1
|
Garrett N, Dintwe O, Monaco CL, Jones M, Seaton KE, Church EC, Grunenberg N, Hutter J, deCamp A, Huang Y, Lu H, Mann P, Robinson ST, Heptinstall J, Jensen RL, Pantaleo G, Ding S, Koutsoukos M, Hosseinipour MC, Van Der Meeren O, Gilbert PB, Ferrari G, Andersen-Nissen E, McElrath MJ, Tomaras GD, Gray GE, Corey L, Kublin JG. Safety and Immunogenicity of a DNA Vaccine With Subtype C gp120 Protein Adjuvanted With MF59 or AS01B: A Phase 1/2a HIV-1 Vaccine Trial. J Acquir Immune Defic Syndr 2024; 96:350-360. [PMID: 38916429 PMCID: PMC11195930 DOI: 10.1097/qai.0000000000003438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 04/02/2024] [Indexed: 06/26/2024]
Abstract
BACKGROUND An effective vaccine is required to end the HIV pandemic. We evaluated the safety and immunogenicity of a DNA (DNA-HIV-PT123) vaccine with low- or high-dose bivalent (TV1.C and 1086.C glycoprotein 120) subtype C envelope protein combinations, adjuvanted with MF59 or AS01B. METHODS HIV Vaccine Trials Network (HVTN)108 was a randomized, placebo-controlled, double-blind, phase 1/2a trial conducted in the United States and South Africa. HIV-negative adults were randomly assigned to 1 of 7 intervention arms or placebo to assess DNA prime with DNA/protein/adjuvant boosts, DNA/protein/adjuvant co-administration, and low-dose protein/adjuvant regimens. HVTN111 trial participants who received an identical regimen were also included. Outcomes included safety and immunogenicity 2 weeks and 6 months after final vaccination. RESULTS From June 2016 to July 2018, 400 participants were enrolled (N = 334 HVTN108, N = 66 HVTN111); 370 received vaccine and 30 received placebo. There were 48 grade 3 and 3 grade 4 reactogenicity events among 39/400 (9.8%) participants, and 32 mild/moderate-related adverse events in 23/400 (5.8%) participants. All intervention groups demonstrated high IgG response rates (>89%) and high magnitudes to HIV-1 Env gp120 and gp140 proteins; response rates for AS01B-adjuvanted groups approached 100%. V1V2 IgG magnitude, Fc-mediated functions, IgG3 Env response rates, and CD4+ T-cell response magnitudes and rates were higher in the AS01B-adjuvanted groups. The AS01B-adjuvanted low-dose protein elicited greater IgG responses than the higher protein dose. CONCLUSIONS The vaccine regimens were generally well tolerated. Co-administration of DNA with AS01B-adjuvanted bivalent Env gp120 elicited the strongest humoral responses; AS01B-adjuvanted regimens elicited stronger CD4+ T-cell responses, justifying further evaluation.ClinicalTrials.gov registration: NCT02915016, registered 26 September 2016.
Collapse
Affiliation(s)
- Nigel Garrett
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa
- Department of Public Health Medicine, School of Nursing and Public Health, University of KwaZulu-Natal, Durban, South Africa
| | - One Dintwe
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA
- Cape Town HVTN Immunology Laboratory, Cape Town, South Africa
| | - Cynthia L. Monaco
- Department of Medicine, Division of Infectious Diseases, University of Rochester Medical Center, Rochester, NY
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY
| | - Megan Jones
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Kelly E. Seaton
- Center for Human Systems Immunology, Departments of Surgery, Molecular Genetics and Microbiology, and Immunology, Duke University School of Medicine, Durham, NC
| | - E. Chandler Church
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Nicole Grunenberg
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Julia Hutter
- Division of AIDS, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Allan deCamp
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Yunda Huang
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Huiyin Lu
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Philipp Mann
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Samuel T. Robinson
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Jack Heptinstall
- Center for Human Systems Immunology, Departments of Surgery, Molecular Genetics and Microbiology, and Immunology, Duke University School of Medicine, Durham, NC
| | - Ryan L. Jensen
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Giuseppe Pantaleo
- Division of Immunology and Allergy, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| | - Song Ding
- EuroVacc Foundation, Lausanne, Switzerland
| | | | - Mina C. Hosseinipour
- University of North Carolina at Chapel Hill, Chapel Hill, NC
- UNC Project-Malawi, Lilongwe, Malawi
| | | | - Peter B. Gilbert
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Guido Ferrari
- Center for Human Systems Immunology, Departments of Surgery, Molecular Genetics and Microbiology, and Immunology, Duke University School of Medicine, Durham, NC
| | - Erica Andersen-Nissen
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA
- Cape Town HVTN Immunology Laboratory, Cape Town, South Africa
| | - M. Juliana McElrath
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Georgia D. Tomaras
- Center for Human Systems Immunology, Departments of Surgery, Molecular Genetics and Microbiology, and Immunology, Duke University School of Medicine, Durham, NC
| | - Glenda E. Gray
- South African Medical Research Council, Tygerberg, South Africa
| | - Lawrence Corey
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - James G. Kublin
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA
| |
Collapse
|
2
|
Rungelrath V, Ahmed M, Hicks L, Miller SM, Ryter KT, Montgomery K, Ettenger G, Riffey A, Abdelwahab WM, Khader SA, Evans JT. Vaccination with Mincle agonist UM-1098 and mycobacterial antigens induces protective Th1 and Th17 responses. NPJ Vaccines 2024; 9:100. [PMID: 38844494 PMCID: PMC11156909 DOI: 10.1038/s41541-024-00897-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/28/2024] [Indexed: 06/09/2024] Open
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), is one of the top infectious killers in the world. The only licensed vaccine against TB, Bacille Calmette-Guérin (BCG), provides variable protection against pulmonary TB, especially in adults. Hence, novel TB vaccine approaches are urgently needed. Both Th1 and Th17 responses are necessary for protection against TB, yet effective adjuvants and vaccine delivery systems for inducing robust Th1 and Th17 immunity are lacking. Herein we describe a synthetic Mincle agonist, UM-1098, and a silica nanoparticle delivery system that drives Th1/Th17 responses to Mtb antigens. Stimulation of human peripheral blood mononuclear cells (hPBMCs) with UM-1098 induced high levels of Th17 polarizing cytokines IL-6, IL-1β, IL-23 as well as IL-12p70, IL-4 and TNF-α in vitro. PBMCs from both C57BL/6 and BALB/c mice responded with a similar cytokine pattern in vitro and in vivo. Importantly, intramuscular (I.M.) vaccination with UM-1098-adjuvanted TB antigen M72 resulted in significantly higher antigen-specific IFN-γ and IL-17A levels in C57BL/6 wt mice than Mincle KO mice. Vaccination of C57BL/6 wt mice with immunodominant Mtb antigens ESAT6/Ag85B or M72 resulted in predominantly Th1 and Th17 responses and induced antigen-specific serum antibodies. Notably, in a virulent Mtb challenge model, vaccination with UM-1098 adjuvanted ESAT6/Ag85B or M72 significantly reduced lung bacterial burden when compared with unvaccinated mice and protection occurred in the absence of pulmonary inflammation. These data demonstrate that the synthetic Mincle agonist UM-1098 induces strong Th1 and Th17 immunity after vaccination with Mtb antigens and provides protection against Mtb infection in mice.
Collapse
Affiliation(s)
- Viktoria Rungelrath
- Center for Translational Medicine, University of Montana, 32 Campus Drive, Missoula, MT, 59812, USA
- Department of Biomedical & Pharmaceutical Sciences, University of Montana, Missoula, MT, 59812, USA
| | - Mushtaq Ahmed
- Department of Microbiology, University of Chicago, 920 E. 58th St., Chicago, IL, 60637, USA
| | - Linda Hicks
- Center for Translational Medicine, University of Montana, 32 Campus Drive, Missoula, MT, 59812, USA
- Department of Biomedical & Pharmaceutical Sciences, University of Montana, Missoula, MT, 59812, USA
| | - Shannon M Miller
- Center for Translational Medicine, University of Montana, 32 Campus Drive, Missoula, MT, 59812, USA
- Department of Biomedical & Pharmaceutical Sciences, University of Montana, Missoula, MT, 59812, USA
| | - Kendal T Ryter
- Center for Translational Medicine, University of Montana, 32 Campus Drive, Missoula, MT, 59812, USA
- Department of Biomedical & Pharmaceutical Sciences, University of Montana, Missoula, MT, 59812, USA
| | - Kyle Montgomery
- Center for Translational Medicine, University of Montana, 32 Campus Drive, Missoula, MT, 59812, USA
- Department of Biomedical & Pharmaceutical Sciences, University of Montana, Missoula, MT, 59812, USA
| | - George Ettenger
- Center for Translational Medicine, University of Montana, 32 Campus Drive, Missoula, MT, 59812, USA
- Department of Biomedical & Pharmaceutical Sciences, University of Montana, Missoula, MT, 59812, USA
| | - Alexander Riffey
- Center for Translational Medicine, University of Montana, 32 Campus Drive, Missoula, MT, 59812, USA
- Department of Biomedical & Pharmaceutical Sciences, University of Montana, Missoula, MT, 59812, USA
| | - Walid M Abdelwahab
- Center for Translational Medicine, University of Montana, 32 Campus Drive, Missoula, MT, 59812, USA
- Department of Biomedical & Pharmaceutical Sciences, University of Montana, Missoula, MT, 59812, USA
| | - Shabaana Abdul Khader
- Department of Microbiology, University of Chicago, 920 E. 58th St., Chicago, IL, 60637, USA
| | - Jay T Evans
- Center for Translational Medicine, University of Montana, 32 Campus Drive, Missoula, MT, 59812, USA.
- Department of Biomedical & Pharmaceutical Sciences, University of Montana, Missoula, MT, 59812, USA.
| |
Collapse
|
3
|
Li F, Dang W, Du Y, Xu X, He P, Zhou Y, Zhu B. Tuberculosis Vaccines and T Cell Immune Memory. Vaccines (Basel) 2024; 12:483. [PMID: 38793734 PMCID: PMC11125691 DOI: 10.3390/vaccines12050483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 04/27/2024] [Accepted: 04/28/2024] [Indexed: 05/26/2024] Open
Abstract
Tuberculosis (TB) remains a major infectious disease partly due to the lack of an effective vaccine. Therefore, developing new and more effective TB vaccines is crucial for controlling TB. Mycobacterium tuberculosis (M. tuberculosis) usually parasitizes in macrophages; therefore, cell-mediated immunity plays an important role. The maintenance of memory T cells following M. tuberculosis infection or vaccination is a hallmark of immune protection. This review analyzes the development of memory T cells during M. tuberculosis infection and vaccine immunization, especially on immune memory induced by BCG and subunit vaccines. Furthermore, the factors affecting the development of memory T cells are discussed in detail. The understanding of the development of memory T cells should contribute to designing more effective TB vaccines and optimizing vaccination strategies.
Collapse
Affiliation(s)
- Fei Li
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Center for Tuberculosis Research, Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China; (F.L.); (W.D.); (Y.D.); (X.X.); (P.H.); (Y.Z.)
| | - Wenrui Dang
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Center for Tuberculosis Research, Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China; (F.L.); (W.D.); (Y.D.); (X.X.); (P.H.); (Y.Z.)
| | - Yunjie Du
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Center for Tuberculosis Research, Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China; (F.L.); (W.D.); (Y.D.); (X.X.); (P.H.); (Y.Z.)
| | - Xiaonan Xu
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Center for Tuberculosis Research, Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China; (F.L.); (W.D.); (Y.D.); (X.X.); (P.H.); (Y.Z.)
| | - Pu He
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Center for Tuberculosis Research, Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China; (F.L.); (W.D.); (Y.D.); (X.X.); (P.H.); (Y.Z.)
| | - Yuhe Zhou
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Center for Tuberculosis Research, Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China; (F.L.); (W.D.); (Y.D.); (X.X.); (P.H.); (Y.Z.)
| | - Bingdong Zhu
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Center for Tuberculosis Research, Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China; (F.L.); (W.D.); (Y.D.); (X.X.); (P.H.); (Y.Z.)
- College of Veterinary Medicine, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
4
|
Hoseinpour R, Hasani A, Baradaran B, Abdolalizadeh J, Salehi R, Hasani A, Nabizadeh E, Yekani M, Hasani R, Kafil HS, Azizian K, Memar MY. Tuberculosis vaccine developments and efficient delivery systems: A comprehensive appraisal. Heliyon 2024; 10:e26193. [PMID: 38404880 PMCID: PMC10884459 DOI: 10.1016/j.heliyon.2024.e26193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 02/07/2024] [Accepted: 02/08/2024] [Indexed: 02/27/2024] Open
Abstract
Despite the widespread use of the Bacillus Calmette-Guérin (BCG) vaccine, Mycobacterium tuberculosis (MTB) continues to be a global burden. Vaccination has been proposed to prevent and treat tuberculosis (TB) infection, and several of them are in different phases of clinical trials. Though vaccine production is in progress but requires more attention. There are several TB vaccines in the trial phase, most of which are based on a combination of proteins/adjuvants or recombinant viral vectors used for selected MTB antigens. In this review, we attempted to discuss different types of TB vaccines based on the vaccine composition, the immune responses generated, and their clinical trial phases. Furthermore, we have briefly overviewed the effective delivery systems used for the TB vaccine and their effectiveness in different vaccines.
Collapse
Affiliation(s)
- Rasoul Hoseinpour
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Immunology Research Center (IRC), Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Laboratory sciences and Microbiology, Faculty of Medicine, Tabriz Medical Sciences, Islamic Azad University, Tabriz, Iran
| | - Alka Hasani
- Immunology Research Center (IRC), Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Medical Microbiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Clinical Research Development Unit, Sina Educational, Research, and Treatment Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center (IRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jalal Abdolalizadeh
- Drug Applied Research Center and Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Roya Salehi
- Drug Applied Research Center and Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Akbar Hasani
- Department of Clinical Biochemistry and Applied Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Edris Nabizadeh
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Immunology Research Center (IRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mina Yekani
- Department of Microbiology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | | | - Hossein Samadi Kafil
- Department of Medical Microbiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Drug Applied Research Center and Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Khalil Azizian
- Department of Microbiology, Faculty of Medicine, Kurdistan University of Medical Science, Sanandaj, Iran
| | - Mohammad Yousef Memar
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
5
|
Roman F, Burny W, Ceregido MA, Laupèze B, Temmerman ST, Warter L, Coccia M. Adjuvant system AS01: from mode of action to effective vaccines. Expert Rev Vaccines 2024; 23:715-729. [PMID: 39042099 DOI: 10.1080/14760584.2024.2382725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 07/17/2024] [Indexed: 07/24/2024]
Abstract
INTRODUCTION The use of novel adjuvants in human vaccines continues to expand as their contribution to preventing disease in challenging populations and caused by complex pathogens is increasingly understood. AS01 is a family of liposome-based vaccine Adjuvant Systems containing two immunostimulants: 3-O-desacyl-4'-monophosphoryl lipid A and the saponin QS-21. AS01-containing vaccines have been approved and administered to millions of individuals worldwide. AREAS COVERED Here, we report advances in our understanding of the mode of action of AS01 that contributed to the development of efficacious vaccines preventing disease due to malaria, herpes zoster, and respiratory syncytial virus. AS01 induces early innate immune activation that induces T cell-mediated and antibody-mediated responses with optimized functional characteristics and induction of immune memory. AS01-containing vaccines appear relatively impervious to baseline immune status translating into high efficacy across populations. Currently licensed AS01-containing vaccines have shown acceptable safety profiles in clinical trials and post-marketing settings. EXPERT OPINION Initial expectations that adjuvantation with AS01 could support effective vaccine responses and contribute to disease control have been realized. Investigation of the utility of AS01 in vaccines to prevent other challenging diseases, such as tuberculosis, is ongoing, together with efforts to fully define its mechanisms of action in different vaccine settings.
Collapse
|
6
|
Zhuang L, Yang L, Li L, Ye Z, Gong W. Mycobacterium tuberculosis: immune response, biomarkers, and therapeutic intervention. MedComm (Beijing) 2024; 5:e419. [PMID: 38188605 PMCID: PMC10771061 DOI: 10.1002/mco2.419] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 10/03/2023] [Accepted: 10/12/2023] [Indexed: 01/09/2024] Open
Abstract
Although tuberculosis (TB) is an infectious disease, the progression of the disease following Mycobacterium tuberculosis (MTB) infection is closely associated with the host's immune response. In this review, a comprehensive analysis of TB prevention, diagnosis, and treatment was conducted from an immunological perspective. First, we delved into the host's immune response mechanisms against MTB infection as well as the immune evasion mechanisms of the bacteria. Addressing the challenges currently faced in TB diagnosis and treatment, we also emphasized the importance of protein, genetic, and immunological biomarkers, aiming to provide new insights for early and personalized diagnosis and treatment of TB. Building upon this foundation, we further discussed intervention strategies involving chemical and immunological treatments for the increasingly critical issue of drug-resistant TB and other forms of TB. Finally, we summarized TB prevention, diagnosis, and treatment challenges and put forward future perspectives. Overall, these findings provide valuable insights into the immunological aspects of TB and offer new directions toward achieving the WHO's goal of eradicating TB by 2035.
Collapse
Affiliation(s)
- Li Zhuang
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and TreatmentSenior Department of Tuberculosis, the Eighth Medical Center of PLA General HospitalBeijingChina
- Senior Department of TuberculosisHebei North UniversityZhangjiakouHebeiChina
| | - Ling Yang
- Senior Department of TuberculosisHebei North UniversityZhangjiakouHebeiChina
| | - Linsheng Li
- Senior Department of TuberculosisHebei North UniversityZhangjiakouHebeiChina
| | - Zhaoyang Ye
- Senior Department of TuberculosisHebei North UniversityZhangjiakouHebeiChina
| | - Wenping Gong
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and TreatmentSenior Department of Tuberculosis, the Eighth Medical Center of PLA General HospitalBeijingChina
| |
Collapse
|
7
|
Ouaked N, Demoitié MA, Godfroid F, Mortier MC, Vanloubbeeck Y, Temmerman ST. Non-clinical evaluation of local and systemic immunity induced by different vaccination strategies of the candidate tuberculosis vaccine M72/AS01. Tuberculosis (Edinb) 2023; 143:102425. [PMID: 38180028 DOI: 10.1016/j.tube.2023.102425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 10/11/2023] [Accepted: 10/22/2023] [Indexed: 01/06/2024]
Abstract
A new efficacious tuberculosis vaccine targeting adolescents/adults represents an urgent medical need. The M72/AS01E vaccine candidate protected half of the latently-infected adults against progression to pulmonary tuberculosis in a Phase IIb trial (NCT01755598). We report that three immunizations of mice, two weeks apart, with AS01-adjuvanted M72 induced polyfunctional, Th1-cytokine-expressing M72-specific CD4+/CD8+ T cells in blood and lungs, with the highest frequencies in lungs. Antigen-dose reductions across the three vaccinations skewed pulmonary CD4+ T-cell profiles towards IL-17 expression. In blood, reducing antigen and adjuvant doses of only the third injection (to 1/5th or 1/25th of those of the first injections) did not significantly alter CD4+ T-cell/antibody responses; applying a 10-week delay for the fractional third dose enhanced antibody titers. Delaying a full-dose booster enhanced systemic CD4+ T-cell and antibody responses. Cross-reactivity with PPE and non-PPE proteins was assessed, as Mycobacterium tuberculosis (Mtb) virulence factors and evasion mechanisms are often associated with PE/PPE proteins, to which Mtb39a (contained in M72) belongs. In silico/in vivo analyses revealed that M72/AS01 induced cross-reactive systemic CD4+ T-cell responses to epitopes in a non-vaccine antigen (putative latency-associated Mtb protein PPE24/Rv1753c). These preclinical data describing novel mechanisms of M72/AS01-induced immunity could guide future clinical development of the vaccine.
Collapse
Affiliation(s)
- Nadia Ouaked
- GSK, Rue de l'Institut 89, 1330, Rixensart, Belgium
| | | | | | | | | | | |
Collapse
|
8
|
Moni SS, Abdelwahab SI, Jabeen A, Elmobark ME, Aqaili D, Ghoal G, Oraibi B, Farasani AM, Jerah AA, Alnajai MMA, Mohammad Alowayni AMH. Advancements in Vaccine Adjuvants: The Journey from Alum to Nano Formulations. Vaccines (Basel) 2023; 11:1704. [PMID: 38006036 PMCID: PMC10674458 DOI: 10.3390/vaccines11111704] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/05/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
Vaccination is a groundbreaking approach in preventing and controlling infectious diseases. However, the effectiveness of vaccines can be greatly enhanced by the inclusion of adjuvants, which are substances that potentiate and modulate the immune response. This review is based on extensive searches in reputable databases such as Web of Science, PubMed, EMBASE, Scopus, and Google Scholar. The goal of this review is to provide a thorough analysis of the advances in the field of adjuvant research, to trace the evolution, and to understand the effects of the various adjuvants. Historically, alum was the pioneer in the field of adjuvants because it was the first to be approved for use in humans. It served as the foundation for subsequent research and innovation in the field. As science progressed, research shifted to identifying and exploiting the potential of newer adjuvants. One important area of interest is nano formulations. These advanced adjuvants have special properties that can be tailored to enhance the immune response to vaccines. The transition from traditional alum-based adjuvants to nano formulations is indicative of the dynamism and potential of vaccine research. Innovations in adjuvant research, particularly the development of nano formulations, are a promising step toward improving vaccine efficacy and safety. These advances have the potential to redefine the boundaries of vaccination and potentially expand the range of diseases that can be addressed with this approach. There is an optimistic view of the future in which improved vaccine formulations will contribute significantly to improving global health outcomes.
Collapse
Affiliation(s)
- Sivakumar S. Moni
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia; (A.J.)
| | | | - Aamena Jabeen
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia; (A.J.)
| | - Mohamed Eltaib Elmobark
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia; (A.J.)
| | - Duaa Aqaili
- Physiology Department, Faculty of Medicine, Jazan University, Jazan 45142, Saudi Arabia
| | - Gassem Ghoal
- Department of Pediatrics, Faculty of Medicine, Jazan University, Jazan 45142, Saudi Arabia
| | - Bassem Oraibi
- Medical Research Centre, Jazan University, Jazan 45142, Saudi Arabia (B.O.)
| | | | - Ahmed Ali Jerah
- College of Applied Medical Sciences, Jazan University, Jazan 45142, Saudi Arabia
| | - Mahdi Mohammed A. Alnajai
- General Directorate of Health Services and University Hospital, Jazan University, Jazan 45142, Saudi Arabia;
| | | |
Collapse
|
9
|
Kim H, Choi HG, Shin SJ. Bridging the gaps to overcome major hurdles in the development of next-generation tuberculosis vaccines. Front Immunol 2023; 14:1193058. [PMID: 37638056 PMCID: PMC10451085 DOI: 10.3389/fimmu.2023.1193058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 07/27/2023] [Indexed: 08/29/2023] Open
Abstract
Although tuberculosis (TB) remains one of the leading causes of death from an infectious disease worldwide, the development of vaccines more effective than bacille Calmette-Guérin (BCG), the only licensed TB vaccine, has progressed slowly even in the context of the tremendous global impact of TB. Most vaccine candidates have been developed to strongly induce interferon-γ (IFN-γ)-producing T-helper type 1 (Th1) cell responses; however, accumulating evidence has suggested that other immune factors are required for optimal protection against Mycobacterium tuberculosis (Mtb) infection. In this review, we briefly describe the five hurdles that must be overcome to develop more effective TB vaccines, including those with various purposes and tested in recent promising clinical trials. In addition, we discuss the current knowledge gaps between preclinical experiments and clinical studies regarding peripheral versus tissue-specific immune responses, different underlying conditions of individuals, and newly emerging immune correlates of protection. Moreover, we propose how recently discovered TB risk or susceptibility factors can be better utilized as novel biomarkers for the evaluation of vaccine-induced protection to suggest more practical ways to develop advanced TB vaccines. Vaccines are the most effective tools for reducing mortality and morbidity from infectious diseases, and more advanced technologies and a greater understanding of host-pathogen interactions will provide feasibility and rationale for novel vaccine design and development.
Collapse
Affiliation(s)
- Hongmin Kim
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Han-Gyu Choi
- Department of Microbiology and Medical Science, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Sung Jae Shin
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
10
|
Ren H, Jia W, Xie Y, Yu M, Chen Y. Adjuvant physiochemistry and advanced nanotechnology for vaccine development. Chem Soc Rev 2023; 52:5172-5254. [PMID: 37462107 DOI: 10.1039/d2cs00848c] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
Vaccines comprising innovative adjuvants are rapidly reaching advanced translational stages, such as the authorized nanotechnology adjuvants in mRNA vaccines against COVID-19 worldwide, offering new strategies to effectively combat diseases threatening human health. Adjuvants are vital ingredients in vaccines, which can augment the degree, extensiveness, and longevity of antigen specific immune response. The advances in the modulation of physicochemical properties of nanoplatforms elevate the capability of adjuvants in initiating the innate immune system and adaptive immunity, offering immense potential for developing vaccines against hard-to-target infectious diseases and cancer. In this review, we provide an essential introduction of the basic principles of prophylactic and therapeutic vaccination, key roles of adjuvants in augmenting and shaping immunity to achieve desired outcomes and effectiveness, and the physiochemical properties and action mechanisms of clinically approved adjuvants for humans. We particularly focus on the preclinical and clinical progress of highly immunogenic emerging nanotechnology adjuvants formulated in vaccines for cancer treatment or infectious disease prevention. We deliberate on how the immune system can sense and respond to the physicochemical cues (e.g., chirality, deformability, solubility, topology, and chemical structures) of nanotechnology adjuvants incorporated in the vaccines. Finally, we propose possible strategies to accelerate the clinical implementation of nanotechnology adjuvanted vaccines, such as in-depth elucidation of nano-immuno interactions, antigen identification and optimization by the deployment of high-dimensional multiomics analysis approaches, encouraging close collaborations among scientists from different scientific disciplines and aggressive exploration of novel nanotechnologies.
Collapse
Affiliation(s)
- Hongze Ren
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
- School of Medicine, Shanghai University, Shanghai, 200444, P. R. China
| | - Wencong Jia
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
- School of Medicine, Shanghai University, Shanghai, 200444, P. R. China
| | - Yujie Xie
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
- School of Medicine, Shanghai University, Shanghai, 200444, P. R. China
| | - Meihua Yu
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
| | - Yu Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
- School of Medicine, Shanghai University, Shanghai, 200444, P. R. China
| |
Collapse
|
11
|
Grant NL, Kelly K, Maiello P, Abbott H, O’Connor S, Lin PL, Scanga CA, Flynn JL. Mycobacterium tuberculosis-Specific CD4 T Cells Expressing Transcription Factors T-Bet or RORγT Associate with Bacterial Control in Granulomas. mBio 2023; 14:e0047723. [PMID: 37039646 PMCID: PMC10294621 DOI: 10.1128/mbio.00477-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 03/16/2023] [Indexed: 04/12/2023] Open
Abstract
Despite the extensive research on CD4 T cells within the context of Mycobacterium tuberculosis (Mtb) infections, few studies have focused on identifying and investigating the profile of Mtb-specific T cells within lung granulomas. To facilitate the identification of Mtb-specific CD4 T cells, we identified immunodominant epitopes for two Mtb proteins, namely, Rv1196 and Rv0125, using a Mauritian cynomolgus macaque model of Mtb infection, thereby providing data for the synthesis of MHC class II tetramers. Using tetramers, we identified Mtb-specific cells within different immune compartments, postinfection. We found that granulomas were enriched sites for Mtb-specific cells and that tetramer+ cells had increased frequencies of the activation marker CD69 as well as the transcription factors T-bet and RORγT, compared to tetramer negative cells within the same sample. Our data revealed that while the frequency of Rv1196 tetramer+ cells was positively correlated with the granuloma bacterial burden, the frequency of RORγT or T-bet within tetramer+ cells was inversely correlated with the granuloma bacterial burden, thereby highlighting the importance of having activated, polarized, Mtb-specific cells for the control of Mtb in lung granulomas. IMPORTANCE Tuberculosis, caused by the bacterial pathogen Mycobacterium tuberculosis, kills 1.5 million people each year, despite the existence of effective drugs and a vaccine that is given to infants in most countries. Clearly, we need better vaccines against this disease. However, our understanding of the immune responses that are necessary to prevent tuberculosis is incomplete. This study seeks to understand the functions of T cells that are specific for M. tuberculosis at the site of the disease in the lungs. For this, we developed specialized tools called MHC class II tetramers to identify those T cells that can recognize M. tuberculosis and applied the tools to the study of this infection in nonhuman primate models that mimic human tuberculosis. We demonstrate that M. tuberculosis-specific T cells in lung lesions are associated with control of the bacteria only when those T cells are expressing certain functions, thereby highlighting the importance of combining the identification of specific T cells with functional analyses. Thus, we surmise that these functions of specific T cells are critical to the control of infection and should be considered as a part of the development of vaccines against tuberculosis.
Collapse
Affiliation(s)
- Nicole L. Grant
- Department of Infectious Disease and Microbiology, University of Pittsburgh Graduate School of Public Health, Pittsburgh, Pennsylvania, USA
| | - Kristen Kelly
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Pauline Maiello
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Helena Abbott
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Shelby O’Connor
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison Wisconsin, USA
| | - Philana Ling Lin
- Department of Pediatrics, Children's Hospital of Pittsburgh of the University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Charles A. Scanga
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - JoAnne L. Flynn
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
12
|
Moradi M, Vahedi F, Abbassioun A, Ramezanpour Shahi A, Sholeh M, Taheri‐Anganeh M, Dargahi Z, Ghanavati R, Khatami SH, Movahedpour A. Liposomal delivery system/adjuvant for tuberculosis vaccine. Immun Inflamm Dis 2023; 11:e867. [PMID: 37382263 PMCID: PMC10251763 DOI: 10.1002/iid3.867] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 04/23/2023] [Accepted: 04/26/2023] [Indexed: 06/30/2023] Open
Abstract
As reported by the World Health Organization, about 10 million individuals were infected with tuberculosis (TB) worldwide. Moreover, approximately 1.5 million people died of TB, of which 214,000 were infected with HIV simultaneously. Due to the high infection rate, the need for effective TB vaccination is highly felt. Until now, various methodologies have been proposed for the development of a protein subunit vaccine for TB. These vaccines have shown higher protection than other vaccines, particularly the Bacillus culture vaccine. The delivery system and safety regulator are common characteristics of effective adjuvants in TB vaccines and the clinical trial stage. The present study investigates the current state of TB adjuvant research focusing on the liposomal adjuvant system. Based on our findings, the liposomal system is a safe and efficient adjuvant from nanosize to microsize for vaccinations against TB, other intracellular infections, and malignancies. Clinical studies can provide valuable feedback for developing novel TB adjuvants, which ultimately enhance the impact of adjuvants on next-generation TB vaccines.
Collapse
Affiliation(s)
- Melika Moradi
- Department of Microbiology, School of MedicineAhvaz Jundishapur University of Medical SciencesAhvazIran
| | - Farzaneh Vahedi
- Department of Medical Biotechnology, School of Advanced Medical Sciences and TechnologiesShiraz University of Medical SciencesShirazIran
| | - Arian Abbassioun
- Department of Virology, Faculty of Veterinary MediceneUniversity of TehranTehranIran
| | - Arash Ramezanpour Shahi
- Department of Veterinary Clinical Sciences, Poultry diseases and hygiene Resident, Faculty of Veterinary MedicineShahrekord UniversityShahrekordIran
| | - Mohammad Sholeh
- Department of BacteriologyPasteur Institute of IranTehranIran
| | - Mortaza Taheri‐Anganeh
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Research InstituteUrmia University of Medical SciencesUrmiaIran
| | - Zahra Dargahi
- Department of Microbiology, School of MedicineAhvaz Jundishapur University of Medical SciencesAhvazIran
| | | | - Seyyed Hossein Khatami
- Department of Clinical Biochemistry, School of MedicineShahid Beheshti University of Medical SciencesTehranIran
| | | |
Collapse
|
13
|
Larsen SE, Baldwin SL, Coler RN. Tuberculosis vaccines update: Is an RNA-based vaccine feasible for tuberculosis? Int J Infect Dis 2023; 130 Suppl 1:S47-S51. [PMID: 36963657 PMCID: PMC10033141 DOI: 10.1016/j.ijid.2023.03.035] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/16/2023] [Accepted: 03/16/2023] [Indexed: 03/24/2023] Open
Abstract
OBJECTIVES Despite concerted efforts, Mycobacterium tuberculosis (M.tb), the pathogen that causes tuberculosis (TB), continues to be a burden on global health, regaining its dubious distinction in 2022 as the world's biggest infectious killer with global COVID-19 deaths steadily declining. The complex nature of M.tb, coupled with different pathogenic stages, has highlighted the need for the development of novel immunization approaches to combat this ancient infectious agent. Intensive efforts over the last couple of decades have identified alternative approaches to improve upon traditional vaccines that are based on killed pathogens, live attenuated agents, or subunit recombinant antigens formulated with adjuvants. Massive funding and rapid advances in RNA-based vaccines for immunization have recently transformed the possibility of protecting global populations from viral pathogens, such as SARS-CoV-2. Similar efforts to combat bacterial pathogens such as M.tb have been significantly slower to implement. METHODS In this review, we discuss the application of a novel replicating RNA (repRNA)-based vaccine formulated and delivered in nanostructured lipids. RESULTS Our preclinical data are the first to report that RNA platforms are a viable system for TB vaccines and should be pursued with high-priority M.tb antigens containing cluster of differentiation (CD4+) and CD8+ T-cell epitopes. CONCLUSION This RNA vaccine shows promise for use against intracellular bacteria such as M.tb as demonstrated by the feasibility of construction, enhanced induction of cell-mediated and humoral immune responses, and improved bacterial burden outcomes in in vivo aerosol-challenged preclinical TB models.
Collapse
Affiliation(s)
- Sasha E Larsen
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, USA
| | - Susan L Baldwin
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, USA
| | - Rhea N Coler
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, USA; Department of Pediatrics, University of Washington School of Medicine, Seattle, USA; Department of Global Health, University of Washington, Seattle, USA.
| |
Collapse
|
14
|
Kwon KW, Kang TG, Lee A, Jin SM, Lim YT, Shin SJ, Ha SJ. Protective Efficacy and Immunogenicity of Rv0351/Rv3628 Subunit Vaccine Formulated in Different Adjuvants Against Mycobacterium tuberculosis Infection. Immune Netw 2023; 23:e16. [PMID: 37179749 PMCID: PMC10166659 DOI: 10.4110/in.2023.23.e16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 05/15/2023] Open
Abstract
Bacillus Calmette-Guerin (BCG) vaccine is the only licensed vaccine for tuberculosis (TB) prevention. Previously, our group demonstrated the vaccine potential of Rv0351 and Rv3628 against Mycobacterium tuberculosis (Mtb) infection by directing Th1-biased CD4+ T cells co-expressing IFN-γ, TNF-α, and IL-2 in the lungs. Here, we assessed immunogenicity and vaccine potential of the combined Ags (Rv0351/Rv3628) formulated in different adjuvants as subunit booster in BCG-primed mice against hypervirulent clinical Mtb strain K (Mtb K). Compared to BCG-only or subunit-only vaccine, BCG prime and subunit boost regimen exhibited significantly enhanced Th1 response. Next, we evaluated the immunogenicity to the combined Ags when formulated with four different types of monophosphoryl lipid A (MPL)-based adjuvants: 1) dimethyldioctadecylammonium bromide (DDA), MPL, and trehalose dicorynomycolate (TDM) in liposome form (DMT), 2) MPL and Poly I:C in liposome form (MP), 3) MPL, Poly I:C, and QS21 in liposome form (MPQ), and 4) MPL and Poly I:C in squalene emulsion form (MPS). MPQ and MPS displayed greater adjuvancity in Th1 induction than DMT or MP did. Especially, BCG prime and subunit-MPS boost regimen significantly reduced the bacterial loads and pulmonary inflammation against Mtb K infection when compared to BCG-only vaccine at a chronic stage of TB disease. Collectively, our findings highlighted the importance of adjuvant components and formulation to induce the enhanced protection with an optimal Th1 response.
Collapse
Affiliation(s)
- Kee Woong Kwon
- Department of Microbiology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Tae Gun Kang
- Department of Biochemistry, College of Life Science & Biotechnology, Yonsei University, Seoul 03722, Korea
- Brain Korea 21 (BK21) FOUR Program, Yonsei Education & Research Center for Biosystems, Yonsei University, Seoul 03722, Korea
| | - Ara Lee
- Department of Biochemistry, College of Life Science & Biotechnology, Yonsei University, Seoul 03722, Korea
- Brain Korea 21 (BK21) FOUR Program, Yonsei Education & Research Center for Biosystems, Yonsei University, Seoul 03722, Korea
| | - Seung Mo Jin
- SKKU Advanced Institute of Nanotechnology (SAINT), Department of Nano Engineering, School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Korea
| | - Yong Taik Lim
- SKKU Advanced Institute of Nanotechnology (SAINT), Department of Nano Engineering, School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Korea
| | - Sung Jae Shin
- Department of Microbiology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Korea
- Institute for Immunology and Immunological Disease, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Sang-Jun Ha
- Department of Biochemistry, College of Life Science & Biotechnology, Yonsei University, Seoul 03722, Korea
- Brain Korea 21 (BK21) FOUR Program, Yonsei Education & Research Center for Biosystems, Yonsei University, Seoul 03722, Korea
| |
Collapse
|
15
|
Duong VT, Skwarczynski M, Toth I. Towards the development of subunit vaccines against tuberculosis: The key role of adjuvant. Tuberculosis (Edinb) 2023; 139:102307. [PMID: 36706503 DOI: 10.1016/j.tube.2023.102307] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/22/2022] [Accepted: 01/12/2023] [Indexed: 01/15/2023]
Abstract
According to the World Health Organization (WHO), tuberculosis (TB) is the leading cause of death triggered by a single infectious agent, worldwide. Bacillus Calmette-Guerin (BCG) is the only currently licensed anti-TB vaccine. However, other strategies, including modification of recombinant BCG vaccine, attenuated Mycobacterium tuberculosis (Mtb) mutant constructs, DNA and protein subunit vaccines, are under extensive investigation. As whole pathogen vaccines can trigger serious adverse reactions, most current strategies are focused on the development of safe anti-TB subunit vaccines; this is especially important given the rising TB infection rate in immunocompromised HIV patients. The whole Mtb genome has been mapped and major antigens have been identified; however, optimal vaccine delivery mode is still to be established. Isolated protein antigens are typically poorly immunogenic so adjuvants are required to induce strong and long-lasting immune responses. This article aims to review the developmental status of anti-TB subunit vaccine adjuvants.
Collapse
Affiliation(s)
- Viet Tram Duong
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, 4072, Australia.
| | - Mariusz Skwarczynski
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, 4072, Australia.
| | - Istvan Toth
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, 4072, Australia; Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, 4072, Australia; School of Pharmacy, The University of Queensland, Woolloongabba, QLD, 4102, Australia.
| |
Collapse
|
16
|
Lipid nanoparticles technology in vaccines: Shaping the future of prophylactic medicine. Colloids Surf B Biointerfaces 2023; 222:113111. [PMID: 36586237 DOI: 10.1016/j.colsurfb.2022.113111] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/07/2022] [Accepted: 12/18/2022] [Indexed: 12/24/2022]
Abstract
Throughout decades, the intrinsic power of the immune system to fight pathogens has inspired researchers to develop techniques that enable the prevention or treatment of infections via boosting the immune response against the target pathogens, which has led to the evolution of vaccines. The recruitment of Lipid nanoparticles (LNPs) as either vaccine delivery platforms or immunogenic modalities has witnessed a breakthrough recently, which has been crowned with the development of effective LNPs-based vaccines against COVID-19. In the current article, we discuss some principles of such a technology, with a special focus on the technical aspects from a translational perspective. Representative examples of LNPs-based vaccines against cancer, COVID-19, as well as other infectious diseases, autoimmune diseases, and allergies are highlighted, considering the challenges and promises. Lastly, the key features that can improve the clinical translation of this area of endeavor are inspired.
Collapse
|
17
|
Subsequent AS01-adjuvanted vaccinations induce similar transcriptional responses in populations with different disease statuses. PLoS One 2022; 17:e0276505. [DOI: 10.1371/journal.pone.0276505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 10/07/2022] [Indexed: 11/12/2022] Open
Abstract
Transcriptional responses to adjuvanted vaccines can vary substantially among populations. Interindividual diversity in levels of pathogen exposure, and thus of cell-mediated immunological memory at baseline, may be an important determinant of population differences in vaccine responses. Adjuvant System AS01 is used in licensed or candidate vaccines for several diseases and populations, yet the impact of pre-existing immunity on its adjuvanticity remains to be elucidated. In this exploratory post-hoc analysis of clinical trial samples (clinicalTrials.gov: NCT01424501), we compared gene expression patterns elicited by two immunizations with the candidate tuberculosis (TB) vaccine M72/AS01, between three groups of individuals with different levels of memory responses to TB antigens before vaccination. Analyzed were one group of TB-disease-treated individuals, and two groups of TB-disease-naïve individuals who were (based on purified protein derivative [PPD] skin-test results) stratified into PPD-positive and PPD-negative groups. Although TB-disease-treated individuals displayed slightly stronger transcriptional responses after each vaccine dose, functional gene signatures were overall not distinctly different between groups. Considering the similarities with the signatures found previously for other AS01-adjuvanted vaccines, many features of the response appeared to be adjuvant-driven. Across groups, cell proliferation-related signals at 7 days post-dose 1 were associated with increased anti-M72 antibody response magnitudes. These early signals were stronger in the TB-disease-treated group as compared to both TB-disease-naïve groups. Interindividual homogeneity in gene expression levels was also higher for TB-disease-treated individuals post-dose 1, but increased in all groups post-dose 2 to attain similar levels between the three groups. Altogether, strong cell-mediated memory responses at baseline accelerated and amplified transcriptional responses to a single dose of this AS01-adjuvanted vaccine, resulting in more homogenous gene expression levels among the highly-primed individuals as compared to the disease-naïve individuals. However, after a second vaccination, response heterogeneity decreased and was similar across groups, irrespective of the degree of immune memory acquired at baseline. This information can support the design and analysis of future clinical trials evaluating AS01-adjuvanted vaccines.
Collapse
|
18
|
Evaluating the Performance of PPE44, HSPX, ESAT-6 and CFP-10 Factors in Tuberculosis Subunit Vaccines. Curr Microbiol 2022; 79:260. [PMID: 35852636 PMCID: PMC9295111 DOI: 10.1007/s00284-022-02949-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 06/23/2022] [Indexed: 11/26/2022]
Abstract
Mycobacterium tuberculosis (M. tuberculosis) is an intracellular pathogen causing long-term infection in humans that mainly attacks macrophages and can escape from the immune system with the various mechanisms. The only FDA-approved vaccine against M. tuberculosis (MTB) is Mycobacterium bovis bacillus Calmette-Guérin (BCG). The protection of this vaccine typically lasts 10–15 years. Due to the increasing number of people becoming ill with MTB each year worldwide, the need to develop a new effective treatment against the disease has been increased. During the past two decades, the research budget for TB vaccine has quadrupled to over half a billion dollars. Most of these research projects were based on amplifying and stimulating the response of T-cells and developing the subunit vaccines. Additionally, these studies have demonstrated that secretory and immunogenic proteins of MTB play a key role in the pathogenesis of the bacteria. Therefore, these proteins were used to develop the new subunit vaccines. In this review, based on the use of these proteins in the successful new subunit vaccines, the PPE44, HSPX, CFP-10 and ESAT-6 antigens were selected and the role of these antigens in designing and developing new subunit vaccines against TB and for the prevention of TB were investigated.
Collapse
|
19
|
Facciolà A, Visalli G, Laganà A, Di Pietro A. An Overview of Vaccine Adjuvants: Current Evidence and Future Perspectives. Vaccines (Basel) 2022; 10:vaccines10050819. [PMID: 35632575 PMCID: PMC9147349 DOI: 10.3390/vaccines10050819] [Citation(s) in RCA: 71] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/18/2022] [Accepted: 05/20/2022] [Indexed: 01/27/2023] Open
Abstract
Vaccinations are one of the most important preventive tools against infectious diseases. Over time, many different types of vaccines have been developed concerning the antigen component. Adjuvants are essential elements that increase the efficacy of vaccination practises through many different actions, especially acting as carriers, depots, and stimulators of immune responses. For many years, few adjuvants have been included in vaccines, with aluminium salts being the most commonly used adjuvant. However, recent research has focused its attention on many different new compounds with effective adjuvant properties and improved safety. Modern technologies such as nanotechnologies and molecular biology have forcefully entered the production processes of both antigen and adjuvant components, thereby improving vaccine efficacy. Microparticles, emulsions, and immune stimulators are currently in the spotlight for their huge potential in vaccine production. Although studies have reported some potential side effects of vaccine adjuvants such as the recently recognised ASIA syndrome, the huge worth of vaccines remains unquestionable. Indeed, the recent COVID-19 pandemic has highlighted the importance of vaccines, especially in regard to managing future potential pandemics. In this field, research into adjuvants could play a leading role in the production of increasingly effective vaccines.
Collapse
Affiliation(s)
- Alessio Facciolà
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98125 Messina, Italy; (G.V.); (A.L.); (A.D.P.)
- Correspondence:
| | - Giuseppa Visalli
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98125 Messina, Italy; (G.V.); (A.L.); (A.D.P.)
| | - Antonio Laganà
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98125 Messina, Italy; (G.V.); (A.L.); (A.D.P.)
- Multi-Specialist Clinical Institute for Orthopaedic Trauma Care (COT), 98124 Messina, Italy
| | - Angela Di Pietro
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98125 Messina, Italy; (G.V.); (A.L.); (A.D.P.)
| |
Collapse
|
20
|
A century of attempts to develop an effective tuberculosis vaccine: Why they failed? Int Immunopharmacol 2022; 109:108791. [PMID: 35487086 DOI: 10.1016/j.intimp.2022.108791] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 04/18/2022] [Accepted: 04/18/2022] [Indexed: 11/23/2022]
Abstract
Tuberculosis (TB) remains a major global health problem despite widespread use of the Bacillus BCG vaccine. This situation is worsened by co-infection with HIV, and the development of multidrug-resistant Mycobacterium tuberculosis (Mtb) strains. Thus, novel vaccine candidates and improved vaccination strategies are urgently needed in order to reduce the incidence of TB and even to eradicate TB by 2050. Over the last few decades, 23 novel TB vaccines have entered into clinical trials, more than 13 new vaccines have reached various stages of preclinical development, and more than 50 potential candidates are in the discovery stage as next-generation vaccines. Nevertheless, why has a century of attempts to introduce an effective TB vaccine failed? Who should be blamed -scientists, human response, or Mtb strategies? Literature review reveals that the elimination of latent or active Mtb infections in a given population seems to be an epigenetic process. With a better understanding of the connections between bacterial infections and gene expression conditions in epigenetic events, opportunities arise in designing protective vaccines or therapeutic agents, particularly as epigenetic processes can be reversed. Therefore, this review provides a brief overview of different approaches towards novel vaccination strategies and the mechanisms underlying these approaches.
Collapse
|
21
|
van der Velden YU, Grobben M, Caniels TG, Burger JA, Poniman M, Oomen M, Rijnstra ESV, Tejjani K, Guerra D, Kempers R, Stegmann T, van Gils MJ, Sanders RW. A SARS-CoV-2 Wuhan spike virosome vaccine induces superior neutralization breadth compared to one using the Beta spike. Sci Rep 2022; 12:3884. [PMID: 35273217 PMCID: PMC8913678 DOI: 10.1038/s41598-022-07590-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 02/15/2022] [Indexed: 12/24/2022] Open
Abstract
Current SARS-CoV-2 vaccines are effective, but long-term protection is threatened by the emergence of virus variants. We generated a virosome vaccine containing the Beta spike protein and compared its immunogenicity in mice to a virosome vaccine containing the original Wuhan spike. Two administrations of the virosomes induced potent SARS-CoV-2 neutralizing antibodies in both vaccine groups. The level of autologous neutralization in Beta-vaccinated mice was similar to the level of autologous neutralization in Wuhan-vaccinated mice. However, heterologous neutralization to the Wuhan strain in Beta-vaccinated mice was 4.7-fold lower than autologous neutralization, whereas heterologous neutralization to the Beta strain in Wuhan-vaccinated mice was reduced by only 1.9-fold compared to autologous neutralization levels. In addition, neutralizing activity against the D614G, Alpha and Delta variants was also significantly lower after Beta spike vaccination than after Wuhan spike vaccination. Our results show that Beta spike vaccination induces inferior neutralization breadth. These results are informative for programs aimed to develop broadly active SARS-CoV-2 vaccines.
Collapse
Affiliation(s)
- Yme U van der Velden
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, Amsterdam Institute for Infection and Immunity, University of Amsterdam, 1105 AZ, Amsterdam, The Netherlands
| | - Marloes Grobben
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, Amsterdam Institute for Infection and Immunity, University of Amsterdam, 1105 AZ, Amsterdam, The Netherlands
| | - Tom G Caniels
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, Amsterdam Institute for Infection and Immunity, University of Amsterdam, 1105 AZ, Amsterdam, The Netherlands
| | - Judith A Burger
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, Amsterdam Institute for Infection and Immunity, University of Amsterdam, 1105 AZ, Amsterdam, The Netherlands
| | - Meliawati Poniman
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, Amsterdam Institute for Infection and Immunity, University of Amsterdam, 1105 AZ, Amsterdam, The Netherlands
| | - Melissa Oomen
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, Amsterdam Institute for Infection and Immunity, University of Amsterdam, 1105 AZ, Amsterdam, The Netherlands
| | - Esther Siteur-van Rijnstra
- Experimental Immunology, Amsterdam UMC, Amsterdam Institute for Infection and Immunity, University of Amsterdam, 1105 AZ, Amsterdam, The Netherlands
| | - Khadija Tejjani
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, Amsterdam Institute for Infection and Immunity, University of Amsterdam, 1105 AZ, Amsterdam, The Netherlands
| | - Denise Guerra
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, Amsterdam Institute for Infection and Immunity, University of Amsterdam, 1105 AZ, Amsterdam, The Netherlands
| | - Ronald Kempers
- Mymetics BV, JH Oortweg 21, 2333 CH, Leiden, The Netherlands
| | - Toon Stegmann
- Mymetics BV, JH Oortweg 21, 2333 CH, Leiden, The Netherlands
| | - Marit J van Gils
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, Amsterdam Institute for Infection and Immunity, University of Amsterdam, 1105 AZ, Amsterdam, The Netherlands
| | - Rogier W Sanders
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, Amsterdam Institute for Infection and Immunity, University of Amsterdam, 1105 AZ, Amsterdam, The Netherlands.
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, 1300 York Avenue, New York, NY, 10065, USA.
| |
Collapse
|
22
|
Larsen SE, Williams BD, Rais M, Coler RN, Baldwin SL. It Takes a Village: The Multifaceted Immune Response to Mycobacterium tuberculosis Infection and Vaccine-Induced Immunity. Front Immunol 2022; 13:840225. [PMID: 35359957 PMCID: PMC8960931 DOI: 10.3389/fimmu.2022.840225] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 02/08/2022] [Indexed: 11/18/2022] Open
Abstract
Despite co-evolving with humans for centuries and being intensely studied for decades, the immune correlates of protection against Mycobacterium tuberculosis (Mtb) have yet to be fully defined. This lapse in understanding is a major lag in the pipeline for evaluating and advancing efficacious vaccine candidates. While CD4+ T helper 1 (TH1) pro-inflammatory responses have a significant role in controlling Mtb infection, the historically narrow focus on this cell population may have eclipsed the characterization of other requisite arms of the immune system. Over the last decade, the tuberculosis (TB) research community has intentionally and intensely increased the breadth of investigation of other immune players. Here, we review mechanistic preclinical studies as well as clinical anecdotes that suggest the degree to which different cell types, such as NK cells, CD8+ T cells, γ δ T cells, and B cells, influence infection or disease prevention. Additionally, we categorically outline the observed role each major cell type plays in vaccine-induced immunity, including Mycobacterium bovis bacillus Calmette-Guérin (BCG). Novel vaccine candidates advancing through either the preclinical or clinical pipeline leverage different platforms (e.g., protein + adjuvant, vector-based, nucleic acid-based) to purposefully elicit complex immune responses, and we review those design rationales and results to date. The better we as a community understand the essential composition, magnitude, timing, and trafficking of immune responses against Mtb, the closer we are to reducing the severe disease burden and toll on human health inflicted by TB globally.
Collapse
Affiliation(s)
- Sasha E. Larsen
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle Children's Hospital, Seattle, WA, United States
| | - Brittany D. Williams
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle Children's Hospital, Seattle, WA, United States,Department of Global Health, University of Washington, Seattle, WA, United States
| | - Maham Rais
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle Children's Hospital, Seattle, WA, United States
| | - Rhea N. Coler
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle Children's Hospital, Seattle, WA, United States,Department of Global Health, University of Washington, Seattle, WA, United States,Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, United States
| | - Susan L. Baldwin
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle Children's Hospital, Seattle, WA, United States,*Correspondence: Susan L. Baldwin,
| |
Collapse
|
23
|
Mi J, Liang Y, Liang J, Gong W, Wang S, Zhang J, Li Z, Wu X. The Research Progress in Immunotherapy of Tuberculosis. Front Cell Infect Microbiol 2021; 11:763591. [PMID: 34869066 PMCID: PMC8634162 DOI: 10.3389/fcimb.2021.763591] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 10/27/2021] [Indexed: 01/13/2023] Open
Abstract
Tuberculosis (TB) is a serious public health problem worldwide. The combination of various anti-TB drugs is mainly used to treat TB in clinical practice. Despite the availability of effective antibiotics, effective treatment regimens still require long-term use of multiple drugs, leading to toxicity, low patient compliance, and the development of drug resistance. It has been confirmed that immune recognition, immune response, and immune regulation of Mycobacterium tuberculosis (Mtb) determine the occurrence, development, and outcome of diseases after Mtb infection. The research and development of TB-specific immunotherapy agents can effectively regulate the anti-TB immune response and provide a new approach toward the combined treatment of TB, thereby preventing and intervening in populations at high risk of TB infection. These immunotherapy agents will promote satisfactory progress in anti-TB treatment, achieving the goal of "ultra-short course chemotherapy." This review highlights the research progress in immunotherapy of TB, including immunoreactive substances, tuberculosis therapeutic vaccines, chemical agents, and cellular therapy.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Xueqiong Wu
- Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The 8th Medical Center of PLA General Hospital, Beijing, China
| |
Collapse
|
24
|
Ong GH, Lian BSX, Kawasaki T, Kawai T. Exploration of Pattern Recognition Receptor Agonists as Candidate Adjuvants. Front Cell Infect Microbiol 2021; 11:745016. [PMID: 34692565 PMCID: PMC8526852 DOI: 10.3389/fcimb.2021.745016] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 09/21/2021] [Indexed: 12/26/2022] Open
Abstract
Adjuvants are used to maximize the potency of vaccines by enhancing immune reactions. Components of adjuvants include pathogen-associated molecular patterns (PAMPs) and damage-associate molecular patterns (DAMPs) that are agonists for innate immune receptors. Innate immune responses are usually activated when pathogen recognition receptors (PRRs) recognize PAMPs derived from invading pathogens or DAMPs released by host cells upon tissue damage. Activation of innate immunity by PRR agonists in adjuvants activates acquired immune responses, which is crucial to enhance immune reactions against the targeted pathogen. For example, agonists for Toll-like receptors have yielded promising results as adjuvants, which target PRR as adjuvant candidates. However, a comprehensive understanding of the type of immunological reaction against agonists for PRRs is essential to ensure the safety and reliability of vaccine adjuvants. This review provides an overview of the current progress in development of PRR agonists as vaccine adjuvants, the molecular mechanisms that underlie activation of immune responses, and the enhancement of vaccine efficacy by these potential adjuvant candidates.
Collapse
Affiliation(s)
- Guang Han Ong
- Laboratory of Molecular Immunobiology, Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST), Ikoma, Japan
| | - Benedict Shi Xiang Lian
- Laboratory of Molecular Immunobiology, Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST), Ikoma, Japan
| | - Takumi Kawasaki
- Laboratory of Molecular Immunobiology, Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST), Ikoma, Japan
| | - Taro Kawai
- Laboratory of Molecular Immunobiology, Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST), Ikoma, Japan
| |
Collapse
|
25
|
Bonam SR, Rénia L, Tadepalli G, Bayry J, Kumar HMS. Plasmodium falciparum Malaria Vaccines and Vaccine Adjuvants. Vaccines (Basel) 2021; 9:1072. [PMID: 34696180 PMCID: PMC8541031 DOI: 10.3390/vaccines9101072] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 09/10/2021] [Accepted: 09/22/2021] [Indexed: 12/02/2022] Open
Abstract
Malaria-a parasite vector-borne disease-is a global health problem, and Plasmodium falciparum has proven to be the deadliest among Plasmodium spp., which causes malaria in humans. Symptoms of the disease range from mild fever and shivering to hemolytic anemia and neurological dysfunctions. The spread of drug resistance and the absence of effective vaccines has made malaria disease an ever-emerging problem. Although progress has been made in understanding the host response to the parasite, various aspects of its biology in its mammalian host are still unclear. In this context, there is a pressing demand for the development of effective preventive and therapeutic strategies, including new drugs and novel adjuvanted vaccines that elicit protective immunity. The present article provides an overview of the current knowledge of anti-malarial immunity against P. falciparum and different options of vaccine candidates in development. A special emphasis has been made on the mechanism of action of clinically used vaccine adjuvants.
Collapse
Affiliation(s)
- Srinivasa Reddy Bonam
- Institut National de la Santé et de la Recherche Médicale, Centre de Recherche des Cordeliers, Equipe-Immunopathologie et Immunointervention Thérapeutique, Sorbonne Université, Université de Paris, F-75006 Paris, France;
| | - Laurent Rénia
- A*STAR Infectious Diseases Labs, 8A Biomedical Grove, Singapore 138648, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore 308232, Singapore
| | - Ganesh Tadepalli
- Vaccine Immunology Laboratory, Organic Synthesis and Process Chemistry Division, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India;
| | - Jagadeesh Bayry
- Institut National de la Santé et de la Recherche Médicale, Centre de Recherche des Cordeliers, Equipe-Immunopathologie et Immunointervention Thérapeutique, Sorbonne Université, Université de Paris, F-75006 Paris, France;
- Biological Sciences & Engineering, Indian Institute of Technology Palakkad, Palakkad 678623, India
| | - Halmuthur Mahabalarao Sampath Kumar
- Vaccine Immunology Laboratory, Organic Synthesis and Process Chemistry Division, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India;
| |
Collapse
|
26
|
|
27
|
Rapaka RR, Cross AS, McArthur MA. Using Adjuvants to Drive T Cell Responses for Next-Generation Infectious Disease Vaccines. Vaccines (Basel) 2021; 9:vaccines9080820. [PMID: 34451945 PMCID: PMC8402546 DOI: 10.3390/vaccines9080820] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/16/2021] [Accepted: 07/20/2021] [Indexed: 12/12/2022] Open
Abstract
Using adjuvants to drive features of T cell responses to vaccine antigens is an important technological challenge in the design of new and improved vaccines against infections. Properties such as T helper cell function, T cell memory, and CD8+ T cell cytotoxicity may play critical roles in optimal and long-lived immunity through vaccination. Directly manipulating specific immune activation or antigen delivery pathways with adjuvants may selectively augment desired T cell responses in vaccination and may improve the effectiveness and durability of vaccine responses in humans. In this review we outline recently studied adjuvants in their potential for antigen presenting cell and T cell programming during vaccination, with an emphasis on what has been observed in studies in humans as available.
Collapse
|
28
|
Moris P, Bellanger A, Ofori-Anyinam O, Jongert E, Yarzabal Rodriguez JP, Janssens M. Whole blood can be used as an alternative to isolated peripheral blood mononuclear cells to measure in vitro specific T-cell responses in human samples. J Immunol Methods 2021; 492:112940. [PMID: 33493551 DOI: 10.1016/j.jim.2020.112940] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 10/30/2020] [Accepted: 12/07/2020] [Indexed: 11/19/2022]
Abstract
Vaccinology is confronted with diseases for which the control of T-cell responses by the vaccine is essential. Among the assays that have been designed to assess T-cell responses, intracellular cytokine staining (ICS) combined with flow cytometry is well-suited in the frame of clinical trials. This assay can be used starting from isolated peripheral blood mononuclear cells (PBMC) or from whole blood (WB), but firm equivalence between the two sample preparation methods has yet to be established. Therefore, we compared both methods by analyzing the frequency of antigen-specific CD4+ T cells expressing at least two of four immune markers in human samples taken from two independent clinical trials (NCT00397943 and NCT00805389) with a qualified ICS assay. In the first study, M72-specific CD4+ T-cell responses were analyzed using WB-ICS and PBMC-ICS in 293 samples. Of these, 128 were double positive (value ≥ lower limit of quantification [LLOQ] with both methods), 130 were double negative and only 35 sample results were discordant, leading to an overall agreement of 88.05%. When analyzing the 128 double positive samples, it was found that the geometric mean of ratios (GMR) for paired observations was 0.98, which indicates a very good alignment between the two methods. The Deming regression fitted between the methods also showed a good correlation with an estimated slope being 1.1085. In the second study, HBsAg-specific CD4+ T-cell responses were analyzed in 371 samples. Of these, 100 were double positive, 195 were double negative and 76 sample results were discordant, leading to an overall agreement of 79.51%. The GMR for paired observations was equal to 1.20, caused by a trend for overestimation in favor of the WB samples in the very high frequencies. The estimated slope of the Deming regression was 1.3057. In conclusion, we demonstrated that WB and PBMC methods of sample collection led to statistically concordant ICS results, indicating that WB-ICS is a suitable alternative to PBMC-ICS to analyze clinical trial samples.
Collapse
Affiliation(s)
| | | | | | - Erik Jongert
- GSK, Rue de l'Institut 89, 1330 Rixensart, Belgium.
| | | | | |
Collapse
|
29
|
Bosteels C, Fierens K, De Prijck S, Van Moorleghem J, Vanheerswynghels M, De Wolf C, Chalon A, Collignon C, Hammad H, Didierlaurent AM, Lambrecht BN. CCR2- and Flt3-Dependent Inflammatory Conventional Type 2 Dendritic Cells Are Necessary for the Induction of Adaptive Immunity by the Human Vaccine Adjuvant System AS01. Front Immunol 2021; 11:606805. [PMID: 33519816 PMCID: PMC7841299 DOI: 10.3389/fimmu.2020.606805] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 11/24/2020] [Indexed: 12/24/2022] Open
Abstract
The Adjuvant System AS01 contains monophosphoryl lipid A (MPL) and the saponin QS-21 in a liposomal formulation. AS01 is included in recently developed vaccines against malaria and varicella zoster virus. Like for many other adjuvants, induction of adaptive immunity by AS01 is highly dependent on the ability to recruit and activate dendritic cells (DCs) that migrate to the draining lymph node for T and B cell stimulation. The objective of this study was to more precisely address the contribution of the different conventional (cDC) and monocyte-derived DC (MC) subsets in the orchestration of the adaptive immune response after immunization with AS01 adjuvanted vaccine. The combination of MPL and QS-21 in AS01 induced strong recruitment of CD26+XCR1+ cDC1s, CD26+CD172+ cDC2s and a recently defined CCR2-dependent CD64-expressing inflammatory cDC2 (inf-cDC2) subset to the draining lymph node compared to antigen alone, while CD26-CD64+CD88+ MCs were barely detectable. At 24 h post-vaccination, cDC2s and inf-cDC2s were superior amongst the different subsets in priming antigen-specific CD4+ T cells, while simultaneously presenting antigen to CD8+ T cells. Diphtheria toxin (DT) mediated depletion of all DCs prior to vaccination completely abolished adaptive immune responses, while depletion 24 h after vaccination mainly affected CD8+ T cell responses. Vaccinated mice lacking Flt3 or the chemokine receptor CCR2 showed a marked deficit in inf-cDC2 recruitment and failed to raise proper antibody and T cell responses. Thus, the adjuvant activity of AS01 is associated with the potent activation of subsets of cDC2s, including the newly described inf-cDC2s.
Collapse
Affiliation(s)
- Cedric Bosteels
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Kaat Fierens
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Sofie De Prijck
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Justine Van Moorleghem
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Manon Vanheerswynghels
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Caroline De Wolf
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | | | | | - Hamida Hammad
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
- Department of Pulmonary Medicine, Erasmus University Medical Center Rotterdam, Rotterdam, Netherlands
| | | | - Bart N. Lambrecht
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
- Department of Pulmonary Medicine, Erasmus University Medical Center Rotterdam, Rotterdam, Netherlands
| |
Collapse
|
30
|
Sharma R, Palanisamy A, Dhama K, Mal G, Singh B, Singh KP. Exploring the possible use of saponin adjuvants in COVID-19 vaccine. Hum Vaccin Immunother 2020; 16:2944-2953. [PMID: 33295829 PMCID: PMC7738204 DOI: 10.1080/21645515.2020.1833579] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/22/2020] [Accepted: 10/02/2020] [Indexed: 12/30/2022] Open
Abstract
There is an urgent need for a safe, efficacious, and cost-effective vaccine for the coronavirus disease 2019 (COVID-19) pandemic caused by novel coronavirus strain, severe acute respiratory syndrome-2 (SARS-CoV-2). The protective immunity of certain types of vaccines can be enhanced by the addition of adjuvants. Many diverse classes of compounds have been identified as adjuvants, including mineral salts, microbial products, emulsions, saponins, cytokines, polymers, microparticles, and liposomes. Several saponins have been shown to stimulate both the Th1-type immune response and the production of cytotoxic T lymphocytes against endogenous antigens, making them very useful for subunit vaccines, especially those for intracellular pathogens. In this review, we discuss the structural characteristics, mechanisms of action, structure-activity relationship of saponins, biological activities, and use of saponins in various viral vaccines and their applicability to a SARS-CoV-2 vaccine.
Collapse
Affiliation(s)
- Rinku Sharma
- Disease Investigation Laboratory, ICAR-Indian Veterinary Research Institute, Regional Station, Palampur, India
| | - Arivukarasu Palanisamy
- Disease Investigation Laboratory, ICAR-Indian Veterinary Research Institute, Regional Station, Palampur, India
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Gorakh Mal
- Disease Investigation Laboratory, ICAR-Indian Veterinary Research Institute, Regional Station, Palampur, India
| | - Birbal Singh
- Disease Investigation Laboratory, ICAR-Indian Veterinary Research Institute, Regional Station, Palampur, India
| | - Karam Pal Singh
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| |
Collapse
|
31
|
Ullah I, Bibi S, Ul Haq I, Safia, Ullah K, Ge L, Shi X, Bin M, Niu H, Tian J, Zhu B. The Systematic Review and Meta-Analysis on the Immunogenicity and Safety of the Tuberculosis Subunit Vaccines M72/AS01 E and MVA85A. Front Immunol 2020; 11:1806. [PMID: 33133057 PMCID: PMC7578575 DOI: 10.3389/fimmu.2020.01806] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 07/06/2020] [Indexed: 01/30/2023] Open
Abstract
Background: Tuberculosis (TB) is a severe infectious disease with devastating effects on global public health. No TB vaccine has yet been approved for use on latent TB infections and healthy adults. In this study, we performed a systematic review and meta-analysis to evaluate the immunogenicity and safety of the M72/AS01E and MVA85A subunit vaccines. The M72/AS01E is a novel peptide-based vaccine currently in progress, which may increase the protection level against TB infection. The MVA85A was a viral vector-based TB subunit vaccine being used in the clinical trials. The vaccines mentioned above have been studied in various phase I/II clinical trials. Immunogenicity and safety is the first consideration for TB vaccine development. Methods: The PubMed, Embase, and Cochrane Library databases were searched for published studies (until October 2019) to find out information on the M72/AS01E and MVA85A candidate vaccines. The meta-analysis was conducted by applying the standard methods and processes established by the Cochrane Collaboration. Results: Five eligible randomized clinical trials (RCTs) were selected for the meta-analysis of M72/AS01E candidate vaccines. The analysis revealed that the M72/AS01E subunit vaccine had an abundance of polyfunctional M72-specific CD4+ T cells [standardized mean difference (SMD) = 2.37] in the vaccine group versus the control group, the highest seropositivity rate [relative risk (RR) = 5.09]. The M72/AS01E vaccinated group were found to be at high risk of local injection site redness (RR = 2.64), headache (RR = 1.59), malaise (RR = 3.55), myalgia (RR = 2.27), fatigue (RR = 2.16), pain (RR = 3.99), swelling (RR = 5.09), and fever (RR = 2.04) compared to the control groups. The incidences of common adverse events of M72/AS01E were local injection site redness, headache, malaise, myalgia, fatigue, pain, swelling, fever, etc. Six eligible RCTs were selected for the meta-analysis on MVA85A candidate vaccines. The analysis revealed that the subunit vaccine MVA85A had a higher abundance of overall pooled proportion polyfunctional MVA85A-specific CD4+ T cells SMD = 2.41 in the vaccine group vs. the control group, with the highest seropositivity rate [estimation rate (ER) = 0.55]. The MVA85A vaccinated group were found to be at high risk of local injection site redness (ER = 0.55), headache (ER = 0.40), malaise (ER = 0.29), pain (ER = 0.54), myalgia (ER = 0.31), and fever (ER = 0.20). The incidences of common adverse events of MVA85A were local injection site redness, headache, malaise, pain, myalgia, fever, etc. Conclusion: The M72/AS01E and MVA85A vaccines against TB are safe and had immunogenicity in diverse clinical trials. The M72/AS01E and MVA85A vaccines are associated with a mild adverse reaction. The meta-analysis on immunogenicity and safety of M72/AS01E and MVA85A vaccines provides useful information for the evaluation of available subunit vaccines in the clinic.
Collapse
Affiliation(s)
- Inayat Ullah
- Lanzhou Center for Tuberculosis Research and Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China.,Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation, Lanzhou University, Lanzhou, China
| | - Shaheen Bibi
- Lanzhou Center for Tuberculosis Research and Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China.,Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation, Lanzhou University, Lanzhou, China.,School of Life Science, Northwest Normal University, Lanzhou, China
| | - Ijaz Ul Haq
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, China
| | - Safia
- Pakistan Institute of Community Ophthalmology (PICO), Hayatabad Medical Complex, KMU, Peshawar, Pakistan
| | - Kifayat Ullah
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - Long Ge
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Xintong Shi
- Lanzhou Center for Tuberculosis Research and Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China.,Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation, Lanzhou University, Lanzhou, China
| | - Ma Bin
- Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation, Lanzhou University, Lanzhou, China
| | - Hongxia Niu
- Lanzhou Center for Tuberculosis Research and Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China.,Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation, Lanzhou University, Lanzhou, China
| | - Jinhui Tian
- Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation, Lanzhou University, Lanzhou, China
| | - Bingdong Zhu
- Lanzhou Center for Tuberculosis Research and Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China.,Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation, Lanzhou University, Lanzhou, China
| |
Collapse
|
32
|
Li Z, Zheng C, Terreni M, Tanzi L, Sollogoub M, Zhang Y. Novel Vaccine Candidates against Tuberculosis. Curr Med Chem 2020; 27:5095-5118. [DOI: 10.2174/0929867326666181126112124] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 11/08/2018] [Accepted: 11/19/2018] [Indexed: 12/18/2022]
Abstract
Ranking above AIDS, Tuberculosis (TB) is the ninth leading cause of death affecting and
killing many individuals every year. Drugs’ efficacy is limited by a series of problems such as Multi-
Drug Resistance (MDR) and Extensively-Drug Resistance (XDR). Meanwhile, the only licensed vaccine
BCG (Bacillus Calmette-Guérin) existing for over 90 years is not effective enough. Consequently,
it is essential to develop novel vaccines for TB prevention and immunotherapy. This paper
provides an overall review of the TB prevalence, immune system response against TB and recent
progress of TB vaccine research and development. Several vaccines in clinical trials are described as
well as LAM-based candidates.
Collapse
Affiliation(s)
- Zhihao Li
- Sorbonne Universite, CNRS, Institut Parisien de Chimie Moleculaire (UMR 8232), 4 Place Jussieu, 75005 Paris, France
| | - Changping Zheng
- Sorbonne Universite, CNRS, Institut Parisien de Chimie Moleculaire (UMR 8232), 4 Place Jussieu, 75005 Paris, France
| | - Marco Terreni
- Drug Sciences Department, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Lisa Tanzi
- Drug Sciences Department, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Matthieu Sollogoub
- Sorbonne Universite, CNRS, Institut Parisien de Chimie Moleculaire (UMR 8232), 4 Place Jussieu, 75005 Paris, France
| | - Yongmin Zhang
- Sorbonne Universite, CNRS, Institut Parisien de Chimie Moleculaire (UMR 8232), 4 Place Jussieu, 75005 Paris, France
| |
Collapse
|
33
|
Gupta T, Gupta SK. Potential adjuvants for the development of a SARS-CoV-2 vaccine based on experimental results from similar coronaviruses. Int Immunopharmacol 2020; 86:106717. [PMID: 32585611 PMCID: PMC7301105 DOI: 10.1016/j.intimp.2020.106717] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 06/03/2020] [Accepted: 06/15/2020] [Indexed: 02/06/2023]
Abstract
The extensive efforts around the globe are being made to develop a suitable vaccine against COVID-19 (Coronavirus Disease-19) caused by SARS-CoV-2 (Severe Acute Respiratory Syndrome Coronavirus-2). An effective vaccine should be able to induce high titers of neutralizing antibodies to prevent the virus from attaching to the host cell receptors. However, to elicit the protective levels of antibodies, a vaccine may require multiple doses or assistance from other immunostimulatory molecules. Further, the vaccine should be able to induce protective levels of antibodies rapidly with the least amount of antigen used. This decreases the cost of a vaccine and makes it affordable. As the pandemic has hit most countries across the globe, there will be an overwhelming demand for the vaccine in a quick time. Incorporating a suitable adjuvant in a SARS-CoV-2 vaccine may address these requirements. This review paper will discuss the experimental results of the adjuvanted vaccine studies with similar coronaviruses (CoVs) which might be useful to select an appropriate adjuvant for a vaccine against rapidly emergingSARS-CoV-2. We also discuss the current progress in the development of adjuvanted vaccines against the disease.
Collapse
Affiliation(s)
- Tania Gupta
- Dr GC Negi College of Veterinary and Animal Sciences, Palampur 176062, Himachal Pradesh, India.
| | - Shishir K Gupta
- CSIR-Central Drug Research Institute, Lucknow 226031, Uttar Pradesh, India
| |
Collapse
|
34
|
Li J, Zhao A, Tang J, Wang G, Shi Y, Zhan L, Qin C. Tuberculosis vaccine development: from classic to clinical candidates. Eur J Clin Microbiol Infect Dis 2020; 39:1405-1425. [PMID: 32060754 PMCID: PMC7223099 DOI: 10.1007/s10096-020-03843-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 02/05/2020] [Indexed: 12/12/2022]
Abstract
Bacillus Calmette-Guérin (BCG) has been in use for nearly 100 years and is the only licensed TB vaccine. While BCG provides protection against disseminated TB in infants, its protection against adult pulmonary tuberculosis (PTB) is variable. To achieve the ambitious goal of eradicating TB worldwide by 2050, there is an urgent need to develop novel TB vaccines. Currently, there are more than a dozen novel TB vaccines including prophylactic and therapeutic at different stages of clinical research. This literature review provides an overview of the clinical status of candidate TB vaccines and discusses the challenges and future development trends of novel TB vaccine research in combination with the efficacy of evaluation of TB vaccines, provides insight for the development of safer and more efficient vaccines, and may inspire new ideas for the prevention of TB.
Collapse
Affiliation(s)
- Junli Li
- NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing, 100021, People's Republic of China
- Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infectious, Beijing, 100021, People's Republic of China
- Key Laboratory of Human Diseases Animal Model, State Administration of Traditional Chinese Medicine, Beijing, 100021, People's Republic of China
- Tuberculosis Center, Chinese Academy of Medical Sciences (CAMS), Beijing, 100021, People's Republic of China
| | - Aihua Zhao
- Division of Tuberculosis Vaccines, National Institutes for Food and Drug Control (NIFDC), Beijing, 102629, People's Republic of China
| | - Jun Tang
- NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing, 100021, People's Republic of China
- Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infectious, Beijing, 100021, People's Republic of China
- Key Laboratory of Human Diseases Animal Model, State Administration of Traditional Chinese Medicine, Beijing, 100021, People's Republic of China
- Tuberculosis Center, Chinese Academy of Medical Sciences (CAMS), Beijing, 100021, People's Republic of China
| | - Guozhi Wang
- Division of Tuberculosis Vaccines, National Institutes for Food and Drug Control (NIFDC), Beijing, 102629, People's Republic of China
| | - Yanan Shi
- NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing, 100021, People's Republic of China
- Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infectious, Beijing, 100021, People's Republic of China
- Key Laboratory of Human Diseases Animal Model, State Administration of Traditional Chinese Medicine, Beijing, 100021, People's Republic of China
- Tuberculosis Center, Chinese Academy of Medical Sciences (CAMS), Beijing, 100021, People's Republic of China
| | - Lingjun Zhan
- NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing, 100021, People's Republic of China.
- Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infectious, Beijing, 100021, People's Republic of China.
- Key Laboratory of Human Diseases Animal Model, State Administration of Traditional Chinese Medicine, Beijing, 100021, People's Republic of China.
- Tuberculosis Center, Chinese Academy of Medical Sciences (CAMS), Beijing, 100021, People's Republic of China.
| | - Chuan Qin
- NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing, 100021, People's Republic of China.
- Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infectious, Beijing, 100021, People's Republic of China.
- Key Laboratory of Human Diseases Animal Model, State Administration of Traditional Chinese Medicine, Beijing, 100021, People's Republic of China.
- Tuberculosis Center, Chinese Academy of Medical Sciences (CAMS), Beijing, 100021, People's Republic of China.
| |
Collapse
|
35
|
Scriba TJ, Netea MG, Ginsberg AM. Key recent advances in TB vaccine development and understanding of protective immune responses against Mycobacterium tuberculosis. Semin Immunol 2020; 50:101431. [PMID: 33279383 PMCID: PMC7786643 DOI: 10.1016/j.smim.2020.101431] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 11/02/2020] [Accepted: 11/16/2020] [Indexed: 12/20/2022]
Abstract
Tuberculosis is the leading infectious disease killer globally due to a single pathogen. Despite wide deployment of standard drug regimens, modern diagnostics and a vaccine (bacille Calmette Guerin, BCG), the global tuberculosis epidemic is inadequately controlled. Novel, effective vaccine(s) are a crucial element of the World Health Organization End TB Strategy. TB vaccine research and development has recently been catalysed by several factors, including a revised strategy focused first on preventing pulmonary TB in adolescents and adults who are the main source of transmission, and encouraging evaluations of novel efficacy endpoints. Renewed enthusiasm for TB vaccine research has also been stimulated by recent preclinical and clinical advancements. These include new insights into underlying protective immune responses, including potential roles for 'trained' innate immunity and Th1/Th17 CD4+ (and CD8+) T cells. The field has been further reinvigorated by two positive proof of concept efficacy trials: one evaluating a potential new use of BCG in preventing high risk populations from sustained Mycobacterium tuberculosis infection and the second evaluating a novel, adjuvanted, recombinant protein vaccine candidate (M72/AS01E) for prevention of disease in adults already infected. Fourteen additional candidates are currently in various phases of clinical evaluation and multiple approaches to next generation vaccines are in discovery and preclinical development. The two positive efficacy trials and recent studies in nonhuman primates have enabled the first opportunities to discover candidate vaccine-induced correlates of protection, an effort being undertaken by a broad research consortium.
Collapse
Affiliation(s)
- Thomas J Scriba
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine and Division of Immunology, Department of Pathology, University of Cape Town, Cape Town, South Africa.
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Centre, Nijmegen, Geert Grooteplein 8, 6525 GA Nijmegen, the Netherlands; Department of Genomics & Immunoregulation, Life and Medical Sciences Institute (LIMES), University of Bonn, Germany.
| | - Ann M Ginsberg
- Bill & Melinda Gates Foundation, Division of Global Health, Washington DC, United States.
| |
Collapse
|
36
|
Abstract
Tuberculosis (TB) vaccine research has reached a unique point in time. Breakthrough findings in both the basic immunology of Mycobacterium tuberculosis infection and the clinical development of TB vaccines suggest, for the first time since the discovery of the Mycobacterium bovis bacillus Calmette-Guérin (BCG) vaccine more than a century ago, that a novel, efficacious TB vaccine is imminent. Here, we review recent data in the light of our current understanding of the immunology of TB infection and discuss the identification of biomarkers for vaccine efficacy and the next steps in the quest for an efficacious vaccine that can control the global TB epidemic.
Collapse
|
37
|
Kaufmann SHE. Vaccination Against Tuberculosis: Revamping BCG by Molecular Genetics Guided by Immunology. Front Immunol 2020; 11:316. [PMID: 32174919 PMCID: PMC7056705 DOI: 10.3389/fimmu.2020.00316] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 02/07/2020] [Indexed: 12/21/2022] Open
Abstract
Tuberculosis (TB) remains a major health threat. Although a vaccine has been available for almost 100 years termed Bacille Calmette-Guérin (BCG), it is insufficient and better vaccines are urgently needed. This treatise describes first the basic immunology and pathology of TB with an emphasis on the role of T lymphocytes. Better understanding of the immune response to Mycobacterium tuberculosis (Mtb) serves as blueprint for rational design of TB vaccines. Then, disease epidemiology and the benefits and failures of BCG vaccination will be presented. Next, types of novel vaccine candidates are being discussed. These include: (i) antigen/adjuvant subunit vaccines; (ii) viral vectored vaccines; and (III) whole cell mycobacterial vaccines which come as live recombinant vaccines or as dead whole cell or multi-component vaccines. Subsequently, the major endpoints of clinical trials as well as administration schemes are being described. Major endpoints for clinical trials are prevention of infection (PoI), prevention of disease (PoD), and prevention of recurrence (PoR). Vaccines can be administered either pre-exposure or post-exposure with Mtb. A central part of this treatise is the description of the viable BCG-based vaccine, VPM1002, currently undergoing phase III clinical trial assessment. Finally, new approaches which could facilitate design of refined next generation TB vaccines will be discussed.
Collapse
Affiliation(s)
- Stefan H. E. Kaufmann
- Max Planck Institute for Infection Biology, Berlin, Germany
- Hagler Institute for Advanced Study, Texas A&M University, College Station, TX, United States
| |
Collapse
|
38
|
Tait DR, Hatherill M, Van Der Meeren O, Ginsberg AM, Van Brakel E, Salaun B, Scriba TJ, Akite EJ, Ayles HM, Bollaerts A, Demoitié MA, Diacon A, Evans TG, Gillard P, Hellström E, Innes JC, Lempicki M, Malahleha M, Martinson N, Mesia Vela D, Muyoyeta M, Nduba V, Pascal TG, Tameris M, Thienemann F, Wilkinson RJ, Roman F. Final Analysis of a Trial of M72/AS01 E Vaccine to Prevent Tuberculosis. N Engl J Med 2019; 381:2429-2439. [PMID: 31661198 DOI: 10.1056/nejmoa1909953] [Citation(s) in RCA: 308] [Impact Index Per Article: 61.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
BACKGROUND Results of an earlier analysis of a trial of the M72/AS01E candidate vaccine against Mycobacterium tuberculosis showed that in infected adults, the vaccine provided 54.0% protection against active pulmonary tuberculosis disease, without evident safety concerns. We now report the results of the 3-year final analysis of efficacy, safety, and immunogenicity. METHODS From August 2014 through November 2015, we enrolled adults 18 to 50 years of age with M. tuberculosis infection (defined by positive results on interferon-γ release assay) without evidence of active tuberculosis disease at centers in Kenya, South Africa, and Zambia. Participants were randomly assigned in a 1:1 ratio to receive two doses of either M72/AS01E or placebo, administered 1 month apart. The primary objective was to evaluate the efficacy of M72/AS01E to prevent active pulmonary tuberculosis disease according to the first case definition (bacteriologically confirmed pulmonary tuberculosis not associated with human immunodeficiency virus infection). Participants were followed for 3 years after the second dose. Participants with clinical suspicion of tuberculosis provided sputum samples for polymerase-chain-reaction assay, mycobacterial culture, or both. Humoral and cell-mediated immune responses were evaluated until month 36 in a subgroup of 300 participants. Safety was assessed in all participants who received at least one dose of M72/AS01E or placebo. RESULTS A total of 3575 participants underwent randomization, of whom 3573 received at least one dose of M72/AS01E or placebo, and 3330 received both planned doses. Among the 3289 participants in the according-to-protocol efficacy cohort, 13 of the 1626 participants in the M72/AS01E group, as compared with 26 of the 1663 participants in the placebo group, had cases of tuberculosis that met the first case definition (incidence, 0.3 vs. 0.6 cases per 100 person-years). The vaccine efficacy at month 36 was 49.7% (90% confidence interval [CI], 12.1 to 71.2; 95% CI, 2.1 to 74.2). Among participants in the M72/AS01E group, the concentrations of M72-specific antibodies and the frequencies of M72-specific CD4+ T cells increased after the first dose and were sustained throughout the follow-up period. Serious adverse events, potential immune-mediated diseases, and deaths occurred with similar frequencies in the two groups. CONCLUSIONS Among adults infected with M. tuberculosis, vaccination with M72/AS01E elicited an immune response and provided protection against progression to pulmonary tuberculosis disease for at least 3 years. (Funded by GlaxoSmithKline Biologicals and Aeras; ClinicalTrials.gov number, NCT01755598.).
Collapse
Affiliation(s)
- Dereck R Tait
- From the International AIDS Vaccine Initiative (IAVI) (D.R.T.), the South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine and Division of Immunology, Department of Pathology (M.H., T.J.S., M.T.), and the Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine (F.T., R.J.W.), University of Cape Town, TASK Applied Science (E.V.B., A.D.), and Stellenbosch University (A.D.), Cape Town, the Be Part Yoluntu Centre, Paarl (E.H.), the Aurum Institute, Klerksdorp Research Centre, Klerksdorp (J.C.I.), the Aurum Institute, Tembisa Research Centre, Tembisa (J.C.I.), Setshaba Research Centre, Pretoria (M. Malahleha), and the Perinatal HIV Research Unit, Chris Hani Baragwanath Hospital, South African Medical Research Council Collaborating Centre for HIV/AIDS and TB, and National Research Foundation Centre of Excellence for Biomedical Tuberculosis Research, University of the Witwatersrand, Johannesburg (N.M.) - all in South Africa; GlaxoSmithKline, Wavre, and GlaxoSmithKline, Rixensart - both in Belgium (O.V.D.M., B.S., E.J.A., A.B., M.-A.D., P.G., D.M.V., T.G.P., F.R.); the IAVI, New York (A.M.G., T.G.E., M.L.); Zambart, University of Zambia (H.M.A.), and the Centre for Infectious Disease Research in Zambia (M. Muyoyeta) - both in Lusaka; the London School of Hygiene and Tropical Medicine (H.M.A.) and Francis Crick Institute and the Department of Medicine, Imperial College London (R.J.W.) - all in London; Johns Hopkins University Center for Tuberculosis Research, Baltimore (N.M.); the Kenya Medical Research Institute Centre for Respiratory Diseases Research, Nairobi (V.N.); and the Department of Internal Medicine, University Hospital of Zurich, Zurich, Switzerland (F.T.)
| | - Mark Hatherill
- From the International AIDS Vaccine Initiative (IAVI) (D.R.T.), the South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine and Division of Immunology, Department of Pathology (M.H., T.J.S., M.T.), and the Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine (F.T., R.J.W.), University of Cape Town, TASK Applied Science (E.V.B., A.D.), and Stellenbosch University (A.D.), Cape Town, the Be Part Yoluntu Centre, Paarl (E.H.), the Aurum Institute, Klerksdorp Research Centre, Klerksdorp (J.C.I.), the Aurum Institute, Tembisa Research Centre, Tembisa (J.C.I.), Setshaba Research Centre, Pretoria (M. Malahleha), and the Perinatal HIV Research Unit, Chris Hani Baragwanath Hospital, South African Medical Research Council Collaborating Centre for HIV/AIDS and TB, and National Research Foundation Centre of Excellence for Biomedical Tuberculosis Research, University of the Witwatersrand, Johannesburg (N.M.) - all in South Africa; GlaxoSmithKline, Wavre, and GlaxoSmithKline, Rixensart - both in Belgium (O.V.D.M., B.S., E.J.A., A.B., M.-A.D., P.G., D.M.V., T.G.P., F.R.); the IAVI, New York (A.M.G., T.G.E., M.L.); Zambart, University of Zambia (H.M.A.), and the Centre for Infectious Disease Research in Zambia (M. Muyoyeta) - both in Lusaka; the London School of Hygiene and Tropical Medicine (H.M.A.) and Francis Crick Institute and the Department of Medicine, Imperial College London (R.J.W.) - all in London; Johns Hopkins University Center for Tuberculosis Research, Baltimore (N.M.); the Kenya Medical Research Institute Centre for Respiratory Diseases Research, Nairobi (V.N.); and the Department of Internal Medicine, University Hospital of Zurich, Zurich, Switzerland (F.T.)
| | - Olivier Van Der Meeren
- From the International AIDS Vaccine Initiative (IAVI) (D.R.T.), the South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine and Division of Immunology, Department of Pathology (M.H., T.J.S., M.T.), and the Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine (F.T., R.J.W.), University of Cape Town, TASK Applied Science (E.V.B., A.D.), and Stellenbosch University (A.D.), Cape Town, the Be Part Yoluntu Centre, Paarl (E.H.), the Aurum Institute, Klerksdorp Research Centre, Klerksdorp (J.C.I.), the Aurum Institute, Tembisa Research Centre, Tembisa (J.C.I.), Setshaba Research Centre, Pretoria (M. Malahleha), and the Perinatal HIV Research Unit, Chris Hani Baragwanath Hospital, South African Medical Research Council Collaborating Centre for HIV/AIDS and TB, and National Research Foundation Centre of Excellence for Biomedical Tuberculosis Research, University of the Witwatersrand, Johannesburg (N.M.) - all in South Africa; GlaxoSmithKline, Wavre, and GlaxoSmithKline, Rixensart - both in Belgium (O.V.D.M., B.S., E.J.A., A.B., M.-A.D., P.G., D.M.V., T.G.P., F.R.); the IAVI, New York (A.M.G., T.G.E., M.L.); Zambart, University of Zambia (H.M.A.), and the Centre for Infectious Disease Research in Zambia (M. Muyoyeta) - both in Lusaka; the London School of Hygiene and Tropical Medicine (H.M.A.) and Francis Crick Institute and the Department of Medicine, Imperial College London (R.J.W.) - all in London; Johns Hopkins University Center for Tuberculosis Research, Baltimore (N.M.); the Kenya Medical Research Institute Centre for Respiratory Diseases Research, Nairobi (V.N.); and the Department of Internal Medicine, University Hospital of Zurich, Zurich, Switzerland (F.T.)
| | - Ann M Ginsberg
- From the International AIDS Vaccine Initiative (IAVI) (D.R.T.), the South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine and Division of Immunology, Department of Pathology (M.H., T.J.S., M.T.), and the Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine (F.T., R.J.W.), University of Cape Town, TASK Applied Science (E.V.B., A.D.), and Stellenbosch University (A.D.), Cape Town, the Be Part Yoluntu Centre, Paarl (E.H.), the Aurum Institute, Klerksdorp Research Centre, Klerksdorp (J.C.I.), the Aurum Institute, Tembisa Research Centre, Tembisa (J.C.I.), Setshaba Research Centre, Pretoria (M. Malahleha), and the Perinatal HIV Research Unit, Chris Hani Baragwanath Hospital, South African Medical Research Council Collaborating Centre for HIV/AIDS and TB, and National Research Foundation Centre of Excellence for Biomedical Tuberculosis Research, University of the Witwatersrand, Johannesburg (N.M.) - all in South Africa; GlaxoSmithKline, Wavre, and GlaxoSmithKline, Rixensart - both in Belgium (O.V.D.M., B.S., E.J.A., A.B., M.-A.D., P.G., D.M.V., T.G.P., F.R.); the IAVI, New York (A.M.G., T.G.E., M.L.); Zambart, University of Zambia (H.M.A.), and the Centre for Infectious Disease Research in Zambia (M. Muyoyeta) - both in Lusaka; the London School of Hygiene and Tropical Medicine (H.M.A.) and Francis Crick Institute and the Department of Medicine, Imperial College London (R.J.W.) - all in London; Johns Hopkins University Center for Tuberculosis Research, Baltimore (N.M.); the Kenya Medical Research Institute Centre for Respiratory Diseases Research, Nairobi (V.N.); and the Department of Internal Medicine, University Hospital of Zurich, Zurich, Switzerland (F.T.)
| | - Elana Van Brakel
- From the International AIDS Vaccine Initiative (IAVI) (D.R.T.), the South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine and Division of Immunology, Department of Pathology (M.H., T.J.S., M.T.), and the Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine (F.T., R.J.W.), University of Cape Town, TASK Applied Science (E.V.B., A.D.), and Stellenbosch University (A.D.), Cape Town, the Be Part Yoluntu Centre, Paarl (E.H.), the Aurum Institute, Klerksdorp Research Centre, Klerksdorp (J.C.I.), the Aurum Institute, Tembisa Research Centre, Tembisa (J.C.I.), Setshaba Research Centre, Pretoria (M. Malahleha), and the Perinatal HIV Research Unit, Chris Hani Baragwanath Hospital, South African Medical Research Council Collaborating Centre for HIV/AIDS and TB, and National Research Foundation Centre of Excellence for Biomedical Tuberculosis Research, University of the Witwatersrand, Johannesburg (N.M.) - all in South Africa; GlaxoSmithKline, Wavre, and GlaxoSmithKline, Rixensart - both in Belgium (O.V.D.M., B.S., E.J.A., A.B., M.-A.D., P.G., D.M.V., T.G.P., F.R.); the IAVI, New York (A.M.G., T.G.E., M.L.); Zambart, University of Zambia (H.M.A.), and the Centre for Infectious Disease Research in Zambia (M. Muyoyeta) - both in Lusaka; the London School of Hygiene and Tropical Medicine (H.M.A.) and Francis Crick Institute and the Department of Medicine, Imperial College London (R.J.W.) - all in London; Johns Hopkins University Center for Tuberculosis Research, Baltimore (N.M.); the Kenya Medical Research Institute Centre for Respiratory Diseases Research, Nairobi (V.N.); and the Department of Internal Medicine, University Hospital of Zurich, Zurich, Switzerland (F.T.)
| | - Bruno Salaun
- From the International AIDS Vaccine Initiative (IAVI) (D.R.T.), the South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine and Division of Immunology, Department of Pathology (M.H., T.J.S., M.T.), and the Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine (F.T., R.J.W.), University of Cape Town, TASK Applied Science (E.V.B., A.D.), and Stellenbosch University (A.D.), Cape Town, the Be Part Yoluntu Centre, Paarl (E.H.), the Aurum Institute, Klerksdorp Research Centre, Klerksdorp (J.C.I.), the Aurum Institute, Tembisa Research Centre, Tembisa (J.C.I.), Setshaba Research Centre, Pretoria (M. Malahleha), and the Perinatal HIV Research Unit, Chris Hani Baragwanath Hospital, South African Medical Research Council Collaborating Centre for HIV/AIDS and TB, and National Research Foundation Centre of Excellence for Biomedical Tuberculosis Research, University of the Witwatersrand, Johannesburg (N.M.) - all in South Africa; GlaxoSmithKline, Wavre, and GlaxoSmithKline, Rixensart - both in Belgium (O.V.D.M., B.S., E.J.A., A.B., M.-A.D., P.G., D.M.V., T.G.P., F.R.); the IAVI, New York (A.M.G., T.G.E., M.L.); Zambart, University of Zambia (H.M.A.), and the Centre for Infectious Disease Research in Zambia (M. Muyoyeta) - both in Lusaka; the London School of Hygiene and Tropical Medicine (H.M.A.) and Francis Crick Institute and the Department of Medicine, Imperial College London (R.J.W.) - all in London; Johns Hopkins University Center for Tuberculosis Research, Baltimore (N.M.); the Kenya Medical Research Institute Centre for Respiratory Diseases Research, Nairobi (V.N.); and the Department of Internal Medicine, University Hospital of Zurich, Zurich, Switzerland (F.T.)
| | - Thomas J Scriba
- From the International AIDS Vaccine Initiative (IAVI) (D.R.T.), the South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine and Division of Immunology, Department of Pathology (M.H., T.J.S., M.T.), and the Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine (F.T., R.J.W.), University of Cape Town, TASK Applied Science (E.V.B., A.D.), and Stellenbosch University (A.D.), Cape Town, the Be Part Yoluntu Centre, Paarl (E.H.), the Aurum Institute, Klerksdorp Research Centre, Klerksdorp (J.C.I.), the Aurum Institute, Tembisa Research Centre, Tembisa (J.C.I.), Setshaba Research Centre, Pretoria (M. Malahleha), and the Perinatal HIV Research Unit, Chris Hani Baragwanath Hospital, South African Medical Research Council Collaborating Centre for HIV/AIDS and TB, and National Research Foundation Centre of Excellence for Biomedical Tuberculosis Research, University of the Witwatersrand, Johannesburg (N.M.) - all in South Africa; GlaxoSmithKline, Wavre, and GlaxoSmithKline, Rixensart - both in Belgium (O.V.D.M., B.S., E.J.A., A.B., M.-A.D., P.G., D.M.V., T.G.P., F.R.); the IAVI, New York (A.M.G., T.G.E., M.L.); Zambart, University of Zambia (H.M.A.), and the Centre for Infectious Disease Research in Zambia (M. Muyoyeta) - both in Lusaka; the London School of Hygiene and Tropical Medicine (H.M.A.) and Francis Crick Institute and the Department of Medicine, Imperial College London (R.J.W.) - all in London; Johns Hopkins University Center for Tuberculosis Research, Baltimore (N.M.); the Kenya Medical Research Institute Centre for Respiratory Diseases Research, Nairobi (V.N.); and the Department of Internal Medicine, University Hospital of Zurich, Zurich, Switzerland (F.T.)
| | - Elaine J Akite
- From the International AIDS Vaccine Initiative (IAVI) (D.R.T.), the South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine and Division of Immunology, Department of Pathology (M.H., T.J.S., M.T.), and the Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine (F.T., R.J.W.), University of Cape Town, TASK Applied Science (E.V.B., A.D.), and Stellenbosch University (A.D.), Cape Town, the Be Part Yoluntu Centre, Paarl (E.H.), the Aurum Institute, Klerksdorp Research Centre, Klerksdorp (J.C.I.), the Aurum Institute, Tembisa Research Centre, Tembisa (J.C.I.), Setshaba Research Centre, Pretoria (M. Malahleha), and the Perinatal HIV Research Unit, Chris Hani Baragwanath Hospital, South African Medical Research Council Collaborating Centre for HIV/AIDS and TB, and National Research Foundation Centre of Excellence for Biomedical Tuberculosis Research, University of the Witwatersrand, Johannesburg (N.M.) - all in South Africa; GlaxoSmithKline, Wavre, and GlaxoSmithKline, Rixensart - both in Belgium (O.V.D.M., B.S., E.J.A., A.B., M.-A.D., P.G., D.M.V., T.G.P., F.R.); the IAVI, New York (A.M.G., T.G.E., M.L.); Zambart, University of Zambia (H.M.A.), and the Centre for Infectious Disease Research in Zambia (M. Muyoyeta) - both in Lusaka; the London School of Hygiene and Tropical Medicine (H.M.A.) and Francis Crick Institute and the Department of Medicine, Imperial College London (R.J.W.) - all in London; Johns Hopkins University Center for Tuberculosis Research, Baltimore (N.M.); the Kenya Medical Research Institute Centre for Respiratory Diseases Research, Nairobi (V.N.); and the Department of Internal Medicine, University Hospital of Zurich, Zurich, Switzerland (F.T.)
| | - Helen M Ayles
- From the International AIDS Vaccine Initiative (IAVI) (D.R.T.), the South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine and Division of Immunology, Department of Pathology (M.H., T.J.S., M.T.), and the Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine (F.T., R.J.W.), University of Cape Town, TASK Applied Science (E.V.B., A.D.), and Stellenbosch University (A.D.), Cape Town, the Be Part Yoluntu Centre, Paarl (E.H.), the Aurum Institute, Klerksdorp Research Centre, Klerksdorp (J.C.I.), the Aurum Institute, Tembisa Research Centre, Tembisa (J.C.I.), Setshaba Research Centre, Pretoria (M. Malahleha), and the Perinatal HIV Research Unit, Chris Hani Baragwanath Hospital, South African Medical Research Council Collaborating Centre for HIV/AIDS and TB, and National Research Foundation Centre of Excellence for Biomedical Tuberculosis Research, University of the Witwatersrand, Johannesburg (N.M.) - all in South Africa; GlaxoSmithKline, Wavre, and GlaxoSmithKline, Rixensart - both in Belgium (O.V.D.M., B.S., E.J.A., A.B., M.-A.D., P.G., D.M.V., T.G.P., F.R.); the IAVI, New York (A.M.G., T.G.E., M.L.); Zambart, University of Zambia (H.M.A.), and the Centre for Infectious Disease Research in Zambia (M. Muyoyeta) - both in Lusaka; the London School of Hygiene and Tropical Medicine (H.M.A.) and Francis Crick Institute and the Department of Medicine, Imperial College London (R.J.W.) - all in London; Johns Hopkins University Center for Tuberculosis Research, Baltimore (N.M.); the Kenya Medical Research Institute Centre for Respiratory Diseases Research, Nairobi (V.N.); and the Department of Internal Medicine, University Hospital of Zurich, Zurich, Switzerland (F.T.)
| | - Anne Bollaerts
- From the International AIDS Vaccine Initiative (IAVI) (D.R.T.), the South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine and Division of Immunology, Department of Pathology (M.H., T.J.S., M.T.), and the Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine (F.T., R.J.W.), University of Cape Town, TASK Applied Science (E.V.B., A.D.), and Stellenbosch University (A.D.), Cape Town, the Be Part Yoluntu Centre, Paarl (E.H.), the Aurum Institute, Klerksdorp Research Centre, Klerksdorp (J.C.I.), the Aurum Institute, Tembisa Research Centre, Tembisa (J.C.I.), Setshaba Research Centre, Pretoria (M. Malahleha), and the Perinatal HIV Research Unit, Chris Hani Baragwanath Hospital, South African Medical Research Council Collaborating Centre for HIV/AIDS and TB, and National Research Foundation Centre of Excellence for Biomedical Tuberculosis Research, University of the Witwatersrand, Johannesburg (N.M.) - all in South Africa; GlaxoSmithKline, Wavre, and GlaxoSmithKline, Rixensart - both in Belgium (O.V.D.M., B.S., E.J.A., A.B., M.-A.D., P.G., D.M.V., T.G.P., F.R.); the IAVI, New York (A.M.G., T.G.E., M.L.); Zambart, University of Zambia (H.M.A.), and the Centre for Infectious Disease Research in Zambia (M. Muyoyeta) - both in Lusaka; the London School of Hygiene and Tropical Medicine (H.M.A.) and Francis Crick Institute and the Department of Medicine, Imperial College London (R.J.W.) - all in London; Johns Hopkins University Center for Tuberculosis Research, Baltimore (N.M.); the Kenya Medical Research Institute Centre for Respiratory Diseases Research, Nairobi (V.N.); and the Department of Internal Medicine, University Hospital of Zurich, Zurich, Switzerland (F.T.)
| | - Marie-Ange Demoitié
- From the International AIDS Vaccine Initiative (IAVI) (D.R.T.), the South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine and Division of Immunology, Department of Pathology (M.H., T.J.S., M.T.), and the Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine (F.T., R.J.W.), University of Cape Town, TASK Applied Science (E.V.B., A.D.), and Stellenbosch University (A.D.), Cape Town, the Be Part Yoluntu Centre, Paarl (E.H.), the Aurum Institute, Klerksdorp Research Centre, Klerksdorp (J.C.I.), the Aurum Institute, Tembisa Research Centre, Tembisa (J.C.I.), Setshaba Research Centre, Pretoria (M. Malahleha), and the Perinatal HIV Research Unit, Chris Hani Baragwanath Hospital, South African Medical Research Council Collaborating Centre for HIV/AIDS and TB, and National Research Foundation Centre of Excellence for Biomedical Tuberculosis Research, University of the Witwatersrand, Johannesburg (N.M.) - all in South Africa; GlaxoSmithKline, Wavre, and GlaxoSmithKline, Rixensart - both in Belgium (O.V.D.M., B.S., E.J.A., A.B., M.-A.D., P.G., D.M.V., T.G.P., F.R.); the IAVI, New York (A.M.G., T.G.E., M.L.); Zambart, University of Zambia (H.M.A.), and the Centre for Infectious Disease Research in Zambia (M. Muyoyeta) - both in Lusaka; the London School of Hygiene and Tropical Medicine (H.M.A.) and Francis Crick Institute and the Department of Medicine, Imperial College London (R.J.W.) - all in London; Johns Hopkins University Center for Tuberculosis Research, Baltimore (N.M.); the Kenya Medical Research Institute Centre for Respiratory Diseases Research, Nairobi (V.N.); and the Department of Internal Medicine, University Hospital of Zurich, Zurich, Switzerland (F.T.)
| | - Andreas Diacon
- From the International AIDS Vaccine Initiative (IAVI) (D.R.T.), the South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine and Division of Immunology, Department of Pathology (M.H., T.J.S., M.T.), and the Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine (F.T., R.J.W.), University of Cape Town, TASK Applied Science (E.V.B., A.D.), and Stellenbosch University (A.D.), Cape Town, the Be Part Yoluntu Centre, Paarl (E.H.), the Aurum Institute, Klerksdorp Research Centre, Klerksdorp (J.C.I.), the Aurum Institute, Tembisa Research Centre, Tembisa (J.C.I.), Setshaba Research Centre, Pretoria (M. Malahleha), and the Perinatal HIV Research Unit, Chris Hani Baragwanath Hospital, South African Medical Research Council Collaborating Centre for HIV/AIDS and TB, and National Research Foundation Centre of Excellence for Biomedical Tuberculosis Research, University of the Witwatersrand, Johannesburg (N.M.) - all in South Africa; GlaxoSmithKline, Wavre, and GlaxoSmithKline, Rixensart - both in Belgium (O.V.D.M., B.S., E.J.A., A.B., M.-A.D., P.G., D.M.V., T.G.P., F.R.); the IAVI, New York (A.M.G., T.G.E., M.L.); Zambart, University of Zambia (H.M.A.), and the Centre for Infectious Disease Research in Zambia (M. Muyoyeta) - both in Lusaka; the London School of Hygiene and Tropical Medicine (H.M.A.) and Francis Crick Institute and the Department of Medicine, Imperial College London (R.J.W.) - all in London; Johns Hopkins University Center for Tuberculosis Research, Baltimore (N.M.); the Kenya Medical Research Institute Centre for Respiratory Diseases Research, Nairobi (V.N.); and the Department of Internal Medicine, University Hospital of Zurich, Zurich, Switzerland (F.T.)
| | - Thomas G Evans
- From the International AIDS Vaccine Initiative (IAVI) (D.R.T.), the South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine and Division of Immunology, Department of Pathology (M.H., T.J.S., M.T.), and the Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine (F.T., R.J.W.), University of Cape Town, TASK Applied Science (E.V.B., A.D.), and Stellenbosch University (A.D.), Cape Town, the Be Part Yoluntu Centre, Paarl (E.H.), the Aurum Institute, Klerksdorp Research Centre, Klerksdorp (J.C.I.), the Aurum Institute, Tembisa Research Centre, Tembisa (J.C.I.), Setshaba Research Centre, Pretoria (M. Malahleha), and the Perinatal HIV Research Unit, Chris Hani Baragwanath Hospital, South African Medical Research Council Collaborating Centre for HIV/AIDS and TB, and National Research Foundation Centre of Excellence for Biomedical Tuberculosis Research, University of the Witwatersrand, Johannesburg (N.M.) - all in South Africa; GlaxoSmithKline, Wavre, and GlaxoSmithKline, Rixensart - both in Belgium (O.V.D.M., B.S., E.J.A., A.B., M.-A.D., P.G., D.M.V., T.G.P., F.R.); the IAVI, New York (A.M.G., T.G.E., M.L.); Zambart, University of Zambia (H.M.A.), and the Centre for Infectious Disease Research in Zambia (M. Muyoyeta) - both in Lusaka; the London School of Hygiene and Tropical Medicine (H.M.A.) and Francis Crick Institute and the Department of Medicine, Imperial College London (R.J.W.) - all in London; Johns Hopkins University Center for Tuberculosis Research, Baltimore (N.M.); the Kenya Medical Research Institute Centre for Respiratory Diseases Research, Nairobi (V.N.); and the Department of Internal Medicine, University Hospital of Zurich, Zurich, Switzerland (F.T.)
| | - Paul Gillard
- From the International AIDS Vaccine Initiative (IAVI) (D.R.T.), the South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine and Division of Immunology, Department of Pathology (M.H., T.J.S., M.T.), and the Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine (F.T., R.J.W.), University of Cape Town, TASK Applied Science (E.V.B., A.D.), and Stellenbosch University (A.D.), Cape Town, the Be Part Yoluntu Centre, Paarl (E.H.), the Aurum Institute, Klerksdorp Research Centre, Klerksdorp (J.C.I.), the Aurum Institute, Tembisa Research Centre, Tembisa (J.C.I.), Setshaba Research Centre, Pretoria (M. Malahleha), and the Perinatal HIV Research Unit, Chris Hani Baragwanath Hospital, South African Medical Research Council Collaborating Centre for HIV/AIDS and TB, and National Research Foundation Centre of Excellence for Biomedical Tuberculosis Research, University of the Witwatersrand, Johannesburg (N.M.) - all in South Africa; GlaxoSmithKline, Wavre, and GlaxoSmithKline, Rixensart - both in Belgium (O.V.D.M., B.S., E.J.A., A.B., M.-A.D., P.G., D.M.V., T.G.P., F.R.); the IAVI, New York (A.M.G., T.G.E., M.L.); Zambart, University of Zambia (H.M.A.), and the Centre for Infectious Disease Research in Zambia (M. Muyoyeta) - both in Lusaka; the London School of Hygiene and Tropical Medicine (H.M.A.) and Francis Crick Institute and the Department of Medicine, Imperial College London (R.J.W.) - all in London; Johns Hopkins University Center for Tuberculosis Research, Baltimore (N.M.); the Kenya Medical Research Institute Centre for Respiratory Diseases Research, Nairobi (V.N.); and the Department of Internal Medicine, University Hospital of Zurich, Zurich, Switzerland (F.T.)
| | - Elizabeth Hellström
- From the International AIDS Vaccine Initiative (IAVI) (D.R.T.), the South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine and Division of Immunology, Department of Pathology (M.H., T.J.S., M.T.), and the Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine (F.T., R.J.W.), University of Cape Town, TASK Applied Science (E.V.B., A.D.), and Stellenbosch University (A.D.), Cape Town, the Be Part Yoluntu Centre, Paarl (E.H.), the Aurum Institute, Klerksdorp Research Centre, Klerksdorp (J.C.I.), the Aurum Institute, Tembisa Research Centre, Tembisa (J.C.I.), Setshaba Research Centre, Pretoria (M. Malahleha), and the Perinatal HIV Research Unit, Chris Hani Baragwanath Hospital, South African Medical Research Council Collaborating Centre for HIV/AIDS and TB, and National Research Foundation Centre of Excellence for Biomedical Tuberculosis Research, University of the Witwatersrand, Johannesburg (N.M.) - all in South Africa; GlaxoSmithKline, Wavre, and GlaxoSmithKline, Rixensart - both in Belgium (O.V.D.M., B.S., E.J.A., A.B., M.-A.D., P.G., D.M.V., T.G.P., F.R.); the IAVI, New York (A.M.G., T.G.E., M.L.); Zambart, University of Zambia (H.M.A.), and the Centre for Infectious Disease Research in Zambia (M. Muyoyeta) - both in Lusaka; the London School of Hygiene and Tropical Medicine (H.M.A.) and Francis Crick Institute and the Department of Medicine, Imperial College London (R.J.W.) - all in London; Johns Hopkins University Center for Tuberculosis Research, Baltimore (N.M.); the Kenya Medical Research Institute Centre for Respiratory Diseases Research, Nairobi (V.N.); and the Department of Internal Medicine, University Hospital of Zurich, Zurich, Switzerland (F.T.)
| | - James C Innes
- From the International AIDS Vaccine Initiative (IAVI) (D.R.T.), the South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine and Division of Immunology, Department of Pathology (M.H., T.J.S., M.T.), and the Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine (F.T., R.J.W.), University of Cape Town, TASK Applied Science (E.V.B., A.D.), and Stellenbosch University (A.D.), Cape Town, the Be Part Yoluntu Centre, Paarl (E.H.), the Aurum Institute, Klerksdorp Research Centre, Klerksdorp (J.C.I.), the Aurum Institute, Tembisa Research Centre, Tembisa (J.C.I.), Setshaba Research Centre, Pretoria (M. Malahleha), and the Perinatal HIV Research Unit, Chris Hani Baragwanath Hospital, South African Medical Research Council Collaborating Centre for HIV/AIDS and TB, and National Research Foundation Centre of Excellence for Biomedical Tuberculosis Research, University of the Witwatersrand, Johannesburg (N.M.) - all in South Africa; GlaxoSmithKline, Wavre, and GlaxoSmithKline, Rixensart - both in Belgium (O.V.D.M., B.S., E.J.A., A.B., M.-A.D., P.G., D.M.V., T.G.P., F.R.); the IAVI, New York (A.M.G., T.G.E., M.L.); Zambart, University of Zambia (H.M.A.), and the Centre for Infectious Disease Research in Zambia (M. Muyoyeta) - both in Lusaka; the London School of Hygiene and Tropical Medicine (H.M.A.) and Francis Crick Institute and the Department of Medicine, Imperial College London (R.J.W.) - all in London; Johns Hopkins University Center for Tuberculosis Research, Baltimore (N.M.); the Kenya Medical Research Institute Centre for Respiratory Diseases Research, Nairobi (V.N.); and the Department of Internal Medicine, University Hospital of Zurich, Zurich, Switzerland (F.T.)
| | - Maria Lempicki
- From the International AIDS Vaccine Initiative (IAVI) (D.R.T.), the South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine and Division of Immunology, Department of Pathology (M.H., T.J.S., M.T.), and the Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine (F.T., R.J.W.), University of Cape Town, TASK Applied Science (E.V.B., A.D.), and Stellenbosch University (A.D.), Cape Town, the Be Part Yoluntu Centre, Paarl (E.H.), the Aurum Institute, Klerksdorp Research Centre, Klerksdorp (J.C.I.), the Aurum Institute, Tembisa Research Centre, Tembisa (J.C.I.), Setshaba Research Centre, Pretoria (M. Malahleha), and the Perinatal HIV Research Unit, Chris Hani Baragwanath Hospital, South African Medical Research Council Collaborating Centre for HIV/AIDS and TB, and National Research Foundation Centre of Excellence for Biomedical Tuberculosis Research, University of the Witwatersrand, Johannesburg (N.M.) - all in South Africa; GlaxoSmithKline, Wavre, and GlaxoSmithKline, Rixensart - both in Belgium (O.V.D.M., B.S., E.J.A., A.B., M.-A.D., P.G., D.M.V., T.G.P., F.R.); the IAVI, New York (A.M.G., T.G.E., M.L.); Zambart, University of Zambia (H.M.A.), and the Centre for Infectious Disease Research in Zambia (M. Muyoyeta) - both in Lusaka; the London School of Hygiene and Tropical Medicine (H.M.A.) and Francis Crick Institute and the Department of Medicine, Imperial College London (R.J.W.) - all in London; Johns Hopkins University Center for Tuberculosis Research, Baltimore (N.M.); the Kenya Medical Research Institute Centre for Respiratory Diseases Research, Nairobi (V.N.); and the Department of Internal Medicine, University Hospital of Zurich, Zurich, Switzerland (F.T.)
| | - Mookho Malahleha
- From the International AIDS Vaccine Initiative (IAVI) (D.R.T.), the South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine and Division of Immunology, Department of Pathology (M.H., T.J.S., M.T.), and the Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine (F.T., R.J.W.), University of Cape Town, TASK Applied Science (E.V.B., A.D.), and Stellenbosch University (A.D.), Cape Town, the Be Part Yoluntu Centre, Paarl (E.H.), the Aurum Institute, Klerksdorp Research Centre, Klerksdorp (J.C.I.), the Aurum Institute, Tembisa Research Centre, Tembisa (J.C.I.), Setshaba Research Centre, Pretoria (M. Malahleha), and the Perinatal HIV Research Unit, Chris Hani Baragwanath Hospital, South African Medical Research Council Collaborating Centre for HIV/AIDS and TB, and National Research Foundation Centre of Excellence for Biomedical Tuberculosis Research, University of the Witwatersrand, Johannesburg (N.M.) - all in South Africa; GlaxoSmithKline, Wavre, and GlaxoSmithKline, Rixensart - both in Belgium (O.V.D.M., B.S., E.J.A., A.B., M.-A.D., P.G., D.M.V., T.G.P., F.R.); the IAVI, New York (A.M.G., T.G.E., M.L.); Zambart, University of Zambia (H.M.A.), and the Centre for Infectious Disease Research in Zambia (M. Muyoyeta) - both in Lusaka; the London School of Hygiene and Tropical Medicine (H.M.A.) and Francis Crick Institute and the Department of Medicine, Imperial College London (R.J.W.) - all in London; Johns Hopkins University Center for Tuberculosis Research, Baltimore (N.M.); the Kenya Medical Research Institute Centre for Respiratory Diseases Research, Nairobi (V.N.); and the Department of Internal Medicine, University Hospital of Zurich, Zurich, Switzerland (F.T.)
| | - Neil Martinson
- From the International AIDS Vaccine Initiative (IAVI) (D.R.T.), the South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine and Division of Immunology, Department of Pathology (M.H., T.J.S., M.T.), and the Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine (F.T., R.J.W.), University of Cape Town, TASK Applied Science (E.V.B., A.D.), and Stellenbosch University (A.D.), Cape Town, the Be Part Yoluntu Centre, Paarl (E.H.), the Aurum Institute, Klerksdorp Research Centre, Klerksdorp (J.C.I.), the Aurum Institute, Tembisa Research Centre, Tembisa (J.C.I.), Setshaba Research Centre, Pretoria (M. Malahleha), and the Perinatal HIV Research Unit, Chris Hani Baragwanath Hospital, South African Medical Research Council Collaborating Centre for HIV/AIDS and TB, and National Research Foundation Centre of Excellence for Biomedical Tuberculosis Research, University of the Witwatersrand, Johannesburg (N.M.) - all in South Africa; GlaxoSmithKline, Wavre, and GlaxoSmithKline, Rixensart - both in Belgium (O.V.D.M., B.S., E.J.A., A.B., M.-A.D., P.G., D.M.V., T.G.P., F.R.); the IAVI, New York (A.M.G., T.G.E., M.L.); Zambart, University of Zambia (H.M.A.), and the Centre for Infectious Disease Research in Zambia (M. Muyoyeta) - both in Lusaka; the London School of Hygiene and Tropical Medicine (H.M.A.) and Francis Crick Institute and the Department of Medicine, Imperial College London (R.J.W.) - all in London; Johns Hopkins University Center for Tuberculosis Research, Baltimore (N.M.); the Kenya Medical Research Institute Centre for Respiratory Diseases Research, Nairobi (V.N.); and the Department of Internal Medicine, University Hospital of Zurich, Zurich, Switzerland (F.T.)
| | - Doris Mesia Vela
- From the International AIDS Vaccine Initiative (IAVI) (D.R.T.), the South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine and Division of Immunology, Department of Pathology (M.H., T.J.S., M.T.), and the Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine (F.T., R.J.W.), University of Cape Town, TASK Applied Science (E.V.B., A.D.), and Stellenbosch University (A.D.), Cape Town, the Be Part Yoluntu Centre, Paarl (E.H.), the Aurum Institute, Klerksdorp Research Centre, Klerksdorp (J.C.I.), the Aurum Institute, Tembisa Research Centre, Tembisa (J.C.I.), Setshaba Research Centre, Pretoria (M. Malahleha), and the Perinatal HIV Research Unit, Chris Hani Baragwanath Hospital, South African Medical Research Council Collaborating Centre for HIV/AIDS and TB, and National Research Foundation Centre of Excellence for Biomedical Tuberculosis Research, University of the Witwatersrand, Johannesburg (N.M.) - all in South Africa; GlaxoSmithKline, Wavre, and GlaxoSmithKline, Rixensart - both in Belgium (O.V.D.M., B.S., E.J.A., A.B., M.-A.D., P.G., D.M.V., T.G.P., F.R.); the IAVI, New York (A.M.G., T.G.E., M.L.); Zambart, University of Zambia (H.M.A.), and the Centre for Infectious Disease Research in Zambia (M. Muyoyeta) - both in Lusaka; the London School of Hygiene and Tropical Medicine (H.M.A.) and Francis Crick Institute and the Department of Medicine, Imperial College London (R.J.W.) - all in London; Johns Hopkins University Center for Tuberculosis Research, Baltimore (N.M.); the Kenya Medical Research Institute Centre for Respiratory Diseases Research, Nairobi (V.N.); and the Department of Internal Medicine, University Hospital of Zurich, Zurich, Switzerland (F.T.)
| | - Monde Muyoyeta
- From the International AIDS Vaccine Initiative (IAVI) (D.R.T.), the South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine and Division of Immunology, Department of Pathology (M.H., T.J.S., M.T.), and the Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine (F.T., R.J.W.), University of Cape Town, TASK Applied Science (E.V.B., A.D.), and Stellenbosch University (A.D.), Cape Town, the Be Part Yoluntu Centre, Paarl (E.H.), the Aurum Institute, Klerksdorp Research Centre, Klerksdorp (J.C.I.), the Aurum Institute, Tembisa Research Centre, Tembisa (J.C.I.), Setshaba Research Centre, Pretoria (M. Malahleha), and the Perinatal HIV Research Unit, Chris Hani Baragwanath Hospital, South African Medical Research Council Collaborating Centre for HIV/AIDS and TB, and National Research Foundation Centre of Excellence for Biomedical Tuberculosis Research, University of the Witwatersrand, Johannesburg (N.M.) - all in South Africa; GlaxoSmithKline, Wavre, and GlaxoSmithKline, Rixensart - both in Belgium (O.V.D.M., B.S., E.J.A., A.B., M.-A.D., P.G., D.M.V., T.G.P., F.R.); the IAVI, New York (A.M.G., T.G.E., M.L.); Zambart, University of Zambia (H.M.A.), and the Centre for Infectious Disease Research in Zambia (M. Muyoyeta) - both in Lusaka; the London School of Hygiene and Tropical Medicine (H.M.A.) and Francis Crick Institute and the Department of Medicine, Imperial College London (R.J.W.) - all in London; Johns Hopkins University Center for Tuberculosis Research, Baltimore (N.M.); the Kenya Medical Research Institute Centre for Respiratory Diseases Research, Nairobi (V.N.); and the Department of Internal Medicine, University Hospital of Zurich, Zurich, Switzerland (F.T.)
| | - Videlis Nduba
- From the International AIDS Vaccine Initiative (IAVI) (D.R.T.), the South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine and Division of Immunology, Department of Pathology (M.H., T.J.S., M.T.), and the Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine (F.T., R.J.W.), University of Cape Town, TASK Applied Science (E.V.B., A.D.), and Stellenbosch University (A.D.), Cape Town, the Be Part Yoluntu Centre, Paarl (E.H.), the Aurum Institute, Klerksdorp Research Centre, Klerksdorp (J.C.I.), the Aurum Institute, Tembisa Research Centre, Tembisa (J.C.I.), Setshaba Research Centre, Pretoria (M. Malahleha), and the Perinatal HIV Research Unit, Chris Hani Baragwanath Hospital, South African Medical Research Council Collaborating Centre for HIV/AIDS and TB, and National Research Foundation Centre of Excellence for Biomedical Tuberculosis Research, University of the Witwatersrand, Johannesburg (N.M.) - all in South Africa; GlaxoSmithKline, Wavre, and GlaxoSmithKline, Rixensart - both in Belgium (O.V.D.M., B.S., E.J.A., A.B., M.-A.D., P.G., D.M.V., T.G.P., F.R.); the IAVI, New York (A.M.G., T.G.E., M.L.); Zambart, University of Zambia (H.M.A.), and the Centre for Infectious Disease Research in Zambia (M. Muyoyeta) - both in Lusaka; the London School of Hygiene and Tropical Medicine (H.M.A.) and Francis Crick Institute and the Department of Medicine, Imperial College London (R.J.W.) - all in London; Johns Hopkins University Center for Tuberculosis Research, Baltimore (N.M.); the Kenya Medical Research Institute Centre for Respiratory Diseases Research, Nairobi (V.N.); and the Department of Internal Medicine, University Hospital of Zurich, Zurich, Switzerland (F.T.)
| | - Thierry G Pascal
- From the International AIDS Vaccine Initiative (IAVI) (D.R.T.), the South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine and Division of Immunology, Department of Pathology (M.H., T.J.S., M.T.), and the Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine (F.T., R.J.W.), University of Cape Town, TASK Applied Science (E.V.B., A.D.), and Stellenbosch University (A.D.), Cape Town, the Be Part Yoluntu Centre, Paarl (E.H.), the Aurum Institute, Klerksdorp Research Centre, Klerksdorp (J.C.I.), the Aurum Institute, Tembisa Research Centre, Tembisa (J.C.I.), Setshaba Research Centre, Pretoria (M. Malahleha), and the Perinatal HIV Research Unit, Chris Hani Baragwanath Hospital, South African Medical Research Council Collaborating Centre for HIV/AIDS and TB, and National Research Foundation Centre of Excellence for Biomedical Tuberculosis Research, University of the Witwatersrand, Johannesburg (N.M.) - all in South Africa; GlaxoSmithKline, Wavre, and GlaxoSmithKline, Rixensart - both in Belgium (O.V.D.M., B.S., E.J.A., A.B., M.-A.D., P.G., D.M.V., T.G.P., F.R.); the IAVI, New York (A.M.G., T.G.E., M.L.); Zambart, University of Zambia (H.M.A.), and the Centre for Infectious Disease Research in Zambia (M. Muyoyeta) - both in Lusaka; the London School of Hygiene and Tropical Medicine (H.M.A.) and Francis Crick Institute and the Department of Medicine, Imperial College London (R.J.W.) - all in London; Johns Hopkins University Center for Tuberculosis Research, Baltimore (N.M.); the Kenya Medical Research Institute Centre for Respiratory Diseases Research, Nairobi (V.N.); and the Department of Internal Medicine, University Hospital of Zurich, Zurich, Switzerland (F.T.)
| | - Michele Tameris
- From the International AIDS Vaccine Initiative (IAVI) (D.R.T.), the South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine and Division of Immunology, Department of Pathology (M.H., T.J.S., M.T.), and the Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine (F.T., R.J.W.), University of Cape Town, TASK Applied Science (E.V.B., A.D.), and Stellenbosch University (A.D.), Cape Town, the Be Part Yoluntu Centre, Paarl (E.H.), the Aurum Institute, Klerksdorp Research Centre, Klerksdorp (J.C.I.), the Aurum Institute, Tembisa Research Centre, Tembisa (J.C.I.), Setshaba Research Centre, Pretoria (M. Malahleha), and the Perinatal HIV Research Unit, Chris Hani Baragwanath Hospital, South African Medical Research Council Collaborating Centre for HIV/AIDS and TB, and National Research Foundation Centre of Excellence for Biomedical Tuberculosis Research, University of the Witwatersrand, Johannesburg (N.M.) - all in South Africa; GlaxoSmithKline, Wavre, and GlaxoSmithKline, Rixensart - both in Belgium (O.V.D.M., B.S., E.J.A., A.B., M.-A.D., P.G., D.M.V., T.G.P., F.R.); the IAVI, New York (A.M.G., T.G.E., M.L.); Zambart, University of Zambia (H.M.A.), and the Centre for Infectious Disease Research in Zambia (M. Muyoyeta) - both in Lusaka; the London School of Hygiene and Tropical Medicine (H.M.A.) and Francis Crick Institute and the Department of Medicine, Imperial College London (R.J.W.) - all in London; Johns Hopkins University Center for Tuberculosis Research, Baltimore (N.M.); the Kenya Medical Research Institute Centre for Respiratory Diseases Research, Nairobi (V.N.); and the Department of Internal Medicine, University Hospital of Zurich, Zurich, Switzerland (F.T.)
| | - Friedrich Thienemann
- From the International AIDS Vaccine Initiative (IAVI) (D.R.T.), the South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine and Division of Immunology, Department of Pathology (M.H., T.J.S., M.T.), and the Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine (F.T., R.J.W.), University of Cape Town, TASK Applied Science (E.V.B., A.D.), and Stellenbosch University (A.D.), Cape Town, the Be Part Yoluntu Centre, Paarl (E.H.), the Aurum Institute, Klerksdorp Research Centre, Klerksdorp (J.C.I.), the Aurum Institute, Tembisa Research Centre, Tembisa (J.C.I.), Setshaba Research Centre, Pretoria (M. Malahleha), and the Perinatal HIV Research Unit, Chris Hani Baragwanath Hospital, South African Medical Research Council Collaborating Centre for HIV/AIDS and TB, and National Research Foundation Centre of Excellence for Biomedical Tuberculosis Research, University of the Witwatersrand, Johannesburg (N.M.) - all in South Africa; GlaxoSmithKline, Wavre, and GlaxoSmithKline, Rixensart - both in Belgium (O.V.D.M., B.S., E.J.A., A.B., M.-A.D., P.G., D.M.V., T.G.P., F.R.); the IAVI, New York (A.M.G., T.G.E., M.L.); Zambart, University of Zambia (H.M.A.), and the Centre for Infectious Disease Research in Zambia (M. Muyoyeta) - both in Lusaka; the London School of Hygiene and Tropical Medicine (H.M.A.) and Francis Crick Institute and the Department of Medicine, Imperial College London (R.J.W.) - all in London; Johns Hopkins University Center for Tuberculosis Research, Baltimore (N.M.); the Kenya Medical Research Institute Centre for Respiratory Diseases Research, Nairobi (V.N.); and the Department of Internal Medicine, University Hospital of Zurich, Zurich, Switzerland (F.T.)
| | - Robert J Wilkinson
- From the International AIDS Vaccine Initiative (IAVI) (D.R.T.), the South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine and Division of Immunology, Department of Pathology (M.H., T.J.S., M.T.), and the Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine (F.T., R.J.W.), University of Cape Town, TASK Applied Science (E.V.B., A.D.), and Stellenbosch University (A.D.), Cape Town, the Be Part Yoluntu Centre, Paarl (E.H.), the Aurum Institute, Klerksdorp Research Centre, Klerksdorp (J.C.I.), the Aurum Institute, Tembisa Research Centre, Tembisa (J.C.I.), Setshaba Research Centre, Pretoria (M. Malahleha), and the Perinatal HIV Research Unit, Chris Hani Baragwanath Hospital, South African Medical Research Council Collaborating Centre for HIV/AIDS and TB, and National Research Foundation Centre of Excellence for Biomedical Tuberculosis Research, University of the Witwatersrand, Johannesburg (N.M.) - all in South Africa; GlaxoSmithKline, Wavre, and GlaxoSmithKline, Rixensart - both in Belgium (O.V.D.M., B.S., E.J.A., A.B., M.-A.D., P.G., D.M.V., T.G.P., F.R.); the IAVI, New York (A.M.G., T.G.E., M.L.); Zambart, University of Zambia (H.M.A.), and the Centre for Infectious Disease Research in Zambia (M. Muyoyeta) - both in Lusaka; the London School of Hygiene and Tropical Medicine (H.M.A.) and Francis Crick Institute and the Department of Medicine, Imperial College London (R.J.W.) - all in London; Johns Hopkins University Center for Tuberculosis Research, Baltimore (N.M.); the Kenya Medical Research Institute Centre for Respiratory Diseases Research, Nairobi (V.N.); and the Department of Internal Medicine, University Hospital of Zurich, Zurich, Switzerland (F.T.)
| | - François Roman
- From the International AIDS Vaccine Initiative (IAVI) (D.R.T.), the South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine and Division of Immunology, Department of Pathology (M.H., T.J.S., M.T.), and the Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine (F.T., R.J.W.), University of Cape Town, TASK Applied Science (E.V.B., A.D.), and Stellenbosch University (A.D.), Cape Town, the Be Part Yoluntu Centre, Paarl (E.H.), the Aurum Institute, Klerksdorp Research Centre, Klerksdorp (J.C.I.), the Aurum Institute, Tembisa Research Centre, Tembisa (J.C.I.), Setshaba Research Centre, Pretoria (M. Malahleha), and the Perinatal HIV Research Unit, Chris Hani Baragwanath Hospital, South African Medical Research Council Collaborating Centre for HIV/AIDS and TB, and National Research Foundation Centre of Excellence for Biomedical Tuberculosis Research, University of the Witwatersrand, Johannesburg (N.M.) - all in South Africa; GlaxoSmithKline, Wavre, and GlaxoSmithKline, Rixensart - both in Belgium (O.V.D.M., B.S., E.J.A., A.B., M.-A.D., P.G., D.M.V., T.G.P., F.R.); the IAVI, New York (A.M.G., T.G.E., M.L.); Zambart, University of Zambia (H.M.A.), and the Centre for Infectious Disease Research in Zambia (M. Muyoyeta) - both in Lusaka; the London School of Hygiene and Tropical Medicine (H.M.A.) and Francis Crick Institute and the Department of Medicine, Imperial College London (R.J.W.) - all in London; Johns Hopkins University Center for Tuberculosis Research, Baltimore (N.M.); the Kenya Medical Research Institute Centre for Respiratory Diseases Research, Nairobi (V.N.); and the Department of Internal Medicine, University Hospital of Zurich, Zurich, Switzerland (F.T.)
| |
Collapse
|
39
|
Kwon KW, Lee A, Larsen SE, Baldwin SL, Coler RN, Reed SG, Cho SN, Ha SJ, Shin SJ. Long-term protective efficacy with a BCG-prime ID93/GLA-SE boost regimen against the hyper-virulent Mycobacterium tuberculosis strain K in a mouse model. Sci Rep 2019; 9:15560. [PMID: 31664157 PMCID: PMC6820558 DOI: 10.1038/s41598-019-52146-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 10/04/2019] [Indexed: 02/07/2023] Open
Abstract
Since ID93/GLA-SE was developed as a targeted BCG-prime booster vaccine, in the present study, we evaluated the protective efficacy of ID93/GLA-SE as a boost to a BCG-prime against the hypervirulent Mycobacterium tuberculosis (Mtb) K challenge to provide further information on the development and application of this vaccine candidate. Boosting BCG with the ID93/GLA-SE vaccine significantly reduced bacterial burden at 16 weeks post-challenge while the BCG vaccine alone did not confer significant protection against Mtb K. The pathological analysis of the lung from the challenged mice also showed the remarkably protective boosting effect of ID93/GLA-SE on BCG-immunised animals. Moreover, qualitative and quantitative analysis of the immune responses following ID93/GLA-SE-immunisation demonstrated that ID93/GLA-SE was able to elicit robust and sustained Th1-biased antigen-specific multifunctional CD4+ T-cell responses up to 16 weeks post-challenge as well as a high magnitude of an antigen-specific IgG response. Our findings demonstrate that the ID93/GLA-SE vaccine candidate given as a BCG-prime boost regimen confers a high level of long-term protection against the hypervirulent Mtb Beijing infection. These findings will provide further and more feasible validation for the potential utility of this vaccine candidate particularly in East-Asian countries, with the predominance of the Beijing genotype, after BCG vaccination.
Collapse
Affiliation(s)
- Kee Woong Kwon
- Department of Microbiology, Institute for Immunology and Immunological Disease, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, 03722, South Korea
| | - Ara Lee
- Department of Biochemistry, College of Life Science & Biotechnology, Yonsei University, Seoul, 03722, South Korea
| | - Sasha E Larsen
- Infectious Disease Research Institute, 1616 Eastlake Ave E, Suite 400, Seattle, WA, 98102, USA
| | - Susan L Baldwin
- Infectious Disease Research Institute, 1616 Eastlake Ave E, Suite 400, Seattle, WA, 98102, USA
| | - Rhea N Coler
- Infectious Disease Research Institute, 1616 Eastlake Ave E, Suite 400, Seattle, WA, 98102, USA.,Department of Global Health, University of Washington, Seattle, USA.,PAI Life Sciences Inc., Seattle, USA
| | - Steven G Reed
- Infectious Disease Research Institute, 1616 Eastlake Ave E, Suite 400, Seattle, WA, 98102, USA
| | - Sang-Nae Cho
- Department of Microbiology, Institute for Immunology and Immunological Disease, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, 03722, South Korea
| | - Sang-Jun Ha
- Department of Biochemistry, College of Life Science & Biotechnology, Yonsei University, Seoul, 03722, South Korea
| | - Sung Jae Shin
- Department of Microbiology, Institute for Immunology and Immunological Disease, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, 03722, South Korea.
| |
Collapse
|
40
|
Khader SA, Divangahi M, Hanekom W, Hill PC, Maeurer M, Makar KW, Mayer-Barber KD, Mhlanga MM, Nemes E, Schlesinger LS, van Crevel R, Vankayalapati R(K, Xavier RJ, Netea MG. Targeting innate immunity for tuberculosis vaccination. J Clin Invest 2019; 129:3482-3491. [PMID: 31478909 PMCID: PMC6715374 DOI: 10.1172/jci128877] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Vaccine development against tuberculosis (TB) is based on the induction of adaptive immune responses endowed with long-term memory against mycobacterial antigens. Memory B and T cells initiate a rapid and robust immune response upon encounter with Mycobacterium tuberculosis, thus achieving long-lasting protection against infection. Recent studies have shown, however, that innate immune cell populations such as myeloid cells and NK cells also undergo functional adaptation after infection or vaccination, a de facto innate immune memory that is also termed trained immunity. Experimental and epidemiological data have shown that induction of trained immunity contributes to the beneficial heterologous effects of vaccines such as bacille Calmette-Guérin (BCG), the licensed TB vaccine. Moreover, increasing evidence argues that trained immunity also contributes to the anti-TB effects of BCG vaccination. An interaction among immunological signals, metabolic rewiring, and epigenetic reprogramming underlies the molecular mechanisms mediating trained immunity in myeloid cells and their bone marrow progenitors. Future studies are warranted to explore the untapped potential of trained immunity to develop a future generation of TB vaccines that would combine innate and adaptive immune memory induction.
Collapse
Affiliation(s)
- Shabaana A. Khader
- Department of Molecular Microbiology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Maziar Divangahi
- Meakins-Christie Laboratories, Department of Medicine, Department of Microbiology and Immunology, and Department of Pathology, McGill International TB Centre, McGill University Health Centre, Montreal, Quebec, Canada
| | - Willem Hanekom
- Bill & Melinda Gates Foundation, Seattle, Washington, USA
| | - Philip C. Hill
- Centre for International Health, Department of Preventive and Social Medicine, University of Otago Medical School, Dunedin, New Zealand
| | - Markus Maeurer
- Department of Oncology/Haematology, Krankenhaus Nordwest (KHNW), Frankfurt, Germany
- ImmunoSurgery Unit, Champalimaud Foundation, Lisbon, Portugal
| | - Karen W. Makar
- Bill & Melinda Gates Foundation, Seattle, Washington, USA
| | - Katrin D. Mayer-Barber
- Inflammation and Innate Immunity Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Musa M. Mhlanga
- Division of Chemical Systems & Synthetic Biology, Institute for Infectious Disease & Molecular Medicine (IDM), Faculty of Health Sciences, Department of Integrative Biomedical Sciences, and
| | - Elisa Nemes
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine and Division of Immunology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | | | - Reinout van Crevel
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| | - Raman (Krishna) Vankayalapati
- Department of Pulmonary Immunology, Center for Biomedical Research, University of Texas Health Science Center at Tyler, Tyler, Texas, USA
| | - Ramnik J. Xavier
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Center for Computational and Integrative Biology and
- Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Center for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Mihai G. Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
- Department for Genomics & Immunoregulation, Life and Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
| | | |
Collapse
|
41
|
Ji Z, Jian M, Chen T, Luo L, Li L, Dai X, Bai R, Ding Z, Bi Y, Wen S, Zhou G, Abi ME, Liu A, Bao F. Immunogenicity and Safety of the M72/AS01 E Candidate Vaccine Against Tuberculosis: A Meta-Analysis. Front Immunol 2019; 10:2089. [PMID: 31552037 PMCID: PMC6735267 DOI: 10.3389/fimmu.2019.02089] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Accepted: 08/19/2019] [Indexed: 12/18/2022] Open
Abstract
Background: Currently, there is no tuberculosis (TB) vaccine recommended for use in latent TB infections and healthy adults. M72/AS01E is a new peptide vaccine currently under development, which may improve protection against TB disease. This vaccine has been investigated in several phase I/II clinical trials. We conducted a meta-analysis to clarify the immunogenicity and safety of the M72/AS01E peptide vaccine. Methods: We searched the PubMed, Embase, and Cochrane Library databases for published studies (until December 2018) investigating this candidate vaccine. A meta-analysis was performed using the standard methods and procedures established by the Cochrane Collaboration. Results: Seven eligible studies—involving 4,590 participants—were selected. The analysis revealed a vaccine efficacy was 57.0%, significantly higher abundance of polyfunctional M72-specific CD4+ T cells [standardized mean difference (SMD) = 2.58] in the vaccine group vs. the control group, the highest seropositivity rate [relative risk (RR) = 74.87] at 1 month after the second dose of vaccination (Day 60), and sustained elevated anti-M72 IgG geometric mean concentration at study end (Day 210) (SWD = 4.94). Compared with the control, participants who received vaccination were at increased risk of local injection site redness [relative risk (RR) = 5.99], local swelling (RR = 7.57), malaise (RR = 3.01), and fatigue (RR = 3.17). However, they were not at increased risk of headache (RR = 1.57), myalgia (RR = 0.97), and pain (RR = 3.02). Conclusion: The M72/AS01E vaccine against TB is safe and effective. Although the vaccine is associated with a mild adverse reaction, it is promising for the prevention of TB in healthy adults.
Collapse
Affiliation(s)
- Zhenhua Ji
- Department of Microbiology and Immunology, Kunming Medical University, Kunming, China
| | - Miaomiao Jian
- Department of Biochemistry and Molecular Biology, Kunming Medical University, Kunming, China
| | - Taigui Chen
- Department of Microbiology and Immunology, Kunming Medical University, Kunming, China
| | - Lisha Luo
- Department of Biochemistry and Molecular Biology, Kunming Medical University, Kunming, China
| | - Lianbao Li
- Department of Microbiology and Immunology, Kunming Medical University, Kunming, China
| | - Xiting Dai
- Department of Microbiology and Immunology, Kunming Medical University, Kunming, China
| | - Ruolan Bai
- Department of Biochemistry and Molecular Biology, Kunming Medical University, Kunming, China
| | - Zhe Ding
- Department of Microbiology and Immunology, Kunming Medical University, Kunming, China
| | - Yunfeng Bi
- Department of Microbiology and Immunology, Kunming Medical University, Kunming, China
| | - Shiyuan Wen
- Department of Microbiology and Immunology, Kunming Medical University, Kunming, China
| | - Guozhong Zhou
- Department of Microbiology and Immunology, Kunming Medical University, Kunming, China
| | - Manzama-Esso Abi
- Department of Microbiology and Immunology, Kunming Medical University, Kunming, China
| | - Aihua Liu
- Department of Biochemistry and Molecular Biology, Kunming Medical University, Kunming, China.,Yunnan Province Key Laboratory for Tropical Infectious Diseases in Universities, Kunming Medical University, Kunming, China.,The Institute for Tropical Medicine, Kunming Medical University, Kunming, China.,Yunnan Province Key Laboratory for Major Childhood Diseases, Kunming Medical University, Kunming, China
| | - Fukai Bao
- Department of Microbiology and Immunology, Kunming Medical University, Kunming, China.,Yunnan Province Key Laboratory for Tropical Infectious Diseases in Universities, Kunming Medical University, Kunming, China.,The Institute for Tropical Medicine, Kunming Medical University, Kunming, China.,Yunnan Province Key Laboratory for Major Childhood Diseases, Kunming Medical University, Kunming, China
| |
Collapse
|
42
|
McShane H. Insights and challenges in tuberculosis vaccine development. THE LANCET. RESPIRATORY MEDICINE 2019; 7:810-819. [PMID: 31416767 DOI: 10.1016/s2213-2600(19)30274-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 06/30/2019] [Accepted: 07/15/2019] [Indexed: 02/09/2023]
Abstract
Tuberculosis kills more people than any other pathogen and the need for a universally effective vaccine has never been greater. An effective vaccine will be a key tool in achieving the targets set by WHO in the End TB Strategy. Tuberculosis vaccine development is difficult and slow. Substantial progress has been made in research and development of tuberculosis vaccines in the past 20 years, and two clinical trial results from 2018 provide reason for optimism. However, many challenges to the successful licensure and deployment of an effective tuberculosis vaccine remain. The development of new tools for vaccine evaluation might facilitate these processes, and continued collaborative working and sustained funding will be essential.
Collapse
Affiliation(s)
- Helen McShane
- The Jenner Institute, University of Oxford, Oxford, UK.
| |
Collapse
|
43
|
Lacaille-Dubois MA. Updated insights into the mechanism of action and clinical profile of the immunoadjuvant QS-21: A review. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 60:152905. [PMID: 31182297 PMCID: PMC7127804 DOI: 10.1016/j.phymed.2019.152905] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 03/26/2019] [Accepted: 03/30/2019] [Indexed: 05/06/2023]
Abstract
BACKGROUND Vaccine adjuvants are compounds that significantly enhance/prolong the immune response to a co-administered antigen. The limitations of the use of aluminium salts that are unable to elicite cell responses against intracellular pathogens such as those causing malaria, tuberculosis, or AIDS, have driven the development of new alternative adjuvants such as QS-21, a triterpene saponin purified from Quillaja saponaria. PURPOSE The aim of this review is to attempt to clarify the mechanism of action of QS-21 through either receptors or signaling pathways in vitro and in vivo with special emphasis on the co-administration with other immunostimulants in new adjuvant formulations, called adjuvant systems (AS). Furthermore, the most relevant clinical applications will be presented. METHODS A literature search covering the period 2014-2018 was performed using electronic databases from Sci finder, Science direct, Medline/Pubmed, Scopus, Google scholar. RESULTS Insights into the mechanism of action of QS-21 can be summarized as follows: 1) in vivo stimulation of Th2 humoral and Th1 cell-mediated immune responses through action on antigen presenting cells (APCs) and T cells, leading to release of Th1 cytokines participating in the elimination of intracellular pathogens. 2) activation of the NLRP3 inflammasome in mouse APCs with subsequent release of caspase-1 dependent cytokines, Il-1β and Il-18, important for Th1 responses. 3) synthesis of nearly 50 QS-21 analogs, allowing structure/activity relationships and mechanistic studies. 4) unique synergy mechanism between monophosphoryl lipid A (MPL A) and QS-21, formulated in a liposome (AS01) in the early IFN-γ response, promoting vaccine immunogenicity. The second part of the review is related to phase I-III clinical trials of QS-21, mostly formulated in ASs, to evaluate efficacy, immunogenicity and safety of adjuvanted prophylactic vaccines against infectious diseases, e.g. malaria, herpes zoster, tuberculosis, AIDS and therapeutic vaccines against cancer and Alzheimer's disease. CONCLUSION The most advanced phase III clinical applications led to the development of two vaccines containing QS-21 as part of the AS, the Herpes Zoster vaccine (HZ/su) (Shingrix™) which received a license in 2017 from the FDA and a marketing authorization in the EU in 2018 and the RTS,S/AS01 vaccine (Mosquirix™) against malaria, which was approved by the EMA in 2015 for further implementation in Sub-Saharan countries for routine use.
Collapse
Affiliation(s)
- Marie-Aleth Lacaille-Dubois
- PEPITE EA 4267, Université de Bourgogne Franche-Comté, Laboratoire de Pharmacognosie, UFR des Sciences de Santé, 7, Bd Jeanne d'Arc, 21079 Dijon Cedex, France.
| |
Collapse
|
44
|
Wang C, Lu J, Du W, Wang G, Li X, Shen X, Su C, Yang L, Chen B, Wang J, Xu M. Ag85b/ESAT6-CFP10 adjuvanted with aluminum/poly-IC effectively protects guinea pigs from latent mycobacterium tuberculosis infection. Vaccine 2019; 37:4477-4484. [PMID: 31266673 DOI: 10.1016/j.vaccine.2019.06.078] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 06/17/2019] [Accepted: 06/24/2019] [Indexed: 02/06/2023]
Abstract
The high global burden of tuberculosis (TB) underscores the urgent need for an effective TB vaccine since the only licensed Bacillus Calmette-Guérin (BCG) vaccine is ineffective in preventing adult pulmonary TB and affords no protection against latent TB infection (LTBI). Herein we investigated the potential of Mycobacterium tuberculosis (Mtb) antigen proteins AEC comprised of Ag85b and ESAT6-CFP10 proteins in conjunction with aluminum (Al) and polyriboinosinic-polyribocytidylic acid (poly-IC) as a novel subunit vaccine against TB. The immunogenicity and protection induced by the adjuvanted vaccine were evaluated in two animal models. Mice vaccinated with AEC/Al/poly-IC exhibited significant antigen-specific humoral immune responses and cell-mediated immunity as determined by immunoassay and multicolor flow cytometric assay, and the protective effect of the vaccine was demonstrated in a guinea pig model of latent Mtb infection. Compared to the control group, the mean pathological scores and bacterial loads in lungs and spleens of AEC/Al/poly-IC-immunized guinea pigs were significantly reduced. These data indicate that the AEC/Al/poly-IC is highly immunogenic in mice and can effectively protect guinea pigs against latent Mtb infection; it may represent a promising candidate vaccine for the control of latent TB.
Collapse
Affiliation(s)
- Chunhua Wang
- Division of Tuberculosis Vaccines, National Institutes for Food and Drug Control, Beijing 102629, China; Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Jinbiao Lu
- Division of Tuberculosis Vaccines, National Institutes for Food and Drug Control, Beijing 102629, China
| | - Weixin Du
- Division of Tuberculosis Vaccines, National Institutes for Food and Drug Control, Beijing 102629, China
| | - Guozhi Wang
- Division of Tuberculosis Vaccines, National Institutes for Food and Drug Control, Beijing 102629, China
| | - Xuguang Li
- Centre for Biologicals Evaluation, Biologics and Genetic Therapies Directorate, Health Canada, Ottawa, Ontario, Canada
| | - Xiaobin Shen
- Division of Tuberculosis Vaccines, National Institutes for Food and Drug Control, Beijing 102629, China
| | - Cheng Su
- Division of Tuberculosis Vaccines, National Institutes for Food and Drug Control, Beijing 102629, China
| | - Lei Yang
- Division of Tuberculosis Vaccines, National Institutes for Food and Drug Control, Beijing 102629, China
| | - Baowen Chen
- Division of Tuberculosis Vaccines, National Institutes for Food and Drug Control, Beijing 102629, China
| | - Junzhi Wang
- Division of Tuberculosis Vaccines, National Institutes for Food and Drug Control, Beijing 102629, China.
| | - Miao Xu
- Division of Tuberculosis Vaccines, National Institutes for Food and Drug Control, Beijing 102629, China.
| |
Collapse
|
45
|
Méndez‐Samperio P. Novel vaccination strategies and approaches against human tuberculosis. Scand J Immunol 2019; 90:e12774. [DOI: 10.1111/sji.12774] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 04/24/2019] [Indexed: 12/31/2022]
|
46
|
Cell wall fraction of Mycobacterium indicus pranii shows potential Th1 adjuvant activity. Int Immunopharmacol 2019; 70:408-416. [PMID: 30856391 DOI: 10.1016/j.intimp.2019.02.049] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 02/16/2019] [Accepted: 02/27/2019] [Indexed: 12/29/2022]
Abstract
Very few adjuvants inducing Th1 immune response have been developed and are under clinical investigation. Hence, there is the need to find an adjuvant that elicits strong Th1 immune response which should be safe when injected in the host along with vaccines. Mycobacterium indicus pranii (MIP), a non-pathogenic vaccine candidate, has shown strong immunomodulatory activity in leprosy/tuberculosis/cancer and in genital warts patients where its administration shifted the host immune response towards Th1 type. These findings prompted us to study the components of MIP in detail for their Th1 inducing property. Since mycobacterial cell wall is very rich in immunostimulatory components and is known to play important role in immune modulation, we investigated the activity of MIP cell wall using Ovalbumin antigen (OVA) as model antigen. 'Whole cell wall' (CW) and 'aqueous soluble cell wall fractions' (ACW) induced significant Th1 immune response while 'cell wall skeleton' (CWS) induced strong Th2 type of immune response. Finally, functional activity of fractions having Th1 inducing activity was evaluated in mouse model of melanoma. CW demonstrated significant anti-tumor activity similar to whole MIP. Anti-tumor activity of CW could be correlated with enhanced tumor antigen specific Th1 immune response observed in tumor draining lymph nodes.
Collapse
|
47
|
Sarmiento ME, Alvarez N, Chin KL, Bigi F, Tirado Y, García MA, Anis FZ, Norazmi MN, Acosta A. Tuberculosis vaccine candidates based on mycobacterial cell envelope components. Tuberculosis (Edinb) 2019; 115:26-41. [PMID: 30948174 DOI: 10.1016/j.tube.2019.01.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 01/12/2019] [Accepted: 01/16/2019] [Indexed: 12/11/2022]
Abstract
Even after decades searching for a new and more effective vaccine against tuberculosis, the scientific community is still pursuing this goal due to the complexity of its causative agent, Mycobacterium tuberculosis (Mtb). Mtb is a microorganism with a robust variety of survival mechanisms that allow it to remain in the host for years. The structure and nature of the Mtb envelope play a leading role in its resistance and survival. Mtb has a perfect machinery that allows it to modulate the immune response in its favor and to adapt to the host's environmental conditions in order to remain alive until the moment to reactivate its normal growing state. Mtb cell envelope protein, carbohydrate and lipid components have been the subject of interest for developing new vaccines because most of them are responsible for the pathogenicity and virulence of the bacteria. Many indirect evidences, mainly derived from the use of monoclonal antibodies, support the potential protective role of Mtb envelope components. Subunit and DNA vaccines, lipid extracts, liposomes and membrane vesicle formulations are some examples of technologies used, with encouraging results, to evaluate the potential of these antigens in the protective response against Mtb.
Collapse
Affiliation(s)
- M E Sarmiento
- School of Health Sciences (PPSK), Universiti Sains Malaysia (USM), 16150 Kubang Kerian, Kelantan, Malaysia
| | - N Alvarez
- Rutgers New Jersey Medical School, Public Health Research Institute, Newark, NJ, USA
| | - K L Chin
- Department of Biomedical Sciences and Therapeutic, Faculty of Medicine and Health Sciences (FPSK), Universiti Malaysia Sabah (UMS), Sabah, Malaysia
| | - F Bigi
- Institute of Biotechnology, INTA, Buenos Aires, Argentina
| | - Y Tirado
- Finlay Institute of Vaccines, La Habana, Cuba
| | - M A García
- Finlay Institute of Vaccines, La Habana, Cuba
| | - F Z Anis
- School of Health Sciences (PPSK), Universiti Sains Malaysia (USM), 16150 Kubang Kerian, Kelantan, Malaysia
| | - M N Norazmi
- School of Health Sciences (PPSK), Universiti Sains Malaysia (USM), 16150 Kubang Kerian, Kelantan, Malaysia.
| | - A Acosta
- School of Health Sciences (PPSK), Universiti Sains Malaysia (USM), 16150 Kubang Kerian, Kelantan, Malaysia.
| |
Collapse
|
48
|
Chen Y, Xiao JN, Li Y, Xiao YJ, Xiong YQ, Liu Y, Wang SJ, Ji P, Zhao GP, Shen H, Lu SH, Fan XY, Wang Y. Mycobacterial Lipoprotein Z Triggers Efficient Innate and Adaptive Immunity for Protection Against Mycobacterium tuberculosis Infection. Front Immunol 2019; 9:3190. [PMID: 30700988 PMCID: PMC6343430 DOI: 10.3389/fimmu.2018.03190] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 12/31/2018] [Indexed: 12/28/2022] Open
Abstract
Mycobacterial lipoproteins are considered to be involved in both virulence and immunoregulatory processes during Mycobacterium tuberculosis (M.tb) infection. In our previous investigations on the immunoreactivity of more than 30 M.tb proteins in active TB patients, we identified mycobacterial lipoprotein Z (LppZ) as one of the most immune dominant antigens. How LppZ triggers immune responses is still unclear. In this study, we analyzed LppZ-mediated innate and adaptive immunity using a murine air pouch model and an M.tb infection model, respectively. We found that LppZ could not only recruit inflammatory cells but also induce the production of proinflammatory cytokines inside the pouches. LppZ could also induce strong Th1 responses following immunization and confer protection against challenge with M.tb virulent strain H37Rv at a similar level to BCG vaccination but with less pathological damage in the lungs. Furthermore, we revealed the presence of LppZ-specific functional CD4+ T cells in the lungs of the challenged mice that were capable of secreting double or triple cytokines, including IFN-γ, IL-2, and TNF-α. Our study thus demonstrates that LppZ is of strong immunogenicity during M.tb infection in both humans and mice and has the ability to trigger effective innate and cellular immunity. Considering the limitations of candidate antigens in the pipeline of TB vaccine development, LppZ-mediated immune protection against M.tb challenge in the mouse model implies its potential application in vaccine development.
Collapse
Affiliation(s)
- Yingying Chen
- Department of Microbiology and Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai Institute of Immunology, Shanghai, China
| | - Jia-Ni Xiao
- Department of Microbiology and Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai Institute of Immunology, Shanghai, China
| | - Yong Li
- Department of Microbiology and Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai Institute of Immunology, Shanghai, China
| | - Yang-Jiong Xiao
- Department of Microbiology and Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai Institute of Immunology, Shanghai, China
| | - Yan-Qing Xiong
- Key Laboratory of Medical Molecular Virology of MOE/MOH, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Ying Liu
- Department of Microbiology and Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai Institute of Immunology, Shanghai, China
| | - Shu-Jun Wang
- Department of Microbiology and Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai Institute of Immunology, Shanghai, China
| | - Ping Ji
- Department of Microbiology and Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai Institute of Immunology, Shanghai, China
| | - Guo-Ping Zhao
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center at Shanghai, Shanghai, China
| | - Hao Shen
- Department of Microbiology and Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai Institute of Immunology, Shanghai, China.,Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Shui-Hua Lu
- Key Laboratory of Medical Molecular Virology of MOE/MOH, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Xiao-Yong Fan
- Key Laboratory of Medical Molecular Virology of MOE/MOH, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China.,TB Center, Shanghai Emerging and Re-emerging Infectious Disease Institute, Fudan University, Shanghai, China
| | - Ying Wang
- Department of Microbiology and Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai Institute of Immunology, Shanghai, China.,Shanghai-MOST Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center at Shanghai, Shanghai, China
| |
Collapse
|
49
|
Yu R, Mai Y, Zhao Y, Hou Y, Liu Y, Yang J. Targeting strategies of liposomal subunit vaccine delivery systems to improve vaccine efficacy. J Drug Target 2018; 27:780-789. [PMID: 30589361 DOI: 10.1080/1061186x.2018.1547734] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Liposomes are versatile delivery systems and immunological adjuvants that not only can load various antigens, such as proteins, peptides, nucleic acids and carbohydrates, but also can combine them with immunostimulators. Liposomes have great potential in the development of new types of vaccines, and much effort has been devoted to enhancing vaccine efficacy in recent years. Different types of immune cells such as macrophages and dendritic cells play an important role in the immune response and in preventing or treating cancer, allergy or many other infectious diseases. Targeting liposome-based delivery systems to certain immune cells and organs is one of the most effective measures in such treatments. Extensive research has shown that liposomes combined with immunostimulators or modified with pattern recognition receptor ligands can target various immune cells and the lymphatic system, thus not only inducing and promoting the desired immune response but also decreasing adverse effects throughout the body and avoiding targeting irrelevant cell types or tissues. Therefore, in this review, we outline some targeting strategies that can be adopted in the design of liposomal vaccines to improve vaccine efficacy, and we summarise the related liposome-based vaccine applications in several diseases. These applications have great potential to treat or prevent some infectious and intractable diseases.
Collapse
Affiliation(s)
- Rui Yu
- a Department of Pharmaceutics, School of Pharmacy , Ningxia Medical University , Yinchuan , People's Republic of China
| | - Yaping Mai
- a Department of Pharmaceutics, School of Pharmacy , Ningxia Medical University , Yinchuan , People's Republic of China
| | - Yue Zhao
- a Department of Pharmaceutics, School of Pharmacy , Ningxia Medical University , Yinchuan , People's Republic of China
| | - Yanhui Hou
- a Department of Pharmaceutics, School of Pharmacy , Ningxia Medical University , Yinchuan , People's Republic of China
| | - Yanhua Liu
- a Department of Pharmaceutics, School of Pharmacy , Ningxia Medical University , Yinchuan , People's Republic of China
| | - Jianhong Yang
- a Department of Pharmaceutics, School of Pharmacy , Ningxia Medical University , Yinchuan , People's Republic of China
| |
Collapse
|
50
|
Ruhwald M, Andersen PL, Schrager L. Towards a new vaccine for tuberculosis. Tuberculosis (Edinb) 2018. [DOI: 10.1183/2312508x.10022417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|