G.G.K.)
| | - Egor V. Okhezin
- Laboratory of Biology of Arboviruses, FSASI “Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of RAS” (Institute of Poliomyelitis), 108819 Moscow, Russia; (E.V.O.); (I.S.K.); (A.E.P.); (G.G.K.)
- Department of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Ivan S. Kholodilov
- Laboratory of Biology of Arboviruses, FSASI “Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of RAS” (Institute of Poliomyelitis), 108819 Moscow, Russia; (E.V.O.); (I.S.K.); (A.E.P.); (G.G.K.)
| | - Alexandra E. Polienko
- Laboratory of Biology of Arboviruses, FSASI “Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of RAS” (Institute of Poliomyelitis), 108819 Moscow, Russia; (E.V.O.); (I.S.K.); (A.E.P.); (G.G.K.)
| | - Galina G. Karganova
- Laboratory of Biology of Arboviruses, FSASI “Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of RAS” (Institute of Poliomyelitis), 108819 Moscow, Russia; (E.V.O.); (I.S.K.); (A.E.P.); (G.G.K.)
| |
Collapse
|
7
|
Mustafa MI, Makhawi AM. The reemergence of dengue virus in Sudan. J Infect Public Health 2023; 16:1392-1395. [PMID: 37473544 DOI: 10.1016/j.jiph.2023.07.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/02/2023] [Accepted: 07/05/2023] [Indexed: 07/22/2023] Open
Abstract
Dengue fever (DF) is a mosquito-transmitted arboviral disease caused by 1 of 4 closely related but antigenically distinct serotypes of dengue virus (DENV), DENV-1-4. The primary vector of DENV is Aedes aegypti and Aedes albopictus mosquitoes. Humans are the main carrier of the virus and the amplifying host with non-human primates plays a considerable role in sylvatic cycle. On November 8, 2022, an outbreak of dengue fever has killed at least five people in North Kordofan State. On 23 Nov 2022, the Sudanese Ministry of Health reported 3326 cases of dengue fever across 8 Sudanese States; while 23 patients died from the fever. Sudan is witnessing its worst outbreak of dengue fever in over a decade, especially in North and South Kordofan and Red Sea State are hit hard. In this review, we will focus on the recent outbreak of dengue fever in many Sudanese states.
Collapse
Affiliation(s)
- Mujahed I Mustafa
- Department of Biotechnology, College of Applied and Industrial Sciences, University of Bahri, Khartoum, Sudan.
| | - Abdelrafie M Makhawi
- Department of Biotechnology, College of Applied and Industrial Sciences, University of Bahri, Khartoum, Sudan
| |
Collapse
|
8
|
Zulkifli N, Khairat JE, Azman AS, Baharudin NFM, Malek NA, Zainal Abidin SA, AbuBakar S, Hassandarvish P. Antiviral Activities of Streptomyces KSF 103 Methanolic Extracts against Dengue Virus Type-2. Viruses 2023; 15:1773. [PMID: 37632115 PMCID: PMC10459629 DOI: 10.3390/v15081773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 08/12/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
Dengue has long been a serious health burden to the global community, especially for those living in the tropics. Despite the availability of vaccines, effective treatment for the infection is still needed and currently remains absent. In the present study, the antiviral properties of the Streptomyces sp. KSF 103 methanolic extract (Streptomyces KSF 103 ME), which consists of a number of potential antiviral compounds, were investigated against dengue virus serotype 2 (DENV-2). The effects of this extract against DENV-2 replication were determined using the quantitative Real Time-Polymerase Chain Reaction (qRT-PCR). Findings from the study suggested that the Streptomyces KSF 103 ME showed maximum inhibitory properties toward the virus during the virus entry stage at concentrations of more than 12.5 µg/mL. Minimal antiviral activities were observed at other virus replication stages; adsorption (42% reduction at 50 µg/mL), post-adsorption (67.6% reduction at 50 µg/mL), prophylactic treatment (68.4% and 87.7% reductions at 50 µg/mL and 25 µg/mL, respectively), and direct virucidal assay (48% and 56.8% reductions at 50 µg/mL and 25 µg/mL, respectively). The Streptomyces KSF 103 ME inhibited dengue virus replication with a 50% inhibitory concentration (IC50) value of 20.3 µg/mL and an International System of Units (SI) value of 38.9. The Streptomyces KSF 103 ME showed potent antiviral properties against dengue virus (DENV) during the entry stage. Further studies will be needed to deduce the antiviral mechanisms of the Streptomyces KSF 103 ME against DENV.
Collapse
Affiliation(s)
- Nurfatihah Zulkifli
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Wilayah Persekutuan Kuala Lumpur, Malaysia; (N.Z.); (J.-E.K.); (N.-F.M.B.); (N.-A.M.)
- Tropical Infectious Diseases Research and Education Centre (TIDREC), Universiti Malaya, Level 2, High Impact Research (HIR) Building, Kuala Lumpur 50603, Wilayah Persekutuan Kuala Lumpur, Malaysia;
| | - Jasmine-Elanie Khairat
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Wilayah Persekutuan Kuala Lumpur, Malaysia; (N.Z.); (J.-E.K.); (N.-F.M.B.); (N.-A.M.)
| | - Adzzie-Shazleen Azman
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Selangor, Malaysia;
| | - Nur-Faralyza Mohd Baharudin
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Wilayah Persekutuan Kuala Lumpur, Malaysia; (N.Z.); (J.-E.K.); (N.-F.M.B.); (N.-A.M.)
| | - Nurul-Adila Malek
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Wilayah Persekutuan Kuala Lumpur, Malaysia; (N.Z.); (J.-E.K.); (N.-F.M.B.); (N.-A.M.)
| | - Syafiq-Asnawi Zainal Abidin
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Selangor, Malaysia;
| | - Sazaly AbuBakar
- Tropical Infectious Diseases Research and Education Centre (TIDREC), Universiti Malaya, Level 2, High Impact Research (HIR) Building, Kuala Lumpur 50603, Wilayah Persekutuan Kuala Lumpur, Malaysia;
| | - Pouya Hassandarvish
- Tropical Infectious Diseases Research and Education Centre (TIDREC), Universiti Malaya, Level 2, High Impact Research (HIR) Building, Kuala Lumpur 50603, Wilayah Persekutuan Kuala Lumpur, Malaysia;
| |
Collapse
|
9
|
Sarker A, Dhama N, Gupta RD. Dengue virus neutralizing antibody: a review of targets, cross-reactivity, and antibody-dependent enhancement. Front Immunol 2023; 14:1200195. [PMID: 37334355 PMCID: PMC10272415 DOI: 10.3389/fimmu.2023.1200195] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 05/19/2023] [Indexed: 06/20/2023] Open
Abstract
Dengue is the most common viral infection spread by mosquitoes, prevalent in tropical countries. The acute dengue virus (DENV) infection is a benign and primarily febrile illness. However, secondary infection with alternative serotypes can worsen the condition, leading to severe and potentially fatal dengue. The antibody raised by the vaccine or the primary infections are frequently cross-reactive; however, weakly neutralizing, and during subsequent infection, they may increase the odds of antibody-dependent enhancement (ADE). Despite that, many neutralizing antibodies have been identified against the DENV, which are thought to be useful in reducing dengue severity. Indeed, an antibody must be free from ADE for therapeutic application, as it is pretty common in dengue infection and escalates disease severity. Therefore, this review has described the critical characteristics of DENV and the potential immune targets in general. The primary emphasis is given to the envelope protein of DENV, where potential epitopes targeted for generating serotype-specific and cross-reactive antibodies have critically been described. In addition, a novel class of highly neutralizing antibodies targeted to the quaternary structure, similar to viral particles, has also been described. Lastly, we have discussed different aspects of the pathogenesis and ADE, which would provide significant insights into developing safe and effective antibody therapeutics and equivalent protein subunit vaccines.
Collapse
|
10
|
Mechanisms of Neuroinvasion and Neuropathogenesis by Pathologic Flaviviruses. Viruses 2023; 15:v15020261. [PMID: 36851477 PMCID: PMC9965671 DOI: 10.3390/v15020261] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/07/2023] [Accepted: 01/14/2023] [Indexed: 01/19/2023] Open
Abstract
Flaviviruses are present on every continent and cause significant morbidity and mortality. In many instances, severe cases of infection with flaviviruses involve the invasion of and damage to the central nervous system (CNS). Currently, there are several mechanisms by which it has been hypothesized flaviviruses reach the brain, including the disruption of the blood-brain barrier (BBB) which acts as a first line of defense by blocking the entry of many pathogens into the brain, passing through the BBB without disruption, as well as travelling into the CNS through axonal transport from peripheral nerves. After flaviviruses have entered the CNS, they cause different neurological symptoms, leading to years of neurological sequelae or even death. Similar to neuroinvasion, there are several identified mechanisms of neuropathology, including direct cell lysis, blockage of the cell cycle, indication of apoptosis, as well as immune induced pathologies. In this review, we aim to summarize the current knowledge in the field of mechanisms of both neuroinvasion and neuropathogenesis during infection with a variety of flaviviruses and examine the potential contributions and timing of each discussed pathway.
Collapse
|
11
|
Huong NTC, Ngan NT, Reda A, Dong V, Tam DTH, The Van T, Manh DH, Quan NH, Makram AM, Dumre SP, Hirayama K, Huy NT. Association of self-reported allergic rhinitis with dengue severity: A case-control study. Acta Trop 2022; 236:106678. [PMID: 36063904 DOI: 10.1016/j.actatropica.2022.106678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 11/25/2022]
Abstract
BACKGROUND The severity of dengue infection has been reportedly associated with patients' allergic reactions. To further elucidate the role of allergy in dengue severity, we conducted a matched case-control study to assess the association between allergic background and dengue shock syndrome. METHODS This is a matched case-control study that was carried out in the Hospital for Tropical Diseases, Ho Chi Minh City, Vietnam from January to December 2017. Dengue infection was determined by non-structure protein 1 (NS1) diagnostic quick test or anti-dengue antibodies (IgM). The total and dengue-specific IgE levels were measured using ELISA. Patients' demographics, clinical, and allergic profiles were collected using a structured questionnaire. RESULTS A total of 572 dengue patients with positive NS1 (92.7%) or IgM antibodies (7.3%) results were included in this study. Of these patients, 143 patients developed dengue shock syndrome (case group) while the other 429 patients did not (control group). None of the baseline characteristics including age, sex, or being overweight was significantly different between the two groups (p>0.05). In multivariable analysis, having a history of dengue infection (OR=3.35, 95% CI: 1.8-6.17, p<0.001) and allergic rhinitis (OR=1.95, 95% CI: 1.11-3.4, p = 0.019) were found to be associated with dengue shock syndrome. Higher levels of dengue-specific IgE were not associated with worse outcomes in patients with allergies (p = 0.204) or allergic rhinitis (p = 0.284). CONCLUSION Dengue patients presenting with a history of a previous dengue infection or allergic rhinitis should be considered high-risk patients for the development of dengue shock syndrome.
Collapse
Affiliation(s)
- Nguyen Thi Cam Huong
- Department of Infectious Diseases, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh city, Vietnam; Hospital for Tropical Diseases, Ho Chi Minh City, Vietnam
| | - Nguyen Thi Ngan
- Hospital for Tropical Diseases, Ho Chi Minh City, Vietnam; Medicine Department, Xuyen A General Hospital, Vinh Long Province, Vietnam
| | - Abdullah Reda
- Online Research Club (http://www.onlineresearchclub.org), Nagasaki, Japan; Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | - Vinh Dong
- Online Research Club (http://www.onlineresearchclub.org), Nagasaki, Japan; American University of the Caribbean School of Medicine, Cupecoy, Sint Maarten
| | - Dong Thi Hoai Tam
- Department of Infectious Diseases, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh city, Vietnam; Oxford University Clinical Research Unit, Wellcome Trust Asia Programme, Ho Chi Minh City, Vietnam
| | - Trung The Van
- Department of Dermatology, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh city, Vietnam
| | - Dao Huy Manh
- Microbiology and Immunology Department, Pasteur Institute of Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Nguyen Hoang Quan
- Microbiology and Immunology Department, Pasteur Institute of Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Abdelrahman M Makram
- Online Research Club (http://www.onlineresearchclub.org), Nagasaki, Japan; School of Public Health, Imperial College London, London, United Kingdom; Faculty of Medicine, October 6 University, Giza, Egypt
| | | | - Kenji Hirayama
- School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, 852-8523, Japan
| | - Nguyen Tien Huy
- Online Research Club (http://www.onlineresearchclub.org), Nagasaki, Japan; School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, 852-8523, Japan.
| |
Collapse
|
12
|
Yuan K, Chen Y, Zhong M, Lin Y, Liu L. Risk and predictive factors for severe dengue infection: A systematic review and meta-analysis. PLoS One 2022; 17:e0267186. [PMID: 35427400 PMCID: PMC9012395 DOI: 10.1371/journal.pone.0267186] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 04/05/2022] [Indexed: 11/18/2022] Open
Abstract
Background Dengue is a major public health issue worldwide and severe dengue (SD) is life threatening. It is critical to triage patients with dengue infection in the early stage. However, there is limited knowledge on early indicators of SD. The objective of this study is to identify risk factors for the prognosis of SD and try to find out some potential predictive factors for SD from dengue fever (DF) in the early of infection. Methods The PubMed, Cochrane Library and Web of Science databases were searched for relevant studies from June 1999 to December 2020. The pooled odds ratio (OR) or standardized mean difference (SMD) with 95% confidence intervals (CI) of identified factors was calculated using a fixed or random effect model in the meta-analysis. Tests for heterogeneity, publication bias, subgroup analyses, meta-regression, and a sensitivity analysis were further performed. Findings A total of 6,848 candidate articles were retrieved, 87 studies with 35,184 DF and 8,173 SD cases met the eligibility criteria. A total of 64 factors were identified, including population and virus characteristics, clinical symptoms and signs, laboratory biomarkers, cytokines, and chemokines; of these factors, 34 were found to be significantly different between DF and SD, while the other 30 factors were not significantly different between the two groups after pooling the data from the relevant studies. Additionally, 9 factors were positive associated with SD within 7 days after illness when the timing subgroup analysis were performed. Conclusions Practical factors and biomarkers for the identification of SD were established, which will be helpful for a prompt diagnosis and early effective treatment for those at greatest risk. These outcomes also enhance our knowledge of the clinical manifestations and pathogenesis of SD.
Collapse
Affiliation(s)
- Kangzhuang Yuan
- Division of Clinical Laboratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, P.R. China
| | - Yuan Chen
- Division of Clinical Laboratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, P.R. China
| | - Meifeng Zhong
- Division of Clinical Laboratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, P.R. China
| | - Yongping Lin
- Division of Clinical Laboratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, P.R. China
- * E-mail: (YL); (LL)
| | - Lidong Liu
- Division of Clinical Laboratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, P.R. China
- * E-mail: (YL); (LL)
| |
Collapse
|
13
|
Wellekens K, Betrains A, De Munter P, Peetermans W. Dengue: current state one year before WHO 2010-2020 goals. Acta Clin Belg 2022; 77:436-444. [PMID: 33090941 DOI: 10.1080/17843286.2020.1837576] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
BACKGROUND Dengue is a possibly life-threatening human mosquito-borne viral infection widely spread in peridomestic (sub)tropical climates. The global incidence has expanded rapidly in the last decades, with 40% of the world's population currently at risk. To date, no anti-viral treatment other than supportive care exists. In 2015, the first and only dengue-vaccine, CYD-TDV, received marketing authorization. OBJECTIVES To present the current understanding of dengue in terms of epidemiology, transmission, pathogenesis, disease management and prevention. To illustrate the knowledge gaps that remain to be filled in order to control dengue and achieve the WHO 2010-2020 goals. METHODS An updated systematic review (2009-2019) was carried out. The databases Pubmed, Embase and The Cochrane Library were searched along with WHO and CDC guidelines. RESULTS In total, 39 articles were included. Contemporary climatic and economic factors significantly contributed to the emergence of epidemic dengue. Unfortunately, CYD-TDV failed to meet safety and efficacy demands. New vaccination approaches are in the pipeline along with innovative vector-control strategies. Current anti-viral drug research focuses on repurposing drugs in addition to specific anti-dengue strategies that interfere with viral replication. CONCLUSION The lack of understanding dengue pathogenesis and immunology has hampered the development of an effective vaccine. Recent research has provided new insights into the therapeutic and prophylactic approach. Implementation of complementary methods to control disease burden are required considering the socio-economic impact of this rapidly emerging global disease.
Collapse
Affiliation(s)
- K Wellekens
- Department of general internal medicine, University Hospitals Leuven, Leuven, Belgium
| | - A Betrains
- Department of general internal medicine, University Hospitals Leuven, Leuven, Belgium
- Department of Microbiology, Immunology and Transplantation, Laboratory of clinical infectious and inflammatory disease, Leuven, Belgium
| | - P De Munter
- Department of general internal medicine, University Hospitals Leuven, Leuven, Belgium
- Department of Microbiology, Immunology and Transplantation, Laboratory of clinical infectious and inflammatory disease, Leuven, Belgium
| | - W Peetermans
- Department of general internal medicine, University Hospitals Leuven, Leuven, Belgium
- Department of Microbiology, Immunology and Transplantation, Laboratory of clinical infectious and inflammatory disease, Leuven, Belgium
| |
Collapse
|
14
|
Ali A, Dar MA, Malla BA, Maqbool I, Hamdani SS, Bashir SM, Ganie SA. Understanding the immunogenetics of human viral diseases. CLINICAL APPLICATIONS OF IMMUNOGENETICS 2022:131-163. [DOI: 10.1016/b978-0-323-90250-2.00010-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
15
|
Affiliation(s)
- Andrew Teo
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Department of Medicine, The Doherty Institute, University of Melbourne, Melbourne, Australia
- * E-mail: (AT); (TWY)
| | - Caroline Lin Lin Chua
- School of Biosciences, Faculty of Health and Medicine Sciences, Taylor’s University, Subang Jaya, Malaysia
| | - Po Ying Chia
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- National Centre for Infectious Diseases, Singapore, Singapore
- Department of Infectious Diseases, Tan Tock Seng Hospital, Singapore, Singapore
| | - Tsin Wen Yeo
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- National Centre for Infectious Diseases, Singapore, Singapore
- Department of Infectious Diseases, Tan Tock Seng Hospital, Singapore, Singapore
- * E-mail: (AT); (TWY)
| |
Collapse
|
16
|
Nanaware N, Banerjee A, Mullick Bagchi S, Bagchi P, Mukherjee A. Dengue Virus Infection: A Tale of Viral Exploitations and Host Responses. Viruses 2021; 13:v13101967. [PMID: 34696397 PMCID: PMC8541669 DOI: 10.3390/v13101967] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/17/2021] [Accepted: 09/27/2021] [Indexed: 12/20/2022] Open
Abstract
Dengue is a mosquito-borne viral disease (arboviral) caused by the Dengue virus. It is one of the prominent public health problems in tropical and subtropical regions with no effective vaccines. Every year around 400 million people get infected by the Dengue virus, with a mortality rate of about 20% among the patients with severe dengue. The Dengue virus belongs to the Flaviviridae family, and it is an enveloped virus with positive-sense single-stranded RNA as the genetic material. Studies of the infection cycle of this virus revealed potential host targets important for the virus replication cycle. Here in this review article, we will be discussing different stages of the Dengue virus infection cycle inside mammalian host cells and how host proteins are exploited by the virus in the course of infection as well as how the host counteracts the virus by eliciting different antiviral responses.
Collapse
Affiliation(s)
- Nikita Nanaware
- Division of Virology, ICMR-National AIDS Research Institute, Pune 411026, MH, India; (N.N.); (A.B.)
| | - Anwesha Banerjee
- Division of Virology, ICMR-National AIDS Research Institute, Pune 411026, MH, India; (N.N.); (A.B.)
| | | | - Parikshit Bagchi
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Correspondence: or (P.B.); or (A.M.)
| | - Anupam Mukherjee
- Division of Virology, ICMR-National AIDS Research Institute, Pune 411026, MH, India; (N.N.); (A.B.)
- Correspondence: or (P.B.); or (A.M.)
| |
Collapse
|
17
|
Vázquez-Guardado A, Mehta F, Jimenez B, Biswas A, Ray K, Baksh A, Lee S, Saraf N, Seal S, Chanda D. DNA-Modified Plasmonic Sensor for the Direct Detection of Virus Biomarkers from the Blood. NANO LETTERS 2021; 21:7505-7511. [PMID: 34496209 DOI: 10.1021/acs.nanolett.1c01609] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The rapid spread of viral infections demands early detection strategies to minimize proliferation of the disease. Here, we demonstrate a plasmonic biosensor to detect Dengue virus, which was chosen as a model, via its nonstructural protein NS1 biomarker. The sensor is functionalized with a synthetic single-stranded DNA oligonucleotide and provides high affinity toward NS1 protein present in the virus genome. We demonstrate the detection of NS1 protein at a concentration of 0.1-10 μg/mL in bovine blood using an on-chip microfluidic plasma separator integrated with the plasmonic sensor which covers the clinical threshold of 0.6 μg/mL of high risk of developing Dengue hemorrhagic fever. The conceptual and practical demonstration shows the translation feasibility of these microfluidic optical biosensors for early detection of a wide range of viral infections, providing a rapid clinical diagnosis of infectious diseases directly from minimally processed biological samples at point of care locations.
Collapse
Affiliation(s)
- Abraham Vázquez-Guardado
- CREOL, The College of Optics and Photonics, University of Central Florida, Orlando, Florida 32816, United States
- NanoScience Technology Center, University of Central Florida, Orlando, Florida 32826, United States
| | - Freya Mehta
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida 32816, United States
| | - Beatriz Jimenez
- Department of Electrical and Computer Engineering, University of Central Florida, Orlando, Florida 32816, United States
| | - Aritra Biswas
- CREOL, The College of Optics and Photonics, University of Central Florida, Orlando, Florida 32816, United States
- NanoScience Technology Center, University of Central Florida, Orlando, Florida 32826, United States
| | - Keval Ray
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida 32816, United States
| | - Aliyah Baksh
- NanoScience Technology Center, University of Central Florida, Orlando, Florida 32826, United States
| | - Sang Lee
- NanoScience Technology Center, University of Central Florida, Orlando, Florida 32826, United States
| | - Nileshi Saraf
- Materials Science and Engineering, Advanced Materials Processing and Analysis Center, University of Central Florida, Orlando, Florida 32816, United States
| | - Sudipta Seal
- NanoScience Technology Center, University of Central Florida, Orlando, Florida 32826, United States
- Materials Science and Engineering, Advanced Materials Processing and Analysis Center, University of Central Florida, Orlando, Florida 32816, United States
- College of Medicine, University of Central Florida, Orlando, Florida 32827, United States
| | - Debashis Chanda
- CREOL, The College of Optics and Photonics, University of Central Florida, Orlando, Florida 32816, United States
- NanoScience Technology Center, University of Central Florida, Orlando, Florida 32826, United States
- Department of Physics, University of Central Florida, Orlando, Florida 32816, United States
| |
Collapse
|
18
|
Freise NF, Jensen B, Keitel V, Luedde T. Gallbladder Wall Thickening associated with Dengue Shock Syndrome in a German traveller - no indication for surgical therapy - a case report. TROPICAL DISEASES TRAVEL MEDICINE AND VACCINES 2021; 7:23. [PMID: 34344481 PMCID: PMC8336325 DOI: 10.1186/s40794-021-00148-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 07/19/2021] [Indexed: 11/10/2022]
Abstract
BACKGROUND With the increasing number of dengue virus infections imported into Germany, knowledge about the different phases of the disease and possible complications is essential for the treatment of patients. The virus is endemic in the tropics and subtropics and up to 2.5 billion people are at risk of infection. CASE PRESENTATION Here we present a German traveller with dengue shock syndrome after returning from Thailand. After hospitalization the patient developed acute upper abdominal pain. The ultrasound findings were consistent with an acute acalculous cholecystitis, but were interpreted as dengue associated gallbladder wall thickening (GBWT). Therefore a surgical intervention was not indicated and would have been associated with an higher risk of complications in this situation. Under supportive care spontaneous regression of GBWT could be documented by sonography four days later as well as complete resolution of clinical symptoms. CONCLUSION GBWT in dengue virus infection mimicking acute cholecystitis is a differential diagnosis one should take into consideration in travellers returning from endemic areas and should be managed conservatively because of an high risk of bleeding and increased mortality under surgical therapy.
Collapse
Affiliation(s)
- Noemi F Freise
- Department of Gastroenterology, Hepatology and Infectious Diseases, Duesseldorf University Hospital, Heinrich-Heine-University, Moorenstr. 5, 40225, Duesseldorf, Germany.
| | - Björn Jensen
- Department of Gastroenterology, Hepatology and Infectious Diseases, Duesseldorf University Hospital, Heinrich-Heine-University, Moorenstr. 5, 40225, Duesseldorf, Germany
| | - Verena Keitel
- Department of Gastroenterology, Hepatology and Infectious Diseases, Duesseldorf University Hospital, Heinrich-Heine-University, Moorenstr. 5, 40225, Duesseldorf, Germany
| | - Tom Luedde
- Department of Gastroenterology, Hepatology and Infectious Diseases, Duesseldorf University Hospital, Heinrich-Heine-University, Moorenstr. 5, 40225, Duesseldorf, Germany
| |
Collapse
|
19
|
Lai JH, Wu DW, Wu CH, Hung LF, Huang CY, Ka SM, Chen A, Chang ZF, Ho LJ. Mitochondrial CMPK2 mediates immunomodulatory and antiviral activities through IFN-dependent and IFN-independent pathways. iScience 2021; 24:102498. [PMID: 34142025 PMCID: PMC8188380 DOI: 10.1016/j.isci.2021.102498] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 03/31/2021] [Accepted: 04/28/2021] [Indexed: 01/22/2023] Open
Abstract
Mitochondria regulate the immune response after dengue virus (DENV) infection. Microarray analysis of genes identified the upregulation of mitochondrial cytidine/uridine monophosphate kinase 2 (CMPK2) by DENV infection. We used small interfering RNA-mediated knockdown (KD) and CRISPR-Cas9 knockout (KO) approaches, to investigate the role of CMPK2 in mouse and human cells. The results showed that CMPK2 was critical in DENV-induced antiviral cytokine release and mitochondrial oxidative stress and mitochondrial DNA release to the cytosol. The DENV-induced activation of Toll-like receptor (TLR)-9, inflammasome pathway, and cell migration was suppressed by CMPK2 depletion; however, viral production increased under CMPK2 deficiency. Examining mouse bone marrow-derived dendritic cells from interferon-alpha (IFN-α) receptor-KO mice and signal transducer and activator of transcription 1 (STAT1)-KO mice, we confirmed that CMPK2-mediated antiviral activity occurred in IFN-dependent and IFN-independent manners. In sum, CMPK2 is a critical factor in DENV-induced immune responses to determine innate immunity.
Collapse
Affiliation(s)
- Jenn-Haung Lai
- Department of Rheumatology, Allergy and Immunology, Chang Gung Memorial Hospital, Lin-Kou, Tao-Yuan, Taiwan, R.O.C
| | - De-Wei Wu
- Department of Rheumatology, Allergy and Immunology, Chang Gung Memorial Hospital, Lin-Kou, Tao-Yuan, Taiwan, R.O.C
| | - Chien-Hsiang Wu
- Department of Rheumatology, Allergy and Immunology, Chang Gung Memorial Hospital, Lin-Kou, Tao-Yuan, Taiwan, R.O.C
| | - Li-Feng Hung
- Institute of Cellular and System Medicine, National Health Research Institute, Zhunan, Taiwan, R.O.C
| | - Chuan-Yueh Huang
- Institute of Cellular and System Medicine, National Health Research Institute, Zhunan, Taiwan, R.O.C
| | - Shuk-Man Ka
- Graduate Institute of Aerospace and Undersea Medicine, Department of Medicine, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Ann Chen
- Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Zee-Fen Chang
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei 10002, Taiwan
| | - Ling-Jun Ho
- Institute of Cellular and System Medicine, National Health Research Institute, Zhunan, Taiwan, R.O.C
| |
Collapse
|
20
|
Arayasongsak U, Naka I, Ohashi J, Patarapotikul J, Nuchnoi P, Kalambaheti T, Sa-Ngasang A, Chanama S, Chaorattanakawee S. Genetic association study of interferon lambda 3, CD27, and human leukocyte antigen-DPB1 with dengue severity in Thailand. BMC Infect Dis 2020; 20:948. [PMID: 33308178 PMCID: PMC7731073 DOI: 10.1186/s12879-020-05636-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 11/19/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Dengue patients develop different disease severity ranging from mild (dengue fever [DF]) to severe forms (dengue hemorrhagic fever [DHF] and the fatal dengue shock syndrome [DSS]). Host genetics are considered to be one factor responsible for the severity of dengue outcomes. To identify genes associated with dengue severity that have not been studied yet, we performed genetic association analyses of interferon lambda 3 (IFNL3), CD27, and human leukocyte antigen-DPB1 (HLA-DPB1) genes in Thai dengue patients. METHODS A case-control association study was performed in 877 children (age ≤ 15 years) with dengue infection (DF, n = 386; DHF, n = 416; DSS, n = 75). A candidate single nucleotide polymorphism of each of IFNL3, CD27, and HLA-DPB1 was selected to be analyzed. Genotyping was performed by TaqMan real-time PCR assay, and the association with dengue severity was examined. RESULTS The rs9277534 variant of HLA-DPB1 was weakly associated with DHF. The genotype GG and G allele conferred protection against DHF (p = 0.04, odds ratio 0.74 for GG genotype, p = 0.03, odds ratio 0.79 for G allele). The association became borderline significant after adjusting for confounders (p = 0.05, odds ratio 0.82). No association was detected for IFNL3 or CD27. CONCLUSIONS The present study demonstrated the weak association of the rs9277534 variant of HLA-DPB1 with protection against DHF. This variant is in the 3' untranslated region and affects HLA-DPB1 surface protein expression. Our finding suggests that HLA-DPB1 may be involved in DHF pathogenesis.
Collapse
Affiliation(s)
- Unchana Arayasongsak
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Ratchawithi Road, Bangkok, 10400, Thailand
| | - Izumi Naka
- Laboratory of Human Genome Diversity, Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Jun Ohashi
- Laboratory of Human Genome Diversity, Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Jintana Patarapotikul
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Ratchawithi Road, Bangkok, 10400, Thailand
| | - Pornlada Nuchnoi
- Department of Clinical Microscopy, Faculty of Medical Technology, Mahidol University, Bangkok, 10700, Thailand
| | - Thareerat Kalambaheti
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Ratchawithi Road, Bangkok, 10400, Thailand
| | - Areerat Sa-Ngasang
- National Institute of Health, Department of Medical Sciences, Ministry of Public Health, Nonthaburi, Thailand
| | - Sumalee Chanama
- National Institute of Health, Department of Medical Sciences, Ministry of Public Health, Nonthaburi, Thailand
| | - Suwanna Chaorattanakawee
- Department of Parasitology and Entomology, Faculty of Public Health, Mahidol University, Ratchawithi Road, Bangkok, 10400, Thailand.
| |
Collapse
|
21
|
A Cyclic Phosphoramidate Prodrug of 2'-Deoxy-2'-Fluoro-2'- C-Methylguanosine for the Treatment of Dengue Virus Infection. Antimicrob Agents Chemother 2020; 64:AAC.00654-20. [PMID: 32958712 DOI: 10.1128/aac.00654-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 09/16/2020] [Indexed: 02/04/2023] Open
Abstract
Monophosphate prodrug analogs of 2'-deoxy-2'-fluoro-2'-C-methylguanosine have been reported as potent inhibitors of hepatitis C virus (HCV) RNA-dependent RNA polymerase. These prodrugs also display potent anti-dengue virus activities in cellular assays although their prodrug moieties were designed to produce high levels of triphosphate in the liver. Since peripheral blood mononuclear cells (PBMCs) are among the major targets of dengue virus, different prodrug moieties were designed to effectively deliver 2'-deoxy-2'-fluoro-2'-C-methylguanosine monophosphate prodrugs and their corresponding triphosphates into PBMCs after oral administration. We identified a cyclic phosphoramidate, prodrug 17, demonstrating well-balanced anti-dengue virus cellular activity and in vitro stability profiles. We further determined the PBMC concentration of active triphosphate needed to inhibit virus replication by 50% (TP50). Compound 17 was assessed in an AG129 mouse model and demonstrated 1.6- and 2.2-log viremia reductions at 100 and 300 mg/kg twice a day (BID), respectively. At 100 mg/kg BID, the terminal triphosphate concentration in PBMCs exceeded the TP50 value, demonstrating TP50 as the target exposure for efficacy. In dogs, oral administration of compound 17 resulted in high PBMC triphosphate levels, exceeding the TP50 at 10 mg/kg. Unfortunately, 2-week dog toxicity studies at 30, 100, and 300 mg/kg/day showed that "no observed adverse effect level" (NOAEL) could not be achieved due to pulmonary inflammation and hemorrhage. The preclinical safety results suspended further development of compound 17. Nevertheless, present work has proven the concept that an efficacious monophosphate nucleoside prodrug could be developed for the potential treatment of dengue virus infection.
Collapse
|
22
|
Sarathy VV, Walker DH. Ideal Criteria for Accurate Mouse Models of Vector-Borne Diseases with Emphasis on Scrub Typhus and Dengue. Am J Trop Med Hyg 2020; 103:970-975. [PMID: 32602433 PMCID: PMC7470543 DOI: 10.4269/ajtmh.19-0955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 06/05/2020] [Indexed: 11/07/2022] Open
Abstract
Nine criteria regarding the infectious agent, mode of transmission, portal of entry, route of spread, target organs, target cells, pathologic lesions, incubation period, and modifiable spectrum of disease and outcomes appropriate to the intended experimental purpose are described. To provide context for each criterion, mouse models of two vector-borne zoonotic infectious diseases, scrub typhus and dengue, are summarized. Application of the criteria indicates that intravenous inoculation of Orientia tsutsugamushi into inbred mice is the best current model for life-threatening scrub typhus, and intradermal inoculation accurately models sublethal human scrub typhus, whereas the immunocompromised mouse models of dengue provide disease outcomes most closely associated with human dengue. In addition to addressing basic questions of immune and pathogenic mechanisms, mouse models are useful for preclinical testing of experimental vaccines and therapeutics. The nine criteria serve as guidelines to evaluate and compare models of vector-borne infectious diseases.
Collapse
Affiliation(s)
- Vanessa V. Sarathy
- Department of Pathology, Sealy Institute for Vaccine Sciences, Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas
| | - David H. Walker
- Department of Pathology, Sealy Institute for Vaccine Sciences, Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas
- Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, Texas
| |
Collapse
|
23
|
Hashan MR, Ghozy S, El-Qushayri AE, Pial RH, Hossain MA, Al Kibria GM. Association of dengue disease severity and blood group: A systematic review and meta-analysis. Rev Med Virol 2020; 31:1-9. [PMID: 32776660 DOI: 10.1002/rmv.2147] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 06/27/2020] [Accepted: 06/29/2020] [Indexed: 12/28/2022]
Abstract
Dengue disease encompasses various clinical manifestations including dengue fever (DF) and dengue hemorrhagic fever (DHF). In this article, we aimed to systematically review and analyze the association between different blood groups and severity of dengue. We searched nine databases for eligible papers reporting prevalence, distribution, and frequency of blood group type among dengue patients. Network meta-analysis using R software was used to analyze the data. Of a total of 63 reports screened, we included 10 studies with total sample size 1977 patients (1382 DF and 595 DHF). Blood group O was found to have the worst outcome with the highest risk of developing DF (P-score = 0.01) followed by group B (P-score = 0.34), group A (P-score = 0.64), and group AB (P-score = 1), respectively. Blood group O also had the worst outcome with highest risk of developing DHF (P-score = 0.1) followed by group B (P-score = 0.29), group A (P-score = 0.61), and group AB (P-score = 1), respectively. There was a significant increase (P-value <.001) in the overall odds risk of dengue infection among patients with Rhesus-positive blood groups [OR = 540.03; (95% CI = 151.48-1925.18)]. However, there was no significant difference in the odds risk of DF when compared to DHF according to Rhesus status (P-value = .954). This study identified the O blood group as a potential risk factor in predicting clinical severity in dengue patients which may be helpful in evaluating patients for their likely need for critical care.
Collapse
Affiliation(s)
- Mohammad Rashidul Hashan
- Bangladesh Civil Service, Ministry of Health and Family Welfare, Government of Bangladesh, Dhaka, Bangladesh
| | - Sherief Ghozy
- Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | | | - Rejwana Haque Pial
- Infectious Disease Division, International Center for Diarrheal Disease Research, Dhaka, Bangladesh
| | - Md Anwar Hossain
- Infectious Disease Division, International Center for Diarrheal Disease Research, Dhaka, Bangladesh
| | | |
Collapse
|
24
|
da Silva Cezar RD, da Silva Castanha PM, Matos Freire N, Mola C, Feliciano do Carmo R, Tenório Cordeiro M, Baptista P, Silva Vasconcelos LR, Moura P, da Silva Teixeira VG. Association between interferon lambda 3 rs12979860 polymorphism and clinical outcome in dengue virus-infected children. Int J Immunogenet 2020; 47:351-358. [PMID: 32065450 DOI: 10.1111/iji.12477] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 12/26/2019] [Accepted: 01/13/2020] [Indexed: 01/01/2023]
Abstract
Single nucleotide polymorphisms (SNPs) in immune-related genes have been shown to play a role in driving the development of the severe phenotypes of dengue virus (DENV) infection. We assessed the association between IFNL3 gene SNP (rs12979860) and dengue clinical outcomes in children. Patients with dengue-related symptoms (aged 1-15 years) admitted at a public hospital in Northeast Brazil were invited to participate. The association between rs12979860 polymorphism and dengue classification and clinical signs and symptoms were analysed. A total of 206 DENV-infected children were included: 53.4% of the infections were classified as severe dengue. The T allele carriers had higher risk of developing severe dengue when compared to CC genotype carriers (OR: 1.81; 95% CI: 0.98-3.32 p = .054). The T allele carriers also showed longer fever episodes when compared to patients with the CC genotype (OR: 1.90; 95%CI: 1.07-3.38; p = .027). On the other hand, the ones carrying the CT/TT genotype had 70% lower chance of developing thrombocytopenia when compared to those with the CC genotype (OR: 0.30; 95%CI: 0.08-0.88; p = .042). Our findings demonstrated that the T allele carriers of the IFNL3 gene had higher risk of developing severe dengue, suggesting a link between IFN-λ expression and DENV immunopathogenesis.
Collapse
Affiliation(s)
| | | | | | - Carla Mola
- Instituto de Ciências Biológicas, Universidade de Pernambuco, Recife, Brasil
| | | | | | - Paulo Baptista
- Faculdade de Ciências Médicas, Universidade de Pernambuco, Recife, Brasil
| | - Luydson Richardson Silva Vasconcelos
- Faculdade de Ciências Médicas, Universidade de Pernambuco, Recife, Brasil
- Instituto Aggeu Magalhães, Fundação Oswaldo Cruz, Recife, Brasil
- Instituto do Fígado, Recife, Brasil
| | - Patrícia Moura
- Instituto de Ciências Biológicas, Faculdade de Ciências Médicas, Recife, Brasil
- Campus Arcoverde, Universidade de Pernambuco, Recife, Brasil
| | | |
Collapse
|
25
|
Harapan H, Michie A, Sasmono RT, Imrie A. Dengue: A Minireview. Viruses 2020; 12:v12080829. [PMID: 32751561 PMCID: PMC7472303 DOI: 10.3390/v12080829] [Citation(s) in RCA: 156] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 06/14/2020] [Accepted: 06/23/2020] [Indexed: 12/24/2022] Open
Abstract
Dengue, caused by infection of any of four dengue virus serotypes (DENV-1 to DENV-4), is a mosquito-borne disease of major public health concern associated with significant morbidity, mortality, and economic cost, particularly in developing countries. Dengue incidence has increased 30-fold in the last 50 years and over 50% of the world’s population, in more than 100 countries, live in areas at risk of DENV infection. We reviews DENV biology, epidemiology, transmission dynamics including circulating serotypes and genotypes, the immune response, the pathogenesis of the disease as well as updated diagnostic methods, treatments, vector control and vaccine developments.
Collapse
Affiliation(s)
- Harapan Harapan
- Medical Research Unit, School of Medicine, Universitas Syiah Kuala, Banda Aceh, Aceh 23111, Indonesia
- Department of Microbiology, School of Medicine, Universitas Syiah Kuala, Banda Aceh, Aceh 23111, Indonesia
- Tropical Disease Centre, School of Medicine, Universitas Syiah Kuala, Banda Aceh, Aceh 23111, Indonesia
- School of Biomedical Sciences, University of Western Australia, Nedlands, WA 6009, Australia;
- Correspondence: (H.H.); (A.I.); Tel.: +62-(0)-651-7551843 (H.H.)
| | - Alice Michie
- School of Biomedical Sciences, University of Western Australia, Nedlands, WA 6009, Australia;
| | - R. Tedjo Sasmono
- Eijkman Institute for Molecular Biology, Jakarta 10430, Indonesia;
| | - Allison Imrie
- School of Biomedical Sciences, University of Western Australia, Nedlands, WA 6009, Australia;
- Correspondence: (H.H.); (A.I.); Tel.: +62-(0)-651-7551843 (H.H.)
| |
Collapse
|
26
|
Santos NCD, Gomes TN, Góis IADF, Oliveira JSD, Coelho LFL, Ferreira GP, Silva FRPD, Pereira ACTDC. Association of single nucleotide polymorphisms in TNF-α (-308G/A and -238G/A) to dengue: Case-control and meta-analysis study. Cytokine 2020; 134:155183. [PMID: 32731142 DOI: 10.1016/j.cyto.2020.155183] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 04/23/2020] [Accepted: 06/15/2020] [Indexed: 01/27/2023]
Abstract
Dengue is an acute viral disease whose clinical condition is related to the interaction of factors related to the Dengue virus (DENV), environment and the host, with the immunity of the human host contributing a substantial role in the pathogenesis of DENV infection. Studies have demonstrated that single nucleotide polymorphisms (SNPs) in the promoter regions of cytokine genes such as tumor necrosis factor (TNF-α) affect transcription and/or expression; and therefore, may influence the pathogenesis of infectious diseases, such as dengue. Consequently, the objective of this study was to assess through a case-control study whether there was an association between the presence of SNPs -308G/A and -238G/A in the TNF-α gene and 158 patients with dengue and 123 controls. No association was found between the SNPs and the dengue cases in the study population. We then performed a meta-analysis, retrieving data from case-control studies in the literature for the same polymorphisms. For SNP-308G/A, the GG genotype was associated with dengue fever (DF) risk (OR = 1.24, 1.00-1.53; p = 0.05; I2 = 0%), while the GA genotype (OR = 0.75, 0.60-0.93; p = 0.01; I2 = 0%) and allele A (OR = 0.75, 0.60-0.93; p = 0.01; I2 = 0%) were associated with protection. The genotype GG population in the Asian continent (OR = 1.81 [1.06, 3.09], p = 0.03, I2 = 0%) and American (OR = 1.29 [1.00, 1.65], p = 0.05, I2 = 0%) was also associated with protection in the comparison between the cases versus the control group. In each comparison, the dominant model AA + GA (p < 0.00001) conferred protection. For SNP-238G/A the GA genotype was associated with risk for dengue hemorrhagic fever (DHF; OR = 2.17, 1.28-3.67; p = 0.004; I2 = 0%)), and the dominant AA + GA model (p < 0.00001) was associated with protection in each comparison. In summary, our results did not associate SNPs in the TNF-α gene to dengue in the Brazilian northeast population. However, combined literature data suggested the effect of the GG and GA genotypes of the SNP-308G/A on risk and protection, respectively, in Asian and American populations.
Collapse
Affiliation(s)
- Naiany Carvalho Dos Santos
- Laboratório de Biologia de Microrganismos, Universidade Federal do Delta do Parnaíba, Parnaíba, Piauí, Brazil
| | - Thiago Nobre Gomes
- Laboratório de Biologia de Microrganismos, Universidade Federal do Delta do Parnaíba, Parnaíba, Piauí, Brazil
| | - Iara Alda de Fontes Góis
- Laboratório de Biologia de Microrganismos, Universidade Federal do Delta do Parnaíba, Parnaíba, Piauí, Brazil
| | | | - Luiz Felipe Leomil Coelho
- Laboratório de Vacinas, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, Alfenas, Minas Gerais, Brazil
| | - Gustavo Portela Ferreira
- Laboratório de Biologia de Microrganismos, Universidade Federal do Delta do Parnaíba, Parnaíba, Piauí, Brazil
| | | | | |
Collapse
|
27
|
Yi D, Li Q, Pang L, Wang Y, Zhang Y, Duan Z, Liang C, Cen S. Identification of a Broad-Spectrum Viral Inhibitor Targeting a Novel Allosteric Site in the RNA-Dependent RNA Polymerases of Dengue Virus and Norovirus. Front Microbiol 2020; 11:1440. [PMID: 32670253 PMCID: PMC7330483 DOI: 10.3389/fmicb.2020.01440] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 06/04/2020] [Indexed: 12/23/2022] Open
Abstract
All RNA viruses encode the RNA-dependent RNA polymerase (RdRp) which replicates and transcribes viral RNA. This essential viral enzyme does not exist in mammalian cells, thus presents a main target for the development of antiviral drugs with potential pan-antiviral activity. In this study, we take advantage of the structurally equivalent site in the dengue virus (DENV) RdRp, the N-pocket, and in the human norovirus (hNV) RdRp, the B-site, and performed a parallel structure-based virtual screening to discover compounds that can inhibit the RdRps of both hNV and DENV. We successfully identified a small molecule called Entrectinib (RAI-13) as a potent inhibitor of both hNV and DENV infection. Specifically, RAI-13 binds directly to hNV and DENV RdRps, effectively inhibits the polymerase activity in the in vitro biochemical assays, and exhibits does-responsive inhibition of murine norovirus (MNV) and DENV2 infection with IC50 values of 2.01 and 2.43 μM, respectively. Most promisingly, RAI-13 inhibits hepatitis C virus (HCV) infection by 95% at the 2 μM concentration. We have therefore discovered a small molecule compound that targets an allosteric site that is shared by different viral RdRps and strongly inhibits multiple pathogenic RNA viruses, thus holding the potential of being developed into a broad-spectrum antiviral drug.
Collapse
Affiliation(s)
- Dongrong Yi
- Department of Immunology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences, Beijing, China
| | - Quanjie Li
- Department of Immunology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences, Beijing, China
| | - Lili Pang
- National Institute for Viral Disease Control & Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yujia Wang
- Department of Immunology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences, Beijing, China
| | - Yongxin Zhang
- Department of Immunology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences, Beijing, China
| | - Zhaojun Duan
- National Institute for Viral Disease Control & Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Chen Liang
- Lady Davis Institute, Jewish General Hospital, McGill University, Montreal, QC, Canada
| | - Shan Cen
- Department of Immunology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences, Beijing, China.,CAMS Key Laboratory of Antiviral Drug Research, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| |
Collapse
|
28
|
do Nascimento IDS, Pastor AF, Lopes TRR, Farias PCS, Gonçales JP, do Carmo RF, Durães-Carvalho R, da Silva CS, Silva Júnior JVJ. Retrospective cross-sectional observational study on the epidemiological profile of dengue cases in Pernambuco state, Brazil, between 2015 and 2017. BMC Public Health 2020; 20:923. [PMID: 32532240 PMCID: PMC7291711 DOI: 10.1186/s12889-020-09047-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 06/04/2020] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND The spread of Dengue virus (DENV) infections, as well as their signs and symptoms, are the result of a complex interaction between several factors. In Brazil, especially in the Northeastern, dengue is an important public health problem. Here, we report an epidemiological analysis of dengue cases in Pernambuco state, Northeastern Brazil, during 2015-2017. METHODS This work is a retrospective cross-sectional observational study on the epidemiological profile of all dengue cases confirmed and reported to the Health Secretary of Pernambuco between 2015 and 2017. These data cover all municipalities of Pernambuco, except Fernando de Noronha. DENV-positive individuals were classified according to the dengue type (without and with warning signs, or severe dengue), age, gender, ethnicity and intermediate geographic region of residence (Recife, Caruaru, Serra Talhada or Petrolina). The distribution of cases over the years was assessed by χ2 test. Temperature and rainfall data were evaluated by Unpaired t-test. p-value < 0.05 and CI 95% were considered in all analyses. RESULTS Most dengue cases was without warning signs. The most observed characteristics in the less severe dengue phenotypes were: female, mulatto ethnicity and age between 20 and 39 years old; this profile was more clearly observed in 2015. In 2016 and 2017, however, the numbers of dengue without and with warning signs were more evenly distributed and the difference in cases within groups decreased significantly. Regarding severe dengue, mulattoes were the most affected, but it is possible to note a trend towards a more uniform distribution between the genders and ages. Recife was the region with the highest numbers of both total cases and incidence rates and the highest rainfall levels. Overall, over the years, there has been a decrease in dengue cases in all regions of Pernambuco. CONCLUSIONS We identified the epidemiological profile of dengue in Pernambuco, Brazil, reporting the gender, age, ethnicity and regions most affected by different dengue types. In addition, we observed that these cases were probably more influenced by rainfall than by temperature. Finally, we believe that this epidemiological knowledge is important to direct public health policies to the reality of each population.
Collapse
Affiliation(s)
| | - André Filipe Pastor
- Federal Institute of Education, Science and Technology of Sertão Pernambucano, Floresta, Pernambuco, Brazil
| | - Thaísa Regina Rocha Lopes
- Virology Sector, Laboratory of Immunopathology Keizo Asami, Federal University of Pernambuco, Recife, Pernambuco, Brazil
| | | | - Juliana Prado Gonçales
- Virology Sector, Laboratory of Immunopathology Keizo Asami, Federal University of Pernambuco, Recife, Pernambuco, Brazil
| | - Rodrigo Feliciano do Carmo
- Collegiate of Pharmaceutical Sciences, Federal University of Vale do São Francisco, Petrolina, Pernambuco, Brazil
| | | | - Caroline Simões da Silva
- Department of Virology, Aggeu Magalhães Institute, Oswaldo Cruz Foundation, Recife, Pernambuco, Brazil
| | - José Valter Joaquim Silva Júnior
- Virology Sector, Laboratory of Immunopathology Keizo Asami, Federal University of Pernambuco, Recife, Pernambuco, Brazil.
- Virology Sector, Department of Preventive Veterinary Medicine, Federal University of Santa Maria, Av. Roraima, Camobi, Santa Maria, Rio Grande do Sul, 97105-900, Brazil.
- Department of Microbiology and Parasitology, Federal University of Santa Maria, Santa Maria, Rio Grande do Sul, Brazil.
| |
Collapse
|
29
|
Baiduri S, Husada D, Puspitasari D, Kartina L, Basuki PS, Ismoedijanto I. PROGNOSTIC FACTORS OF SEVERE DENGUE INFECTIONS IN CHILDREN. INDONESIAN JOURNAL OF TROPICAL AND INFECTIOUS DISEASE 2020. [DOI: 10.20473/ijtid.v8i1.10721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The incidence of dengue fever increase annually and can increase morbidity and mortality. Dengue fever is mosquito-borne disease and caused by one of four serotype dengue viruses. Severe dengue is characterized either by plasma leakage, fluid accumulation, respiratory distress, severe bleeding, or organ impairment. Mortality and serious morbidity of dengue were caused by several factors including the late recognition of the disease and the changing of clinical signs and symptoms. Understanding the prognostic factors in severe dengue will give early warning to physician thus decreasing the morbidity and mortality, and also improving the treatment and disease management. The aim of this study was to analyze the prognostic factors of severe dengue infection in children. This study was observational cohort study in children (2 months-18 years) with dengue infection according to WHO 2009 criteria which admitted in Soetomo and Soewandhie Hospital Surabaya. Analysis with univariate, bivariate and multivariate with IBM SPSS Statistic 17. All patients were confirmed by serologic marker (NS-1 or IgM/IgG Dengue). Clinical and laboratory examination such as complete blood count, aspartate aminotrasnferase (AST), alanine aminotrasferase (ALT), albumin, and both partial trombocite time and activated partial trombosit time (PTT and aPPT) were analyzed comparing nonsevere dengue and severe dengue patients. There were 40 subjects innonsevere and 27 subjects with severe dengue infection. On bivariate analysis, there were significant differences of nutritional status, abdominal pain, petechiae, pleural effusion, leukopenia, thrombocytopenia, hypoalbuminemia, history of transfusion, increasing AST>3x, prolonged PPT and APTT between severe and nonsevere dengue group. After multivariate analyzed, the prognostic factors of severe dengue were overweight/obesity (p=0.003, RR 94), vomiting (p=0.02, RR 13.3), hepatomegaly (p=0.01, RR=69.4), and prolonged APTT (p=0.005, RR=43.25). In conclusion, overweight/obesity, vomiting, hepatomegaly, and prolonged APTT were prognostic factors in severe dengue infection in children.Those factors should be monitored closely in order to reduce the mortality and serious morbidity.
Collapse
|
30
|
Cabral S, de Paula A, Samuels R, da Fonseca R, Gomes S, Silva JR, Mury F. Aedes aegypti (Diptera: Culicidae) Immune Responses with Different Feeding Regimes Following Infection by the Entomopathogenic Fungus Metarhizium anisopliae. INSECTS 2020; 11:E95. [PMID: 32024202 PMCID: PMC7074208 DOI: 10.3390/insects11020095] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 01/17/2020] [Accepted: 01/30/2020] [Indexed: 12/21/2022]
Abstract
The mosquito Aedes aegypti is the most notorious vector of illness-causing viruses. The use of entomopathogenic fungi as bioinsecticides is a promising alternative for the development of novel mosquito control strategies. We investigate whether differences in immune responses could be responsible for modifications in survival rates of insects following different feeding regimes. Sucrose and blood-fed adult A. aegypti females were sprayed with M. anisopliae 1 × 106 conidia mL-1, and after 48 h, the midgut and fat body were dissected. We used RT-qPCR to monitor the expression of Cactus and REL1 (Toll pathway), IMD, REL2, and Caspar (IMD pathway), STAT and PIAS (JAK-STAT pathway), as well as the expression of antimicrobial peptides (Defensin A, Attacin and Cecropin G). REL1 and REL2 expression in both the midgut and fat body were higher in blood-fed fungus-challenged A. aegypti than in sucrose-fed counterparts. Interestingly, infection of sucrose-fed insects induced Cactus expression in the fat body, a negative regulator of the Toll pathway. The IMD gene was upregulated in the fat body in response to fungal infection after a blood meal. Additionally, we observed the induction of antimicrobial peptides in the blood-fed fungus-challenged insects. This study suggests that blood-fed A. aegypti are less susceptible to fungal infection due to the rapid induction of Toll and IMD immune pathways.
Collapse
Affiliation(s)
- Sara Cabral
- Laboratório Integrado de Bioquímica—Instituto de Biodiversidade e Sustentabilidade—NUPEM, Universidade Federal do Rio de Janeiro, Macaé, RJ 27965-045, Brazil; (S.C.); (J.R.S.)
| | - Adriano de Paula
- Laboratório de Entomologia e Fitopatologia—CCTA, Universidade Estadual do Norte FluminenseDarcy Ribeiro, Campos dos Goytacazes, RJ 28013-603, Brazil; (A.d.P.); (S.G.)
| | - Richard Samuels
- Laboratório de Entomologia e Fitopatologia—CCTA, Universidade Estadual do Norte FluminenseDarcy Ribeiro, Campos dos Goytacazes, RJ 28013-603, Brazil; (A.d.P.); (S.G.)
| | - Rodrigo da Fonseca
- Laboratório Integrado de Ciências Morfofuncionais—Instituto de Biodiversidade e Sustentabilidade –NUPEM, Universidade Federal do Rio de Janeiro, Macaé, RJ 27965-045, Brazil;
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular—INCT-EM, Rio de Janeiro 21941-590, Brazil
| | - Simone Gomes
- Laboratório de Entomologia e Fitopatologia—CCTA, Universidade Estadual do Norte FluminenseDarcy Ribeiro, Campos dos Goytacazes, RJ 28013-603, Brazil; (A.d.P.); (S.G.)
| | - José Roberto Silva
- Laboratório Integrado de Bioquímica—Instituto de Biodiversidade e Sustentabilidade—NUPEM, Universidade Federal do Rio de Janeiro, Macaé, RJ 27965-045, Brazil; (S.C.); (J.R.S.)
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular—INCT-EM, Rio de Janeiro 21941-590, Brazil
| | - Flávia Mury
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular—INCT-EM, Rio de Janeiro 21941-590, Brazil
- Laboratório Integrado de Biociências Translacionais—Instituto de Biodiversidade e Sustentabilidade—NUPEM, Universidade Federal do Rio de Janeiro, Macaé, RJ 27965-045, Brazil
| |
Collapse
|
31
|
The small molecule AZD6244 inhibits dengue virus replication in vitro and protects against lethal challenge in a mouse model. Arch Virol 2020; 165:671-681. [PMID: 31942645 DOI: 10.1007/s00705-020-04524-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 12/06/2019] [Indexed: 12/12/2022]
Abstract
Dengue virus (DENV) is the most common mosquito-borne viral disease. The World Health Organization estimates that 400 million new cases of dengue fever occur every year. Approximately 500,000 individuals develop severe and life-threatening complications from dengue fever, such as dengue shock syndrome (DSS) and dengue hemorrhagic fever (DHF), which cause 22,000 deaths yearly. Currently, there are no specific licensed therapeutics to treat DENV illness. We have previously shown that the MEK/ERK inhibitor U0126 inhibits the replication of the flavivirus yellow fever virus. In this study, we demonstrate that the MEK/ERK inhibitor AZD6244 has potent antiviral efficacy in vitro against DENV-2, DENV-3, and Saint Louis encephalitis virus (SLEV). We also show that it is able to protect AG129 mice from a lethal challenge with DENV-2 (D2S20). The molecule is currently undergoing phase III clinical trials for the treatment of non-small-cell lung cancer. The effect of AZD6244 on the DENV life cycle was attributed to a blockade of morphogenesis. Treatment of AG129 mice twice daily with oral doses of AZD6244 (100 mg/kg/day) prevented the animals from contracting dengue hemorrhagic fever (DHF)-like lethal disease upon intravenous infection with 1 × 105 PFU of D2S20. The effectiveness of AZD6244 was observed even when the treatment of infected animals was initiated 1-2 days postinfection. This was also followed by a reduction in viral copy number in both the serum and the spleen. There was also an increase in IL-1β and TNF-α levels in mice that were infected with D2S20 and treated with AZD6244 in comparison to infected mice that were treated with the vehicle only. These data demonstrate the potential of AZD6244 as a new therapeutic agent to treat DENV infection and possibly other flavivirus diseases.
Collapse
|
32
|
Dengue infection in mice inoculated by the intracerebral route: neuropathological effects and identification of target cells for virus replication. Sci Rep 2019; 9:17926. [PMID: 31784616 PMCID: PMC6884643 DOI: 10.1038/s41598-019-54474-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 11/13/2019] [Indexed: 12/13/2022] Open
Abstract
Dengue is an important arboviral infection, causing a broad range symptom that varies from life-threatening mild illness to severe clinical manifestations. Recent studies reported the impairment of the central nervous system (CNS) after dengue infection, a characteristic previously considered as atypical and underreported. However, little is known about the neuropathology associated to dengue. Since animal models are important tools for helping to understand the dengue pathogenesis, including neurological damages, the aim of this work was to investigate the effects of intracerebral inoculation of a neuroadapted dengue serotype 2 virus (DENV2) in immunocompetent BALB/c mice, mimicking some aspects of the viral encephalitis. Mice presented neurological morbidity after the 7th day post infection. At the same time, histopathological analysis revealed that DENV2 led to damages in the CNS, such as hemorrhage, reactive gliosis, hyperplastic and hypertrophied microglia, astrocyte proliferation, Purkinje neurons retraction and cellular infiltration around vessels in the pia mater and in neuropil. Viral tropism and replication were detected in resident cells of the brain and cerebellum, such as neurons, astrocyte, microglia and oligodendrocytes. Results suggest that this classical mice model might be useful for analyzing the neurotropic effect of DENV with similarities to what occurs in human.
Collapse
|
33
|
Mandary MB, Masomian M, Poh CL. Impact of RNA Virus Evolution on Quasispecies Formation and Virulence. Int J Mol Sci 2019; 20:E4657. [PMID: 31546962 PMCID: PMC6770471 DOI: 10.3390/ijms20184657] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/23/2019] [Accepted: 08/26/2019] [Indexed: 12/19/2022] Open
Abstract
RNA viruses are known to replicate by low fidelity polymerases and have high mutation rates whereby the resulting virus population tends to exist as a distribution of mutants. In this review, we aim to explore how genetic events such as spontaneous mutations could alter the genomic organization of RNA viruses in such a way that they impact virus replications and plaque morphology. The phenomenon of quasispecies within a viral population is also discussed to reflect virulence and its implications for RNA viruses. An understanding of how such events occur will provide further evidence about whether there are molecular determinants for plaque morphology of RNA viruses or whether different plaque phenotypes arise due to the presence of quasispecies within a population. Ultimately this review gives an insight into whether the intrinsically high error rates due to the low fidelity of RNA polymerases is responsible for the variation in plaque morphology and diversity in virulence. This can be a useful tool in characterizing mechanisms that facilitate virus adaptation and evolution.
Collapse
Affiliation(s)
- Madiiha Bibi Mandary
- Center for Virus and Vaccine Research, School of Science and Technology, Sunway University, Kuala Lumpur, Selangor 47500, Malaysia
| | - Malihe Masomian
- Center for Virus and Vaccine Research, School of Science and Technology, Sunway University, Kuala Lumpur, Selangor 47500, Malaysia
| | - Chit Laa Poh
- Center for Virus and Vaccine Research, School of Science and Technology, Sunway University, Kuala Lumpur, Selangor 47500, Malaysia.
| |
Collapse
|
34
|
Xu J, Xie X, Ye N, Zou J, Chen H, White MA, Shi PY, Zhou J. Design, Synthesis, and Biological Evaluation of Substituted 4,6-Dihydrospiro[[1,2,3]triazolo[4,5- b]pyridine-7,3'-indoline]-2',5(3 H)-dione Analogues as Potent NS4B Inhibitors for the Treatment of Dengue Virus Infection. J Med Chem 2019; 62:7941-7960. [PMID: 31403780 DOI: 10.1021/acs.jmedchem.9b00698] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A series of substituted 4,6-dihydrospiro[[1,2,3]triazolo[4,5-b]pyridine-7,3'-indoline]-2',5(3H)-dione analogues were synthesized and evaluated as potent dengue virus inhibitors. Throughout a structure-activity relationship exploration on the amide of the indolone moiety, a wide range of substitutions were found to be well tolerated for chemical optimization at this position. Among these compounds, 15 (JMX0254) displayed the most potent and broad inhibitory activities, effective against DENV-1 to -3 with EC50 values of 0.78, 0.16, and 0.035 μM, respectively, while compounds 16, 21, 27-29, 47, and 70 exhibited relatively moderate to high activities with low micromolar to nanomolar potency against all four serotypes. The biotinylated compound 73 enriched NS4B protein from cell lysates in pull-down studies, and the findings together with the mutation investigations further validated dengue NS4B protein as the target of this class of compounds. More importantly, compound 15 exhibited good in vivo pharmacokinetic properties and efficacy in the A129 mouse model, indicating its therapeutic potential against the dengue virus infection as a drug candidate for further preclinical development.
Collapse
|
35
|
Satellite Earth Observation Data in Epidemiological Modeling of Malaria, Dengue and West Nile Virus: A Scoping Review. REMOTE SENSING 2019. [DOI: 10.3390/rs11161862] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Earth Observation (EO) data can be leveraged to estimate environmental variables that influence the transmission cycle of the pathogens that lead to mosquito-borne diseases (MBDs). The aim of this scoping review is to examine the state-of-the-art and identify knowledge gaps on the latest methods that used satellite EO data in their epidemiological models focusing on malaria, dengue and West Nile Virus (WNV). In total, 43 scientific papers met the inclusion criteria and were considered in this review. Researchers have examined a wide variety of methodologies ranging from statistical to machine learning algorithms. A number of studies used models and EO data that seemed promising and claimed to be easily replicated in different geographic contexts, enabling the realization of systems on regional and national scales. The need has emerged to leverage furthermore new powerful modeling approaches, like artificial intelligence and ensemble modeling and explore new and enhanced EO sensors towards the analysis of big satellite data, in order to develop accurate epidemiological models and contribute to the reduction of the burden of MBDs.
Collapse
|
36
|
Gonçalves BDS, Nogueira RMR, Bispo de Filippis AM, Horta MAP. Factors predicting the severity of dengue in patients with warning signs in Rio de Janeiro, Brazil (1986–2012). Trans R Soc Trop Med Hyg 2019; 113:670-677. [DOI: 10.1093/trstmh/trz066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 05/29/2019] [Accepted: 06/25/2019] [Indexed: 01/15/2023] Open
Abstract
AbstractBackgroundSince 1981, >12 million cases of dengue have been reported in Brazil. Early prediction of severe dengue with no warning signs is crucial to avoid progression to severe dengue. Here we aimed to identify early markers of dengue severity and characterize dengue infection in patients in Rio de Janeiro.MethodsWe evaluated early severity markers, serotypes, infection status, number of days of illness and viral loads associated with dengue fever in patients from Rio de Janeiro, Brazil through an observational retrospective study (1986–2012). We compared dengue without warning signs and dengue with warning signs/severe dengue (DWWS/SD). Infection status was classified by enzyme-linked immunosorbent assay and viraemia was quantified by quantitative real-time reverse transcription polymerase chain reaction.ResultsThe presence of DWWS/ SD was significantly associated with younger age; patients 13–19 y of age had a significantly greater chance of presenting warning signs. Dengue virus type 3 (DENV3) was more likely to induce DWWS/SD, which was more frequent on days 4–5 of illness.ConclusionsDENV3, 4–5 d of illness and 13–19 y of age were early biomarkers of dengue severity. To our knowledge, this was the first study to analyse the characteristics of dengue severity in the state of Rio de Janeiro over 27 y of epidemics since the introduction of DENV.
Collapse
Affiliation(s)
- Bianca De Santis Gonçalves
- Flavivirus Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Av Brasil, 4365, Manguinhos, Rio de Janeiro, RJ, Brazil
| | - Rita Maria Ribeiro Nogueira
- Flavivirus Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Av Brasil, 4365, Manguinhos, Rio de Janeiro, RJ, Brazil
| | - Ana Maria Bispo de Filippis
- Flavivirus Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Av Brasil, 4365, Manguinhos, Rio de Janeiro, RJ, Brazil
| | - Marco Aurélio Pereira Horta
- Flavivirus Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Av Brasil, 4365, Manguinhos, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
37
|
Reyes-Sandoval A, Ludert JE. The Dual Role of the Antibody Response Against the Flavivirus Non-structural Protein 1 (NS1) in Protection and Immuno-Pathogenesis. Front Immunol 2019; 10:1651. [PMID: 31379848 PMCID: PMC6657369 DOI: 10.3389/fimmu.2019.01651] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 07/03/2019] [Indexed: 12/22/2022] Open
Abstract
Dengue and Zika viruses are closely related mosquito-borne flaviviruses responsible for major public health problems in tropical and sub-tropical countries. The genomes of both, dengue and zika viruses encodes 10 genes that are translated into three structural proteins (C, prM, and E) and seven non-structural proteins (NS1, NS2A, NS2B, NS3, NS4A, NS4B, and NS5). The non-structural protein 1 (NS1) is a highly conserved glycoprotein of approximately 48–50 KDa. In infected cells, NS1 is found as a homodimer associated with intracellular membranes and replication complexes, serving as a scaffolding protein in virus replication and morphogenesis. NS1 is secreted efficiently from infected cells as a hexamer and is found in patient's sera during the acute phase of the disease. NS1 detection in sera is a valuable diagnostic marker and immunization with NS1 has been shown to protect animal models from lethal challenges with dengue and Zika viruses. Nevertheless, soluble NS1 has been associated with severe dengue and anti-NS1 antibodies have been reported to cross-react with host platelets and endothelial cells and thus presumably contribute to pathogenesis. Due to the implications of NS1 in arbovirus pathogenesis and its relevance as vaccine candidate, we discuss the dual role that anti-NS1 antibodies may play in protection and disease and the challenges that need to be overcome to develop safe and effective NS1-based vaccines against dengue and Zika.
Collapse
Affiliation(s)
- Arturo Reyes-Sandoval
- Nuffield Department of Medicine, Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Juan E Ludert
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV), Mexico City, Mexico
| |
Collapse
|
38
|
Alonso-Palomares LA, Moreno-García M, Lanz-Mendoza H, Salazar MI. Molecular Basis for Arbovirus Transmission by Aedes aegypti Mosquitoes. Intervirology 2019; 61:255-264. [PMID: 31082816 DOI: 10.1159/000499128] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 02/17/2019] [Indexed: 11/19/2022] Open
Abstract
Mosquitoes are considered the most important vectors for the transmission of pathogens to humans. Aedes aegypti is a unique species, not only by its highly anthropophilic and peridomestic habits but also because it can transmit an important variety of pathogenic viruses. Examples are dengue, yellow fever, chikungunya, Zika, and Mayaro viruses. After ingesting viremic blood, a wide range of mechanisms are activated in the mosquito to counteract viral infection. Nevertheless, these arboviruses possess strategies to overcome barriers in the mosquito and eventually reach the salivary glands to continue the transmission cycle. However, the infection and eventual transmission of arbovirus depends on multiple factors. The current review focuses in detail on the anatomic, physiological, and molecular characteristics of the mosquito A. aegypti that participate in response to a viral infection. In the past decades, the awareness of the importance of this mosquito as a disease vector and its impact on human health was largely recognized. We need to improve our comprehension of molecular mechanisms that determine the outcome of successful virus replication or control of infection for each arbovirus in the vector; this could lead to the design of effective control strategies in the future.
Collapse
Affiliation(s)
- Luis A Alonso-Palomares
- Laboratorio de Virología e Inmunovirología, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas del Instituto Politécnico Nacional (ENCB-IPN), Unidad Profesional "Lázaro Cárdenas", Mexico City, Mexico.,Centro de Investigación sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública (CISEI-INSP), Cuernavaca, Mexico
| | - Miguel Moreno-García
- Centro Regional de Control de Vectores, Secretaría de Salud (CERECOVE-SS), Panchimalco, Mexico
| | - Humberto Lanz-Mendoza
- Centro de Investigación sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública (CISEI-INSP), Cuernavaca, Mexico
| | - Ma Isabel Salazar
- Laboratorio de Virología e Inmunovirología, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas del Instituto Politécnico Nacional (ENCB-IPN), Unidad Profesional "Lázaro Cárdenas", Mexico City, Mexico,
| |
Collapse
|
39
|
Verma M, Bhatnagar S, Kumari K, Mittal N, Sukhralia S, Gopirajan At S, Dhanaraj PS, Lal R. Highly conserved epitopes of DENV structural and non-structural proteins: Candidates for universal vaccine targets. Gene 2019; 695:18-25. [PMID: 30738967 PMCID: PMC7125761 DOI: 10.1016/j.gene.2019.02.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 01/22/2019] [Accepted: 02/01/2019] [Indexed: 12/11/2022]
Abstract
Dengue is a severe emerging arthropod borne viral disease occurring globally. Around two fifths of the world's population, or up to 3.9 billion people, are at a risk of dengue infection. Infection induces a life-long protective immunity to the homologous serotype but confers only partial and transient protection against subsequent infection caused by other serotypes. Thus, there is a need for a vaccine which is capable of providing a life- long protection against all the serotypes of dengue virus. In our study, comparative genomics of Dengue virus (DENV) was conducted to explore potential candidates for novel vaccine targets. From our analysis we successfully found 100% conserved epitopes in Envelope protein (RCPTQGE); NS3 (SAAQRRGR, PGTSGSPI); NS4A (QRTPQDNQL); NS4B (LQAKATREAQKRA) and NS5 proteins (QRGSGQV) in all DENV serotypes. Some serotype specific conserved motifs were also found in NS1, NS5, Capsid, PrM and Envelope proteins. Using comparative genomics and immunoinformatics approach, we could find conserved epitopes which can be explored as peptide vaccine candidates to combat dengue worldwide. Serotype specific epitopes can also be exploited for rapid diagnostics. All ten proteins are explored to find the conserved epitopes in DENV serotypes, thus making it the most extensively studied viral genome so far.
Collapse
Affiliation(s)
- Mansi Verma
- Sri Venkateswara College, South Campus, University of Delhi, New Delhi 110021, India; Molecular Biology Laboratory, Department of Zoology, University of Delhi, Delhi 110007, India.
| | - Shradha Bhatnagar
- Sri Venkateswara College, South Campus, University of Delhi, New Delhi 110021, India
| | - Kavita Kumari
- Sri Venkateswara College, South Campus, University of Delhi, New Delhi 110021, India
| | - Nidhi Mittal
- Sri Venkateswara College, South Campus, University of Delhi, New Delhi 110021, India
| | - Shivani Sukhralia
- Sri Venkateswara College, South Campus, University of Delhi, New Delhi 110021, India
| | - Shruthi Gopirajan At
- Sri Venkateswara College, South Campus, University of Delhi, New Delhi 110021, India
| | - P S Dhanaraj
- Sri Venkateswara College, South Campus, University of Delhi, New Delhi 110021, India
| | - Rup Lal
- Molecular Biology Laboratory, Department of Zoology, University of Delhi, Delhi 110007, India
| |
Collapse
|
40
|
Pong LY, Parkkinen S, Dhanoa A, Gan HM, Wickremesinghe IAC, Syed Hassan S. MicroRNA profiling of mouse liver in response to DENV-1 infection by deep sequencing. PeerJ 2019; 7:e6697. [PMID: 31065454 PMCID: PMC6482938 DOI: 10.7717/peerj.6697] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 02/28/2019] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Dengue caused by dengue virus (DENV) serotypes -1 to -4 is the most important mosquito-borne viral disease in the tropical and sub-tropical countries worldwide. Yet many of the pathophysiological mechanisms of host responses during DENV infection remain largely unknown and incompletely understood. METHODS Using a mouse model, the miRNA expressions in liver during DENV-1 infection was investigated using high throughput miRNA sequencing. The differential expressions of miRNAs were then validated by qPCR, followed by target genes prediction. The identified miRNA targets were subjected to gene ontology (GO) annotation and pathway enrichment analysis to elucidate the potential biological pathways and molecular mechanisms associated with DENV-1 infection. RESULTS A total of 224 and 372 miRNAs out of 433 known mouse miRNAs were detected in the livers of DENV-1-infected and uninfected mice, respectively; of these, 207 miRNAs were present in both libraries. The miR-148a-3p and miR-122-5p were the two most abundant miRNAs in both groups. Thirty-one miRNAs were found to have at least 2-fold change in upregulation or downregulation, in which seven miRNAs were upregulated and 24 miRNAs were downregulated in the DENV-1-infected mouse livers. The miR-1a-3p was found to be the most downregulated miRNA in the DENV-1-infected mouse livers, with a significant fold change of 0.10. To validate the miRNA sequencing result, the expression pattern of 12 miRNAs, which were highly differentially expressed or most abundant, were assessed by qPCR and nine of them correlated positively with the one observed in deep sequencing. In silico functional analysis revealed that the adaptive immune responses involving TGF-beta, MAPK, PI3K-Akt, Rap1, Wnt and Ras signalling pathways were modulated collectively by 23 highly differentially expressed miRNAs during DENV-1 infection. CONCLUSION This study provides the first insight into the global miRNA expressions of mouse livers in response to DENV-1 infection in vivo and the possible roles of miRNAs in modulating the adaptive immune responses during DENV-1 infection.
Collapse
Affiliation(s)
- Lian Yih Pong
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia
- Infectious Diseases and Health Cluster, Tropical Medicine and Biology Platform, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia
| | - Sinikka Parkkinen
- Department of Biology, University of Eastern Finland, Joensuu, North Karelia, Finland
| | - Amreeta Dhanoa
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia
- Infectious Diseases and Health Cluster, Tropical Medicine and Biology Platform, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia
| | - Han Ming Gan
- School of Science, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Geelong, Victoria, Australia
| | | | - Sharifah Syed Hassan
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia
- Infectious Diseases and Health Cluster, Tropical Medicine and Biology Platform, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia
| |
Collapse
|
41
|
Idris F, Muharram SH, Zaini Z, Alonso S, Diah S. Invasion of a murine in vitro blood-brain barrier co-culture model by dengue virus serotypes 1 to 4. Arch Virol 2019; 164:1069-1083. [PMID: 30783772 DOI: 10.1007/s00705-019-04175-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 01/16/2019] [Indexed: 01/16/2023]
Abstract
The blood-brain barrier (BBB) is a physical barrier that restricts the passage of cells and molecules as well as pathogens into the central nervous system (CNS). Some viruses enter the CNS by disrupting the BBB, while others can reach the CNS without altering the integrity of the BBB. Even though dengue virus (DENV) is not a distinctive neurotropic virus, the virus is considered to be one of the leading causes of neurological manifestations. In this study, we found that DENV is able to compromise the integrity of a murine in vitro blood-brain barrier (BBB) model, resulting in hyperpermeability, as shown by a significant increase in sucrose and albumin permeability. Infection of brain endothelial cells (ECs) was facilitated by the presence of glycans, in particular, mannose and N-acetyl glucosamine residues, on cell surfaces and viral envelope proteins, and the requirement for glycan moieties for cell infection was serotype-specific. Direct viral disruption of brain ECs was observed, leading to a significant decrease in tight-junction protein expression and peripheral localization, which contributed to the changes in BBB permeability. In conclusion, the hyperpermeability and breaching mechanism of BBB by DENV are primarily due to direct consequences of viral infection of ECs, as shown in this in vitro study.
Collapse
Affiliation(s)
- Fakhriedzwan Idris
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, and Immunology Programme Life Sciences Institute, National University of Singapore, Singapore, Singapore. .,Pengiran Anak Puteri Rashidah Sa'adatul Bolkiah Institute of Health Sciences, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong, BE1410, Brunei Darussalam.
| | - Siti Hanna Muharram
- Pengiran Anak Puteri Rashidah Sa'adatul Bolkiah Institute of Health Sciences, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong, BE1410, Brunei Darussalam
| | - Zainun Zaini
- Virology Laboratory, Clinical Laboratory Services, Ministry of Health, Gadong, Brunei Darussalam
| | - Sylvie Alonso
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, and Immunology Programme Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Suwarni Diah
- Pengiran Anak Puteri Rashidah Sa'adatul Bolkiah Institute of Health Sciences, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong, BE1410, Brunei Darussalam
| |
Collapse
|
42
|
Robinson M, Sweeney TE, Barouch-Bentov R, Sahoo MK, Kalesinskas L, Vallania F, Sanz AM, Ortiz-Lasso E, Albornoz LL, Rosso F, Montoya JG, Pinsky BA, Khatri P, Einav S. A 20-Gene Set Predictive of Progression to Severe Dengue. Cell Rep 2019; 26:1104-1111.e4. [PMID: 30699342 PMCID: PMC6352713 DOI: 10.1016/j.celrep.2019.01.033] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 10/01/2018] [Accepted: 01/09/2019] [Indexed: 12/19/2022] Open
Abstract
There is a need to identify biomarkers predictive of severe dengue. Single-cohort transcriptomics has not yielded generalizable results or parsimonious, predictive gene sets. We analyzed blood samples of dengue patients from seven gene expression datasets (446 samples, five countries) using an integrated multi-cohort analysis framework and identified a 20-gene set that predicts progression to severe dengue. We validated the predictive power of this 20-gene set in three retrospective dengue datasets (84 samples, three countries) and a prospective Colombia cohort (34 patients), with an area under the receiver operating characteristic curve of 0.89, 100% sensitivity, and 76% specificity. The 20-gene dengue severity scores declined during the disease course, suggesting an infection-triggered host response. This 20-gene set is strongly associated with the progression to severe dengue and represents a predictive signature, generalizable across ages, host genetic factors, and virus strains, with potential implications for the development of a host response-based dengue prognostic assay.
Collapse
Affiliation(s)
- Makeda Robinson
- Department of Medicine, Division of Infectious Diseases and Geographic Medicine, Stanford University, Stanford, CA, USA; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Timothy E Sweeney
- Institute for Immunity, Transplantation, and Infection, Department of Medicine, Stanford University, Stanford, CA, USA; Department of Medicine, Division of Biomedical Informatics Research, Stanford University, Stanford, CA, USA
| | - Rina Barouch-Bentov
- Department of Medicine, Division of Infectious Diseases and Geographic Medicine, Stanford University, Stanford, CA, USA
| | - Malaya Kumar Sahoo
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Larry Kalesinskas
- Institute for Immunity, Transplantation, and Infection, Department of Medicine, Stanford University, Stanford, CA, USA; Department of Medicine, Division of Biomedical Informatics Research, Stanford University, Stanford, CA, USA
| | - Francesco Vallania
- Institute for Immunity, Transplantation, and Infection, Department of Medicine, Stanford University, Stanford, CA, USA; Department of Medicine, Division of Biomedical Informatics Research, Stanford University, Stanford, CA, USA
| | - Ana Maria Sanz
- Clinical Research Center, Fundación Valle del Lili, Cali, Colombia
| | - Eliana Ortiz-Lasso
- Pathology and Laboratory Department, Fundación Valle del Lili, Cali, Colombia
| | | | - Fernando Rosso
- Clinical Research Center, Fundación Valle del Lili, Cali, Colombia; Department of Internal Medicine, Division of Infectious Diseases, Fundación Valle del Lili, Cali, Colombia
| | - Jose G Montoya
- Department of Medicine, Division of Infectious Diseases and Geographic Medicine, Stanford University, Stanford, CA, USA
| | - Benjamin A Pinsky
- Department of Medicine, Division of Infectious Diseases and Geographic Medicine, Stanford University, Stanford, CA, USA; Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Purvesh Khatri
- Institute for Immunity, Transplantation, and Infection, Department of Medicine, Stanford University, Stanford, CA, USA; Department of Medicine, Division of Biomedical Informatics Research, Stanford University, Stanford, CA, USA.
| | - Shirit Einav
- Department of Medicine, Division of Infectious Diseases and Geographic Medicine, Stanford University, Stanford, CA, USA; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
43
|
Galarion MJ, Schwem B, Pangilinan C, Dela Tonga A, Petronio-Santos JA, Delos Reyes E, Destura R. Genotypic persistence of dengue virus in the Philippines. INFECTION GENETICS AND EVOLUTION 2019; 69:134-141. [PMID: 30682551 DOI: 10.1016/j.meegid.2019.01.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 01/14/2019] [Accepted: 01/15/2019] [Indexed: 11/16/2022]
Abstract
The Philippines is known to have one of the world's highest prevalences of dengue infection. The disease has been endemic in the country since 1956 and the severe form was first reported during an outbreak in Manila in 1954. Among all of the countries in the world, the Philippines had the highest case fatality rate from 2008 to 2012. With the increasing rate of international travel, the country is also considered one of the primary sources of imported dengue cases in non-endemic areas in Asia, Australia, and Europe. Despite this high prevalence, there is a dearth of literature describing the circulating strains in the Philippines at the genotype level. Using data from sequence databases, this study aimed to characterize all available Philippine sequences, at the molecular level. Capsid/pre-membrane (C/prM) junction gene and envelope (E) gene sequences of dengue serotypes 1, 2, 3 and 4 from 1956 to 2016 were used for phylogenetic analysis and genotypic identification. All four serotypes co-circulate in the country over the last 50 years with conspicuous genotypic characteristics. DENV-1 exhibited an apparent persistence of a single genotype since 1974. DENV-2 showed strong evidence of genotypic shift in 1999-2002 accompanied by a genotypic persistence thereafter. DENV-3 and DENV-4 displayed a temporal domination of a single genotype, with evidence of a minor co-circulating genotypic population. The persistence and pre-domination of specific DENV genotypes warrant continuous molecular surveillance for signs of genotypic shifts that can cause local outbreak events or an increased risk for severity.
Collapse
Affiliation(s)
- Ma Jowina Galarion
- National Institute of Molecular Biology and Biotechnology, National Institutes of Health, University of the Philippines Manila, Ermita, Manila, Philippines.
| | - Brian Schwem
- National Institute of Molecular Biology and Biotechnology, National Institutes of Health, University of the Philippines Manila, Ermita, Manila, Philippines
| | - Coleen Pangilinan
- National Institute of Molecular Biology and Biotechnology, National Institutes of Health, University of the Philippines Manila, Ermita, Manila, Philippines
| | - Angelo Dela Tonga
- National Institute of Molecular Biology and Biotechnology, National Institutes of Health, University of the Philippines Manila, Ermita, Manila, Philippines
| | - Joy Ann Petronio-Santos
- Biological Sciences Research and Services Laboratory, Natural Sciences Research Institute, University of the Philippines Diliman, Diliman, Quezon City, Philippines
| | - Erlinda Delos Reyes
- The Medical City Hospital and Infectious Disease Practice and Innovations, Pasig City, Philippines
| | - Raul Destura
- National Institute of Molecular Biology and Biotechnology, National Institutes of Health, University of the Philippines Manila, Ermita, Manila, Philippines; The Medical City Hospital and Infectious Disease Practice and Innovations, Pasig City, Philippines; Philippine Genome Center, University of the Philippines System, Diliman, Quezon City, Philippines
| |
Collapse
|
44
|
Analysis of dengue specific memory B cells, neutralizing antibodies and binding antibodies in healthy adults from India. Int J Infect Dis 2019; 84S:S57-S63. [PMID: 30658170 DOI: 10.1016/j.ijid.2019.01.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 01/07/2019] [Accepted: 01/08/2019] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND The Indian population is facing highest dengue burden worldwide supporting an urgent need for vaccines. For vaccine introduction, evaluation and interpretation it is important to gain a critical understanding of immune memory induced by natural exposure. However, immune memory to dengue remains poorly characterized in this region. METHODS We enumerated levels of dengue specific memory B cells (MBC), neutralizing (NT) and binding antibodies in healthy adults (n=70) from New Delhi. RESULTS NT-antibodies, binding antibodies and MBC were detectable in 86%, 86.56% and 81.63% of the subjects respectively. Among the neutralizing positive subjects, 58%, 27%, 5% and 10% neutralized all four, any three, any two and any one dengue serotypes respectively. The presence of the neutralizing antibodies was associated with the presence of the MBC and binding antibodies. However, a massive interindividual variation was observed in the levels of the neutralizing antibodies (range, <1:50-1:30,264), binding antibodies (range, 1:3,000-1:134,000,) as well as the MBC (range=0.006%-5.05%). CONCLUSION These results indicate that a vast majority of the adults are immune to multiple dengue serotypes and show massive interindividual variation in neutralizing/binding antibodies and MBCs - emphasizing the importance of monitoring multiple parameters of immune memory in order to properly plan, evaluate and interpret dengue vaccines.
Collapse
|
45
|
Virus-inclusive single-cell RNA sequencing reveals the molecular signature of progression to severe dengue. Proc Natl Acad Sci U S A 2018; 115:E12363-E12369. [PMID: 30530648 PMCID: PMC6310786 DOI: 10.1073/pnas.1813819115] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
A fraction of the 400 million people infected with dengue annually progresses to severe dengue (SD). Yet, there are currently no biomarkers to predict disease progression. We profiled the landscape of host transcripts and viral RNA in thousands of single blood cells from dengue patients prior to progressing to SD. We discovered cell type-specific immune activation and candidate predictive biomarkers. We also determined preferential virus association with specific cell populations, particularly naive B cells and monocytes. We explored immune activation of bystander cells, clonality and somatic evolution of adaptive immune repertoires, as well as viral genomics. This multifaceted approach could advance understanding of pathogenesis of any viral infection, map an atlas of infected cells, and promote the development of prognostics. Dengue virus (DENV) infection can result in severe complications. However, the understanding of the molecular correlates of severity is limited, partly due to difficulties in defining the peripheral blood mononuclear cells (PBMCs) that contain DENV RNA in vivo. Accordingly, there are currently no biomarkers predictive of progression to severe dengue (SD). Bulk transcriptomics data are difficult to interpret because blood consists of multiple cell types that may react differently to infection. Here, we applied virus-inclusive single-cell RNA-seq approach (viscRNA-Seq) to profile transcriptomes of thousands of single PBMCs derived early in the course of disease from six dengue patients and four healthy controls and to characterize distinct leukocyte subtypes that harbor viral RNA (vRNA). Multiple IFN response genes, particularly MX2 in naive B cells and CD163 in CD14+ CD16+ monocytes, were up-regulated in a cell-specific manner before progression to SD. The majority of vRNA-containing cells in the blood of two patients who progressed to SD were naive IgM B cells expressing the CD69 and CXCR4 receptors and various antiviral genes, followed by monocytes. Bystander, non-vRNA–containing B cells also demonstrated immune activation, and IgG1 plasmablasts from two patients exhibited clonal expansions. Lastly, assembly of the DENV genome sequence revealed diversity at unexpected sites. This study presents a multifaceted molecular elucidation of natural dengue infection in humans with implications for any tissue and viral infection and proposes candidate biomarkers for prediction of SD.
Collapse
|
46
|
Phumesin P, Junking M, Panya A, Yongpitakwattana P, Noisakran S, Limjindaporn T, Yenchitsomanus PT. Inhibition of dengue virus replication in monocyte-derived dendritic cells by vivo-morpholino oligomers. Virus Res 2018; 260:123-128. [PMID: 30503719 DOI: 10.1016/j.virusres.2018.11.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 11/17/2018] [Accepted: 11/28/2018] [Indexed: 12/24/2022]
Abstract
Skin dendritic cells (DCs) are primary target cells of dengue virus (DENV) infection and they play an important role in its immunopathogenesis. Monocyte-derived dendritic cells (MDDCs) represent dermal and bloodstream DCs that serve as human primary cells for ex vivo studies of DENV infection. Improved understanding of the mechanisms that effectuate the inhibition of DENV replication in MDDCs will accelerate the development of antiviral drugs to treat DENV infection. In this study, we investigated whether or not vivo-morpholino oligomer (vivo-MO), which was designed to target the top of the 3' stem-loop (3' SL) at the 3' UTR of the DENV genome, could inhibit DENV infection and replication in MDDCs. The findings of this study revealed that vivo-MO-1 could inhibit DENV-2 infection in MDDCs, and that it could significantly reduce DENV RNA, protein, and viral production in a dose-dependent manner. Treatment of MDDCs with 4 μM of vivo-MO-1 decreased DENV production by more than 1,000-fold, when compared to that of the vivo-MO-NC control. Thus, vivo-MO-1 targeting of DENV RNA demonstrates potential for further development into an anti-DENV agent.
Collapse
Affiliation(s)
- Patta Phumesin
- Division of Molecular Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; Graduate Program in Immunology, Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Mutita Junking
- Division of Molecular Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Aussara Panya
- Division of Molecular Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; Center of Excellence in Bioresources for Agriculture, Industry and Medicine, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Petlada Yongpitakwattana
- Division of Molecular Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Sansanee Noisakran
- Medical Biotechnology Unit, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Bangkok 10700, Thailand
| | - Thawornchai Limjindaporn
- Division of Molecular Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; Department of Anatomy, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Pa-Thai Yenchitsomanus
- Division of Molecular Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand.
| |
Collapse
|
47
|
Marques RE, Besnard AG, Maillet I, Fagundes CT, Souza DG, Ryffel B, Teixeira MM, Liew FY, Guabiraba R. Interleukin-33 contributes to disease severity in Dengue virus infection in mice. Immunology 2018; 155:477-490. [PMID: 30098206 DOI: 10.1111/imm.12988] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 06/20/2018] [Accepted: 08/03/2018] [Indexed: 02/06/2023] Open
Abstract
The excessive inflammation often present in patients with severe dengue infection is considered both a hallmark of disease and a target for potential treatments. Interleukin-33 (IL-33) is a pleiotropic cytokine with pro-inflammatory effects whose role in dengue has not been fully elucidated. We demonstrate that IL-33 plays a disease-exacerbating role during experimental dengue infection in immunocompetent mice. Mice infected with dengue virus serotype 2 (DENV2) produced high levels of IL-33. DENV2-infected mice treated with recombinant IL-33 developed markedly more severe disease compared with untreated mice as assessed by mortality, granulocytosis, liver damage and pro-inflammatory cytokine production. Conversely, ST2-/- mice (deficient in IL-33 receptor) infected with DENV2 developed significantly less severe disease compared with wild-type mice. Furthermore, the increased disease severity and the accompanying pathology induced by IL-33 during dengue infection were reversed by the simultaneous treatment with a CXCR2 receptor antagonist (DF2156A). Together, these results indicate that IL-33 plays a disease-exacerbating role in experimental dengue infection, probably driven by CXCR2-expressing cells, leading to elevated pro-inflammatory response-mediated pathology. Our results also indicate that IL-33 is a potential therapeutic target for dengue infection.
Collapse
Affiliation(s)
- Rafael E Marques
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Centre for Research in Energy and Materials (CNPEM), Campinas, Sao Paulo, Brazil
| | | | - Isabelle Maillet
- CNRS, UMR7355, Immunologie et Neurogénétique Expérimentales et Moléculaires, Université d'Orléans, Orléans, France
| | - Caio T Fagundes
- Departamento de Microbiologia do Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Danielle G Souza
- Departamento de Microbiologia do Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Bernhard Ryffel
- CNRS, UMR7355, Immunologie et Neurogénétique Expérimentales et Moléculaires, Université d'Orléans, Orléans, France
| | - Mauro M Teixeira
- Departamento de Bioquímica e Imunologia do Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Foo Y Liew
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK.,School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
| | | |
Collapse
|
48
|
Nunes PCG, de Filippis AMB, Lima MQDR, Faria NRDC, de Bruycker-Nogueira F, Santos JB, Heringer M, Chouin-Carneiro T, Couto-Lima D, de Santis Gonçalves B, Sampaio SA, de Araújo ESM, Sánchez-Arcila JC, dos Santos FB, Nogueira RMR. 30 years of dengue fatal cases in Brazil: a laboratorial-based investigation of 1047 cases. BMC Infect Dis 2018; 18:346. [PMID: 30053833 PMCID: PMC6062978 DOI: 10.1186/s12879-018-3255-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 07/13/2018] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Dengue viruses (DENV) have emerged and reemerged in Brazil in the past 30 years causing explosive epidemics. The disease may range from clinically asymptomatic infections to severe and fatal outcomes. We aimed to describe the epidemiological, clinical and laboratorial aspects of the dengue fatal cases received by a Regional Reference Laboratory, Brazil in 30 years. METHODS A total of 1047 suspected fatal dengue cases were received from 1986 to 2015 and analyzed in the Laboratory of Flavivirus, FIOCRUZ. Suspected cases were submitted to viral detection, serological and molecular methods for cases confirmation. Influence of gender, age, serotype and type of infection (primary/secondary) on death outcome, as well the interactions between serotype and age or infection and age and type of infection were also studied. RESULTS A total of 359 cases (34.2%) were confirmed and DENV-1 (11.1%), DENV-2 (43.9%), DENV-3 (32.8%) and DENV-4 (13.7%) were detected. Overall, fatal cases occurred more often in primary infections (59.3%, p = 0.001). However, in 2008, fatal cases were mainly associated to secondary infections (p = 0.003). In 2008 and 2011, deaths were more frequent on children and those infected by DENV-2 presented a higher risk for fatal outcome. Moreover, children with secondary infections had a 4-fold higher risk for death. CONCLUSIONS Dengue is a multifactorial disease and, factors such as viral strain/serotype, occurrence of secondary infections and co-morbidities may lead to a severe outcome. However, the high dengue incidence and transmission during epidemics, such as those observed in Brazil may overwhelm and collapse the public health services, potentially impacting on increased disease severity and mortality.
Collapse
Affiliation(s)
- Priscila Conrado Guerra Nunes
- Viral Immunology Laboratory (LIV), Oswaldo Cruz Institute, IOC, FIOCRUZ, Avenida Brasil, 4365. Manguinhos, Rio de Janeiro, Brazil
- Flavivirus Laboratory (LABFLA), Oswaldo Cruz Institute- FIOCRUZ, Avenida Brasil, 4365. Manguinhos, Rio de Janeiro, Brazil
| | - Ana Maria Bispo de Filippis
- Flavivirus Laboratory (LABFLA), Oswaldo Cruz Institute- FIOCRUZ, Avenida Brasil, 4365. Manguinhos, Rio de Janeiro, Brazil
| | - Monique Queiroz da Rocha Lima
- Viral Immunology Laboratory (LIV), Oswaldo Cruz Institute, IOC, FIOCRUZ, Avenida Brasil, 4365. Manguinhos, Rio de Janeiro, Brazil
| | - Nieli Rodrigues da Costa Faria
- Flavivirus Laboratory (LABFLA), Oswaldo Cruz Institute- FIOCRUZ, Avenida Brasil, 4365. Manguinhos, Rio de Janeiro, Brazil
| | - Fernanda de Bruycker-Nogueira
- Viral Immunology Laboratory (LIV), Oswaldo Cruz Institute, IOC, FIOCRUZ, Avenida Brasil, 4365. Manguinhos, Rio de Janeiro, Brazil
| | - Jaqueline Bastos Santos
- Flavivirus Laboratory (LABFLA), Oswaldo Cruz Institute- FIOCRUZ, Avenida Brasil, 4365. Manguinhos, Rio de Janeiro, Brazil
| | - Manoela Heringer
- Viral Immunology Laboratory (LIV), Oswaldo Cruz Institute, IOC, FIOCRUZ, Avenida Brasil, 4365. Manguinhos, Rio de Janeiro, Brazil
| | - Thaís Chouin-Carneiro
- Viral Immunology Laboratory (LIV), Oswaldo Cruz Institute, IOC, FIOCRUZ, Avenida Brasil, 4365. Manguinhos, Rio de Janeiro, Brazil
- Hematozoa Transmittors Mosquitoes Laboratory, Oswaldo Cruz Institute- FIOCRUZ, Avenida Brasil, 4365. Manguinhos, Rio de Janeiro, Brazil
| | - Dinair Couto-Lima
- Hematozoa Transmittors Mosquitoes Laboratory, Oswaldo Cruz Institute- FIOCRUZ, Avenida Brasil, 4365. Manguinhos, Rio de Janeiro, Brazil
| | - Bianca de Santis Gonçalves
- Flavivirus Laboratory (LABFLA), Oswaldo Cruz Institute- FIOCRUZ, Avenida Brasil, 4365. Manguinhos, Rio de Janeiro, Brazil
| | - Simone Alves Sampaio
- Flavivirus Laboratory (LABFLA), Oswaldo Cruz Institute- FIOCRUZ, Avenida Brasil, 4365. Manguinhos, Rio de Janeiro, Brazil
| | | | - Juan Camilo Sánchez-Arcila
- Viral Immunology Laboratory (LIV), Oswaldo Cruz Institute, IOC, FIOCRUZ, Avenida Brasil, 4365. Manguinhos, Rio de Janeiro, Brazil
| | - Flávia Barreto dos Santos
- Viral Immunology Laboratory (LIV), Oswaldo Cruz Institute, IOC, FIOCRUZ, Avenida Brasil, 4365. Manguinhos, Rio de Janeiro, Brazil
| | - Rita Maria Ribeiro Nogueira
- Flavivirus Laboratory (LABFLA), Oswaldo Cruz Institute- FIOCRUZ, Avenida Brasil, 4365. Manguinhos, Rio de Janeiro, Brazil
| |
Collapse
|
49
|
Structure-activity relationship of uridine-based nucleoside phosphoramidate prodrugs for inhibition of dengue virus RNA-dependent RNA polymerase. Bioorg Med Chem Lett 2018; 28:2324-2327. [PMID: 29801997 DOI: 10.1016/j.bmcl.2018.04.069] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 04/25/2018] [Accepted: 04/29/2018] [Indexed: 11/24/2022]
Abstract
To identify a potent and selective nucleoside inhibitor of dengue virus RNA-dependent RNA polymerase, a series of 2'- and/or 4'-ribose sugar modified uridine nucleoside phosphoramidate prodrugs and their corresponding triphosphates were synthesized and evaluated. Replacement of 2'-OH with 2'-F led to be a poor substrate for both dengue virus and human mitochondrial RNA polymerases. Instead of 2'-fluorination, the introduction of fluorine at the ribose 4'-position was found not to affect the inhibition of the dengue virus polymerase with a reduction in uptake by mitochondrial RNA polymerase. 2'-C-ethynyl-4'-F-uridine phosphoramidate prodrug displayed potent anti-dengue virus activity in the primary human peripheral blood mononuclear cell-based assay with no significant cytotoxicity in human hepatocellular liver carcinoma cell lines and no mitochondrial toxicity in the cell-based assay using human prostate cancer cell lines.
Collapse
|
50
|
Yang J, Lin Y, Jiang L, Xi J, Wang X, Guan J, Chen J, Pan Y, Luo J, Ye C, Sun Q. Comparison analysis of microRNAs in response to dengue virus type 2 infection between the Vero cell-adapted strain and its source, the clinical C6/36 isolated strain. Virus Res 2018; 250:65-74. [PMID: 29660363 DOI: 10.1016/j.virusres.2018.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 04/12/2018] [Accepted: 04/12/2018] [Indexed: 10/17/2022]
Abstract
To elucidate the differences in microRNAs during dengue virus infection between Vero cell-adapted strain (DENV-2-Vero) and its source, the clinical C6/36 isolated strain (DENV-2-C6/36), a comparison analysis was performed in Vero cells by high throughput sequencing. The results showed that the expression of 16 known and 3 novel miRNAs exhibited marked differences. 5 known miRNAs were up-regulated in DENV-2-C6/36 group, while 11 known microRNAs were down-regulated in DENV-2-Vero group. The GO enrichment and KEGG pathway analysis showed that there was a distinct difference in regulating viral replication between two strains. In DENV-2-Vero infection group, significantly enriched GO terms included virion attachment to host cells, viral structural protein/genome processing and packaging. Meanwhile, the regulation of cell death and apoptosis between two groups were different in the early stage of infection. KEGG enrichment analysis showed that DENV-2-C6/36 infection induced more intense regulation of immune-related pathways, including Fc gamma R-mediated phagocytosis, etc. DENV-2-Vero infection could partially alleviate the immune defense of Vero cells compared with DENV-2-C6/36. The results indicated that the distinct microRNA changes induced by two DENV-2 strains may be partly related to their infective abilities. Our data provide useful insights that help elucidate the host-pathogen interactions following DENV infection.
Collapse
Affiliation(s)
- Jiajia Yang
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College, Kunming 650118, PR China; Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Diseases, Kunming 650118, PR China; Yunnan Key Laboratory of Vector-Borne Infectious Disease, Kunming 650118, PR China
| | - Yao Lin
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College, Kunming 650118, PR China; Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Diseases, Kunming 650118, PR China; Yunnan Key Laboratory of Vector-Borne Infectious Disease, Kunming 650118, PR China
| | - Liming Jiang
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College, Kunming 650118, PR China; Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Diseases, Kunming 650118, PR China; Yunnan Key Laboratory of Vector-Borne Infectious Disease, Kunming 650118, PR China
| | - Juemin Xi
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College, Kunming 650118, PR China; Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Diseases, Kunming 650118, PR China; Yunnan Key Laboratory of Vector-Borne Infectious Disease, Kunming 650118, PR China
| | - Xiaodan Wang
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College, Kunming 650118, PR China; Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Diseases, Kunming 650118, PR China; Yunnan Key Laboratory of Vector-Borne Infectious Disease, Kunming 650118, PR China
| | - Jiaoqiong Guan
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College, Kunming 650118, PR China; Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Diseases, Kunming 650118, PR China; Yunnan Key Laboratory of Vector-Borne Infectious Disease, Kunming 650118, PR China
| | - Junying Chen
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College, Kunming 650118, PR China; Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Diseases, Kunming 650118, PR China; Yunnan Key Laboratory of Vector-Borne Infectious Disease, Kunming 650118, PR China
| | - Yue Pan
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College, Kunming 650118, PR China; Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Diseases, Kunming 650118, PR China; Yunnan Key Laboratory of Vector-Borne Infectious Disease, Kunming 650118, PR China
| | - Jia Luo
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College, Kunming 650118, PR China; Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Diseases, Kunming 650118, PR China; Kunming Medical University, Kunming 650500, PR China
| | - Chao Ye
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College, Kunming 650118, PR China; Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Diseases, Kunming 650118, PR China; Kunming Medical University, Kunming 650500, PR China
| | - Qiangming Sun
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College, Kunming 650118, PR China; Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Diseases, Kunming 650118, PR China; Yunnan Key Laboratory of Vector-Borne Infectious Disease, Kunming 650118, PR China.
| |
Collapse
|