1
|
Chang LA, Schotsaert M. Ally, adversary, or arbitrator? The context-dependent role of eosinophils in vaccination for respiratory viruses and subsequent breakthrough infections. J Leukoc Biol 2024; 116:224-243. [PMID: 38289826 PMCID: PMC11288382 DOI: 10.1093/jleuko/qiae010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/12/2023] [Accepted: 12/26/2023] [Indexed: 02/01/2024] Open
Abstract
Eosinophils are a critical type of immune cell and central players in type 2 immunity. Existing literature suggests that eosinophils also can play a role in host antiviral responses, typically type 1 immune events, against multiple respiratory viruses, both directly through release of antiviral mediators and indirectly through activation of other effector cell types. One way to prime host immune responses toward effective antiviral responses is through vaccination, where typically a type 1-skewed immunity is desirable in the context of intracellular pathogens like respiratory viruses. In the realm of breakthrough respiratory viral infection in vaccinated hosts, an event in which virus can still establish productive infection despite preexisting immunity, eosinophils are most prominently known for their link to vaccine-associated enhanced respiratory disease upon natural respiratory syncytial virus infection. This was observed in a pediatric cohort during the 1960s following vaccination with formalin-inactivated respiratory syncytial virus. More recent research has unveiled additional roles of the eosinophil in respiratory viral infection and breakthrough infection. The specific contribution of eosinophils to the quality of vaccine responses, vaccine efficacy, and antiviral responses to infection in vaccinated hosts remains largely unexplored, especially regarding their potential roles in protection. On the basis of current findings, we will speculate upon the suggested function of eosinophils and consider the many potential ways by which eosinophils may exert protective and pathological effects in breakthrough infections. We will also discuss how to balance vaccine efficacy with eosinophil-related risks, as well as the use of eosinophils and their products as potential biomarkers of vaccine efficacy or adverse events.
Collapse
Affiliation(s)
- Lauren A Chang
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, United States
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1124, New York, NY 10029, United States
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1124, New York, NY 10029, United States
| | - Michael Schotsaert
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1124, New York, NY 10029, United States
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1124, New York, NY 10029, United States
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, Box 1630, New York, NY 10029, United States
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, United States
| |
Collapse
|
2
|
Abdelwahab WM, Le-Vinh B, Riffey A, Hicks L, Buhl C, Ettenger G, Jackson KJ, Weiss AM, Miller S, Ryter K, Evans JT, Burkhart DJ. Promotion of Th17 Polarized Immunity via Co-Delivery of Mincle Agonist and Tuberculosis Antigen Using Silica Nanoparticles. ACS APPLIED BIO MATERIALS 2024; 7:3877-3889. [PMID: 38832760 DOI: 10.1021/acsabm.4c00245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Adjuvants and immunomodulators that effectively drive a Th17-skewed immune response are not part of the standard vaccine toolkit. Vaccine adjuvants and delivery technologies that can induce Th17 or Th1/17 immunity and protection against bacterial pathogens, such as tuberculosis (TB), are urgently needed. Th17-polarized immune response can be induced using agonists that bind and activate C-type lectin receptors (CLRs) such as macrophage inducible C-type lectin (Mincle). A simple but effective strategy was developed for codelivering Mincle agonists with the recombinant Mycobacterium tuberculosis fusion antigen, M72, using tunable silica nanoparticles (SNP). Anionic bare SNP, hydrophobic phenyl-functionalized SNP (P-SNP), and cationic amine-functionalized SNP (A-SNP) of different sizes were coated with three synthetic Mincle agonists, UM-1024, UM-1052, and UM-1098, and evaluated for adjuvant activity in vitro and in vivo. The antigen and adjuvant were coadsorbed onto SNP via electrostatic and hydrophobic interactions, facilitating multivalent display and delivery to antigen presenting cells. The cationic A-SNP showed the highest coloading efficiency for the antigen and adjuvant. In addition, the UM-1098-adsorbed A-SNP formulation demonstrated slow-release kinetics in vitro, excellent stability over 12 months of storage, and strong IL-6 induction from human peripheral blood mononuclear cells. Co-adsorption of UM-1098 and M72 on A-SNP significantly improved antigen-specific humoral and Th17-polarized immune responses in vivo in BALB/c mice relative to the controls. Taken together, A-SNP is a promising platform for codelivery and proper presentation of adjuvants and antigens and provides the basis for their further development as a vaccine delivery platform for immunization against TB or other diseases for which Th17 immunity contributes to protection.
Collapse
Affiliation(s)
- Walid M Abdelwahab
- Center for Translational Medicine, 32 campus drive, Missoula, Montana 59812, United States
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, 32 Campus Drive, Missoula, Montana 59812, United States
| | - Bao Le-Vinh
- Center for Translational Medicine, 32 campus drive, Missoula, Montana 59812, United States
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, 32 Campus Drive, Missoula, Montana 59812, United States
| | - Alexander Riffey
- Center for Translational Medicine, 32 campus drive, Missoula, Montana 59812, United States
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, 32 Campus Drive, Missoula, Montana 59812, United States
| | - Linda Hicks
- Center for Translational Medicine, 32 campus drive, Missoula, Montana 59812, United States
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, 32 Campus Drive, Missoula, Montana 59812, United States
| | - Cassandra Buhl
- Center for Translational Medicine, 32 campus drive, Missoula, Montana 59812, United States
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, 32 Campus Drive, Missoula, Montana 59812, United States
| | - George Ettenger
- Center for Translational Medicine, 32 campus drive, Missoula, Montana 59812, United States
- Department of Chemistry, University of Montana, 32 Campus Drive, Missoula, Montana 59812, United States
| | - Konner J Jackson
- Center for Translational Medicine, 32 campus drive, Missoula, Montana 59812, United States
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, 32 Campus Drive, Missoula, Montana 59812, United States
- Inimmune Corporation, 1121 East Broadway, Missoula, Montana 59812, United States
| | - Adam M Weiss
- Center for Translational Medicine, 32 campus drive, Missoula, Montana 59812, United States
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, 32 Campus Drive, Missoula, Montana 59812, United States
| | - Shannon Miller
- Center for Translational Medicine, 32 campus drive, Missoula, Montana 59812, United States
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, 32 Campus Drive, Missoula, Montana 59812, United States
- Inimmune Corporation, 1121 East Broadway, Missoula, Montana 59812, United States
| | - Kendal Ryter
- Center for Translational Medicine, 32 campus drive, Missoula, Montana 59812, United States
- Department of Chemistry, University of Montana, 32 Campus Drive, Missoula, Montana 59812, United States
- Inimmune Corporation, 1121 East Broadway, Missoula, Montana 59812, United States
| | - Jay T Evans
- Center for Translational Medicine, 32 campus drive, Missoula, Montana 59812, United States
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, 32 Campus Drive, Missoula, Montana 59812, United States
- Inimmune Corporation, 1121 East Broadway, Missoula, Montana 59812, United States
| | - David J Burkhart
- Center for Translational Medicine, 32 campus drive, Missoula, Montana 59812, United States
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, 32 Campus Drive, Missoula, Montana 59812, United States
- Inimmune Corporation, 1121 East Broadway, Missoula, Montana 59812, United States
| |
Collapse
|
3
|
Cui Y, Ho M, Hu Y, Shi Y. Vaccine adjuvants: current status, research and development, licensing, and future opportunities. J Mater Chem B 2024; 12:4118-4137. [PMID: 38591323 PMCID: PMC11180427 DOI: 10.1039/d3tb02861e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Vaccines represent one of the most significant inventions in human history and have revolutionized global health. Generally, a vaccine functions by triggering the innate immune response and stimulating antigen-presenting cells, leading to a defensive adaptive immune response against a specific pathogen's antigen. As a key element, adjuvants are chemical materials often employed as additives to increase a vaccine's efficacy and immunogenicity. For over 90 years, adjuvants have been essential components in many human vaccines, improving their efficacy by enhancing, modulating, and prolonging the immune response. Here, we provide a timely and comprehensive review of the historical development and the current status of adjuvants, covering their classification, mechanisms of action, and roles in different vaccines. Additionally, we perform systematic analysis of the current licensing processes and highlights notable examples from clinical trials involving vaccine adjuvants. Looking ahead, we anticipate future trends in the field, including the development of new adjuvant formulations, the creation of innovative adjuvants, and their integration into the broader scope of systems vaccinology and vaccine delivery. The article posits that a deeper understanding of biochemistry, materials science, and vaccine immunology is crucial for advancing vaccine technology. Such advancements are expected to lead to the future development of more effective vaccines, capable of combating emerging infectious diseases and enhancing public health.
Collapse
Affiliation(s)
- Ying Cui
- Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, CA 90095, USA.
| | - Megan Ho
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA
| | - Yongjie Hu
- Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, CA 90095, USA.
| | - Yuan Shi
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA.
| |
Collapse
|
4
|
Zhang J, Wang K, Xu S, Chen L, Gu H, Yang Y, Zhao Q, Huo Y, Li B, Wang Y, Xie Y, Li N, Zhang J, Zhang J, Li Q. Silk Fibroin-Coated Nano-MOFs Enhance the Thermal Stability and Immunogenicity of HBsAg. ACS APPLIED MATERIALS & INTERFACES 2024; 16:8346-8364. [PMID: 38323561 DOI: 10.1021/acsami.3c16358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Vaccines are widely regarded as one of the most effective weapons in the fight against infectious diseases. Currently, vaccines must be stored and transported at low temperatures as high temperatures can lead to a loss of vaccine conformation and reduced therapeutic efficacy. Metal-organic frameworks (MOFs), such as zeolitic imidazole framework-8 (ZIF-8), are a new class of hybrid materials with large specific surface areas, high loading rates, and good biocompatibility and are successful systems for vaccine delivery and protection. Silk fibroin (SF) has a good biocompatibility and thermal stability. In this study, the hepatitis B surface antigen (HBsAg) was successfully encapsulated in ZIF-8 to form HBsAg@ZIF-8 (HZ) using a one-step shake and one-pot shake method. Subsequently, the SF coating modifies HZ through hydrophobic interactions to form HBsAg/SF@ZIF-8 (HSZ), which enhanced the thermal stability and immunogenicity of HBsAg. Compared to free HBsAg, HZ and HSZ improved the thermostability of HBsAg, promoted the antigen uptake and lysosomal escape, stimulated dendritic cell maturation and cytokine secretion, formed an antigen reservoir to promote antibody production, and activated CD4+ T and CD8+ T cells to enhance memory T-cell production. Importantly, HSZ induced a strong immune response even after 14 days of storage at 25 °C. Furthermore, the nanoparticles prepared by the one-step shake method exhibited superior properties compared to those prepared by the one-pot shake method. This study highlights the importance of SF-coated ZIF-8, which holds promise for investigating thermostable vaccines and breaking the vaccine cold chain.
Collapse
Affiliation(s)
- Jiabin Zhang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun 130118, China
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130012, China
| | - Kai Wang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130012, China
| | - Shiyao Xu
- College of Life Sciences, Tonghua Normal University, Tonghua 134002, China
| | - Linlin Chen
- College of Veterinary Medicine, Jilin Agricultural University, Changchun 130118, China
| | - Haiquan Gu
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130012, China
| | - Yujie Yang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130012, China
| | - Qi Zhao
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130012, China
| | - Yurou Huo
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130012, China
| | - Bo Li
- College of Veterinary Medicine, Jilin Agricultural University, Changchun 130118, China
| | - Yufei Wang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun 130118, China
| | - Yubiao Xie
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130012, China
| | - Nan Li
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130012, China
| | - Jiali Zhang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun 130118, China
| | - Jianxu Zhang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130012, China
| | - Qianxue Li
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130012, China
| |
Collapse
|
5
|
Aung A, Irvine DJ. Modulating Antigen Availability in Lymphoid Organs to Shape the Humoral Immune Response to Vaccines. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:171-178. [PMID: 38166252 PMCID: PMC10768795 DOI: 10.4049/jimmunol.2300500] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 09/06/2023] [Indexed: 01/04/2024]
Abstract
Primary immune responses following vaccination are initiated in draining lymph nodes, where naive T and B cells encounter Ag and undergo coordinated steps of activation. For humoral immunity, the amount of Ag present over time, its localization to follicles and follicular dendritic cells, and the Ag's structural state all play important roles in determining the subsequent immune response. Recent studies have shown that multiple elements of vaccine design can impact Ag availability in lymphoid tissues, including the choice of adjuvant, physical form of the immunogen, and dosing kinetics. These vaccine design elements affect the transport of Ag to lymph nodes, Ag's localization in the tissue, the duration of Ag availability, and the structural integrity of the Ag. In this review, we discuss these findings and their implications for engineering more effective vaccines, particularly for difficult to neutralize pathogens.
Collapse
Affiliation(s)
- Aereas Aung
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - Darrell J. Irvine
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Consortium for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA, USA
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Cambridge, MA, USA
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
6
|
Hartmeier PR, Kosanovich JL, Velankar KY, Ostrowski SM, Busch EE, Lipp MA, Empey KM, Meng WS. Modeling the kinetics of lymph node retention and exposure of a cargo protein delivered by biotin-functionalized nanoparticles. Acta Biomater 2023; 170:453-463. [PMID: 37652212 PMCID: PMC10592217 DOI: 10.1016/j.actbio.2023.08.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 08/18/2023] [Accepted: 08/23/2023] [Indexed: 09/02/2023]
Abstract
Generation of protective immunity through vaccination arises from the adaptive immune response developed primarily in the lymph nodes drained from the immunization site. Relative to the intramuscular route, subcutaneous administration allows for direct and rapid access to the lymphatics, but accumulation of soluble protein antigens within the lymph nodes is limited. Subunit vaccines also require immune stimulating adjuvants which may not accumulate in the same lymph nodes simultaneously with antigen. Herein we report the use of biotinylated poly (lactic-co-glycolic acid) nanoparticles (bNPs) to enhance delivery of a model protein antigen to the lymphatics. bNPs provide dual functionality as adjuvant and vehicle to localize antigens with stimulated immune cells in the same draining lymph node. Using streptavidin as a model antigen, which can be loaded directly onto the bNP surface, we evaluated the kinetics of lymph node occupancy and adaptive immune responses in wildtype C57BL/6 mice. Antigen exposure in vivo was significantly improved through surface loading onto bNPs, and we developed a working kinetic model to account for the retention of both particles and antigen in draining lymph nodes. We observed enhanced T cell responses and antigen-specific B cell response in vivo when antigen was delivered on the particle surface. This work highlights the advantage of combining intrinsic adjuvant and antigen loading in a single entity, and the utility of kinetic modeling in the understanding of particle-based vaccines. STATEMENT OF SIGNIFICANCE: Development of safe and effective subunit vaccines depends on effective formulations that render optimized exposure and colocalization of antigens and adjuvants. In this work, we utilize a nanoparticle system which features self-adjuvanting properties and allows for surface loading of recombinant protein antigens. Using in vivo imaging, we demonstrated prolonged co-localization of the antigen and adjuvant particles in draining lymph nodes and provided evidence of B cell activation for up to 21 days following subcutaneous injection. A pharmacokinetic model was developed as a step towards bridging the translational gap between particulate-based vaccines and observed outcomes. The results have implications for the rational design of particle-based vaccines.
Collapse
Affiliation(s)
- Paul R Hartmeier
- Graduate School of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, Pittsburgh, PA 15282, USA
| | - Jessica L Kosanovich
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, PA 15219, USA
| | - Ketki Y Velankar
- Graduate School of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, Pittsburgh, PA 15282, USA
| | - Sarah M Ostrowski
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, PA 15219, USA
| | - Emelia E Busch
- Graduate School of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, Pittsburgh, PA 15282, USA
| | - Madeline A Lipp
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, PA 15219, USA
| | - Kerry M Empey
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, PA 15219, USA; Department of Immunology, School of Medicine, University of Pittsburgh, PA 15219, USA.
| | - Wilson S Meng
- Graduate School of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, Pittsburgh, PA 15282, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh, PA 15219, USA.
| |
Collapse
|
7
|
Advances on the early cellular events occurring upon exposure of human macrophages to aluminum oxyhydroxide adjuvant. Sci Rep 2023; 13:3198. [PMID: 36823452 PMCID: PMC9950428 DOI: 10.1038/s41598-023-30336-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 02/21/2023] [Indexed: 02/25/2023] Open
Abstract
Aluminum compounds are the most widely used adjuvants in veterinary and human vaccines. Despite almost a century of use and substantial advances made in recent decades about their fate and biological effects, the exact mechanism of their action has been continuously debated, from the initial "depot-theory" to the direct immune system stimulation, and remains elusive. Here we investigated the early in vitro response of primary human PBMCs obtained from healthy individuals to aluminum oxyhydroxide (the most commonly used adjuvant) and a whole vaccine, in terms of internalization, conventional and non-conventional autophagy pathways, inflammation, ROS production, and mitochondrial metabolism. During the first four hours of contact, aluminum oxyhydroxide particles, with or without adsorbed vaccine antigen, (1) were quickly recognized and internalized by immune cells; (2) increased and balanced two cellular clearance mechanisms, i.e. canonical autophagy and LC3-associated phagocytosis; (3) induced an inflammatory response with TNF-α production as an early event; (4) and altered mitochondrial metabolism as assessed by both decreased maximal oxygen consumption and reduced mitochondrial reserve, thus potentially limiting further adaptation to other energetic requests. Further studies should consider a multisystemic approach of the cellular adjuvant mechanism involving interconnections between clearance mechanism, inflammatory response and mitochondrial respiration.
Collapse
|
8
|
Chen X. Emerging adjuvants for intradermal vaccination. Int J Pharm 2023; 632:122559. [PMID: 36586639 PMCID: PMC9794530 DOI: 10.1016/j.ijpharm.2022.122559] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 12/18/2022] [Accepted: 12/25/2022] [Indexed: 12/29/2022]
Abstract
The majority of vaccines have been delivered into the muscular tissue. Skin contains large amounts of antigen-presenting cells and has been recognized as a more immunogenic site for vaccine delivery. Intradermal delivery has been approved to improve influenza vaccine efficacy and spare influenza vaccine doses. In response to the recent monkeypox outbreak, intradermal delivery has been also approved to stretch the limited monkeypox vaccine doses to immunize more people at risk. Incorporation of vaccine adjuvants is promising to further increase intradermal vaccine efficacy and spare more vaccine doses. Yet, intradermal vaccination is associated with more significant local reactions than intramuscular vaccination. Thus, adjuvants suitable to boost intradermal vaccination need to have a good local safety without inducing overt local reactions. This review introduces currently approved adjuvants in licensed human vaccines and their relative reactogenicity for intradermal delivery and then introduces emerging chemical and physical adjuvants with a good local safety to boost intradermal vaccination. The rational to develop physical adjuvants, the types of physical adjuvants, and the unique advantages of physical adjuvants to boost intradermal vaccination are also introduced in this review.
Collapse
Affiliation(s)
- Xinyuan Chen
- Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, 7 Greenhouse Road, Avedisian Hall, Room 480, Kingston, RI 02881, United States.
| |
Collapse
|
9
|
Miltner N, Linkner TR, Ambrus V, Al-Muffti AS, Ahmad H, Mótyán JA, Benkő S, Tőzsér J, Mahdi M. Early suppression of antiviral host response and protocadherins by SARS-CoV-2 Spike protein in THP-1-derived macrophage-like cells. Front Immunol 2022; 13:999233. [PMID: 36341352 PMCID: PMC9634736 DOI: 10.3389/fimmu.2022.999233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 10/05/2022] [Indexed: 12/03/2022] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of coronavirus disease-19 (COVID-19). The spike protein (S) of SARS-CoV-2 plays a crucial role in mediating viral infectivity; hence, in an extensive effort to curb the pandemic, many urgently approved vaccines rely on the expression of the S protein, aiming to induce a humoral and cellular response to protect against the infection. Given the very limited information about the effects of intracellular expression of the S protein in host cells, we aimed to characterize the early cellular transcriptomic changes induced by expression of the S protein in THP-1-derived macrophage-like cells. Results showed that a wide variety of genes were differentially expressed, products of which are mainly involved in cell adhesion, homeostasis, and most notably, antiviral and immune responses, depicted by significant downregulation of protocadherins and type I alpha interferons (IFNAs). While initially, the levels of IFNAs were higher in the medium of S protein expressing cells, the downregulation observed on the transcriptomic level might have been reflected by no further increase of IFNA cytokines beyond the 5 h time-point, compared to the mock control. Our study highlights the intrinsic pathogenic role of the S protein and sheds some light on the potential drawbacks of its utilization in the context of vaccination strategies.
Collapse
Affiliation(s)
- Noémi Miltner
- Laboratory of Retroviral Biochemistry, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Tamás Richárd Linkner
- Laboratory of Retroviral Biochemistry, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, Debrecen, Hungary
| | - Viktor Ambrus
- Laboratory of Retroviral Biochemistry, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, Debrecen, Hungary
| | - Aya S. Al-Muffti
- Laboratory of Retroviral Biochemistry, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, Debrecen, Hungary
| | - Hala Ahmad
- Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, Debrecen, Hungary
- Laboratory of Inflammation-Physiology, Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - János András Mótyán
- Laboratory of Retroviral Biochemistry, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Szilvia Benkő
- Laboratory of Inflammation-Physiology, Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - József Tőzsér
- Laboratory of Retroviral Biochemistry, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- *Correspondence: Mohamed Mahdi, ; József Tőzsér,
| | - Mohamed Mahdi
- Laboratory of Retroviral Biochemistry, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- *Correspondence: Mohamed Mahdi, ; József Tőzsér,
| |
Collapse
|
10
|
Patil V, Hernandez-Franco JF, HogenEsch H, Renukaradhya GJ. Alpha-D-glucan-based vaccine adjuvants: Current status and future perspectives. Front Immunol 2022; 13:858321. [PMID: 36119085 PMCID: PMC9471374 DOI: 10.3389/fimmu.2022.858321] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 07/26/2022] [Indexed: 11/13/2022] Open
Abstract
Nanoparticles (NPs) are increasingly used as efficient vaccine antigen-delivery platforms and vaccine adjuvants. Alpha (α)-D-glucans are polysaccharide polymers found in plants, animals, and microbes. Phytoglycogen (PG) is a densely branched dendrimer-like α-D-glucan that forms nanoparticle structures. Two simple chemical modifications of corn-derived PG create positively charged, amphiphilic nanoparticles, known as Nano-11, that stimulate immune responses when used as vaccine adjuvant in a variety of species. Nano-11 is a versatile adjuvant that can be used for alternative routes of vaccination and in combination with other immunostimulatory molecules. This review discusses our current understanding of the mechanism of action of Nano-11 and its future potential applications in animal vaccines.
Collapse
Affiliation(s)
- Veerupaxagouda Patil
- Center for Food Animal Health, Ohio Agricultural Research and Development Center, Wooster, OH, United States
- Department of Animal Sciences, The Ohio State University, Columbus, OH, United States
| | - Juan F. Hernandez-Franco
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN, United States
| | - Harm HogenEsch
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN, United States
- *Correspondence: Harm HogenEsch, ; Gourapura J. Renukaradhya,
| | - Gourapura J. Renukaradhya
- Center for Food Animal Health, Ohio Agricultural Research and Development Center, Wooster, OH, United States
- Department of Animal Sciences, The Ohio State University, Columbus, OH, United States
- *Correspondence: Harm HogenEsch, ; Gourapura J. Renukaradhya,
| |
Collapse
|
11
|
Masson JD, Angrand L, Badran G, de Miguel R, Crépeaux G. Clearance, biodistribution, and neuromodulatory effects of aluminum-based adjuvants. Systematic review and meta-analysis: what do we learn from animal studies? Crit Rev Toxicol 2022; 52:403-419. [PMID: 36112128 DOI: 10.1080/10408444.2022.2105688] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Aluminum (Al) salts are commonly used as adjuvants in human and veterinary vaccines for almost a century. Despite this long history of use and the very large number of exposed individuals, data in the literature concerning the fate of these molecules after injection and their potential effects on the nervous system is limited. In the context of (i) an increase of exposure to Al salts through vaccination; (ii) the absence of safety values determined by health regulators; (iii) the lack of robustness of the studies used as references to officially claim Al adjuvant innocuity; (iv) the publication of several animal studies investigating Al salts clearance/biopersistence and neurotoxicity; we have examined in this review all published studies performed on animals and assessing Al adjuvants kinetics, biodistribution, and neuromodulation since the first work of A. Glenny in the 1920s. The diversity of methodological approaches, results, and potential weaknesses of the 31 collected studies are exposed. A large range of protocols has been used, including a variety of exposure schedule and analyses methods, making comparisons between studies uneasy. Nevertheless, published data highlight that when biopersistence, translocation, or neuromodulation were assessed, they were documented whatever the different in vivo models and methods used. Moreover, the studies pointed out the crucial importance of the different Al adjuvant physicochemical properties and host genetic background on their kinetics, biodistribution, and neuromodulatory effects. Regarding the state of the art on this key public health topic, further studies are clearly needed to determine the exact safety level of Al salts.
Collapse
Affiliation(s)
- J-D Masson
- INSERM, IMRB, Univ Paris Est Créteil, Créteil, France
| | - L Angrand
- INSERM, IMRB, Univ Paris Est Créteil, Créteil, France.,École Nationale Vétérinaire d'Alfort, IMRB, Maisons-Alfort, France
| | - G Badran
- INSERM, IMRB, Univ Paris Est Créteil, Créteil, France.,Laboratoire SABNP, Université d'Evry Val d'Essonne, Paris, France
| | - R de Miguel
- Department of Animal Pathology, University of Zaragoza, Zaragoza, Spain
| | - G Crépeaux
- INSERM, IMRB, Univ Paris Est Créteil, Créteil, France.,École Nationale Vétérinaire d'Alfort, IMRB, Maisons-Alfort, France
| |
Collapse
|
12
|
Oliva-Hernández R, Fariñas-Medina M, Hernández-Salazar T, Oyarzabal-Vera A, Infante-Bourzac JF, Rodríguez-Salgueiro S, Rodríguez-Noda LM, Arranguren-Masorra Y, Climent-Ruíz Y, Fernández-Castillo S, G-Rivera D, Santana-Mederos D, Sánchez-Ramírez B, García-Rivera D, Valdés-Barbín Y, Vérez-Bencomo V. Repeat-dose and local tolerance toxicity of SARS-CoV-2 FINLAY-FR-02 vaccine candidate in Sprague Dawley rats. Toxicology 2022; 471:153161. [PMID: 35364223 PMCID: PMC8961942 DOI: 10.1016/j.tox.2022.153161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/11/2022] [Accepted: 03/18/2022] [Indexed: 11/19/2022]
Abstract
This study evaluates safety of FINLAY-FR-02, a vaccine candidate against SARS-CoV-2 based on the recombinant receptor binding domain conjugated to tetanus toxoid, in a preclinical, repeat-dose toxicity and local tolerance study. Sprague Dawley rats were randomly allocated to three experimental groups: control (receiving physiological saline solution); placebo (receiving all vaccine components except antigens) and vaccine group (receiving three doses of the vaccine candidate, 37.5 µg of RBD) administered intramuscularly in hind limbs at 24 h intervals during three days. We evaluated physiological condition, pain, food and water consumption, body temperature, dermal irritability, injection site temperature and inflammation, immunological response, blood chemistry, relative organ weight, histopathology and immunotoxicology. The product was well tolerated; no clinically relevant changes, pain, local effects or adverse systemic toxicological changes or deaths were observed. These preliminary results permitted the Cuban regulatory authorities to authorize clinical trials in humans.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Daniel G-Rivera
- Laboratory of Synthetic and Biomolecular Chemistry, Faculty of Chemistry, University of Havana, Zapata & G, Havana 10400, Cuba.
| | | | | | | | | | | |
Collapse
|
13
|
Li Q, Chi H, Shi X, Gan Q, Dalmo RA, Sun YY, Tang X, Xing J, Sheng X, Zhan W. Vaccine Adjuvants Induce Formation of Intraperitoneal Extracellular Traps in Flounder (Paralichthys olivaceus). Front Cell Infect Microbiol 2022; 12:875409. [PMID: 35433509 PMCID: PMC9005893 DOI: 10.3389/fcimb.2022.875409] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 03/03/2022] [Indexed: 01/15/2023] Open
Abstract
Adjuvants are used to increase the strength, quality, and duration of the immune response of vaccines. Neutrophils are the first immune cells that arrive at the injection site and can release DNA fibers together with granular proteins, so-called neutrophil extracellular traps (NETs), to entrap microbes in a sticky matrix of extracellular chromatin and microbicidal agents. Similar extracellular structures were also released by macrophages, mast cells, and eosinophils and are now generalized as “ETs.” Here we demonstrated that Alum adjuvant stimulation led to peritoneal cells swarming and ET release in vitro. Moreover, compared to antigen stimulation alone, ET release was significantly increased after stimulation with antigen-mixed adjuvants and in a time- and dose-dependent manner. In vivo, we were able to monitor and quantify the continuous changes of the ET release in the same fish by using the small animal in vivo imaging instrument at different times during the early stages after intraperitoneal immunization. The results showed that the fluorescence signal of ETs in the peritoneum increased from 0 to 12 h after injection and then gradually decreased. The fluorescence signals came from extracellular DNA fibers, which are sensitive to DNase I and confirmed by microscopy of peritoneal fluid ex vivo. In summary, this study introduced a new method for detecting ETs in the peritoneum of fish in vivo and indicated that ET formation is involved in the immune response at the early stage after intraperitoneal immunization to vaccines.
Collapse
Affiliation(s)
- Qian Li
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, China
| | - Heng Chi
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- *Correspondence: Heng Chi,
| | - Xueyan Shi
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, China
| | - Qiujie Gan
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, China
| | - Roy Ambli Dalmo
- Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries and Economics, University of Tromsø, The Arctic University of Norway, Tromsø, Norway
| | - Yuan-yuan Sun
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Xiaoqian Tang
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Jing Xing
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Xiuzhen Sheng
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Wenbin Zhan
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
14
|
Sasaki E, Furuhata K, Mizukami T, Hamaguchi I. An investigation and assessment of the muscle damage and inflammation at injection site of aluminum-adjuvanted vaccines in guinea pigs. J Toxicol Sci 2022; 47:439-451. [DOI: 10.2131/jts.47.439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Eita Sasaki
- Department of Safety Research on Blood and Biological Products, National Institute of Infectious Diseases
| | - Keiko Furuhata
- Department of Safety Research on Blood and Biological Products, National Institute of Infectious Diseases
| | - Takuo Mizukami
- Department of Safety Research on Blood and Biological Products, National Institute of Infectious Diseases
| | - Isao Hamaguchi
- Department of Safety Research on Blood and Biological Products, National Institute of Infectious Diseases
| |
Collapse
|
15
|
Role of Damage-Associated Molecular Pattern/Cell Death Pathways in Vaccine-Induced Immunity. Viruses 2021; 13:v13122340. [PMID: 34960608 PMCID: PMC8708515 DOI: 10.3390/v13122340] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/17/2021] [Accepted: 11/18/2021] [Indexed: 12/18/2022] Open
Abstract
Immune responses induced by natural infection and vaccination are known to be initiated by the recognition of microbial patterns by cognate receptors, since microbes and most vaccine components contain pathogen-associated molecular patterns. Recent discoveries on the roles of damage-associated molecular patterns (DAMPs) and cell death in immunogenicity have improved our understanding of the mechanism underlying vaccine-induced immunity. DAMPs are usually immunologically inert, but can transform into alarming signals to activate the resting immune system in response to pathogenic infection, cellular stress and death, or tissue damage. The activation of DAMPs and cell death pathways can trigger local inflammation, occasionally mediating adaptive immunity, including antibody- and cell-mediated immune responses. Emerging evidence indicates that the components of vaccines and adjuvants induce immunogenicity via the stimulation of DAMP/cell death pathways. Furthermore, strategies for targeting this pathway to enhance immunogenicity are being investigated actively. In this review, we describe various DAMPs and focus on the roles of DAMP/cell death pathways in the context of vaccines for infectious diseases and cancer.
Collapse
|
16
|
Heterologous administration of HPV16 E7 epitope-loaded nanocomplexes inhibits tumor growth in mouse model. Int Immunopharmacol 2021; 101:108298. [PMID: 34739928 DOI: 10.1016/j.intimp.2021.108298] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 10/19/2021] [Accepted: 10/20/2021] [Indexed: 01/02/2023]
Abstract
The nanostructured complexes can result in enhanced vaccine efficacy by facilitating the distribution and uptake of antigens by antigen-presenting cells (APCs), thereby stimulating immune responses. Here, we hypothesized that either directly coating of nanoadjuvants including aluminum phosphate (AlPO4) and adenovirus (Ad) with a modified HPV16 E7 MHC-I specific epitope, RAHYNIVTF49-57, or mixing the CpG oligodeoxynucleotide (CpG-ODN) with the cationic epitope to form nanocomlexes, and their combinational therapy would enhance their anti-tumor effects in a TC-1 mouse model. The positively-charged HPV16 E7 epitope was attracted to the oppositely-charged adjuvants by electrostatic interaction to generate epitope/adjuvant nanocomplexes. We showed that coating the nanosized adjuvants with the cationic epitope increased the particles' surface charge without significant change in their size. We then tested the cellular immunogenicity and therapeutic efficacy of nanocomplexes by measuring IL-10 and IFN-γ production, the expression of CD107a as a marker of CTL response, and tumor growth inhibition. The nanocomplexes were administered either in homologous or heterologous prime-boost regimens, and heterologous immunizations including Ad/Pep-CpG/Pep, CpG/Pep-Ad/Pep, Ad/Pep-Alum/Pep, and Alum/Pep-Ad/Pep induced significantly higher levels of IL-10, IFN-γ, and CD107a-expressing CD8 T cells compared with homologous administrations. Furthermore, the tumor growth was significantly suppressed in mice receiving nanostructured complexes in the heterologous immunizations. Our study highlights the potential of the heterologous prime-boost administration of the epitope-coated nanostructures as an effective immunization strategy.
Collapse
|
17
|
In Vitro Characterization of the Innate Immune Pathways Engaged by Live and Inactivated Tick-Borne Encephalitis Virus. Vaccines (Basel) 2021; 9:vaccines9060664. [PMID: 34204532 PMCID: PMC8234070 DOI: 10.3390/vaccines9060664] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 06/07/2021] [Accepted: 06/15/2021] [Indexed: 12/28/2022] Open
Abstract
Tick-borne encephalitis virus (TBEV) infection can lead to inflammation of the central nervous system. The disease can be effectively prevented by whole inactivated virus vaccines. Here, we investigated the innate immune profile induced in vitro by the antigen component of the vaccines, inactivated TBEV (I-TBEV), to gain insights into the mechanism of action of the TBE vaccine as compared to the live virus. To this end, we exposed human peripheral blood mononuclear cells (PBMCs) to inactivated and live TBEV and assessed cellular responses by RNA sequencing. Both inactivated and live TBEV significantly induced an interferon-dominated gene signature and an increased RIG-I-like receptor (RLR) expression. Using pathway-specific inhibitors, we assessed the involvement of pattern recognition receptors in the sensing of inactivated or live TBEV. Only RLR pathway inhibition significantly suppressed the downstream cascade induced by I-TBEV, while responses to the replicating virus were impacted by the inhibition of RIG-I-like, as well as Toll-like, receptors. Our results show that inactivated and live TBEV predominantly engaged an interferon response in our in vitro PBMC platform, and indicate RLRs as the main pattern recognition receptors involved in I-TBEV sensing.
Collapse
|
18
|
Diks AM, Khatri I, Oosten LE, de Mooij B, Groenland RJ, Teodosio C, Perez-Andres M, Orfao A, Berbers GAM, Zwaginga JJ, van Dongen JJM, Berkowska MA. Highly Sensitive Flow Cytometry Allows Monitoring of Changes in Circulating Immune Cells in Blood After Tdap Booster Vaccination. Front Immunol 2021; 12:666953. [PMID: 34177905 PMCID: PMC8223751 DOI: 10.3389/fimmu.2021.666953] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 05/17/2021] [Indexed: 12/21/2022] Open
Abstract
Antigen-specific serum immunoglobulin (Ag-specific Ig) levels are broadly used as correlates of protection. However, in several disease and vaccination models these fail to predict immunity. In these models, in-depth knowledge of cellular processes associated with protective versus poor responses may bring added value. We applied high-throughput multicolor flow cytometry to track over-time changes in circulating immune cells in 10 individuals following pertussis booster vaccination (Tdap, Boostrix®, GlaxoSmithKline). Next, we applied correlation network analysis to extensively investigate how changes in individual cell populations correlate with each other and with Ag-specific Ig levels. We further determined the most informative cell subsets and analysis time points for future studies. Expansion and maturation of total IgG1 plasma cells, which peaked at day 7 post-vaccination, was the most prominent cellular change. Although these cells preceded the increase in Ag-specific serum Ig levels, they did not correlate with the increase of Ig levels. In contrast, strong correlation was observed between Ag-specific IgGs and maximum expansion of total IgG1 and IgA1 memory B cells at days 7 to 28. Changes in circulating T cells were limited, implying the need for a more sensitive approach. Early changes in innate immune cells, i.e. expansion of neutrophils, and expansion and maturation of monocytes up to day 5, most likely reflected their responses to local damage and adjuvant. Here we show that simultaneous monitoring of multiple circulating immune subsets in blood by flow cytometry is feasible. B cells seem to be the best candidates for vaccine monitoring.
Collapse
Affiliation(s)
- Annieck M. Diks
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands
| | - Indu Khatri
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands
- Leiden Computational Biology Center, Leiden University Medical Center, Leiden, Netherlands
| | | | - Bas de Mooij
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands
| | - Rick J. Groenland
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands
| | - Cristina Teodosio
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands
| | - Martin Perez-Andres
- Cancer Research Centre (IBMCC, USAL-CSIC; CIBERONC CB16/12/00400), Institute for Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
- Department of Medicine and Cytometry Service (NUCLEUS Research Support Platform), University of Salamanca (USAL), Salamanca, Spain
| | - Alberto Orfao
- Cancer Research Centre (IBMCC, USAL-CSIC; CIBERONC CB16/12/00400), Institute for Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
- Department of Medicine and Cytometry Service (NUCLEUS Research Support Platform), University of Salamanca (USAL), Salamanca, Spain
| | - Guy A. M. Berbers
- Center for Infectious Disease Control, National Institute of Public Health and the Environment, Bilthoven, Netherlands
| | - Jaap Jan Zwaginga
- Department of Hematology, Leiden University Medical Center, Leiden, Netherlands
| | | | | |
Collapse
|
19
|
Wørzner K, Hvannastein J, Schmidt ST, Foged C, Rosenkrands I, Pedersen GK, Christensen D. Adsorption of protein antigen to the cationic liposome adjuvant CAF®01 is required for induction of Th1 and Th17 responses but not for antibody induction. Eur J Pharm Biopharm 2021; 165:293-305. [PMID: 34044110 PMCID: PMC8212872 DOI: 10.1016/j.ejpb.2021.05.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 04/20/2021] [Accepted: 05/19/2021] [Indexed: 11/24/2022]
Abstract
The degree of antigen adsorption to adjuvants in subunit vaccines may significantly influence the immune responses they induce upon vaccination. Commonly used approaches for studying how the level of adsorption affects the induction of antigen-specific immune responses include (i) using adjuvants with different abilities to adsorb antigens, and (ii) comparing different antigens selected based on their ability to adsorb to the adjuvant. A weakness of these approaches is that not only the antigen adsorption level is varied, but also other important functional factors such as adjuvant composition and/or the B/T cell epitopes, which may affect immunogenicity. Hence, we investigated how changing the adsorption capabilities of a single antigen to an adjuvant influenced the vaccine-induced immune responses. The model antigen lysozyme, which displays a positive net charge at physiological pH due to an isoelectric point (pI) of 11, was succinylated to different extents, resulting in a reduction of the pI value to 4.4–5.9, depending on the degree of succinylation. A pronounced inverse correlation was found between the pI value of the succinylated lysozyme analogues and the degree of adsorption to a cationic liposomal adjuvant consisting of dimethyldioctadecylammonium bromide (DDA) and trehalose dibehenate (TDB) (CAF®01). Furthermore, increased adsorption to this adjuvant correlated directly with the magnitude of lysozyme-specific Th1/Th17 immune responses induced by the vaccine in mice, while there was an inverse correlation with antibody induction. However, high lysozyme-specific antibody titers were induced with an increased antigen dose, even upon vaccination with a strongly adsorbed succinylated lysozyme analogue. Hence, these data illustrate that the degree of lysozyme adsorption to CAF®01 strongly affects the quality of the resulting immune responses.
Collapse
Affiliation(s)
- Katharina Wørzner
- Statens Serum Institut, Department of Infectious Disease Immunology, Artillerivej 5, 2300 Copenhagen S, Denmark; Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen Ø, Denmark
| | - Jóhanna Hvannastein
- Statens Serum Institut, Department of Infectious Disease Immunology, Artillerivej 5, 2300 Copenhagen S, Denmark; Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen Ø, Denmark
| | - Signe Tandrup Schmidt
- Statens Serum Institut, Department of Infectious Disease Immunology, Artillerivej 5, 2300 Copenhagen S, Denmark
| | - Camilla Foged
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen Ø, Denmark
| | - Ida Rosenkrands
- Statens Serum Institut, Department of Infectious Disease Immunology, Artillerivej 5, 2300 Copenhagen S, Denmark
| | - Gabriel Kristian Pedersen
- Statens Serum Institut, Department of Infectious Disease Immunology, Artillerivej 5, 2300 Copenhagen S, Denmark
| | - Dennis Christensen
- Statens Serum Institut, Department of Infectious Disease Immunology, Artillerivej 5, 2300 Copenhagen S, Denmark.
| |
Collapse
|
20
|
de Sá-Rocha LC, Demarchi LMMF, Postol E, Sampaio RO, de Alencar RE, Kalil J, Guilherme L. StreptInCor, a Group A Streptococcal Adsorbed Vaccine: Evaluation of Repeated Intramuscular Dose Toxicity Testing in Rats. Front Cardiovasc Med 2021; 8:643317. [PMID: 34046438 PMCID: PMC8144318 DOI: 10.3389/fcvm.2021.643317] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 03/22/2021] [Indexed: 01/18/2023] Open
Abstract
Streptococcus pyogenes infections continue to be a worldwide public health problem, causing various diseases in humans, with rheumatic fever and rheumatic heart disease being the most harmful manifestations. Impetigo and post-streptococcal glomerulonephritis are also important sequelae of skin infections. We have developed a candidate vaccine epitope (StreptInCor) that presents promising results in diverse animal models. To assess whether the StreptInCor alum-adsorbed vaccine could induce undesirable effects, a certified independent company conducted a repeated intramuscular dose toxicity evaluation in Wistar rats, a choice model for toxicity studies. We did not observe significant alterations in clinical, hematological, biochemical, anatomical, or histopathological parameters due to vaccine administration, even when the animals received the highest dose. In conclusion, repeated intramuscular doses did not show signs of macroscopic or other significant changes in the clinical or histopathological parameters, indicating that StreptInCor can be considered a safe candidate vaccine.
Collapse
Affiliation(s)
- Luiz Carlos de Sá-Rocha
- Neuroimmunology Laboratory School of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo, Brazil
| | | | - Edilberto Postol
- Heart Institute (InCor), School of Medicine, University of São Paulo, São Paulo, Brazil
- Immunology Investigation Institute, National Institute for Science and Technology, University of São Paulo, São Paulo, Brazil
| | - Roney Orismar Sampaio
- Heart Institute (InCor), School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Raquel Elaine de Alencar
- Heart Institute (InCor), School of Medicine, University of São Paulo, São Paulo, Brazil
- Immunology Investigation Institute, National Institute for Science and Technology, University of São Paulo, São Paulo, Brazil
| | - Jorge Kalil
- Heart Institute (InCor), School of Medicine, University of São Paulo, São Paulo, Brazil
- Immunology Investigation Institute, National Institute for Science and Technology, University of São Paulo, São Paulo, Brazil
| | - Luiza Guilherme
- Heart Institute (InCor), School of Medicine, University of São Paulo, São Paulo, Brazil
- Immunology Investigation Institute, National Institute for Science and Technology, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
21
|
Chen XY, Du GS, Sun X. Targeting Lymphoid Tissues to Promote Immune Tolerance. ADVANCED THERAPEUTICS 2021. [DOI: 10.1002/adtp.202100056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Xiao Yan Chen
- Key Laboratory of Drug‐Targeting and Drug Delivery System of the Education Ministry Sichuan Engineering Laboratory for Plant‐Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology West China School of Pharmacy Sichuan University No.17, Block 3, Southern Renmin Road Chengdu 610041 China
| | - Guang Sheng Du
- Key Laboratory of Drug‐Targeting and Drug Delivery System of the Education Ministry Sichuan Engineering Laboratory for Plant‐Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology West China School of Pharmacy Sichuan University No.17, Block 3, Southern Renmin Road Chengdu 610041 China
| | - Xun Sun
- Key Laboratory of Drug‐Targeting and Drug Delivery System of the Education Ministry Sichuan Engineering Laboratory for Plant‐Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology West China School of Pharmacy Sichuan University No.17, Block 3, Southern Renmin Road Chengdu 610041 China
| |
Collapse
|
22
|
Trovato M, Ibrahim HM, Isnard S, Le Grand R, Bosquet N, Borhis G, Richard Y. Distinct Features of Germinal Center Reactions in Macaques Infected by SIV or Vaccinated with a T-Dependent Model Antigen. Viruses 2021; 13:263. [PMID: 33572146 PMCID: PMC7916050 DOI: 10.3390/v13020263] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/01/2021] [Accepted: 02/04/2021] [Indexed: 12/14/2022] Open
Abstract
B-cell follicles constitute large reservoirs of infectious HIV/SIV associated to follicular dendritic cells and infecting follicular helper (TFH) and regulatory (TFR) T-cells in germinal centers (GCs). Thus, follicular and GC B-cells are persistently exposed to viral antigens. Despite recent development of potent HIV immunogens, numerous questions are still open regarding GC reaction during early HIV/SIV infection. Here, we dissect the dynamics of B- and T-cells in GCs of macaques acutely infected by SIV (Group SIV+) or vaccinated with Tetanus Toxoid (Group TT), a T-dependent model antigen. Systemic inflammation and mobilization of antigen-presenting cells in inguinal lymph nodes and spleen are lower in Group TT than in Group SIV+. Despite spleen GC reaction of higher magnitude in Group SIV+, the development of protective immunity could be limited by abnormal helper functions of TFH massively polarized into TFH1-like cells, by inflammation-induced recruitment of fCD8 (either regulatory or cytotoxic) and by low numbers of TFR limiting TFH/TFR competition for high affinity B-cells. Increased GC B-cells apoptosis and accumulation of CD21lo memory B-cells, unable to further participate to GC reaction, likely contribute to eliminate SIV-specific B-cells and decrease antibody affinity maturation. Surprisingly, functional GCs and potent TT-specific antibodies develop despite low levels of CXCL13.
Collapse
Affiliation(s)
- Maria Trovato
- Institut Cochin, Université de Paris, INSERM, CNRS, 75014 Paris, France; (M.T.); (H.M.I.); (S.I.)
| | - Hany M. Ibrahim
- Institut Cochin, Université de Paris, INSERM, CNRS, 75014 Paris, France; (M.T.); (H.M.I.); (S.I.)
| | - Stephane Isnard
- Institut Cochin, Université de Paris, INSERM, CNRS, 75014 Paris, France; (M.T.); (H.M.I.); (S.I.)
- Université Paris-Saclay, INSERM, CEA, Center for Immunology of Viral, Auto-Immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), 92260 Fontenay-aux-Roses, France; (R.L.G.); (N.B.)
| | - Roger Le Grand
- Université Paris-Saclay, INSERM, CEA, Center for Immunology of Viral, Auto-Immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), 92260 Fontenay-aux-Roses, France; (R.L.G.); (N.B.)
| | - Nathalie Bosquet
- Université Paris-Saclay, INSERM, CEA, Center for Immunology of Viral, Auto-Immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), 92260 Fontenay-aux-Roses, France; (R.L.G.); (N.B.)
| | - Gwenoline Borhis
- Institut Cochin, Université de Paris, INSERM, CNRS, 75014 Paris, France; (M.T.); (H.M.I.); (S.I.)
| | - Yolande Richard
- Institut Cochin, Université de Paris, INSERM, CNRS, 75014 Paris, France; (M.T.); (H.M.I.); (S.I.)
| |
Collapse
|
23
|
Chai P, Pu X, Ge J, Ren S, Xia X, Luo A, Wang S, Wang X, Li J. The recombinant protein combined vaccine based on the fragment C of tetanus toxin and the cross-reacting material 197. Appl Microbiol Biotechnol 2021; 105:1683-1692. [PMID: 33511443 DOI: 10.1007/s00253-021-11139-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 01/11/2021] [Accepted: 01/20/2021] [Indexed: 11/28/2022]
Abstract
Diphtheria and tetanus toxoids and acellular pertussis (DTaP) vaccines were widely used since 1940s. The exceptional success of childhood vaccination is undisputed. However, the anti-diphtheria and tetanus antibody will decrease with the increase of age in human body. A boosting vaccine for tetanus and diphtheria in adult is recommended by WHO. Recombinant protein vaccine has the advantages of single component and high safety, which is one of the directions to develop boosting vaccines. Therefore, in this study, we evaluated a recombinant TTc and CRM197 combination vaccine (RTCV) that uses the fragment C (TTc) of tetanus toxin and the cross-reacting material 197 (CRM197) of the diphtheria toxin mutant. Our results displayed that RTCV (composed of 10 μg/mL TTc, 20 μg/mL CRM197 antigens, and 500 μg/mL aluminum adjuvants) could induce high levels of IgG and IgG1 antibody in mice, which were similar as those induced by DTaP. These results will provide technical support for a novel boosting vaccine against diphtheria and tetanus. KEY POINTS: • We successfully expressed CRM197 protein in E. coli BL21 (DE3) using pET26b (+) vector. • The anti-TTc and anti-CRM197 antibody titer (IgG) of RTCV was similar with DTaP.
Collapse
Affiliation(s)
- Pengdi Chai
- Jiangsu Theravac Bio-pharmaceutical CO., Ltd, No.699-18 Xuanwu Street, Nanjing, 210042, China.,School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, 730050, China
| | - Xiuying Pu
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, 730050, China
| | - Jun Ge
- Jiangsu Theravac Bio-pharmaceutical CO., Ltd, No.699-18 Xuanwu Street, Nanjing, 210042, China
| | - Sulin Ren
- Jiangsu Theravac Bio-pharmaceutical CO., Ltd, No.699-18 Xuanwu Street, Nanjing, 210042, China
| | - Xiaoyu Xia
- Jiangsu Theravac Bio-pharmaceutical CO., Ltd, No.699-18 Xuanwu Street, Nanjing, 210042, China.,School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, 730050, China
| | - Amiao Luo
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, 730050, China
| | - Shiwei Wang
- Jiangsu Theravac Bio-pharmaceutical CO., Ltd, No.699-18 Xuanwu Street, Nanjing, 210042, China
| | - Xiaodong Wang
- Jiangsu Theravac Bio-pharmaceutical CO., Ltd, No.699-18 Xuanwu Street, Nanjing, 210042, China
| | - Jianqiang Li
- Jiangsu Theravac Bio-pharmaceutical CO., Ltd, No.699-18 Xuanwu Street, Nanjing, 210042, China.
| |
Collapse
|
24
|
O'Hagan DT, Lodaya RN, Lofano G. The continued advance of vaccine adjuvants - 'we can work it out'. Semin Immunol 2020; 50:101426. [PMID: 33257234 DOI: 10.1016/j.smim.2020.101426] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/20/2020] [Accepted: 11/16/2020] [Indexed: 12/19/2022]
Abstract
In the last decade there have been some significant advances in vaccine adjuvants, particularly in relation to their inclusion in licensed products. This was proceeded by several decades in which such advances were very scarce, or entirely absent, but several novel adjuvants have now been included in licensed products, including in the US. These advances have relied upon several key technological insights that have emerged in this time period, which have finally allowed an in depth understanding of how adjuvants work. These advances include developments in systems biology approaches which allow the hypotheses first advanced in pre-clinical studies to be critically evaluated in human studies. This review highlights these recent advances, both in relation to the adjuvants themselves, but also the technologies that have enabled their successes. Moreover, we critically appraise what will come next, both in terms of new adjuvant molecules, and the technologies needed to allow them to succeed. We confidently predict that additional adjuvants will emerge in the coming years that will reach approval in licensed products, but that the components might differ significantly from those which are currently used. Gradually, the natural products that were originally used to build adjuvants, since they were readily available at the time of initial development, will come to be replaced by synthetic or biosynthetic materials, with more appealing attributes, including more reliable and robust supply, along with reduced heterogeneity. The recent advance in vaccine adjuvants is timely, given the need to create novel vaccines to deal with the COVID-19 pandemic. Although, we must ensure that the rigorous safety evaluations that allowed the current adjuvants to advance are not 'short-changed' in the push for new vaccines to meet the global challenge as quickly as possible, we must not jeopardize what we have achieved, by pushing less established technologies too quickly, if the data does not fully support it.
Collapse
Affiliation(s)
- Derek T O'Hagan
- GSK, Slaoui Center for Vaccines Research, Rockville, MD, 20850, USA
| | - Rushit N Lodaya
- GSK, Slaoui Center for Vaccines Research, Rockville, MD, 20850, USA
| | - Giuseppe Lofano
- GSK, Slaoui Center for Vaccines Research, Rockville, MD, 20850, USA.
| |
Collapse
|
25
|
Pedersen GK, Wørzner K, Andersen P, Christensen D. Vaccine Adjuvants Differentially Affect Kinetics of Antibody and Germinal Center Responses. Front Immunol 2020; 11:579761. [PMID: 33072125 PMCID: PMC7538648 DOI: 10.3389/fimmu.2020.579761] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 08/24/2020] [Indexed: 12/14/2022] Open
Abstract
Aluminum salts and squalene based oil-in-water emulsions (SE) are widely used adjuvants in licensed vaccines, yet their mechanisms are not fully known. Here we report that induction of antibody responses displays different kinetics dependent on the adjuvant used. SE facilitated a rapid antibody response in contrast to aluminum hydroxide (AH) and the depot-forming cationic liposome-based adjuvant (CAF01). Antigen given with the SE adjuvant rapidly reached follicular B cells in the draining lymph node, whereas antigen formulated in AH or CAF01 remained at the site of injection as a depot. Removal of the injection site early after immunization abrogated antibody responses only when antigen was given in the depot-forming adjuvants. Despite initial delays in B cell activation and germinal center (GC) formation when antigen was given in depot-forming adjuvants, the antibody levels reached higher magnitudes than when the antigen was formulated in SE. This study demonstrates that the kinetic aspect of antibody responses is critical in adjuvant benchmarking and suggests that the optimal vaccination regime depends on the adjuvant used.
Collapse
Affiliation(s)
| | - Katharina Wørzner
- Center for Vaccine Research, Statens Serum Institut, Copenhagen, Denmark
| | - Peter Andersen
- Center for Vaccine Research, Statens Serum Institut, Copenhagen, Denmark.,Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Dennis Christensen
- Center for Vaccine Research, Statens Serum Institut, Copenhagen, Denmark
| |
Collapse
|
26
|
Lofano G, Mallett CP, Bertholet S, O’Hagan DT. Technological approaches to streamline vaccination schedules, progressing towards single-dose vaccines. NPJ Vaccines 2020; 5:88. [PMID: 33024579 PMCID: PMC7501859 DOI: 10.1038/s41541-020-00238-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 08/25/2020] [Indexed: 12/21/2022] Open
Abstract
Vaccines represent the most successful medical intervention in history, with billions of lives saved. Although multiple doses of the same vaccine are typically required to reach an adequate level of protection, it would be advantageous to develop vaccines that induce protective immunity with fewer doses, ideally just one. Single-dose vaccines would be ideal to maximize vaccination coverage, help stakeholders to greatly reduce the costs associated with vaccination, and improve patient convenience. Here we describe past attempts to develop potent single dose vaccines and explore the reasons they failed. Then, we review key immunological mechanisms of the vaccine-specific immune responses, and how innovative technologies and approaches are guiding the preclinical and clinical development of potent single-dose vaccines. By modulating the spatio-temporal delivery of the vaccine components, by providing the appropriate stimuli to the innate immunity, and by designing better antigens, the new technologies and approaches leverage our current knowledge of the immune system and may synergize to enable the rational design of next-generation vaccination strategies. This review provides a rational perspective on the possible development of future single-dose vaccines.
Collapse
Affiliation(s)
- Giuseppe Lofano
- GSK, Slaoui Center for Vaccines Research, Rockville, MD 20850 USA
| | - Corey P. Mallett
- GSK, Slaoui Center for Vaccines Research, Rockville, MD 20850 USA
| | - Sylvie Bertholet
- GSK, Slaoui Center for Vaccines Research, Rockville, MD 20850 USA
| | - Derek T. O’Hagan
- GSK, Slaoui Center for Vaccines Research, Rockville, MD 20850 USA
| |
Collapse
|
27
|
Cheng YJ, Huang CY, Ho HM, Huang MH. Morphology and protein adsorption of aluminum phosphate and aluminum hydroxide and their potential catalytic function in the synthesis of polymeric emulsifiers. Colloids Surf A Physicochem Eng Asp 2020; 608:125564. [PMID: 32929307 PMCID: PMC7481801 DOI: 10.1016/j.colsurfa.2020.125564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/30/2020] [Accepted: 09/03/2020] [Indexed: 11/25/2022]
Abstract
Aluminum gel structure was associated with adsorption and catalytic ability. Crystalline Al(OH)3 is a suitable adjuvant for antigen adsorption. Amorphous AlPO4 is an efficient catalyst for polymeric emulsifier synthesis.
Aluminum-containing salts are commonly used as antacids and vaccine adjuvants; however, key features of functional activities remain unclear. Here, we characterized vaccine formulations based on aluminum phosphate and aluminum hydroxide and investigated the respective modes of action linking physicochemical properties and catalytic ability. TEM microscopy indicated that aluminum phosphate gel solutions are amorphous, whereas aluminum hydroxide gel solutions have a crystalline structure consistent with boehmite. At very low BSA concentrations, 100 % adsorption of the protein on aluminum hydroxide could be achieved. As the protein concentration increased, the amount of adsorbed BSA decreased as fewer vacant sites were available on the surface of the adjuvants. Notably, less than 20 % adsorption was observed in aluminum phosphate. The protein adsorption profiles should confront the requirements for vaccine immunoavailability. In terms of catalytic ability, the prepared aluminum salts were tested for their ability to drive the amphiphilic engineering of oligo(lactic acid) (OLA) onto methoxy poly(ethylene glycol). It was concluded that aluminum hydroxide, rather than aluminum phosphate, is suitable to be a vaccine adjuvant according to the morphology and antigen adsorption efficiency results; on the other hand, aluminum phosphate may be a more efficient catalyst for the synthesis of polymeric emulsifiers than aluminum hydroxide. The results provide critical mechanistic insight into aluminum-containing salts in vaccine formulations.
Collapse
Affiliation(s)
- Yu-Jhen Cheng
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, 35053 Miaoli, Taiwan
| | - Chiung-Yi Huang
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, 35053 Miaoli, Taiwan
| | - Hui-Min Ho
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, 35053 Miaoli, Taiwan
| | - Ming-Hsi Huang
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, 35053 Miaoli, Taiwan.,Graduate Institute of Biomedical Sciences, China Medical University, 40402 Taichung, Taiwan.,Graduate Institute of Medicine, Kaohsiung Medical University, 80708 Kaohsiung, Taiwan.,Biotechnology Center, National Chung Hsing University, 40227 Taichung, Taiwan
| |
Collapse
|
28
|
Reithofer M, Karacs J, Strobl J, Kitzmüller C, Polak D, Seif K, Kamalov M, Becker CFW, Greiner G, Schmetterer K, Stary G, Bohle B, Jahn-Schmid B. Alum triggers infiltration of human neutrophils ex vivo and causes lysosomal destabilization and mitochondrial membrane potential-dependent NET-formation. FASEB J 2020; 34:14024-14041. [PMID: 32860638 PMCID: PMC7589265 DOI: 10.1096/fj.202001413r] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 08/12/2020] [Accepted: 08/17/2020] [Indexed: 01/30/2023]
Abstract
Aluminium salts have been used in vaccines for decades. However, the mechanisms underlying their adjuvant effect are still unclear. Neutrophils, the first immune cells at the injection site, can release cellular DNA together with granular material, so‐called neutrophil extracellular traps (NETs). In mice, NETs apparently play a role in aluminium hydroxide (alum)‐adjuvant immune response to vaccines. Although no experimental data exist, this effect is assumed to be operative also in humans. As a first step to verify this knowledge in humans, we demonstrate that the injection of alum particles into human skin biopsies ex vivo leads to similar tissue infiltration of neutrophils and NET‐formation. Moreover, we characterized the mechanism leading to alum‐induced NET‐release in human neutrophils as rapid, NADPH oxidase‐independent process involving charge, phagocytosis, phagolysosomal rupture, Ca2+‐flux, hyperpolarization of the mitochondrial membrane, and mitochondrial ROS. Extracellular flow and inhibition experiments suggested that no additional energy from oxidative phosphorylation or glycolysis is required for NET‐release. This study suggests a so far unappreciated role for neutrophils in the initial phase of immune responses to alum‐containing vaccines in humans and provides novel insights into bioenergetic requirements of NET‐formation.
Collapse
Affiliation(s)
- Manuel Reithofer
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Jasmine Karacs
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Johanna Strobl
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Claudia Kitzmüller
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Dominika Polak
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Katharina Seif
- Department of Surgery, Medical University of Vienna, Vienna, Austria
| | - Meder Kamalov
- Institute of Biological Chemistry, Department of Chemistry, University of Vienna, Vienna, Austria
| | - Christian F W Becker
- Institute of Biological Chemistry, Department of Chemistry, University of Vienna, Vienna, Austria
| | - Georg Greiner
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Klaus Schmetterer
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Georg Stary
- Department of Dermatology, Medical University of Vienna, Vienna, Austria.,Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria.,CeMM Research Center for Molecular Medicine, Vienna, Austria
| | - Barbara Bohle
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Beatrice Jahn-Schmid
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
29
|
Lipid Nanoparticle Acts as a Potential Adjuvant for Influenza Split Vaccine without Inducing Inflammatory Responses. Vaccines (Basel) 2020; 8:vaccines8030433. [PMID: 32756368 PMCID: PMC7565178 DOI: 10.3390/vaccines8030433] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/24/2020] [Accepted: 07/29/2020] [Indexed: 12/13/2022] Open
Abstract
Vaccination is a critical and reliable strategy for controlling the spread of influenza viruses in populations. Conventional seasonal split vaccines (SVs) for influenza evoke weaker immune responses than other types of vaccines, such as inactivated whole-virion vaccines, although SVs are highly safe compared to other types. Here, we assessed the potential of the lipid nanoparticle (LNP) we developed as an adjuvant for conventional influenza SV as an antigen in mice. The LNP did not induce the production of cytokines such as interleukin-6 (IL-6) and IL-12 p40 by dendritic cells or the expression of co-stimulatory molecules on these cells in vitro. In contrast, an SV adjuvanted with LNP improved SV-specific IgG1 and IgG2 responses and the Th1 response compared to the SV alone in mice. In addition, SV adjuvanted with an LNP gave superior protection against the influenza virus challenge over the SV alone and was as effective as SV adjuvanted with aluminum salts in mice. The LNP did not provoke inflammatory responses such as inflammatory cytokine production and inflammatory immune cell infiltration in mice, whereas aluminum salts induced inflammatory responses. These results suggest the potential of the LNP as an adjuvant without inflammatory responses for influenza SVs. Our strategy should be useful for developing influenza vaccines with enhanced efficacy and safety.
Collapse
|
30
|
Nies I, Hidalgo K, Bondy SC, Campbell A. Distinctive cellular response to aluminum based adjuvants. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2020; 78:103404. [PMID: 32388105 PMCID: PMC7189866 DOI: 10.1016/j.etap.2020.103404] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 04/25/2020] [Indexed: 05/07/2023]
Abstract
Aluminum-based adjuvants (ABAs) are used in human vaccines to enhance the magnitude of protective immune responses elicited against specific pathogens. One hypothesis is that stress signals released by aluminum-exposed necrotic cells play a role in modulating an immune response that contributes to the adjuvant's effectiveness. We hypothesized that aluminum adjuvant-induced necrosis would be similar irrespective of cellular origin or composition of the adjuvant. To test this hypothesis, human macrophages derived from peripheral monocytic cell line (THP-1) and cells derived from the human brain (primary astrocytes) were evaluated. Three commercially available formulations of ABAs (Alhydrogel, Imject alum, and Adju-Phos) were examined. Alum was also used as a reference. Cell viability, reactive oxygen species formation, and production of tumor necrosis factor alpha (TNF-α) and interleukin-6 (IL-6) were quantified. Cells were exposed to different concentrations (10-100 μg/mL) of the adjuvants for 24 h or 72 h. The two FDA approved adjuvants (Alhydrogel and Adju-Phos) decreased cell viability in both cell types. At the 72 h time point, the decrease in viability was accompanied with increased ROS formation. The size of the aluminum agglomerates was not relatable to the changes observed. After exposure to ABAs, astrocytes and macrophages presented a distinct profile of cytokine secretion which may relate to the function and unique characteristics of each cell type. These variations indicate that aluminum adjuvants may have differing capability of activating cells of different origin and thus their utility in specific vaccine design should be carefully assessed for optimum efficacy.
Collapse
Affiliation(s)
- Isaac Nies
- Department of Pharmaceutical Sciences, Western University of Health Sciences, Pomona, CA, United States
| | - Krisha Hidalgo
- Department of Pharmaceutical Sciences, Western University of Health Sciences, Pomona, CA, United States
| | - Stephen C Bondy
- Center for Occupational and Environmental Health, Department of Medicine, University of California, Irvine, CA, United States
| | - Arezoo Campbell
- Department of Pharmaceutical Sciences, Western University of Health Sciences, Pomona, CA, United States.
| |
Collapse
|
31
|
Irvine DJ, Aung A, Silva M. Controlling timing and location in vaccines. Adv Drug Deliv Rev 2020; 158:91-115. [PMID: 32598970 PMCID: PMC7318960 DOI: 10.1016/j.addr.2020.06.019] [Citation(s) in RCA: 139] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/15/2020] [Accepted: 06/17/2020] [Indexed: 02/06/2023]
Abstract
Vaccines are one of the most powerful technologies supporting public health. The adaptive immune response induced by immunization arises following appropriate activation and differentiation of T and B cells in lymph nodes. Among many parameters impacting the resulting immune response, the presence of antigen and inflammatory cues for an appropriate temporal duration within the lymph nodes, and further within appropriate subcompartments of the lymph nodes- the right timing and location- play a critical role in shaping cellular and humoral immunity. Here we review recent advances in our understanding of how vaccine kinetics and biodistribution impact adaptive immunity, and the underlying immunological mechanisms that govern these responses. We discuss emerging approaches to engineer these properties for future vaccines, with a focus on subunit vaccines.
Collapse
Affiliation(s)
- Darrell J Irvine
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Consortium for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA 92037, USA; Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02139, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.
| | - Aereas Aung
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Murillo Silva
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Consortium for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA 92037, USA
| |
Collapse
|
32
|
Edelman R, Deming ME, Toapanta FR, Heuser MD, Chrisley L, Barnes RS, Wasserman SS, Blackwelder WC, Handwerger BS, Pasetti M, Siddiqui KM, Sztein MB. The SENIEUR protocol and the efficacy of hepatitis B vaccination in healthy elderly persons by age, gender, and vaccine route. Immun Ageing 2020; 17:9. [PMID: 32355503 PMCID: PMC7187507 DOI: 10.1186/s12979-020-00179-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 03/31/2020] [Indexed: 01/27/2023]
Abstract
BACKGROUND Reduced response to hepatitis B vaccines is associated with aging, confounding and comorbid conditions, as well as inadvertent subcutaneous (SC) inoculation. We hypothesized that the antibody and T cell-mediated immune responses (T-CMI) of elderly adults to a vaccine intended for intramuscular (IM) administration would be attenuated when deposited into SC fat, independent of confounding conditions. RESULTS Fifty-two healthy, community dwelling elderly adults (65-82 years), seronegative for HBV, were enrolled in the SENIEUR protocol as a strictly healthy population. These seniors were randomized to receive a licensed alum-adjuvanted recombinant HBV vaccine either SC or IM, with the inoculum site verified by imaging. The response rates, defined as hepatitis B surface antibodies (HBsAb) ≥10 IU/L, were significantly lower in the elderly than in young adults, a group of 12, healthy, 21-34-year-old volunteers. Moreover, elderly participants who received the vaccine IM were significantly more likely to be responders than those immunized SC (54% versus 16%, p = 0.008). The low seroconversion rate in the IM group progressively declined with increasing age, and responders had significantly lower HBsAb titers and limited isotype responses. Moreover, T-CMI (proliferation and cytokine production) were significantly reduced in both percentage of responders and intensity of the response for both Th1 and Th2 subsets in the elderly. CONCLUSIONS Our data demonstrate the blunted immunogenicity of SC inoculation as measured by peak titers and response rates. Further, the qualitative and quantitative deficits in B- and T-CMI responses to primary alum adjuvanted protein antigens persisted even in strictly healthy elderly populations with verified IM placement compared to younger populations. CLINICAL TRIAL REGISTRATION ClinicalTrials.gov, NCT04162223. Registered 14 November 2019. Retrospectively registered.
Collapse
Affiliation(s)
- Robert Edelman
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, USA
- Department of Medicine, University of Maryland School of Medicine, Baltimore, USA
| | - Meagan E. Deming
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, USA
- Department of Medicine, University of Maryland School of Medicine, Baltimore, USA
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, USA
| | - Franklin R. Toapanta
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, USA
- Department of Medicine, University of Maryland School of Medicine, Baltimore, USA
| | - Mark D. Heuser
- Department of Medicine, University of Maryland School of Medicine, Baltimore, USA
- Present Adress: Department of Veterans Affairs, Salisbury VA Health Care System, Salisbury, NC USA
| | - Lisa Chrisley
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, USA
| | - Robin S. Barnes
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, USA
| | - Steven S. Wasserman
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, USA
- Department of Medicine, University of Maryland School of Medicine, Baltimore, USA
- Present Adress: Office of Research, University of Virginia, Charlottesville, USA
| | - William C. Blackwelder
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, USA
| | - Barry S. Handwerger
- Rheumatology and Clinical Immunology, Dept of Medicine, University of Maryland School of Medicine, Baltimore, USA
| | - Marcela Pasetti
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, USA
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, USA
- Department of Microbiology and Immunology, Dept of Medicine, University of Maryland School of Medicine, Baltimore, USA
| | - Khan M. Siddiqui
- Imaging Informatics and Body Magnetic Resonance Imaging unit, Veterans Affairs Maryland Health Care System Baltimore, Baltimore, MD USA
- Present Adress: Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Marcelo B. Sztein
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, USA
- Department of Medicine, University of Maryland School of Medicine, Baltimore, USA
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, USA
- Department of Microbiology and Immunology, Dept of Medicine, University of Maryland School of Medicine, Baltimore, USA
| |
Collapse
|
33
|
Abstract
Metals are essential components in all forms of life required for the function of nearly half of all enzymes and are critically involved in virtually all fundamental biological processes. Especially, the transition metals iron (Fe), zinc (Zn), manganese (Mn), nickel (Ni), copper (Cu) and cobalt (Co) are crucial micronutrients known to play vital roles in metabolism as well due to their unique redox properties. Metals carry out three major functions within metalloproteins: to provide structural support, to serve as enzymatic cofactors, and to mediate electron transportation. Metal ions are also involved in the immune system from metal allergies to nutritional immunity. Within the past decade, much attention has been drawn to the roles of metal ions in the immune system, since increasing evidence has mounted to suggest that metals are critically implicated in regulating both the innate immune sensing of and the host defense against invading pathogens. The importance of ions in immunity is also evidenced by the identification of various immunodeficiencies in patients with mutations in ion channels and transporters. In addition, cancer immunotherapy has recently been conclusively demonstrated to be effective and important for future tumor treatment, although only a small percentage of cancer patients respond to immunotherapy because of inadequate immune activation. Importantly, metal ion-activated immunotherapy is becoming an effective and potential way in tumor therapy for better clinical application. Nevertheless, we are still in a primary stage of discovering the diverse immunological functions of ions and mechanistically understanding the roles of these ions in immune regulation. This review summarizes recent advances in the understanding of metal-controlled immunity. Particular emphasis is put on the mechanisms of innate immune stimulation and T cell activation by the essential metal ions like calcium (Ca2+), zinc (Zn2+), manganese (Mn2+), iron (Fe2+/Fe3+), and potassium (K+), followed by a few unessential metals, in order to draw a general diagram of metalloimmunology.
Collapse
Affiliation(s)
- Chenguang Wang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking University, Beijing, China; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Rui Zhang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking University, Beijing, China; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Xiaoming Wei
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking University, Beijing, China; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Mengze Lv
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking University, Beijing, China; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Zhengfan Jiang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking University, Beijing, China; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China.
| |
Collapse
|
34
|
Oliva R, Fraleigh NL, Lewicky JD, Fariñas M, Hernández T, Martel AL, Navarro I, Dagmar GR, Acevedo R, Le HT. Repeat-Dose Toxicity Study Using the AFPL1-Conjugate Nicotine Vaccine in Male Sprague Dawley Rats. Pharmaceutics 2019; 11:pharmaceutics11120626. [PMID: 31771151 PMCID: PMC6955701 DOI: 10.3390/pharmaceutics11120626] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 11/15/2019] [Accepted: 11/20/2019] [Indexed: 01/04/2023] Open
Abstract
Tobacco smoking is the cause of 20% of Canadian deaths per year. Nicotine vaccines present a promising alternative to traditional smoking cessation products, but to date, no vaccine has been able to move through all phases of clinical trials. We have previously demonstrated that the AFPL1-conjugate nicotine vaccine does not induce systemic or immunotoxicity in a mouse model and that a heterologous vaccination approach is more advantageous than the homologous routes to inducing mucosal and systemic anti-nicotine antibodies. The purpose of this study was to confirm the safety profile of the vaccine in a repeat-dose toxicity study. The heterologous vaccination strategy was again used, and Sprague Dawley rats were administered a dose five times greater than in our previous studies. Physiological conditions, food and water consumption, body temperature, injection site inflammation, relative weights of organs, histopathology, and blood chemistry and hematology were evaluated during the course of the vaccination period to determine the safety of the vaccine. The AFPL1-conjugate nicotine vaccine did not induce clinically relevant changes or induce symptoms that would be associated with toxicity, making it a promising candidate for future investigations.
Collapse
Affiliation(s)
- Reynaldo Oliva
- Finlay Institute of Vaccine, Havana 11600, Cuba; (R.O.); (M.F.); (T.H.); (I.N.); (G.-R.D.); (R.A.)
| | - Nya L. Fraleigh
- Health Sciences North Research Institute (HSNRI), Sudbury, ON P3E 2H3, Canada; (N.L.F.); (J.D.L.); (A.L.M.)
| | - Jordan D. Lewicky
- Health Sciences North Research Institute (HSNRI), Sudbury, ON P3E 2H3, Canada; (N.L.F.); (J.D.L.); (A.L.M.)
| | - Mildrey Fariñas
- Finlay Institute of Vaccine, Havana 11600, Cuba; (R.O.); (M.F.); (T.H.); (I.N.); (G.-R.D.); (R.A.)
| | - Tamara Hernández
- Finlay Institute of Vaccine, Havana 11600, Cuba; (R.O.); (M.F.); (T.H.); (I.N.); (G.-R.D.); (R.A.)
| | - Alexandrine L. Martel
- Health Sciences North Research Institute (HSNRI), Sudbury, ON P3E 2H3, Canada; (N.L.F.); (J.D.L.); (A.L.M.)
| | - Ingrid Navarro
- Finlay Institute of Vaccine, Havana 11600, Cuba; (R.O.); (M.F.); (T.H.); (I.N.); (G.-R.D.); (R.A.)
| | - García-Rivera Dagmar
- Finlay Institute of Vaccine, Havana 11600, Cuba; (R.O.); (M.F.); (T.H.); (I.N.); (G.-R.D.); (R.A.)
| | - Reinaldo Acevedo
- Finlay Institute of Vaccine, Havana 11600, Cuba; (R.O.); (M.F.); (T.H.); (I.N.); (G.-R.D.); (R.A.)
| | - Hoang-Thanh Le
- Health Sciences North Research Institute (HSNRI), Sudbury, ON P3E 2H3, Canada; (N.L.F.); (J.D.L.); (A.L.M.)
- Northern Ontario School of Medicine (NOSM), Laurentian University, Sudbury, ON P3E 2C6, Canada
- Chemistry & Biochemistry and Biology Departments, Laurentian University, Sudbury, ON P3E 2C6, Canada
- Correspondence: ; Tel.: +1-705-523-7300 (ext. 2613)
| |
Collapse
|
35
|
Du J, Chen X, Ye Y, Sun H. A comparative study on the mechanisms of innate immune responses in mice induced by Alum and Actinidia eriantha polysaccharide. Int J Biol Macromol 2019; 156:1202-1216. [PMID: 31758993 DOI: 10.1016/j.ijbiomac.2019.11.158] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 11/06/2019] [Accepted: 11/19/2019] [Indexed: 12/20/2022]
Abstract
The innate immune mechanisms by which adjuvants enhance the potency and protection of vaccine remain at cellular level, but the molecular mechanisms, especially in vivo, are ill-identified. Actinidia eriantha polysaccharide (AEPS) is a potent adjuvant with dual Th1 and Th2 potentiating activity, while Alum elicits a strict Th2 response. The current experiments were designed to compare the innate immune responses in the peritoneal cavity of mice induced by two adjuvants and explore their molecular mechanisms using gene expression microarray including long noncoding RNAs (lncRNAs). AEPS induced the recruitment of monocytes, neutrophils and dendritic cells. However, Alum recruited neutrophils and eosinophils. AEPS and Alum specifically induced the differential expression of 546 and 922 genes in peritoneal cells, respectively. AEPS induced higher mRNA expression of CCL2, CCL3, CCL4, CCL7, CXCL2, CXCL3, CXCL5, CXCL10, IL-12β, and IL-23α in immune effector process, while Alum tended to Th17 response mRNAs such as IL-7A, IL-17F and IL-17RA. Furthermore, a robust adjuvant-specific expression pattern of lncRNAs was found in above mentioned biological processes, suggesting the involvement of lncRNAs in immune responses induced by AEPS and Alum. This study led to a better understanding of different molecular mechanisms of adjuvants and benefited the rational design of effective vaccines.
Collapse
Affiliation(s)
- Jing Du
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Xiangfeng Chen
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Yiping Ye
- Institute of Materia Medica, Zhejiang Academy of Medical Sciences, Hangzhou 310013, China
| | - Hongxiang Sun
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
36
|
Shardlow E, Mold M, Exley C. The interaction of aluminium-based adjuvants with THP-1 macrophages in vitro: Implications for cellular survival and systemic translocation. J Inorg Biochem 2019; 203:110915. [PMID: 31751817 DOI: 10.1016/j.jinorgbio.2019.110915] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 10/31/2019] [Accepted: 11/08/2019] [Indexed: 02/06/2023]
Abstract
Within clinical vaccinations, recombinant antigens are routinely entrapped inside or adsorbed onto the surface of aluminium salts in order to increase their immunological potency in vivo. The efficacy of these immunisations is highly dependent upon the recognition and uptake of these complexes by professional phagocytes and their subsequent delivery to the draining lymph nodes for further immunological processing. While monocytes have been shown to internalise aluminium adjuvants and their adsorbates, the role of macrophages in this respect has not been fully established. Furthermore, this study explored the interaction of THP-1 macrophages with aluminium-based adjuvants (ABAs) and how this relationship influenced the survival of such cells in vitro. THP-1 macrophages were exposed to low concentrations of ABAs (1.7 μg/mL Al) for a maximum of seven days. ABA uptake was determined using lumogallion staining and cell viability by both DAPI (4',6-diamidino-2-phenylindole) staining and LDH (lactate dehydrogenase) assay. Evidence of ABA particle loading was identified within cells at early junctures following treatment and appeared to be quite prolific (>90% cells positive for Al signal after 24 h). Total sample viability (% LDH release) in treated samples was predominantly similar to untreated cells and low levels of cellular death were consistently observed in populations positive for Al uptake. It can thus be concluded that aluminium salts can persist for some time within the intracellular environment of these cells without adversely affecting their viability. These results imply that macrophages may play a role in the systemic translocation of ABAs once administered in the form of an inoculation.
Collapse
Affiliation(s)
- Emma Shardlow
- The Birchall Centre, Lennard-Jones Laboratories, Keele University, Keele, Staffordshire ST5 5BG, UK
| | - Matthew Mold
- The Birchall Centre, Lennard-Jones Laboratories, Keele University, Keele, Staffordshire ST5 5BG, UK
| | - Christopher Exley
- The Birchall Centre, Lennard-Jones Laboratories, Keele University, Keele, Staffordshire ST5 5BG, UK.
| |
Collapse
|
37
|
Choi YH, Perez-Cuevas MB, Kodani M, Zhang X, Prausnitz MR, Kamili S, O’Connor SM. Feasibility of Hepatitis B Vaccination by Microneedle Patch: Cellular and Humoral Immunity Studies in Rhesus Macaques. J Infect Dis 2019; 220:1926-1934. [PMID: 31408163 PMCID: PMC6834072 DOI: 10.1093/infdis/jiz399] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 08/05/2019] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND This study evaluated dissolvable microneedle patch (dMNP) delivery of hepatitis B vaccine in rhesus macaques and provides evidence that dMNP delivery elicits seroprotective anti-HBs levels comparable with human seroprotection, potentially useful for hepatitis B birth dose vaccination in resource-constrained regions. METHODS Sixteen macaques were each vaccinated twice; they were treated in 4 groups, with dMNP delivery of AFV at 24 ± 8 µg (n = 4) or 48 ± 14 µg (n = 4), intramuscular injection of AFV (10 µg; n = 4), or intramuscular injection of AAV (10 µg; n = 4). Levels of antibody to hepatitis B surface antigen (HBsAg) (anti-HBs) and HBsAg-specific T-cell responses were analyzed. RESULTS Six of 8 animals with dMNP delivery of AFV had anti-HBs levels ≥10 mIU/mL after the first vaccine dose. After dMNP delivery of AFV, interferon γ, interleukin 2, and interleukin 4 production by HBsAg-specific T cells was detected. A statistically significant positive correlation was detected between anti-HBs levels and cells producing HBsAg-specific interferon γ and interleukin 2 (T-helper 1-type cytokine) and interleukin 4 (T-helper 2-type cytokine) in all anti-HBs-positive animals. CONCLUSIONS dMNP delivery of AFV can elicit seroprotective anti-HBs levels in rhesus macaques that are correlated with human seroprotection, and it could be particularly promising for birth dose delivery of hepatitis B vaccine in resource-constrained regions.
Collapse
Affiliation(s)
- Youkyung H Choi
- Division of Viral Hepatitis, National Center for HIV/AIDS, Viral Hepatitis, STD and TB Prevention, US Centers for Disease Control and Prevention, Atlanta, GA
| | - Monica B Perez-Cuevas
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA
| | - Maja Kodani
- Division of Viral Hepatitis, National Center for HIV/AIDS, Viral Hepatitis, STD and TB Prevention, US Centers for Disease Control and Prevention, Atlanta, GA
| | - Xiugen Zhang
- Division of Viral Hepatitis, National Center for HIV/AIDS, Viral Hepatitis, STD and TB Prevention, US Centers for Disease Control and Prevention, Atlanta, GA
| | - Mark R Prausnitz
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA
| | - Saleem Kamili
- Division of Viral Hepatitis, National Center for HIV/AIDS, Viral Hepatitis, STD and TB Prevention, US Centers for Disease Control and Prevention, Atlanta, GA
| | - Siobhan M O’Connor
- Division of Viral Hepatitis, National Center for HIV/AIDS, Viral Hepatitis, STD and TB Prevention, US Centers for Disease Control and Prevention, Atlanta, GA
| |
Collapse
|
38
|
Postol E, Sá-Rocha LC, Sampaio RO, Demarchi LMMF, Alencar RE, Abduch MCD, Kalil J, Guilherme L. Group A Streptococcus Adsorbed Vaccine: Repeated Intramuscular Dose Toxicity Test in Minipigs. Sci Rep 2019; 9:9733. [PMID: 31278336 PMCID: PMC6611820 DOI: 10.1038/s41598-019-46244-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 06/25/2019] [Indexed: 12/15/2022] Open
Abstract
Streptococcus pyogenes infection continues to be a worldwide public health problem causing various diseases in humans and plays an important role in the pathogenesis of rheumatic fever and rheumatic heart disease. We developed a vaccine candidate to prevent S. pyogenes infections, identified as StreptInCor, that presented promising results in mouse models. A certified and independent laboratory conducted two repeated intramuscular dose toxicity tests (28 days, four weekly injections). The first test, composed of four experimental groups treated with 0 (vehicle), 50, 100 or 200 µg/500 µL StreptInCor, did not show significant alterations in clinical, hematological, biochemical or anatomopathological parameters related to the administration of StreptInCor. In addition to the parameters mentioned above, we evaluated the cardiac function and valves of animals by echocardiography before and after administration of 200 µg/500 µL StreptInCor versus placebo. We did not observe any changes related to StreptInCor administration, including changes in cardiac function and valves in animals, after receiving the highest dose of this vaccine candidate. The results obtained in the two repeated intramuscular dose toxicity tests showed that this vaccine formulation did not induce harmful effects to the tissues and organs studied, indicating that the candidate vaccine is well tolerated in minipigs.
Collapse
Affiliation(s)
- Edilberto Postol
- Heart Institute (InCor), School of Medicine, University of São Paulo, São Paulo, Brazil
- Immunology Investigation Institute, National Institute for Science and Technology, University of São Paulo, São Paulo, Brazil
| | - Luiz C Sá-Rocha
- Neuroimmunology Laboratory School of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo, Brazil
- Immunology Investigation Institute, National Institute for Science and Technology, University of São Paulo, São Paulo, Brazil
| | - Roney O Sampaio
- Heart Institute (InCor), School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Lea M M F Demarchi
- Heart Institute (InCor), School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Raquel E Alencar
- Heart Institute (InCor), School of Medicine, University of São Paulo, São Paulo, Brazil
- Immunology Investigation Institute, National Institute for Science and Technology, University of São Paulo, São Paulo, Brazil
| | - Maria C D Abduch
- Heart Institute (InCor), School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Jorge Kalil
- Heart Institute (InCor), School of Medicine, University of São Paulo, São Paulo, Brazil
- Immunology Investigation Institute, National Institute for Science and Technology, University of São Paulo, São Paulo, Brazil
- Clinical Immunology and Allergy Division, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Luiza Guilherme
- Heart Institute (InCor), School of Medicine, University of São Paulo, São Paulo, Brazil.
- Immunology Investigation Institute, National Institute for Science and Technology, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
39
|
Lindsay KE, Bhosle SM, Zurla C, Beyersdorf J, Rogers KA, Vanover D, Xiao P, Araínga M, Shirreff LM, Pitard B, Baumhof P, Villinger F, Santangelo PJ. Visualization of early events in mRNA vaccine delivery in non-human primates via PET–CT and near-infrared imaging. Nat Biomed Eng 2019; 3:371-380. [DOI: 10.1038/s41551-019-0378-3] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 02/28/2019] [Indexed: 02/06/2023]
|
40
|
Lu F, Mosley YYC, Carmichael B, Brown DD, HogenEsch H. Formulation of aluminum hydroxide adjuvant with TLR agonists poly(I:C) and CpG enhances the magnitude and avidity of the humoral immune response. Vaccine 2019; 37:1945-1953. [PMID: 30803844 DOI: 10.1016/j.vaccine.2019.02.033] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 02/08/2019] [Accepted: 02/15/2019] [Indexed: 02/02/2023]
Abstract
Subunit vaccines generally require adjuvants to achieve optimal immune responses. Toll-like receptor (TLR) agonists are promising immune potentiators, but rapid diffusion from the injection site reduces their local effective concentration and may cause systemic reactions. In this study, we investigated the potential of aluminum hydroxide adjuvant (AH) to adsorb the TLR3 agonist poly(I:C) and TLR9 agonist CpG and compared the effect of the combination adjuvant on the immune response with either the TLR agonists or AH alone in mice. Poly(I:C) and CpG readily adsorbed onto AH and this combination adjuvant induced a stronger IgG1 and IgG2a immune response with a significant increase of antibody avidity. The combination adjuvant enhanced antigen uptake and activation of dendritic cells in vitro. It induced an inflammatory response at the injection site similar to AH but without eosinophils which are typically observed with AH. A distinctive antigen-containing monocyte/macrophage population with an intermediate level of CD11c expression was identified in the draining lymph nodes after immunization with TLR agonists and the combination adjuvant. Injection of the combination adjuvant did not induce an increase of TNFα and CXCL10 in serum in contrast to the injection of soluble TLR agonists. These results indicate that this combination adjuvant is a promising formulation to solve some of the unmet needs of current vaccines.
Collapse
Affiliation(s)
- Fangjia Lu
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47907, United States
| | - Yung-Yi C Mosley
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47907, United States
| | - Brooke Carmichael
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47907, United States
| | - Devonte D Brown
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47907, United States
| | - Harm HogenEsch
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47907, United States; Purdue Institute of Inflammation, Immunology and Infectious Diseases, Purdue University, West Lafayette, IN 47907, United States.
| |
Collapse
|
41
|
Dhakal S, Lu F, Ghimire S, Renu S, Lakshmanappa YS, Hogshead BT, Ragland D, HogenEsch H, Renukaradhya GJ. Corn-derived alpha-D-glucan nanoparticles as adjuvant for intramuscular and intranasal immunization in pigs. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2019; 16:226-235. [PMID: 30611772 DOI: 10.1016/j.nano.2018.12.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 12/05/2018] [Accepted: 12/16/2018] [Indexed: 12/12/2022]
Abstract
Adjuvant potential of positively charged corn-derived nanoparticles (Nano-11) was earlier revealed in mice. We evaluated its adjuvant role to electrostatically adsorbed inactivated/killed swine influenza virus antigen (KAg) (Nano-11 + KAg) in pigs. Nano-11 facilitated the uptake of KAg by antigen presenting cells and induced secretion of proinflammatory cytokines. In pigs vaccinated by an intranasal mist containing Nano-11 + KAg, expression of T-helper 1 and T-helper 2 transcription factors and secretion of cross-reactive influenza antigen-specific mucosal IgA in the nasal cavity were observed. The enhanced frequencies of IFN-γ positive T-helper and cytotoxic T-cells in Nano-11 + KAg-vaccinates after heterologous virus challenge were also observed. Clinically, slightly reduced influenza signs and pneumonic lesions, with mild reduction in virus load in the respiratory tract of vaccinates were observed. In pigs immunized with Nano-11 adsorbed ovalbumin administered by intramuscular (IM) route, enhanced IgG1 and IgG2 antibodies were detected in serum. Thus, Nano-11 vaccine delivery system confers adjuvant effect in pigs.
Collapse
Affiliation(s)
- Santosh Dhakal
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center and Department of Veterinary Preventive Medicine, The Ohio State University, Wooster, OH, United States
| | - Fangjia Lu
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN, United States
| | - Shristi Ghimire
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center and Department of Veterinary Preventive Medicine, The Ohio State University, Wooster, OH, United States
| | - Sankar Renu
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center and Department of Veterinary Preventive Medicine, The Ohio State University, Wooster, OH, United States
| | - Yashavanth Shaan Lakshmanappa
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center and Department of Veterinary Preventive Medicine, The Ohio State University, Wooster, OH, United States
| | - Bradley T Hogshead
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center and Department of Veterinary Preventive Medicine, The Ohio State University, Wooster, OH, United States
| | - Darryl Ragland
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN, United States
| | - Harm HogenEsch
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN, United States
| | - Gourapura J Renukaradhya
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center and Department of Veterinary Preventive Medicine, The Ohio State University, Wooster, OH, United States.
| |
Collapse
|
42
|
Zhang R, Billingsley MM, Mitchell MJ. Biomaterials for vaccine-based cancer immunotherapy. J Control Release 2018; 292:256-276. [PMID: 30312721 PMCID: PMC6355332 DOI: 10.1016/j.jconrel.2018.10.008] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 10/06/2018] [Accepted: 10/08/2018] [Indexed: 12/28/2022]
Abstract
The development of therapeutic cancer vaccines as a means to generate immune reactivity against tumors has been explored since the early discovery of tumor-specific antigens by Georg Klein in the 1960s. However, challenges including weak immunogenicity, systemic toxicity, and off-target effects of cancer vaccines remain as barriers to their broad clinical translation. Advances in the design and implementation of biomaterials are now enabling enhanced efficacy and reduced toxicity of cancer vaccines by controlling the presentation and release of vaccine components to immune cells and their microenvironment. Here, we discuss the rational design and clinical status of several classes of cancer vaccines (including DNA, mRNA, peptide/protein, and cell-based vaccines) along with novel biomaterial-based delivery technologies that improve their safety and efficacy. Further, strategies for designing new platforms for personalized cancer vaccines are also considered.
Collapse
Affiliation(s)
- Rui Zhang
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Margaret M Billingsley
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Michael J Mitchell
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, United States; Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States.
| |
Collapse
|
43
|
Shardlow E, Mold M, Exley C. Unraveling the enigma: elucidating the relationship between the physicochemical properties of aluminium-based adjuvants and their immunological mechanisms of action. ALLERGY, ASTHMA, AND CLINICAL IMMUNOLOGY : OFFICIAL JOURNAL OF THE CANADIAN SOCIETY OF ALLERGY AND CLINICAL IMMUNOLOGY 2018; 14:80. [PMID: 30455719 PMCID: PMC6223008 DOI: 10.1186/s13223-018-0305-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 10/26/2018] [Indexed: 01/02/2023]
Abstract
Aluminium salts are by far the most commonly used adjuvants in vaccines. There are only two aluminium salts which are used in clinically-approved vaccines, Alhydrogel® and AdjuPhos®, while the novel aluminium adjuvant used in Gardasil® is a sulphated version of the latter. We have investigated the physicochemical properties of these two aluminium adjuvants and specifically in milieus approximating to both vaccine vehicles and the composition of injection sites. Additionally we have used a monocytic cell line to establish the relationship between their physicochemical properties and their internalisation and cytotoxicity. We emphasise that aluminium adjuvants used in clinically approved vaccines are chemically and biologically dissimilar with concomitantly potentially distinct roles in vaccine-related adverse events.
Collapse
Affiliation(s)
- Emma Shardlow
- The Birchall Centre, Lennard Jones Laboratories, Keele University, Keele, Staffordshire ST5 5BG UK
| | - Matthew Mold
- The Birchall Centre, Lennard Jones Laboratories, Keele University, Keele, Staffordshire ST5 5BG UK
| | - Christopher Exley
- The Birchall Centre, Lennard Jones Laboratories, Keele University, Keele, Staffordshire ST5 5BG UK
| |
Collapse
|
44
|
Araujo IL, Dummer LA, Rodrigues PRC, Dos Santos AG, Fischer G, Cunha RC, Leite FPL. Immune responses in bovines to recombinant glycoprotein D of bovine herpesvirus type 5 as vaccine antigen. Vaccine 2018; 36:7708-7714. [PMID: 30381153 DOI: 10.1016/j.vaccine.2018.10.080] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 10/19/2018] [Accepted: 10/21/2018] [Indexed: 11/26/2022]
Abstract
Bovine herpesvirus 5 (BoHV-5) is responsible for outbreaks of meningoencephalitis that cause important economic losses in young cattle. BoHV-5 glycoprotein D (gD5) is essential for attachment and penetration into permissive cells and targeting of host immune systems, inducing strong humoral and cellular immune responses. The aim of this study was to evaluate the vaccinal immune response of vaccines formulated with the recombinant BoHV-5 gD (rgD5) in bovines. For the experiment, 72 heifers were randomly allotted into 6 different groups with 12 animals each. Group 1: vaccine formulated using inactivated BoHV-5 (iBoHV-5) adjuvanted with ISA50V2; Group 2: iBoHV-5 associated with 100 µg of rgD5 adjuvanted with ISA50V2; Group 3: 100 µg of rgD5 adjuvanted with ISA50V2; Group 4: 100 µg of rgD5 adjuvanted with Al(OH)3; Group 5: commercial vaccine; and Group 6: control group. Two doses were administered in a 26-day interval and the third after 357 days from primo vaccination. Cattle vaccinated with the vaccines formulated with iBoHV-5 plus rgD5 showed a significant (p < 0.01) five-fold increase in total immunoglobulin G (IgG) for BoHV-5, BoHV-1, and rgD5 as compared with the commercial and control groups. Also, a significant (p < 0.05) increase in IgG1 and IgG2a levels was induced in serum for rgD5. In addition, these same vaccines showed significant (p < 0.01) four-fold higher titers of BoHV-1 and -5 neutralizing antibodies. The results demonstrated that the rgD5 conserved important epitopes that were able to stimulate bovine humoral immunity response capable of viral neutralization of BoHV-1 and -5, suggesting it as a promising vaccine antigen to be used in vaccine for BoHV-1 and -5 endemic areas.
Collapse
Affiliation(s)
- Itauá Leston Araujo
- Laboratório de Bacteriologia, Núcleo de Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas 96010-900, Brazil
| | - Luana Alves Dummer
- Laboratório de Bacteriologia, Núcleo de Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas 96010-900, Brazil
| | - Paulo Ricardo Centeno Rodrigues
- Laboratório de Bacteriologia, Núcleo de Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas 96010-900, Brazil; Laboratório de Virologia e Imunologia Animal, Faculdade de Veterinária, Universidade Federal de Pelotas, Pelotas, Rio Grande do Sul 96010-900, Brazil
| | - Alceu Gonçalves Dos Santos
- Laboratório de Bacteriologia, Núcleo de Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas 96010-900, Brazil; Laboratório de Virologia e Imunologia Animal, Faculdade de Veterinária, Universidade Federal de Pelotas, Pelotas, Rio Grande do Sul 96010-900, Brazil
| | - Geferson Fischer
- Laboratório de Virologia e Imunologia Animal, Faculdade de Veterinária, Universidade Federal de Pelotas, Pelotas, Rio Grande do Sul 96010-900, Brazil
| | - Rodrigo Casquero Cunha
- Laboratório de Bacteriologia, Núcleo de Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas 96010-900, Brazil
| | - Fábio Pereira Leivas Leite
- Laboratório de Bacteriologia, Núcleo de Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas 96010-900, Brazil; Laboratório de Virologia e Imunologia Animal, Faculdade de Veterinária, Universidade Federal de Pelotas, Pelotas, Rio Grande do Sul 96010-900, Brazil.
| |
Collapse
|
45
|
HogenEsch H, O'Hagan DT, Fox CB. Optimizing the utilization of aluminum adjuvants in vaccines: you might just get what you want. NPJ Vaccines 2018; 3:51. [PMID: 30323958 PMCID: PMC6180056 DOI: 10.1038/s41541-018-0089-x] [Citation(s) in RCA: 246] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Revised: 09/06/2018] [Accepted: 09/11/2018] [Indexed: 02/01/2023] Open
Abstract
Aluminum-containing adjuvants have been used for over 90 years to enhance the immune response to vaccines. Recent work has significantly advanced our understanding of the physical, chemical, and biological properties of these adjuvants, offering key insights on underlying mechanisms. Given the long-term success of aluminum adjuvants, we believe that they should continue to represent the “gold standard” against which all new adjuvants should be compared. New vaccine candidates that require adjuvants to induce a protective immune responses should first be evaluated with aluminum adjuvants before other more experimental approaches are considered, since use of established adjuvants would facilitate both clinical development and the regulatory pathway. However, the continued use of aluminum adjuvants requires an appreciation of their complexities, in combination with access to the necessary expertise to optimize vaccine formulations. In this article, we will review the properties of aluminum adjuvants and highlight those elements that are critical to optimize vaccine performance. We will discuss how other components (excipients, TLR ligands, etc.) can affect the interaction between adjuvants and antigens, and impact the potency of vaccines. This review provides a resource and guide, which will ultimately contribute to the successful development of newer, more effective and safer vaccines.
Collapse
Affiliation(s)
- Harm HogenEsch
- 1Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN USA.,2Purdue Institute of Inflammation, Immunology and Infectious Diseases, Purdue University, West Lafayette, IN USA
| | | | - Christopher B Fox
- 4IDRI, Seattle, WA USA.,5Department of Global Health, University of Washington, Seattle, WA USA
| |
Collapse
|
46
|
Muñoz-Wolf N, Lavelle EC. A Guide to IL-1 family cytokines in adjuvanticity. FEBS J 2018; 285:2377-2401. [PMID: 29656546 DOI: 10.1111/febs.14467] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 03/21/2018] [Accepted: 04/04/2018] [Indexed: 12/16/2022]
Abstract
Growing awareness of the multiplicity of roles for the IL-1 family in immune regulation has prompted research exploring these cytokines in the context of vaccine-induced immunity. While tightly regulated, cytokines of the IL-1 family are normally released in response to cellular stress and in combination with other danger-/damage-associated molecular patterns (DAMPs), triggering potent local and systemic immune responses. In the context of infection or autoimmunity, engagement of IL-1 family receptors links robust innate responses to adaptive immunity. Clinical and experimental evidence has revealed that many vaccine adjuvants induce the release of one or multiple IL-1 family cytokines. The coordinated release of IL-1 family members in response to adjuvant-induced damage or cell death may be a determining factor in the transition from local inflammation to the induction of an adaptive response. Here, we analyse the effects of IL-1 family cytokines on innate and adaptive immunity with a particular emphasis on activation of antigen-presenting cells and induction of T cell-mediated immunity, and we address in detail the contribution of these cytokines to the modes of action of vaccine adjuvants including those currently approved for human use.
Collapse
Affiliation(s)
- Natalia Muñoz-Wolf
- Adjuvant Research Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Ireland
| | - Ed C Lavelle
- Adjuvant Research Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Ireland.,Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN), Advanced Materials and BioEngineering Research (AMBER), Trinity College Dublin, Ireland
| |
Collapse
|
47
|
Terhune TD, Deth RC. Aluminum Adjuvant-Containing Vaccines in the Context of the Hygiene Hypothesis: A Risk Factor for Eosinophilia and Allergy in a Genetically Susceptible Subpopulation? INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:E901. [PMID: 29751492 PMCID: PMC5981940 DOI: 10.3390/ijerph15050901] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 04/19/2018] [Accepted: 04/29/2018] [Indexed: 12/17/2022]
Abstract
There are similarities between the immune response following immunization with aluminum adjuvants and the immune response elicited by some helminthic parasites, including stimulation of immunoglobulin E (IgE) and eosinophilia. Immunization with aluminum adjuvants, as with helminth infection, induces a Th2 type cell mediated immune response, including eosinophilia, but does not induce an environment conducive to the induction of regulatory mechanisms. Helminths play a role in what is known as the hygiene hypothesis, which proposes that decreased exposure to microbes during a critical time in early life has resulted in the increased prevalence and morbidity of asthma and atopic disorders over the past few decades, especially in Western countries. In addition, gut and lung microbiome composition and their interaction with the immune system plays an important role in a properly regulated immune system. Disturbances in microbiome composition are a risk factor for asthma and allergies. We propose that immunization with aluminum adjuvants in general is not favorable for induction of regulatory mechanisms and, in the context of the hygiene hypothesis and microbiome theory, can be viewed as an amplifying factor and significant contributing risk factor for allergic diseases, especially in a genetically susceptible subpopulation.
Collapse
Affiliation(s)
- Todd D Terhune
- College of Pharmacy, Department of Pharmaceutical Sciences, Nova Southeastern University, 1382 Terry Bldg, 3200 South University Drive, Fort Lauderdale, FL 33328, USA.
| | - Richard C Deth
- College of Pharmacy, Department of Pharmaceutical Sciences, Nova Southeastern University, 1382 Terry Bldg, 3200 South University Drive, Fort Lauderdale, FL 33328, USA.
| |
Collapse
|
48
|
Chen W, Zuo H, Li B, Duan C, Rolfe B, Zhang B, Mahony TJ, Xu ZP. Clay Nanoparticles Elicit Long-Term Immune Responses by Forming Biodegradable Depots for Sustained Antigen Stimulation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1704465. [PMID: 29655306 DOI: 10.1002/smll.201704465] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 01/29/2018] [Indexed: 05/21/2023]
Abstract
Nanomaterials have been widely tested as new generation vaccine adjuvants, but few evoke efficient immunoreactions. Clay nanoparticles, for example, layered double hydroxide (LDH) and hectorite (HEC) nanoparticles, have shown their potent adjuvanticity in generating effective and durable immune responses. However, the mechanism by which clay nanoadjuvants stimulate the immune system is not well understood. Here, it is demonstrated that LDH and HEC-antigen complexes form loose agglomerates in culture medium/serum. They also form nodules with loose structures in tissue after subcutaneous injection, where they act as a depot for up to 35 d. More importantly, clay nanoparticles actively and continuously recruit immune cells into the depot for up to one month, and stimulate stronger immune responses than FDA-approved adjuvants, Alum and QuilA. Sustained antigen release is also observed in clay nanoparticle depots, with 50-60% antigen released after 35 d. In contrast, Alum-antigen complexes show minimal antigen release from the depot. Importantly, LDH and HEC are more effective than QuilA and Alum in promoting memory T-cell proliferation. These findings suggest that both clay nanoadjuvants can serve as active vaccine platforms for sustained and potent immune responses.
Collapse
Affiliation(s)
- Weiyu Chen
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, QLD, 4072, Australia
| | - Huali Zuo
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, QLD, 4072, Australia
| | - Bei Li
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, QLD, 4072, Australia
| | - Chengcheng Duan
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, QLD, 4072, Australia
| | - Barbara Rolfe
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, QLD, 4072, Australia
| | - Bing Zhang
- Vaccine Delivery, Animal Science, Agri-Science Queensland, Department of Agriculture & Fisheries, Dutton Park, QLD, 4102, Australia
| | - Timothy J Mahony
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Zhi Ping Xu
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, QLD, 4072, Australia
| |
Collapse
|
49
|
Intraperitoneal administration of aluminium-based adjuvants produces severe transient systemic adverse events in mice. Eur J Pharm Sci 2018; 115:362-368. [DOI: 10.1016/j.ejps.2018.01.042] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 01/25/2018] [Accepted: 01/28/2018] [Indexed: 11/19/2022]
|
50
|
Mold M, Kumar M, Mirza A, Shardlow E, Exley C. Intracellular tracing of amyloid vaccines through direct fluorescent labelling. Sci Rep 2018; 8:2437. [PMID: 29402930 PMCID: PMC5799327 DOI: 10.1038/s41598-018-20845-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 01/24/2018] [Indexed: 01/26/2023] Open
Abstract
Alzheimer’s disease is a debilitating neurodegenerative condition that progressively causes synaptic loss and major neuronal damage. Immunotherapy utilising Aβ as an active immunogen or via passive treatment utilising antibodies raised to amyloid have shown therapeutic promise. The migratory properties of peripheral blood-borne monocytes and their ability to enter the central nervous system, suggests a beneficial role in mediating tissue damage and neuroinflammation. However, the intrinsic phagocytic properties of such cells have pre-disposed them to internalise misfolded amyloidogenic peptides that could act as seeds capable of nucleating amyloid formation in the brain. Mechanisms governing the cellular fate of amyloid therefore, may prove to be key in the development of future vaccination regimes. Herein, we have developed unequivocal and direct conformation-sensitive fluorescent molecular probes that reveal the intracytoplasmic and intranuclear persistence of amyloid in a monocytic T helper 1 (THP-1) cell line. Use of the pathogenic Aβ42 species as a model antigen in simulated vaccine formulations suggested differing mechanisms of cellular internalisation, in which fibrillar amyloid evaded lysosomal capture, even when co-deposited on particulate adjuvant materials. Taken collectively, direct fluorescent labelling of antigen-adjuvant complexes may serve as critical tools in understanding subsequent immunopotentiation in vaccines directed against amyloidosis and wider dementia.
Collapse
Affiliation(s)
- Matthew Mold
- The Birchall Centre, Lennard-Jones Laboratories, Keele University, Keele, Staffordshire, ST5 5BG, UK
| | - Manpreet Kumar
- The Birchall Centre, Lennard-Jones Laboratories, Keele University, Keele, Staffordshire, ST5 5BG, UK
| | - Ambreen Mirza
- The Birchall Centre, Lennard-Jones Laboratories, Keele University, Keele, Staffordshire, ST5 5BG, UK
| | - Emma Shardlow
- The Birchall Centre, Lennard-Jones Laboratories, Keele University, Keele, Staffordshire, ST5 5BG, UK
| | - Christopher Exley
- The Birchall Centre, Lennard-Jones Laboratories, Keele University, Keele, Staffordshire, ST5 5BG, UK.
| |
Collapse
|