1
|
Guzman Ruiz L, Zollner AM, Hoxie I, Küchler J, Hausjell C, Mesurado T, Krammer F, Jungbauer A, Pereira Aguilar P, Klausberger M, Grabherr R. Enhancing NA immunogenicity through novel VLP designs. Vaccine 2024; 42:126270. [PMID: 39197219 DOI: 10.1016/j.vaccine.2024.126270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/21/2024] [Accepted: 08/22/2024] [Indexed: 09/01/2024]
Abstract
Current influenza virus vaccines poorly display key neuraminidase (NA) epitopes and do not robustly induce NA-reactive antibodies; instead, they focus on the induction of hemagglutinin (HA)-reactive antibodies. Next-generation influenza vaccines should be optimized in order to activate NA-reactive B cells and to induce a broadly cross-reactive and protective antibody response. We aimed at enhancing the immunogenicity of the NA on vaccines by two strategies: (i) modifying the HA:NA ratio of the vaccine preparation and (ii) exposing epitopes on the lateral surface or beneath the head of the NA by extending the NA stalk. The H1N1 glycoproteins from the influenza virus A/California/04/2009 strain were displayed on human immunodeficiency virus 1 (HIV-1) gag-based virus-like particles (VLP). Using the baculovirus insect cell expression system, we biased the quantity of surface glycoproteins employing two different promoters, the very late baculovirus p10 promoter and the early and late gp64 promoter. This led to a 1:1 to 2:1 HA:NA ratio, which was approximately double or triple the amount of NA as present on the wild-type influenza A virus (HA:NA ratio 3:1 to 5:1). Furthermore, by insertion of 15 amino acids from the A-New York/61/2012 strain (NY12) which prolongates the NA stalk (NA long stalk; NA-LS), we intended to improve the accessibility of the NA. Six different types of VLPs were produced and purified using a platform downstream process based on Capto-Core 700™ followed by Capto-Heparin™ affinity chromatography combined with ultracentrifugation. These VLPs were then tested in a mouse model. Robust titers of antibodies that inhibit the neuraminidase activity were elicited even after vaccination with two low doses (0.3 μg) of the H1N1 VLPs without compromising the anti-HA responses. In conclusion, our results demonstrate the feasibility of the two developed strategies to retain HA immunogenicity and improve NA immunogenicity as a future influenza vaccine candidate.
Collapse
Affiliation(s)
- Leticia Guzman Ruiz
- University of Natural Resources and Life Sciences Vienna (BOKU), Department of Biotechnology, Institute of Molecular Biotechnology (IMBT), Muthgasse 18, 1190 Vienna, Austria; University of Natural Resources and Life Sciences Vienna (BOKU), Department of Biotechnology, Institute of Bioprocess Science and Engineering (IBSE), Muthgasse 18, 1190 Vienna, Austria
| | - Alexander M Zollner
- University of Natural Resources and Life Sciences Vienna (BOKU), Department of Biotechnology, Institute of Bioprocess Science and Engineering (IBSE), Muthgasse 18, 1190 Vienna, Austria
| | - Irene Hoxie
- Icahn School of Medicine at Mount Sinai, Department of Microbiology, Gustave L. Levy Place, 10029-5674 New York, NY, USA; Center for Vaccine Research and Pandemic Preparedness (C-VaRPP), Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jan Küchler
- Max Planck Institute for Dynamics of Complex Technical Systems, Bioprocess Engineering, Magdeburg, Germany
| | - Christina Hausjell
- University of Natural Resources and Life Sciences Vienna (BOKU), Department of Biotechnology, Institute of Molecular Biotechnology (IMBT), Muthgasse 18, 1190 Vienna, Austria
| | - Tomas Mesurado
- University of Natural Resources and Life Sciences Vienna (BOKU), Department of Biotechnology, Institute of Bioprocess Science and Engineering (IBSE), Muthgasse 18, 1190 Vienna, Austria
| | - Florian Krammer
- Icahn School of Medicine at Mount Sinai, Department of Microbiology, Gustave L. Levy Place, 10029-5674 New York, NY, USA; Center for Vaccine Research and Pandemic Preparedness (C-VaRPP), Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Ignaz Semmelweis Institute, Interuniversity Institute for Infection Research, Medical University of Vienna, Vienna, Austria
| | - Alois Jungbauer
- University of Natural Resources and Life Sciences Vienna (BOKU), Department of Biotechnology, Institute of Bioprocess Science and Engineering (IBSE), Muthgasse 18, 1190 Vienna, Austria; acib - Austrian Centre of Industrial Biotechnology, Muthgasse 11, 1190 Vienna, Austria
| | - Patricia Pereira Aguilar
- University of Natural Resources and Life Sciences Vienna (BOKU), Department of Biotechnology, Institute of Bioprocess Science and Engineering (IBSE), Muthgasse 18, 1190 Vienna, Austria; acib - Austrian Centre of Industrial Biotechnology, Muthgasse 11, 1190 Vienna, Austria
| | - Miriam Klausberger
- University of Natural Resources and Life Sciences Vienna (BOKU), Department of Biotechnology, Institute of Molecular Biotechnology (IMBT), Muthgasse 18, 1190 Vienna, Austria
| | - Reingard Grabherr
- University of Natural Resources and Life Sciences Vienna (BOKU), Department of Biotechnology, Institute of Molecular Biotechnology (IMBT), Muthgasse 18, 1190 Vienna, Austria.
| |
Collapse
|
2
|
Chen H, Zhu J, Niu X, Cheng Y, Jian W, Gao F, Sunkang Y, Qi W, Huang L. Development of a P30 protein-based indirect ELISA for detecting African swine fever antibodies utilizing the HEK293F expression system. Vet J 2024; 306:106186. [PMID: 38936461 DOI: 10.1016/j.tvjl.2024.106186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/08/2024] [Accepted: 06/24/2024] [Indexed: 06/29/2024]
Abstract
African swine fever (ASF) is an acute, febrile, and highly lethal infectious disease in pigs caused by the African swine fever virus (ASFV). Effective detection methods and strict biosecurity measures are crucial for preventing and controlling ASF, especially since there are currently no commercially available vaccines or antiviral drugs to combat ASFV infection effectively. However, the emergence of low-virulence strains of ASFV in recent years has led to false-positive results, highlighting the importance of early-produced antibody detection methods. Therefore, detecting antibodies against ASFV produced early in the infection can facilitate the prompt identification of infected pigs. This study focused on the p30 protein, an early expressed protein during ASFV infection, to develop an indirect ELISA. This method was established using the HEK293F suspension cell expression system, which has the ability to produce large quantities of correctly folded proteins with normal functionality. In this study, we developed an indirect ELISA test utilizing the p30 recombinant protein produced by the HEK293F suspension cell expression system as the antigen coating. The concentration of the p30 protein obtained from the HEK293F suspension cell expression system was measured at 4.668 mg/mL, serving as the foundation for establishing the indirect ELISA. Our findings indicate that the indirect ELISA method exhibits a sensitivity of 1:12800. Furthermore, it demonstrates high specificity and excellent reproducibility. Comparing our results to those obtained from the commercial kit, we found a coincidence rate of 98.148 % for the indirect ELISA. In summary, we have developed a sensitive method for detecting ASFV, providing a valuable tool for monitoring ASFV infection in pig herds.
Collapse
Affiliation(s)
- Huahan Chen
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou 510642, China; African Swine Fever Regional Laboratory of China (Guangzhou), Guangzhou 510642, China; Key Laboratory of Zoonoses, Ministry of Agriculture and Rural Affairs, Guangzhou 510642, China; National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Guangzhou 510642, China
| | - Junhai Zhu
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou 510642, China; African Swine Fever Regional Laboratory of China (Guangzhou), Guangzhou 510642, China; Key Laboratory of Zoonoses, Ministry of Agriculture and Rural Affairs, Guangzhou 510642, China; National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Guangzhou 510642, China
| | - Xuefeng Niu
- State Key Laboratory of Respiratory Disease, Guangzhou 510120, China; National Clinical Research Center for Respiratory Disease, Guangzhou 510120, China; National Center for Respiratory Medicine, Guangzhou 510120, China; Guangzhou Institute of Respiratory Health, Guangzhou 510120, China; The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Yuanyi Cheng
- State Key Laboratory of Respiratory Disease, Guangzhou 510120, China; National Clinical Research Center for Respiratory Disease, Guangzhou 510120, China; National Center for Respiratory Medicine, Guangzhou 510120, China; Guangzhou Institute of Respiratory Health, Guangzhou 510120, China; The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Weijun Jian
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou 510642, China; African Swine Fever Regional Laboratory of China (Guangzhou), Guangzhou 510642, China; Key Laboratory of Zoonoses, Ministry of Agriculture and Rural Affairs, Guangzhou 510642, China; National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Guangzhou 510642, China
| | - Fei Gao
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou 510642, China; African Swine Fever Regional Laboratory of China (Guangzhou), Guangzhou 510642, China; Key Laboratory of Zoonoses, Ministry of Agriculture and Rural Affairs, Guangzhou 510642, China; National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Guangzhou 510642, China
| | - Yongjie Sunkang
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou 510642, China; African Swine Fever Regional Laboratory of China (Guangzhou), Guangzhou 510642, China; Key Laboratory of Zoonoses, Ministry of Agriculture and Rural Affairs, Guangzhou 510642, China; National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Guangzhou 510642, China
| | - Wenbao Qi
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou 510642, China; African Swine Fever Regional Laboratory of China (Guangzhou), Guangzhou 510642, China; Key Laboratory of Zoonoses, Ministry of Agriculture and Rural Affairs, Guangzhou 510642, China; National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Guangzhou 510642, China.
| | - Lihong Huang
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou 510642, China; African Swine Fever Regional Laboratory of China (Guangzhou), Guangzhou 510642, China; Key Laboratory of Zoonoses, Ministry of Agriculture and Rural Affairs, Guangzhou 510642, China; National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Guangzhou 510642, China.
| |
Collapse
|
3
|
Guzman Ruiz L, Zollner AM, Hoxie I, Arcalis E, Krammer F, Klausberger M, Jungbauer A, Grabherr R. Increased efficacy of influenza virus vaccine candidate through display of recombinant neuraminidase on virus like particles. Front Immunol 2024; 15:1425842. [PMID: 38915410 PMCID: PMC11194364 DOI: 10.3389/fimmu.2024.1425842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 05/31/2024] [Indexed: 06/26/2024] Open
Abstract
Vaccination against influenza virus can reduce the risk of influenza by 40% to 60%, they rely on the production of neutralizing antibodies specific to influenza hemagglutinin (HA) ignoring the neuraminidase (NA) as an important surface target. Vaccination with standardized NA concentration may offer broader and longer-lasting protection against influenza infection. In this regard, we aimed to compare the potency of a NA displayed on the surface of a VLP with a soluble NA. The baculovirus expression system (BEVS) and the novel virus-free Tnms42 insect cell line were used to express N2 NA on gag-based VLPs. To produce VLP immunogens with high levels of purity and concentration, a two-step chromatography purification process combined with ultracentrifugation was used. In a prime/boost vaccination scheme, mice vaccinated with 1 µg of the N2-VLPs were protected from mortality, while mice receiving the same dose of unadjuvanted NA in soluble form succumbed to the lethal infection. Moreover, NA inhibition assays and NA-ELISAs of pre-boost and pre-challenge sera confirm that the VLP preparation induced higher levels of NA-specific antibodies outperforming the soluble unadjuvanted NA.
Collapse
Affiliation(s)
- Leticia Guzman Ruiz
- Institute of Molecular Biotechnology (IMBT), Department of Biotechnology (DBT), University of Natural Resources and Life Sciences Vienna (BOKU), Vienna, Austria
- Institute of Bioprocess Science and Engineering (IBSE), Department of Biotechnology (DBT), University of Natural Resources and Life Sciences Vienna (BOKU), Vienna, Austria
| | - Alexander M. Zollner
- Institute of Bioprocess Science and Engineering (IBSE), Department of Biotechnology (DBT), University of Natural Resources and Life Sciences Vienna (BOKU), Vienna, Austria
| | - Irene Hoxie
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Center for Vaccine Research and Pandemic Preparedness (C-VaRPP), Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Elsa Arcalis
- Institute of Plant Biotechnology and Cell Biology (IPBT), Department of Applied Genetics and Cell Biology (DAGZ), University of Natural Resources and Life Sciences Vienna (BOKU), Vienna, Austria
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Center for Vaccine Research and Pandemic Preparedness (C-VaRPP), Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Ignaz Semmelweis Institute, Interuniversity Institute for Infection Research, Medical University of Vienna, Vienna, Austria
| | - Miriam Klausberger
- Institute of Molecular Biotechnology (IMBT), Department of Biotechnology (DBT), University of Natural Resources and Life Sciences Vienna (BOKU), Vienna, Austria
| | - Alois Jungbauer
- Institute of Bioprocess Science and Engineering (IBSE), Department of Biotechnology (DBT), University of Natural Resources and Life Sciences Vienna (BOKU), Vienna, Austria
- Austrian Centre of Industrial Biotechnology (acib), Vienna, Austria
| | - Reingard Grabherr
- Institute of Molecular Biotechnology (IMBT), Department of Biotechnology (DBT), University of Natural Resources and Life Sciences Vienna (BOKU), Vienna, Austria
| |
Collapse
|
4
|
Boix-Besora A, Gòdia F, Cervera L. Gag Virus-like Particles Functionalized with SARS-CoV-2 Variants: Generation, Characterization and Recognition by COVID-19 Convalescent Patients' Sera. Vaccines (Basel) 2023; 11:1641. [PMID: 38005972 PMCID: PMC10675557 DOI: 10.3390/vaccines11111641] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/16/2023] [Accepted: 10/21/2023] [Indexed: 11/26/2023] Open
Abstract
The robustness, safety, versatility, and high immunogenicity of virus-like particles (VLPs) make them a promising approach for the generation of vaccines against a broad range of pathogens. VLPs are recombinant macromolecular structures that closely mimic the native conformation of viruses without carrying viral genetic material. Particularly, HIV-1 Gag-based VLPs are a suitable platform for the presentation of the SARS-CoV-2 Spike (S) protein on their surface. In this context, this work studies the effect of different rationally engineered mutations of the S protein to improve some of its characteristics. The studied variants harbored mutations such as proline substitutions for S stabilization, D614G from the early dominant pandemic form, the elimination of the S1/S2 furin cleavage site to improve S homogeneity, the suppression of a retention motif to favor its membrane localization, and cysteine substitutions to increase its immunogenicity and avoid potential undesired antibody-dependent enhancement (ADE) effects. The influence of the mutations on VLP expression was studied, as well as their immunogenic potential, by testing the recognition of the generated VLP variants by COVID-19 convalescent patients' sera. The results of this work are conceived to give insights on the selection of S protein candidates for their use as immunogens and to showcase the potential of VLPs as carriers for antigen presentation.
Collapse
Affiliation(s)
- Arnau Boix-Besora
- Grup d’Enginyeria de Bioprocessos i Biocatàlisi Aplicada ENG4BIO, Escola d’Enginyeria, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193 Barcelona, Spain
| | | | | |
Collapse
|
5
|
Lorenzo E, Miranda L, Gòdia F, Cervera L. Downstream process design for Gag HIV-1 based virus-like particles. Biotechnol Bioeng 2023; 120:2672-2684. [PMID: 37148527 DOI: 10.1002/bit.28419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 04/05/2023] [Accepted: 04/10/2023] [Indexed: 05/08/2023]
Abstract
Virus-like particles-based vaccines have been gaining interest in recent years. The manufacturing of these particles includes their production by cell culture followed by their purification to meet the requirements of its final use. The presence of host cell extracellular vesicles represents a challenge for better virus-like particles purification, because both share similar characteristics which hinders their separation. The present study aims to compare some of the most used downstream processing technologies for capture and purification of virus-like particles. Four steps of the purification process were studied, including a clarification step by depth filtration and filtration, an intermediate step by tangential flow filtration or multimodal chromatography, a capture step by ion exchange, heparin affinity and hydrophobic interaction chromatography and finally, a polishing step by size exclusion chromatography. In each step, the yields were evaluated by percentage of recovery of the particles of interest, purity, and elimination of main contaminants. Finally, a complete purification train was implemented using the best results obtained in each step. A final concentration of 1.40 × 1010 virus-like particles (VLPs)/mL with a purity of 64% after the polishing step was achieved, with host cell DNA and protein levels complaining with regulatory standards, and an overall recovery of 38%. This work has resulted in the development of a purification process for HIV-1 Gag-eGFP virus-like particles suitable for scale-up.
Collapse
Affiliation(s)
- Elianet Lorenzo
- Departament d'Enginyeria Química Biològica i Ambiental, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Laia Miranda
- Departament d'Enginyeria Química Biològica i Ambiental, Universitat Autònoma de Barcelona, Bellaterra, Spain
- University College London, London, UK
| | - Francesc Gòdia
- Departament d'Enginyeria Química Biològica i Ambiental, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Laura Cervera
- Departament d'Enginyeria Química Biològica i Ambiental, Universitat Autònoma de Barcelona, Bellaterra, Spain
| |
Collapse
|
6
|
Göbel S, Jaén KE, Dorn M, Neumeyer V, Jordan I, Sandig V, Reichl U, Altomonte J, Genzel Y. Process intensification strategies toward cell culture-based high-yield production of a fusogenic oncolytic virus. Biotechnol Bioeng 2023; 120:2639-2657. [PMID: 36779302 DOI: 10.1002/bit.28353] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/31/2023] [Accepted: 02/09/2023] [Indexed: 02/14/2023]
Abstract
We present a proof-of-concept study for production of a recombinant vesicular stomatitis virus (rVSV)-based fusogenic oncolytic virus (OV), rVSV-Newcastle disease virus (NDV), at high cell densities (HCD). Based on comprehensive experiments in 1 L stirred tank reactors (STRs) in batch mode, first optimization studies at HCD were carried out in semi-perfusion in small-scale cultivations using shake flasks. Further, a perfusion process was established using an acoustic settler for cell retention. Growth, production yields, and process-related impurities were evaluated for three candidate cell lines (AGE1.CR, BHK-21, HEK293SF)infected at densities ranging from 15 to 30 × 106 cells/mL. The acoustic settler allowed continuous harvesting of rVSV-NDV with high cell retention efficiencies (above 97%) and infectious virus titers (up to 2.4 × 109 TCID50 /mL), more than 4-100 times higher than for optimized batch processes. No decrease in cell-specific virus yield (CSVY) was observed at HCD, regardless of the cell substrate. Taking into account the accumulated number of virions both from the harvest and bioreactor, a 15-30 fold increased volumetric virus productivity for AGE1.CR and HEK293SF was obtained compared to batch processes performed at the same scale. In contrast to all previous findings, formation of syncytia was observed at HCD for the suspension cells BHK 21 and HEK293SF. Oncolytic potency was not affected compared to production in batch mode. Overall, our study describes promising options for the establishment of perfusion processes for efficient large-scale manufacturing of fusogenic rVSV-NDV at HCD for all three candidate cell lines.
Collapse
Affiliation(s)
- Sven Göbel
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
| | - Karim E Jaén
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
- Department of Internal Medicine II, Klinikum Rechts der Isar, Technische Universität München, Munchen, Germany
| | - Marie Dorn
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
- Faculty of Process and Systems Engineering, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Victoria Neumeyer
- Department of Internal Medicine II, Klinikum Rechts der Isar, Technische Universität München, Munchen, Germany
| | | | | | - Udo Reichl
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
- Chair for Bioprocess Engineering, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Jennifer Altomonte
- Department of Internal Medicine II, Klinikum Rechts der Isar, Technische Universität München, Munchen, Germany
| | - Yvonne Genzel
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
| |
Collapse
|
7
|
Park J, Pho T, Champion JA. Chemical and biological conjugation strategies for the development of multivalent protein vaccine nanoparticles. Biopolymers 2023; 114:e23563. [PMID: 37490564 PMCID: PMC10528127 DOI: 10.1002/bip.23563] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 05/19/2023] [Accepted: 07/03/2023] [Indexed: 07/27/2023]
Abstract
The development of subunit vaccine platforms has been of considerable interest due to their good safety profile and ability to be adapted to new antigens, compared to other vaccine typess. Nevertheless, subunit vaccines often lack sufficient immunogenicity to fully protect against infectious diseases. A wide variety of subunit vaccines have been developed to enhance antigen immunogenicity by increasing antigen multivalency, as well as stability and delivery properties, via presentation of antigens on protein nanoparticles. Increasing multivalency can be an effective approach to provide a potent humoral immune response by more strongly engaging and clustering B cell receptors (BCRs) to induce activation, as well as increased uptake by antigen presenting cells and their subsequent T cell activation. Proper orientation of antigen on protein nanoparticles is also considered a crucial factor for enhanced BCR engagement and subsequent immune responses. Therefore, various strategies have been reported to decorate highly repetitive surfaces of protein nanoparticle scaffolds with multiple copies of antigens, arrange antigens in proper orientation, or combinations thereof. In this review, we describe different chemical bioconjugation methods, approaches for genetic fusion of recombinant antigens, biological affinity tags, and enzymatic conjugation methods to effectively present antigens on the surface of protein nanoparticle vaccine scaffolds.
Collapse
Affiliation(s)
- Jaeyoung Park
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 950 Atlantic Dr. NW, Atlanta, GA, 30332-2000, USA
| | - Thomas Pho
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 950 Atlantic Dr. NW, Atlanta, GA, 30332-2000, USA
- BioEngineering Program
| | - Julie A. Champion
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 950 Atlantic Dr. NW, Atlanta, GA, 30332-2000, USA
- BioEngineering Program
| |
Collapse
|
8
|
Garay E, Fontana D, Villarraza J, Fuselli A, Gugliotta A, Antuña S, Tardivo B, Rodríguez MC, Gastaldi V, Battagliotti JM, Alvarez D, Castro E, Cassataro J, Ceaglio N, Prieto C. Design and characterization of chimeric Rabies-SARS-CoV-2 virus-like particles for vaccine purposes. Appl Microbiol Biotechnol 2023; 107:3495-3508. [PMID: 37126083 PMCID: PMC10150342 DOI: 10.1007/s00253-023-12545-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 03/16/2023] [Accepted: 04/17/2023] [Indexed: 05/02/2023]
Abstract
Due to the high number of doses required to achieve adequate coverage in the context of COVID-19 pandemics, there is a great need for novel vaccine developments. In this field, there have been research approaches that focused on the production of SARS-CoV-2 virus-like particles. These are promising vaccine candidates as their structure is similar to that of native virions but they lack the genome, constituting a biosafe alternative. In order to produce these structures using mammal cells, it has been established that all four structural proteins must be expressed. Here we report the generation and characterization of a novel chimeric virus-like particle (VLP) that can be produced by the expression of a single novel fusion protein that contains SARS-CoV-2 spike (S) ectodomain fused to rabies glycoprotein membrane anchoring region in HEK293 cells. This protein is structurally similar to native S and can autonomously bud forming enveloped VLPs that resemble native virions both in size and in morphology, displaying S ectodomain and receptor binding domain (RBD) on their surface. As a proof of concept, we analyzed the immunogenicity of this vaccine candidate in mice and confirmed the generation of anti-S, anti-RBD, and neutralizing antibodies. KEY POINTS: • A novel fusion rabies glycoprotein containing S ectodomain was designed. • Fusion protein formed cVLPs that were morphologically similar to SARS-CoV-2 virions. • cVLPs induced anti-S, anti-RBD, and neutralizing antibodies in mice.
Collapse
Affiliation(s)
- Ernesto Garay
- UNL, CONICET, FBCB (School of Biochemistry and Biological Sciences), CBL (Biotechnological Center of Litoral), Ciudad Universitaria, Ruta Nacional 168 - Km 472.4 - C.C. 242 - (S3000ZAA) Santa Fe, Santa Fe, Argentina
| | - Diego Fontana
- UNL, CONICET, FBCB (School of Biochemistry and Biological Sciences), CBL (Biotechnological Center of Litoral), Ciudad Universitaria, Ruta Nacional 168 - Km 472.4 - C.C. 242 - (S3000ZAA) Santa Fe, Santa Fe, Argentina.
| | - Javier Villarraza
- UNL, CONICET, FBCB (School of Biochemistry and Biological Sciences), CBL (Biotechnological Center of Litoral), Ciudad Universitaria, Ruta Nacional 168 - Km 472.4 - C.C. 242 - (S3000ZAA) Santa Fe, Santa Fe, Argentina
| | - Antonela Fuselli
- UNL, CONICET, FBCB (School of Biochemistry and Biological Sciences), CBL (Biotechnological Center of Litoral), Ciudad Universitaria, Ruta Nacional 168 - Km 472.4 - C.C. 242 - (S3000ZAA) Santa Fe, Santa Fe, Argentina
| | - Agustina Gugliotta
- UNL, CONICET, FBCB (School of Biochemistry and Biological Sciences), CBL (Biotechnological Center of Litoral), Ciudad Universitaria, Ruta Nacional 168 - Km 472.4 - C.C. 242 - (S3000ZAA) Santa Fe, Santa Fe, Argentina
| | - Sebastián Antuña
- Biotecnofe S.A. PTLC, Ruta 168 (S3000ZAA) Santa Fe, Santa Fe, Argentina
| | - Belén Tardivo
- Biotecnofe S.A. PTLC, Ruta 168 (S3000ZAA) Santa Fe, Santa Fe, Argentina
| | - María Celeste Rodríguez
- UNL, CONICET, FBCB (School of Biochemistry and Biological Sciences), CBL (Biotechnological Center of Litoral), Ciudad Universitaria, Ruta Nacional 168 - Km 472.4 - C.C. 242 - (S3000ZAA) Santa Fe, Santa Fe, Argentina
| | - Victoria Gastaldi
- UNL, CONICET, FBCB (School of Biochemistry and Biological Sciences), CBL (Biotechnological Center of Litoral), Ciudad Universitaria, Ruta Nacional 168 - Km 472.4 - C.C. 242 - (S3000ZAA) Santa Fe, Santa Fe, Argentina
- Biotecnofe S.A. PTLC, Ruta 168 (S3000ZAA) Santa Fe, Santa Fe, Argentina
| | - Juan Manuel Battagliotti
- UNL, CONICET, FBCB (School of Biochemistry and Biological Sciences), CBL (Biotechnological Center of Litoral), Ciudad Universitaria, Ruta Nacional 168 - Km 472.4 - C.C. 242 - (S3000ZAA) Santa Fe, Santa Fe, Argentina
| | - Diego Alvarez
- Instituto de Investigaciones Biotecnológicas "Dr. Rodolfo A. Ugalde" UNSAM-CONICET, Pcia. Buenos Aires, San Martin, Argentina
| | - Eliana Castro
- Instituto de Investigaciones Biotecnológicas "Dr. Rodolfo A. Ugalde" UNSAM-CONICET, Pcia. Buenos Aires, San Martin, Argentina
| | - Juliana Cassataro
- Instituto de Investigaciones Biotecnológicas "Dr. Rodolfo A. Ugalde" UNSAM-CONICET, Pcia. Buenos Aires, San Martin, Argentina
| | - Natalia Ceaglio
- UNL, CONICET, FBCB (School of Biochemistry and Biological Sciences), CBL (Biotechnological Center of Litoral), Ciudad Universitaria, Ruta Nacional 168 - Km 472.4 - C.C. 242 - (S3000ZAA) Santa Fe, Santa Fe, Argentina
| | - Claudio Prieto
- Biotecnofe S.A. PTLC, Ruta 168 (S3000ZAA) Santa Fe, Santa Fe, Argentina
- UNL, FBCB (School of Biochemistry and Biological Sciences), CBL (Biotechnological Center of Litoral), Ciudad Universitaria, Ruta Nacional 168 - Km 472.4 - C.C. 242 - (S3000ZAA) Santa Fe, Santa Fe, Argentina
- Cellargen Biotech SRL, FBCB (School of Biochemistry and Biological Sciences) Biotechnological Development Laboratory, Ciudad Universitaria UNL, (S3000ZAA), Santa Fe, Argentina
| |
Collapse
|
9
|
Evaluation of the Mucosal Immunity Effect of Bovine Viral Diarrhea Virus Subunit Vaccine E2Fc and E2Ft. Int J Mol Sci 2023; 24:ijms24044172. [PMID: 36835584 PMCID: PMC9965503 DOI: 10.3390/ijms24044172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/12/2023] [Accepted: 02/12/2023] [Indexed: 02/22/2023] Open
Abstract
Classified as a class B infectious disease by the World Organization for Animal Health (OIE), bovine viral diarrhea/mucosal disease is an acute, highly contagious disease caused by the bovine viral diarrhea virus (BVDV). Sporadic endemics of BVDV often lead to huge economic losses to the dairy and beef industries. To shed light on the prevention and control of BVDV, we developed two novel subunit vaccines by expressing bovine viral diarrhea virus E2 fusion recombinant proteins (E2Fc and E2Ft) through suspended HEK293 cells. We also evaluated the immune effects of the vaccines. The results showed that both subunit vaccines induced an intense mucosal immune response in calves. Mechanistically, E2Fc bonded to the Fc γ receptor (FcγRI) on antigen-presenting cells (APCs) and promoted IgA secretion, leading to a stronger T-cell immune response (Th1 type). The neutralizing antibody titer stimulated by the mucosal-immunized E2Fc subunit vaccine reached 1:64, which was higher than that of the E2Ft subunit vaccine and that of the intramuscular inactivated vaccine. The two novel subunit vaccines for mucosal immunity developed in this study, E2Fc and E2Ft, can be further used as new strategies to control BVDV by enhancing cellular and humoral immunity.
Collapse
|
10
|
Bruder MR, Aucoin MG. Evaluation of Virus-Free Manufacture of Recombinant Proteins Using CRISPR-Mediated Gene Disruption in Baculovirus-Infected Insect Cells. Vaccines (Basel) 2023; 11:vaccines11020225. [PMID: 36851104 PMCID: PMC9966935 DOI: 10.3390/vaccines11020225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 01/20/2023] Open
Abstract
The manufacture and downstream processing of virus-like particles (VLPs) using the baculovirus expression vector system (BEVS) is complicated by the presence of large concentrations of baculovirus particles, which are similar in size and density to VLPs, and consequently are difficult to separate. To reduce the burden of downstream processing, CRISPR-Cas9 technology was used to introduce insertion-deletion (indel) mutations within the Autographa californica multiple nucleopolyhedrovirus (AcMNPV) gp64 open reading frame, which encodes the major envelope protein of AcMNPV. After comfirming the site-specific targeting of gp64 leading to reduced budded virus (BV) release, the gag gene of human immunodeficiency virus type 1 was expressed to produce Gag VLPs. This approach was effective for producing VLPs using the BEVS whilst simultaneously obstructing BV release.
Collapse
|
11
|
Martins SA, Santos J, Silva RDM, Rosa C, Cabo Verde S, Correia JDG, Melo R. How promising are HIV-1-based virus-like particles for medical applications. Front Cell Infect Microbiol 2022; 12:997875. [PMID: 36275021 PMCID: PMC9585283 DOI: 10.3389/fcimb.2022.997875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 09/23/2022] [Indexed: 11/26/2022] Open
Abstract
New approaches aimed at identifying patient-specific drug targets and addressing unmet clinical needs in the framework of precision medicine are a strong motivation for researchers worldwide. As scientists learn more about proteins that drive known diseases, they are better able to design promising therapeutic approaches to target those proteins. The field of nanotechnology has been extensively explored in the past years, and nanoparticles (NPs) have emerged as promising systems for target-specific delivery of drugs. Virus-like particles (VLPs) arise as auspicious NPs due to their intrinsic properties. The lack of viral genetic material and the inability to replicate, together with tropism conservation and antigenicity characteristic of the native virus prompted extensive interest in their use as vaccines or as delivery systems for therapeutic and/or imaging agents. Owing to its simplicity and non-complex structure, one of the viruses currently under study for the construction of VLPs is the human immunodeficiency virus type 1 (HIV-1). Typically, HIV-1-based VLPs are used for antibody discovery, vaccines, diagnostic reagent development and protein-based assays. This review will be centered on the use of HIV-1-based VLPs and their potential biomedical applications.
Collapse
Affiliation(s)
- Sofia A. Martins
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Joana Santos
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Rúben D. M. Silva
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Cátia Rosa
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Sandra Cabo Verde
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
- Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - João D. G. Correia
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
- Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Rita Melo
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
12
|
Yang Z, Xu X, Silva CAT, Farnos O, Venereo-Sanchez A, Toussaint C, Dash S, González-Domínguez I, Bernier A, Henry O, Kamen A. Membrane Chromatography-Based Downstream Processing for Cell-Culture Produced Influenza Vaccines. Vaccines (Basel) 2022; 10:vaccines10081310. [PMID: 36016198 PMCID: PMC9414887 DOI: 10.3390/vaccines10081310] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 11/18/2022] Open
Abstract
New influenza strains are constantly emerging, causing seasonal epidemics and raising concerns to the risk of a new global pandemic. Since vaccination is an effective method to prevent the spread of the disease and reduce its severity, the development of robust bioprocesses for producing pandemic influenza vaccines is exceptionally important. Herein, a membrane chromatography-based downstream processing platform with a demonstrated industrial application potential was established. Cell culture-derived influenza virus H1N1/A/PR/8/34 was harvested from benchtop bioreactor cultures. For the clarification of the cell culture broth, a depth filtration was selected as an alternative to centrifugation. After inactivation, an anion exchange chromatography membrane was used for viral capture and further processing. Additionally, two pandemic influenza virus strains, the H7N9 subtype of the A/Anhui/1/2013 and H3N2/A/Hong Kong/8/64, were successfully processed through similar downstream process steps establishing optimized process parameters. Overall, 41.3–62.5% viral recovery was achieved, with the removal of 86.3–96.5% host cell DNA and 95.5–99.7% of proteins. The proposed membrane chromatography purification is a scalable and generic method for the processing of different influenza strains and is a promising alternative to the current industrial purification of influenza vaccines based on ultracentrifugation methodologies.
Collapse
Affiliation(s)
- Zeyu Yang
- Viral Vectors and Vaccines Bioprocessing Group, Department of Bioengineering, McGill University, Montreal, QC H3A 0G4, Canada
| | - Xingge Xu
- Viral Vectors and Vaccines Bioprocessing Group, Department of Bioengineering, McGill University, Montreal, QC H3A 0G4, Canada
| | - Cristina A. T. Silva
- Viral Vectors and Vaccines Bioprocessing Group, Department of Bioengineering, McGill University, Montreal, QC H3A 0G4, Canada
- Department of Chemical Engineering, Polytechnique Montreal, Montreal, QC H3T 1J4, Canada
| | - Omar Farnos
- Viral Vectors and Vaccines Bioprocessing Group, Department of Bioengineering, McGill University, Montreal, QC H3A 0G4, Canada
| | - Alina Venereo-Sanchez
- Viral Vectors and Vaccines Bioprocessing Group, Department of Bioengineering, McGill University, Montreal, QC H3A 0G4, Canada
| | - Cécile Toussaint
- Viral Vectors and Vaccines Bioprocessing Group, Department of Bioengineering, McGill University, Montreal, QC H3A 0G4, Canada
| | - Shantoshini Dash
- Viral Vectors and Vaccines Bioprocessing Group, Department of Bioengineering, McGill University, Montreal, QC H3A 0G4, Canada
| | - Irene González-Domínguez
- Viral Vectors and Vaccines Bioprocessing Group, Department of Bioengineering, McGill University, Montreal, QC H3A 0G4, Canada
| | - Alice Bernier
- Viral Vectors and Vaccines Bioprocessing Group, Department of Bioengineering, McGill University, Montreal, QC H3A 0G4, Canada
| | - Olivier Henry
- Department of Chemical Engineering, Polytechnique Montreal, Montreal, QC H3T 1J4, Canada
| | - Amine Kamen
- Viral Vectors and Vaccines Bioprocessing Group, Department of Bioengineering, McGill University, Montreal, QC H3A 0G4, Canada
- Correspondence:
| |
Collapse
|
13
|
Carvalho SB, Silva RJS, Sousa MFQ, Peixoto C, Roldão A, Carrondo MJT, Alves PM. Bioanalytics for Influenza Virus-Like Particle Characterization and Process Monitoring. Front Bioeng Biotechnol 2022; 10:805176. [PMID: 35252128 PMCID: PMC8894879 DOI: 10.3389/fbioe.2022.805176] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 01/05/2022] [Indexed: 01/22/2023] Open
Abstract
Virus-like particles (VLPs) are excellent platforms for the development of influenza vaccine candidates. Nonetheless, their characterization is challenging due to VLPs’ unique biophysical and biochemical properties. To cope with such complexity, multiple analytical techniques have been developed to date (e.g., single-particle analysis, thermal stability, or quantification assays), most of which are rarely used or have been successfully demonstrated for being applicable for virus particle characterization. In this study, several biophysical and biochemical methods have been evaluated for thorough characterization of monovalent and pentavalent influenza VLPs from diverse groups (A and B) and subtypes (H1 and H3) produced in insect cells using the baculovirus expression vector system (IC-BEVS). Particle size distribution and purity profiles were monitored during the purification process using two complementary technologies — nanoparticle tracking analysis (NTA) and tunable resistive pulse sensing (TRPS). VLP surface charge at the selected process pH was also assessed by this last technique. The morphology of the VLP (size, shape, and presence of hemagglutinin spikes) was evaluated using transmission electron microscopy. Circular dichroism was used to assess VLPs’ thermal stability. Total protein, DNA, and baculovirus content were also assessed. All VLPs analyzed exhibited similar size ranges (90–115 nm for NTA and 129–141 nm for TRPS), surface charges (average of −20.4 mV), and morphology (pleomorphic particles resembling influenza virus) exhibiting the presence of HA molecules (spikes) uniformly displayed on M1 protein scaffold. Our data shows that HA titers and purification efficiency in terms of impurity removal and thermal stability were observed to be particle dependent. This study shows robustness and generic applicability of the tools and methods evaluated, independent of VLP valency and group/subtype. Thus, they are most valuable to assist process development and enhance product characterization.
Collapse
Affiliation(s)
- Sofia B. Carvalho
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Ricardo J. S. Silva
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Marcos F. Q. Sousa
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Cristina Peixoto
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - António Roldão
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | | | - Paula M. Alves
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
- *Correspondence: Paula M. Alves,
| |
Collapse
|
14
|
Boix-Besora A, Lorenzo E, Lavado-García J, Gòdia F, Cervera L. Optimization, Production, Purification and Characterization of HIV-1 GAG-Based Virus-like Particles Functionalized with SARS-CoV-2. Vaccines (Basel) 2022; 10:vaccines10020250. [PMID: 35214708 PMCID: PMC8874421 DOI: 10.3390/vaccines10020250] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/02/2022] [Accepted: 02/04/2022] [Indexed: 01/27/2023] Open
Abstract
Virus-like particles (VLPs) constitute a promising approach to recombinant vaccine development. They are robust, safe, versatile and highly immunogenic supra-molecular structures that closely mimic the native conformation of viruses without carrying their genetic material. HIV-1 Gag VLPs share similar characteristics with wild-type severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus, making them a suitable platform for the expression of its spike membrane protein to generate a potential vaccine candidate for COVID-19. This work proposes a methodology for the generation of SARS-CoV-2 VLPs by their co-expression with HIV-1 Gag protein. We achieved VLP functionalization with coronavirus spike protein, optimized its expression using a design of experiments (DoE). We also performed the bioprocess at a bioreactor scale followed by a scalable downstream purification process consisting of two clarifications, an ion exchange and size-exclusion chromatography. The whole production process is conceived to enhance its transferability at current good manufacturing practice (cGMP) industrial scale manufacturing. Moreover, the approach proposed could be expanded to produce additional Gag-based VLPs against different diseases or COVID-19 variants.
Collapse
|
15
|
Arista-Romero M, Delcanale P, Pujals S, Albertazzi L. Nanoscale Mapping of Recombinant Viral Proteins: From Cells to Virus-Like Particles. ACS PHOTONICS 2022; 9:101-109. [PMID: 35083366 PMCID: PMC8778639 DOI: 10.1021/acsphotonics.1c01154] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Indexed: 05/17/2023]
Abstract
Influenza recombinant proteins and virus-like particles (VLPs) play an important role in vaccine development (e.g., CadiFlu-S). However, their production from mammalian cells suffers from low yields and lack of control of the final VLPs. To improve these issues, characterization techniques able to visualize and quantify the different steps of the process are needed. Fluorescence microscopy represents a powerful tool able to image multiple protein targets; however, its limited resolution hinders the study of viral constructs. Here, we propose the use of super-resolution microscopy and in particular of DNA-point accumulation for imaging in nanoscale topography (DNA-PAINT) microscopy as a characterization method for recombinant viral proteins on both cells and VLPs. We were able to quantify the amount of the three main influenza proteins (hemagglutinin (HA), neuraminidase (NA), and ion channel matrix protein 2 (M2)) per cell and per VLP with nanometer resolution and single-molecule sensitivity, proving that DNA-PAINT is a powerful technique to characterize recombinant viral constructs.
Collapse
Affiliation(s)
- Maria Arista-Romero
- Nanoscopy
for Nanomedicine Group, Institute for Bioengineering
of Catalonia (IBEC), The Barcelona Institute of Science and Technology, C\Baldiri Reixac 15-21, Helix Building, 08028 Barcelona, Spain
| | - Pietro Delcanale
- Dipartimento
di Scienze Matematiche, Fisiche e Informatiche, Università di Parma, Parco area delle Scienze 7/A, 43124 Parma, Italy
| | - Silvia Pujals
- Nanoscopy
for Nanomedicine Group, Institute for Bioengineering
of Catalonia (IBEC), The Barcelona Institute of Science and Technology, C\Baldiri Reixac 15-21, Helix Building, 08028 Barcelona, Spain
| | - Lorenzo Albertazzi
- Nanoscopy
for Nanomedicine Group, Institute for Bioengineering
of Catalonia (IBEC), The Barcelona Institute of Science and Technology, C\Baldiri Reixac 15-21, Helix Building, 08028 Barcelona, Spain
- Department
of Biomedical Engineering, Institute for Complex Molecular Systems
(ICMS), Eindhoven University of Technology, 5612AZ Eindhoven, The Netherlands
| |
Collapse
|
16
|
Baculovirus-derived influenza virus-like particle confers complete protection against lethal H7N9 avian influenza virus challenge in chickens and mice. Vet Microbiol 2022; 264:109306. [DOI: 10.1016/j.vetmic.2021.109306] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/29/2021] [Accepted: 12/11/2021] [Indexed: 02/03/2023]
|
17
|
González-Domínguez I, Lorenzo E, Bernier A, Cervera L, Gòdia F, Kamen A. A Four-Step Purification Process for Gag VLPs: From Culture Supernatant to High-Purity Lyophilized Particles. Vaccines (Basel) 2021; 9:vaccines9101154. [PMID: 34696262 PMCID: PMC8539588 DOI: 10.3390/vaccines9101154] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 09/27/2021] [Accepted: 09/27/2021] [Indexed: 01/15/2023] Open
Abstract
Gag-based virus-like particles (VLPs) have high potential as scaffolds for the development of chimeric vaccines and delivery strategies. The production of purified preparations that can be preserved independently from cold chains is highly desirable to facilitate distribution and access worldwide. In this work, a nimble purification has been developed, facilitating the production of Gag VLPs. Suspension-adapted HEK 293 cells cultured in chemically defined cell culture media were used to produce the VLPs. A four-step downstream process (DSP) consisting of membrane filtration, ion-exchange chromatography, polishing, and lyophilization was developed. The purification of VLPs from other contaminants such as host cell proteins (HCP), double-stranded DNA, or extracellular vesicles (EVs) was confirmed after their DSP. A concentration of 2.2 ± 0.8 × 109 VLPs/mL in the lyophilized samples was obtained after its storage at room temperature for two months. Morphology and structural integrity of purified VLPs was assessed by cryo-TEM and NTA. Likewise, the purification methodologies proposed here could be easily scaled up and applied to purify similar enveloped viruses and vesicles.
Collapse
Affiliation(s)
- Irene González-Domínguez
- Departament d’Enginyeria Química Biològica i Ambiental, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain; (E.L.); (L.C.); (F.G.)
- Correspondence:
| | - Elianet Lorenzo
- Departament d’Enginyeria Química Biològica i Ambiental, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain; (E.L.); (L.C.); (F.G.)
| | - Alice Bernier
- Department of Bioengineering, McGill University, Montreal, QC H3A 0E9, Canada; (A.B.); (A.K.)
| | - Laura Cervera
- Departament d’Enginyeria Química Biològica i Ambiental, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain; (E.L.); (L.C.); (F.G.)
| | - Francesc Gòdia
- Departament d’Enginyeria Química Biològica i Ambiental, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain; (E.L.); (L.C.); (F.G.)
| | - Amine Kamen
- Department of Bioengineering, McGill University, Montreal, QC H3A 0E9, Canada; (A.B.); (A.K.)
| |
Collapse
|
18
|
Lavado-García J, Jorge I, Boix-Besora A, Vázquez J, Gòdia F, Cervera L. Characterization of HIV-1 virus-like particles and determination of Gag stoichiometry for different production platforms. Biotechnol Bioeng 2021; 118:2660-2675. [PMID: 33844274 DOI: 10.1002/bit.27786] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/06/2021] [Accepted: 04/08/2021] [Indexed: 11/10/2022]
Abstract
The importance of developing new vaccine technologies towards versatile platforms that can cope with global virus outbreaks has been evidenced with the most recent severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic. Virus-like particles (VLPs) are a highly immunogenic, safe, and robust approach that can be used to base several vaccine candidates on. Particularly, HIV-1 Gag VLPs is a flexible system comprising a Gag core surrounded by a lipid bilayer that can be modified to present diverse types of membrane proteins or antigens against several diseases, like influenza, dengue, West Nile virus, or human papillomavirus, where it has been proven successful. The size distribution and structural characteristics of produced VLPs vary depending on the cell line used to produce them. In this study, we established an analytical method of characterization for the Gag protein core and clarified the current variability of Gag stoichiometry in HIV-1 VLPs depending on the cell-based production platform, directly determining the number of Gag molecules per VLP in each case. Three Gag peptides have been validated to quantify the number of monomers using parallel reaction monitoring, an accurate and fast, mass-spectrometry-based method that can be used to assess the quality of the produced Gag VLPs regardless of the cell line used. An average of 3617 ± 17 monomers per VLP was obtained for HEK293, substantially varying between platforms, including mammalian and insect cells. This offers a key advantage in quantification and quality control methods to characterize VLP production at a large scale to accelerate new recombinant vaccine production technologies.
Collapse
Affiliation(s)
- Jesús Lavado-García
- Grup d'Enginyeria Cel·lular i Bioprocessos, Department of Chemical, Biological and Environmental Engineering, Escola d'Enginyeria, Universitat Autònoma de Barcelona, Campus de Bellaterra, Cerdanyola del Vallès, Barcelona, Spain
| | - Inmaculada Jorge
- Laboratory of Cardiovascular Proteomics, Vascular Physiopathology area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, Madrid, Spain.,CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Arnau Boix-Besora
- Grup d'Enginyeria Cel·lular i Bioprocessos, Department of Chemical, Biological and Environmental Engineering, Escola d'Enginyeria, Universitat Autònoma de Barcelona, Campus de Bellaterra, Cerdanyola del Vallès, Barcelona, Spain
| | - Jesús Vázquez
- Laboratory of Cardiovascular Proteomics, Vascular Physiopathology area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, Madrid, Spain.,CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Francesc Gòdia
- Grup d'Enginyeria Cel·lular i Bioprocessos, Department of Chemical, Biological and Environmental Engineering, Escola d'Enginyeria, Universitat Autònoma de Barcelona, Campus de Bellaterra, Cerdanyola del Vallès, Barcelona, Spain
| | - Laura Cervera
- Grup d'Enginyeria Cel·lular i Bioprocessos, Department of Chemical, Biological and Environmental Engineering, Escola d'Enginyeria, Universitat Autònoma de Barcelona, Campus de Bellaterra, Cerdanyola del Vallès, Barcelona, Spain
| |
Collapse
|
19
|
Fernandes B, Correia R, Sousa M, Carrondo MJT, Alves PM, Roldão A. Integrating high cell density cultures with adapted laboratory evolution for improved Gag-HA virus-like particles production in stable insect cell lines. Biotechnol Bioeng 2021; 118:2536-2547. [PMID: 33764532 DOI: 10.1002/bit.27766] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/05/2021] [Accepted: 03/23/2021] [Indexed: 12/23/2022]
Abstract
Stable insect cell lines are emerging as an alternative to the insect cell-baculovirus expression vector system (IC-BEVS) for protein expression, benefiting from being a virus-free, nonlytic system. Still, the titers achieved are considerably lower. In this study, stable insect (Sf-9 and High Five) cells producing Gag virus-like particles (VLPs) were first adapted to grow under hypothermic culture conditions (22°C instead of standard 27°C), and then pseudotyped with a model membrane protein (influenza hemagglutinin [HA]) for expression of Gag-HA VLPs. Adaptation to lower temperature led to an increase in protein titers of up to 12-fold for p24 (as proxy for Gag-VLP) and sixfold for HA, with adapted Sf-9 cells outperforming High Five cells. Resulting Gag-HA VLPs producer Sf-9 cells were cultured to high cell densities, that is, 100 × 106 cell/ml, using perfusion (ATF® 2) in 1 L stirred-tank bioreactors. Specific p24 and HA production rates were similar to those of batch culture, enabling to increase volumetric titers by 7-8-fold without compromising the assembly of Gag-HA VLPs. Importantly, the antigen (HA) quantity in VLPs generated using stable adapted cells in perfusion was ≈5-fold higher than that from IC-BEVS, with the added benefit of being a baculovirus-free system. This study demonstrates the potential of combining stable expression in insect cells adapted to hypothermic culture conditions with perfusion for improving Gag-HA VLPs production.
Collapse
Affiliation(s)
- Bárbara Fernandes
- IBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal.,ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Ricardo Correia
- IBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal.,ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Marcos Sousa
- IBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal.,ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | | | - Paula M Alves
- IBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal.,ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - António Roldão
- IBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal.,ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| |
Collapse
|
20
|
Lavado-García J, Díaz-Maneh A, Canal-Paulí N, Pérez-Rubio P, Gòdia F, Cervera L. Metabolic engineering of HEK293 cells to improve transient transfection and cell budding of HIV-1 virus-like particles. Biotechnol Bioeng 2021; 118:1649-1663. [PMID: 33463716 DOI: 10.1002/bit.27679] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 01/12/2021] [Indexed: 01/08/2023]
Abstract
HIV-1 Gag virus-like particles (VLPs) are promising candidates for the development of future vaccines. Recent viral outbreaks have manifested the need of robust vaccine production platforms able to adapt to new challenges while achieving mass production capacity. For the rapid production of VLPs, the method of transient gene expression (TGE) have proved highly efficient. Based on a previous characterization of the HEK293 cell line upon transient transfection using multiplexed quantitative proteomics, molecular production bottlenecks and metabolic pathways likely to be optimized were identified. In this study, these molecular components and metabolic pathways have been explored and modulated via transient metabolic engineering using approaches like design of experiments to fully exploit and optimize VLP production, transfection and budding efficiency. Upon overexpression of endosomal sorting complex required for transport accessory proteins like NEDD4L and CIT, VLP production increased 3.3 and 2.9-fold, respectively. Overexpression of glycosphingolipid precursor enzyme UGCG improved transfection efficiency by 17% and knocking-down the Gag-binding protein CNP improved 2.5-fold VLP specific productivity. Combining CNP inhibition and UGCG overexpression further improved budding efficiency by 37.3%. Modulating VLP production and accessory pathways like intracellular budding, demonstrated the potential of metabolic engineering to optimize and intensify the development of robust production platforms for future vaccines.
Collapse
Affiliation(s)
- Jesús Lavado-García
- Grup d'Enginyeria Cellular i Bioprocessos, Escola d'Enginyeria, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Andy Díaz-Maneh
- Grup d'Enginyeria Cellular i Bioprocessos, Escola d'Enginyeria, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Núria Canal-Paulí
- Grup d'Enginyeria Cellular i Bioprocessos, Escola d'Enginyeria, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Pol Pérez-Rubio
- Grup d'Enginyeria Cellular i Bioprocessos, Escola d'Enginyeria, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Francesc Gòdia
- Grup d'Enginyeria Cellular i Bioprocessos, Escola d'Enginyeria, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Laura Cervera
- Grup d'Enginyeria Cellular i Bioprocessos, Escola d'Enginyeria, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
21
|
Farnós O, Venereo-Sánchez A, Xu X, Chan C, Dash S, Chaabane H, Sauvageau J, Brahimi F, Saragovi U, Leclerc D, Kamen AA. Rapid High-Yield Production of Functional SARS-CoV-2 Receptor Binding Domain by Viral and Non-Viral Transient Expression for Pre-Clinical Evaluation. Vaccines (Basel) 2020; 8:vaccines8040654. [PMID: 33158147 PMCID: PMC7712309 DOI: 10.3390/vaccines8040654] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 10/18/2020] [Accepted: 10/28/2020] [Indexed: 12/30/2022] Open
Abstract
Vaccine design strategies against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are focused on the Spike protein or its subunits as the main antigen target of neutralizing antibodies. In this work, we propose rapid production methods of an extended segment of the Spike Receptor Binding Domain (RBD) in HEK293SF cells cultured in suspension, in serum-free media, as a major component of a COVID-19 subunit vaccine under development. The expression of RBD, engineered with a sortase-recognition motif for protein-based carrier coupling, was achieved at high yields by plasmid transient transfection or human type-5-adenoviral infection of the cells, in a period of only two and three weeks, respectively. Both production methods were evaluated in 3L-controlled bioreactors with upstream and downstream bioprocess improvements, resulting in a product recovery with over 95% purity. Adenoviral infection led to over 100 µg/mL of RBD in culture supernatants, which was around 7-fold higher than levels obtained in transfected cultures. The monosaccharide and sialic acid content was similar in the RBD protein from the two production approaches. It also exhibited a proper conformational structure as recognized by monoclonal antibodies directed against key native Spike epitopes. Efficient direct binding to ACE2 was also demonstrated at similar levels in RBD obtained from both methods and from different production lots. Overall, we provide bioprocess-related data for the rapid, scalable manufacturing of low cost RBD based vaccines against SARS-CoV-2, with the added value of making a functional antigen available to support further research on uncovering mechanisms of virus binding and entry as well as screening for potential COVID-19 therapeutics.
Collapse
Affiliation(s)
- Omar Farnós
- Viral Vectors and Vaccines Bioprocessing Group, Department of Bioengineering, McGill University, Montréal, QC H3A 0E9, Canada; (O.F.); (A.V.-S.); (X.X.); (C.C.); (S.D.); (H.C.)
| | - Alina Venereo-Sánchez
- Viral Vectors and Vaccines Bioprocessing Group, Department of Bioengineering, McGill University, Montréal, QC H3A 0E9, Canada; (O.F.); (A.V.-S.); (X.X.); (C.C.); (S.D.); (H.C.)
| | - Xingge Xu
- Viral Vectors and Vaccines Bioprocessing Group, Department of Bioengineering, McGill University, Montréal, QC H3A 0E9, Canada; (O.F.); (A.V.-S.); (X.X.); (C.C.); (S.D.); (H.C.)
| | - Cindy Chan
- Viral Vectors and Vaccines Bioprocessing Group, Department of Bioengineering, McGill University, Montréal, QC H3A 0E9, Canada; (O.F.); (A.V.-S.); (X.X.); (C.C.); (S.D.); (H.C.)
| | - Shantoshini Dash
- Viral Vectors and Vaccines Bioprocessing Group, Department of Bioengineering, McGill University, Montréal, QC H3A 0E9, Canada; (O.F.); (A.V.-S.); (X.X.); (C.C.); (S.D.); (H.C.)
| | - Hanan Chaabane
- Viral Vectors and Vaccines Bioprocessing Group, Department of Bioengineering, McGill University, Montréal, QC H3A 0E9, Canada; (O.F.); (A.V.-S.); (X.X.); (C.C.); (S.D.); (H.C.)
| | - Janelle Sauvageau
- Human Health Therapeutics, National Research Council of Canada, Ottawa, ON K1A 0R6, Canada;
| | - Fouad Brahimi
- Lady Davis Institute-Jewish General Hospital, McGill University, Montreal, QC H3T 1E2, Canada; (F.B.); (U.S.)
| | - Uri Saragovi
- Lady Davis Institute-Jewish General Hospital, McGill University, Montreal, QC H3T 1E2, Canada; (F.B.); (U.S.)
- Department of Pharmacology, Department of Ophthalmology and Visual Science, McGill University, Montréal, QC H3A 1A3, Canada
| | - Denis Leclerc
- Département de Microbiologie-Infectiologie et d’immunologie, Faculté de Médecine, Université Laval, Québec City, QC G1V 0A6, Canada;
| | - Amine A. Kamen
- Viral Vectors and Vaccines Bioprocessing Group, Department of Bioengineering, McGill University, Montréal, QC H3A 0E9, Canada; (O.F.); (A.V.-S.); (X.X.); (C.C.); (S.D.); (H.C.)
- Correspondence:
| |
Collapse
|
22
|
Ecker JW, Kirchenbaum GA, Pierce SR, Skarlupka AL, Abreu RB, Cooper RE, Taylor-Mulneix D, Ross TM, Sautto GA. High-Yield Expression and Purification of Recombinant Influenza Virus Proteins from Stably-Transfected Mammalian Cell Lines. Vaccines (Basel) 2020; 8:vaccines8030462. [PMID: 32825605 PMCID: PMC7565037 DOI: 10.3390/vaccines8030462] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 08/15/2020] [Accepted: 08/17/2020] [Indexed: 12/21/2022] Open
Abstract
Influenza viruses infect millions of people each year, resulting in significant morbidity and mortality in the human population. Therefore, generation of a universal influenza virus vaccine is an urgent need and would greatly benefit public health. Recombinant protein technology is an established vaccine platform and has resulted in several commercially available vaccines. Herein, we describe the approach for developing stable transfected human cell lines for the expression of recombinant influenza virus hemagglutinin (HA) and recombinant influenza virus neuraminidase (NA) proteins for the purpose of in vitro and in vivo vaccine development. HA and NA are the main surface glycoproteins on influenza virions and the major antibody targets. The benefits for using recombinant proteins for in vitro and in vivo assays include the ease of use, high level of purity and the ability to scale-up production. This work provides guidelines on how to produce and purify recombinant proteins produced in mammalian cell lines through either transient transfection or generation of stable cell lines from plasmid creation through the isolation step via Immobilized Metal Affinity Chromatography (IMAC). Collectively, the establishment of this pipeline has facilitated large-scale production of recombinant HA and NA proteins to high purity and with consistent yields, including glycosylation patterns that are very similar to proteins produced in a human host.
Collapse
Affiliation(s)
- Jeffrey W. Ecker
- Center for Vaccines and Immunology, University of Georgia, Athens, GA 30602, USA; (J.W.E.); (G.A.K.); (S.R.P.); (A.L.S.); (R.B.A.); (R.E.C.); (D.T.-M.); (T.M.R.)
| | - Greg A. Kirchenbaum
- Center for Vaccines and Immunology, University of Georgia, Athens, GA 30602, USA; (J.W.E.); (G.A.K.); (S.R.P.); (A.L.S.); (R.B.A.); (R.E.C.); (D.T.-M.); (T.M.R.)
| | - Spencer R. Pierce
- Center for Vaccines and Immunology, University of Georgia, Athens, GA 30602, USA; (J.W.E.); (G.A.K.); (S.R.P.); (A.L.S.); (R.B.A.); (R.E.C.); (D.T.-M.); (T.M.R.)
| | - Amanda L. Skarlupka
- Center for Vaccines and Immunology, University of Georgia, Athens, GA 30602, USA; (J.W.E.); (G.A.K.); (S.R.P.); (A.L.S.); (R.B.A.); (R.E.C.); (D.T.-M.); (T.M.R.)
| | - Rodrigo B. Abreu
- Center for Vaccines and Immunology, University of Georgia, Athens, GA 30602, USA; (J.W.E.); (G.A.K.); (S.R.P.); (A.L.S.); (R.B.A.); (R.E.C.); (D.T.-M.); (T.M.R.)
| | - R. Ethan Cooper
- Center for Vaccines and Immunology, University of Georgia, Athens, GA 30602, USA; (J.W.E.); (G.A.K.); (S.R.P.); (A.L.S.); (R.B.A.); (R.E.C.); (D.T.-M.); (T.M.R.)
| | - Dawn Taylor-Mulneix
- Center for Vaccines and Immunology, University of Georgia, Athens, GA 30602, USA; (J.W.E.); (G.A.K.); (S.R.P.); (A.L.S.); (R.B.A.); (R.E.C.); (D.T.-M.); (T.M.R.)
| | - Ted M. Ross
- Center for Vaccines and Immunology, University of Georgia, Athens, GA 30602, USA; (J.W.E.); (G.A.K.); (S.R.P.); (A.L.S.); (R.B.A.); (R.E.C.); (D.T.-M.); (T.M.R.)
- Department of Infectious Diseases, University of Georgia, Athens, GA 30602, USA
| | - Giuseppe A. Sautto
- Center for Vaccines and Immunology, University of Georgia, Athens, GA 30602, USA; (J.W.E.); (G.A.K.); (S.R.P.); (A.L.S.); (R.B.A.); (R.E.C.); (D.T.-M.); (T.M.R.)
- Correspondence: ; Tel.: +1-706-542-6711
| |
Collapse
|
23
|
Pushko P, Tretyakova I. Influenza Virus Like Particles (VLPs): Opportunities for H7N9 Vaccine Development. Viruses 2020; 12:v12050518. [PMID: 32397182 PMCID: PMC7291233 DOI: 10.3390/v12050518] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 04/21/2020] [Accepted: 04/27/2020] [Indexed: 01/21/2023] Open
Abstract
In the midst of the ongoing COVID-19 coronavirus pandemic, influenza virus remains a major threat to public health due to its potential to cause epidemics and pandemics with significant human mortality. Cases of H7N9 human infections emerged in eastern China in 2013 and immediately raised pandemic concerns as historically, pandemics were caused by the introduction of new subtypes into immunologically naïve human populations. Highly pathogenic H7N9 cases with severe disease were reported recently, indicating the continuing public health threat and the need for a prophylactic vaccine. Here we review the development of recombinant influenza virus-like particles (VLPs) as vaccines against H7N9 virus. Several approaches to vaccine development are reviewed including the expression of VLPs in mammalian, plant and insect cell expression systems. Although considerable progress has been achieved, including demonstration of safety and immunogenicity of H7N9 VLPs in the human clinical trials, the remaining challenges need to be addressed. These challenges include improvements to the manufacturing processes, as well as enhancements to immunogenicity in order to elicit protective immunity to multiple variants and subtypes of influenza virus.
Collapse
|
24
|
González-Domínguez I, Puente-Massaguer E, Cervera L, Gòdia F. Quality Assessment of Virus-Like Particles at Single Particle Level: A Comparative Study. Viruses 2020; 12:E223. [PMID: 32079288 PMCID: PMC7077327 DOI: 10.3390/v12020223] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 02/03/2020] [Accepted: 02/11/2020] [Indexed: 12/16/2022] Open
Abstract
Virus-like particles (VLPs) have emerged as a powerful scaffold for antigen presentation and delivery strategies. Compared to single protein-based therapeutics, quality assessment requires a higher degree of refinement due to the structure of VLPs and their similar properties to extracellular vesicles (EVs). Advances in the field of nanotechnology with single particle and high-resolution analysis techniques provide appealing approaches to VLP characterization. In this study, six different biophysical methods have been assessed for the characterization of HIV-1-based VLPs produced in mammalian and insect cell platforms. Sample preparation and equipment set-up were optimized for the six strategies evaluated. Electron Microscopy (EM) disclosed the presence of several types of EVs within VLP preparations and cryogenic transmission electron microscopy (cryo-TEM) resulted in the best technique to resolve the VLP ultrastructure. The use of super-resolution fluorescence microscopy (SRFM), nanoparticle tracking analysis (NTA) and flow virometry enabled the high throughput quantification of VLPs. Interestingly, differences in the determination of nanoparticle concentration were observed between techniques. Moreover, NTA and flow virometry allowed the quantification of both EVs and VLPs within the same experiment while analyzing particle size distribution (PSD), simultaneously. These results provide new insights into the use of different analytical tools to monitor the production of nanoparticle-based biologicals and their associated contaminants.
Collapse
|
25
|
Puente-Massaguer E, Lecina M, Gòdia F. Integrating nanoparticle quantification and statistical design of experiments for efficient HIV-1 virus-like particle production in High Five cells. Appl Microbiol Biotechnol 2020; 104:1569-1582. [PMID: 31907573 PMCID: PMC7224031 DOI: 10.1007/s00253-019-10319-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 12/04/2019] [Accepted: 12/13/2019] [Indexed: 02/06/2023]
Abstract
The nature of enveloped virus-like particles (VLPs) has triggered high interest in their application to different research fields, including vaccine development. The baculovirus expression vector system (BEVS) has been used as an efficient platform for obtaining large amounts of these complex nanoparticles. To date, most of the studies dealing with VLP production by recombinant baculovirus infection utilize indirect detection or quantification techniques that hinder the appropriate characterization of the process and product. Here, we propose the application of cutting-edge quantification methodologies in combination with advanced statistical designs to exploit the full potential of the High Five/BEVS as a platform to produce HIV-1 Gag VLPs. The synergies between CCI, MOI, and TOH were studied using a response surface methodology approach on four different response functions: baculovirus infection, VLP production, VLP assembly, and VLP productivity. TOH and MOI proved to be the major influencing factors in contrast with previous reported data. Interestingly, a remarkable competition between Gag VLP production and non-assembled Gag was detected. Also, the use of nanoparticle tracking analysis and flow virometry revealed the existence of remarkable quantities of extracellular vesicles. The different responses of the study were combined to determine two global optimum conditions, one aiming to maximize the VLP titer (quantity) and the second aiming to find a compromise between VLP yield and the ratio of assembled VLPs (quality). This study provides a valuable approach to optimize VLP production and demonstrates that the High Five/BEVS can support mass production of Gag VLPs and potentially other complex nanoparticles.
Collapse
Affiliation(s)
- Eduard Puente-Massaguer
- Departament d'Enginyeria Química, Biològica i Ambiental, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain.
| | - Martí Lecina
- IQS School of Engineering, Universitat Ramón Llull, Barcelona, Spain
| | - Francesc Gòdia
- Departament d'Enginyeria Química, Biològica i Ambiental, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain
| |
Collapse
|
26
|
Durous L, Rosa-Calatrava M, Petiot E. Advances in influenza virus-like particles bioprocesses. Expert Rev Vaccines 2019; 18:1285-1300. [DOI: 10.1080/14760584.2019.1704262] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Laurent Durous
- Virologie et Pathologie Humaine - VirPath team - Centre International de Recherche en Infectiologie (CIRI), INSERM U1111, CNRS UMR5308, ENS Lyon, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
| | - Manuel Rosa-Calatrava
- Virologie et Pathologie Humaine - VirPath team - Centre International de Recherche en Infectiologie (CIRI), INSERM U1111, CNRS UMR5308, ENS Lyon, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
- VirNext, Faculté de Médecine RTH Laennec, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
| | - Emma Petiot
- Virologie et Pathologie Humaine - VirPath team - Centre International de Recherche en Infectiologie (CIRI), INSERM U1111, CNRS UMR5308, ENS Lyon, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
| |
Collapse
|
27
|
Elahi SM, Shen CF, Gilbert R. Impact of dextran sulfate in culture media on titration of vesicular stomatitis virus. J Virol Methods 2019; 275:113758. [PMID: 31678047 DOI: 10.1016/j.jviromet.2019.113758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 10/24/2019] [Accepted: 10/24/2019] [Indexed: 11/16/2022]
Abstract
Viral vectors derived from vesicular stomatitis virus (VSV) are important vectors for the development of vaccines and for the treatment of cancer. The efficiency of therapy based on VSV is dependent on the dose of virus used. Therefore it is essential to measure accurately and reproducibly the amount of functional vectors in the samples to be tested. Two common methods used to measure the titer of VSV are TCID50% and plaque assay. In the current study, we compared these two titration methods by using a recombinant VSV expressing the green fluorescent protein (VSV-GFP) as a model virus. Some culture media developed for suspension mammalian cells contain dextran sulfate. We observed that plaque assay, but not TCID50%, can underestimate the virus titer up to 10 fold when VSV-GFP was produced in culture media containing dextran sulfate. Dextran sulfate is commonly used in serum-free culture media to reduce cell aggregation in suspension culture. The inhibitory effect of dextran sulfate on the titration of VSV-GFP was confirmed by supplementing the culture medium with this compound during virus production. Our results also demonstrated that extending the incubation time during plaque assay and TCID50% increases virus titer.
Collapse
Affiliation(s)
- Seyyed Mehdy Elahi
- Department of Bioprocess Engineering, National Research Council Canada, Building Montreal, Montréal, Canada.
| | - Chun Fang Shen
- Department of Bioprocess Engineering, National Research Council Canada, Building Montreal, Montréal, Canada.
| | - Rénald Gilbert
- Department of Bioprocess Engineering, National Research Council Canada, Building Montreal, Montréal, Canada; Department of Bioengineering, McGill University, Montréal, Canada.
| |
Collapse
|
28
|
Stark FC, Akache B, Ponce A, Dudani R, Deschatelets L, Jia Y, Sauvageau J, Williams D, Jamshidi MP, Agbayani G, Wachholz K, Harrison BA, Li X, Krishnan L, Chen W, McCluskie MJ. Archaeal glycolipid adjuvanted vaccines induce strong influenza-specific immune responses through direct immunization in young and aged mice or through passive maternal immunization. Vaccine 2019; 37:7108-7116. [DOI: 10.1016/j.vaccine.2019.07.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 06/21/2019] [Accepted: 07/02/2019] [Indexed: 12/20/2022]
|
29
|
Characterization of influenza H1N1 Gag virus-like particles and extracellular vesicles co-produced in HEK-293SF. Vaccine 2019; 37:7100-7107. [DOI: 10.1016/j.vaccine.2019.07.057] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 04/06/2019] [Accepted: 07/05/2019] [Indexed: 01/02/2023]
|
30
|
Gélinas JF, Azizi H, Kiesslich S, Lanthier S, Perdersen J, Chahal PS, Ansorge S, Kobinger G, Gilbert R, Kamen AA. Production of rVSV-ZEBOV in serum-free suspension culture of HEK 293SF cells. Vaccine 2019; 37:6624-6632. [DOI: 10.1016/j.vaccine.2019.09.044] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 08/28/2019] [Accepted: 09/11/2019] [Indexed: 12/13/2022]
|
31
|
Influenza A and B virus-like particles produced in mammalian cells are highly immunogenic and induce functional antibodies. Vaccine 2019; 37:6857-6867. [DOI: 10.1016/j.vaccine.2019.09.057] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 09/13/2019] [Accepted: 09/18/2019] [Indexed: 12/16/2022]
|
32
|
Chen P, Demirji J, Ivleva VB, Horwitz J, Schwartz R, Arnold F. The transient expression of CHIKV VLP in large stirred tank bioreactors. Cytotechnology 2019; 71:1079-1093. [PMID: 31560090 DOI: 10.1007/s10616-019-00346-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 09/19/2019] [Indexed: 01/06/2023] Open
Abstract
Transient gene expression (TGE) bioprocesses have been difficult to scale up in large stirred tank bioreactors with volumes of more than 1.5 L. Low production levels are often observed, but the causes have not been investigated (Gutierrez-Granados et al. in Crit Rev Biotechnol 38:918-940, 2018). Chikungunya Virus-like particle (VLP), expressed by DNA-PEI transient transfection, is a representative case study for these difficulties. Clinical materials were produced in shake flasks, but the process suffered when transferred to large stirred tank bioreactors. The resulting process was not operationally friendly nor cost effective. In this study, a systematic approach was used to investigate the root causes of the poor scale up performance. The transfection conditions were first screened in ambr® 15 high throughput mini bioreactors then examined in 3 L stirred-tank systems. The studies found that production level was negatively correlated with inoculum cell growth status (P < 0.05). The pH range, DNA and PEI levels, order of the reagent addition, and gas-sparging systems were also studied and found to affect process performance. Further hydromechanical characterizations (Re, energy dissipation rates, and P/V, etc.) of shake flasks, ambr® 15, and 3-L stirred tank systems were performed. Overall, the study discovered that the shear stress (caused by a microsparger) and PEI toxicity together were the root causes of scale-up failure. Once the microsparger was replaced by a macrosparger, the scale-up was successful.
Collapse
Affiliation(s)
- Peifeng Chen
- Vaccine Production Program, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 9 West Watkins Mill Rd, Gaithersburg, MD, 20878, USA.
| | - Jacob Demirji
- Vaccine Production Program, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 9 West Watkins Mill Rd, Gaithersburg, MD, 20878, USA
| | - Vera B Ivleva
- Vaccine Production Program, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 9 West Watkins Mill Rd, Gaithersburg, MD, 20878, USA
| | - Joe Horwitz
- Amicus Therapeutics, 1 Cedarbrook Dr, Cranbury, NJ, 08512, USA
| | | | - Frank Arnold
- Tunnell Consulting, 900 E. 8th Ave, King of Prussia, PA, 19406, USA
| |
Collapse
|
33
|
Cervera L, Gòdia F, Tarrés-Freixas F, Aguilar-Gurrieri C, Carrillo J, Blanco J, Gutiérrez-Granados S. Production of HIV-1-based virus-like particles for vaccination: achievements and limits. Appl Microbiol Biotechnol 2019; 103:7367-7384. [DOI: 10.1007/s00253-019-10038-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 07/15/2019] [Accepted: 07/16/2019] [Indexed: 12/20/2022]
|
34
|
Elahi SM, Shen CF, Gilbert R. Optimization of production of vesicular stomatitis virus (VSV) in suspension serum-free culture medium at high cell density. J Biotechnol 2018; 289:144-149. [PMID: 30508556 DOI: 10.1016/j.jbiotec.2018.11.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 11/08/2018] [Accepted: 11/27/2018] [Indexed: 12/22/2022]
Abstract
During the last decade, oncolytic viruses such as vesicular stomatitis virus (VSV) have gained tremendous popularity as efficient vaccines for infectious diseases as well as for the treatment of cancer. Our laboratory has developed two stable cell lines, 293SF-3F6 (derived from HEK293A cells) and SF-BMAdR cells (a variant of A549 that expresses the E1 region of human adenovirus). These two cell lines were adapted to grow efficiently in suspension culture and in serum-free medium. In this report we evaluated the production of a recombinant VSV expressing the green fluorescent protein (VSV-GFP) in these two stable cell lines. At a relatively low cell density of 500,000 cells per ml, 293SF-3F6 produced 4.6 times more infectious particles than SF-BMAdR cells. There was a positive correlation between volumetric virus titer and cell density up to 2.E + 07 cells/ml. A fed-batch process using an in-house medium and feed was developed to support the growth of 293SF-3F6 cells up to a concentration of 1.E + 07 cells/ml for infection at higher cell density and VSV production at high titer. Shifting the temperature from 37 °C to 34 °C at infection time improved VSV titer up to 3.3 fold. After scaling up the optimal condition from small scale (3 ml) to larger volumes (50 & 200 ml), the maximal volumetric titer obtained using the 293SF-3F6 cells was in average 2.9E + 10 extracellular infectious particles/ml. In conclusion, our data demonstrated that 293SF-3F6 cells, for which a cGMP master cell bank is available, is a performant cell line to scale up VSV production in suspension culture using serum-free medium.
Collapse
Affiliation(s)
- Seyyed Mehdy Elahi
- Department of Bioprocess Engineering, National Research Council Canada, Building Montreal, Montréal, Canada.
| | - Chun Fang Shen
- Department of Bioprocess Engineering, National Research Council Canada, Building Montreal, Montréal, Canada
| | - Rénald Gilbert
- Department of Bioprocess Engineering, National Research Council Canada, Building Montreal, Montréal, Canada; Department of Bioengineering McGill University, Montréal, Canada
| |
Collapse
|
35
|
Kuck LR, Byrne-Nash R, Gillis J, Bueter K, Couzens LK, Eichelberger MC, Rowlen KL. VaxArray for hemagglutinin and neuraminidase potency testing of influenza vaccines. Vaccine 2018; 36:2937-2945. [PMID: 29699789 DOI: 10.1016/j.vaccine.2018.04.048] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 04/13/2018] [Accepted: 04/17/2018] [Indexed: 01/14/2023]
Abstract
Practical methods to measure the potency of influenza vaccines are needed as alternatives for the standard single radial immunodiffusion (SRID) assay. VaxArray assays for influenza hemagglutinin (HA) and neuraminidase (NA) have been developed to address this need. In this report, we evaluate the use of these assays to assess the potency of HA and NA of an A/H3N2 subunit vaccine by determining the correlation between the amounts measured by VaxArray and the immunogenicity in mice. The antibody response after one and two doses of five formulations of the vaccine ranging from 5 µg/mL to 80 µg/mL of HA, was measured by hemagglutination inhibition (HAI) and neuraminidase inhibition (NAI) assays. For hemagglutinin, vaccine potency determined by VaxArray was equivalent to potency measured SRID and these amounts were predictive of immunogenicity, with excellent correlation between potency measured by VaxArray and the HAI geometric mean titers (GMT). Likewise, the amount of NA measured by VaxArray was predictive of the NAI GMT. The VaxArray NA assay reported non-detectable levels of intact NA for a sample that had been heat degraded at 56 °C for 20 h, demonstrating that the assay measures the native, active form of NA. Similarly, the HA potency measured by VaxArray in this heat-treated sample was very low when a monoclonal antibody was used to detect the amount of antigen bound. Importantly, the force degraded sample induced low HAI titers and the NAI titers were not measurable, supporting the conclusion that the VaxArray HA and NA assays measure the immunogenic forms of these A/H3N2 antigens. This study indicates that VaxArray assays can be used to assess the potency of HA and NA components in influenza vaccines as a proxy for immunogenicity.
Collapse
Affiliation(s)
- Laura R Kuck
- InDevR Inc., 2100 Central Ave., Suite 106, Boulder, CO 80301, United States
| | - Rose Byrne-Nash
- InDevR Inc., 2100 Central Ave., Suite 106, Boulder, CO 80301, United States
| | - Jacob Gillis
- InDevR Inc., 2100 Central Ave., Suite 106, Boulder, CO 80301, United States
| | - Katie Bueter
- InDevR Inc., 2100 Central Ave., Suite 106, Boulder, CO 80301, United States
| | - Laura K Couzens
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, United States
| | - Maryna C Eichelberger
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, United States
| | - Kathy L Rowlen
- InDevR Inc., 2100 Central Ave., Suite 106, Boulder, CO 80301, United States.
| |
Collapse
|
36
|
Gallinaro A, Borghi M, Bona R, Grasso F, Calzoletti L, Palladino L, Cecchetti S, Vescio MF, Macchia D, Morante V, Canitano A, Temperton N, Castrucci MR, Salvatore M, Michelini Z, Cara A, Negri D. Integrase Defective Lentiviral Vector as a Vaccine Platform for Delivering Influenza Antigens. Front Immunol 2018; 9:171. [PMID: 29459873 PMCID: PMC5807328 DOI: 10.3389/fimmu.2018.00171] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Accepted: 01/19/2018] [Indexed: 12/31/2022] Open
Abstract
Viral vectors represent an attractive technology for vaccine delivery. We exploited the integrase defective lentiviral vector (IDLV) as a platform for delivering relevant antigens within the context of the ADITEC collaborative research program. In particular, Influenza virus hemagglutinin (HA) and nucleoprotein (NP) were delivered by IDLVs while H1N1 A/California/7/2009 subunit vaccine (HAp) with or without adjuvant was used to compare the immune response in a murine model of immunization. In order to maximize the antibody response against HA, both IDLVs were also pseudotyped with HA (IDLV-HA/HA and IDLV-NP/HA, respectively). Groups of CB6F1 mice were immunized intramuscularly with a single dose of IDLV-NP/HA, IDLV-HA/HA, HAp alone, or with HAp together with the systemic adjuvant MF59. Six months after the vaccine prime all groups were boosted with HAp alone. Cellular and antibody responses to influenza antigens were measured at different time points after the immunizations. Mice immunized with HA-pseudotyped IDLVs showed similar levels of anti-H1N1 IgG over time, evaluated by ELISA, which were comparable to those induced by HAp + MF59 vaccination, but significantly higher than those induced by HAp alone. The boost with HAp alone induced an increase of antibodies in all groups, and the responses were maintained at higher levels up to 18 weeks post-boost. The antibody response was functional and persistent overtime, capable of neutralizing virus infectivity, as evaluated by hemagglutination inhibition and microneutralization assays. Moreover, since neuraminidase (NA)-expressing plasmid was included during IDLV preparation, immunization with IDLV-NP/HA and IDLV-HA/HA also induced functional anti-NA antibodies, evaluated by enzyme-linked lectin assay. IFNγ-ELISPOT showed evidence of HA-specific response in IDLV-HA/HA immunized animals and persistent NP-specific CD8+ T cell response in IDLV-NP/HA immunized mice. Taken together our results indicate that IDLV can be harnessed for producing a vaccine able to induce a comprehensive immune response, including functional antibodies directed toward HA and NA proteins present on the vector particles in addition to a functional T cell response directed to the protein transcribed from the vector.
Collapse
Affiliation(s)
| | - Martina Borghi
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Roberta Bona
- National Center for Global Health, Istituto Superiore di Sanità, Rome, Italy
| | - Felicia Grasso
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Laura Calzoletti
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | | | - Serena Cecchetti
- Confocal Microscopy Unit NMR, Confocal Microscopy Area Core Facilities, Istituto Superiore di Sanità, Rome, Italy
| | | | - Daniele Macchia
- Center for Animal Research and Welfare, Istituto Superiore di Sanità, Rome, Italy
| | - Valeria Morante
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Andrea Canitano
- National Center for Global Health, Istituto Superiore di Sanità, Rome, Italy
| | - Nigel Temperton
- Viral Pseudotype Unit, Medway School of Pharmacy, University of Kent, Kent, United Kingdom
| | | | - Mirella Salvatore
- Department of Medicine, Weill Cornell Medical College, New York, United States
| | - Zuleika Michelini
- National Center for Global Health, Istituto Superiore di Sanità, Rome, Italy
| | - Andrea Cara
- National Center for Global Health, Istituto Superiore di Sanità, Rome, Italy
| | - Donatella Negri
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
37
|
Hu J, Han J, Li H, Zhang X, Liu LL, Chen F, Zeng B. Human Embryonic Kidney 293 Cells: A Vehicle for Biopharmaceutical Manufacturing, Structural Biology, and Electrophysiology. Cells Tissues Organs 2018; 205:1-8. [PMID: 29393161 DOI: 10.1159/000485501] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/21/2017] [Indexed: 12/21/2022] Open
Abstract
Mammalian cells, e.g., CHO, BHK, HEK293, HT-1080, and NS0 cells, represent important manufacturing platforms in bioengineering. They are widely used for the production of recombinant therapeutic proteins, vaccines, anticancer agents, and other clinically relevant drugs. HEK293 (human embryonic kidney 293) cells and their derived cell lines provide an attractive heterologous system for the development of recombinant proteins or adenovirus productions, not least due to their human-like posttranslational modification of protein molecules to provide the desired biological activity. Secondly, they also exhibit high transfection efficiency yielding high-quality recombinant proteins. They are easy to maintain and express with high fidelity membrane proteins, such as ion channels and transporters, and thus are attractive for structural biology and electrophysiology studies. In this article, we review the literature on HEK293 cells regarding their origins but also stress their advancements into the different cell lines engineered and discuss some significant aspects which make them versatile systems for biopharmaceutical manufacturing, drug screening, structural biology research, and electrophysiology applications.
Collapse
|
38
|
Rey-Jurado E, Tapia F, Muñoz-Durango N, Lay MK, Carreño LJ, Riedel CA, Bueno SM, Genzel Y, Kalergis AM. Assessing the Importance of Domestic Vaccine Manufacturing Centers: An Overview of Immunization Programs, Vaccine Manufacture, and Distribution. Front Immunol 2018; 9:26. [PMID: 29403503 PMCID: PMC5778105 DOI: 10.3389/fimmu.2018.00026] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Accepted: 01/04/2018] [Indexed: 12/03/2022] Open
Abstract
Vaccines have significantly reduced the detrimental effects of numerous human infectious diseases worldwide, helped to reduce drastically child mortality rates and even achieved eradication of major pathogens, such as smallpox. These achievements have been possible due to a dedicated effort for vaccine research and development, as well as an effective transfer of these vaccines to public health care systems globally. Either public or private institutions have committed to developing and manufacturing vaccines for local or international population supply. However, current vaccine manufacturers worldwide might not be able to guarantee sufficient vaccine supplies for all nations when epidemics or pandemics events could take place. Currently, different countries produce their own vaccine supplies under Good Manufacturing Practices, which include the USA, Canada, China, India, some nations in Europe and South America, such as Germany, the Netherlands, Italy, France, Argentina, and Brazil, respectively. Here, we discuss some of the vaccine programs and manufacturing capacities, comparing the current models of vaccine management between industrialized and developing countries. Because local vaccine production undoubtedly provides significant benefits for the respective population, the manufacture capacity of these prophylactic products should be included in every country as a matter of national safety.
Collapse
Affiliation(s)
- Emma Rey-Jurado
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Felipe Tapia
- Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
| | - Natalia Muñoz-Durango
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Margarita K. Lay
- Departamento de Biotecnología, Facultad de Ciencias del Mar y Recursos Biológicos, Universidad de Antofagasta, Antofagasta, Chile
| | - Leandro J. Carreño
- Millennium Institute on Immunology and Immunotherapy, Programa de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Claudia A. Riedel
- Millennium Institute on Immunology and Immunotherapy, Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas y Facultad de Medicina, Universidad Andrés Bello, Santiago, Chile
| | - Susan M. Bueno
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Yvonne Genzel
- Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
| | - Alexis M. Kalergis
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
39
|
Gutiérrez-Granados S, Cervera L, Kamen AA, Gòdia F. Advancements in mammalian cell transient gene expression (TGE) technology for accelerated production of biologics. Crit Rev Biotechnol 2018; 38:918-940. [DOI: 10.1080/07388551.2017.1419459] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Sonia Gutiérrez-Granados
- Departament d’Enginyeria Química, Biològica i Ambiental, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Laura Cervera
- Department of Bioengineering, McGill University, Montréal, Canada
| | - Amine A. Kamen
- Department of Bioengineering, McGill University, Montréal, Canada
| | - Francesc Gòdia
- Departament d’Enginyeria Química, Biològica i Ambiental, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
40
|
Production of HIV virus-like particles by transient transfection of CAP-T cells at bioreactor scale avoiding medium replacement. J Biotechnol 2017; 263:11-20. [DOI: 10.1016/j.jbiotec.2017.09.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Revised: 09/25/2017] [Accepted: 09/27/2017] [Indexed: 11/20/2022]
|
41
|
Nika L, Wallner J, Palmberger D, Koczka K, Vorauer-Uhl K, Grabherr R. Expression of full-length HER2 protein in Sf 9 insect cells and its presentation on the surface of budded virus-like particles. Protein Expr Purif 2017; 136:27-38. [DOI: 10.1016/j.pep.2017.06.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 05/19/2017] [Accepted: 06/11/2017] [Indexed: 12/11/2022]
|
42
|
Venereo-Sanchez A, Simoneau M, Lanthier S, Chahal P, Bourget L, Ansorge S, Gilbert R, Henry O, Kamen A. Process intensification for high yield production of influenza H1N1 Gag virus-like particles using an inducible HEK-293 stable cell line. Vaccine 2017. [DOI: 10.1016/j.vaccine.2017.06.024] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
43
|
Generation of monoclonal pan-hemagglutinin antibodies for the quantification of multiple strains of influenza. PLoS One 2017; 12:e0180314. [PMID: 28662134 PMCID: PMC5491208 DOI: 10.1371/journal.pone.0180314] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 06/13/2017] [Indexed: 11/27/2022] Open
Abstract
Vaccination is the most effective course of action to prevent influenza. About 150 million doses of influenza vaccines were distributed for the 2015–2016 season in the USA alone according to the Centers for Disease Control and Prevention. Vaccine dosage is calculated based on the concentration of hemagglutinin (HA), the main surface glycoprotein expressed by influenza which varies from strain to strain. Therefore yearly-updated strain-specific antibodies and calibrating antigens are required. Preparing these quantification reagents can take up to three months and significantly slows down the release of new vaccine lots. Therefore, to circumvent the need for strain-specific sera, two anti-HA monoclonal antibodies (mAbs) against a highly conserved sequence have been produced by immunizing mice with a novel peptide-conjugate. Immunoblots demonstrate that 40 strains of influenza encompassing HA subtypes H1 to H13, as well as B strains from the Yamagata and Victoria lineage were detected when the two mAbs are combined to from a pan-HA mAb cocktail. Quantification using this pan-HA mAbs cocktail was achieved in a dot blot assay and results correlated with concentrations measured in a hemagglutination assay with a coefficient of correlation of 0.80. A competitive ELISA was also optimised with purified viral-like particles. Regardless of the quantification method used, pan-HA antibodies can be employed to accelerate process development when strain-specific antibodies are not available, and represent a valuable tool in case of pandemics. These antibodies were also expressed in CHO cells to facilitate large-scale production using bioreactor technologies which might be required to meet industrial needs for quantification reagents. Finally, a simulation model was created to predict the binding affinity of the two anti-HA antibodies to the amino acids composing the highly conserved epitope; different probabilities of interaction between a given amino acid and the antibodies might explain the affinity of each antibody against different influenza strains.
Collapse
|
44
|
Milián E, Julien T, Biaggio R, Venereo-Sanchez A, Montes J, Manceur AP, Ansorge S, Petiot E, Rosa-Calatrava M, Kamen A. Accelerated mass production of influenza virus seed stocks in HEK-293 suspension cell cultures by reverse genetics. Vaccine 2017; 35:3423-3430. [PMID: 28495315 DOI: 10.1016/j.vaccine.2017.04.065] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Revised: 04/14/2017] [Accepted: 04/23/2017] [Indexed: 01/20/2023]
Abstract
Despite major advances in developing capacities and alternative technologies to egg-based production of influenza vaccines, responsiveness to an influenza pandemic threat is limited by the time it takes to generate a Candidate Vaccine Virus (CVV) as reported by the 2015 WHO Informal Consultation report titled "Influenza Vaccine Response during the Start of a Pandemic". In previous work, we have shown that HEK-293 cell culture in suspension and serum free medium is an efficient production platform for cell culture manufacturing of influenza candidate vaccines. This report, took advantage of, recombinant DNA technology using Reverse Genetics of influenza strains, and advances in the large-scale transfection of suspension cultured HEK-293 cells. We demonstrate the efficient generation of H1N1 with the PR8 backbone reassortant under controlled bioreactor conditions in two sequential steps (transfection/rescue and infection/production). This approach could deliver a CVV for influenza vaccine manufacturing within two-weeks, starting from HA and NA pandemic sequences. Furthermore, the scalability of the transfection technology combined with the HEK-293 platform has been extensively demonstrated at >100L scale for several biologics, including recombinant viruses. Thus, this innovative approach is better suited to rationally engineer and mass produce influenza CVV within significantly shorter timelines to enable an effective global response in pandemic situations.
Collapse
Affiliation(s)
- Ernest Milián
- Department of Bioengineering, McGill University, Montréal, Québec, Canada; Vaccine Program, Human Health Therapeutics, National Research Council, Montréal, Québec, Canada
| | - Thomas Julien
- Virologie et Pathologie Humaine - VirPath Team, Centre International de Recherche en Infectiologie (CIRI), INSERM U1111, CNRS UMR5308, ENS Lyon, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
| | - Rafael Biaggio
- Department of Bioengineering, McGill University, Montréal, Québec, Canada
| | - Alina Venereo-Sanchez
- Vaccine Program, Human Health Therapeutics, National Research Council, Montréal, Québec, Canada
| | - Johnny Montes
- Vaccine Program, Human Health Therapeutics, National Research Council, Montréal, Québec, Canada
| | - Aziza P Manceur
- Vaccine Program, Human Health Therapeutics, National Research Council, Montréal, Québec, Canada
| | - Sven Ansorge
- Vaccine Program, Human Health Therapeutics, National Research Council, Montréal, Québec, Canada
| | - Emma Petiot
- Virologie et Pathologie Humaine - VirPath Team, Centre International de Recherche en Infectiologie (CIRI), INSERM U1111, CNRS UMR5308, ENS Lyon, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
| | - Manuel Rosa-Calatrava
- Virologie et Pathologie Humaine - VirPath Team, Centre International de Recherche en Infectiologie (CIRI), INSERM U1111, CNRS UMR5308, ENS Lyon, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
| | - Amine Kamen
- Department of Bioengineering, McGill University, Montréal, Québec, Canada; Vaccine Program, Human Health Therapeutics, National Research Council, Montréal, Québec, Canada.
| |
Collapse
|
45
|
Robert MA, Lytvyn V, Deforet F, Gilbert R, Gaillet B. Virus-Like Particles Derived from HIV-1 for Delivery of Nuclear Proteins: Improvement of Production and Activity by Protein Engineering. Mol Biotechnol 2016; 59:9-23. [PMID: 27830536 DOI: 10.1007/s12033-016-9987-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Virus-like particles (VLPs) derived from retroviruses and lentiviruses can be used to deliver recombinant proteins without the fear of causing insertional mutagenesis to the host cell genome. In this study we evaluate the potential of an inducible lentiviral vector packaging cell line for VLP production. The Gag gene from HIV-1 was fused to a gene encoding a selected protein and it was transfected into the packaging cells. Three proteins served as model: the green fluorescent protein and two transcription factors-the cumate transactivator (cTA) of the inducible CR5 promoter and the human Krüppel-like factor 4 (KLF4). The sizes of the VLPs were 120-150 nm in diameter and they were resistant to freeze/thaw cycles. Protein delivery by the VLPs reached up to 100% efficacy in human cells and was well tolerated. Gag-cTA triggered up to 1100-fold gene activation of the reporter gene in comparison to the negative control. Protein engineering was required to detect Gag-KLF4 activity. Thus, insertion of the VP16 transactivation domain increased the activity of the VLPs by eightfold. An additional 2.4-fold enhancement was obtained by inserting nuclear export signal. In conclusion, our platform produced VLPs capable of efficient protein transfer, and it was shown that protein engineering can be used to improve the activity of the delivered proteins as well as VLP production.
Collapse
Affiliation(s)
- Marc-André Robert
- Département de génie chimique, Université Laval, 1065 Avenue de la Médecine, Québec, QC, G1V 0A6, Canada.,National Research Council Canada, 6100 Avenue Royalmount, Montréal, QC, H4P 2R2, Canada.,Regroupement québécois de recherche sur la fonction, l'ingénierie et les applications des protéines, PROTEO, Québec, QC, Canada.,Réseau de thérapie cellulaire et tissulaire du FRQS, ThéCell, Québec, QC, Canada
| | - Viktoria Lytvyn
- National Research Council Canada, 6100 Avenue Royalmount, Montréal, QC, H4P 2R2, Canada
| | - Francis Deforet
- National Research Council Canada, 6100 Avenue Royalmount, Montréal, QC, H4P 2R2, Canada
| | - Rénald Gilbert
- National Research Council Canada, 6100 Avenue Royalmount, Montréal, QC, H4P 2R2, Canada.,Réseau de thérapie cellulaire et tissulaire du FRQS, ThéCell, Québec, QC, Canada
| | - Bruno Gaillet
- Département de génie chimique, Université Laval, 1065 Avenue de la Médecine, Québec, QC, G1V 0A6, Canada. .,Regroupement québécois de recherche sur la fonction, l'ingénierie et les applications des protéines, PROTEO, Québec, QC, Canada. .,Réseau de thérapie cellulaire et tissulaire du FRQS, ThéCell, Québec, QC, Canada.
| |
Collapse
|