1
|
Garbuglia AR, Pauciullo S, Zulian V, Del Porto P. Update on Hepatitis C Vaccine: Results and Challenges. Viruses 2024; 16:1337. [PMID: 39205311 PMCID: PMC11359353 DOI: 10.3390/v16081337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/15/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024] Open
Abstract
Therapy against the Hepatitis C virus (HCV) has significantly improved with the introduction of direct-acting antiviral drugs (DAAs), achieving over 95% sustained virological response (SVR). Despite this, the development of an effective anti-HCV vaccine remains a critical challenge due to the low number of patients treated with DAAs and the occurrence of HCV reinfections in high-risk groups. Current vaccine strategies aim to stimulate either B-cell or T-cell responses. Vaccines based on E1 and E2 proteins can elicit broad cross-neutralizing antibodies against all major HCV genotypes, though with varying efficiencies and without full protection against infection. In humans, the neutralizing antibodies induced by such vaccines mainly target the AR3 region, but their levels are generally insufficient for broad neutralization. Various HCV proteins expressed through different viral vectors have been utilized to elicit T cell immune responses, showing sustained expansion of HCV-specific effector memory T cells and improved proliferation and polyfunctionality of memory T cells over time. However, despite these advancements, the frequency and effectiveness of T-cell responses remain limited.
Collapse
Affiliation(s)
- Anna Rosa Garbuglia
- Laboratory of Virology, National Institute for Infectious Diseases “Lazzaro Spallanzani” (IRCCS), 00149 Rome, Italy; (S.P.); (V.Z.)
| | - Silvia Pauciullo
- Laboratory of Virology, National Institute for Infectious Diseases “Lazzaro Spallanzani” (IRCCS), 00149 Rome, Italy; (S.P.); (V.Z.)
| | - Verdiana Zulian
- Laboratory of Virology, National Institute for Infectious Diseases “Lazzaro Spallanzani” (IRCCS), 00149 Rome, Italy; (S.P.); (V.Z.)
| | - Paola Del Porto
- Department of Biology and Biotechnology “Charles Darwin”, Sapienza University of Rome, 00100 Rome, Italy;
| |
Collapse
|
2
|
Li XJY, Qu JR, Zhang YH, Liu RP. The dual function of cGAS-STING signaling axis in liver diseases. Acta Pharmacol Sin 2024; 45:1115-1129. [PMID: 38233527 PMCID: PMC11130165 DOI: 10.1038/s41401-023-01220-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 12/17/2023] [Indexed: 01/19/2024] Open
Abstract
Numerous liver diseases, such as nonalcoholic fatty liver disease, hepatitis, hepatocellular carcinoma, and hepatic ischemia-reperfusion injury, have been increasingly prevalent, posing significant threats to global health. In recent decades, there has been increasing evidence linking the dysregulation of cyclic-GMP-AMP synthase (cGAS)-stimulator of interferon gene (STING)-related immune signaling to liver disorders. Both hyperactivation and deletion of STING can disrupt the immune microenvironment dysfunction, exacerbating liver disorders. Consequently, there has been a surge in research investigating medical agents or mediators targeting cGAS-STING signaling. Interestingly, therapeutic manipulation of the cGAS-STING pathway has yielded inconsistent and even contradictory effects on different liver diseases due to the distinct physiological characteristics of intrahepatic cells that express and respond to STING. In this review, we comprehensively summarize recent advancements in understanding the dual roles of the STING pathway, highlighting that the benefits of targeting STING signaling depend on the specific types of target cells and stages of liver injury. Additionally, we offer a novel perspective on the suitability of STING agonists and antagonists for clinical assessment. In conclusion, STING signaling remains a highly promising therapeutic target, and the development of STING pathway modulators holds great potential for the treatment of liver diseases.
Collapse
Affiliation(s)
- Xiao-Jiao-Yang Li
- School of Life Sciences, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing, 100029, China.
| | - Jiao-Rong Qu
- School of Life Sciences, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing, 100029, China
| | - Yin-Hao Zhang
- School of Life Sciences, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing, 100029, China
| | - Run-Ping Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing, 100029, China.
| |
Collapse
|
3
|
Démoulins T, Techakriengkrai N, Ebensen T, Schulze K, Liniger M, Gerber M, Nedumpun T, McCullough KC, Guzmán CA, Suradhat S, Ruggli N. New Generation Self-Replicating RNA Vaccines Derived from Pestivirus Genome. Methods Mol Biol 2024; 2786:89-133. [PMID: 38814391 DOI: 10.1007/978-1-0716-3770-8_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
While mRNA vaccines have shown their worth, they have the same failing as inactivated vaccines, namely they have limited half-life, are non-replicating, and therefore limited to the size of the vaccine payload for the amount of material translated. New advances averting these problems are combining replicon RNA (RepRNA) technology with nanotechnology. RepRNA are large self-replicating RNA molecules (typically 12-15 kb) derived from viral genomes defective in at least one essential structural protein gene. They provide sustained antigen production, effectively increasing vaccine antigen payloads over time, without the risk of producing infectious progeny. The major limitations with RepRNA are RNase-sensitivity and inefficient uptake by dendritic cells (DCs), which need to be overcome for efficacious RNA-based vaccine design. We employed biodegradable delivery vehicles to protect the RepRNA and promote DC delivery. Condensing RepRNA with polyethylenimine (PEI) and encapsulating RepRNA into novel Coatsome-replicon vehicles are two approaches that have proven effective for delivery to DCs and induction of immune responses in vivo.
Collapse
Affiliation(s)
- Thomas Démoulins
- The Institute of Virology and Immunology IVI, Bern & Mittelhäusern, Switzerland.
- Department of Infectious Diseases and Pathobiology (DIP), Vetsuisse Faculty, University of Bern, Bern, Switzerland.
- Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand.
- Center of Excellence in Emerging Infectious Diseases in Animals, Chulalongkorn University (CU-EIDAs), Bangkok, Thailand.
- Institute of Veterinary Bacteriology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland.
| | - Navapon Techakriengkrai
- Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Emerging Infectious Diseases in Animals, Chulalongkorn University (CU-EIDAs), Bangkok, Thailand
| | - Thomas Ebensen
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
| | - Kai Schulze
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
| | - Matthias Liniger
- The Institute of Virology and Immunology IVI, Bern & Mittelhäusern, Switzerland
- Department of Infectious Diseases and Pathobiology (DIP), Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Markus Gerber
- The Institute of Virology and Immunology IVI, Bern & Mittelhäusern, Switzerland
- Department of Infectious Diseases and Pathobiology (DIP), Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Teerawut Nedumpun
- Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Emerging Infectious Diseases in Animals, Chulalongkorn University (CU-EIDAs), Bangkok, Thailand
| | - Kenneth C McCullough
- The Institute of Virology and Immunology IVI, Bern & Mittelhäusern, Switzerland
- Department of Infectious Diseases and Pathobiology (DIP), Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Carlos A Guzmán
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
| | - Sanipa Suradhat
- Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Emerging Infectious Diseases in Animals, Chulalongkorn University (CU-EIDAs), Bangkok, Thailand
| | - Nicolas Ruggli
- The Institute of Virology and Immunology IVI, Bern & Mittelhäusern, Switzerland
- Department of Infectious Diseases and Pathobiology (DIP), Vetsuisse Faculty, University of Bern, Bern, Switzerland
| |
Collapse
|
4
|
Cancino-Diaz ME, Guerrero-Barajas C, Betanzos-Cabrera G, Cancino-Diaz JC. Nucleotides as Bacterial Second Messengers. Molecules 2023; 28:7996. [PMID: 38138485 PMCID: PMC10745434 DOI: 10.3390/molecules28247996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/21/2023] [Accepted: 11/23/2023] [Indexed: 12/24/2023] Open
Abstract
In addition to comprising monomers of nucleic acids, nucleotides have signaling functions and act as second messengers in both prokaryotic and eukaryotic cells. The most common example is cyclic AMP (cAMP). Nucleotide signaling is a focus of great interest in bacteria. Cyclic di-AMP (c-di-AMP), cAMP, and cyclic di-GMP (c-di-GMP) participate in biological events such as bacterial growth, biofilm formation, sporulation, cell differentiation, motility, and virulence. Moreover, the cyclic-di-nucleotides (c-di-nucleotides) produced in pathogenic intracellular bacteria can affect eukaryotic host cells to allow for infection. On the other hand, non-cyclic nucleotide molecules pppGpp and ppGpp are alarmones involved in regulating the bacterial response to nutritional stress; they are also considered second messengers. These second messengers can potentially be used as therapeutic agents because of their immunological functions on eukaryotic cells. In this review, the role of c-di-nucleotides and cAMP as second messengers in different bacterial processes is addressed.
Collapse
Affiliation(s)
- Mario E. Cancino-Diaz
- Departamentos Microbiología and Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Manuel Carpio, Plutarco Elías Calles, Miguel Hidalgo, Ciudad de México 11350, Mexico
| | - Claudia Guerrero-Barajas
- Departamento de Bioprocesos, Unidad Profesional Interdisciplinaria de Biotecnología, Instituto Politécnico Nacional, Av. Acueducto, La Laguna Ticoman, Gustavo A. Madero, Ciudad de México 07340, Mexico;
| | - Gabriel Betanzos-Cabrera
- Área Académica de Nutrición y Medicina, Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo, Carretera Pachuca-Actopan Camino a Tilcuautla s/n, Pueblo San Juan Tilcuautla, Pachuca Hidalgo 42160, Mexico;
| | - Juan C. Cancino-Diaz
- Departamentos Microbiología and Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Manuel Carpio, Plutarco Elías Calles, Miguel Hidalgo, Ciudad de México 11350, Mexico
| |
Collapse
|
5
|
Medina C, García AH, Crespo FI, Toro FI, Mayora SJ, De Sanctis JB. A Synopsis of Hepatitis C Virus Treatments and Future Perspectives. Curr Issues Mol Biol 2023; 45:8255-8276. [PMID: 37886964 PMCID: PMC10605161 DOI: 10.3390/cimb45100521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/10/2023] [Accepted: 10/10/2023] [Indexed: 10/28/2023] Open
Abstract
Hepatitis C virus (HCV) infection is a worldwide public health problem. Chronic infection with HCV can lead to liver cirrhosis or cancer. Although some immune-competent individuals can clear the virus, others develop chronic HCV disease due to viral mutations or an impaired immune response. IFNs type I and III and the signal transduction induced by them are essential for a proper antiviral effect. Research on the viral cycle and immune escape mechanisms has formed the basis of therapeutic strategies to achieve a sustained virological response (SVR). The first therapies were based on IFNα; then, IFNα plus ribavirin (IFN-RBV); and then, pegylated-IFNα-RBV (PEGIFNα-RIV) to improve cytokine pharmacokinetics. However, the maximum SVR was 60%, and several significant side effects were observed, decreasing patients' treatment adherence. The development of direct-acting antivirals (DAAs) significantly enhanced the SVR (>90%), and the compounds were able to inhibit HCV replication without significant side effects, even in paediatric populations. The management of coinfected HBV-HCV and HCV-HIV patients has also improved based on DAA and PEG-IFNα-RBV (HBV-HCV). CD4 cells are crucial for an effective antiviral response. The IFNλ3, IL28B, TNF-α, IL-10, TLR-3, and TLR-9 gene polymorphisms are involved in viral clearance, therapeutic responses, and hepatic pathologies. Future research should focus on searching for strategies to circumvent resistance-associated substitution (RAS) to DAAs, develop new therapeutic schemes for different medical conditions, including organ transplant, and develop vaccines for long-lasting cellular and humoral responses with cross-protection against different HCV genotypes. The goal is to minimise the probability of HCV infection, HCV chronicity and hepatic carcinoma.
Collapse
Affiliation(s)
- Christian Medina
- Institute of Immunology Dr. Nicolás E. Bianco C., Faculty of Medicine, Universidad Central de Venezuela, Caracas 1040, Venezuela; (C.M.); (F.I.C.); (F.I.T.); (S.J.M.)
| | - Alexis Hipólito García
- Institute of Immunology Dr. Nicolás E. Bianco C., Faculty of Medicine, Universidad Central de Venezuela, Caracas 1040, Venezuela; (C.M.); (F.I.C.); (F.I.T.); (S.J.M.)
| | - Francis Isamarg Crespo
- Institute of Immunology Dr. Nicolás E. Bianco C., Faculty of Medicine, Universidad Central de Venezuela, Caracas 1040, Venezuela; (C.M.); (F.I.C.); (F.I.T.); (S.J.M.)
| | - Félix Isidro Toro
- Institute of Immunology Dr. Nicolás E. Bianco C., Faculty of Medicine, Universidad Central de Venezuela, Caracas 1040, Venezuela; (C.M.); (F.I.C.); (F.I.T.); (S.J.M.)
| | - Soriuska José Mayora
- Institute of Immunology Dr. Nicolás E. Bianco C., Faculty of Medicine, Universidad Central de Venezuela, Caracas 1040, Venezuela; (C.M.); (F.I.C.); (F.I.T.); (S.J.M.)
| | - Juan Bautista De Sanctis
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, 779 00 Olomouc, Czech Republic
- The Czech Advanced Technology and Research Institute (Catrin), Palacky University, 779 00 Olomouc, Czech Republic
| |
Collapse
|
6
|
Ren H, Jia W, Xie Y, Yu M, Chen Y. Adjuvant physiochemistry and advanced nanotechnology for vaccine development. Chem Soc Rev 2023; 52:5172-5254. [PMID: 37462107 DOI: 10.1039/d2cs00848c] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
Vaccines comprising innovative adjuvants are rapidly reaching advanced translational stages, such as the authorized nanotechnology adjuvants in mRNA vaccines against COVID-19 worldwide, offering new strategies to effectively combat diseases threatening human health. Adjuvants are vital ingredients in vaccines, which can augment the degree, extensiveness, and longevity of antigen specific immune response. The advances in the modulation of physicochemical properties of nanoplatforms elevate the capability of adjuvants in initiating the innate immune system and adaptive immunity, offering immense potential for developing vaccines against hard-to-target infectious diseases and cancer. In this review, we provide an essential introduction of the basic principles of prophylactic and therapeutic vaccination, key roles of adjuvants in augmenting and shaping immunity to achieve desired outcomes and effectiveness, and the physiochemical properties and action mechanisms of clinically approved adjuvants for humans. We particularly focus on the preclinical and clinical progress of highly immunogenic emerging nanotechnology adjuvants formulated in vaccines for cancer treatment or infectious disease prevention. We deliberate on how the immune system can sense and respond to the physicochemical cues (e.g., chirality, deformability, solubility, topology, and chemical structures) of nanotechnology adjuvants incorporated in the vaccines. Finally, we propose possible strategies to accelerate the clinical implementation of nanotechnology adjuvanted vaccines, such as in-depth elucidation of nano-immuno interactions, antigen identification and optimization by the deployment of high-dimensional multiomics analysis approaches, encouraging close collaborations among scientists from different scientific disciplines and aggressive exploration of novel nanotechnologies.
Collapse
Affiliation(s)
- Hongze Ren
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
- School of Medicine, Shanghai University, Shanghai, 200444, P. R. China
| | - Wencong Jia
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
- School of Medicine, Shanghai University, Shanghai, 200444, P. R. China
| | - Yujie Xie
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
- School of Medicine, Shanghai University, Shanghai, 200444, P. R. China
| | - Meihua Yu
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
| | - Yu Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
- School of Medicine, Shanghai University, Shanghai, 200444, P. R. China
| |
Collapse
|
7
|
Ebensen T, Arntz A, Schulze K, Hanefeld A, Guzmán CA, Scherließ R. Pulmonary Application of Novel Antigen-Loaded Chitosan Nano-Particles Co-Administered with the Mucosal Adjuvant C-Di-AMP Resulted in Enhanced Immune Stimulation and Dose Sparing Capacity. Pharmaceutics 2023; 15:pharmaceutics15041238. [PMID: 37111723 PMCID: PMC10145907 DOI: 10.3390/pharmaceutics15041238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/31/2023] [Accepted: 04/03/2023] [Indexed: 04/29/2023] Open
Abstract
The most successful medical intervention for preventing infectious diseases is still vaccination. This effective strategy has resulted in decreased mortality and extended life expectancy. However, there is still a critical need for novel vaccination strategies and vaccines. Antigen cargo delivery by nanoparticle-based carriers could promote superior protection against constantly emerging viruses and subsequent diseases. This should be sustained by the induction of vigorous cellular and humoral immunity, capable of acting both at the systemic and mucosal levels. Induction of antigen-specific responses at the portal of entry of pathogens is considered an important scientific challenge. Chitosan, which is widely regarded as a biodegradable, biocompatible and non-toxic material for functionalized nanocarriers, as well as having adjuvant activity, enables antigen administration via less-invasive mucosal routes such as sublingual or pulmonic application route. In this proof of principle study, we evaluate the efficacy of chitosan nanocarriers loaded with the model antigen Ovalbumin (OVA) co-administrated with the STING agonist bis-(3',5')-cyclic dimeric adenosine monophosphate (c-di-AMP) given by pulmonary route. Here, BALB/c mice were immunized with four doses of the formulation that stimulates enhanced antigen-specific IgG titers in sera. In addition, this vaccine formulation also promotes a strong Th1/Th17 response characterized by high secretion of IFN-γ, IL-2 and IL-17, as well as induction of CD8+ T cells. Furthermore, the novel formulation exhibited strong dose-sparing capacity, enabling a 90% reduction of the antigen concentration. Altogether, our results suggest that chitosan nanocarriers, in combination with the mucosal adjuvant c-di-AMP, are a promising technology platform for the development of innovative mucosal vaccines against respiratory pathogens (e.g., Influenza or RSV) or for therapeutic vaccines.
Collapse
Affiliation(s)
- Thomas Ebensen
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research (HZI), Inhoffenstr. 7, 38124 Braunschweig, Germany
| | - Andrea Arntz
- Department of Pharmaceutics and Biopharmaceutics, Kiel University, Grasweg 9a, 24118 Kiel, Germany
| | - Kai Schulze
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research (HZI), Inhoffenstr. 7, 38124 Braunschweig, Germany
| | - Andrea Hanefeld
- Merck KGaA, Frankfurter Straße 250, 64293 Darmstadt, Germany
| | - Carlos A Guzmán
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research (HZI), Inhoffenstr. 7, 38124 Braunschweig, Germany
| | - Regina Scherließ
- Department of Pharmaceutics and Biopharmaceutics, Kiel University, Grasweg 9a, 24118 Kiel, Germany
| |
Collapse
|
8
|
Romero EL, Morilla MJ. Ether lipids from archaeas in nano-drug delivery and vaccination. Int J Pharm 2023; 634:122632. [PMID: 36690132 DOI: 10.1016/j.ijpharm.2023.122632] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/26/2022] [Accepted: 01/17/2023] [Indexed: 01/22/2023]
Abstract
Archaea are microorganisms more closely related to eukaryotes than bacteria. Almost 50 years after being defined as a new domain of life on earth, new species continue to be discovered and their phylogeny organized. The study of the relationship between their genetics and metabolism and some of their extreme habitats has even positioned them as a model of extraterrestrial life forms. Archaea, however, are deeply connected to the life of our planet: they can be found in arid, acidic, warm areas; on most of the earth's surface, which is cold (below 5 °C), playing a prominent role in the cycles of organic materials on a global scale and they are even part of our microbiota. The constituent materials of these microorganisms differ radically from those produced by eukaryotes and bacteria, and the nanoparticles that can be manufactured using their ether lipids as building blocks exhibit unique properties that are of interest in nanomedicine. Here, we present for the first time a complete overview of the pre-clinical applications of nanomedicines based on ether archaea lipids, focused on drug delivery and adjuvancy over the last 25 years, along with a discussion on their pros, cons and their future industrial implementation.
Collapse
Affiliation(s)
- Eder Lilia Romero
- Nanomedicines Research and Development Centre (NARD), Science and Technology Department, National University of Quilmes, Roque Sáenz Peña 352, Bernal, Buenos Aires, Argentina.
| | - Maria Jose Morilla
- Nanomedicines Research and Development Centre (NARD), Science and Technology Department, National University of Quilmes, Roque Sáenz Peña 352, Bernal, Buenos Aires, Argentina
| |
Collapse
|
9
|
Carr S, Buan NR. Insights into the biotechnology potential of Methanosarcina. Front Microbiol 2022; 13:1034674. [PMID: 36590411 PMCID: PMC9797515 DOI: 10.3389/fmicb.2022.1034674] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 10/28/2022] [Indexed: 12/23/2022] Open
Abstract
Methanogens are anaerobic archaea which conserve energy by producing methane. Found in nearly every anaerobic environment on earth, methanogens serve important roles in ecology as key organisms of the global carbon cycle, and in industry as a source of renewable biofuels. Environmentally, methanogenic archaea play an essential role in the reintroducing unavailable carbon to the carbon cycle by anaerobically converting low-energy, terminal metabolic degradation products such as one and two-carbon molecules into methane which then returns to the aerobic portion of the carbon cycle. In industry, methanogens are commonly used as an inexpensive source of renewable biofuels as well as serving as a vital component in the treatment of wastewater though this is only the tip of the iceberg with respect to their metabolic potential. In this review we will discuss how the efficient central metabolism of methanoarchaea could be harnessed for future biotechnology applications.
Collapse
Affiliation(s)
| | - Nicole R. Buan
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, United States
| |
Collapse
|
10
|
Cheng X, Ning J, Xu X, Zhou X. The role of bacterial cyclic di-adenosine monophosphate in the host immune response. Front Microbiol 2022; 13:958133. [PMID: 36106081 PMCID: PMC9465037 DOI: 10.3389/fmicb.2022.958133] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/04/2022] [Indexed: 11/13/2022] Open
Abstract
Cyclic di-adenosine monophosphate (c-di-AMP) is a second messenger which is widely used in signal transduction in bacteria and archaea. c-di-AMP plays an important role in the regulation of bacterial physiological activities, such as the cell cycle, cell wall stability, environmental stress response, and biofilm formation. Moreover, c-di-AMP produced by pathogens can be recognized by host cells for the activation of innate immune responses. It can induce type I interferon (IFN) response in a stimulator of interferon genes (STING)-dependent manner, activate the nuclear factor kappa B (NF-κB) pathway, inflammasome, and host autophagy, and promote the production and secretion of cytokines. In addition, c-di-AMP is capable of triggering a host mucosal immune response as a mucosal adjuvant. Therefore, c-di-AMP is now considered to be a new pathogen-associated molecular pattern in host immunity and has become a promising target in bacterial/viral vaccine and drug research. In this review, we discussed the crosstalk between bacteria and host immunity mediated by c-di-AMP and addressed the role of c-di-AMP as a mucosal adjuvant in boosting evoked immune responses of subunit vaccines. The potential application of c-di-AMP in immunomodulation and immunotherapy was also discussed in this review.
Collapse
Affiliation(s)
- Xingqun Cheng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jia Ning
- The School and Hospital of Stomatology, Tianjin Medical University, Tianjin, China
| | - Xin Xu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- *Correspondence: Xuedong Zhou,
| |
Collapse
|
11
|
Yan H, Chen W. The Promise and Challenges of Cyclic Dinucleotides as Molecular Adjuvants for Vaccine Development. Vaccines (Basel) 2021; 9:917. [PMID: 34452042 PMCID: PMC8402453 DOI: 10.3390/vaccines9080917] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/05/2021] [Accepted: 08/10/2021] [Indexed: 12/14/2022] Open
Abstract
Cyclic dinucleotides (CDNs), originally discovered as bacterial second messengers, play critical roles in bacterial signal transduction, cellular processes, biofilm formation, and virulence. The finding that CDNs can trigger the innate immune response in eukaryotic cells through the stimulator of interferon genes (STING) signalling pathway has prompted the extensive research and development of CDNs as potential immunostimulators and novel molecular adjuvants for induction of systemic and mucosal innate and adaptive immune responses. In this review, we summarize the chemical structure, biosynthesis regulation, and the role of CDNs in enhancing the crosstalk between host innate and adaptive immune responses. We also discuss the strategies to improve the efficient delivery of CDNs and the recent advance and future challenges in the development of CDNs as potential adjuvants in prophylactic vaccines against infectious diseases and in therapeutic vaccines against cancers.
Collapse
Affiliation(s)
- Hongbin Yan
- Department of Chemistry, Brock University, St. Catharines, ON L2S 3A1, Canada
| | - Wangxue Chen
- Human Health and Therapeutics Research Centre, National Research Council Canada, Ottawa, ON K1A 0R6, Canada
- Department of Biological Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada
| |
Collapse
|
12
|
Chen R, Du J, Zhu H, Ling Q. The role of cGAS-STING signalling in liver diseases. JHEP Rep 2021; 3:100324. [PMID: 34381984 PMCID: PMC8340306 DOI: 10.1016/j.jhepr.2021.100324] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 05/20/2021] [Accepted: 06/08/2021] [Indexed: 12/12/2022] Open
Abstract
The recently identified novel cytosolic DNA sensor cyclic GMP-AMP synthase (cGAS) activates the downstream adaptor protein stimulator of interferon genes (STING) by catalysing the synthesis of cyclic GMP-AMP. This in turn initiates an innate immune response through the release of various cytokines, including type I interferon. Foreign DNA (microbial infection) or endogenous DNA (nuclear or mitochondrial leakage) can serve as cGAS ligands and lead to the activation of cGAS-STING signalling. Therefore, the cGAS-STING pathway plays essential roles in infectious diseases, sterile inflammation, tumours, and autoimmune diseases. In addition, cGAS-STING signalling affects the progression of liver inflammation through other mechanisms, such as autophagy and metabolism. In this review, we summarise recent advances in our understanding of the role of cGAS-STING signalling in the innate immune modulation of different liver diseases. Furthermore, we discuss the therapeutic potential of targeting the cGAS-STING pathway in the treatment of liver diseases.
Collapse
Key Words
- AIM2, absent in melanoma 2
- ALD, alcohol-related liver disease
- APCs, antigen-presenting cells
- CDNs, cyclic dinucleotides
- DAMPs, damage-associated molecular patterns
- DCs, dendritic cells
- ER, endoplasmic reticulum
- GVHD, graft-versus-host disease
- HCC, hepatocellular carcinoma
- HSCs, hepatic stellate cells
- IFN-I, type I interferon
- IL, interleukin
- IRF3, interferon regulatory factor 3
- IRI, ischaemia refusion injury
- KCs, Kupffer cells
- LSECs, liver sinusoidal endothelial cells
- MHC, major histocompatibility complex
- NAFLD, non-alcoholic fatty liver disease
- NK cells, natural killer cells
- NPCs, non-parenchymal cells
- PAMPs, pathogen-associated molecular patterns
- PD-1, programmed cell death protein-1
- PD-L1, programmed cell death protein ligand-1
- PPRs, pattern recognition receptors
- SAVI, STING-associated vasculopathy with onset in infancy
- STING, stimulator of interferon genes
- TBK1, TANK-binding kinase 1
- TGF-β1, transforming growth factor-β1
- TLR, Toll-like receptor
- TNF, tumour necrosis factor
- XRCC, X-ray repair cross complementing
- aHSCT, allogeneic haematopoietic stem cell transplantation
- cGAMP, cyclic guanosine monophosphate-adenosine monophosphate
- cGAS, cyclic guanosine monophosphate-adenosine monophosphate synthase
- cGAS-STING signalling
- dsDNA, double-strand DNA
- hepatocellular carcinoma
- innate immune response
- liver injury
- mTOR, mammalian target of rapamycin
- mtDNA, mitochondrial DNA
- nonalcoholic fatty liver disease
- siRNA, small interfering RNA
- ssRNA, single-stranded RNA
- viral hepatitis
Collapse
Affiliation(s)
- Ruihan Chen
- Department of Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiamin Du
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Hong Zhu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Qi Ling
- Department of Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
13
|
Prophylactic Multi-Subunit Vaccine against Chlamydia trachomatis: In Vivo Evaluation in Mice. Vaccines (Basel) 2021; 9:vaccines9060609. [PMID: 34204170 PMCID: PMC8226540 DOI: 10.3390/vaccines9060609] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 05/31/2021] [Accepted: 06/03/2021] [Indexed: 01/08/2023] Open
Abstract
Chlamydia trachomatis is the most frequent sexually-transmitted disease-causing bacterium. Urogenital serovars of this intracellular pathogen lead to urethritis and cervicitis. Ascending infections result in pelvic inflammatory disease, salpingitis, and oophoritis. One of 200 urogenital infections leads to tubal infertility. Serovars A–C cause trachoma with visual impairment. There is an urgent need for a vaccine. We characterized a new five-component subunit vaccine in a mouse vaccination-lung challenge infection model. Four recombinant Pmp family-members and Ctad1 from C. trachomatis serovar E, all of which participate in adhesion and binding of chlamydial elementary bodies to host cells, were combined with the mucosal adjuvant cyclic-di-adenosine monophosphate. Intranasal application led to a high degree of cross-serovar protection against urogenital and ocular strains of C. trachomatis, which lasted at least five months. Critical evaluated parameters were body weight, clinical score, chlamydial load, a granulocyte marker and the cytokines IFN-γ/TNF-α in lung homogenate. Vaccine antigen-specific antibodies and a mixed Th1/Th2/Th17 T cell response with multi-functional CD4+ and CD8+ T cells correlate with protection. However, serum-transfer did not protect the recipients suggesting that circulating antibodies play only a minor role. In the long run, our new vaccine might help to prevent the feared consequences of human C. trachomatis infections.
Collapse
|
14
|
Enhancing the immune response and tumor suppression effect of antitumor vaccines adjuvanted with non-nucleotide small molecule STING agonist. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.01.036] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
15
|
Andrianov AK, Fuerst TR. Immunopotentiating and Delivery Systems for HCV Vaccines. Viruses 2021; 13:v13060981. [PMID: 34070543 PMCID: PMC8227888 DOI: 10.3390/v13060981] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 05/16/2021] [Accepted: 05/19/2021] [Indexed: 12/13/2022] Open
Abstract
Development of preventive vaccines against hepatitis C virus (HCV) remains one of the main strategies in achieving global elimination of the disease. The effort is focused on the quest for vaccines capable of inducing protective cross-neutralizing humoral and cellular immune responses, which in turn dictate the need for rationally designed cross-genotype vaccine antigens and potent immunoadjuvants systems. This review provides an assessment of the current state of knowledge on immunopotentiating compounds and vaccine delivery systems capable of enhancing HCV antigen-specific immune responses, while focusing on the synergy and interplay of two modalities. Structural, physico-chemical, and biophysical features of these systems are discussed in conjunction with the analysis of their in vivo performance. Extreme genetic diversity of HCV-a well-known hurdle in the development of an HCV vaccine, may also present a challenge in a search for an effective immunoadjuvant, as the effort necessitates systematic and comparative screening of rationally designed antigenic constructs. The progress may be accelerated if the preference is given to well-defined molecular immunoadjuvants with greater formulation flexibility and adaptability, including those capable of spontaneous self-assembly behavior, while maintaining their robust immunopotentiating and delivery capabilities.
Collapse
Affiliation(s)
- Alexander K. Andrianov
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850, USA;
- Correspondence:
| | - Thomas R. Fuerst
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850, USA;
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
16
|
Xu D, Tian Y, Xia Q, Ke B. The cGAS-STING Pathway: Novel Perspectives in Liver Diseases. Front Immunol 2021; 12:682736. [PMID: 33995425 PMCID: PMC8117096 DOI: 10.3389/fimmu.2021.682736] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 04/19/2021] [Indexed: 12/18/2022] Open
Abstract
Liver diseases represent a major global health burden accounting for approximately 2 million deaths per year worldwide. The liver functions as a primary immune organ that is largely enriched with various innate immune cells, including macrophages, dendritic cells, neutrophils, NK cells, and NKT cells. Activation of these cells orchestrates the innate immune response and initiates liver inflammation in response to the danger signal from pathogens or injured cells and tissues. The cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway is a crucial signaling cascade of the innate immune system activated by cytosol DNA. Recognizing DNA as an immune-stimulatory molecule is an evolutionarily preserved mechanism in initiating rapid innate immune responses against microbial pathogens. The cGAS is a cytosolic DNA sensor eliciting robust immunity via the production of cyclic GMP-AMPs that bind and activate STING. Although the cGAS-STING pathway has been previously considered to have essential roles in innate immunity and host defense, recent advances have extended the role of the cGAS-STING pathway to liver diseases. Emerging evidence indicates that overactivation of cGAS-STING may contribute to the development of liver disorders, implying that the cGAS-STING pathway is a promising therapeutic target. Here, we review and discuss the role of the cGAS-STING DNA-sensing signaling pathway in a variety of liver diseases, including viral hepatitis, nonalcoholic fatty liver disease (NAFLD), alcoholic liver disease (ALD), primary hepatocellular cancer (HCC), and hepatic ischemia-reperfusion injury (IRI), with highlights on currently available therapeutic options.
Collapse
Affiliation(s)
- Dongwei Xu
- The Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA, United States
- Department of Liver Surgery, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yizhu Tian
- The Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA, United States
| | - Qiang Xia
- Department of Liver Surgery, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Bibo Ke
- The Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
17
|
Yin W, Cai X, Ma H, Zhu L, Zhang Y, Chou SH, Galperin MY, He J. A decade of research on the second messenger c-di-AMP. FEMS Microbiol Rev 2021; 44:701-724. [PMID: 32472931 DOI: 10.1093/femsre/fuaa019] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 05/28/2020] [Indexed: 02/07/2023] Open
Abstract
Cyclic dimeric adenosine 3',5'-monophosphate (c-di-AMP) is an emerging second messenger in bacteria and archaea that is synthesized from two molecules of ATP by diadenylate cyclases and degraded to pApA or two AMP molecules by c-di-AMP-specific phosphodiesterases. Through binding to specific protein- and riboswitch-type receptors, c-di-AMP regulates a wide variety of prokaryotic physiological functions, including maintaining the osmotic pressure, balancing central metabolism, monitoring DNA damage and controlling biofilm formation and sporulation. It mediates bacterial adaptation to a variety of environmental parameters and can also induce an immune response in host animal cells. In this review, we discuss the phylogenetic distribution of c-di-AMP-related enzymes and receptors and provide some insights into the various aspects of c-di-AMP signaling pathways based on more than a decade of research. We emphasize the key role of c-di-AMP in maintaining bacterial osmotic balance, especially in Gram-positive bacteria. In addition, we discuss the future direction and trends of c-di-AMP regulatory network, such as the likely existence of potential c-di-AMP transporter(s), the possibility of crosstalk between c-di-AMP signaling with other regulatory systems, and the effects of c-di-AMP compartmentalization. This review aims to cover the broad spectrum of research on the regulatory functions of c-di-AMP and c-di-AMP signaling pathways.
Collapse
Affiliation(s)
- Wen Yin
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Xia Cai
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Hongdan Ma
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Li Zhu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Yuling Zhang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Shan-Ho Chou
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Michael Y Galperin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894, USA
| | - Jin He
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| |
Collapse
|
18
|
Stark FC, Dudani R, Agbayani G, McCluskie MJ. A Method to Evaluate In Vivo CD8 + T Cell Cytotoxicity in a Murine Model. Methods Mol Biol 2021; 2183:549-558. [PMID: 32959267 DOI: 10.1007/978-1-0716-0795-4_32] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Herein, a method to measure in vivo CD8+ T cell cytotoxicity in a murine model is presented. The activation of a strong CD8+ T cell response is paramount when designing vaccines to tackle intracellular infections and for cancer therapy. CD8+ T cells can directly kill infected and transformed cells and are directly associated with beneficial protection in many disease models. CD8+ T cell cytotoxicity can be measured using multiple methods including measuring IFNγ production by ELISPOT or measuring intracellular cytokines or cytotoxic granules by flow cytometry. However, to determine the ability of CD8+ T cells to kill their target in the context of its cognate receptor and in their native environment, the in vivo cytotoxic T cell assay (in vivo CTL) is ideal. The in vivo CTL assay provides a snapshot of the whole ability of the host to kill "Target" cells by measuring the loss of injected target cells relative to "Non-target" cells. The assay involves isolating splenocytes from donor mice, forming "Target" and "Non-target" cellular samples and injecting them intravenously into naïve and experimental mice at a chosen time-point in the experiment. Mice are humanely sacrificed 20 h later, and their spleens are excised and processed for flow cytometric analysis. The extent of "Target" cell killing relative to "Non-target" cells is determined by comparing the surviving proportions of these cells among experimental mice relative to naïve mice. The in vivo CTL assay is a rapid, sensitive, and reliable method to measure the potency of CD8+ T cells in their host to kill their target.
Collapse
Affiliation(s)
- Felicity C Stark
- Human Health Therapeutics, National Research Council Canada, Ottawa, ON, Canada
| | - Renu Dudani
- Human Health Therapeutics, National Research Council Canada, Ottawa, ON, Canada
| | - Gerard Agbayani
- Human Health Therapeutics, National Research Council Canada, Ottawa, ON, Canada
| | - Michael J McCluskie
- Human Health Therapeutics, National Research Council Canada, Ottawa, ON, Canada.
| |
Collapse
|
19
|
Abstract
STING (stimulator of interferon genes) also known as transmembrane protein 173 (TMEM173) is a cytoplasmic DNA sensor which can be activated by the upstream cyclic dinucleotides (CDNs). This activation produces cytokines such as interferons and pro-inflammatory factors via the downstream IRF3 and NF-κB pathways, triggering an innate immune response and adaptive immunity to maintain homeostasis. STING is mainly expressed and activated in non-parenchymal cells, thus exerting a corresponding effect to maintain the homeostasis of the liver. In viral hepatitis, interferons and pro-inflammatory factors produced after STING activation initiate the immune response to inhibit virus replication and assembly. In the case of metabolic diseases of the liver, the activation of STING in kupffer cells and hepatic stellate cells leads to inflammation, the proliferation of connective tissue, and metabolic disorders in the hepatocytes, promoting the occurrence and development of the disease. In hepatocellular carcinoma, STING has two contradictory roles. When STING is activated in dendritic cells and macrophages, a large number of cytokines can be produced to initiate innate immune effects directly and to exert adaptive immunity through the recruitment and activation of T cells; however, aberrant activation of the STING pathway leads to a weakening of immune function and promotes oncogenesis and metastasis. Here, we summarize the interactions between STING and liver disease that have currently been identified and how to achieve therapeutic goals by modulating the activity of the STING pathway.
Collapse
|
20
|
Sun Q, Lv Y, Zhang C, Wu W, Zhang R, Zhu C, Li YY, Yuan H, Zhu J, Zhu D. Efficient preparation of c-di-AMP at gram-scale using an immobilized Vibrio cholerae dinucleotide cyclase DncV. Enzyme Microb Technol 2020; 143:109700. [PMID: 33375968 DOI: 10.1016/j.enzmictec.2020.109700] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 10/28/2020] [Accepted: 11/02/2020] [Indexed: 11/18/2022]
Abstract
Cyclic di-AMP is a bacterial nucleotide second messenger and evaluated as a potential vaccine adjuvant candidate. Here, we report a practical and economical enzymatic method for gram-scale preparation of c-di-AMP using an immobilized Vibrio cholerae dinucleotide cyclase DncV. The method mainly includes four steps: preparation of DncV-immobilized resin, enzymatic synthesis of c-di-AMP, purification using macroporous absorption resin SP207, and desiccation using rotary evaporation and lyophilization. Enzymatic synthesis is the most critical step, and almost all substrate ATP was converted to c-di-AMP under an optimum condition in which 300 mL of 300 mM NH4Ac/NH3 pH 9.5 buffer supplemented with 20 mM MnCl2, 10 mM ATP and 4 mL of DncV-immobilized resin containing ∼19 mg DncV were incubated at 30 °C overnight. After purification, up to 1 g of the diammonium salt of c-di-AMP with weight purity of ≥98% was obtained as white powder, which corresponds to an overall yield of ∼80% based on the ATP input into the reaction. The method is easily performed in laboratory to prepare c-di-AMP on a gram scale and could be used in industry on a large scale.
Collapse
Affiliation(s)
- Qichao Sun
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Yun Lv
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Chenhui Zhang
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Weifang Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Rui Zhang
- Department of Pharmacy, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Chunyuan Zhu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian 271018, China
| | - Yao-Yao Li
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Huiqing Yuan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Jing Zhu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China.
| | - Deyu Zhu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China.
| |
Collapse
|
21
|
Agbayani G, Jia Y, Akache B, Chandan V, Iqbal U, Stark FC, Deschatelets L, Lam E, Hemraz UD, Régnier S, Krishnan L, McCluskie MJ. Mechanistic insight into the induction of cellular immune responses by encapsulated and admixed archaeosome-based vaccine formulations. Hum Vaccin Immunother 2020; 16:2183-2195. [PMID: 32755430 PMCID: PMC7553676 DOI: 10.1080/21645515.2020.1788300] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Archaeosomes are liposomes formulated using total polar lipids (TPLs) or semi-synthetic glycolipids derived from archaea. Conventional archaeosomes with entrapped antigen exhibit robust adjuvant activity as demonstrated by increased antigen-specific humoral and cell-mediated responses and enhanced protective immunity in various murine infection and cancer models. However, antigen entrapment efficiency can vary greatly resulting in antigen loss during formulation and variable antigen:lipid ratios. In order to circumvent this, we recently developed an admixed archaeosome formulation composed of a single semi-synthetic archaeal lipid (SLA, sulfated lactosylarchaeol) which can induce similarly robust adjuvant activity as an encapsulated formulation. Herein, we evaluate and compare the mechanisms involved in the induction of early innate and antigen-specific responses by both admixed (Adm) and encapsulated (Enc) SLA archaeosomes. We demonstrate that both archaeosome formulations result in increased immune cell infiltration, enhanced antigen retention at injection site and increased antigen uptake by antigen-presenting cells and other immune cell types, including neutrophils and monocytes following intramuscular injection to mice using ovalbumin as a model antigen. In vitro studies demonstrate SLA in either formulation is preferentially taken up by macrophages. Although the encapsulated formulation was better able to induce antigen-specific CD8+ T cell activation by dendritic cells in vitro, both encapsulated and admixed formulations gave equivalently enhanced protection from tumor challenge when tested in vivo using a B16-OVA melanoma model. Despite some differences in the immunostimulatory profile relative to the SLA (Enc) formulation, SLA (Adm) induces strong in vivo immunogenicity and efficacy, while offering an ease of formulation.
Collapse
Affiliation(s)
- Gerard Agbayani
- Human Health Therapeutics, National Research Council Canada , Ottawa, ON, Canada
| | - Yimei Jia
- Human Health Therapeutics, National Research Council Canada , Ottawa, ON, Canada
| | - Bassel Akache
- Human Health Therapeutics, National Research Council Canada , Ottawa, ON, Canada
| | - Vandana Chandan
- Human Health Therapeutics, National Research Council Canada , Ottawa, ON, Canada
| | - Umar Iqbal
- Human Health Therapeutics, National Research Council Canada , Ottawa, ON, Canada
| | - Felicity C Stark
- Human Health Therapeutics, National Research Council Canada , Ottawa, ON, Canada
| | - Lise Deschatelets
- Human Health Therapeutics, National Research Council Canada , Ottawa, ON, Canada
| | - Edmond Lam
- Aquatic and Crop Resource Development, National Research Council Canada , Montreal, QC, Canada
| | - Usha D Hemraz
- Aquatic and Crop Resource Development, National Research Council Canada , Montreal, QC, Canada
| | - Sophie Régnier
- Aquatic and Crop Resource Development, National Research Council Canada , Montreal, QC, Canada
| | - Lakshmi Krishnan
- Human Health Therapeutics, National Research Council Canada , Ottawa, ON, Canada
| | - Michael J McCluskie
- Human Health Therapeutics, National Research Council Canada , Ottawa, ON, Canada
| |
Collapse
|
22
|
Sepulveda-Crespo D, Resino S, Martinez I. Innate Immune Response against Hepatitis C Virus: Targets for Vaccine Adjuvants. Vaccines (Basel) 2020; 8:vaccines8020313. [PMID: 32560440 PMCID: PMC7350220 DOI: 10.3390/vaccines8020313] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/12/2020] [Accepted: 06/16/2020] [Indexed: 02/07/2023] Open
Abstract
Despite successful treatments, hepatitis C virus (HCV) infections continue to be a significant world health problem. High treatment costs, the high number of undiagnosed individuals, and the difficulty to access to treatment, particularly in marginalized susceptible populations, make it improbable to achieve the global control of the virus in the absence of an effective preventive vaccine. Current vaccine development is mostly focused on weakly immunogenic subunits, such as surface glycoproteins or non-structural proteins, in the case of HCV. Adjuvants are critical components of vaccine formulations that increase immunogenic performance. As we learn more information about how adjuvants work, it is becoming clear that proper stimulation of innate immunity is crucial to achieving a successful immunization. Several hepatic cell types participate in the early innate immune response and the subsequent inflammation and activation of the adaptive response, principally hepatocytes, and antigen-presenting cells (Kupffer cells, and dendritic cells). Innate pattern recognition receptors on these cells, mainly toll-like receptors, are targets for new promising adjuvants. Moreover, complex adjuvants that stimulate different components of the innate immunity are showing encouraging results and are being incorporated in current vaccines. Recent studies on HCV-vaccine adjuvants have shown that the induction of a strong T- and B-cell immune response might be enhanced by choosing the right adjuvant.
Collapse
Affiliation(s)
| | - Salvador Resino
- Correspondence: (S.R.); (I.M.); Tel.: +34-91-8223266 (S.R.); +34-91-8223272 (I.M.); Fax: +34-91-5097919 (S.R. & I.M.)
| | - Isidoro Martinez
- Correspondence: (S.R.); (I.M.); Tel.: +34-91-8223266 (S.R.); +34-91-8223272 (I.M.); Fax: +34-91-5097919 (S.R. & I.M.)
| |
Collapse
|
23
|
Akache B, Deschatelets L, Harrison BA, Dudani R, Stark FC, Jia Y, Landi A, Law JLM, Logan M, Hockman D, Kundu J, Tyrrell DL, Krishnan L, Houghton M, McCluskie MJ. Effect of Different Adjuvants on the Longevity and Strength of Humoral and Cellular Immune Responses to the HCV Envelope Glycoproteins. Vaccines (Basel) 2019; 7:vaccines7040204. [PMID: 31816920 PMCID: PMC6963754 DOI: 10.3390/vaccines7040204] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 11/28/2019] [Accepted: 11/30/2019] [Indexed: 12/24/2022] Open
Abstract
Infection by Hepatitis C virus (HCV) can lead to liver cirrhosis/hepatocellular carcinoma and remains a major cause of serious disease morbidity and mortality worldwide. However, current treatment regimens remain inaccessible to most patients, particularly in developing countries, and, therefore, the development of a novel vaccine capable of protecting subjects from chronic infection by HCV could greatly reduce the rates of HCV infection, subsequent liver pathogenesis, and in some cases death. Herein, we evaluated two different semi-synthetic archaeosome formulations as an adjuvant to the E1/E2 HCV envelope protein in a murine model and compared antigen-specific humoral (levels of anti-E1/E2 IgG and HCV pseudoparticle neutralization) and cellular responses (numbers of antigen-specific cytokine-producing T cells) to those generated with adjuvant formulations composed of mimetics of commercial adjuvants including a squalene oil-in-water emulsion, aluminum hydroxide/monophosphoryl lipid A (MPLA) and liposome/MPLA/QS-21. In addition, we measured the longevity of these responses, tracking humoral, and cellular responses up to 6 months following vaccination. Overall, we show that the strength and longevity of anti-HCV responses can be influenced by adjuvant selection. In particular, a simple admixed sulfated S-lactosylarchaeol (SLA) archaeosome formulation generated strong levels of HCV neutralizing antibodies and polyfunctional antigen-specific CD4 T cells producing multiple cytokines such as IFN-γ, TNF-α, and IL-2. While liposome/MPLA/QS-21 as adjuvant generated superior cellular responses, the SLA E1/E2 admixed formulation was superior or equivalent to the other tested formulations in all immune parameters tested.
Collapse
Affiliation(s)
- Bassel Akache
- National Research Council Canada, Human Health Therapeutics, 1200 Montreal Rd, Ottawa, ON K1T 0H1, Canada; (B.A.); (L.D.); (B.A.H.); (R.D.); (F.C.S.); (Y.J.); (L.K.)
| | - Lise Deschatelets
- National Research Council Canada, Human Health Therapeutics, 1200 Montreal Rd, Ottawa, ON K1T 0H1, Canada; (B.A.); (L.D.); (B.A.H.); (R.D.); (F.C.S.); (Y.J.); (L.K.)
| | - Blair A. Harrison
- National Research Council Canada, Human Health Therapeutics, 1200 Montreal Rd, Ottawa, ON K1T 0H1, Canada; (B.A.); (L.D.); (B.A.H.); (R.D.); (F.C.S.); (Y.J.); (L.K.)
| | - Renu Dudani
- National Research Council Canada, Human Health Therapeutics, 1200 Montreal Rd, Ottawa, ON K1T 0H1, Canada; (B.A.); (L.D.); (B.A.H.); (R.D.); (F.C.S.); (Y.J.); (L.K.)
| | - Felicity C. Stark
- National Research Council Canada, Human Health Therapeutics, 1200 Montreal Rd, Ottawa, ON K1T 0H1, Canada; (B.A.); (L.D.); (B.A.H.); (R.D.); (F.C.S.); (Y.J.); (L.K.)
| | - Yimei Jia
- National Research Council Canada, Human Health Therapeutics, 1200 Montreal Rd, Ottawa, ON K1T 0H1, Canada; (B.A.); (L.D.); (B.A.H.); (R.D.); (F.C.S.); (Y.J.); (L.K.)
| | - Amir Landi
- Li Ka Shing Institute of Virology, Department of Medical Microbiology & Immunology, University of Alberta, 6-010 Katz Group-Rexall Centre for Health Research, Edmonton, AB T6G 2E1, Canada; (A.L.); (J.L.M.L.); (M.L.); (D.H.); (J.K.); (D.L.T.); (M.H.)
| | - John L. M. Law
- Li Ka Shing Institute of Virology, Department of Medical Microbiology & Immunology, University of Alberta, 6-010 Katz Group-Rexall Centre for Health Research, Edmonton, AB T6G 2E1, Canada; (A.L.); (J.L.M.L.); (M.L.); (D.H.); (J.K.); (D.L.T.); (M.H.)
| | - Michael Logan
- Li Ka Shing Institute of Virology, Department of Medical Microbiology & Immunology, University of Alberta, 6-010 Katz Group-Rexall Centre for Health Research, Edmonton, AB T6G 2E1, Canada; (A.L.); (J.L.M.L.); (M.L.); (D.H.); (J.K.); (D.L.T.); (M.H.)
| | - Darren Hockman
- Li Ka Shing Institute of Virology, Department of Medical Microbiology & Immunology, University of Alberta, 6-010 Katz Group-Rexall Centre for Health Research, Edmonton, AB T6G 2E1, Canada; (A.L.); (J.L.M.L.); (M.L.); (D.H.); (J.K.); (D.L.T.); (M.H.)
| | - Juthika Kundu
- Li Ka Shing Institute of Virology, Department of Medical Microbiology & Immunology, University of Alberta, 6-010 Katz Group-Rexall Centre for Health Research, Edmonton, AB T6G 2E1, Canada; (A.L.); (J.L.M.L.); (M.L.); (D.H.); (J.K.); (D.L.T.); (M.H.)
| | - D. Lorne Tyrrell
- Li Ka Shing Institute of Virology, Department of Medical Microbiology & Immunology, University of Alberta, 6-010 Katz Group-Rexall Centre for Health Research, Edmonton, AB T6G 2E1, Canada; (A.L.); (J.L.M.L.); (M.L.); (D.H.); (J.K.); (D.L.T.); (M.H.)
| | - Lakshmi Krishnan
- National Research Council Canada, Human Health Therapeutics, 1200 Montreal Rd, Ottawa, ON K1T 0H1, Canada; (B.A.); (L.D.); (B.A.H.); (R.D.); (F.C.S.); (Y.J.); (L.K.)
| | - Michael Houghton
- Li Ka Shing Institute of Virology, Department of Medical Microbiology & Immunology, University of Alberta, 6-010 Katz Group-Rexall Centre for Health Research, Edmonton, AB T6G 2E1, Canada; (A.L.); (J.L.M.L.); (M.L.); (D.H.); (J.K.); (D.L.T.); (M.H.)
| | - Michael J. McCluskie
- National Research Council Canada, Human Health Therapeutics, 1200 Montreal Rd, Ottawa, ON K1T 0H1, Canada; (B.A.); (L.D.); (B.A.H.); (R.D.); (F.C.S.); (Y.J.); (L.K.)
- Correspondence:
| |
Collapse
|
24
|
Simplified Admix Archaeal Glycolipid Adjuvanted Vaccine and Checkpoint Inhibitor Therapy Combination Enhances Protection from Murine Melanoma. Biomedicines 2019; 7:biomedicines7040091. [PMID: 31771150 PMCID: PMC6966619 DOI: 10.3390/biomedicines7040091] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 11/06/2019] [Accepted: 11/13/2019] [Indexed: 01/13/2023] Open
Abstract
Archaeosomes are liposomes composed of natural or synthetic archaeal lipids that when used as adjuvants induce strong long-lasting humoral and cell-mediated immune responses against entrapped antigens. However, traditional entrapped archaeosome formulations have only low entrapment efficiency, therefore we have developed a novel admixed formulation which offers many advantages, including reduced loss of antigen, consistency of batch-to-batch production as well as providing the option to formulate the vaccine immediately before use, which is beneficial for next generation cancer therapy platforms that include patient specific neo-antigens or for use with antigens that are less stable. Herein, we demonstrate that, when used in combination with anti-CTLA-4 and anti-PD-1 checkpoint therapy, this novel admixed archaeosome formulation, comprised of preformed sulfated lactosyl archaeol (SLA) archaeosomes admixed with OVA antigen (SLA–OVA (adm)), was as effective at inducing strong CD8+ T cell responses and protection from a B16-OVA melanoma tumor challenge as the traditionally formulated archaeosomes with encapsulated OVA protein. Furthermore, archaeosome vaccine formulations combined with anti-CTLA-4 and anti-PD-1 therapy, induced OVA-CD8+ T cells within the tumor and immunohistochemical analysis revealed the presence of CD8+ T cells associated with dying or dead tumor cells as well as within or around tumor blood vessels. Overall, archaeosomes constitute an attractive option for use with combinatorial checkpoint inhibitor cancer therapy platforms.
Collapse
|
25
|
Stark FC, Akache B, Ponce A, Dudani R, Deschatelets L, Jia Y, Sauvageau J, Williams D, Jamshidi MP, Agbayani G, Wachholz K, Harrison BA, Li X, Krishnan L, Chen W, McCluskie MJ. Archaeal glycolipid adjuvanted vaccines induce strong influenza-specific immune responses through direct immunization in young and aged mice or through passive maternal immunization. Vaccine 2019; 37:7108-7116. [DOI: 10.1016/j.vaccine.2019.07.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 06/21/2019] [Accepted: 07/02/2019] [Indexed: 12/20/2022]
|
26
|
Rudicell RS, Garinot M, Kanekiyo M, Kamp HD, Swanson K, Chou TH, Dai S, Bedel O, Simard D, Gillespie RA, Yang K, Reardon M, Avila LZ, Besev M, Dhal PK, Dharanipragada R, Zheng L, Duan X, Dinapoli J, Vogel TU, Kleanthous H, Mascola JR, Graham BS, Haensler J, Wei CJ, Nabel GJ. Comparison of adjuvants to optimize influenza neutralizing antibody responses. Vaccine 2019; 37:6208-6220. [PMID: 31493950 DOI: 10.1016/j.vaccine.2019.08.030] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 07/26/2019] [Accepted: 08/17/2019] [Indexed: 12/14/2022]
Abstract
Seasonal influenza vaccines represent a positive intervention to limit the spread of the virus and protect public health. Yet continual influenza evolution and its ability to evade immunity pose a constant threat. For these reasons, vaccines with improved potency and breadth of protection remain an important need. We previously developed a next-generation influenza vaccine that displays the trimeric influenza hemagglutinin (HA) on a ferritin nanoparticle (NP) to optimize its presentation. Similar to other vaccines, HA-nanoparticle vaccine efficacy is increased by the inclusion of adjuvants during immunization. To identify the optimal adjuvants to enhance influenza immunity, we systematically analyzed TLR agonists for their ability to elicit immune responses. HA-NPs were compatible with nearly all adjuvants tested, including TLR2, TLR4, TLR7/8, and TLR9 agonists, squalene oil-in-water mixtures, and STING agonists. In addition, we chemically conjugated TLR7/8 and TLR9 ligands directly to the HA-ferritin nanoparticle. These TLR agonist-conjugated nanoparticles induced stronger antibody responses than nanoparticles alone, which allowed the use of a 5000-fold-lower dose of adjuvant than traditional admixtures. One candidate, the oil-in-water adjuvant AF03, was also tested in non-human primates and showed strong induction of neutralizing responses against both matched and heterologous H1N1 viruses. These data suggest that AF03, along with certain TLR agonists, enhance strong neutralizing antibody responses following influenza vaccination and may improve the breadth, potency, and ultimately vaccine protection in humans.
Collapse
Affiliation(s)
| | | | - Masaru Kanekiyo
- Vaccine Research Center, National Institute for Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | | | | | | | | | | | | | - Rebecca A Gillespie
- Vaccine Research Center, National Institute for Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | | | | | | | | | | | | | | | | | | | | | | | - John R Mascola
- Vaccine Research Center, National Institute for Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Barney S Graham
- Vaccine Research Center, National Institute for Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | | | | | | |
Collapse
|
27
|
Volckmar J, Knop L, Stegemann-Koniszewski S, Schulze K, Ebensen T, Guzmán CA, Bruder D. The STING activator c-di-AMP exerts superior adjuvant properties than the formulation poly(I:C)/CpG after subcutaneous vaccination with soluble protein antigen or DEC-205-mediated antigen targeting to dendritic cells. Vaccine 2019; 37:4963-4974. [PMID: 31320219 DOI: 10.1016/j.vaccine.2019.07.019] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 05/30/2019] [Accepted: 07/06/2019] [Indexed: 12/18/2022]
Abstract
Vaccination is the most efficient strategy to protect from infectious diseases and the induction of a protective immune response not only depends on the nature of the antigen, but is also influenced by the vaccination strategy and the co-administration of adjuvants. Therefore, the precise monitoring of adjuvant candidates and their immune modulatory properties is a crucial step in vaccine development. Here, one central aspect is the induction of appropriate humoral and cellular effector mechanisms. In our study we performed a direct comparison of two promising candidates in adjuvant development, the STING activator bis-(3,5)-cyclic dimeric adenosine monophosphate (c-di-AMP) and the Toll-like receptor ligand formulation poly(I:C)/CpG. These were evaluated in C57BL/6 mice using the model antigen ovalbumin (OVA) in subcutaneous vaccination with soluble protein as well as in a dendritic cell (DC) targeting approach (αDEC-OVA). Strikingly, c-di-AMP as compared to poly(I:C)/CpG resulted in significantly higher antigen-specific IgG antibody levels when used in immunization with soluble OVA as well as in antigen targeting to DC. In vaccination with soluble OVA, c-di-AMP induced a significantly stronger CTL, Th1 and IFNγ-producing CD8+ memory T cell response than poly(I:C)/CpG. The response was CTL and Th1 cell dominated, a profile shared by both adjuvants. In the context of targeting OVA to DC, c-di-AMP induced significantly increased Th1 and Th2 cell responses as compared to poly(I:C)/CpG. Interestingly, the Th1 response dominated the overall T cell response only when c-di-AMP was used, indicating a distinct modulatory property of c-di-AMP when the DC targeting immunization approach was exploited. Taken together, we describe superior properties of c-di-AMP as compared to poly(I:C)/CpG in subcutaneous vaccination with soluble antigen as well as antigen targeting to DC. This indicates exceptionally effective adjuvant properties for c-di-AMP and provides compelling evidence of its potential for further adjuvant development, especially also when using DC targeting approaches.
Collapse
Affiliation(s)
- Julia Volckmar
- Infection Immunology Group, Institute of Medical Microbiology, Infection Control and Prevention, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany; Immune Regulation Group, Helmholtz Centre for Infection Research, Inhoffenstraße 7, 38124 Braunschweig, Germany
| | - Laura Knop
- Infection Immunology Group, Institute of Medical Microbiology, Infection Control and Prevention, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany; Immune Regulation Group, Helmholtz Centre for Infection Research, Inhoffenstraße 7, 38124 Braunschweig, Germany
| | - Sabine Stegemann-Koniszewski
- Infection Immunology Group, Institute of Medical Microbiology, Infection Control and Prevention, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany; Immune Regulation Group, Helmholtz Centre for Infection Research, Inhoffenstraße 7, 38124 Braunschweig, Germany; Experimental Pneumology, University Hospital for Pneumology, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany
| | - Kai Schulze
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research, Inhoffenstraße 7, 38124 Braunschweig, Germany
| | - Thomas Ebensen
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research, Inhoffenstraße 7, 38124 Braunschweig, Germany
| | - Carlos A Guzmán
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research, Inhoffenstraße 7, 38124 Braunschweig, Germany
| | - Dunja Bruder
- Infection Immunology Group, Institute of Medical Microbiology, Infection Control and Prevention, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany; Immune Regulation Group, Helmholtz Centre for Infection Research, Inhoffenstraße 7, 38124 Braunschweig, Germany.
| |
Collapse
|
28
|
Gutjahr A, Papagno L, Nicoli F, Kanuma T, Kuse N, Cabral-Piccin MP, Rochereau N, Gostick E, Lioux T, Perouzel E, Price DA, Takiguchi M, Verrier B, Yamamoto T, Paul S, Appay V. The STING ligand cGAMP potentiates the efficacy of vaccine-induced CD8+ T cells. JCI Insight 2019; 4:125107. [PMID: 30944257 DOI: 10.1172/jci.insight.125107] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 02/14/2019] [Indexed: 11/17/2022] Open
Abstract
Pathogen recognition receptor (PRR) agonists are currently being developed and tested as adjuvants in various formulations to optimize the immunogenicity and efficacy of vaccines. Using an original in vitro approach to prime naive precursors from unfractionated human peripheral blood mononuclear cells, we assessed the influence of cyclic guanosine monophosphate-adenosine monophosphate (cGAMP), a ligand for the stimulator of interferon genes (STING), on the induction of antigen-specific CD8+ T cells. We found that 2'3'-cGAMP and 3'3'-cGAMP were especially potent adjuvants in this system, driving the expansion and maturation of functionally replete antigen-specific CD8+ T cells via the induction of type I IFNs. The biological relevance of these findings was confirmed in vivo using two mouse models, in which 2'3'-cGAMP-adjuvanted vaccination elicited protective antitumor or antiviral CD8+ T cell responses. These results identify particular isoforms of cGAMP as effective adjuvants that may find utility in the development of novel immunotherapies and vaccines.
Collapse
Affiliation(s)
- Alice Gutjahr
- Groupe Immunité des Muqueuses et Agents Pathogènes, INSERM, Centre d'Investigation Clinique en Vaccinologie 1408, Faculté de Médecine de Saint-Etienne, Saint-Etienne, France.,Laboratoire de Biologie Tissulaire et d'Ingénierie Thérapeutique, Unité Mixte de Recherche 5305, Université Lyon 1, CNRS, Lyon, France.,InvivoGen, Toulouse, France
| | - Laura Papagno
- Sorbonne Université, INSERM, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| | - Francesco Nicoli
- Sorbonne Université, INSERM, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| | - Tomohiro Kanuma
- Laboratory of Immunosenescence, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Nozomi Kuse
- Center for AIDS Research, Kumamoto University, Kumamoto, Japan
| | | | | | - Emma Gostick
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
| | | | | | - David A Price
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
| | | | - Bernard Verrier
- Laboratoire de Biologie Tissulaire et d'Ingénierie Thérapeutique, Unité Mixte de Recherche 5305, Université Lyon 1, CNRS, Lyon, France
| | - Takuya Yamamoto
- Laboratory of Immunosenescence, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan.,Center for AIDS Research, Kumamoto University, Kumamoto, Japan
| | - Stéphane Paul
- Groupe Immunité des Muqueuses et Agents Pathogènes, INSERM, Centre d'Investigation Clinique en Vaccinologie 1408, Faculté de Médecine de Saint-Etienne, Saint-Etienne, France
| | - Victor Appay
- Sorbonne Université, INSERM, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France.,International Research Center of Medical Sciences (IRCMS), Kumamoto University, Kumamoto, Japan
| |
Collapse
|
29
|
Khera T, Behrendt P, Bankwitz D, Brown RJP, Todt D, Doepke M, Khan AG, Schulze K, Law J, Logan M, Hockman D, Wong JAJX, Dold L, Gonzalez-Motos V, Spengler U, Viejo-Borbolla A, Ströh LJ, Krey T, Tarr AW, Steinmann E, Manns MP, Klein F, Guzman CA, Marcotrigiano J, Houghton M, Pietschmann T. Functional and immunogenic characterization of diverse HCV glycoprotein E2 variants. J Hepatol 2019; 70:593-602. [PMID: 30439392 DOI: 10.1016/j.jhep.2018.11.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 10/04/2018] [Accepted: 11/02/2018] [Indexed: 02/08/2023]
Abstract
BACKGROUND & AIMS Induction of cross-reactive antibodies targeting conserved epitopes of the envelope proteins E1E2 is a key requirement for an hepatitis C virus vaccine. Conserved epitopes like the viral CD81-binding site are targeted by rare broadly neutralizing antibodies. However, these viral segments are occluded by variable regions and glycans. We aimed to identify antigens exposing conserved epitopes and to characterize their immunogenicity. METHODS We created hepatitis C virus variants with mutated glycosylation sites and/or hypervariable region 1 (HVR1). Exposure of the CD81 binding site and conserved epitopes was quantified by soluble CD81 and antibody interaction and neutralization assays. E2 or E1-E2 heterodimers with mutations causing epitope exposure were used to immunize mice. Vaccine-induced antibodies were examined and compared with patient-derived antibodies. RESULTS Mutant viruses bound soluble CD81 and antibodies targeting the CD81 binding site with enhanced efficacy. Mice immunized with E2 or E1E2 heterodimers incorporating these modifications mounted strong, cross-binding, and non-interfering antibodies. E2-induced antibodies neutralized the autologous virus but they were not cross-neutralizing. CONCLUSIONS Viruses lacking the HVR1 and selected glycosylation sites expose the CD81 binding site and cross-neutralization antibody epitopes. Recombinant E2 proteins carrying these modifications induce strong cross-binding but not cross-neutralizing antibodies. LAY SUMMARY Conserved viral epitopes can be made considerably more accessible for binding of potently neutralizing antibodies by deletion of hypervariable region 1 and selected glycosylation sites. Recombinant E2 proteins carrying these mutations are unable to elicit cross-neutralizing antibodies suggesting that exposure of conserved epitopes is not sufficient to focus antibody responses on production of cross-neutralizing antibodies.
Collapse
Affiliation(s)
- Tanvi Khera
- Institute of Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research; a Joint Venture between the Medical School Hannover (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany
| | - Patrick Behrendt
- Institute of Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research; a Joint Venture between the Medical School Hannover (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany; Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany; German Centre for Infection Research (DZIF), partner site Hannover-Braunschweig, Germany
| | - Dorothea Bankwitz
- Institute of Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research; a Joint Venture between the Medical School Hannover (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany
| | - Richard J P Brown
- Institute of Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research; a Joint Venture between the Medical School Hannover (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany
| | - Daniel Todt
- Institute of Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research; a Joint Venture between the Medical School Hannover (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany; Department of Molecular and Medical Virology, Ruhr-University Bochum, Bochum, Germany
| | - Mandy Doepke
- Institute of Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research; a Joint Venture between the Medical School Hannover (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany
| | - Abdul Ghafoor Khan
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-9806, USA
| | - Kai Schulze
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - John Law
- Li Ka Shing Institute of Virology, Department of Medical Microbiology & Immunology, University of Alberta, Edmonton, Canada
| | - Michael Logan
- Li Ka Shing Institute of Virology, Department of Medical Microbiology & Immunology, University of Alberta, Edmonton, Canada
| | - Darren Hockman
- Li Ka Shing Institute of Virology, Department of Medical Microbiology & Immunology, University of Alberta, Edmonton, Canada
| | - Jason Alexander Ji-Xhin Wong
- Li Ka Shing Institute of Virology, Department of Medical Microbiology & Immunology, University of Alberta, Edmonton, Canada
| | - Leona Dold
- Institute of Virology, Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany; German Centre for Infection Research (DZIF), partner site Cologne, Germany
| | | | - Ulrich Spengler
- Department of Internal Medicine 1, Rheinische Friedrich-Wilhelms-University Bonn, Bonn, Germany
| | | | - Luisa J Ströh
- Institute of Virology, Hannover Medical School, 30625 Hannover, Germany
| | - Thomas Krey
- Institute of Virology, Hannover Medical School, 30625 Hannover, Germany; German Centre for Infection Research (DZIF), partner site Hannover-Braunschweig, Germany
| | - Alexander W Tarr
- NIHR Nottingham Digestive Diseases Biomedical Research Centre and School of Life Sciences, The University of Nottingham, Nottingham, UK
| | - Eike Steinmann
- Institute of Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research; a Joint Venture between the Medical School Hannover (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany; German Centre for Infection Research (DZIF), partner site Hannover-Braunschweig, Germany; Department of Molecular and Medical Virology, Ruhr-University Bochum, Bochum, Germany
| | - Michael P Manns
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany; German Centre for Infection Research (DZIF), partner site Hannover-Braunschweig, Germany
| | - Florian Klein
- Institute of Virology, Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany; German Centre for Infection Research (DZIF), partner site Cologne, Germany
| | - Carlos A Guzman
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Joseph Marcotrigiano
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-9806, USA
| | - Michael Houghton
- Li Ka Shing Institute of Virology, Department of Medical Microbiology & Immunology, University of Alberta, Edmonton, Canada
| | - Thomas Pietschmann
- Institute of Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research; a Joint Venture between the Medical School Hannover (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany; German Centre for Infection Research (DZIF), partner site Hannover-Braunschweig, Germany.
| |
Collapse
|
30
|
Espinosa DA, Beatty PR, Reiner GL, Sivick KE, Hix Glickman L, Dubensky TW, Harris E. Cyclic Dinucleotide-Adjuvanted Dengue Virus Nonstructural Protein 1 Induces Protective Antibody and T Cell Responses. THE JOURNAL OF IMMUNOLOGY 2019; 202:1153-1162. [PMID: 30642979 DOI: 10.4049/jimmunol.1801323] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 12/12/2018] [Indexed: 01/12/2023]
Abstract
Endothelial dysfunction and vascular leak, pathogenic hallmarks of severe dengue disease, are directly triggered by dengue virus (DENV) nonstructural protein 1 (NS1). Previous studies have shown that immunization with NS1, as well as passive transfer of NS1-immune serum or anti-NS1 mAb, prevent NS1-mediated lethality in vivo. In this study, we evaluated the immunogenicity and protective capacity of recombinant DENV NS1 administered with cyclic dinucleotides (CDNs), potent activators of innate immune pathways and highly immunogenic adjuvants. Using both wild-type C57BL/6 mice and IFN-α/β receptor-deficient mice, we show that NS1-CDN immunizations elicit serotype-specific and cross-reactive Ab and T cell responses. Furthermore, NS1-CDN vaccinations conferred significant homotypic and heterotypic protection from DENV2-induced morbidity and mortality. In addition, we demonstrate that high anti-NS1 Ab titers are associated with protection, supporting the role of humoral responses against DENV NS1 as correlates of protection. These findings highlight the potential of CDN-based adjuvants for inducing Ab and T cell responses and validate NS1 as an important candidate for dengue vaccine development.
Collapse
Affiliation(s)
- Diego A Espinosa
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA 94720
| | - P Robert Beatty
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA 94720
| | | | | | | | | | - Eva Harris
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA 94720;
| |
Collapse
|
31
|
Quintana I, Espariz M, Villar SR, González FB, Pacini MF, Cabrera G, Bontempi I, Prochetto E, Stülke J, Perez AR, Marcipar I, Blancato V, Magni C. Genetic Engineering of Lactococcus lactis Co-producing Antigen and the Mucosal Adjuvant 3' 5'- cyclic di Adenosine Monophosphate (c-di-AMP) as a Design Strategy to Develop a Mucosal Vaccine Prototype. Front Microbiol 2018; 9:2100. [PMID: 30258417 PMCID: PMC6143824 DOI: 10.3389/fmicb.2018.02100] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 08/16/2018] [Indexed: 12/20/2022] Open
Abstract
Lactococcus lactis is a promising candidate for the development of mucosal vaccines. More than 20 years of experimental research supports this immunization approach. In addition, 3′ 5′- cyclic di-adenosine monophosphate (c-di-AMP) is a bacterial second messenger that plays a key role in the regulation of diverse physiological functions (potassium and cellular wall homeostasis, among others). Moreover, recent studies showed that c-di-AMP has a strong mucosal adjuvant activity that promotes both humoral and cellular immune responses. In this study, we report the development of a novel mucosal vaccine prototype based on a genetically engineered L. lactis strain. First, we demonstrate that homologous expression of cdaA gen in L. lactis is able to increase c-di-AMP levels. Thus, we hypothesized that in vivo synthesis of the adjuvant can be combined with production of an antigen of interest in a separate form or jointly in the same strain. Therefore, a specifically designed fragment of the trans-sialidase (TScf) enzyme from the Trypanosoma cruzi parasite, the etiological agent of Chagas disease, was selected to evaluate as proof of concept the immune response triggered by our vaccine prototypes. Consequently, we found that oral administration of a L. lactis strain expressing antigenic TScf combined with another L. lactis strain producing the adjuvant c-di-AMP could elicit a TS-specific immune response. Also, an additional L. lactis strain containing a single plasmid with both cdaA and tscf genes under the Pcit and Pnis promoters, respectively, was also able to elicit a specific immune response. Thus, the current report is the first one to describe an engineered L. lactis strain that simultaneously synthesizes the adjuvant c-di-AMP as well as a heterologous antigen in order to develop a simple and economical system for the formulation of vaccine prototypes using a food grade lactic acid bacterium.
Collapse
Affiliation(s)
- Ingrid Quintana
- Laboratorio de Fisiología y Genética de Bacterias Lácticas, Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET UNR), Universidad Nacional de Rosario, Rosario, Argentina.,Department of General Microbiology, GZMB, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Martín Espariz
- Laboratorio de Fisiología y Genética de Bacterias Lácticas, Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET UNR), Universidad Nacional de Rosario, Rosario, Argentina.,Laboratorio de Biotecnología e Inocuidad de los Alimentos, Facultad de Ciencias Bioquímicas y Farmacéuticas - Municipalidad de Granadero Baigorria (UNR), Rosario, Argentina
| | - Silvina R Villar
- Instituto de Inmunología Clínica y Experimental de Rosario (IDICER, CONICET UNR), Rosario, Argentina.,Facultad de Ciencias Médicas, Centro de Investigación y Producción de Reactivos Biológicos, Universidad Nacional de Rosario, Rosario, Argentina
| | - Florencia B González
- Instituto de Inmunología Clínica y Experimental de Rosario (IDICER, CONICET UNR), Rosario, Argentina
| | - Maria F Pacini
- Instituto de Inmunología Clínica y Experimental de Rosario (IDICER, CONICET UNR), Rosario, Argentina
| | - Gabriel Cabrera
- Laboratorio de Tecnología Inmunológica, Universidad Nacional del Litoral, Santa Fe, Argentina.,Facultad de Ciencias Médicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Iván Bontempi
- Laboratorio de Tecnología Inmunológica, Universidad Nacional del Litoral, Santa Fe, Argentina.,Facultad de Ciencias Médicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Estefanía Prochetto
- Laboratorio de Tecnología Inmunológica, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Jörg Stülke
- Department of General Microbiology, GZMB, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Ana R Perez
- Instituto de Inmunología Clínica y Experimental de Rosario (IDICER, CONICET UNR), Rosario, Argentina.,Facultad de Ciencias Médicas, Centro de Investigación y Producción de Reactivos Biológicos, Universidad Nacional de Rosario, Rosario, Argentina
| | - Iván Marcipar
- Laboratorio de Tecnología Inmunológica, Universidad Nacional del Litoral, Santa Fe, Argentina.,Facultad de Ciencias Médicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Victor Blancato
- Laboratorio de Fisiología y Genética de Bacterias Lácticas, Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET UNR), Universidad Nacional de Rosario, Rosario, Argentina.,Laboratorio de Biotecnología e Inocuidad de los Alimentos, Facultad de Ciencias Bioquímicas y Farmacéuticas - Municipalidad de Granadero Baigorria (UNR), Rosario, Argentina
| | - Christian Magni
- Laboratorio de Fisiología y Genética de Bacterias Lácticas, Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET UNR), Universidad Nacional de Rosario, Rosario, Argentina.,Laboratorio de Biotecnología e Inocuidad de los Alimentos, Facultad de Ciencias Bioquímicas y Farmacéuticas - Municipalidad de Granadero Baigorria (UNR), Rosario, Argentina
| |
Collapse
|