1
|
Domenech de Cellès M, Rohani P. Pertussis vaccines, epidemiology and evolution. Nat Rev Microbiol 2024; 22:722-735. [PMID: 38907021 DOI: 10.1038/s41579-024-01064-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/16/2024] [Indexed: 06/23/2024]
Abstract
Pertussis, which is caused by Bordetella pertussis, has plagued humans for at least 800 years, is highly infectious and can be fatal in the unvaccinated, especially very young infants. Although the rollout of whole-cell pertussis (wP) vaccines in the 1940s and 1950s was associated with a drastic drop in incidence, concerns regarding the reactogenicity of wP vaccines led to the development of a new generation of safer, acellular (aP) vaccines that have been adopted mainly in high-income countries. Over the past 20 years, some countries that boast high aP coverage have experienced a resurgence in pertussis, which has led to substantial debate over the basic immunology, epidemiology and evolutionary biology of the bacterium. Controversy surrounds the duration of natural immunity and vaccine-derived immunity, the ability of vaccines to prevent transmission and severe disease, and the impact of evolution on evading vaccine immunity. Resolving these issues is made challenging by incomplete detection of pertussis cases, the absence of a serological marker of immunity, modest sequencing of the bacterial genome and heterogeneity in diagnostic methods of surveillance. In this Review, we lay out the complexities of contemporary pertussis and, where possible, propose a parsimonious explanation for apparently incongruous observations.
Collapse
Affiliation(s)
| | - Pejman Rohani
- Odum School of Ecology, University of Georgia, Athens, GA, USA.
- Center of Ecology of Infectious Diseases, Athens, GA, USA.
- Department of Infectious Diseases, College for Veterinary Medicine, University of Georgia, Athens, GA, USA.
| |
Collapse
|
2
|
Moraga-Llop F, Garcés-Sánchez M, González-López JJ. Reemergence of pertussis: Strategies and challenges in its control in Spain. An Pediatr (Barc) 2024; 101:227-229. [PMID: 39332968 DOI: 10.1016/j.anpede.2024.07.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 07/29/2024] [Indexed: 09/29/2024] Open
Affiliation(s)
- Fernando Moraga-Llop
- Societat Catalana de Pediatria, Barcelona, Spain; Asociación Española de Vacunología, Barcelona, Spain.
| | - María Garcés-Sánchez
- Centro de Salud Nazaret, Valencia, Spain; Área de Vacunas, Fundació per al Foment de la Investigació Sanitària i Biomèdica de la Comunitat Valenciana (FISABIO), Valencia, Spain; Comité Asesor de Vacunas de la Asociación Española de Pediatría (AEP), Madrid, Spain
| | - Juan José González-López
- Servicio de Microbiología, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
3
|
Weaver KL, Bitzer GJ, Wolf MA, Pyles GM, DeJong MA, Dublin SR, Huckaby AB, Gutierrez MDLP, Hall JM, Wong TY, Warden M, Petty JE, Witt WT, Cunningham C, Sen-Kilic E, Damron FH, Barbier M. Intranasal challenge with B. pertussis leads to more severe disease manifestations in mice than aerosol challenge. PLoS One 2023; 18:e0286925. [PMID: 37917623 PMCID: PMC10621807 DOI: 10.1371/journal.pone.0286925] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 05/25/2023] [Indexed: 11/04/2023] Open
Abstract
The murine Bordetella pertussis challenge model has been utilized in preclinical research for decades. Currently, inconsistent methodologies are employed by researchers across the globe, making it difficult to compare findings. The objective of this work was to utilize the CD-1 mouse model with two routes of challenge, intranasal and aerosol administration of B. pertussis, to understand the differences in disease manifestation elicited via each route. We observed that both routes of B. pertussis challenge result in dose-dependent colonization of the respiratory tract, but overall, intranasal challenge led to higher bacterial burden in the nasal lavage, trachea, and lung. Furthermore, high dose intranasal challenge results in induction of leukocytosis and pro-inflammatory cytokine responses compared to aerosol challenge. These data highlight crucial differences in B. pertussis challenge routes that should be considered during experimental design.
Collapse
Affiliation(s)
- Kelly L. Weaver
- Vaccine Development Center in the Department of Microbiology, Immunology, and Cell Biology at West Virginia University, Morgantown, WV, United States of America
| | - Graham J. Bitzer
- Vaccine Development Center in the Department of Microbiology, Immunology, and Cell Biology at West Virginia University, Morgantown, WV, United States of America
| | - M. Allison Wolf
- Vaccine Development Center in the Department of Microbiology, Immunology, and Cell Biology at West Virginia University, Morgantown, WV, United States of America
| | - Gage M. Pyles
- Vaccine Development Center in the Department of Microbiology, Immunology, and Cell Biology at West Virginia University, Morgantown, WV, United States of America
| | - Megan A. DeJong
- Vaccine Development Center in the Department of Microbiology, Immunology, and Cell Biology at West Virginia University, Morgantown, WV, United States of America
| | - Spencer R. Dublin
- Vaccine Development Center in the Department of Microbiology, Immunology, and Cell Biology at West Virginia University, Morgantown, WV, United States of America
| | - Annalisa B. Huckaby
- Vaccine Development Center in the Department of Microbiology, Immunology, and Cell Biology at West Virginia University, Morgantown, WV, United States of America
| | - Maria de la Paz Gutierrez
- Vaccine Development Center in the Department of Microbiology, Immunology, and Cell Biology at West Virginia University, Morgantown, WV, United States of America
| | - Jesse M. Hall
- Vaccine Development Center in the Department of Microbiology, Immunology, and Cell Biology at West Virginia University, Morgantown, WV, United States of America
| | - Ting Y. Wong
- Vaccine Development Center in the Department of Microbiology, Immunology, and Cell Biology at West Virginia University, Morgantown, WV, United States of America
| | - Matthew Warden
- Vaccine Development Center in the Department of Microbiology, Immunology, and Cell Biology at West Virginia University, Morgantown, WV, United States of America
| | - Jonathan E. Petty
- Vaccine Development Center in the Department of Microbiology, Immunology, and Cell Biology at West Virginia University, Morgantown, WV, United States of America
| | - William T. Witt
- Vaccine Development Center in the Department of Microbiology, Immunology, and Cell Biology at West Virginia University, Morgantown, WV, United States of America
| | - Casey Cunningham
- Vaccine Development Center in the Department of Microbiology, Immunology, and Cell Biology at West Virginia University, Morgantown, WV, United States of America
| | - Emel Sen-Kilic
- Vaccine Development Center in the Department of Microbiology, Immunology, and Cell Biology at West Virginia University, Morgantown, WV, United States of America
| | - F. Heath Damron
- Vaccine Development Center in the Department of Microbiology, Immunology, and Cell Biology at West Virginia University, Morgantown, WV, United States of America
| | - Mariette Barbier
- Vaccine Development Center in the Department of Microbiology, Immunology, and Cell Biology at West Virginia University, Morgantown, WV, United States of America
| |
Collapse
|
4
|
Suyama H, Luu LDW, Zhong L, Raftery MJ, Lan R. Integrating proteomic data with metabolic modeling provides insight into key pathways of Bordetella pertussis biofilms. Front Microbiol 2023; 14:1169870. [PMID: 37601354 PMCID: PMC10435875 DOI: 10.3389/fmicb.2023.1169870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 07/19/2023] [Indexed: 08/22/2023] Open
Abstract
Pertussis, commonly known as whooping cough is a severe respiratory disease caused by the bacterium, Bordetella pertussis. Despite widespread vaccination, pertussis resurgence has been observed globally. The development of the current acellular vaccine (ACV) has been based on planktonic studies. However, recent studies have shown that B. pertussis readily forms biofilms. A better understanding of B. pertussis biofilms is important for developing novel vaccines that can target all aspects of B. pertussis infection. This study compared the proteomic expression of biofilm and planktonic B. pertussis cells to identify key changes between the conditions. Major differences were identified in virulence factors including an upregulation of toxins (adenylate cyclase toxin and dermonecrotic toxin) and downregulation of pertactin and type III secretion system proteins in biofilm cells. To further dissect metabolic pathways that are altered during the biofilm lifestyle, the proteomic data was then incorporated into a genome scale metabolic model using the Integrative Metabolic Analysis Tool (iMAT). The generated models predicted that planktonic cells utilised the glyoxylate shunt while biofilm cells completed the full tricarboxylic acid cycle. Differences in processing aspartate, arginine and alanine were identified as well as unique export of valine out of biofilm cells which may have a role in inter-bacterial communication and regulation. Finally, increased polyhydroxybutyrate accumulation and superoxide dismutase activity in biofilm cells may contribute to increased persistence during infection. Taken together, this study modeled major proteomic and metabolic changes that occur in biofilm cells which helps lay the groundwork for further understanding B. pertussis pathogenesis.
Collapse
Affiliation(s)
- Hiroki Suyama
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Laurence Don Wai Luu
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Ling Zhong
- Bioanalytical Mass Spectrometry Facility, University of New South Wales, Sydney, NSW, Australia
| | - Mark J. Raftery
- Bioanalytical Mass Spectrometry Facility, University of New South Wales, Sydney, NSW, Australia
| | - Ruiting Lan
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
5
|
Yang B, Zhu D, Zhou Y, Gong B, Hu Y, Zhang J, Huang S, Nian X, Li X, Li X, Duan K, Yang X. Liposome and QS-21 Combined Adjuvant Induces theHumoral and Cellular Responses of Acellular Pertussis Vaccine in a Mice Model. Vaccines (Basel) 2023; 11:vaccines11050914. [PMID: 37243018 DOI: 10.3390/vaccines11050914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/21/2023] [Accepted: 04/25/2023] [Indexed: 05/28/2023] Open
Abstract
The resurgence of pertussis in vaccinated communities may be related to the reduced long-term immunity induced by acellular pertussis vaccines. Therefore, developing improved pertussis vaccine candidates that could induce strong Th1 or Th17 cellular immunity is an urgent need. The use of new adjuvants may well meet this requirement. In this research, we developed a novel adjuvant candidate by combining liposome and QS-21 adjuvant. Adjuvant activity, protective efficacy, the level of neutralizing antibody against PT, and the resident memory T (TRM) cells in lung tissue after vaccination were studied. We then performed B. pertussis respiratory challenge in mice after they received vaccination with traditional aluminum hydroxide and the novel adjuvant combination. Results showed that the liposome + QS-21 adjuvant group had a rapid antibody and higher antibody (PT, FHA, Fim) level, induced anti-PT neutralizing antibody and recruited more IL-17A-secreting CD4+ TRM cells along with IL-17A-secreting CD8+ TRM cells in mice, which provided robust protection against B. pertussis infection. These results provide a key basis for liposome + QS-21 adjuvant as a promising adjuvant candidate for developing an acellular pertussis vaccine that elicits protective immunity against pertussis.
Collapse
Affiliation(s)
- Baifeng Yang
- National Engineering Technology Research Center for Combined Vaccines, Wuhan 430207, China
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, China
| | - Dewu Zhu
- National Engineering Technology Research Center for Combined Vaccines, Wuhan 430207, China
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, China
| | - Yisi Zhou
- National Engineering Technology Research Center for Combined Vaccines, Wuhan 430207, China
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, China
| | - Beizhe Gong
- National Engineering Technology Research Center for Combined Vaccines, Wuhan 430207, China
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, China
| | - Yuan Hu
- National Engineering Technology Research Center for Combined Vaccines, Wuhan 430207, China
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, China
| | - Jiayou Zhang
- National Engineering Technology Research Center for Combined Vaccines, Wuhan 430207, China
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, China
| | - Shihe Huang
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, China
| | - Xuanxuan Nian
- National Engineering Technology Research Center for Combined Vaccines, Wuhan 430207, China
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, China
| | - Xinghang Li
- National Engineering Technology Research Center for Combined Vaccines, Wuhan 430207, China
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, China
| | - Xinguo Li
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, China
| | - Kai Duan
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, China
| | - Xiaoming Yang
- National Biotec Group Company Limited, Beijing 100024, China
| |
Collapse
|
6
|
Nian X, Liu H, Cai M, Duan K, Yang X. Coping Strategies for Pertussis Resurgence. Vaccines (Basel) 2023; 11:889. [PMID: 37242993 PMCID: PMC10220650 DOI: 10.3390/vaccines11050889] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 05/28/2023] Open
Abstract
Pertussis (whooping cough) is a respiratory disease caused primarily by Bordetella pertussis, a Gram-negative bacteria. Pertussis is a relatively contagious infectious disease in people of all ages, mainly affecting newborns and infants under 2 months of age. Pertussis is undergoing a resurgence despite decades of high rates of vaccination. To better cope with the challenge of pertussis resurgence, we evaluated its possible causes and potential countermeasures in the narrative review. Expanded vaccination coverage, optimized vaccination strategies, and the development of a new pertussis vaccine may contribute to the control of pertussis.
Collapse
Affiliation(s)
- Xuanxuan Nian
- National Engineering Technology Research Center for Combined Vaccines, Wuhan 430207, China
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, China
| | - Hongbo Liu
- National Engineering Technology Research Center for Combined Vaccines, Wuhan 430207, China
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, China
| | - Mengyao Cai
- National Engineering Technology Research Center for Combined Vaccines, Wuhan 430207, China
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, China
| | - Kai Duan
- National Engineering Technology Research Center for Combined Vaccines, Wuhan 430207, China
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, China
| | - Xiaoming Yang
- National Engineering Technology Research Center for Combined Vaccines, Wuhan 430207, China
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, China
- China National Biotech Group Company Limited, Bejing 100029, China
| |
Collapse
|
7
|
Caulfield AD, Callender M, Harvill ET. Generating enhanced mucosal immunity against Bordetella pertussis: current challenges and new directions. Front Immunol 2023; 14:1126107. [PMID: 36895562 PMCID: PMC9990818 DOI: 10.3389/fimmu.2023.1126107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 02/08/2023] [Indexed: 02/23/2023] Open
Abstract
Bordetella pertussis (Bp) is the highly transmissible etiologic agent of pertussis, a severe respiratory disease that causes particularly high morbidity and mortality in infants and young children. Commonly known as "whooping cough," pertussis is one of the least controlled vaccine-preventable diseases worldwide with several countries experiencing recent periods of resurgence despite broad immunization coverage. While current acellular vaccines prevent severe disease in most cases, the immunity they confer wanes rapidly and does not prevent sub clinical infection or transmission of the bacterium to new and vulnerable hosts. The recent resurgence has prompted new efforts to generate robust immunity to Bp in the upper respiratory mucosa, from which colonization and transmission originate. Problematically, these initiatives have been partially hindered by research limitations in both human and animal models as well as potent immunomodulation by Bp. Here, we consider our incomplete understanding of the complex host-pathogen dynamics occurring in the upper airway to propose new directions and methods that may address critical gaps in research. We also consider recent evidence that supports the development of novel vaccines specifically designed to generate robust mucosal immune responses capable of limiting upper respiratory colonization to finally halt the ongoing circulation of Bordetella pertussis.
Collapse
Affiliation(s)
- Amanda D. Caulfield
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | | | | |
Collapse
|
8
|
Szwejser-Zawislak E, Wilk MM, Piszczek P, Krawczyk J, Wilczyńska D, Hozbor D. Evaluation of Whole-Cell and Acellular Pertussis Vaccines in the Context of Long-Term Herd Immunity. Vaccines (Basel) 2022; 11:vaccines11010001. [PMID: 36679846 PMCID: PMC9863224 DOI: 10.3390/vaccines11010001] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/04/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
After the pertussis vaccine had been introduced in the 1940s and was shown to be very successful in reducing the morbidity and mortality associated with the disease, the possibility of improving both vaccine composition and vaccination schedules has become the subject of continuous interest. As a result, we are witnessing a considerable heterogeneity in pertussis vaccination policies, which remains beyond universal consensus. Many pertussis-related deaths still occur in low- and middle-income countries; however, these deaths are attributable to gaps in vaccination coverage and limited access to healthcare in these countries, rather than to the poor efficacy of the first generation of pertussis vaccine consisting in inactivated and detoxified whole cell pathogen (wP). In many, particularly high-income countries, a switch was made in the 1990s to the use of acellular pertussis (aP) vaccine, to reduce the rate of post-vaccination adverse events and thereby achieve a higher percentage of children vaccinated. However the epidemiological data collected over the past few decades, even in those high-income countries, show an increase in pertussis prevalence and morbidity rates, triggering a wide-ranging debate on the causes of pertussis resurgence and the effectiveness of current pertussis prevention strategies, as well as on the efficacy of available pertussis vaccines and immunization schedules. The current article presents a systematic review of scientific reports on the evaluation of the use of whole-cell and acellular pertussis vaccines, in the context of long-term immunity and vaccines efficacy.
Collapse
Affiliation(s)
- Ewa Szwejser-Zawislak
- Institute of Biotechnology of Serums and Vaccines Biomed, Al. Sosnowa 8, 30-224 Krakow, Poland
| | - Mieszko M. Wilk
- Department of Immunology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland
| | - Piotr Piszczek
- Institute of Biotechnology of Serums and Vaccines Biomed, Al. Sosnowa 8, 30-224 Krakow, Poland
| | - Justyna Krawczyk
- Institute of Biotechnology of Serums and Vaccines Biomed, Al. Sosnowa 8, 30-224 Krakow, Poland
| | - Daria Wilczyńska
- Institute of Biotechnology of Serums and Vaccines Biomed, Al. Sosnowa 8, 30-224 Krakow, Poland
| | - Daniela Hozbor
- VacSal Laboratory, Institute of Biotechnology and Molecular Biology, Faculty of Sciences, National University of La Plata (UNLP), National Council for Scientific and Technical Research (CONICET), La Plata 1900, Argentina
- Correspondence:
| |
Collapse
|
9
|
Xu Z, Hu D, Luu LDW, Octavia S, Keil AD, Sintchenko V, Tanaka MM, Mooi FR, Robson J, Lan R. Genomic dissection of the microevolution of Australian epidemic Bordetella pertussis. Emerg Microbes Infect 2022; 11:1460-1473. [PMID: 35543519 PMCID: PMC9176669 DOI: 10.1080/22221751.2022.2077129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Whooping cough (pertussis) is a highly contagious respiratory disease caused by the bacterium Bordetella pertussis. Despite high vaccine coverage, pertussis has re-emerged in many countries including Australia and caused two large epidemics in Australia since 2007. Here, we undertook a genomic and phylogeographic study of 385 Australian B. pertussis isolates collected from 2008 to 2017. The Australian B. pertussis population was found to be composed of mostly ptxP3 strains carrying different fim3 alleles, with ptxP3-fim3A genotype expanding far more than ptxP3-fim3B. Within the former, there were six co-circulating epidemic lineages (EL1 to EL6). The multiple ELs emerged, expanded, and then declined at different time points over the two epidemics. In population genetics terms, both hard and soft selective sweeps through vaccine selection pressures have determined the population dynamics of Australian B. pertussis. Relative risk estimation suggests that once a new B. pertussis lineage emerged, it was more likely to spread locally within the first 1.5 years. However, after 1.5 years, any new lineage was likely to expand to a wider region. Phylogenetic analysis revealed the expansion of ptxP3 strains was also associated with replacement of the type III secretion system allele bscI1 with bscI3. bscI3 is associated with decreased T3SS secretion and may allow B. pertussis to reduce immune recognition. This study advanced our understanding of the epidemic population structure and spatial and temporal dynamics of B. pertussis in a highly immunized population.
Collapse
Affiliation(s)
- Zheng Xu
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| | - Dalong Hu
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| | - Laurence Don Wai Luu
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| | - Sophie Octavia
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| | - Anthony D Keil
- Department of Microbiology, PathWest Laboratory Medicine WA, Perth Children's Hospital, Perth, Australia
| | - Vitali Sintchenko
- Centre for Infectious Diseases and Microbiology-Public Health, Institute of Clinical Pathology and Medical Research, NSW Health Pathology and Westmead Hospital, Sydney, Australia.,Sydney Institute for Infectious Diseases, The University of Sydney, Sydney, Australia
| | - Mark M Tanaka
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| | - Frits R Mooi
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| | - Jenny Robson
- Sullivan Nicolaides Pathology, Queensland, Australia
| | - Ruiting Lan
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| |
Collapse
|
10
|
Safarchi A, Saedi S, Tay CY, Lamichhane B, Nakhost Lotfi M, Shahcheraghi F. Genome Characteristic of Bordetella parapertussis Isolated from Iran. Curr Microbiol 2022; 79:314. [PMID: 36088519 PMCID: PMC9464130 DOI: 10.1007/s00284-022-03009-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 08/23/2022] [Indexed: 11/28/2022]
Abstract
AbstractPertussis also known as whooping cough is a respiratory infection in humans particularly with severe symptoms in infants and usually caused by Bordetella pertussis. However, Bordetella parapertussis can also cause a similar clinical syndrome. During 2012 to 2015, from nasal swabs sent from different provinces to the pertussis reference laboratory of Pasture Institute of Iran for pertussis confirmation, seven B. parapertussis isolates were identified by bacterial culture, biochemical tests, and the presence of IS1001 insertion in the genome. The expression of pertactin (Prn) as one the major virulence factor for bacterial adhesion was investigated using western blot. Moreover, the genomic characteristic of one recently collected isolate, IRBP134, from a seven-month infant was investigated using Illumina NextSeq sequencing protocol. The results revealed the genome with G+C content 65% and genome size 4.7 Mbp. A total of 81 single nucleotide polymorphisms and 13 short insertions and deletions were found in the genome compared to the B. parapertussis 12822 as a reference genome showing ongoing evolutionary changes. A phylogeny relationship of IRBP134 was also investigated using global B. parapertussis available genomes.
Collapse
Affiliation(s)
- Azadeh Safarchi
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052 Australia
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, 1316943551 Islamic Republic of Iran
| | - Samaneh Saedi
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, 1316943551 Islamic Republic of Iran
| | - Chin Yen Tay
- The Marshal Centre for Infectious Disease Research and Training, University of Western Australia, Perth, WA 6009 Australia
| | - Binit Lamichhane
- The Marshal Centre for Infectious Disease Research and Training, University of Western Australia, Perth, WA 6009 Australia
| | - Masoumeh Nakhost Lotfi
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, 1316943551 Islamic Republic of Iran
| | - Fereshteh Shahcheraghi
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, 1316943551 Islamic Republic of Iran
| |
Collapse
|
11
|
Abstract
Following the initiation of the unprecedented global vaccination campaign against Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), attention has now turned to the potential impact of this large-scale intervention on the evolution of the virus. In this Essay, we summarize what is currently known about pathogen evolution in the context of immune priming (including vaccination) from research on other pathogen species, with an eye towards the future evolution of SARS-CoV-2.
Collapse
Affiliation(s)
- Troy Day
- Department of Mathematics and Statistics, Department of Biology, Queen’s University, Kingston, Ontario, Canada
| | - David A. Kennedy
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Andrew F. Read
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania, United States of America
- Department of Entomology, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Sylvain Gandon
- CEFE, CNRS, Univ Montpellier, EPHE, IRD, Montpellier, France
| |
Collapse
|
12
|
Guiso N, Soubeyrand B, Macina D. Can vaccines control bacterial virulence and pathogenicity? Bordetella pertussis: the advantage of fitness over virulence. Evol Med Public Health 2022; 10:363-370. [PMID: 36032328 PMCID: PMC9400806 DOI: 10.1093/emph/eoac028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 07/26/2022] [Indexed: 11/30/2022] Open
Abstract
Some vaccines, such as diphtheria toxoid and acellular pertussis vaccines (aPVs), may favor the emergence of less pathogenic strains of the respective bacteria they target. This review discusses the impact of the wide use of aPV on Bordetella pertussis phenotype evolutions and their beneficial consequences in the light of the diphtheria toxoid immunization program experience and structuring evidence review in a causal analysis following Bradford Hill's causality criteria. All aPVs contain the pertussis toxin (PT), the main virulence factor of B.pertussis, alone or with one adhesin (filamentous hemagglutinin (FHA)), two adhesins (FHA and pertactin (PRN)) or four adhesins (FHA, PRN and two fimbriae (Fim 2/3)). In countries where the coverage of aPVs containing PRN is high, PRN negative B.pertussis isolates are increasing in prevalence, but isolates nonproducing the other antigens are rarely reported. We hypothesize that the selective pressure at play with PRN should exist against all aVP antigens, although detection biases may hinder its detection for other antigens, especially PT. PT being responsible for clinically frank cases of the disease, the opportunity to collect PT negative isolates is far lower than to collect PRN negative isolates which have a limited clinical impact. The replacement of the current B.pertussis by far less pathogenic isolates no longer producing the factors contained in aPVs should be expected as a consequence of the wide aPV use.
Collapse
|
13
|
Lefrancq N, Bouchez V, Fernandes N, Barkoff AM, Bosch T, Dalby T, Åkerlund T, Darenberg J, Fabianova K, Vestrheim DF, Fry NK, González-López JJ, Gullsby K, Habington A, He Q, Litt D, Martini H, Piérard D, Stefanelli P, Stegger M, Zavadilova J, Armatys N, Landier A, Guillot S, Hong SL, Lemey P, Parkhill J, Toubiana J, Cauchemez S, Salje H, Brisse S. Global spatial dynamics and vaccine-induced fitness changes of Bordetella pertussis. Sci Transl Med 2022; 14:eabn3253. [PMID: 35476597 DOI: 10.1126/scitranslmed.abn3253] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
As with other pathogens, competitive interactions between Bordetella pertussis strains drive infection risk. Vaccines are thought to perturb strain diversity through shifts in immune pressures; however, this has rarely been measured because of inadequate data and analytical tools. We used 3344 sequences from 23 countries to show that, on average, there are 28.1 transmission chains circulating within a subnational region, with the number of chains strongly associated with host population size. It took 5 to 10 years for B. pertussis to be homogeneously distributed throughout Europe, with the same time frame required for the United States. Increased fitness of pertactin-deficient strains after implementation of acellular vaccines, but reduced fitness otherwise, can explain long-term genotype dynamics. These findings highlight the role of vaccine policy in shifting local diversity of a pathogen that is responsible for 160,000 deaths annually.
Collapse
Affiliation(s)
- Noémie Lefrancq
- Insitut Pasteur, Université Paris Cité, Mathematical Modelling of Infectious Diseases Unit, UMR2000, CNRS, 75015 Paris, France.,Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK
| | - Valérie Bouchez
- Institut Pasteur, Université Paris Cité, Biodiversity and Epidemiology of Bacterial Pathogens, 75724 Paris, France.,National Reference Center for Whooping Cough and Other Bordetella Infections, 75724 Paris, France
| | - Nadia Fernandes
- Institut Pasteur, Université Paris Cité, Biodiversity and Epidemiology of Bacterial Pathogens, 75724 Paris, France
| | - Alex-Mikael Barkoff
- University of Turku UTU, Institute of Biomedicine, Research Center for Infections and Immunity, FI-20520 Turku, Finland
| | - Thijs Bosch
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), 3720 BA Bilthoven, Netherlands
| | - Tine Dalby
- Statens Serum Institut, Bacteria, Parasites and Fungi/Infectious Disease Preparedness, 2300 Copenhagen, Denmark
| | - Thomas Åkerlund
- The Public Health Agency of Sweden, Unit for Laboratory Surveillance of Bacterial Pathogens, SE-171 82 Solna, Sweden
| | - Jessica Darenberg
- The Public Health Agency of Sweden, Unit for Laboratory Surveillance of Bacterial Pathogens, SE-171 82 Solna, Sweden
| | - Katerina Fabianova
- National Institute of Public Health, Department of Infectious Diseases Epidemiology, CZ-10000 Prague, Czech Republic
| | - Didrik F Vestrheim
- Norwegian Institute of Public Health, Department of Infectious Disease Control and Vaccine, N-0213 Oslo, Norway
| | - Norman K Fry
- Respiratory and Vaccine Preventable Bacteria Reference Unit, Public Health England-National Infection Service, London NW9 5EQ, UK.,Immunisation and Countermeasures Division, Public Health England-National Infection Service, London NW9 5EQ, UK
| | - Juan José González-López
- University Hospital Vall d'Hebron, Microbiology Department, 08035 Barcelona, Spain.,Universitat Autònoma de Barcelona, Department of Genetics and Microbiology, 08193 Barcelona, Spain
| | - Karolina Gullsby
- Centre for Research and Development, Uppsala University/Region Gävleborg, 80187 Gävle, Sweden
| | - Adele Habington
- Molecular Microbiology Laboratory, Children's Health Ireland, Crumlin, D12 N512 Dublin, Ireland
| | - Qiushui He
- University of Turku UTU, Institute of Biomedicine, Research Center for Infections and Immunity, FI-20520 Turku, Finland.,InFLAMES Research Flagship Center, University of Turku, FI-20520 Turku, Finland
| | - David Litt
- Respiratory and Vaccine Preventable Bacteria Reference Unit, Public Health England-National Infection Service, London NW9 5EQ, UK
| | - Helena Martini
- Department of Microbiology, National Reference Centre for Bordetella pertussis, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel (VUB), B-1090 Brussels, Belgium
| | - Denis Piérard
- Department of Microbiology, National Reference Centre for Bordetella pertussis, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel (VUB), B-1090 Brussels, Belgium
| | - Paola Stefanelli
- Department of Infectious Diseases, Istituto Superiore di Sanità, IT-00161 Rome, Italy
| | - Marc Stegger
- Statens Serum Institut, Bacteria, Parasites and Fungi/Infectious Disease Preparedness, 2300 Copenhagen, Denmark
| | - Jana Zavadilova
- National Institute of Public Health, National Reference Laboratory for Pertussis and Diphtheria, 100 00 Prague, Czech Republic
| | - Nathalie Armatys
- Institut Pasteur, Université Paris Cité, Biodiversity and Epidemiology of Bacterial Pathogens, 75724 Paris, France.,National Reference Center for Whooping Cough and Other Bordetella Infections, 75724 Paris, France
| | - Annie Landier
- Institut Pasteur, Université Paris Cité, Biodiversity and Epidemiology of Bacterial Pathogens, 75724 Paris, France.,National Reference Center for Whooping Cough and Other Bordetella Infections, 75724 Paris, France
| | - Sophie Guillot
- Institut Pasteur, Université Paris Cité, Biodiversity and Epidemiology of Bacterial Pathogens, 75724 Paris, France.,National Reference Center for Whooping Cough and Other Bordetella Infections, 75724 Paris, France
| | - Samuel L Hong
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, 3000 Leuven, Belgium
| | - Philippe Lemey
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, 3000 Leuven, Belgium
| | - Julian Parkhill
- Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, UK
| | - Julie Toubiana
- Institut Pasteur, Université Paris Cité, Biodiversity and Epidemiology of Bacterial Pathogens, 75724 Paris, France.,National Reference Center for Whooping Cough and Other Bordetella Infections, 75724 Paris, France.,Université Paris Cité, Department of General Paediatrics and Paediatric Infectious Diseases, Necker-Enfants Malades Hospital, APHP, 75015 Paris, France
| | - Simon Cauchemez
- Insitut Pasteur, Université Paris Cité, Mathematical Modelling of Infectious Diseases Unit, UMR2000, CNRS, 75015 Paris, France
| | - Henrik Salje
- Insitut Pasteur, Université Paris Cité, Mathematical Modelling of Infectious Diseases Unit, UMR2000, CNRS, 75015 Paris, France.,Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK
| | - Sylvain Brisse
- Institut Pasteur, Université Paris Cité, Biodiversity and Epidemiology of Bacterial Pathogens, 75724 Paris, France.,National Reference Center for Whooping Cough and Other Bordetella Infections, 75724 Paris, France
| |
Collapse
|
14
|
Mir-Cros A, Moreno-Mingorance A, Martín-Gómez MT, Abad R, Bloise I, Campins M, González-Praetorius A, Gutiérrez MN, Martín-González H, Muñoz-Almagro C, Orellana MÁ, de Pablos M, Roca-Grande J, Rodrigo C, Rodríguez ME, Uriona S, Vidal MJ, Pumarola T, Larrosa MN, González-López JJ. Pertactin-Deficient Bordetella pertussis with Unusual Mechanism of Pertactin Disruption, Spain, 1986-2018. Emerg Infect Dis 2022; 28:967-976. [PMID: 35447067 PMCID: PMC9045434 DOI: 10.3201/eid2805.211958] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Bordetella pertussis not expressing pertactin has increased in countries using acellular pertussis vaccines (ACV). The deficiency is mostly caused by pertactin gene disruption by IS481. To assess the effect of the transition from whole-cell vaccine to ACV on the emergence of B. pertussis not expressing pertactin in Spain, we studied 342 isolates collected during 1986–2018. We identified 93 pertactin-deficient isolates. All were detected after introduction of ACV and represented 38% of isolates collected during the ACV period; 58.1% belonged to a genetic cluster of isolates carrying the unusual prn::del(–292, 1340) mutation. Pertactin inactivation by IS481 insertion was identified in 23.7% of pertactin-deficient isolates, arising independently multiple times and in different phylogenetic branches. Our findings support the emergence and dissemination of a cluster of B. pertussis with an infrequent mechanism of pertactin disruption in Spain, probably resulting from introduction of ACV.
Collapse
|
15
|
Alghounaim M, Alsaffar Z, Alfraij A, Bin-Hasan S, Hussain E. Whole-Cell and Acellular Pertussis Vaccine: Reflections on Efficacy. Med Princ Pract 2022; 31:313-321. [PMID: 35696990 PMCID: PMC9485965 DOI: 10.1159/000525468] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 06/09/2022] [Indexed: 11/20/2022] Open
Abstract
Pertussis is a common respiratory infection caused by the bacterium Bordetella pertussis. Although most cases occur in developing countries, it is considered endemic globally. The World Health Organization estimates there are 20-40 million cases of pertussis annually. Pertussis vaccines played a pivotal role in reducing the burden of pertussis disease as well as infant morbidity and mortality. Although the two forms of pertussis vaccine are effective, each has its advantages and drawbacks. This review aims to review the current knowledge on pertussis vaccines, emphasizing vaccine effectiveness in different populations within a community. Clinical trials have shown favorable vaccine efficacy with acellular pertussis (aP)vaccine. However, observational and population-level studies showed that introducing at least a single dose of whole-cell pertussis (wP) vaccine within the routine immunization schedule is associated with better disease protection and a longer duration of immunity. On the other hand, wP vaccine is more reactogenic and associated with higher adverse events. Therefore, the selection of vaccine should be weighed against the effectiveness, reactogenicity, and cost-effectiveness. Due to its safety profile, aP vaccine can be offered to wider population groups. Booster adolescent and pregnant immunization programs have been implemented globally to control outbreaks and protect vulnerable infants. Due to the variable effectiveness performance of both vaccines, different countries adopted distinctive immunization programs. Determining the right vaccination approach depends on financial consideration, immunization program infrastructure, adverse event monitoring, and pertussis surveillance in the community.
Collapse
Affiliation(s)
- Mohammad Alghounaim
- Department of Pediatrics, Amiri Hospital, Kuwait City, Kuwait
- *Mohammad Alghounaim,
| | - Zainab Alsaffar
- Department of Pediatrics, Farwaniya Hospital, Kuwait City, Kuwait
| | - Abdulla Alfraij
- Department of Pediatrics, Farwaniya Hospital, Kuwait City, Kuwait
| | - Saadoun Bin-Hasan
- Department of Pediatrics, Farwaniya Hospital, Kuwait City, Kuwait
- Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Entesar Hussain
- Department of Pediatrics, Faculty of Medicine, Kuwait University, Kuwait City, Kuwait
| |
Collapse
|
16
|
Prygiel M, Mosiej E, Wdowiak K, Górska P, Polak M, Lis K, Krysztopa-Grzybowska K, Zasada AA. Effectiveness of experimental and commercial pertussis vaccines in the elimination of Bordetella pertussis isolates with different genetic profiles in murine model. Med Microbiol Immunol 2021; 210:251-262. [PMID: 34338880 PMCID: PMC8326312 DOI: 10.1007/s00430-021-00718-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 07/07/2021] [Indexed: 12/19/2022]
Abstract
The aim of this study was to compare the elimination of Bordetella pertussis clinical isolates, representing different genotypes in relation to alleles encoding virulence factors (MLST-multi-locus antigen sequence typing), MLVA type (multi-locus variable-number tandem repeat analysis) and PFGE group (pulsed-field gel electrophoresis) from the lungs of naive mice or mice were immunised with the commercial whole-cell pertussis vaccine, the acellular pertussis vaccine and the experimental whole-cell pertussis vaccine. Molecular data indicate that the resurgence of pertussis in populations with high vaccine coverage is associated with genomic adaptation of B. pertussis, to vaccine selection pressure. Pertactin-negative B. pertussis isolates were suspected to contribute to the reduced vaccine effectiveness. It was shown that one of the isolates used is PRN deficient. The mice were intranasally challenged with bacterial suspension containing approximately 5 × 10 7 CFU/ml B. pertussis. The immunogenicity of the tested vaccines against PT (pertussis toxin), PRN (pertactin), FHA (filamentous haemagglutinin) and FIM (fimbriae types 2 and 3) was examined. The commercial whole-cell and acellular pertussis vaccines induced an immunity effective at eliminating the genetically different B. pertussis isolates from the lungs. However, the elimination of the PRN-deficient isolate from the lungs of mice vaccinated with commercial vaccines was delayed as compared to the PRN ( +) isolate, suggesting phenotypic differences with the circulating isolates and vaccine strains. The most effective vaccine was the experimental vaccine with the composition identical to that of the strains used for infection.
Collapse
Affiliation(s)
- Marta Prygiel
- Department of Vaccines and Sera Evaluation, National Institute of Public Health, National Institute of Hygiene, Warsaw, Poland.
| | - Ewa Mosiej
- Department of Vaccines and Sera Evaluation, National Institute of Public Health, National Institute of Hygiene, Warsaw, Poland
| | - Karol Wdowiak
- Department of Vaccines and Sera Evaluation, National Institute of Public Health, National Institute of Hygiene, Warsaw, Poland
| | - Paulina Górska
- Department of Vaccines and Sera Evaluation, National Institute of Public Health, National Institute of Hygiene, Warsaw, Poland
| | - Maciej Polak
- Department of Vaccines and Sera Evaluation, National Institute of Public Health, National Institute of Hygiene, Warsaw, Poland
| | - Klaudia Lis
- Department of Vaccines and Sera Evaluation, National Institute of Public Health, National Institute of Hygiene, Warsaw, Poland
| | - Katarzyna Krysztopa-Grzybowska
- Department of Vaccines and Sera Evaluation, National Institute of Public Health, National Institute of Hygiene, Warsaw, Poland
| | - Aleksandra Anna Zasada
- Department of Vaccines and Sera Evaluation, National Institute of Public Health, National Institute of Hygiene, Warsaw, Poland
| |
Collapse
|
17
|
Belcher T, Dubois V, Rivera-Millot A, Locht C, Jacob-Dubuisson F. Pathogenicity and virulence of Bordetella pertussis and its adaptation to its strictly human host. Virulence 2021; 12:2608-2632. [PMID: 34590541 PMCID: PMC8489951 DOI: 10.1080/21505594.2021.1980987] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The highly contagious whooping cough agent Bordetella pertussis has evolved as a human-restricted pathogen from a progenitor which also gave rise to Bordetella parapertussis and Bordetella bronchiseptica. While the latter colonizes a broad range of mammals and is able to survive in the environment, B. pertussis has lost its ability to survive outside its host through massive genome decay. Instead, it has become a highly successful human pathogen by the acquisition of tightly regulated virulence factors and evolutionary adaptation of its metabolism to its particular niche. By the deployment of an arsenal of highly sophisticated virulence factors it overcomes many of the innate immune defenses. It also interferes with vaccine-induced adaptive immunity by various mechanisms. Here, we review data from invitro, human and animal models to illustrate the mechanisms of adaptation to the human respiratory tract and provide evidence of ongoing evolutionary adaptation as a highly successful human pathogen.
Collapse
Affiliation(s)
- Thomas Belcher
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - CIIL - Center for Infection and Immunity of Lille, Lille, France
| | - Violaine Dubois
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - CIIL - Center for Infection and Immunity of Lille, Lille, France
| | - Alex Rivera-Millot
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - CIIL - Center for Infection and Immunity of Lille, Lille, France
| | - Camille Locht
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - CIIL - Center for Infection and Immunity of Lille, Lille, France
| | - Françoise Jacob-Dubuisson
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - CIIL - Center for Infection and Immunity of Lille, Lille, France
| |
Collapse
|
18
|
Bouchez V, Guillot S, Landier A, Armatys N, Matczak S, Toubiana J, Brisse S. Evolution of Bordetella pertussis over a 23-year period in France, 1996 to 2018. ACTA ACUST UNITED AC 2021; 26. [PMID: 34533118 PMCID: PMC8447829 DOI: 10.2807/1560-7917.es.2021.26.37.2001213] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BackgroundBordetella pertussis is the main agent of whooping cough. Vaccination with acellular pertussis vaccines has been largely implemented in high-income countries. These vaccines contain 1 to 5 antigens: pertussis toxin (PT), filamentous haemagglutinin (FHA), pertactin (PRN) and/or fimbrial proteins (FIM2 and FIM3). Monitoring the emergence of B. pertussis isolates that might partially escape vaccine-induced immunity is an essential component of public health strategies to control whooping cough.AimWe aimed to investigate temporal trends of fimbriae serotypes and vaccine antigen-expression in B. pertussis over a 23-year period in France (1996-2018).MethodsIsolates (n = 2,280) were collected through hospital surveillance, capturing one third of hospitalised paediatric pertussis cases. We assayed PT, FHA and PRN production by Western blot (n = 1,428) and fimbriae production by serotyping (n = 1,058). Molecular events underlying antigen deficiency were investigated by genomic sequencing.ResultsThe proportion of PRN-deficient B. pertussis isolates has increased steadily from 0% (0/38) in 2003 to 48.4% (31/64) in 2018 (chi-squared test for trend, p < 0.0001), whereas only 5 PT-, 5 FHA- and 9 FIM-deficient isolates were found. Impairment of PRN production was predominantly due to IS481 insertion within the prn gene or a 22 kb genomic inversion involving the prn promoter sequence, indicative of convergent evolution. FIM2-expressing isolates have emerged since 2011 at the expense of FIM3.ConclusionsB. pertussis is evolving through the rapid increase of PRN-deficient isolates and a recent shift from FIM3 to FIM2 expression. Excluding PRN, the loss of vaccine antigen expression by circulating B. pertussis isolates is epidemiologically insignificant.
Collapse
Affiliation(s)
- Valérie Bouchez
- Institut Pasteur, Biodiversity and Epidemiology of Bacterial Pathogens, Paris, France.,Institut Pasteur, National Reference Center for Whooping Cough and other Bordetella infections, Paris, France
| | - Sophie Guillot
- Institut Pasteur, Biodiversity and Epidemiology of Bacterial Pathogens, Paris, France.,Institut Pasteur, National Reference Center for Whooping Cough and other Bordetella infections, Paris, France
| | - Annie Landier
- Institut Pasteur, Biodiversity and Epidemiology of Bacterial Pathogens, Paris, France.,Institut Pasteur, National Reference Center for Whooping Cough and other Bordetella infections, Paris, France
| | - Nathalie Armatys
- Institut Pasteur, Biodiversity and Epidemiology of Bacterial Pathogens, Paris, France.,Institut Pasteur, National Reference Center for Whooping Cough and other Bordetella infections, Paris, France
| | - Soraya Matczak
- Institut Pasteur, Biodiversity and Epidemiology of Bacterial Pathogens, Paris, France.,Sorbonne Université, Collège doctoral, Paris, France
| | -
- The members of the group are listed under Investigators
| | - Julie Toubiana
- Institut Pasteur, Biodiversity and Epidemiology of Bacterial Pathogens, Paris, France.,Institut Pasteur, National Reference Center for Whooping Cough and other Bordetella infections, Paris, France.,Université de Paris, Department of General Pediatrics and Pediatric Infectious Diseases, Hôpital Necker-Enfants Malades, APHP, Paris, France
| | - Sylvain Brisse
- Institut Pasteur, Biodiversity and Epidemiology of Bacterial Pathogens, Paris, France.,Institut Pasteur, National Reference Center for Whooping Cough and other Bordetella infections, Paris, France
| |
Collapse
|
19
|
Carriquiriborde F, Martin Aispuro P, Ambrosis N, Zurita E, Bottero D, Gaillard ME, Castuma C, Rudi E, Lodeiro A, Hozbor DF. Pertussis Vaccine Candidate Based on Outer Membrane Vesicles Derived From Biofilm Culture. Front Immunol 2021; 12:730434. [PMID: 34603306 PMCID: PMC8479151 DOI: 10.3389/fimmu.2021.730434] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 08/27/2021] [Indexed: 01/02/2023] Open
Abstract
Outer membrane vesicles (OMV) derived from Bordetella pertussis-the etiologic agent of the resurgent disease called pertussis-are safe and effective in preventing bacterial colonization in the lungs of immunized mice. Vaccine formulations containing those OMV are capable of inducing a mixed Th1/Th2/Th17 profile, but even more interestingly, they may induce a tissue-resident memory immune response. This immune response is recommended for the new generation of pertussis-vaccines that must be developed to overcome the weaknesses of current commercial acellular vaccines (second-generation of pertussis vaccine). The third-generation of pertussis vaccine should also deal with infections caused by bacteria that currently circulate in the population and are phenotypically and genotypically different [in particular those deficient in the expression of pertactin antigen, PRN(-)] from those that circulated in the past. Here we evaluated the protective capacity of OMV derived from bacteria grown in biofilm, since it was observed that, by difference with older culture collection vaccine strains, circulating clinical B. pertussis isolates possess higher capacity for this lifestyle. Therefore, we performed studies with a clinical isolate with good biofilm-forming capacity. Biofilm lifestyle was confirmed by both scanning electron microscopy and proteomics. While scanning electron microscopy revealed typical biofilm structures in these cultures, BipA, fimbria, and other adhesins described as typical of the biofilm lifestyle were overexpressed in the biofilm culture in comparison with planktonic culture. OMV derived from biofilm (OMVbiof) or planktonic lifestyle (OMVplank) were used to formulate vaccines to compare their immunogenicity and protective capacities against infection with PRN(+) or PRN(-) B. pertussis clinical isolates. Using the mouse protection model, we detected that OMVbiof-vaccine was more immunogenic than OMVplank-vaccine in terms of both specific antibody titers and quality, since OMVbiof-vaccine induced antibodies with higher avidity. Moreover, when OMV were administered at suboptimal quantity for protection, OMVbiof-vaccine exhibited a significantly adequate and higher protective capacity against PRN(+) or PRN(-) than OMVplank-vaccine. Our findings indicate that the vaccine based on B. pertussis biofilm-derived OMV induces high protection also against pertactin-deficient strains, with a robust immune response.
Collapse
Affiliation(s)
- Francisco Carriquiriborde
- Laboratorio VacSal, Instituto de Biotecnología y Biología Molecular (IBBM), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CCT-CONICET La Plata, La Plata, Argentina
| | - Pablo Martin Aispuro
- Laboratorio VacSal, Instituto de Biotecnología y Biología Molecular (IBBM), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CCT-CONICET La Plata, La Plata, Argentina
| | - Nicolás Ambrosis
- Laboratorio VacSal, Instituto de Biotecnología y Biología Molecular (IBBM), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CCT-CONICET La Plata, La Plata, Argentina
| | - Eugenia Zurita
- Laboratorio VacSal, Instituto de Biotecnología y Biología Molecular (IBBM), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CCT-CONICET La Plata, La Plata, Argentina
| | - Daniela Bottero
- Laboratorio VacSal, Instituto de Biotecnología y Biología Molecular (IBBM), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CCT-CONICET La Plata, La Plata, Argentina
| | - María Emilia Gaillard
- Laboratorio VacSal, Instituto de Biotecnología y Biología Molecular (IBBM), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CCT-CONICET La Plata, La Plata, Argentina
| | - Celina Castuma
- Laboratorio VacSal, Instituto de Biotecnología y Biología Molecular (IBBM), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CCT-CONICET La Plata, La Plata, Argentina
| | - Erika Rudi
- Laboratorio VacSal, Instituto de Biotecnología y Biología Molecular (IBBM), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CCT-CONICET La Plata, La Plata, Argentina
| | - Aníbal Lodeiro
- Instituto de Biotecnología y Biología Molecular (IBBM), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CCT-CONICET La Plata, La Plata, Argentina
| | - Daniela F. Hozbor
- Laboratorio VacSal, Instituto de Biotecnología y Biología Molecular (IBBM), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CCT-CONICET La Plata, La Plata, Argentina
| |
Collapse
|
20
|
Ma L, Dewan KK, Taylor-Mulneix DL, Wagner SM, Linz B, Rivera I, Su Y, Caulfield AD, Blas-Machado U, Harvill ET. Pertactin contributes to shedding and transmission of Bordetella bronchiseptica. PLoS Pathog 2021; 17:e1009735. [PMID: 34347835 PMCID: PMC8336816 DOI: 10.1371/journal.ppat.1009735] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 06/21/2021] [Indexed: 11/25/2022] Open
Abstract
Whooping cough is resurging in the United States despite high vaccine coverage. The rapid rise of Bordetella pertussis isolates lacking pertactin (PRN), a key vaccine antigen, has led to concerns about vaccine-driven evolution. Previous studies showed that pertactin can mediate binding to mammalian cells in vitro and act as an immunomodulatory factor in resisting neutrophil-mediated clearance. To further investigate the role of PRN in vivo, we examined the functions of pertactin in the context of a more naturally low dose inoculation experimental system using C3H/HeJ mice that is more sensitive to effects on colonization, growth and spread within the respiratory tract, as well as an experimental approach to measure shedding and transmission between hosts. A B. bronchiseptica pertactin deletion mutant was found to behave similarly to its wild-type (WT) parental strain in colonization of the nasal cavity, trachea, and lungs of mice. However, the pertactin-deficient strain was shed from the nares of mice in much lower numbers, resulting in a significantly lower rate of transmission between hosts. Histological examination of respiratory epithelia revealed that pertactin-deficient bacteria induced substantially less inflammation and mucus accumulation than the WT strain and in vitro assays verified the effect of PRN on the induction of TNF-α by murine macrophages. Interestingly, only WT B. bronchiseptica could be recovered from the spleen of infected mice and were further observed to be intracellular among isolated splenocytes, indicating that pertactin contributes to systemic dissemination involving intracellular survival. These results suggest that pertactin can mediate interactions with immune cells and augments inflammation that contributes to bacterial shedding and transmission between hosts. Understanding the relative contributions of various factors to inflammation, mucus production, shedding and transmission will guide novel strategies to interfere with the reemergence of pertussis. B. pertussis strains lacking pertactin have been rising in prevalence especially in countries using acellular vaccines containing pertactin as a key, membrane-associated surface antigen. Previous in vivo studies revealed immunomodulatory properties of pertactin in conventional B. pertussis infection models in which roughly one million bacteria are delivered into lungs, leading to severe pneumonic disease and a strong immune response. However, natural infections begin in the nasopharyngeal region, progress slowly during a prolonged catarrhal stage, only later reaching the trachea and rarely involve the lungs. In this study, a more natural experimental system takes advantage of the ability of B. bronchiseptica, a closely related species, to naturally colonize mice with inocula as low as 5 colony forming units (CFU). In this system B. bronchiseptica can be observed to efficiently colonize, grow, spread within the respiratory tract, is shed from the nares, and transmits between hosts, allowing each of these steps to be measured and studied. Under these conditions, an isogenic pertactin deletion strain was indistinguishable from its parental strain in its abilities to colonize, grow in numbers and spread within the respiratory tract. However, the pertactin-deficient mutant was shed from these mice in lower numbers than wild type, and was defective in transmission between mice. These assays reveal novel roles of pertactin in the induction of inflammation, mucus production, shedding and transmission.
Collapse
Affiliation(s)
- Longhuan Ma
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
- * E-mail:
| | - Kalyan K. Dewan
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
| | - Dawn L. Taylor-Mulneix
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
| | - Shannon M. Wagner
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
| | - Bodo Linz
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
| | - Israel Rivera
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
| | - Yang Su
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
- Department of Biochemistry, University of Georgia, Athens, Georgia, United States of America
| | - Amanda D. Caulfield
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
| | - Uriel Blas-Machado
- Department of Pathology, Athens Veterinary Diagnostic Laboratory, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
| | - Eric T. Harvill
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
| |
Collapse
|
21
|
Ma L, Caulfield A, Dewan KK, Harvill ET. Pertactin-Deficient Bordetella pertussis, Vaccine-Driven Evolution, and Reemergence of Pertussis. Emerg Infect Dis 2021; 27:1561-1566. [PMID: 34014152 PMCID: PMC8153889 DOI: 10.3201/eid2706.203850] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Recent reemergence of pertussis (whooping cough) in highly vaccinated populations and rapid expansion of Bordetella pertussis strains lacking pertactin (PRN), a common acellular vaccine antigen, have raised the specter of vaccine-driven evolution and potential return of what was once the major killer of children. The discovery that most circulating B. pertussis strains in the United States have acquired new and independent disruptive mutations in PRN is compelling evidence of strong selective pressure. However, the other 4 antigens included in acellular vaccines do not appear to be selected against so rapidly. We consider 3 aspects of PRN that distinguish it from other vaccine antigens, which might, individually or collectively, explain why only this antigen is being precipitously eliminated. An understanding of the increase in PRN-deficient strains should provide useful information for the current search for new protective antigens and provide broader lessons for the design of improved subunit vaccines.
Collapse
|
22
|
Cabal A, Schmid D, Hell M, Chakeri A, Mustafa-Korninger E, Wojna A, Stöger A, Möst J, Leitner E, Hyden P, Rattei T, Habington A, Wiedermann U, Allerberger F, Ruppitsch W. Isolate-Based Surveillance of Bordetella pertussis, Austria, 2018-2020. Emerg Infect Dis 2021; 27:862-871. [PMID: 33622477 PMCID: PMC7920692 DOI: 10.3201/eid2703.202314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Pertussis is a vaccine-preventable disease, and its recent resurgence might be attributable to the emergence of strains that differ genetically from the vaccine strain. We describe a novel pertussis isolate-based surveillance system and a core genome multilocus sequence typing scheme to assess Bordetella pertussis genetic variability and investigate the increased incidence of pertussis in Austria. During 2018–2020, we obtained 123 B. pertussis isolates and typed them with the new scheme (2,983 targets and preliminary cluster threshold of <6 alleles). B. pertussis isolates in Austria differed genetically from the vaccine strain, both in their core genomes and in their vaccine antigen genes; 31.7% of the isolates were pertactin-deficient. We detected 8 clusters, 1 of them with pertactin-deficient isolates and possibly part of a local outbreak. National expansion of the isolate-based surveillance system is needed to implement pertussis-control strategies.
Collapse
|
23
|
Safarchi A, Saedi S, Octavia S, Sedaghatpour M, Bolourchi N, Tay CY, Lamichhane B, Shahcheraghi F, Lan R. Evolutionary genomics of recent clinical Bordetella pertussis isolates from Iran: wide circulation of multiple ptxP3 lineages and report of the first ptxP3 filamentous hemagglutinin-negative B. pertussis. INFECTION GENETICS AND EVOLUTION 2021; 93:104970. [PMID: 34171476 DOI: 10.1016/j.meegid.2021.104970] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 06/10/2021] [Accepted: 06/14/2021] [Indexed: 11/30/2022]
Abstract
Here we investigated nationwide clinical Bordetella pertussis isolated during 2005-2017 from different provinces of Iran, a country with more than 50 years whole cell vaccine immunisation history. Our results revealed the ongoing increase in the population of ptxP3/fim3-2 B. pertussis isolates in different provinces which were differentiated into nine clades. The largest clade (clade 8) which was previously found to be prevalent in Tehran was also prevalent across the country and clade 5 with ptxP3/prn9 genotype has also increased in frequency (14% of all ptxP3 isolates) in recent years. Furthermore, we detected the first ptxP3 B. pertussis isolates that does not express filamentous hemagglutinin (FhaB) as one of the major antigens of the pathogen and a key component of the acellular pertussis vaccine.
Collapse
Affiliation(s)
- Azadeh Safarchi
- Pertussis Reference Laboratory, Department of Bacteriology, Pasteur Institute of Iran, Tehran 1316943551, Islamic Republic of Iran; School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Samaneh Saedi
- Pertussis Reference Laboratory, Department of Bacteriology, Pasteur Institute of Iran, Tehran 1316943551, Islamic Republic of Iran
| | - Sophie Octavia
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia.
| | - Mehdi Sedaghatpour
- Pertussis Reference Laboratory, Department of Bacteriology, Pasteur Institute of Iran, Tehran 1316943551, Islamic Republic of Iran
| | - Negin Bolourchi
- Pertussis Reference Laboratory, Department of Bacteriology, Pasteur Institute of Iran, Tehran 1316943551, Islamic Republic of Iran
| | - Chin Yen Tay
- Pathology and Laboratory Medicine, University of Western Australia, Perth, Western Australia 6009, Australia.
| | - Binit Lamichhane
- Pathology and Laboratory Medicine, University of Western Australia, Perth, Western Australia 6009, Australia.
| | - Fereshteh Shahcheraghi
- Pertussis Reference Laboratory, Department of Bacteriology, Pasteur Institute of Iran, Tehran 1316943551, Islamic Republic of Iran.
| | - Ruiting Lan
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia.
| |
Collapse
|
24
|
Solans L, Debrie AS, Coutte L, Locht C. Construction and evaluation of a pertactin-deficient live attenuated pertussis vaccine candidate BPZE1 derivative. Vaccine 2021; 39:2843-2849. [PMID: 33896662 DOI: 10.1016/j.vaccine.2021.04.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 03/22/2021] [Accepted: 04/08/2021] [Indexed: 10/21/2022]
Abstract
Pertussis, mainly caused by Bordetella pertussis, is a severe respiratory disease that can be fatal, especially in young infants. Vaccines, massively implemented since the middle of the last century, have substantially reduced the pertussis incidence, but have not been able to fully control the disease. One of the shortcomings of current pertussis vaccines is their inability to prevent infection by and transmission of B. pertussis, in contrast to immunity following natural infection. We have developed the live attenuated nasal vaccine BPZE1 and have shown that it prevents both disease and B. pertussis infection in preclinical models. This vaccine is now in clinical development. However, the initial clinical studies have suggested that vaccine take is hampered by pre-existing antibodies to pertactin. Here, we have constructed a pertactin-deficient BPZE1 derivative called BPZE1P in order to overcome this limitation. BPZE1P colonized the murine respiratory tract as efficiently as BPZE1 and induced antibodies at levels similar to those elicited by BPZE1. In the presence of pre-existing antibodies induced by acellular pertussis vaccination, BPZE1P colonized the mouse respiratory tract more efficiently than BPZE1. Both vaccines protected equally well the murine lungs and noses from challenge with laboratory and clinical strains of B. pertussis, including pertactin-deficient strains, against which current acellular pertussis vaccines are less efficient. BPZE1P may thus be an interesting alternative to BPZE1 to overcome vaccine take limitations due to pre-existing antibodies to pertactin.
Collapse
Affiliation(s)
- Luis Solans
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - CIIL - Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Anne-Sophie Debrie
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - CIIL - Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Loïc Coutte
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - CIIL - Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Camille Locht
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - CIIL - Center for Infection and Immunity of Lille, F-59000 Lille, France.
| |
Collapse
|
25
|
Abstract
INTRODUCTION Pertussis, caused by Bordetella pertussis, remains a major public health problem, despite high vaccination coverage. Furthermore, the disease incidence has increased recently, especially in countries that have switched from whole-cell to acellular pertussis vaccines. AREAS COVERED Here, we provide a state-of-the art summary of the reasons for the pertussis resurgence and discuss potential solutions using current vaccines and challenges for the development of novel vaccines. PubMed was searched for publications with the terms pertussis and vaccines. Many new vaccine candidates are proposed but most have not reached clinical development. Most of them induce strong systemic immune responses and protection in mice. However, since B. pertussis is a mucosal pathogen, albeit with systemic effects, local immunity may be crucial to prevent B. pertussis infection and transmission. Recent efforts have focused on vaccine candidates able to induce immunity in the nasal cavity, and one of them is currently in clinical development. EXPERT COMMENTARY New pertussis vaccines are needed to durably control the disease and circulation of B. pertussis. A major challenge is to prove efficacy against disease in randomized controlled trials, while it is feasible to provide evidence for prevention of infection, since asymptomatic carriage of B. pertussis is wide spread.
Collapse
Affiliation(s)
- Camille Locht
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur De Lille, U1019 - UMR 8204 - CIIL - Center for Infection and Immunity of Lille, Lille, France
| |
Collapse
|
26
|
Chasaide CN, Mills KH. Next-Generation Pertussis Vaccines Based on the Induction of Protective T Cells in the Respiratory Tract. Vaccines (Basel) 2020; 8:E621. [PMID: 33096737 PMCID: PMC7711671 DOI: 10.3390/vaccines8040621] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/13/2020] [Accepted: 10/16/2020] [Indexed: 12/11/2022] Open
Abstract
Immunization with current acellular pertussis (aP) vaccines protects against severe pertussis, but immunity wanes rapidly after vaccination and these vaccines do not prevent nasal colonization with Bordetella pertussis. Studies in mouse and baboon models have demonstrated that Th1 and Th17 responses are integral to protective immunity induced by previous infection with B. pertussis and immunization with whole cell pertussis (wP) vaccines. Mucosal Th17 cells, IL-17 and secretory IgA (sIgA) are particularly important in generating sustained sterilizing immunity in the nasal cavity. Current aP vaccines induce potent IgG and Th2-skewed T cell responses but are less effective at generating Th1 and Th17 responses and fail to prime respiratory tissue-resident memory T (TRM) cells, that maintain long-term immunity at mucosal sites. In contrast, a live attenuated pertussis vaccine, pertussis outer membrane vesicle (OMV) vaccines or aP vaccines formulated with novel adjuvants do induce cellular immune responses in the respiratory tract, especially when delivered by the intranasal route. An increased understanding of the mechanisms of sustained protective immunity, especially the role of respiratory TRM cells, will facilitate the development of next generation pertussis vaccines that not only protect against pertussis disease, but prevent nasal colonization and transmission of B. pertussis.
Collapse
Affiliation(s)
| | - Kingston H.G. Mills
- School of Biochemistry and Immunology, Trinity College Dublin, 2, D02 PN40 Dublin, Ireland;
| |
Collapse
|
27
|
Lesne E, Cavell BE, Freire-Martin I, Persaud R, Alexander F, Taylor S, Matheson M, van Els CACM, Gorringe A. Acellular Pertussis Vaccines Induce Anti-pertactin Bactericidal Antibodies Which Drives the Emergence of Pertactin-Negative Strains. Front Microbiol 2020; 11:2108. [PMID: 32983069 PMCID: PMC7481377 DOI: 10.3389/fmicb.2020.02108] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 08/11/2020] [Indexed: 12/14/2022] Open
Abstract
Despite high vaccination coverage, Bordetella pertussis the causative agent of whooping cough is still a health concern worldwide. A resurgence of pertussis cases has been reported, particularly in countries using acellular vaccines with waning immunity and pathogen adaptation thought to be responsible. A better understanding of protective immune responses is needed for the development of improved vaccines. In our study, B. pertussis strain B1917 variants presenting a single gene deletion were generated to analyze the role of vaccine components or candidate vaccine antigens as targets for bactericidal antibodies generated after acellular vaccination or natural infection. Our results show that acellular vaccination generates bactericidal antibodies that are only directed against pertactin. Serum bactericidal assay performed with convalescent samples show that disease induces bactericidal antibodies against Prn but against other antigen(s) as well. Four candidate vaccine antigens (CyaA, Vag8, BrkA, and TcfA) have been studied but were not targets for complement-mediated bactericidal antibodies after natural infection. We confirm that Vag8 and BrkA are involved in complement resistance and would be targeted by blocking antibodies. Our study suggests that the emergence and the widespread circulation of Prn-deficient strains is driven by acellular vaccination and the generation of bactericidal antibodies targeting Prn.
Collapse
Affiliation(s)
- Elodie Lesne
- Public Health England, Porton Down, United Kingdom
| | | | | | - Ruby Persaud
- Public Health England, Porton Down, United Kingdom
| | | | | | | | - Cécile A. C. M. van Els
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, Netherlands
| | | |
Collapse
|
28
|
Zeddeman A, van Schuppen E, Kok KE, van Gent M, Heuvelman KJ, Bart MJ, van der Heide HGJ, Gillard J, Simonetti E, Eleveld MJ, van Opzeeland FJH, van Selm S, de Groot R, de Jonge MI, Mooi FR, Diavatopoulos DA. Effect of FHA and Prn on Bordetella pertussis colonization of mice is dependent on vaccine type and anatomical site. PLoS One 2020; 15:e0237394. [PMID: 32822419 PMCID: PMC7446907 DOI: 10.1371/journal.pone.0237394] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 07/25/2020] [Indexed: 01/05/2023] Open
Abstract
Bordetella pertussis vaccine escape mutants that lack expression of the pertussis antigen pertactin (Prn) have emerged in vaccinated populations in the last 10–20 years. Additionally, clinical isolates lacking another acellular pertussis (aP) vaccine component, filamentous hemagglutinin (FHA), have been found sporadically. Here, we show that both whole-cell pertussis (wP) and aP vaccines induced protection in the lungs of mice, but that the wP vaccine was more effective in nasal clearance. Importantly, bacterial populations isolated from the lungs shifted to an FHA-negative phenotype due to frameshift mutations in the fhaB gene. Loss of FHA expression was strongly selected for in Prn-deficient strains in the lungs following aP but not wP vaccination. The combined loss of Prn and FHA led to complete abrogation of bacterial surface binding by aP-induced serum antibodies. This study demonstrates vaccine- and anatomical site-dependent adaptation of B. pertussis and has major implications for the design of improved pertussis vaccines.
Collapse
Affiliation(s)
- Anne Zeddeman
- Section Pediatric Infectious Diseases, Laboratory of Medical Immunology, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen, The Netherlands
- Radboud Center for Infectious Diseases, Radboudumc, Nijmegen, The Netherlands
- Centre for Infectious Diseases Research, Diagnostics and Screening (IDS), National Institute of Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Evi van Schuppen
- Section Pediatric Infectious Diseases, Laboratory of Medical Immunology, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen, The Netherlands
- Radboud Center for Infectious Diseases, Radboudumc, Nijmegen, The Netherlands
| | - Kristianne E. Kok
- Centre for Infectious Diseases Research, Diagnostics and Screening (IDS), National Institute of Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Marjolein van Gent
- Centre for Infectious Diseases Research, Diagnostics and Screening (IDS), National Institute of Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Kees J. Heuvelman
- Centre for Infectious Diseases Research, Diagnostics and Screening (IDS), National Institute of Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Marieke J. Bart
- Centre for Infectious Diseases Research, Diagnostics and Screening (IDS), National Institute of Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Han G. J. van der Heide
- Centre for Infectious Diseases Research, Diagnostics and Screening (IDS), National Institute of Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Joshua Gillard
- Section Pediatric Infectious Diseases, Laboratory of Medical Immunology, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen, The Netherlands
- Radboud Center for Infectious Diseases, Radboudumc, Nijmegen, The Netherlands
| | - Elles Simonetti
- Section Pediatric Infectious Diseases, Laboratory of Medical Immunology, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen, The Netherlands
- Radboud Center for Infectious Diseases, Radboudumc, Nijmegen, The Netherlands
| | - Marc J. Eleveld
- Section Pediatric Infectious Diseases, Laboratory of Medical Immunology, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen, The Netherlands
- Radboud Center for Infectious Diseases, Radboudumc, Nijmegen, The Netherlands
| | - Fred J. H. van Opzeeland
- Section Pediatric Infectious Diseases, Laboratory of Medical Immunology, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen, The Netherlands
- Radboud Center for Infectious Diseases, Radboudumc, Nijmegen, The Netherlands
| | - Saskia van Selm
- Section Pediatric Infectious Diseases, Laboratory of Medical Immunology, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen, The Netherlands
- Radboud Center for Infectious Diseases, Radboudumc, Nijmegen, The Netherlands
| | - Ronald de Groot
- Section Pediatric Infectious Diseases, Laboratory of Medical Immunology, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen, The Netherlands
- Radboud Center for Infectious Diseases, Radboudumc, Nijmegen, The Netherlands
| | - Marien I. de Jonge
- Section Pediatric Infectious Diseases, Laboratory of Medical Immunology, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen, The Netherlands
- Radboud Center for Infectious Diseases, Radboudumc, Nijmegen, The Netherlands
| | - Frits R. Mooi
- Section Pediatric Infectious Diseases, Laboratory of Medical Immunology, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen, The Netherlands
- Radboud Center for Infectious Diseases, Radboudumc, Nijmegen, The Netherlands
- Centre for Infectious Diseases Research, Diagnostics and Screening (IDS), National Institute of Public Health and the Environment (RIVM), Bilthoven, The Netherlands
- School of Biotechnology and Biomolecular Sciences, University of New South Wales Sydney, Sydney, Australia
| | - Dimitri A. Diavatopoulos
- Section Pediatric Infectious Diseases, Laboratory of Medical Immunology, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen, The Netherlands
- Radboud Center for Infectious Diseases, Radboudumc, Nijmegen, The Netherlands
- * E-mail:
| |
Collapse
|
29
|
Barkoff AM, Mertsola J, Pierard D, Dalby T, Hoegh SV, Guillot S, Stefanelli P, van Gent M, Berbers G, Vestrheim D, Greve-Isdahl M, Wehlin L, Ljungman M, Fry NK, Markey K, He Q. Pertactin-deficient Bordetella pertussis isolates: evidence of increased circulation in Europe, 1998 to 2015. ACTA ACUST UNITED AC 2020; 24. [PMID: 30782265 PMCID: PMC6381657 DOI: 10.2807/1560-7917.es.2019.24.7.1700832] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Introduction Pertussis outbreaks have occurred in several industrialised countries using acellular pertussis vaccines (ACVs) since the 1990s. High prevalence of pertactin (PRN)-deficient Bordetella pertussis isolates has been found in these countries. Aims To evaluate in Europe: (i) whether proportions of PRN-deficient strains increased in consecutive collections of B. pertussis clinical isolates; (ii) if the frequency of PRN-deficient strains in countries correlated with the time since ACV introduction; (iii) the presence of pertussis toxin (PT)-, filamentous haemagglutinin (FHA)- or fimbriae (Fim)-deficient isolates. Methods B. pertussis clinical isolates were obtained from different European countries during four periods (EUpert I–IV studies): 1998 to 2001 (n = 102), 2004 to 2005 (n = 154), 2007 to 2009 (n = 140) and 2012 to 2015 (n = 265). The isolates’ selection criteria remained unchanged in all periods. PRN, PT, FHA and Fim2 and Fim3 expression were assessed by ELISA. Results In each period 1.0% (1/102), 1.9% (3/154), 6.4% (9/140) and 24.9% (66/265) of isolates were PRN-deficient. In EUpert IV, PRN-deficient isolates occurred in all countries sampled and in six countries their frequency was higher than in EUpert III (for Sweden and the United Kingdom, p < 0.0001 and p = 0.0155, respectively). Sweden and Italy which used ACVs since the mid 1990s had the highest frequencies (69%; 20/29 and 55%; 11/20, respectively) while Finland, where primary immunisations with ACV containing PRN dated from 2009 had the lowest (3.6%). Throughout the study, no PT- or FHA-deficient isolate and one Fim2/3-deficient was detected. Conclusion Results suggest that the longer the period since the introduction of ACVs containing PRN, the higher the frequency of circulating PRN-deficient isolates.
Collapse
Affiliation(s)
- Alex-Mikael Barkoff
- Institute of Biomedicine, Department of Microbiology, Virology and Immunology, University of Turku, Turku, Finland
| | - Jussi Mertsola
- Department of Pediatrics and Adolescent Medicine, Turku University Hospital, Turku, Finland
| | - Denis Pierard
- Department of Microbiology, Universitair Ziekenhuis Brussel (UZ Brussel), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Tine Dalby
- Statens Serum Institut, Infectious Disease Preparedness - Bacteria, Parasites and Fungi, Copenhagen, Denmark
| | - Silje Vermedal Hoegh
- Department of Clinical Microbiology, Odense, University Hospital, Odense, Denmark
| | - Sophie Guillot
- Institut Pasteur, Centre National de Référence de la Coqueluche et autres Bordetelloses, Paris, France
| | - Paola Stefanelli
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Marjolein van Gent
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Guy Berbers
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Didrik Vestrheim
- Department of Vaccine Preventable Diseases, Norwegian Institute of Public Health, Oslo, Norway
| | - Margrethe Greve-Isdahl
- Department of Vaccine Preventable Diseases, Norwegian Institute of Public Health, Oslo, Norway
| | - Lena Wehlin
- Department of Microbiology, Public Health Agency of Sweden, Solna, Sweden
| | | | - Norman K Fry
- Respiratory and Vaccine Preventable Bacteria Reference Unit, Public Health England - National Infection Service, London, United Kingdom
| | - Kevin Markey
- National Institute for Biological Standards and Control, Potters Bar, United Kingdom
| | - Qiushui He
- Department of Medical Microbiology, Capital Medical University, Beijing, China.,Institute of Biomedicine, Department of Microbiology, Virology and Immunology, University of Turku, Turku, Finland
| |
Collapse
|
30
|
Emergence of pertactin-deficient pertussis strains in Australia can be explained by models of vaccine escape. Epidemics 2020; 31:100388. [DOI: 10.1016/j.epidem.2020.100388] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 01/22/2020] [Accepted: 02/06/2020] [Indexed: 12/27/2022] Open
|
31
|
Ramkissoon S, MacArthur I, Ibrahim M, de Graaf H, Read RC, Preston A. A qPCR assay for Bordetella pertussis cells that enumerates both live and dead bacteria. PLoS One 2020; 15:e0232334. [PMID: 32353041 PMCID: PMC7192480 DOI: 10.1371/journal.pone.0232334] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 04/13/2020] [Indexed: 02/03/2023] Open
Abstract
Bordetella pertussis is the causative agent of whooping cough, commonly referred to as pertussis. Although the incidence of pertussis was reduced through vaccination, during the last thirty years it has returned to high levels in a number of countries. This resurgence has been linked to the switch from the use of whole-cell to acellular vaccines. Protection afforded by acellular vaccines appears to be short-lived compared to that afforded by whole cell vaccines. In order to inform future vaccine improvement by identifying immune correlates of protection, a human challenge model of B. pertussis colonisation has been developed. Accurate measurement of colonisation status in this model has required development of a qPCR-based assay to enumerate B. pertussis in samples that distinguishes between viable and dead bacteria. Here we report the development of this assay and its performance in the quantification of B. pertussis from human challenge model samples. This assay has future utility in diagnostic labs and in research where a quantitative measure of both B. pertussis number and viability is required.
Collapse
Affiliation(s)
- Stacy Ramkissoon
- Milner Centre for Evolution, University of Bath, Bath, United Kingdom
- Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| | - Iain MacArthur
- Milner Centre for Evolution, University of Bath, Bath, United Kingdom
- Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| | - Muktar Ibrahim
- Faculty of Medicine and Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
- School of Clinical Experimental Sciences, University Hospital Southampton NHS Foundation Trust, Southampton General Hospital, University of Southampton, Southampton, United Kingdom
- NIHR Clinical Research Facility, University Hospital Southampton NHS Foundation Trust, Southampton General Hospital, University of Southampton, Southampton, United Kingdom
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton General Hospital, University of Southampton, Southampton, United Kingdom
| | - Hans de Graaf
- Faculty of Medicine and Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
- School of Clinical Experimental Sciences, University Hospital Southampton NHS Foundation Trust, Southampton General Hospital, University of Southampton, Southampton, United Kingdom
- NIHR Clinical Research Facility, University Hospital Southampton NHS Foundation Trust, Southampton General Hospital, University of Southampton, Southampton, United Kingdom
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton General Hospital, University of Southampton, Southampton, United Kingdom
| | - Robert C. Read
- Faculty of Medicine and Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
- School of Clinical Experimental Sciences, University Hospital Southampton NHS Foundation Trust, Southampton General Hospital, University of Southampton, Southampton, United Kingdom
- NIHR Clinical Research Facility, University Hospital Southampton NHS Foundation Trust, Southampton General Hospital, University of Southampton, Southampton, United Kingdom
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton General Hospital, University of Southampton, Southampton, United Kingdom
| | - Andrew Preston
- Milner Centre for Evolution, University of Bath, Bath, United Kingdom
- Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
- * E-mail:
| |
Collapse
|
32
|
Carriquiriborde F, Regidor V, Aispuro PM, Magali G, Bartel E, Bottero D, Hozbor D. Rare Detection of Bordetella pertussis Pertactin-Deficient Strains in Argentina. Emerg Infect Dis 2020; 25:2048-2054. [PMID: 31625838 PMCID: PMC6810201 DOI: 10.3201/eid2511.190329] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Pertussis resurgence had been attributed to waning vaccine immunity and Bordetella pertussis adaptation to escape vaccine-induced immunity. Circulating bacteria differ genotypically from strains used in production of pertussis vaccine. Pertactin-deficient strains are highly prevalent in countries that use acellular vaccine (aP), suggesting strong aP-imposed selection of circulating bacteria. To corroborate this hypothesis, systematic studies on pertactin prevalence of infection in countries using whole-cell vaccine are needed. We provide pertussis epidemiologic data and molecular characterization of B. pertussis isolates from Buenos Aires, Argentina, during 2000–2017. This area used primary vaccination with whole-cell vaccine. Since 2002, pertussis case incidences increased at regular 4-year outbreaks; most cases were in infants <1 year of age. Of the B. pertussis isolates analyzed, 90.6% (317/350) contained the ptxP3-ptxA1-prn2-fim3-2 allelic profile. Immunoblotting and sequencing techniques detected only the 2 pertactin-deficient isolates. The low prevalence of pertactin-deficient strains in Argentina suggests that loss of pertactin gene expression might be driven by aP vaccine.
Collapse
|
33
|
Fong W, Rockett R, Timms V, Sintchenko V. Optimization of sample preparation for culture-independent sequencing of Bordetella pertussis. Microb Genom 2020; 6:e000332. [PMID: 32108565 PMCID: PMC7200065 DOI: 10.1099/mgen.0.000332] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 01/09/2020] [Indexed: 12/14/2022] Open
Abstract
Bordetella pertussis, the aetiological agent of whooping cough, is re-emerging globally despite widespread vaccination. B. pertussis is highly infectious and, prior to vaccination programmes, was the leading cause of infant mortality. The WHO estimated that over 600 000 deaths are prevented annually by pertussis vaccination, but B. pertussis infection was still responsible for over 63 000 deaths globally in 2013. The re-emergence of B. pertussis has been linked to strains with inactive or absent major virulence factors included in vaccines such as pertactin, pertussis toxin and filamentous haemagglutinin. Thus, the molecular surveillance of currently circulating strains is critical in understanding and controlling B. pertussis. Such information provides data on strains to inform control measures and the identification of future vaccine antigens. Current surveillance and typing methods for B. pertussis rely on the availability of clinical isolates. However, since the 1990s, the majority of pertussis cases have been diagnosed by PCR, where an isolate is not needed. The rapid decline in the availability of B. pertussis isolates impacts our ability to monitor this infection. The growing uptake of next-generation sequencing (NGS) has offered the opportunity for culture-independent genome sequencing and typing of this fastidious pathogen. Therefore, the objective of the study was to optimize respiratory sample preparation, independent of culture, in order to type B. pertussis using NGS. The study compared commercial depletion kits and specimen-processing methods using selective lysis detergents. The goal was to deplete human DNA, the major obstacle for sequencing a pathogen directly from a clinical sample. Samples spiked with a clinically relevant amount of B. pertussis were used to provide comparison between the different methods. Commercial depletion kits including the MolYsis, Qiagen Microbiome and NEBNext Kits were tested. Previously published methods, for Saponin and TritonX-100, were also trialled as a depletion. The ratio of B. pertussis to human DNA was determined by real-time PCR for ERV3 and IS481 (as markers of human and B. pertussis DNA, respectively), then samples were sequenced using the Illumina NextSeq 500 platform. The number of human and B. pertussis sequenced reads were then compared between treatments. The results showed that commercial kits reduced the human DNA present, but also reduced the concentration of target B. pertussis. However, selective lysis with Saponin treatment resulted in almost undetectable levels of human DNA, with minimal loss of target B. pertussis DNA. Sequencing read depth improved five-fold in reads to B. pertussis. Our investigation delivered a potential protocol that will enable the public health laboratory surveillance of B. pertussis in the era of culture-independent testing.
Collapse
Affiliation(s)
- Winkie Fong
- Centre for Infectious Diseases and Microbiology – Public Health, Westmead Hospital, Westmead, NSW, Australia
- Westmead Clinical School, The University of Sydney, Westmead, NSW, Australia
- Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Camperdown, NSW, Australia
| | - Rebecca Rockett
- Centre for Infectious Diseases and Microbiology – Public Health, Westmead Hospital, Westmead, NSW, Australia
- Westmead Clinical School, The University of Sydney, Westmead, NSW, Australia
| | - Verlaine Timms
- Centre for Infectious Diseases and Microbiology – Public Health, Westmead Hospital, Westmead, NSW, Australia
- Westmead Clinical School, The University of Sydney, Westmead, NSW, Australia
| | - Vitali Sintchenko
- Centre for Infectious Diseases and Microbiology – Public Health, Westmead Hospital, Westmead, NSW, Australia
- Westmead Clinical School, The University of Sydney, Westmead, NSW, Australia
- Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Camperdown, NSW, Australia
| |
Collapse
|
34
|
Xu Z, Wang Z, Luan Y, Li Y, Liu X, Peng X, Octavia S, Payne M, Lan R. Genomic epidemiology of erythromycin-resistant Bordetella pertussis in China. Emerg Microbes Infect 2019; 8:461-470. [PMID: 30898080 PMCID: PMC6455148 DOI: 10.1080/22221751.2019.1587315] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Macrolides such as erythromycin are the empirical treatment of Bordetella pertussis infections. China has experienced an increase in erythromycin-resistant B. pertussis isolates since they were first reported in 2013. Here, we undertook a genomic study on Chinese B. pertussis isolates from 2012 to 2015 to elucidate the origins and phylogenetic relationships of erythromycin-resistant B. pertussis isolates in China. A total of 167 Chinese B. pertussis isolates were used for antibiotic sensitivity testing and multiple locus variable-number tandem repeat (VNTR) analysis (MLVA). All except four isolates were erythromycin-resistant and of the four erythromycin-sensitive isolates, three were non-ptxP1. MLVA types (MT), MT55, MT104 and MT195 were the predominant types. Fifty of those isolates were used for whole genome sequencing and phylogenetic analysis. Genome sequencing and phylogenetic analysis revealed three independent erythromycin-resistant lineages and all resistant isolates carried a mutation in the 23S rRNA gene. A novel fhaB3 allele was found uniquely in Chinese ptxP1 isolates and these Chinese ptxP1-ptxA1-fhaB3 had a 5-fold higher mutation rate than the global ptxP1-ptxA1 B. pertussis population. Our results suggest that the evolution of Chinese B. pertussis is likely to be driven by selection pressure from both vaccination and antibiotics. The emergence of the new non-vaccine fhaB3 allele in Chinese B. pertussis population may be a result of selection from vaccination, whereas the expansion of ptxP1-fhaB3 lineages was most likely to be the result of selection pressure from antibiotics. Further monitoring of B. pertussis in China is required to better understand the evolution of the pathogen.
Collapse
Affiliation(s)
- Zheng Xu
- a School of Biotechnology and Biomolecular Sciences , University of New South Wales , Sydney , Australia
| | - Zengguo Wang
- b Xi'an Center for Disease Prevention and Control , Xi'an , People's Republic of China.,c Department of Infectious Diseases , Xi'an Children's Hospital , Xi'an , People's Republic of China
| | - Yang Luan
- b Xi'an Center for Disease Prevention and Control , Xi'an , People's Republic of China
| | - Yarong Li
- c Department of Infectious Diseases , Xi'an Children's Hospital , Xi'an , People's Republic of China
| | - Xiaoguai Liu
- c Department of Infectious Diseases , Xi'an Children's Hospital , Xi'an , People's Republic of China
| | - Xiaokang Peng
- c Department of Infectious Diseases , Xi'an Children's Hospital , Xi'an , People's Republic of China
| | - Sophie Octavia
- a School of Biotechnology and Biomolecular Sciences , University of New South Wales , Sydney , Australia
| | - Michael Payne
- a School of Biotechnology and Biomolecular Sciences , University of New South Wales , Sydney , Australia
| | - Ruiting Lan
- a School of Biotechnology and Biomolecular Sciences , University of New South Wales , Sydney , Australia
| |
Collapse
|
35
|
Tsang RSW, Shuel M, Cronin K, Deng S, Whyte K, Marchand-Austin A, Ma J, Bolotin S, Crowcroft N, Schwartz K, Van Domselaar G, Graham M, Jamieson FB. The evolving nature of Bordetella pertussis in Ontario, Canada, 2009-2017: strains with shifting genotypes and pertactin deficiency. Can J Microbiol 2019; 65:823-830. [PMID: 31295416 DOI: 10.1139/cjm-2019-0128] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study examined the evolving nature of Bordetella pertussis in Ontario, Canada, by characterizing isolates for their genotypes and expression of pertactin (PRN). From 2009 to 2017, 413 B. pertussis were cultured from pertussis cases at the Public Health Ontario Laboratory. Their genotypes were determined by partial gene sequence analysis of their virulence and (or) vaccine antigens: filamentous haemagglutinin, PRN, fimbriae 3, and pertussis toxin, including the promoter region. Expression of PRN was measured by Western immunoblot. Two predominant genotypes, ST-1 and ST-2, were found throughout the study and were responsible for 47.5% and 46.3% of all case isolates, respectively. The prevalence of ST-1 appeared to fluctuate from 80.3% in 2009 to 20.0% in 2014 and 58.5% in 2017, while the prevalence of ST-2 changed from 18.4% in 2009 to 80.0% in 2014 and 26.2% in 2017. A PRN-deficient strain was first noted in 2011 (16.7%), and its prevalence increased to 70.8% in 2016 but decreased to 46.2% in 2017. More ST-2 (46.6%) than ST-1 (16.8%) strains were associated with PRN deficiency. Newer ST-21 and ST-22 found in 2015-2017 were uniformly PRN deficient. The impact of the evolving nature of B. pertussis on disease epidemiology requires further longitudinal studies.
Collapse
Affiliation(s)
- Raymond S W Tsang
- Public Health Agency of Canada, National Microbiology Laboratory, Winnipeg, Manitoba, Canada
| | - Michelle Shuel
- Public Health Agency of Canada, National Microbiology Laboratory, Winnipeg, Manitoba, Canada
| | - Kirby Cronin
- Public Health Agency of Canada, National Microbiology Laboratory, Winnipeg, Manitoba, Canada.,Public Health Ontario Laboratory, Public Health Ontario, Toronto, Ontario, Canada
| | - Saul Deng
- Public Health Agency of Canada, National Microbiology Laboratory, Winnipeg, Manitoba, Canada
| | - Kathleen Whyte
- Public Health Agency of Canada, National Microbiology Laboratory, Winnipeg, Manitoba, Canada
| | - Alex Marchand-Austin
- Public Health Ontario Laboratory, Public Health Ontario, Toronto, Ontario, Canada
| | - Jennifer Ma
- Public Health Ontario Laboratory, Public Health Ontario, Toronto, Ontario, Canada
| | - Shelly Bolotin
- Public Health Ontario Laboratory, Public Health Ontario, Toronto, Ontario, Canada.,University of Toronto, Toronto, Ontario, Canada
| | - Natasha Crowcroft
- Public Health Ontario Laboratory, Public Health Ontario, Toronto, Ontario, Canada.,University of Toronto, Toronto, Ontario, Canada
| | - Kevin Schwartz
- Public Health Ontario Laboratory, Public Health Ontario, Toronto, Ontario, Canada
| | - Gary Van Domselaar
- Public Health Agency of Canada, National Microbiology Laboratory, Winnipeg, Manitoba, Canada
| | - Morag Graham
- Public Health Agency of Canada, National Microbiology Laboratory, Winnipeg, Manitoba, Canada
| | - Frances B Jamieson
- Public Health Ontario Laboratory, Public Health Ontario, Toronto, Ontario, Canada.,University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
36
|
Esposito S, Stefanelli P, Fry NK, Fedele G, He Q, Paterson P, Tan T, Knuf M, Rodrigo C, Weil Olivier C, Flanagan KL, Hung I, Lutsar I, Edwards K, O'Ryan M, Principi N. Pertussis Prevention: Reasons for Resurgence, and Differences in the Current Acellular Pertussis Vaccines. Front Immunol 2019; 10:1344. [PMID: 31333640 PMCID: PMC6616129 DOI: 10.3389/fimmu.2019.01344] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Accepted: 05/28/2019] [Indexed: 12/21/2022] Open
Abstract
Pertussis is an acute respiratory disease caused by Bordetella pertussis. Due to its frequency and severity, prevention of pertussis has been considered an important public health issue for many years. The development of the whole-cell pertussis vaccine (wPV) and its introduction into the pediatric immunization schedule was associated with a marked reduction in pertussis cases in the vaccinated cohort. However, due to the frequency of local and systemic adverse events after immunization with wPV, work on a less reactive vaccine was undertaken based on isolated B. pertussis components that induced protective immune responses with fewer local and systemic reactions. These component vaccines were termed acellular vaccines and contained one or more pertussis antigens, including pertussis toxin (PT), filamentous haemagglutinin (FHA), pertactin (PRN), and fimbrial proteins 2 (FIM2) and 3 (FIM3). Preparations containing up to five components were developed, and several efficacy trials clearly demonstrated that the aPVs were able to confer comparable short-term protection than the most effective wPVs with fewer local and systemic reactions. There has been a resurgence of pertussis observed in recent years. This paper reports the results of a Consensus Conference organized by the World Association for Infectious Disease and Immunological Disorders (WAidid) on June 22, 2018, in Perugia, Italy, with the goal of evaluating the most important reasons for the pertussis resurgence and the role of different aPVs in this resurgence.
Collapse
Affiliation(s)
- Susanna Esposito
- Department of Surgical and Biomedical Sciences, Paediatric Clinic, Università degli Studi di Perugia, Perugia, Italy
| | - Paola Stefanelli
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Norman K. Fry
- Immunisation and Countermeasures Division, Public Health England–National Infection Service, London, United Kingdom
| | - Giorgio Fedele
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Qiushui He
- Institute of Biomedicine, University of Turku, Turku, Finland
- Department of Medical Microbiology, Capital Medical University, Beijing, China
| | - Pauline Paterson
- Department of Infectious Disease Epidemiology, The Vaccine Confidence Project TM, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Tina Tan
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Northwestern University Feinberg School of Medicine, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, United States
| | - Markus Knuf
- Children's Hospital, Helios HSk, Wiesbaden, Germany
- Department of Pediatrics, University Medicine, Mainz, Germany
| | - Carlos Rodrigo
- Department of Pediatrics, Vall d'Hebron University Hospital, Barcelona, Spain
- School of Medicine-Germans Trias i Pujol University Hospita, Universidad Autónoma de Barcelona, Barcelona, Spain
| | | | - Katie L. Flanagan
- School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, TAS, Australia
- School of Health and Biomedical Science, RMIT University, Melbourne, VIC, Australia
- Department of Immunology and Pathology, Monash University, Melbourne, VIC, Australia
| | - Ivan Hung
- Department of Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Iria Lutsar
- Department of Microbiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Kathryn Edwards
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Miguel O'Ryan
- Microbiology and Mycology Program, Faculty of Medicine, Institute of Immunology and Immunotherapy, University of Chile, Santiago, Chile
| | | | | |
Collapse
|
37
|
Wilk MM, Borkner L, Misiak A, Curham L, Allen AC, Mills KHG. Immunization with whole cell but not acellular pertussis vaccines primes CD4 T RM cells that sustain protective immunity against nasal colonization with Bordetella pertussis. Emerg Microbes Infect 2019; 8:169-185. [PMID: 30866771 PMCID: PMC6455184 DOI: 10.1080/22221751.2018.1564630] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Protective immunity wanes rapidly after immunization of children with acellular pertussis (aP) vaccines and these vaccines do not prevent nasal colonization or transmission of Bordetella pertussis in baboons. In this study, we examined the role of tissue-resident memory T (TRM) cells in persistent protective immunity induced by infection or immunization with aP and whole-cell pertussis (wP) vaccines in mice. Immunization of mice with a wP vaccine protected against lung and nasal colonization, whereas an aP vaccine failed to protect in the nose. IL-17 and IFN-γ-secreting CD69+CD4+ TRM cells were expanded in the lung and nasal tissue after B. pertussis challenge of mice immunized with wP, but not aP vaccines. However, previous infection induced the most persistent protection against nasal colonization and this correlated with potent induction of nasal tissue TRM cells, especially IL-17-secreting TRM cells. Blocking T cell migration to respiratory tissue during immunization with a wP vaccine impaired bacterial clearance, whereas transfer of TRM cells from convalescent or wP-immunized mice conferred protection to naïve mice. Our findings reveal that previous infection or wP vaccination are significantly more effective than aP vaccination in conferring persistent protective immunity against B. pertussis and that this is mediated by respiratory TRM cells.
Collapse
Affiliation(s)
- Mieszko M Wilk
- a Immune Regulation Research Group, School of Biochemistry and Immunology , Trinity Biomedical Sciences Institute, Trinity College Dublin , Dublin , Ireland
| | - Lisa Borkner
- a Immune Regulation Research Group, School of Biochemistry and Immunology , Trinity Biomedical Sciences Institute, Trinity College Dublin , Dublin , Ireland
| | - Alicja Misiak
- a Immune Regulation Research Group, School of Biochemistry and Immunology , Trinity Biomedical Sciences Institute, Trinity College Dublin , Dublin , Ireland
| | - Lucy Curham
- a Immune Regulation Research Group, School of Biochemistry and Immunology , Trinity Biomedical Sciences Institute, Trinity College Dublin , Dublin , Ireland
| | - Aideen C Allen
- a Immune Regulation Research Group, School of Biochemistry and Immunology , Trinity Biomedical Sciences Institute, Trinity College Dublin , Dublin , Ireland
| | - Kingston H G Mills
- a Immune Regulation Research Group, School of Biochemistry and Immunology , Trinity Biomedical Sciences Institute, Trinity College Dublin , Dublin , Ireland
| |
Collapse
|
38
|
Zurita ME, Wilk MM, Carriquiriborde F, Bartel E, Moreno G, Misiak A, Mills KHG, Hozbor D. A Pertussis Outer Membrane Vesicle-Based Vaccine Induces Lung-Resident Memory CD4 T Cells and Protection Against Bordetella pertussis, Including Pertactin Deficient Strains. Front Cell Infect Microbiol 2019; 9:125. [PMID: 31106160 PMCID: PMC6498398 DOI: 10.3389/fcimb.2019.00125] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Accepted: 04/09/2019] [Indexed: 12/22/2022] Open
Abstract
Pertussis is a respiratory infectious disease that has been resurged during the last decades. The change from the traditional multi-antigen whole-cell pertussis (wP) vaccines to acellular pertussis (aP) vaccines that consist of a few antigens formulated with alum, appears to be a key factor in the resurgence of pertussis in many countries. Though current aP vaccines have helped to reduce the morbidity and mortality associated with pertussis, they do not provide durable immunity or adequate protection against the disease caused by the current circulating strains of Bordetella pertussis, which have evolved in the face of the selection pressure induced by the vaccines. Based on the hypothesis that a new vaccine containing multiple antigens could overcome deficiencies in the current aP vaccines, we have designed and characterized a vaccine candidate based on outer membrane vesicle (OMVs). Here we show that the OMVs vaccine, but not an aP vaccine, protected mice against lung infection with a circulating pertactin (PRN)-deficient isolate. Using isogenic bacteria that in principle only differ in PRN expression, we found that deficiency in PRN appears to be largely responsible for the failure of the aP vaccine to protect against this circulating clinical isolates. Regarding the durability of induced immunity, we have already reported that the OMV vaccine is able to induce long-lasting immune responses that effectively prevent infection with B. pertussis. Consistent with this, here we found that CD4 T cells with a tissue-resident memory (TRM) cell phenotype (CD44+CD62LlowCD69+ and/or CD103+) accumulated in the lungs of mice 14 days after immunization with 2 doses of the OMVs vaccine. CD4 TRM cells, which have previously been shown to play a critical role sustained protective immunity against B. pertussis, were also detected in mice immunized with wP vaccine, but not in the animals immunized with a commercial aP vaccine. The CD4 TRM cells secreted IFN-γ and IL-17 and were significantly expanded through local proliferation following respiratory challenge of mice with B. pertussis. Our findings that the OMVs vaccine induce respiratory CD4 TRM cells may explain the ability of this vaccine to induce long-term protection and is therefore an ideal candidate for a third generation vaccine against B. pertussis.
Collapse
Affiliation(s)
- María Eugenia Zurita
- Laboratorio VacSal, Facultad de Ciencias Exactas, Instituto de Biotecnología y Biología Molecular (IBBM), CCT-CONICET La Plata, Universidad Nacional de La Plata, La Plata, Argentina
| | - Mieszko M Wilk
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Francisco Carriquiriborde
- Laboratorio VacSal, Facultad de Ciencias Exactas, Instituto de Biotecnología y Biología Molecular (IBBM), CCT-CONICET La Plata, Universidad Nacional de La Plata, La Plata, Argentina
| | - Erika Bartel
- Laboratorio VacSal, Facultad de Ciencias Exactas, Instituto de Biotecnología y Biología Molecular (IBBM), CCT-CONICET La Plata, Universidad Nacional de La Plata, La Plata, Argentina
| | - Griselda Moreno
- Facultad de Ciencias Exactas, Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP), CCT-CONICET La Plata, Universidad Nacional de La Plata, La Plata, Argentina
| | - Alicja Misiak
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Kingston H G Mills
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Daniela Hozbor
- Laboratorio VacSal, Facultad de Ciencias Exactas, Instituto de Biotecnología y Biología Molecular (IBBM), CCT-CONICET La Plata, Universidad Nacional de La Plata, La Plata, Argentina
| |
Collapse
|
39
|
Role of Evolutionary Selection Acting on Vaccine Antigens in the Re-Emergence of Bordetella Pertussis. Diseases 2019; 7:diseases7020035. [PMID: 30995764 PMCID: PMC6630436 DOI: 10.3390/diseases7020035] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 04/09/2019] [Accepted: 04/15/2019] [Indexed: 12/21/2022] Open
Abstract
Pertussis (“whooping cough”) is a re-emerging disease with increasing incidence among fully vaccinated individuals. We explored the genetic diversity of five Bordetella pertussis proteins used to generate the subunit vaccine across ancestral and newly emergent strains using immunoinformatics and evolutionary selection measurements. The five subunits of pertussis toxin (Ptx1–Ptx5) were highly conserved with regard to sequence, predicted structure, predicted antigenicity, and were under purifying selection. In contrast, the adhesin proteins pertactin (Prn) and filamentous hemagglutinin (FHA) were under statistically significant (p < 0.01) diversifying selection. Most heavily diversified sites of each protein fell within antigenic epitopes, and the functional adhesin motifs were conserved. Protein secondary structure was conserved despite sequence diversity for FHA but was changeable in Prn. These findings suggest that subunit vaccine-derived immunity does not impact Ptx1–Ptx5 but may apply evolutionary pressure to Prn and FHA to undergo diversifying selection. These findings offer further insight into the emergence of vaccine-resistant strains of B. pertussis.
Collapse
|
40
|
Di Mattia G, Nicolai A, Frassanito A, Petrarca L, Nenna R, Midulla F. Pertussis: New preventive strategies for an old disease. Paediatr Respir Rev 2019; 29:68-73. [PMID: 29914744 DOI: 10.1016/j.prrv.2018.03.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 03/13/2018] [Accepted: 03/16/2018] [Indexed: 12/14/2022]
Abstract
In the last twenty years, despite high vaccination coverage, epidemics of pertussis are occurring in both developing and developed countries. Many reasons could explain the pertussis resurgence: the increasing awareness of the disease, the availability of new diagnostic tests with higher sensitivity, the emergence of new Bordetella pertussis (B. pertussis) strains different from those contained in the current vaccines, the asymptomatic transmission of B. pertussis in adolescents and adults and the shorter duration of protection given by the acellular pertussis (aP) vaccine. New preventive strategies have already been implemented, such as booster doses of aP vaccine in adolescents and adults, maternal immunisation during pregnancy and the "cocooning" strategy, but more are still needed. Knowing what is new about this old disease is necessary to reduce its incidence and to protect infants too young to be vaccinated, which have the highest risk of complications and death.
Collapse
Affiliation(s)
- Greta Di Mattia
- Department of Paediatrics, "Sapienza" University of Rome, V.le Regina Elena 324, 00161 Rome, Italy
| | - Ambra Nicolai
- Department of Paediatrics, "Sapienza" University of Rome, V.le Regina Elena 324, 00161 Rome, Italy
| | - Antonella Frassanito
- Department of Paediatrics, "Sapienza" University of Rome, V.le Regina Elena 324, 00161 Rome, Italy
| | - Laura Petrarca
- Department of Paediatrics, "Sapienza" University of Rome, V.le Regina Elena 324, 00161 Rome, Italy
| | - Raffaella Nenna
- Department of Paediatrics, "Sapienza" University of Rome, V.le Regina Elena 324, 00161 Rome, Italy
| | - Fabio Midulla
- Department of Paediatrics, "Sapienza" University of Rome, V.le Regina Elena 324, 00161 Rome, Italy.
| |
Collapse
|
41
|
Stefanelli P. Pertussis: Identification, Prevention and Control. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1183:127-136. [PMID: 31321754 DOI: 10.1007/5584_2019_408] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Pertussis is a vaccine-preventable disease. Despite the high vaccination coverage among children, pertussis is considered a re-emerging disease for which identification, prevention and control strategies need to be improved. To control pertussis it is important to maintain a high vaccination coverage to protect the age groups considered at high risk for the disease. Laboratory confirmation of Bordetella pertussis infection together with a differential diagnostic test for other Bordetellae are prerequisite for a correct and timely diagnosis of pertussis. Moreover, investigations of antimicrobial susceptibility and whole genome sequencing may permit to monitor the circulation of antimicrobials resistant and/or vaccine-escape strains. Finally, the preventive framework should no longer consider pertussis exclusively as a childhood infectious disease, since adults may play a role in transmission events.
Collapse
Affiliation(s)
- Paola Stefanelli
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy.
| |
Collapse
|
42
|
Hozbor D. New Pertussis Vaccines: A Need and a Challenge. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1183:115-126. [PMID: 31432399 DOI: 10.1007/5584_2019_407] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Effective diphtheria, tetanus toxoids, whole-cell pertussis (wP) vaccines were used for massive immunization in the 1950s. The broad use of these vaccines significantly reduced the morbidity and mortality associated with pertussis. Because of reports on the induction of adverse reactions, less-reactogenic acellular vaccines (aP) were later developed and in many countries, especially the industrialized ones, the use of wP was changed to aP. For many years, the situation of pertussis seemed to be controlled with the use of these vaccines, however in the last decades the number of pertussis cases increased in several countries. The loss of the immunity conferred by the vaccines, which is faster in the individuals vaccinated with the acellular vaccines, and the evolution of the pathogen towards geno/phenotypes that escape more easily the immunity conferred by the vaccines were proposed as the main causes of the disease resurgence. According to their composition of few immunogens, the aP vaccines seem to be exerting a greater selection pressure on the circulating bacterial population causing the prevalence of bacterial isolates defective in the expression of vaccine antigens. Under this context, it is clear that new vaccines against pertussis should be developed. Several vaccine candidates are in preclinical development and few others have recently completed phaseI/phaseII trials. Vaccine candidate based on OMVs is a promising candidate since appeared overcoming the major weaknesses of current aP-vaccines. The most advanced development is the live attenuated-vaccine BPZE1 which has successfully completed a first-in-man clinical trial.
Collapse
Affiliation(s)
- Daniela Hozbor
- Laboratorio VacSal. Instituto de Biotecnología y Biología Molecular, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata y CCT-La Plata, CONICET, La Plata, Argentina.
| |
Collapse
|
43
|
Kennedy DA, Read AF. Why the evolution of vaccine resistance is less of a concern than the evolution of drug resistance. Proc Natl Acad Sci U S A 2018; 115:12878-12886. [PMID: 30559199 PMCID: PMC6304978 DOI: 10.1073/pnas.1717159115] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Vaccines and antimicrobial drugs both impose strong selection for resistance. Yet only drug resistance is a major challenge for 21st century medicine. Why is drug resistance ubiquitous and not vaccine resistance? Part of the answer is that vaccine resistance is far less likely to evolve than drug resistance. But what happens when vaccine resistance does evolve? We review six putative cases. We find that in contrast to drug resistance, vaccine resistance is harder to detect and harder to confirm and that the mechanistic basis is less well understood. Nevertheless, in the cases we examined, the pronounced health benefits associated with vaccination have largely been sustained. Thus, we contend that vaccine resistance is less of a concern than drug resistance because it is less likely to evolve and when it does, it is less harmful to human and animal health and well-being. Studies of pathogen strains that evolve the capacity to replicate and transmit from vaccinated hosts will enhance our ability to develop next-generation vaccines that minimize the risk of harmful pathogen evolution.
Collapse
Affiliation(s)
- David A Kennedy
- Center for Infectious Disease Dynamics, Departments of Biology and Entomology, The Pennsylvania State University, University Park, PA 16802
| | - Andrew F Read
- Center for Infectious Disease Dynamics, Departments of Biology and Entomology, The Pennsylvania State University, University Park, PA 16802
| |
Collapse
|
44
|
Ben Fraj I, Kechrid A, Guillot S, Bouchez V, Brisse S, Guiso N, Smaoui H. Pertussis epidemiology in Tunisian infants and children and characterization of Bordetella pertussis isolates: results of a 9-year surveillance study, 2007 to 2016. J Med Microbiol 2018; 68:241-247. [PMID: 30526740 DOI: 10.1099/jmm.0.000892] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
PURPOSE Pertussis remains a public health concern in most countries. Our study aimed to prospectively explore the epidemiology of pertussis in the Tunis area of Tunisia between 2007 and 2016, and to characterize the virulence-associated genes of the collected Bordetella pertussis isolates. METHODOLOGY Infants and children hospitalized at the Children's Hospital of Tunis, Tunisia, between 2007 and 2016 for suspicion of pertussis were enrolled in the study. Culture and real-time PCR (qPCR) assays targeting IS481, IS1001, recA, H-IS1001 and ptxP were used to confirm the pertussis diagnosis. Phenotypic and genotypic characterization of recovered isolates was performed.Results/Key findings. A total of 1844 children were included in the study. Overall, 306 children (16.6 %) with Bordetella infection were confirmed by qPCR. Among them, 265 (86.6 %) were confirmed as having B. pertussis (IS481+, ptxP+, H-IS1001-), 18 (5.9 %) as having Bordetella parapertussis (IS481-, IS1001+) and 11 (3.6 %) as having Bordetella spp. (IS481+, ptxP-, H-IS1001-). No Bordetella holmesii (IS481+, IS1001-, H-IS1001+) was identified. The estimated pertussis incidence in the Tunis area was 134/100 000 in children aged less than 5 years. Two epidemic peaks were observed in 2009 and 2014. Ten B. pertussis isolates were cultured and characterized. Deficiency in pertactin expression was not observed, and genotyping of the isolates revealed a predominant allelic profile: ptxP3-ptxA1-prn2-fim2-1-fim3-2. CONCLUSION This study demonstrated that pertussis is still present as a cyclical disease in Tunisia, despite high primo-vaccination coverage with a pertussis whole-cell vaccine. The predominant genotype of Tunisian B. pertussis isolates is similar to isolates circulating in countries using the acellular vaccine.
Collapse
Affiliation(s)
- Ikram Ben Fraj
- 1University of Tunis El Manar, Children's Hospital of Tunis, Laboratory of Microbiology, UR12ES01, Tunis, Tunisia
| | - Amel Kechrid
- 1University of Tunis El Manar, Children's Hospital of Tunis, Laboratory of Microbiology, UR12ES01, Tunis, Tunisia
| | - Sophie Guillot
- 2Biodiversity and Epidemiology of Bacterial Pathogens Unit, Institut Pasteur, Paris, France
- 3National Reference Center for Whooping Cough and Other Bordetella Infections, Institut Pasteur, Paris, France
| | - Valérie Bouchez
- 2Biodiversity and Epidemiology of Bacterial Pathogens Unit, Institut Pasteur, Paris, France
- 3National Reference Center for Whooping Cough and Other Bordetella Infections, Institut Pasteur, Paris, France
| | - Sylvain Brisse
- 2Biodiversity and Epidemiology of Bacterial Pathogens Unit, Institut Pasteur, Paris, France
- 3National Reference Center for Whooping Cough and Other Bordetella Infections, Institut Pasteur, Paris, France
| | - Nicole Guiso
- 3National Reference Center for Whooping Cough and Other Bordetella Infections, Institut Pasteur, Paris, France
| | - Hanen Smaoui
- 1University of Tunis El Manar, Children's Hospital of Tunis, Laboratory of Microbiology, UR12ES01, Tunis, Tunisia
| |
Collapse
|
45
|
PERISCOPE: road towards effective control of pertussis. THE LANCET. INFECTIOUS DISEASES 2018; 19:e179-e186. [PMID: 30503084 DOI: 10.1016/s1473-3099(18)30646-7] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 10/02/2018] [Accepted: 10/12/2018] [Indexed: 12/28/2022]
Abstract
The resurgence and changing epidemiology of pertussis in high-income countries, the high infant mortality caused by pertussis in low-income countries, and the increasing morbidity in all age groups worldwide call for a concerted effort to both improve the current vaccines and develop new vaccines and vaccination strategies against pertussis. In this Personal View, we identify several key obstacles on the path to developing a durable solution for global control of pertussis. To systematically address these obstacles, the PERtussIS Correlates Of Protection Europe (PERISCOPE) Consortium was established in March, 2016. The objectives of this consortium are to increase scientific understanding of immunity to pertussis in humans induced by vaccines and infections, to identify biomarkers of protective immunity, and to generate technologies and infrastructure for the future development of improved pertussis vaccines. By working towards the accelerated licensure and implementation of novel, well tolerated, and effective pertussis vaccines, we hope to strengthen and stimulate further collaboration and transparency between the key stakeholders, including the public, the scientific community, public health institutes, regulatory authorities, and vaccine manufacturers.
Collapse
|
46
|
Luu LDW, Octavia S, Zhong L, Raftery MJ, Sintchenko V, Lan R. Comparison of the Whole Cell Proteome and Secretome of Epidemic Bordetella pertussis Strains From the 2008-2012 Australian Epidemic Under Sulfate-Modulating Conditions. Front Microbiol 2018; 9:2851. [PMID: 30538686 PMCID: PMC6277516 DOI: 10.3389/fmicb.2018.02851] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 11/06/2018] [Indexed: 01/19/2023] Open
Abstract
Sulfate is an important modulator for virulence factor expression in Bordetella pertussis, the causative organism for whooping cough. During infection, sulfate is released when respiratory epithelial cells are damaged which can affect gene expression. The current predominant strains in Australia are found in single nucleotide polymorphism (SNP) cluster I (ptxP3/prn2). It has been reported that ptxP3 strains have higher mRNA expression of virulence genes than ptxP1 strains under intermediate sulfate-modulating conditions (5 mM MgSO4). Our previous proteomic study compared L1423 (cluster I, ptxP3) and L1191 (cluster II, ptxP1) in Thalen-IJssel (THIJS) media without sulfate modulation and identified an upregulation of transport proteins and a downregulation of immunogenic proteins. To determine whether proteomic differences exist between cluster I and cluster II strains in intermediate modulating conditions, this study compared the whole cell proteome and secretome between L1423 and L1191 grown in THIJS media with 5 mM MgSO4 using iTRAQ and high-resolution multiple reaction monitoring (MRM-hr). Two proteins (BP0200 and BP1175) in the whole cell were upregulated in L1423 [fold change (FC) >1.2, false discovery rate (FDR) <0.05]. In the secretome, four proteins from the type III secretion system (T3SS) effectors were downregulated (FC < 0.8, FDR < 0.05) while six proteins, including two adhesins, pertactin (Prn) and tracheal colonization factor A (TcfA), were upregulated which were consistent with our previous proteomic study. The upregulation of Prn and TcfA in SNP cluster I may result in improved adhesion while the downregulation of the T3SS and other immunogenic proteins may reduce immune recognition, which may contribute to the increased fitness of cluster I B. pertussis strains.
Collapse
Affiliation(s)
- Laurence Don Wai Luu
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Sophie Octavia
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Ling Zhong
- Bioanalytical Mass Spectrometry Facility, University of New South Wales, Sydney, NSW, Australia
| | - Mark J Raftery
- Bioanalytical Mass Spectrometry Facility, University of New South Wales, Sydney, NSW, Australia
| | - Vitali Sintchenko
- Centre for Infectious Diseases and Microbiology-Public Health, Institute of Clinical Pathology and Medical Research - NSW Health Pathology, Westmead Hospital, Sydney, NSW, Australia.,Marie Bashir Institute for Infectious Diseases and Biosecurity, Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| | - Ruiting Lan
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
47
|
Queenan AM, Dowling DJ, Cheng WK, Faé K, Fernandez J, Flynn PJ, Joshi S, Brightman SE, Ramirez J, Serroyen J, Wiertsema S, Fortanier A, van den Dobbelsteen G, Levy O, Poolman J. Increasing FIM2/3 antigen-content improves efficacy of Bordetella pertussis vaccines in mice in vivo without altering vaccine-induced human reactogenicity biomarkers in vitro. Vaccine 2018; 37:80-89. [PMID: 30478007 DOI: 10.1016/j.vaccine.2018.11.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Revised: 10/30/2018] [Accepted: 11/12/2018] [Indexed: 01/17/2023]
Abstract
Current acellular-pertussis (aP) vaccines appear inadequate for long-term pertussis control because of short-lived efficacy and the increasing prevalence of pertactin-negative isolates which may negatively impact vaccine efficacy. In this study, we added fimbriae (FIM)2 and FIM3 protein to licensed 2-, 3- or 5-component aP vaccines (Pentavac®, Boostrix®, Adacel®, respectively) to assess whether an aP vaccine with enhanced FIM content demonstrates enhanced efficacy. Vaccine-induced protection was assessed in an intranasal mouse challenge model. In addition, potential reactogenicity was measured by biomarkers in a human whole blood assay (WBA) in vitro and benchmarked the responses against licensed whole cell pertussis (wP) and aP vaccines including Easyfive®, Pentavac® and Pentacel®. The results show that commercial vaccines demonstrated reduced efficacy against pertactin-negative versus pertactin-positive strains. However, addition of higher amounts of FIM2/3 to aP vaccines reduced lung colonization and increased vaccine efficacy against a pertactin-negative strain in a dose-dependent manner. Improvements in efficacy were similar for FIM2 and FIM3-expressing strains. Increasing the amount of FIM2/3 proteins in aP formulations did not alter vaccine-induced biomarkers of potential reactogenicity including prostaglandin E2, cytokines and chemokines in human newborn cord and adult peripheral blood tested in vitro. These results suggest that increasing the quantity of FIM proteins in current pertussis vaccine formulations may further enhance vaccine efficacy against B. pertussis infection without increasing the reactogenicity of the vaccine.
Collapse
Affiliation(s)
| | - David J Dowling
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Wing Ki Cheng
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Kellen Faé
- Janssen Vaccines and Prevention, Leiden 2333CN, the Netherlands
| | | | - Peter J Flynn
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA
| | - Sweta Joshi
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA
| | - Spencer E Brightman
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA
| | - Juan Ramirez
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA
| | - Jan Serroyen
- Janssen Vaccines and Prevention, Leiden 2333CN, the Netherlands
| | - Selma Wiertsema
- Janssen Vaccines and Prevention, Leiden 2333CN, the Netherlands
| | | | | | - Ofer Levy
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Broad Institute of MIT & Harvard, USA.
| | - Jan Poolman
- Janssen Vaccines and Prevention, Leiden 2333CN, the Netherlands
| |
Collapse
|
48
|
Sadeghpour Heravi F, Nikbin VS, Nakhost Lotfi M, Badiri P, Jannesar Ahmadi N, Zahraei SM, Shahcheraghi F. Strain variation and antigenic divergence among Bordetella pertussis circulating strains isolated from patients in Iran. Eur J Clin Microbiol Infect Dis 2018; 37:1893-1900. [PMID: 30094521 DOI: 10.1007/s10096-018-3323-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 07/04/2018] [Indexed: 11/26/2022]
Abstract
Despite global efforts and widespread vaccination to control whooping cough (pertussis) caused by B. pertussis, the re-emergence of pertussis still is being reported all over the world. Antigenic divergence in B. pertussis virulence factors is one of the reasons of pertussis resurgence, resulting in dissimilarity of local and vaccine strains. In this study, clonal spread and variation of B. pertussis virulence factor in isolated strains from Iranian patients have been analyzed. A total of 100 B. pertussis isolates were obtained from Pertussis Reference Laboratory of Pasteur Institute of Iran. Real-time PCR were performed to confirm the B. pertussis strains. The genomic patterns of B. pertussis strains were analyzed by pulsed-field gel electrophoresis (PFGE). Predominant alleles of local strains were ptxP3, ptxA1, prn2, fim 2-1, fim3-2, and cya2. PFGE results showed 25 patterns clustered into 18 PFGE groups. A few similarities between the circulating isolates, vaccine, and standard strains were obtained. Significantly, 48% of the isolates showed dominant pattern with different allelic profiles from vaccine strains. According to the genomic profiles, the clonal spread was observed among the circulating strains. Predominant virulence factor profile was also comparable with other countries. It may be suggested that strain variation between vaccine and local strains may have an effect on pertussis resurgence in Iran like other parts of the world.
Collapse
Affiliation(s)
| | - Vajihe Sadat Nikbin
- Pertussis Reference Laboratory' Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
| | - Masomeh Nakhost Lotfi
- Pertussis Reference Laboratory' Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
| | - Pouran Badiri
- Pertussis Reference Laboratory' Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
| | - Nazanin Jannesar Ahmadi
- Pertussis Reference Laboratory' Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
| | - Seyed Mohsen Zahraei
- Pertussis Reference Laboratory' Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
| | - Fereshteh Shahcheraghi
- Pertussis Reference Laboratory' Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
49
|
Zomer A, Otsuka N, Hiramatsu Y, Kamachi K, Nishimura N, Ozaki T, Poolman J, Geurtsen J. Bordetella pertussis population dynamics and phylogeny in Japan after adoption of acellular pertussis vaccines. Microb Genom 2018; 4. [PMID: 29771235 PMCID: PMC5994715 DOI: 10.1099/mgen.0.000180] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Bordetella pertussis, the causative agent of whooping cough, has experienced a resurgence in the past 15 years, despite the existence of both whole-cell and acellular vaccines. Here, we performed whole genome sequencing analysis of 149 clinical strains, provided by the National Institute of Infectious Diseases (NIID), Japan, isolated in 1982–2014, after Japan became the first country to adopt acellular vaccines against B. pertussis. Additionally, we sequenced 39 strains provided by the Konan Kosei Hospital in Aichi prefecture, Japan, isolated in 2008–2013. The genome sequences afforded insight into B. pertussis genome variability and population dynamics in Japan, and revealed that the B. pertussis population in Japan was characterized by two major clades that divided more than 40 years ago. The pertactin gene was disrupted in about 20 % of the 149 NIID isolates, by either a deletion within the signal sequence (ΔSS) or the insertion of IS element IS481 (prn :: IS481). Phylogeny suggests that the parent clones for these isolates originated in Japan. Divergence dating traced the first generation of the pertactin-deficient mutants in Japan to around 1990, and indicated that strains containing the alternative pertactin allele prn2 may have appeared in Japan around 1974. Molecular clock data suggested that observed fluctuations in B. pertussis population size may have coincided with changes in vaccine usage in the country. The continuing failure to eradicate the disease warrants an exploration of novel vaccine compositions.
Collapse
Affiliation(s)
- Aldert Zomer
- 1Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Nao Otsuka
- 2Department of Bacteriology II, National Institute of Infectious Diseases, Musashimurayama, Tokyo, Japan
| | - Yukihiro Hiramatsu
- 2Department of Bacteriology II, National Institute of Infectious Diseases, Musashimurayama, Tokyo, Japan.,†Present address: Department of Molecular Bacteriology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Kazunari Kamachi
- 2Department of Bacteriology II, National Institute of Infectious Diseases, Musashimurayama, Tokyo, Japan
| | - Naoko Nishimura
- 3Department of Pediatrics, Konan Kosei Hospital, Takaya-cho, Konan, Aichi, Japan
| | - Takao Ozaki
- 3Department of Pediatrics, Konan Kosei Hospital, Takaya-cho, Konan, Aichi, Japan
| | - Jan Poolman
- 4Janssen Vaccines and Prevention B.V., Leiden, The Netherlands
| | - Jeroen Geurtsen
- 4Janssen Vaccines and Prevention B.V., Leiden, The Netherlands
| |
Collapse
|
50
|
Bordetella pertussis pertactin knock-out strains reveal immunomodulatory properties of this virulence factor. Emerg Microbes Infect 2018; 7:39. [PMID: 29559630 PMCID: PMC5861065 DOI: 10.1038/s41426-018-0039-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 01/05/2018] [Accepted: 01/26/2018] [Indexed: 12/13/2022]
Abstract
Whooping cough, caused by Bordetella pertussis, has resurged and presents a global health burden worldwide. B. pertussis strains unable to produce the acellular pertussis vaccine component pertactin (Prn), have been emerging and in some countries represent up to 95% of recent clinical isolates. Knowledge on the effect that Prn deficiency has on infection and immunity to B. pertussis is crucial for the development of new strategies to control this disease. Here, we characterized the effect of Prn production by B. pertussis on human and murine dendritic cell (DC) maturation as well as in a murine model for pertussis infection. We incubated human monocyte-derived DCs (moDCs) with multiple isogenic Prn knockout (Prn-KO) and corresponding parental B. pertussis strains constructed either in laboratory reference strains with a Tohama I background or in a recently circulating clinical isolate. Results indicate that, compared to the parental strains, Prn-KO strains induced an increased production of pro-inflammatory cytokines by moDCs. This pro-inflammatory phenotype was also observed upon stimulation of murine bone marrow-derived DCs. Moreover, RNA sequencing analysis of lungs from mice infected with B. pertussis Prn-KO revealed increased expression of genes involved in cell death. These in vitro and in vivo findings indicate that B. pertussis strains which do not produce Prn induce a stronger pro-inflammatory response and increased cell death upon infection, suggesting immunomodulatory properties for Prn.
Collapse
|