1
|
Blake JM, Thompson J, HogenEsch H, Ekenstedt KJ. Heritability and genome-wide association study of vaccine-induced immune response in Beagles: A pilot study. Vaccine 2024; 42:3099-3106. [PMID: 38604911 PMCID: PMC11144447 DOI: 10.1016/j.vaccine.2024.03.076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/22/2024] [Accepted: 03/29/2024] [Indexed: 04/13/2024]
Abstract
Both genetic and non-genetic factors contribute to individual variation in the immune response to vaccination. Understanding how genetic background influences variation in both magnitude and persistence of vaccine-induced immunity is vital for improving vaccine development and identifying possible causes of vaccine failure. Dogs provide a relevant biomedical model for investigating mammalian vaccine genetics; canine breed structure and long linkage disequilibrium simplify genetic studies in this species compared to humans. The objective of this study was to estimate the heritability of the antibody response to vaccination against viral and bacterial pathogens, and to identify genes driving variation of the immune response to vaccination in Beagles. Sixty puppies were immunized following a standard vaccination schedule with an attenuated combination vaccine containing antigens for canine adenovirus type 2, canine distemper virus, canine parainfluenza virus, canine parvovirus, and four strains of Leptospira bacteria. Serum antibody measurements for each viral and bacterial component were measured at multiple time points. Heritability estimations and GWAS were conducted using SNP genotypes at 279,902 markers together with serum antibody titer phenotypes. The heritability estimates were: (1) to Leptospira antigens, ranging from 0.178 to 0.628; and (2) to viral antigens, ranging from 0.199 to 0.588. There was not a significant difference between overall heritability of vaccine-induced immune response to Leptospira antigens compared to viral antigens. Genetic architecture indicates that SNPs of low to high effect contribute to immune response to vaccination. GWAS identified two genetic markers associated with vaccine-induced immune response phenotypes. Collectively, these findings indicate that genetic regulation of the immune response to vaccination is antigen-specific and influenced by multiple genes of small effect.
Collapse
Affiliation(s)
- Jeanna M Blake
- Department of Basic Medical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN, USA.
| | - James Thompson
- Zoetis, Veterinary Medicine Research and Development, Kalamazoo, MI, USA
| | - Harm HogenEsch
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN, USA; Purdue Institute of Inflammation, Immunology and Infectious Diseases, West Lafayette, IN, USA
| | - Kari J Ekenstedt
- Department of Basic Medical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
2
|
Laganà A, Visalli G, Di Pietro A, Facciolà A. Vaccinomics and adversomics: key elements for a personalized vaccinology. Clin Exp Vaccine Res 2024; 13:105-120. [PMID: 38752004 PMCID: PMC11091437 DOI: 10.7774/cevr.2024.13.2.105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/07/2024] [Accepted: 03/12/2024] [Indexed: 05/18/2024] Open
Abstract
Vaccines are one of the most important and effective tools in the prevention of infectious diseases and research about all the aspects of vaccinology are essential to increase the number of available vaccines more and more safe and effective. Despite the unquestionable value of vaccinations, vaccine hesitancy has spread worldwide compromising the success of vaccinations. Currently, the main purpose of vaccination campaigns is the immunization of whole populations with the same vaccine formulations and schedules for all individuals. A personalized vaccinology approach could improve modern vaccinology counteracting vaccine hesitancy and giving great benefits for human health. This ambitious purpose would be possible by facing and deepening the areas of vaccinomics and adversomics, two innovative areas of study investigating the role of a series of variables able to influence the immune response to vaccinations and the development of serious side effects, respectively. We reviewed the recent scientific knowledge about these innovative sciences focusing on genetic and non-genetic basis involved in the individual response to vaccines in terms of both immune response and side effects.
Collapse
Affiliation(s)
- Antonio Laganà
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
- Istituto Clinico Polispecialistico C.O.T., Cure Ortopediche Traumatologiche S.P.A., Messina, Italy
| | - Giuseppa Visalli
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Angela Di Pietro
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Alessio Facciolà
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| |
Collapse
|
3
|
Cruz Cisneros MC, Anderson EJ, Hampton BK, Parotti B, Sarkar S, Taft-Benz S, Bell TA, Blanchard M, Dillard JA, Dinnon KH, Hock P, Leist SR, Madden EA, Shaw GD, West A, Baric RS, Baxter VK, Pardo-Manuel de Villena F, Heise MT, Ferris MT. Host Genetic Variation Impacts SARS-CoV-2 Vaccination Response in the Diversity Outbred Mouse Population. Vaccines (Basel) 2024; 12:103. [PMID: 38276675 PMCID: PMC10821422 DOI: 10.3390/vaccines12010103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/12/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024] Open
Abstract
The COVID-19 pandemic led to the rapid and worldwide development of highly effective vaccines against SARS-CoV-2. However, there is significant individual-to-individual variation in vaccine efficacy due to factors including viral variants, host age, immune status, environmental and host genetic factors. Understanding those determinants driving this variation may inform the development of more broadly protective vaccine strategies. While host genetic factors are known to impact vaccine efficacy for respiratory pathogens such as influenza and tuberculosis, the impact of host genetic variation on vaccine efficacy against COVID-19 is not well understood. To model the impact of host genetic variation on SARS-CoV-2 vaccine efficacy, while controlling for the impact of non-genetic factors, we used the Diversity Outbred (DO) mouse model. We found that DO mice immunized against SARS-CoV-2 exhibited high levels of variation in vaccine-induced neutralizing antibody responses. While the majority of the vaccinated mice were protected from virus-induced disease, similar to human populations, we observed vaccine breakthrough in a subset of mice. Importantly, we found that this variation in neutralizing antibody, virus-induced disease, and viral titer is heritable, indicating that the DO serves as a useful model system for studying the contribution of genetic variation of both vaccines and disease outcomes.
Collapse
Affiliation(s)
- Marta C. Cruz Cisneros
- Genetics and Molecular Biology Curriculum, University of North Carolina, Chapel Hill, NC 27599, USA; (M.C.C.C.); (B.K.H.)
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA; (B.P.); (S.S.); (S.T.-B.); (T.A.B.); (M.B.); (P.H.); (G.D.S.); (F.P.-M.d.V.); (M.T.H.)
| | - Elizabeth J. Anderson
- Division of Comparative Medicine, University of North Carolina, Chapel Hill, NC 27599, USA; (E.J.A.); (V.K.B.)
| | - Brea K. Hampton
- Genetics and Molecular Biology Curriculum, University of North Carolina, Chapel Hill, NC 27599, USA; (M.C.C.C.); (B.K.H.)
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA; (B.P.); (S.S.); (S.T.-B.); (T.A.B.); (M.B.); (P.H.); (G.D.S.); (F.P.-M.d.V.); (M.T.H.)
| | - Breantié Parotti
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA; (B.P.); (S.S.); (S.T.-B.); (T.A.B.); (M.B.); (P.H.); (G.D.S.); (F.P.-M.d.V.); (M.T.H.)
| | - Sanjay Sarkar
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA; (B.P.); (S.S.); (S.T.-B.); (T.A.B.); (M.B.); (P.H.); (G.D.S.); (F.P.-M.d.V.); (M.T.H.)
| | - Sharon Taft-Benz
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA; (B.P.); (S.S.); (S.T.-B.); (T.A.B.); (M.B.); (P.H.); (G.D.S.); (F.P.-M.d.V.); (M.T.H.)
| | - Timothy A. Bell
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA; (B.P.); (S.S.); (S.T.-B.); (T.A.B.); (M.B.); (P.H.); (G.D.S.); (F.P.-M.d.V.); (M.T.H.)
| | - Matthew Blanchard
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA; (B.P.); (S.S.); (S.T.-B.); (T.A.B.); (M.B.); (P.H.); (G.D.S.); (F.P.-M.d.V.); (M.T.H.)
| | - Jacob A. Dillard
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC 27599, USA; (J.A.D.); (E.A.M.); (R.S.B.)
| | - Kenneth H. Dinnon
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC 27599, USA; (J.A.D.); (E.A.M.); (R.S.B.)
| | - Pablo Hock
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA; (B.P.); (S.S.); (S.T.-B.); (T.A.B.); (M.B.); (P.H.); (G.D.S.); (F.P.-M.d.V.); (M.T.H.)
| | - Sarah R. Leist
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (S.R.L.)
| | - Emily A. Madden
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC 27599, USA; (J.A.D.); (E.A.M.); (R.S.B.)
| | - Ginger D. Shaw
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA; (B.P.); (S.S.); (S.T.-B.); (T.A.B.); (M.B.); (P.H.); (G.D.S.); (F.P.-M.d.V.); (M.T.H.)
| | - Ande West
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (S.R.L.)
| | - Ralph S. Baric
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC 27599, USA; (J.A.D.); (E.A.M.); (R.S.B.)
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (S.R.L.)
| | - Victoria K. Baxter
- Division of Comparative Medicine, University of North Carolina, Chapel Hill, NC 27599, USA; (E.J.A.); (V.K.B.)
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
- Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| | - Fernando Pardo-Manuel de Villena
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA; (B.P.); (S.S.); (S.T.-B.); (T.A.B.); (M.B.); (P.H.); (G.D.S.); (F.P.-M.d.V.); (M.T.H.)
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Mark T. Heise
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA; (B.P.); (S.S.); (S.T.-B.); (T.A.B.); (M.B.); (P.H.); (G.D.S.); (F.P.-M.d.V.); (M.T.H.)
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC 27599, USA; (J.A.D.); (E.A.M.); (R.S.B.)
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Martin T. Ferris
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA; (B.P.); (S.S.); (S.T.-B.); (T.A.B.); (M.B.); (P.H.); (G.D.S.); (F.P.-M.d.V.); (M.T.H.)
| |
Collapse
|
4
|
Haslund MM, Sørensen JK, Graff Stensballe L. Genetics and measles, mumps and rubella vaccine response in childhood and adolescence-A systematic review. Scand J Immunol 2023; 97:e13266. [PMID: 38157324 DOI: 10.1111/sji.13266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 02/20/2023] [Accepted: 03/14/2023] [Indexed: 04/03/2023]
Abstract
Measles, mumps and rubella (MMR) are contagious infectious diseases that can be prevented by immunization. However, MMR infections can occur in previously immunized individuals. The vaccine response is, among other factors, influenced by the combined effects of many genes. This systematic review investigates the genetic influence on measles, mumps and rubella antibody responses after childhood vaccination. In accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA), systematic literature searches were conducted in the medical databases PubMed, EMBASE and PsycINFO. Search strings were adjusted for each database. Citations were included if they measured and compared the immune response with immunogenetics after vaccination with a vaccine containing one or more of the following components: measles, mumps and/or rubella, MMR. The measure of vaccine response studied was antibodies after vaccination. Forty-eight articles were included in the final analysis. The results suggest that genetic determinants, including host genes, and single nucleotide polymorphisms in immune-related genes influence the MMR antibody responses after vaccination. Specifically, replicated associations were found between HLA, CD46, RARB, IRF9, EIF2AK2, cytokine genes and MMR vaccine-induced humoral immune responses. This knowledge can be useful in understanding and predicting immune responses and may have implications for future vaccine strategies.
Collapse
Affiliation(s)
- Marie Mykløy Haslund
- The Child and Adolescent Clinic, The Juliane Marie Center, The Danish National University Hospital "Rigshospitalet", 9-Blegdamsvej, DK-2100, Copenhagen East, Denmark
| | - Jesper Kiehn Sørensen
- The Child and Adolescent Clinic, The Juliane Marie Center, The Danish National University Hospital "Rigshospitalet", 9-Blegdamsvej, DK-2100, Copenhagen East, Denmark
| | - Lone Graff Stensballe
- The Child and Adolescent Clinic, The Juliane Marie Center, The Danish National University Hospital "Rigshospitalet", 9-Blegdamsvej, DK-2100, Copenhagen East, Denmark
| |
Collapse
|
5
|
Quach HQ, Chen J, Monroe JM, Ratishvili T, Warner ND, Grill DE, Haralambieva IH, Ovsyannikova IG, Poland GA, Kennedy RB. The Influence of Sex, Body Mass Index, and Age on Cellular and Humoral Immune Responses Against Measles After a Third Dose of Measles-Mumps-Rubella Vaccine. J Infect Dis 2022; 227:141-150. [PMID: 35994504 DOI: 10.1093/infdis/jiac351] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 08/12/2022] [Accepted: 08/19/2022] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND A third dose of measles-mumps-rubella vaccine (MMR3) is recommended in mumps outbreak scenarios, but the immune response and the need for widespread use of MMR3 remain uncertain. Herein, we characterized measles-specific immune responses to MMR3 in a cohort of 232 healthy subjects. METHODS Serum and peripheral blood mononuclear cells (PBMCs) were sampled at day 0 and day 28 after MMR3. Measles-specific binding and neutralizing antibodies were quantified in sera by enzyme-linked immunosorbent assay and a microneutralization assay, respectively. PBMCs were stimulated with inactivated measles virus, and the release of cytokines/chemokines was assessed by a multiplex assay. Demographic variables of subjects were examined for potential correlations with immune outcomes. RESULTS Of the study participants, 95.69% and 100% were seropositive at day 0 and day 28, respectively. Antibody avidity significantly increased from 38.08% at day 0 to 42.8% at day 28 (P = .00026). Neutralizing antibodies were significantly enhanced, from 928.7 at day 0 to 1289.64 mIU/mL at day 28 (P = .0001). Meanwhile, cytokine/chemokine responses remained largely unchanged. Body mass index was significantly correlated with the levels of inflammatory cytokines/chemokines. CONCLUSIONS Measles-specific humoral immune responses, but not cellular responses, were enhanced after MMR3 receipt, extending current understanding of immune responses to MMR3 and supporting MMR3 administration to seronegative or high-risk individuals.
Collapse
Affiliation(s)
- Huy Quang Quach
- Mayo Clinic Vaccine Research Group, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Jun Chen
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota, USA
| | - Jonathon M Monroe
- Mayo Clinic Vaccine Research Group, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Tamar Ratishvili
- Mayo Clinic Vaccine Research Group, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Nathaniel D Warner
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota, USA
| | - Diane E Grill
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota, USA
| | - Iana H Haralambieva
- Mayo Clinic Vaccine Research Group, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Inna G Ovsyannikova
- Mayo Clinic Vaccine Research Group, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Gregory A Poland
- Mayo Clinic Vaccine Research Group, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Richard B Kennedy
- Mayo Clinic Vaccine Research Group, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
6
|
Moore SM. Challenges of Rabies Serology: Defining Context of Interpretation. Viruses 2021; 13:1516. [PMID: 34452381 PMCID: PMC8402924 DOI: 10.3390/v13081516] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 07/27/2021] [Accepted: 07/29/2021] [Indexed: 12/25/2022] Open
Abstract
The case fatality rate of rabies, nearly 100%, is one of the most unique characteristic of this ancient virus infection. The crucial role rabies virus neutralizing antibody plays in protection is both well established and explanation of why rabies serology is important. Various laboratory methods can and have been used but serum neutralization methods have long been the gold standard due to the ability to measure function (neutralization), however these methods can be difficult to perform for several reasons. Assays such as enzyme linked absorbance assays (ELISA), indirect fluorescence antibody (IFA) and more recently lateral flow methods are in use. Interpretation of results can be problematic, not only between methods but also due to modifications of the same method that can lead to misinterpretations. A common assumption in review of laboratory test results is that different methods for the same component produce comparable results under all conditions or circumstances. Assumptions and misinterpretations provide the potential for detrimental decisions, ranging from regulatory to clinically related, and most importantly what 'level' is protective. Review of the common challenges in performance and interpretation of rabies serology and specific examples illuminate critical issues to consider when reviewing and applying results of rabies serological testing.
Collapse
Affiliation(s)
- Susan M Moore
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| |
Collapse
|
7
|
Klein NP, Zerbo O, Goddard K, Wang W, Fohner AE, Wiesner A, Shokoohi V, Coller J, Bok K, Gans HA. Genetic associations with a fever after measles-containing vaccines. Hum Vaccin Immunother 2021; 17:1763-1769. [PMID: 33351701 PMCID: PMC8115494 DOI: 10.1080/21645515.2020.1849520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Children have elevated fever risk 1 to 2 weeks after the first dose of a measles-containing vaccine (MCV), which is likely affected by genetic, immunologic, and clinical factors. Fever after MCV is associated with febrile seizures, though may also be associated with higher measles antibody titers. This exploratory study investigated genetic and immunologic associations with a fever after MCV. Concurrent with a randomized Phase 3 clinical trial of 12–15-month-olds who received their first measles-mumps-rubella (MMR) vaccine in which parents recorded post-vaccination temperatures daily, we consented a subset to collect additional blood and performed human leukocyte antigens (HLA) typing. Association between fever 5–12 days after MMR (“MMR-associated”) and HLA type was assessed using logistic regression. We compared 42-day post-vaccination geometric mean titers (GMT) to measles between children who did and did not have fever using a t-test. We enrolled 86 children and performed HLA typing on 82; 13 (15.1%) had MMR-associated fever. Logistic regressions identified associations between MMR-associated fever and HLA Class I loci A-29:02 (P = .036), B-57:01 (P = .018), C-06:02 (P = .006), C-14:02 (P = .022), and Class II loci DRB1-15 (P = .045). However, Bonferroni's adjustment for multiple comparisons suggests that these associations could have been due to chance. Ninety-eight percent of children had protective antibody titers to measles; however, GMT was higher among those with fever compared with children without fever (P = .006). Fever after the measles vaccine correlated with genetic factors and higher immune response. This study suggests a possible genetic susceptibility to MMR-associated fever.
Collapse
Affiliation(s)
- Nicola P Klein
- Kaiser Permanente Vaccine Study Center, Oakland, CA, USA
| | - Ousseny Zerbo
- Department of Epidemiology & Institute of Public Health Genetics, University of Washington, Seattle, WA, USA
| | | | - Weiqi Wang
- School of Medicine, Stanford University, Stanford, CA, USA
| | - Alison E Fohner
- Kaiser Permanente Vaccine Study Center, Oakland, CA, USA.,Department of Epidemiology & Institute of Public Health Genetics, University of Washington, Seattle, WA, USA
| | - Amy Wiesner
- Kaiser Permanente Vaccine Study Center, Oakland, CA, USA
| | - Vida Shokoohi
- School of Medicine, Stanford University, Stanford, CA, USA
| | - John Coller
- School of Medicine, Stanford University, Stanford, CA, USA
| | - Karin Bok
- National Vaccine Program Office, US. Health and Human Services, Washington D.C., USA
| | - Hayley A Gans
- School of Medicine, Stanford University, Stanford, CA, USA
| |
Collapse
|
8
|
Blanc F, Maroilley T, Revilla M, Lemonnier G, Leplat JJ, Billon Y, Ravon L, Bouchez O, Bidanel JP, Bed'Hom B, Pinard-van der Laan MH, Estellé J, Rogel-Gaillard C. Influence of genetics and the pre-vaccination blood transcriptome on the variability of antibody levels after vaccination against Mycoplasma hyopneumoniae in pigs. Genet Sel Evol 2021; 53:24. [PMID: 33731010 PMCID: PMC7972226 DOI: 10.1186/s12711-021-00614-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 02/16/2021] [Indexed: 12/13/2022] Open
Abstract
Background The impact of individual genetic and genomic variations on immune responses is an emerging lever investigated in vaccination strategies. In our study, we used genetic and pre-vaccination blood transcriptomic data to study vaccine effectiveness in pigs. Results A cohort of 182 Large White pigs was vaccinated against Mycoplasma hyopneumoniae (M. hyo) at weaning (28 days of age), with a booster 21 days later. Vaccine response was assessed by measuring seric M. hyo antibodies (Ab) at 0 (vaccination day), 21 (booster day), 28, 35, and 118 days post-vaccination (dpv). Inter-individual variability of M. hyo Ab levels was observed at all time points and the corresponding heritabilities ranged from 0.46 to 0.57. Ab persistence was higher in females than in males. Genome-wide association studies with a 658 K SNP panel revealed two genomic regions associated with variations of M. hyo Ab levels at 21 dpv at positions where immunity-related genes have been mapped, DAB2IP on chromosome 1, and ASAP1, CYRIB and GSDMC on chromosome 4. We studied covariations of Ab responses with the pre-vaccination blood transcriptome obtained by RNA-Seq for a subset of 82 pigs. Weighted gene correlation network and differential expression analyses between pigs that differed in Ab responses highlighted biological functions that were enriched in heme biosynthesis and platelet activation for low response at 21 dpv, innate antiviral immunity and dendritic cells for high response at 28 and 35 dpv, and cell adhesion and extracellular matrix for high response at 118 dpv. Sparse partial least squares discriminant analysis identified 101 genes that efficiently predicted divergent responders at all time points. We found weak negative correlations of M. hyo Ab levels with body weight traits, which revealed a trade-off that needs to be further explored. Conclusions We confirmed the influence of the host genetics on vaccine effectiveness to M. hyo and provided evidence that the pre-vaccination blood transcriptome co-varies with the Ab response. Our results highlight that both genetic markers and blood biomarkers could be used as potential predictors of vaccine response levels and more studies are required to assess whether they can be exploited in breeding programs.
Collapse
Affiliation(s)
- Fany Blanc
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France.
| | - Tatiana Maroilley
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France
| | - Manuel Revilla
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France
| | - Gaëtan Lemonnier
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France
| | - Jean-Jacques Leplat
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France
| | | | | | | | - Jean-Pierre Bidanel
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France
| | - Bertrand Bed'Hom
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France
| | | | - Jordi Estellé
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France
| | | |
Collapse
|
9
|
Omersel J, Karas Kuželički N. Vaccinomics and Adversomics in the Era of Precision Medicine: A Review Based on HBV, MMR, HPV, and COVID-19 Vaccines. J Clin Med 2020; 9:E3561. [PMID: 33167413 PMCID: PMC7694388 DOI: 10.3390/jcm9113561] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/31/2020] [Accepted: 11/02/2020] [Indexed: 02/06/2023] Open
Abstract
Precision medicine approaches based on pharmacogenomics are now being successfully implemented to enable physicians to predict more efficient treatments and prevention strategies for a given disease based on the genetic background of the patient. This approach has already been proposed for vaccines, but research is lagging behind the needs of society, and precision medicine is far from being implemented here. While vaccinomics concerns the effectiveness of vaccines, adversomics concerns their side effects. This area has great potential to address public concerns about vaccine safety and to promote increased public confidence, higher vaccination rates, and fewer serious adverse events in genetically predisposed individuals. The aim here is to explore the contemporary scientific literature related to the vaccinomic and adversomic aspects of the three most-controversial vaccines: those against hepatitis B, against measles, mumps, and rubella, and against human Papilloma virus. We provide detailed information on the genes that encode human leukocyte antigen, cytokines and their receptors, and transcription factors and regulators associated with the efficacy and safety of the Hepatitis B and Measles, Mumps and Rubella virus vaccines. We also investigate the future prospects of vaccinomics and adversomics of a COVID-19 vaccine, which might represent the fastest development of a vaccine ever.
Collapse
Affiliation(s)
| | - Nataša Karas Kuželički
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia;
| |
Collapse
|
10
|
Single B cells reveal the antibody responses of rhesus macaques immunized with an inactivated enterovirus D68 vaccine. Arch Virol 2020; 165:1777-1789. [PMID: 32462286 PMCID: PMC8851307 DOI: 10.1007/s00705-020-04676-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Accepted: 04/22/2020] [Indexed: 11/10/2022]
Abstract
Enterovirus D68 (EV-D68) infection may cause severe respiratory system manifestations in pediatric populations. Because of the lack of an effective preventive vaccine or specific therapeutic drug for this infection, the development of EV-D68-specific vaccines and antibodies has become increasingly important. In this study, we prepared an experimental EV-D68 vaccine inactivated by formaldehyde and found that the serum of rhesus macaques immunized with the inactivated EV-D68 vaccine exhibited potent neutralizing activity against EV-D68 virus in vitro. Subsequently, the antibody-mediated immune response of B cells elicited by the inactivated vaccine was evaluated in a rhesus monkey model. The binding activity, in vitro neutralization activity, and sequence properties of 28 paired antibodies from the rhesus macaques’ EV-D68-specific single memory B cells were analyzed, and the EV-D68 VP1-specific antibody group was found to be the main constituent in vivo. Intriguingly, we also found a synergistic effect among the E15, E18 and E20 monoclonal antibodies from the rhesus macaques. Furthermore, we demonstrated the protective efficacy of maternal antibodies in suckling C57BL/6 mice. This study provides valuable information for the future development of EV-D68 vaccines.
Collapse
|
11
|
Haralambieva IH, Kennedy RB, Ovsyannikova IG, Schaid DJ, Poland GA. Current perspectives in assessing humoral immunity after measles vaccination. Expert Rev Vaccines 2019; 18:75-87. [PMID: 30585753 PMCID: PMC6413513 DOI: 10.1080/14760584.2019.1559063] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 12/10/2018] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Repeated measles outbreaks in countries with relatively high vaccine coverage are mainly due to failure to vaccinate and importation; however, cases in immunized individuals exist raising questions about suboptimal measles vaccine-induced humoral immunity and/or waning immunity in a low measles-exposure environment. AREAS COVERED The plaque reduction neutralization measurement of functional measles-specific antibodies correlates with protection is the gold standard in measles serology, but it does not assess cellular-immune or other parameters that may be associated with durable and/or protective immunity after vaccination. Additional correlates of protection and long-term immunity and new determinants/signatures of vaccine responsiveness such as specific CD46 and IFI44L genetic variants associated with neutralizing antibody titers after measles vaccination are under investigation. Current and future systems biology studies, coupled with new technology/assays and analytical approaches, will lead to an increasingly sophisticated understanding of measles vaccine-induced humoral immunity and will identify 'signatures' of protective and durable immune responses. EXPERT OPINION This will translate into the development of highly predictive assays of measles vaccine efficacy, effectiveness, and durability for prospective identification of potential low/non-responders and susceptible individuals who require additional vaccine doses. Such new advances may drive insights into the development of new/improved vaccine formulations and delivery systems.
Collapse
Affiliation(s)
| | - Richard B Kennedy
- a Mayo Clinic Vaccine Research Group , Mayo Clinic , Rochester , MN , USA
| | | | - Daniel J Schaid
- a Mayo Clinic Vaccine Research Group , Mayo Clinic , Rochester , MN , USA
- b Department of Health Sciences Research , Mayo Clinic , Rochester , MN , USA
| | - Gregory A Poland
- a Mayo Clinic Vaccine Research Group , Mayo Clinic , Rochester , MN , USA
| |
Collapse
|
12
|
Kulkarni PS, Hurwitz JL, Simões EAF, Piedra PA. Establishing Correlates of Protection for Vaccine Development: Considerations for the Respiratory Syncytial Virus Vaccine Field. Viral Immunol 2018; 31:195-203. [PMID: 29336703 DOI: 10.1089/vim.2017.0147] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Correlates of protection (CoPs) can play a significant role in vaccine development by assisting the selection of vaccine candidates for clinical trials, supporting clinical trial design and implementation, and simplifying tests of vaccine modifications. Because of this important role in vaccine development, it is essential that CoPs be defined by well-designed immunogenicity and efficacy studies, with attention paid to benefits and limitations. The respiratory syncytial virus (RSV) field is unique in that a great deal of information about the humoral response is available from basic research and clinical studies. Polyclonal and monoclonal antibodies have been used routinely in the clinic to protect vulnerable infants from infection, providing a wealth of information about correlations between neutralizing antibodies and disease prevention. Considerations for the establishment of future CoPs to support RSV vaccine development in different populations are therefore discussed.
Collapse
Affiliation(s)
| | - Julia L Hurwitz
- 2 Department of Infectious Diseases, St. Jude Children's Research Hospital , Memphis, Tennessee.,3 Department of Microbiology, Immunology, and Biochemistry, The University of Tennessee Health Science Center , Memphis, Tennessee
| | - Eric A F Simões
- 4 Department of Pediatrics, University of Colorado School of Medicine , Aurora, Colorado.,5 Department of Epidemiology, Colorado School of Public Health , Section of Infectious Diseases, Children's Hospital Colorado, Aurora, Colorado
| | - Pedro A Piedra
- 6 Department of Molecular Virology and Microbiology, Baylor College of Medicine , Houston, Texas
| |
Collapse
|
13
|
Bichon A, Aubry C, Benarous L, Drouet H, Zandotti C, Parola P, Lagier JC. Case report: Ribavirin and vitamin A in a severe case of measles. Medicine (Baltimore) 2017; 96:e9154. [PMID: 29390321 PMCID: PMC5815733 DOI: 10.1097/md.0000000000009154] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 11/15/2017] [Accepted: 11/16/2017] [Indexed: 12/27/2022] Open
Abstract
RATIONALE Despite a vaccine being widely available, measles continues to occur frequently, with sometimes lethal consequences. PATIENTS CONCERNS The mortality rate reaches 35% and measles represents 44% of the 1.4 million deaths which are due to preventable diseases. Severe forms of measles are reported, mainly in young, unvaccinated adults, and in specific populations. The risk factors for severe measles include no or incomplete vaccination and vitamin A deficiency. Apart from secondary measles-related infections, severe measles is mainly represented by neurological, respiratory, and digestive symptoms. DIAGNOSES Strengthening the hypothesis that there is a link between vitamin A deficiency and severe measles in this paper we report the case of a 25-year-old unvaccinated man hospitalized for severe and complicated measles. OUTCOMES The evolution was good after administration of intramuscular vitamin A as well as intravenous ribavirin. LESSONS Measles remains a fatal and serious disease. The early use of ribavirin and vitamin A shows significant improvements regarding morbimortality and should be systematic in severe cases.
Collapse
Affiliation(s)
- Amandine Bichon
- Aix Marseille Univ, CNRS 7278, IRD 198, INSERM 1095, AP-HM, URMITE, IHU Méditerranée-Infection, 19-21 Boulevard Jean Moulin, Marseille Cedex 5
| | - Camille Aubry
- Aix Marseille Univ, CNRS 7278, IRD 198, INSERM 1095, AP-HM, URMITE, IHU Méditerranée-Infection, 19-21 Boulevard Jean Moulin, Marseille Cedex 5
| | - Lucas Benarous
- Assistance Publique Hôpitaux de Marseille, CHU Timone, Service de réanimation médicale, Marseille, France
| | - Hortense Drouet
- Aix Marseille Univ, CNRS 7278, IRD 198, INSERM 1095, AP-HM, URMITE, IHU Méditerranée-Infection, 19-21 Boulevard Jean Moulin, Marseille Cedex 5
| | - Christine Zandotti
- Aix Marseille Univ, CNRS 7278, IRD 198, INSERM 1095, AP-HM, URMITE, IHU Méditerranée-Infection, 19-21 Boulevard Jean Moulin, Marseille Cedex 5
| | - Philippe Parola
- Aix Marseille Univ, CNRS 7278, IRD 198, INSERM 1095, AP-HM, URMITE, IHU Méditerranée-Infection, 19-21 Boulevard Jean Moulin, Marseille Cedex 5
| | - Jean-Christophe Lagier
- Aix Marseille Univ, CNRS 7278, IRD 198, INSERM 1095, AP-HM, URMITE, IHU Méditerranée-Infection, 19-21 Boulevard Jean Moulin, Marseille Cedex 5
| |
Collapse
|
14
|
Rabies Virus Antibodies from Oral Vaccination as a Correlate of Protection against Lethal Infection in Wildlife. Trop Med Infect Dis 2017; 2:tropicalmed2030031. [PMID: 30270888 PMCID: PMC6082110 DOI: 10.3390/tropicalmed2030031] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 07/06/2017] [Accepted: 07/08/2017] [Indexed: 12/24/2022] Open
Abstract
Both cell-mediated and humoral immune effectors are important in combating rabies infection, although the humoral response receives greater attention regarding rabies prevention. The principle of preventive vaccination has been adopted for strategies of oral rabies vaccination (ORV) of wildlife reservoir populations for decades to control circulation of rabies virus in free-ranging hosts. There remains much debate about the levels of rabies antibodies (and the assays to measure them) that confer resistance to rabies virus. In this paper, data from published literature and our own unpublished animal studies on the induction of rabies binding and neutralizing antibodies following oral immunization of animals with live attenuated or recombinant rabies vaccines, are examined as correlates of protection against lethal rabies infection in captive challenge settings. Analysis of our studies suggests that, though serum neutralization test results are expected to reflect in vivo protection, the blocking enzyme linked immunosorbent assay (ELISA) result at Day 28 was a better predictor of survival. ELISA kits may have an advantage of greater precision and ability to compare results among different studies and laboratories based on the inherent standardization of the kit format. This paper examines current knowledge and study findings to guide meaningful interpretation of serology results in oral baiting monitoring.
Collapse
|