1
|
Patel A, Pal R, Bhowmick M, Mahanty J, Halder P, Ashique S. Avian Influenza: Outbreak in Viet Nam in 2024. Infect Disord Drug Targets 2025; 25:e280624231376. [PMID: 38952159 DOI: 10.2174/0118715265322184240624074555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/14/2024] [Accepted: 05/24/2024] [Indexed: 07/03/2024]
Affiliation(s)
- Aakriti Patel
- Department of Pharmaceutical Sciences, Bengal College of Pharmaceutical Sciences & Research, Durgapur, 713212, West Bengal, India
| | - Radheshyam Pal
- Department of Pharmaceutical Sciences, Bengal College of Pharmaceutical Sciences & Research, Durgapur, 713212, West Bengal, India
| | - Mithun Bhowmick
- Department of Pharmaceutical Sciences, Bengal College of Pharmaceutical Sciences & Research, Durgapur, 713212, West Bengal, India
| | - Jayshree Mahanty
- Department of Pharmaceutical Sciences, Bengal College of Pharmaceutical Sciences & Research, Durgapur, 713212, West Bengal, India
| | - Priyanti Halder
- Department of Pharmaceutical Sciences, Bengal College of Pharmaceutical Sciences & Research, Durgapur, 713212, West Bengal, India
| | - Sumel Ashique
- Department of Pharmaceutical Sciences, Bengal College of Pharmaceutical Sciences & Research, Durgapur, 713212, West Bengal, India
| |
Collapse
|
2
|
Cargnin Faccin F, Perez DR. Pandemic preparedness through vaccine development for avian influenza viruses. Hum Vaccin Immunother 2024; 20:2347019. [PMID: 38807261 PMCID: PMC11141480 DOI: 10.1080/21645515.2024.2347019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 04/22/2024] [Indexed: 05/30/2024] Open
Abstract
Influenza A viruses pose a significant threat to global health, impacting both humans and animals. Zoonotic transmission, particularly from swine and avian species, is the primary source of human influenza outbreaks. Notably, avian influenza viruses of the H5N1, H7N9, and H9N2 subtypes are of pandemic concern through their global spread and sporadic human infections. Preventing and controlling these viruses is critical due to their high threat level. Vaccination remains the most effective strategy for influenza prevention and control in humans, despite varying vaccine efficacy across strains. This review focuses specifically on pandemic preparedness for avian influenza viruses. We delve into vaccines tested in animal models and summarize clinical trials conducted on H5N1, H7N9, and H9N2 vaccines in humans.
Collapse
Affiliation(s)
- Flavio Cargnin Faccin
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Daniel R. Perez
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| |
Collapse
|
3
|
Fatima M, Park PG, Hong KJ. Clinical advancements in mRNA vaccines against viral infections. Clin Immunol 2024; 271:110424. [PMID: 39734036 DOI: 10.1016/j.clim.2024.110424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/15/2024] [Accepted: 12/24/2024] [Indexed: 12/31/2024]
Abstract
Over the last decade, mRNA vaccines development has shown significant advancement, particularly during the COVID-19 pandemic. This comprehensive review examines the efficacy of pivotal vaccines against emerging COVID-19 variants and strategies for enhancing vaccine effectiveness. It also explores the versatility of mRNA technology in addressing other infectious diseases such as influenza, respiratory syncytial virus, HIV, cytomegalovirus, Ebola, Zika, Rabies, and Nipah viruses. The analysis includes safety and clinical progress of mRNA vaccines and evaluates their potential in combination vaccine strategies. Additionally, it addresses challenges related to delivery and scalability while highlighting opportunities for future advancements in the field. Recent advances in mRNA optimization, biomaterial-based delivery and thermostable designs offer promising solutions. It is essential to gain insights into the evolving landscape of mRNA vaccine technology to maximize its vital role in addressing diverse viral threats, advancing vaccinology and enhancing public health preparedness for future pandemic.
Collapse
Affiliation(s)
- Munazza Fatima
- Department of Microbiology, Gachon University College of Medicine, Incheon, Republic of Korea; Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Republic of Korea
| | - Pil-Gu Park
- Department of Microbiology, Gachon University College of Medicine, Incheon, Republic of Korea; Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Republic of Korea
| | - Kee-Jong Hong
- Department of Microbiology, Gachon University College of Medicine, Incheon, Republic of Korea; Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Republic of Korea; Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, Republic of Korea; Korea mRNA Vaccine Initiative, Gachon University, Seongnam, Republic of Korea.
| |
Collapse
|
4
|
Zabrodskaya YA, Gavrilova NV, Elpaeva EA, Lozhkov AA, Vysochinskaya VV, Dobrovolskaya OA, Dovbysh OV, Zimmerman EL, Dav PN, Brodskaia AV, Sakhenberg EI, Shaldzhyan AA, Demaev AA, Maslov MA, Vasin AV. mRNA encoding antibodies against hemagglutinin and nucleoprotein prevents influenza virus infection in vitro. Biochem Biophys Res Commun 2024; 738:150945. [PMID: 39504717 DOI: 10.1016/j.bbrc.2024.150945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/02/2024] [Accepted: 11/02/2024] [Indexed: 11/08/2024]
Abstract
The emergence of new influenza virus strains presents a continuous challenge for global public health. mRNA technology offers a promising platform for rapidly developing therapeutics, particularly monoclonal antibodies, that can protect against viral infections. In this study, we engineered mRNA constructs encoding two types of antibodies: secreted antibodies specific to the hemagglutinin of the influenza A virus, based on previously characterized Fi6 antibodies, and intracellular Fab fragments targeting the nucleoprotein of the influenza B virus, derived from the 2/3 antibodies. The administration of mRNA constructs in vitro resulted in the successful synthesis of functional antibodies, which exhibited antiviral activity against influenza viruses. This study confirms the feasibility of using mRNA technology to develop therapeutic antibodies against influenza virus infections. The findings pave the way for future clinical applications of mRNA-based therapeutics, enhancing preparedness for emerging viral threats.
Collapse
MESH Headings
- Hemagglutinin Glycoproteins, Influenza Virus/immunology
- Hemagglutinin Glycoproteins, Influenza Virus/genetics
- RNA, Messenger/genetics
- RNA, Messenger/immunology
- RNA, Messenger/metabolism
- Animals
- Humans
- Antibodies, Viral/immunology
- Nucleoproteins/immunology
- Nucleoproteins/genetics
- Madin Darby Canine Kidney Cells
- Dogs
- Influenza B virus/immunology
- Antiviral Agents/pharmacology
- Influenza, Human/prevention & control
- Influenza, Human/immunology
- Influenza, Human/virology
- Influenza A virus/immunology
- Antibodies, Monoclonal/immunology
Collapse
Affiliation(s)
- Y A Zabrodskaya
- Smorodintsev Research Institute of Influenza, Russian Ministry of Health, Prof. Popov St. 15/17, 197376, St. Petersburg, Russia; Institute of Biomedical Systems and Biotechnology, Peter the Great Saint-Petersburg Polytechnic University, Politekhnicheskaya 29, 194064, St. Petersburg, Russia.
| | - N V Gavrilova
- Smorodintsev Research Institute of Influenza, Russian Ministry of Health, Prof. Popov St. 15/17, 197376, St. Petersburg, Russia; Institute of Biomedical Systems and Biotechnology, Peter the Great Saint-Petersburg Polytechnic University, Politekhnicheskaya 29, 194064, St. Petersburg, Russia
| | - E A Elpaeva
- Smorodintsev Research Institute of Influenza, Russian Ministry of Health, Prof. Popov St. 15/17, 197376, St. Petersburg, Russia
| | - A A Lozhkov
- Smorodintsev Research Institute of Influenza, Russian Ministry of Health, Prof. Popov St. 15/17, 197376, St. Petersburg, Russia; Institute of Biomedical Systems and Biotechnology, Peter the Great Saint-Petersburg Polytechnic University, Politekhnicheskaya 29, 194064, St. Petersburg, Russia
| | - V V Vysochinskaya
- Smorodintsev Research Institute of Influenza, Russian Ministry of Health, Prof. Popov St. 15/17, 197376, St. Petersburg, Russia; Institute of Biomedical Systems and Biotechnology, Peter the Great Saint-Petersburg Polytechnic University, Politekhnicheskaya 29, 194064, St. Petersburg, Russia
| | - O A Dobrovolskaya
- Smorodintsev Research Institute of Influenza, Russian Ministry of Health, Prof. Popov St. 15/17, 197376, St. Petersburg, Russia
| | - O V Dovbysh
- Institute of Biomedical Systems and Biotechnology, Peter the Great Saint-Petersburg Polytechnic University, Politekhnicheskaya 29, 194064, St. Petersburg, Russia
| | - E L Zimmerman
- Smorodintsev Research Institute of Influenza, Russian Ministry of Health, Prof. Popov St. 15/17, 197376, St. Petersburg, Russia; Institute of Biomedical Systems and Biotechnology, Peter the Great Saint-Petersburg Polytechnic University, Politekhnicheskaya 29, 194064, St. Petersburg, Russia
| | - P N Dav
- Institute of Biomedical Systems and Biotechnology, Peter the Great Saint-Petersburg Polytechnic University, Politekhnicheskaya 29, 194064, St. Petersburg, Russia
| | - A V Brodskaia
- Smorodintsev Research Institute of Influenza, Russian Ministry of Health, Prof. Popov St. 15/17, 197376, St. Petersburg, Russia; Institute of Biomedical Systems and Biotechnology, Peter the Great Saint-Petersburg Polytechnic University, Politekhnicheskaya 29, 194064, St. Petersburg, Russia
| | - E I Sakhenberg
- Smorodintsev Research Institute of Influenza, Russian Ministry of Health, Prof. Popov St. 15/17, 197376, St. Petersburg, Russia
| | - A A Shaldzhyan
- Smorodintsev Research Institute of Influenza, Russian Ministry of Health, Prof. Popov St. 15/17, 197376, St. Petersburg, Russia
| | - A A Demaev
- Institute of Biomedical Systems and Biotechnology, Peter the Great Saint-Petersburg Polytechnic University, Politekhnicheskaya 29, 194064, St. Petersburg, Russia
| | - M A Maslov
- Lomonosov Institute of Fine Chemical Technologies, MIREA-Russian Technological University, 86 Vernadsky Ave, 119571 Moscow, Russia
| | - A V Vasin
- Smorodintsev Research Institute of Influenza, Russian Ministry of Health, Prof. Popov St. 15/17, 197376, St. Petersburg, Russia; Institute of Biomedical Systems and Biotechnology, Peter the Great Saint-Petersburg Polytechnic University, Politekhnicheskaya 29, 194064, St. Petersburg, Russia
| |
Collapse
|
5
|
Brandi R, Paganelli A, D’Amelio R, Giuliani P, Lista F, Salemi S, Paganelli R. mRNA Vaccines Against COVID-19 as Trailblazers for Other Human Infectious Diseases. Vaccines (Basel) 2024; 12:1418. [PMCID: PMC11680146 DOI: 10.3390/vaccines12121418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/07/2024] [Accepted: 12/13/2024] [Indexed: 01/03/2025] Open
Abstract
mRNA vaccines represent a milestone in the history of vaccinology, because they are safe, very effective, quick and cost-effective to produce, easy to adapt should the antigen vary, and able to induce humoral and cellular immunity. Methods: To date, only two COVID-19 mRNA and one RSV vaccines have been approved. However, several mRNA vaccines are currently under development for the prevention of human viral (influenza, human immunodeficiency virus [HIV], Epstein–Barr virus, cytomegalovirus, Zika, respiratory syncytial virus, metapneumovirus/parainfluenza 3, Chikungunya, Nipah, rabies, varicella zoster virus, and herpes simplex virus 1 and 2), bacterial (tuberculosis), and parasitic (malaria) diseases. Results: RNA viruses, such as severe acute respiratory syndrome coronavirus (SARS-CoV)-2, HIV, and influenza, are characterized by high variability, thus creating the need to rapidly adapt the vaccines to the circulating viral strain, a task that mRNA vaccines can easily accomplish; however, the speed of variability may be higher than the time needed for a vaccine to be adapted. mRNA vaccines, using lipid nanoparticles as the delivery system, may act as adjuvants, thus powerfully stimulating innate as well as adaptive immunity, both humoral, which is rapidly waning, and cell-mediated, which is highly persistent. Safety profiles were satisfactory, considering that only a slight increase in prognostically favorable anaphylactic reactions in young females and myopericarditis in young males has been observed. Conclusions: The COVID-19 pandemic determined a shift in the use of RNA: after having been used in medicine as micro-RNAs and tumor vaccines, the new era of anti-infectious mRNA vaccines has begun, which is currently in great development, to either improve already available, but unsatisfactory, vaccines or develop protective vaccines against infectious agents for which no preventative tools have been realized yet.
Collapse
Affiliation(s)
- Rossella Brandi
- Istituto di Science Biomediche della Difesa, Stato Maggiore Della Difesa, 00184 Rome, Italy; (R.B.); (F.L.)
| | | | | | - Paolo Giuliani
- Poliambulatorio Montezemolo, Ente Sanitario Militare del Ministero Della Difesa Presso la Corte dei Conti, 00195 Rome, Italy;
| | - Florigio Lista
- Istituto di Science Biomediche della Difesa, Stato Maggiore Della Difesa, 00184 Rome, Italy; (R.B.); (F.L.)
| | - Simonetta Salemi
- Division of Internal Medicine, Azienda Ospedaliero-Universitaria S. Andrea, 00189 Rome, Italy
| | - Roberto Paganelli
- Internal Medicine, Faculty of Medicine and Surgery, Unicamillus, International School of Medicine, 00131 Rome, Italy
| |
Collapse
|
6
|
Clark TW, Tregoning JS, Lister H, Poletti T, Amin F, Nguyen-Van-Tam JS. Recent advances in the influenza virus vaccine landscape: a comprehensive overview of technologies and trials. Clin Microbiol Rev 2024; 37:e0002524. [PMID: 39360831 PMCID: PMC11629632 DOI: 10.1128/cmr.00025-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024] Open
Abstract
SUMMARYIn the United Kingdom (UK) in 2022/23, influenza virus infections returned to the levels recorded before the COVID-19 pandemic, exerting a substantial burden on an already stretched National Health Service (NHS) through increased primary and emergency care visits and subsequent hospitalizations. Population groups ≤4 years and ≥65 years of age, and those with underlying health conditions, are at the greatest risk of influenza-related hospitalization. Recent advances in influenza virus vaccine technologies may help to mitigate this burden. This review aims to summarize advances in the influenza virus vaccine landscape by describing the different technologies that are currently in use in the UK and more widely. The review also describes vaccine technologies that are under development, including mRNA, and universal influenza virus vaccines which aim to provide broader or increased protection. This is an exciting and important era for influenza virus vaccinations, and advances are critical to protect against a disease that still exerts a substantial burden across all populations and disproportionately impacts the most vulnerable, despite it being over 80 years since the first influenza virus vaccines were deployed.
Collapse
Affiliation(s)
- Tristan W. Clark
- School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - John S. Tregoning
- Department of Infectious Disease, Imperial College London, London, United Kingdom
| | | | | | | | | |
Collapse
|
7
|
Haque MA, Shrestha A, Mikelis CM, Mattheolabakis G. Comprehensive analysis of lipid nanoparticle formulation and preparation for RNA delivery. Int J Pharm X 2024; 8:100283. [PMID: 39309631 PMCID: PMC11415597 DOI: 10.1016/j.ijpx.2024.100283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 08/21/2024] [Accepted: 09/07/2024] [Indexed: 09/25/2024] Open
Abstract
Nucleic acid-based therapeutics are a common approach that is increasingly popular for a wide spectrum of diseases. Lipid nanoparticles (LNPs) are promising delivery carriers that provide RNA stability, with strong transfection efficiency, favorable and tailorable pharmacokinetics, limited toxicity, and established translatability. In this review article, we describe the lipid-based delivery systems, focusing on lipid nanoparticles, the need of their use, provide a comprehensive analysis of each component, and highlight the advantages and disadvantages of the existing manufacturing processes. We further summarize the ongoing and completed clinical trials utilizing LNPs, indicating important aspects/questions worth of investigation, and analyze the future perspectives of this significant and promising therapeutic approach.
Collapse
Affiliation(s)
- Md. Anamul Haque
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71201, USA
| | - Archana Shrestha
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71201, USA
| | - Constantinos M. Mikelis
- Laboratory of Molecular Pharmacology, Department of Pharmacy, University of Patras, Patras 26504, Greece
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - George Mattheolabakis
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71201, USA
| |
Collapse
|
8
|
Scholaert M, Peries M, Braun E, Martin J, Serhan N, Loste A, Bruner A, Basso L, Chaput B, Merle E, Descargues P, Pagès E, Gaudenzio N. Multimodal profiling of biostabilized human skin modules reveals a coordinated ecosystem response to injected mRNA-1273 COVID-19 vaccine. Allergy 2024; 79:3341-3359. [PMID: 39157907 PMCID: PMC11657073 DOI: 10.1111/all.16273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 06/26/2024] [Accepted: 06/28/2024] [Indexed: 08/20/2024]
Abstract
BACKGROUND The field of drug development is witnessing a remarkable surge in the development of innovative strategies. There is a need to develop technological platforms capable of generating human data prior to progressing to clinical trials. METHODS Here we introduce a new flexible solution designed for the comprehensive monitoring of the natural human skin ecosystem's response to immunogenic drugs over time. Based on unique bioengineering to preserve surgical resections in a long survival state, it allows for the first time a comprehensive analysis of resident immune cells response at both organ and single-cell levels. RESULTS Upon injection of the mRNA-1273 COVID-19 vaccine, we characterized precise sequential molecular events triggered upon detection of the exogenous substance. The vaccine consistently targets DC/macrophages and mast cells, regardless of the administration route, while promoting specific cell-cell communications in surrounding immune cell subsets. CONCLUSION Given its direct translational relevance, this approach provides a multiscale vision of genuine human tissue immunity that could pave the way toward the development of new vaccination and drug development strategies.
Collapse
Affiliation(s)
- Manon Scholaert
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity) INSERM UMR1291—CNRS UMR5051University Toulouse IIIToulouseFrance
- Genoskin SASToulouseFrance
| | | | | | - Jeremy Martin
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity) INSERM UMR1291—CNRS UMR5051University Toulouse IIIToulouseFrance
| | - Nadine Serhan
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity) INSERM UMR1291—CNRS UMR5051University Toulouse IIIToulouseFrance
| | - Alexia Loste
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity) INSERM UMR1291—CNRS UMR5051University Toulouse IIIToulouseFrance
| | - Audrey Bruner
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity) INSERM UMR1291—CNRS UMR5051University Toulouse IIIToulouseFrance
| | - Lilian Basso
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity) INSERM UMR1291—CNRS UMR5051University Toulouse IIIToulouseFrance
| | - Benoît Chaput
- Department of Plastic, Reconstructive and Aesthetic Surgery, Rangueil HospitalCHU ToulouseToulouseFrance
| | | | | | | | - Nicolas Gaudenzio
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity) INSERM UMR1291—CNRS UMR5051University Toulouse IIIToulouseFrance
- Genoskin SASToulouseFrance
| |
Collapse
|
9
|
Gupta A, Rudra A, Reed K, Langer R, Anderson DG. Advanced technologies for the development of infectious disease vaccines. Nat Rev Drug Discov 2024; 23:914-938. [PMID: 39433939 DOI: 10.1038/s41573-024-01041-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2024] [Indexed: 10/23/2024]
Abstract
Vaccines play a critical role in the prevention of life-threatening infectious disease. However, the development of effective vaccines against many immune-evading pathogens such as HIV has proven challenging, and existing vaccines against some diseases such as tuberculosis and malaria have limited efficacy. The historically slow rate of vaccine development and limited pan-variant immune responses also limit existing vaccine utility against rapidly emerging and mutating pathogens such as influenza and SARS-CoV-2. Additionally, reactogenic effects can contribute to vaccine hesitancy, further undermining the ability of vaccination campaigns to generate herd immunity. These limitations are fuelling the development of novel vaccine technologies to more effectively combat infectious diseases. Towards this end, advances in vaccine delivery systems, adjuvants, antigens and other technologies are paving the way for the next generation of vaccines. This Review focuses on recent advances in synthetic vaccine systems and their associated challenges, highlighting innovation in the field of nano- and nucleic acid-based vaccines.
Collapse
Affiliation(s)
- Akash Gupta
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Arnab Rudra
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Boston, MA, USA
| | - Kaelan Reed
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Robert Langer
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Harvard and MIT Division of Health Science and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Daniel G Anderson
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Boston, MA, USA.
- Harvard and MIT Division of Health Science and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
10
|
Sun X, Setrerrahmane S, Li C, Hu J, Xu H. Nucleic acid drugs: recent progress and future perspectives. Signal Transduct Target Ther 2024; 9:316. [PMID: 39609384 PMCID: PMC11604671 DOI: 10.1038/s41392-024-02035-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 09/20/2024] [Accepted: 10/25/2024] [Indexed: 11/30/2024] Open
Abstract
High efficacy, selectivity and cellular targeting of therapeutic agents has been an active area of investigation for decades. Currently, most clinically approved therapeutics are small molecules or protein/antibody biologics. Targeted action of small molecule drugs remains a challenge in medicine. In addition, many diseases are considered 'undruggable' using standard biomacromolecules. Many of these challenges however, can be addressed using nucleic therapeutics. Nucleic acid drugs (NADs) are a new generation of gene-editing modalities characterized by their high efficiency and rapid development, which have become an active research topic in new drug development field. However, many factors, including their low stability, short half-life, high immunogenicity, tissue targeting, cellular uptake, and endosomal escape, hamper the delivery and clinical application of NADs. Scientists have used chemical modification techniques to improve the physicochemical properties of NADs. In contrast, modified NADs typically require carriers to enter target cells and reach specific intracellular locations. Multiple delivery approaches have been developed to effectively improve intracellular delivery and the in vivo bioavailability of NADs. Several NADs have entered the clinical trial recently, and some have been approved for therapeutic use in different fields. This review summarizes NADs development and evolution and introduces NADs classifications and general delivery strategies, highlighting their success in clinical applications. Additionally, this review discusses the limitations and potential future applications of NADs as gene therapy candidates.
Collapse
Affiliation(s)
- Xiaoyi Sun
- Jiangsu Province Engineering Research Center of Synthetic Peptide Drug Discovery and Evaluation, China Pharmaceutical University, Nanjing, 210009, China
| | | | - Chencheng Li
- Jiangsu Province Engineering Research Center of Synthetic Peptide Drug Discovery and Evaluation, China Pharmaceutical University, Nanjing, 210009, China
| | - Jialiang Hu
- Jiangsu Province Engineering Research Center of Synthetic Peptide Drug Discovery and Evaluation, China Pharmaceutical University, Nanjing, 210009, China
| | - Hanmei Xu
- Jiangsu Province Engineering Research Center of Synthetic Peptide Drug Discovery and Evaluation, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
11
|
Jin L, Zhou Y, Zhang S, Chen SJ. mRNA vaccine sequence and structure design and optimization: Advances and challenges. J Biol Chem 2024; 301:108015. [PMID: 39608721 DOI: 10.1016/j.jbc.2024.108015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/13/2024] [Accepted: 11/16/2024] [Indexed: 11/30/2024] Open
Abstract
Messenger RNA (mRNA) vaccines have emerged as a powerful tool against communicable diseases and cancers, as demonstrated by their huge success during the coronavirus disease 2019 (COVID-19) pandemic. Despite the outstanding achievements, mRNA vaccines still face challenges such as stringent storage requirements, insufficient antigen expression, and unexpected immune responses. Since the intrinsic properties of mRNA molecules significantly impact vaccine performance, optimizing mRNA design is crucial in preclinical development. In this review, we outline four key principles for optimal mRNA sequence design: enhancing ribosome loading and translation efficiency through untranslated region (UTR) optimization, improving translation efficiency via codon optimization, increasing structural stability by refining global RNA sequence and extending in-cell lifetime and expression fidelity by adjusting local RNA structures. We also explore recent advancements in computational models for designing and optimizing mRNA vaccine sequences following these principles. By integrating current mRNA knowledge, addressing challenges, and examining advanced computational methods, this review aims to promote the application of computational approaches in mRNA vaccine development and inspire novel solutions to existing obstacles.
Collapse
Affiliation(s)
- Lei Jin
- Department of Physics and Astronomy, University of Missouri, Columbia, Missouri, USA
| | - Yuanzhe Zhou
- Department of Physics and Astronomy, University of Missouri, Columbia, Missouri, USA
| | - Sicheng Zhang
- Department of Physics and Astronomy, University of Missouri, Columbia, Missouri, USA
| | - Shi-Jie Chen
- Department of Physics and Astronomy, University of Missouri, Columbia, Missouri, USA; Department of Biochemistry, MU Institute for Data Science and Informatics, University of Missouri, Columbia, Missouri, USA.
| |
Collapse
|
12
|
Shi Y, Shi M, Wang Y, You J. Progress and prospects of mRNA-based drugs in pre-clinical and clinical applications. Signal Transduct Target Ther 2024; 9:322. [PMID: 39543114 PMCID: PMC11564800 DOI: 10.1038/s41392-024-02002-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 09/03/2024] [Accepted: 09/26/2024] [Indexed: 11/17/2024] Open
Abstract
In the last decade, messenger ribonucleic acid (mRNA)-based drugs have gained great interest in both immunotherapy and non-immunogenic applications. This surge in interest can be largely attributed to the demonstration of distinct advantages offered by various mRNA molecules, alongside the rapid advancements in nucleic acid delivery systems. It is noteworthy that the immunogenicity of mRNA drugs presents a double-edged sword. In the context of immunotherapy, extra supplementation of adjuvant is generally required for induction of robust immune responses. Conversely, in non-immunotherapeutic scenarios, immune activation is unwanted considering the host tolerability and high expression demand for mRNA-encoded functional proteins. Herein, mainly focused on the linear non-replicating mRNA, we overview the preclinical and clinical progress and prospects of mRNA medicines encompassing vaccines and other therapeutics. We also highlight the importance of focusing on the host-specific variations, including age, gender, pathological condition, and concurrent medication of individual patient, for maximized efficacy and safety upon mRNA administration. Furthermore, we deliberate on the potential challenges that mRNA drugs may encounter in the realm of disease treatment, the current endeavors of improvement, as well as the application prospects for future advancements. Overall, this review aims to present a comprehensive understanding of mRNA-based therapies while illuminating the prospective development and clinical application of mRNA drugs.
Collapse
Affiliation(s)
- Yingying Shi
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, P. R. China
| | - Meixing Shi
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, P. R. China
| | - Yi Wang
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, P. R. China.
| | - Jian You
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, P. R. China.
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, 79 Qingchun Road, Shangcheng District, Hangzhou, Zhejiang, P. R. China.
- The First Affiliated Hospital, College of Medicine, Zhejiang University, 79 QingChun Road, Hangzhou, Zhejiang, P. R. China.
- Jinhua Institute of Zhejiang University, 498 Yiwu Street, Jinhua, Zhejiang, P. R. China.
| |
Collapse
|
13
|
Haghighi E, Abolmaali SS, Dehshahri A, Mousavi Shaegh SA, Azarpira N, Tamaddon AM. Navigating the intricate in-vivo journey of lipid nanoparticles tailored for the targeted delivery of RNA therapeutics: a quality-by-design approach. J Nanobiotechnology 2024; 22:710. [PMID: 39543630 PMCID: PMC11566655 DOI: 10.1186/s12951-024-02972-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 11/03/2024] [Indexed: 11/17/2024] Open
Abstract
RNA therapeutics, such as mRNA, siRNA, and CRISPR-Cas9, present exciting avenues for treating diverse diseases. However, their potential is commonly hindered by vulnerability to degradation and poor cellular uptake, requiring effective delivery systems. Lipid nanoparticles (LNPs) have emerged as a leading choice for in vivo RNA delivery, offering protection against degradation, enhanced cellular uptake, and facilitation of endosomal escape. However, LNPs encounter numerous challenges for targeted RNA delivery in vivo, demanding advanced particle engineering, surface functionalization with targeting ligands, and a profound comprehension of the biological milieu in which they function. This review explores the structural and physicochemical characteristics of LNPs, in-vivo fate, and customization for RNA therapeutics. We highlight the quality-by-design (QbD) approach for targeted delivery beyond the liver, focusing on biodistribution, immunogenicity, and toxicity. In addition, we explored the current challenges and strategies associated with LNPs for in-vivo RNA delivery, such as ensuring repeated-dose efficacy, safety, and tissue-specific gene delivery. Furthermore, we provide insights into the current clinical applications in various classes of diseases and finally prospects of LNPs in RNA therapeutics.
Collapse
Affiliation(s)
- Elahe Haghighi
- Department of Pharmaceutical Nanotechnology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Samira Sadat Abolmaali
- Department of Pharmaceutical Nanotechnology, Shiraz University of Medical Sciences, Shiraz, Iran.
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Ali Dehshahri
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyed Ali Mousavi Shaegh
- Laboratory of Microfluidics and Medical Microsystems, Research Institute for Medical Sciences, Mashhad University of Medical Sciences, Mashhad, Iran
- Orthopedic Research Center, Ghaem Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
- Clinical Research Development Unit, Ghaem Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Negar Azarpira
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Mohammad Tamaddon
- Department of Pharmaceutical Nanotechnology, Shiraz University of Medical Sciences, Shiraz, Iran.
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, Iran.
- Department of Pharmaceutics, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
14
|
Nakhaie M, Rukerd MRZ, Shahpar A, Pardeshenas M, Khoshnazar SM, Khazaeli M, Bashash D, Nezhad NZ, Charostad J. A Closer Look at the Avian Influenza Virus H7N9: A Calm before the Storm? J Med Virol 2024; 96:e70090. [PMID: 39601174 DOI: 10.1002/jmv.70090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 09/15/2024] [Accepted: 11/11/2024] [Indexed: 11/29/2024]
Abstract
The avian influenza A (H7N9) virus, which circulates in wild birds and poultry, has been a major concern for public health since it was first discovered in China in 2013 due to its demonstrated ability to infect humans, causing severe respiratory illness with high mortality rates. According to the World Health Organization (WHO), a total of 1568 human infections with 616 fatal cases caused by novel H7N9 viruses have been reported in China from early 2013 to January 2024. This manuscript provides a comprehensive review of the virology, evolutionary patterns, and pandemic potential of H7N9. The H7N9 virus exhibits a complex reassortment history, receiving genes from H9N2 and other avian influenza viruses. The presence of certain molecular markers, such as mutations in the hemagglutinin and polymerase basic protein 2, enhances the virus's adaptability to human hosts. The virus activates innate immune responses through pattern recognition receptors, leading to cytokine production and inflammation. Clinical manifestations range from mild to severe, with complications including pneumonia, acute respiratory distress syndrome, and multiorgan failure. Diagnosis relies on molecular assays such as reverse transcription-polymerase chain reaction. The increasing frequency of human infections, along with the virus's ability to bind to human receptors and cause severe disease, highlights its pandemic potential. Continued surveillance, vaccine development, and public health measures are crucial to limit the risk posed by H7N9. Understanding the virus's ecology, transmission dynamics, and pathogenesis is essential for developing effective prevention and control strategies.
Collapse
Affiliation(s)
- Mohsen Nakhaie
- Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman, Iran
- Clinical Research Development Unit, Afzalipour Hospital, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Rezaei Zadeh Rukerd
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Amirhossein Shahpar
- Gastroenterology and Hepatology Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Pardeshenas
- Department of Microbiology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Seyedeh Mahdieh Khoshnazar
- Gastroenterology and Hepatology Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Mana Khazaeli
- Clinical Research Development Unit, Afzalipour Hospital, Kerman University of Medical Sciences, Kerman, Iran
| | - Davood Bashash
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nazanin Zeinali Nezhad
- Clinical Research Development Unit, Afzalipour Hospital, Kerman University of Medical Sciences, Kerman, Iran
| | - Javad Charostad
- Department of Microbiology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
15
|
Chaudhary N, Kasiewicz LN, Newby AN, Arral ML, Yerneni SS, Melamed JR, LoPresti ST, Fein KC, Strelkova Petersen DM, Kumar S, Purwar R, Whitehead KA. Amine headgroups in ionizable lipids drive immune responses to lipid nanoparticles by binding to the receptors TLR4 and CD1d. Nat Biomed Eng 2024; 8:1483-1498. [PMID: 39363106 DOI: 10.1038/s41551-024-01256-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 09/05/2024] [Indexed: 10/05/2024]
Abstract
Lipid nanoparticles (LNPs) are the most clinically advanced delivery vehicle for RNA therapeutics, partly because of established lipid structure-activity relationships focused on formulation potency. Yet such knowledge has not extended to LNP immunogenicity. Here we show that the innate and adaptive immune responses elicited by LNPs are linked to their ionizable lipid chemistry. Specifically, we show that the amine headgroups in ionizable lipids drive LNP immunogenicity by binding to Toll-like receptor 4 and CD1d and by promoting lipid-raft formation. Immunogenic LNPs favour a type-1 T-helper-cell-biased immune response marked by increases in the immunoglobulins IgG2c and IgG1 and in the pro-inflammatory cytokines tumour necrosis factor, interferon γ and the interleukins IL-6 and IL-2. Notably, the inflammatory signals originating from these receptors inhibit the production of anti-poly(ethylene glycol) IgM antibodies, preventing the often-observed loss of efficacy in the LNP-mediated delivery of siRNA and mRNA. Moreover, we identified computational methods for the prediction of the structure-dependent innate and adaptive responses of LNPs. Our findings may help accelerate the discovery of well-tolerated ionizable lipids suitable for repeated dosing.
Collapse
Affiliation(s)
- Namit Chaudhary
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Lisa N Kasiewicz
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Alexandra N Newby
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Mariah L Arral
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | | | - Jilian R Melamed
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Samuel T LoPresti
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Katherine C Fein
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | | | - Sushant Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Rahul Purwar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Kathryn A Whitehead
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA.
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA.
| |
Collapse
|
16
|
Troncoso-Bravo T, Ramírez MA, Loaiza RA, Román-Cárdenas C, Papazisis G, Garrido D, González PA, Bueno SM, Kalergis AM. Advancement in the development of mRNA-based vaccines for respiratory viruses. Immunology 2024; 173:481-496. [PMID: 39161170 DOI: 10.1111/imm.13844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 07/22/2024] [Indexed: 08/21/2024] Open
Abstract
Acute respiratory infections are the leading cause of death and illness in children under 5 years old and represent a significant burden in older adults. Primarily caused by viruses infecting the lower respiratory tract, symptoms include cough, congestion, and low-grade fever, potentially leading to bronchiolitis and pneumonia. Messenger ribonucleic acid (mRNA)-based vaccines are biopharmaceutical formulations that employ mRNA molecules to induce specific immune responses, facilitating the expression of viral or bacterial antigens and promoting immunization against infectious diseases. Notably, this technology had significant relevance during the COVID-19 pandemic, as these formulations helped to limit SARS-CoV-2 virus infections, hospitalizations, and deaths. Importantly, mRNA vaccines promise to be implemented as new alternatives for fighting other respiratory viruses, such as influenza, human respiratory syncytial virus, and human metapneumovirus. This review article analyzes mRNA-based vaccines' main contributions, perspectives, challenges, and implications against respiratory viruses.
Collapse
Affiliation(s)
- Tays Troncoso-Bravo
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Ingeniería Química y Bioprocesos, Facultad de Ingeniería, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Mario A Ramírez
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Ricardo A Loaiza
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Carolina Román-Cárdenas
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Georgios Papazisis
- Laboratory of Clinical Pharmacology, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
- Clinical Research Unit, Special Unit for Biomedical Research and Education (SUBRE), School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Daniel Garrido
- Departamento de Ingeniería Química y Bioprocesos, Facultad de Ingeniería, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Pablo A González
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Susan M Bueno
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alexis M Kalergis
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
17
|
Pardi N, Krammer F. mRNA vaccines for infectious diseases - advances, challenges and opportunities. Nat Rev Drug Discov 2024; 23:838-861. [PMID: 39367276 DOI: 10.1038/s41573-024-01042-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/27/2024] [Indexed: 10/06/2024]
Abstract
The concept of mRNA-based vaccines emerged more than three decades ago. Groundbreaking discoveries and technological advancements over the past 20 years have resolved the major roadblocks that initially delayed application of this new vaccine modality. The rapid development of nucleoside-modified COVID-19 mRNA vaccines demonstrated that this immunization platform is easy to develop, has an acceptable safety profile and can be produced at a large scale. The flexibility and ease of antigen design have enabled mRNA vaccines to enter development for a wide range of viruses as well as for various bacteria and parasites. However, gaps in our knowledge limit the development of next-generation mRNA vaccines with increased potency and safety. A deeper understanding of the mechanisms of action of mRNA vaccines, application of novel technologies enabling rational antigen design, and innovative vaccine delivery strategies and vaccination regimens will likely yield potent novel vaccines against a wide range of pathogens.
Collapse
Affiliation(s)
- Norbert Pardi
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Center for Vaccine Research and Pandemic Preparedness (C-VaRPP), Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Ignaz Semmelweis Institute, Interuniversity Institute for Infection Research, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
18
|
Wei PS, Thota N, John G, Chang E, Lee S, Wang Y, Ma Z, Tsai YH, Mei KC. Enhancing RNA-lipid nanoparticle delivery: Organ- and cell-specificity and barcoding strategies. J Control Release 2024; 375:366-388. [PMID: 39179112 DOI: 10.1016/j.jconrel.2024.08.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/25/2024] [Accepted: 08/19/2024] [Indexed: 08/26/2024]
Abstract
Recent advancements in RNA therapeutics highlight the critical need for precision gene delivery systems that target specific organs and cells. Lipid nanoparticles (LNPs) have emerged as key vectors in delivering mRNA and siRNA, offering protection against enzymatic degradation, enabling targeted delivery and cellular uptake, and facilitating RNA cargo release into the cytosol. This review discusses the development and optimization of organ- and cell-specific LNPs, focusing on their design, mechanisms of action, and therapeutic applications. We explore innovations such as DNA/RNA barcoding, which facilitates high-throughput screening and precise adjustments in formulations. We address major challenges, including improving endosomal escape, minimizing off-target effects, and enhancing delivery efficiencies. Notable clinical trials and recent FDA approvals illustrate the practical applications and future potential of LNP-based RNA therapies. Our findings suggest that while considerable progress has been made, continued research is essential to resolve existing limitations and bridge the gap between preclinical and clinical evaluation of the safety and efficacy of RNA therapeutics. This review highlights the dynamic progress in LNP research. It outlines a roadmap for future advancements in RNA-based precision medicine.
Collapse
Affiliation(s)
- Pu-Sheng Wei
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, State University of New York at Binghamton, Johnson City, New York, NY 13790, USA
| | - Nagasri Thota
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, State University of New York at Binghamton, Johnson City, New York, NY 13790, USA
| | - Greshma John
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, State University of New York at Binghamton, Johnson City, New York, NY 13790, USA
| | - Evelyn Chang
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, State University of New York at Binghamton, Johnson City, New York, NY 13790, USA
| | - Sunjae Lee
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, State University of New York at Binghamton, Johnson City, New York, NY 13790, USA
| | - Yuanjun Wang
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, State University of New York at Binghamton, Johnson City, New York, NY 13790, USA
| | - Zitao Ma
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, State University of New York at Binghamton, Johnson City, New York, NY 13790, USA
| | - Yu-Hsuan Tsai
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, State University of New York at Binghamton, Johnson City, New York, NY 13790, USA
| | - Kuo-Ching Mei
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, State University of New York at Binghamton, Johnson City, New York, NY 13790, USA.
| |
Collapse
|
19
|
Bader J, Brigger F, Leroux JC. Extracellular vesicles versus lipid nanoparticles for the delivery of nucleic acids. Adv Drug Deliv Rev 2024; 215:115461. [PMID: 39490384 DOI: 10.1016/j.addr.2024.115461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/21/2024] [Accepted: 10/23/2024] [Indexed: 11/05/2024]
Abstract
Extracellular vesicles (EVs) are increasingly investigated for delivering nucleic acid (NA) therapeutics, leveraging their natural role in transporting NA and protein-based cargo in cell-to-cell signaling. Their synthetic counterparts, lipid nanoparticles (LNPs), have been developed over the past decades as NA carriers, culminating in the approval of several marketed formulations such as patisiran/Onpattro® and the mRNA-1273/BNT162 COVID-19 vaccines. The success of LNPs has sparked efforts to develop innovative technologies to target extrahepatic organs, and to deliver novel therapeutic modalities, such as tools for in vivo gene editing. Fueled by the recent advancements in both fields, this review aims to provide a comprehensive overview of the basic characteristics of EV and LNP-based NA delivery systems, from EV biogenesis to structural properties of LNPs. It addresses the primary challenges encountered in utilizing these nanocarriers from a drug formulation and delivery perspective. Additionally, biodistribution profiles, in vitro and in vivo transfection outcomes, as well as their status in clinical trials are compared. Overall, this review provides insights into promising research avenues and potential dead ends for EV and LNP-based NA delivery systems.
Collapse
Affiliation(s)
- Johannes Bader
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Finn Brigger
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Jean-Christophe Leroux
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland.
| |
Collapse
|
20
|
Wang X. The Potential of mRNA Vaccines to Fight Against Viruses. Viral Immunol 2024; 37:383-391. [PMID: 39418074 DOI: 10.1089/vim.2024.0047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024] Open
Abstract
Vaccines have always been a critical tool in preventing infectious diseases. However, the development of traditional vaccines often takes a long time and may struggle to address the challenge of rapidly mutating viruses. The emergence of mRNA technology has brought revolutionary changes to vaccine development, particularly in rapidly responding to the threat of emerging viruses. The global promotion of mRNA vaccines against severe acute respiratory syndrome coronavirus 2 has demonstrated the importance of mRNA technology. Also, mRNA vaccines targeting viruses such as influenza, respiratory syncytial virus, and Ebola are under development. These vaccines have shown promising preventive effects and safety profiles in clinical trials, although the duration of immune protection is still under evaluation. However, the development of mRNA vaccines also faces many challenges, such as stability, efficacy, and individual differences in immune response. Researchers adopt various strategies to address these challenges. Anyway, mRNA vaccines have shown enormous potential in combating viral diseases. With further development and technological maturity, mRNA vaccines are expected to have a profound impact on public health and vaccine equity. This review discussed the potential of mRNA vaccines to fight against viruses, current progress in clinical trials, challenges faced, and future prospects, providing a comprehensive scientific basis and reference for future research.
Collapse
Affiliation(s)
- Xinyi Wang
- Department of Clinical Laboratory, National Clinical Research Center for Child Health Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
21
|
Cao Q, Fang H, Tian H. mRNA vaccines contribute to innate and adaptive immunity to enhance immune response in vivo. Biomaterials 2024; 310:122628. [PMID: 38820767 DOI: 10.1016/j.biomaterials.2024.122628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 05/02/2024] [Accepted: 05/19/2024] [Indexed: 06/02/2024]
Abstract
Messenger RNA (mRNA) therapeutics have been widely employed as strategies for the treatment and prevention of diseases. Amid the global outbreak of COVID-19, mRNA vaccines have witnessed rapid development. Generally, in the case of mRNA vaccines, the initiation of the innate immune system serves as a prerequisite for triggering subsequent adaptive immune responses. Critical cells, cytokines, and chemokines within the innate immune system play crucial and beneficial roles in coordinating tailored immune reactions towards mRNA vaccines. Furthermore, immunostimulators and delivery systems play a significant role in augmenting the immune potency of mRNA vaccines. In this comprehensive review, we systematically delineate the latest advancements in mRNA vaccine research, present an in-depth exploration of strategies aimed at amplifying the immune effectiveness of mRNA vaccines, and offer some perspectives and recommendations regarding the future advancements in mRNA vaccine development.
Collapse
Affiliation(s)
- Qiannan Cao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Huapan Fang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China; Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, 361005, China; Institute of Functional Nano and Soft Materials, Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China.
| | - Huayu Tian
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China; Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, 361005, China.
| |
Collapse
|
22
|
du Preez HN, Lin J, Maguire GEM, Aldous C, Kruger HG. COVID-19 vaccine adverse events: Evaluating the pathophysiology with an emphasis on sulfur metabolism and endotheliopathy. Eur J Clin Invest 2024; 54:e14296. [PMID: 39118373 DOI: 10.1111/eci.14296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 07/24/2024] [Indexed: 08/10/2024]
Abstract
In this narrative review, we assess the pathophysiology of severe adverse events that presented after vaccination with DNA and mRNA vaccines against COVID-19. The focus is on the perspective of an undersulfated and degraded glycocalyx, considering its impact on immunomodulation, inflammatory responses, coagulation and oxidative stress. The paper explores various factors that lead to glutathione and inorganic sulfate depletion and their subsequent effect on glycocalyx sulfation and other metabolites, including hormones. Components of COVID-19 vaccines, such as DNA and mRNA material, spike protein antigen and lipid nanoparticles, are involved in possible cytotoxic effects. The common thread connecting these adverse events is endotheliopathy or glycocalyx degradation, caused by depleted glutathione and inorganic sulfate levels, shear stress from circulating nanoparticles, aggregation and formation of protein coronas; leading to imbalanced immune responses and chronic release of pro-inflammatory cytokines, ultimately resulting in oxidative stress and systemic inflammatory response syndrome. By understanding the underlying pathophysiology of severe adverse events, better treatment options can be explored.
Collapse
Affiliation(s)
- Heidi N du Preez
- Catalysis and Peptide Research Unit, University of KwaZulu-Natal, Durban, South Africa
- College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Johnson Lin
- School of Life Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Glenn E M Maguire
- Catalysis and Peptide Research Unit, University of KwaZulu-Natal, Durban, South Africa
- School of Chemistry and Physics, University of KwaZulu-Natal, Durban, South Africa
| | - Colleen Aldous
- College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Hendrik G Kruger
- Catalysis and Peptide Research Unit, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
23
|
Mosmann TR, McMichael AJ, LeVert A, McCauley JW, Almond JW. Opportunities and challenges for T cell-based influenza vaccines. Nat Rev Immunol 2024; 24:736-752. [PMID: 38698082 DOI: 10.1038/s41577-024-01030-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/27/2024] [Indexed: 05/05/2024]
Abstract
Vaccination remains our main defence against influenza, which causes substantial annual mortality and poses a serious pandemic threat. Influenza virus evades immunity by rapidly changing its surface antigens but, even when the vaccine is well matched to the current circulating virus strains, influenza vaccines are not as effective as many other vaccines. Influenza vaccine development has traditionally focused on the induction of protective antibodies, but there is mounting evidence that T cell responses are also protective against influenza. Thus, future vaccines designed to promote both broad T cell effector functions and antibodies may provide enhanced protection. As we discuss, such vaccines present several challenges that require new strategic and economic considerations. Vaccine-induced T cells relevant to protection may reside in the lungs or lymphoid tissues, requiring more invasive assays to assess the immunogenicity of vaccine candidates. T cell functions may contain and resolve infection rather than completely prevent infection and early illness, requiring vaccine effectiveness to be assessed based on the prevention of severe disease and death rather than symptomatic infection. It can be complex and costly to measure T cell responses and infrequent clinical outcomes, and thus innovations in clinical trial design are needed for economic reasons. Nevertheless, the goal of more effective influenza vaccines justifies renewed and intensive efforts.
Collapse
Affiliation(s)
- Tim R Mosmann
- David H. Smith Center for Vaccine Biology and Immunology, University of Rochester Medical Center, Rochester, NY, USA.
| | - Andrew J McMichael
- Centre for Immuno-Oncology, Old Road Campus Research Building, University of Oxford, Oxford, UK
| | | | | | - Jeffrey W Almond
- The Sir William Dunn School of Pathology, South Parks Road, University of Oxford, Oxford, UK
| |
Collapse
|
24
|
Liu Y, Huang Y, He G, Guo C, Dong J, Wu L. Development of mRNA Lipid Nanoparticles: Targeting and Therapeutic Aspects. Int J Mol Sci 2024; 25:10166. [PMID: 39337651 PMCID: PMC11432440 DOI: 10.3390/ijms251810166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 07/07/2024] [Accepted: 07/12/2024] [Indexed: 09/30/2024] Open
Abstract
Lipid nanoparticles (LNPs) have emerged as leading non-viral carriers for messenger RNA (mRNA) delivery in clinical applications. Overcoming challenges in safe and effective mRNA delivery to target tissues and cells, along with controlling release from the delivery vehicle, remains pivotal in mRNA-based therapies. This review elucidates the structure of LNPs, the mechanism for mRNA delivery, and the targeted delivery of LNPs to various cells and tissues, including leukocytes, T-cells, dendritic cells, Kupffer cells, hepatic endothelial cells, and hepatic and extrahepatic tissues. Here, we discuss the applications of mRNA-LNP vaccines for the prevention of infectious diseases and for the treatment of cancer and various genetic diseases. Although challenges remain in terms of delivery efficiency, specific tissue targeting, toxicity, and storage stability, mRNA-LNP technology holds extensive potential for the treatment of diseases.
Collapse
Affiliation(s)
- Yaping Liu
- College of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
- Center for Chemical Biology and Drug Discovery, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Yingying Huang
- College of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
- Center for Chemical Biology and Drug Discovery, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Guantao He
- Center for Chemical Biology and Drug Discovery, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chun Guo
- College of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jinhua Dong
- College of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Linping Wu
- Center for Chemical Biology and Drug Discovery, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- Key Laboratory of Immune Response and Immunotherapy, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| |
Collapse
|
25
|
Huddleston J, Bedford T. Timely vaccine strain selection and genomic surveillance improves evolutionary forecast accuracy of seasonal influenza A/H3N2. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.09.11.24313489. [PMID: 39314963 PMCID: PMC11419249 DOI: 10.1101/2024.09.11.24313489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
For the last decade, evolutionary forecasting models have influenced seasonal influenza vaccine design. These models attempt to predict which genetic variants circulating at the time of vaccine strain selection will be dominant 12 months later in the influenza season targeted by vaccination campaign. Forecasting models depend on hemagglutinin (HA) sequences from the WHO's Global Influenza Surveillance and Response System to identify currently circulating groups of related strains (clades) and estimate clade fitness for forecasts. However, the average lag between collection of a clinical sample and the submission of its sequence to the Global Initiative on Sharing All Influenza Data (GISAID) EpiFlu database is ~3 months. Submission lags complicate the already difficult 12-month forecasting problem by reducing understanding of current clade frequencies at the time of forecasting. These constraints of a 12-month forecast horizon and 3-month average submission lags create an upper bound on the accuracy of any long-term forecasting model. The global response to the SARS-CoV-2 pandemic revealed that modern vaccine technology like mRNA vaccines can reduce how far we need to forecast into the future to 6 months or less and that expanded support for sequencing can reduce submission lags to GISAID to 1 month on average. To determine whether these recent advances could also improve long-term forecasts for seasonal influenza, we quantified the effects of reducing forecast horizons and submission lags on the accuracy of forecasts for A/H3N2 populations. We found that reducing forecast horizons from 12 months to 6 or 3 months reduced average absolute forecasting errors to 25% and 50% of the 12-month average, respectively. Reducing submission lags provided little improvement to forecasting accuracy but decreased the uncertainty in current clade frequencies by 50%. These results show the potential to substantially improve the accuracy of existing influenza forecasting models by modernizing influenza vaccine development and increasing global sequencing capacity.
Collapse
Affiliation(s)
- John Huddleston
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Trevor Bedford
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Howard Hughes Medical Institute, Seattle, WA, USA
| |
Collapse
|
26
|
Wang Y, Ma Q, Li M, Mai Q, Ma L, Zhang H, Zhong H, Mai K, Cheng N, Feng P, Guan P, Wu S, Zhang L, Dai J, Zhang B, Pan W, Yang Z. A decavalent composite mRNA vaccine against both influenza and COVID-19. mBio 2024; 15:e0066824. [PMID: 39105586 PMCID: PMC11389412 DOI: 10.1128/mbio.00668-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 07/02/2024] [Indexed: 08/07/2024] Open
Abstract
The COVID-19 pandemic caused by SARS-CoV-2 has had a persistent and significant impact on global public health for 4 years. Recently, there has been a resurgence of seasonal influenza transmission worldwide. The co-circulation of SARS-CoV-2 and seasonal influenza viruses results in a dual burden on communities. Additionally, the pandemic potential of zoonotic influenza viruses, such as avian Influenza A/H5N1 and A/H7N9, remains a concern. Therefore, a combined vaccine against all these respiratory diseases is in urgent need. mRNA vaccines, with their superior efficacy, speed in development, flexibility, and cost-effectiveness, offer a promising solution for such infectious diseases and potential future pandemics. In this study, we present FLUCOV-10, a novel 10-valent mRNA vaccine created from our proven platform. This vaccine encodes hemagglutinin (HA) proteins from four seasonal influenza viruses and two avian influenza viruses with pandemic potential, as well as spike proteins from four SARS-CoV-2 variants. A two-dose immunization with the FLUCOV-10 elicited robust immune responses in mice, producing IgG antibodies, neutralizing antibodies, and antigen-specific cellular immune responses against all the vaccine-matched viruses of influenza and SARS-CoV-2. Remarkably, the FLUCOV-10 immunization provided complete protection in mouse models against both homologous and heterologous strains of influenza and SARS-CoV-2. These results highlight the potential of FLUCOV-10 as an effective vaccine candidate for the prevention of influenza and COVID-19.IMPORTANCEAmidst the ongoing and emerging respiratory viral threats, particularly the concurrent and sequential spread of SARS-CoV-2 and influenza, our research introduces FLUCOV-10. This novel mRNA-based combination vaccine, designed to counteract both influenza and COVID-19, by incorporating genes for surface glycoproteins from various influenza viruses and SARS-CoV-2 variants. This combination vaccine was highly effective in preclinical trials, generating strong immune responses and ensuring protection against both matching and heterologous strains of influenza viruses and SARS-CoV-2. FLUCOV-10 represents a significant step forward in our ability to address respiratory viral threats, showcasing potential as a singular, adaptable vaccine solution for global health challenges.
Collapse
MESH Headings
- Animals
- COVID-19/prevention & control
- COVID-19/immunology
- Mice
- SARS-CoV-2/immunology
- SARS-CoV-2/genetics
- COVID-19 Vaccines/immunology
- COVID-19 Vaccines/administration & dosage
- mRNA Vaccines
- Humans
- Influenza Vaccines/immunology
- Influenza Vaccines/administration & dosage
- Influenza Vaccines/genetics
- Antibodies, Viral/blood
- Antibodies, Viral/immunology
- Influenza, Human/prevention & control
- Influenza, Human/immunology
- Influenza, Human/virology
- Vaccines, Synthetic/immunology
- Vaccines, Synthetic/genetics
- Vaccines, Synthetic/administration & dosage
- Mice, Inbred BALB C
- Female
- Antibodies, Neutralizing/blood
- Antibodies, Neutralizing/immunology
- Orthomyxoviridae Infections/prevention & control
- Orthomyxoviridae Infections/immunology
- Orthomyxoviridae Infections/virology
- Hemagglutinin Glycoproteins, Influenza Virus/immunology
- Hemagglutinin Glycoproteins, Influenza Virus/genetics
- Spike Glycoprotein, Coronavirus/immunology
- Spike Glycoprotein, Coronavirus/genetics
- Influenza A Virus, H5N1 Subtype/immunology
- Influenza A Virus, H5N1 Subtype/genetics
- Influenza A virus/immunology
- Influenza A virus/genetics
Collapse
Affiliation(s)
- Yang Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Guangzhou National Laboratory, Guangzhou, China
| | - Qinhai Ma
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Man Li
- Argorna Pharmaceuticals Co., Ltd., Guangzhou, China
| | - Qianyi Mai
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Lin Ma
- Guangzhou RiboBio Co., Ltd, Guangzhou, China
| | - Hong Zhang
- Argorna Pharmaceuticals Co., Ltd., Guangzhou, China
| | | | - Kailin Mai
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Nan Cheng
- Guangzhou RiboBio Co., Ltd, Guangzhou, China
| | - Pei Feng
- Respiratory Disease AI Laboratory on Epidemic and Medical Big Data Instrument Applications, Faculty of Innovation Engineering, Macau University of Science and Technology, Macau SAR, China
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau SAR, China
| | - Peikun Guan
- Guangzhou National Laboratory, Guangzhou, China
| | - Shengzhen Wu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Lu Zhang
- Technology Centre, Guangzhou Customs, Guangzhou, China
| | - Jun Dai
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Guangzhou National Laboratory, Guangzhou, China
- Technology Centre, Guangzhou Customs, Guangzhou, China
| | - Biliang Zhang
- Argorna Pharmaceuticals Co., Ltd., Guangzhou, China
- State Key Laboratory of Respiratory Disease, Laboratory of Computational Biomedicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Weiqi Pan
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Respiratory Disease AI Laboratory on Epidemic and Medical Big Data Instrument Applications, Faculty of Innovation Engineering, Macau University of Science and Technology, Macau SAR, China
| | - Zifeng Yang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Guangzhou National Laboratory, Guangzhou, China
- Respiratory Disease AI Laboratory on Epidemic and Medical Big Data Instrument Applications, Faculty of Innovation Engineering, Macau University of Science and Technology, Macau SAR, China
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau SAR, China
| |
Collapse
|
27
|
Sunoqrot S, Abdel Gaber SA, Abujaber R, Al-Majawleh M, Talhouni S. Lipid- and Polymer-Based Nanocarrier Platforms for Cancer Vaccine Delivery. ACS APPLIED BIO MATERIALS 2024; 7:4998-5019. [PMID: 38236081 DOI: 10.1021/acsabm.3c00843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Cancer immunotherapy has gained popularity in recent years in the search for effective treatment modalities for various malignancies, particularly those that are resistant to conventional chemo- and radiation therapy. Cancer vaccines target the cancer-immunity cycle by boosting the patient's own immune system to recognize and kill cancer cells, thus serving as both preventative and curative therapeutic tools. Among the different types of cancer vaccines, those based on nanotechnology have shown great promise in advancing the field of cancer immunotherapy. Lipid-based nanoparticles (NPs) have become the most advanced platforms for cancer vaccine delivery, but polymer-based NPs have also received considerable interest. This Review aims to provide an overview of the nanotechnology-enabled cancer vaccine landscape, focusing on recent advances in lipid- and polymer-based nanovaccines and their hybrid structures and discussing the challenges against the clinical translation of these important nanomedicines.
Collapse
Affiliation(s)
- Suhair Sunoqrot
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman 11733, Jordan
| | - Sara A Abdel Gaber
- Nanomedicine Department, Institute of Nanoscience and Nanotechnology, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Razan Abujaber
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman 11733, Jordan
| | - May Al-Majawleh
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman 11733, Jordan
| | - Shahd Talhouni
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman 11733, Jordan
| |
Collapse
|
28
|
Focosi D, Maggi F. Avian Influenza Virus A(H5Nx) and Prepandemic Candidate Vaccines: State of the Art. Int J Mol Sci 2024; 25:8550. [PMID: 39126117 PMCID: PMC11312817 DOI: 10.3390/ijms25158550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/01/2024] [Accepted: 08/03/2024] [Indexed: 08/12/2024] Open
Abstract
Avian influenza virus has been long considered the main threat for a future pandemic. Among the possible avian influenza virus subtypes, A(H5N1) clade 2.3.4.4b is becoming enzootic in mammals, representing an alarming step towards a pandemic. In particular, genotype B3.13 has recently caused an outbreak in US dairy cattle. Since pandemic preparedness is largely based on the availability of prepandemic candidate vaccine viruses, in this review we will summarize the current status of the enzootics, and challenges for H5 vaccine manufacturing and delivery.
Collapse
Affiliation(s)
- Daniele Focosi
- North-Western Tuscany Blood Bank, Pisa University Hospital, 56100 Pisa, Italy
| | - Fabrizio Maggi
- Laboratory of Virology, National Institute for Infectious Diseases “Lazzaro Spallanzani”-IRCCS, 00149 Rome, Italy;
| |
Collapse
|
29
|
Li J, Zhang Y, Yang YG, Sun T. Advancing mRNA Therapeutics: The Role and Future of Nanoparticle Delivery Systems. Mol Pharm 2024; 21:3743-3763. [PMID: 38953708 DOI: 10.1021/acs.molpharmaceut.4c00276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
The coronavirus (COVID-19) pandemic has underscored the critical role of mRNA-based vaccines as powerful, adaptable, readily manufacturable, and safe methodologies for prophylaxis. mRNA-based treatments are emerging as a hopeful avenue for a plethora of conditions, encompassing infectious diseases, cancer, autoimmune diseases, genetic diseases, and rare disorders. Nonetheless, the in vivo delivery of mRNA faces challenges due to its instability, suboptimal delivery, and potential for triggering undesired immune reactions. In this context, the development of effective drug delivery systems, particularly nanoparticles (NPs), is paramount. Tailored with biophysical and chemical properties and susceptible to surface customization, these NPs have demonstrated enhanced mRNA delivery in vivo and led to the approval of several NPs-based formulations for clinical use. Despite these advancements, the necessity for developing a refined, targeted NP delivery system remains imperative. This review comprehensively surveys the biological, translational, and clinical progress in NPs-mediated mRNA therapeutics for both the prevention and treatment of diverse diseases. By addressing critical factors for enhancing existing methodologies, it aims to inform the future development of precise and efficacious mRNA-based therapeutic interventions.
Collapse
Affiliation(s)
- Jiaxuan Li
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital of Jilin University, Changchun, Jilin 130021, China
- National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin 130021, China
| | - Yuning Zhang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital of Jilin University, Changchun, Jilin 130021, China
- National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin 130021, China
| | - Yong-Guang Yang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital of Jilin University, Changchun, Jilin 130021, China
- National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin 130021, China
- International Center of Future Science, Jilin University, Changchun, Jilin 130021, China
| | - Tianmeng Sun
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital of Jilin University, Changchun, Jilin 130021, China
- National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin 130021, China
- International Center of Future Science, Jilin University, Changchun, Jilin 130021, China
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun, Jilin 130021, China
| |
Collapse
|
30
|
Fazel F, Doost JS, Raj S, Boodhoo N, Karimi K, Sharif S. The mRNA vaccine platform for veterinary species. Vet Immunol Immunopathol 2024; 274:110803. [PMID: 39003921 DOI: 10.1016/j.vetimm.2024.110803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 06/27/2024] [Indexed: 07/16/2024]
Abstract
Vaccination has proven to be an effective means of controlling pathogens in animals. Since the introduction of veterinary vaccines in the 19th century, several generations of vaccines have been introduced. These vaccines have had a positive impact on global animal health and production. Despite, the success of veterinary vaccines, there are still some pathogens for which there are no effective vaccines available, such as African swine fever. Further, animal health is under the constant threat of emerging and re-emerging pathogens, some of which are zoonotic and can pose a threat to human health. The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has highlighted the need for new vaccine platforms that are safe and efficacious, but also importantly, are adaptable and can be modified rapidly to match the circulating pathogens. mRNA vaccines have been shown to be an effective vaccine platform against various viral and bacterial pathogens. This review will cover some of the recent advances in the field of mRNA vaccines for veterinary species. Moreover, various mRNA vaccines and their delivery methods, as well as their reported efficacy, will be discussed. Current limitations and future prospects of this vaccine platform in veterinary medicine will also be discussed.
Collapse
Affiliation(s)
- Fatemeh Fazel
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Janan Shoja Doost
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Sugandha Raj
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Nitish Boodhoo
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Khalil Karimi
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Shayan Sharif
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario N1G 2W1, Canada.
| |
Collapse
|
31
|
Wang J, Fang Y, Luo Z, Wang J, Zhao Y. Emerging mRNA Technology for Liver Disease Therapy. ACS NANO 2024; 18:17378-17406. [PMID: 38916747 DOI: 10.1021/acsnano.4c02987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Liver diseases have consistently posed substantial challenges to global health. It is crucial to find innovative methods to effectively prevent and treat these diseases. In recent times, there has been an increasing interest in the use of mRNA formulations that accumulate in liver tissue for the treatment of hepatic diseases. In this review, we start by providing a detailed introduction to the mRNA technology. Afterward, we highlight types of liver diseases, discussing their causes, risks, and common therapeutic strategies. Additionally, we summarize the latest advancements in mRNA technology for the treatment of liver diseases. This includes systems based on hepatocyte growth factor, hepatitis B virus antibody, left-right determination factor 1, human hepatocyte nuclear factor α, interleukin-12, methylmalonyl-coenzyme A mutase, etc. Lastly, we provide an outlook on the potential of mRNA technology for the treatment of liver diseases, while also highlighting the various technical challenges that need to be addressed. Despite these difficulties, mRNA-based therapeutic strategies may change traditional treatment methods, bringing hope to patients with liver diseases.
Collapse
Affiliation(s)
- Ji Wang
- Department of Rheumatology and Immunology, Institute of Translational Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Yile Fang
- Department of Rheumatology and Immunology, Institute of Translational Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Zhiqiang Luo
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Jinglin Wang
- Division of Hepatobiliary and Transplantation Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Yuanjin Zhao
- Department of Rheumatology and Immunology, Institute of Translational Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| |
Collapse
|
32
|
Li W, Wang C, Zhang Y, Lu Y. Lipid Nanocarrier-Based mRNA Therapy: Challenges and Promise for Clinical Transformation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310531. [PMID: 38287729 DOI: 10.1002/smll.202310531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/19/2024] [Indexed: 01/31/2024]
Abstract
Due to the outbreak of novel coronavirus pneumonia, messenger RNA (mRNA) technology has attracted heated attention. A specific, safe, and efficient mRNA delivery system is needed. Lipid nanocarriers have become attractive carriers for mRNA delivery due to their high delivery efficiency, few side effects, and easy modification to change their structures and functions. To achieve the desired biological effect, lipid nanocarriers must reach the designated location for effective drug delivery. Therefore, the effects of the composition of lipid nanocarriers on their key properties are briefly reviewed. In addition, the progress of smart drug delivery by changing the composition of lipid nanocarriers is summarized, and the importance of component design and structure is emphasized. Subsequently, this review summarizes the latest progress in lipid nanocarrier-based mRNA technology and provides corresponding strategies for its current challenges, putting forward valuable information for the future design of lipid nanocarriers and mRNA.
Collapse
Affiliation(s)
- Wenchao Li
- Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing, 100084, China
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Chen Wang
- Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing, 100084, China
| | - Yifei Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yuan Lu
- Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
33
|
Sandelius Å, Naseer H, Lindqvist J, Wilson A, Henderson N. Biodistribution of lipid nanoparticle, eGFP mRNA and translated protein following subcutaneous administration in mouse. Bioanalysis 2024; 16:721-733. [PMID: 38940441 PMCID: PMC11389730 DOI: 10.1080/17576180.2024.2360361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 05/23/2024] [Indexed: 06/29/2024] Open
Abstract
Aim: Increased knowledge of biodistribution and pharmacokinetics of lipid nanoparticle (LNP)-encapsulated mRNA drug components may aid efficacy and safety evaluation.Methods: Mice were subcutaneously administrated LNP encapsulated enhanced green fluorescent protein mRNA and sampled up to 72 h after dosing. LNP, mRNA and translated protein were quantified by LC-MS, branched DNA and ELISA.Results: Highest levels of LNP and mRNA were detected in skin, followed by spleen, but also rapidly distributed to circulation. Translated protein showed high concentration in skin and spleen, but also in liver and kidney across 24 h where the LNP was cleared at 4 h.Conclusion: Subcutaneously dosing LNP encapsulated mRNA in mice resulted in a nonlinear relationship of LNP, mRNA and protein concentration across multiple tissues.
Collapse
Affiliation(s)
- Åsa Sandelius
- Integrated Bioanalysis, Clinical Pharmacology & Safety Sciences, BioPharmaceutical R&D, AstraZeneca, Pepparredsleden 1, Mölndal, SE 43183, Sweden
| | - Humaira Naseer
- Integrated Bioanalysis, Clinical Pharmacology & Safety Sciences, BioPharmaceutical R&D, AstraZeneca, Cambridge Biomedical Campus, 1 Francis Crick Avenue, Cambridge, CB2 0AA, UK
| | - Johnny Lindqvist
- Integrated Bioanalysis, Clinical Pharmacology & Safety Sciences, BioPharmaceutical R&D, AstraZeneca, Pepparredsleden 1, Mölndal, SE 43183, Sweden
| | - Amanda Wilson
- Integrated Bioanalysis, Clinical Pharmacology & Safety Sciences, BioPharmaceutical R&D, AstraZeneca, Cambridge Biomedical Campus, 1 Francis Crick Avenue, Cambridge, CB2 0AA, UK
| | - Neil Henderson
- Integrated Bioanalysis, Clinical Pharmacology & Safety Sciences, BioPharmaceutical R&D, AstraZeneca, Pepparredsleden 1, Mölndal, SE 43183, Sweden
| |
Collapse
|
34
|
Huang X, Ma Y, Ma G, Xia Y. Unlocking the Therapeutic Applicability of LNP-mRNA: Chemistry, Formulation, and Clinical Strategies. RESEARCH (WASHINGTON, D.C.) 2024; 7:0370. [PMID: 38894715 PMCID: PMC11185168 DOI: 10.34133/research.0370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 04/08/2024] [Indexed: 06/21/2024]
Abstract
Messenger RNA (mRNA) has emerged as an innovative therapeutic modality, offering promising avenues for the prevention and treatment of a variety of diseases. The tremendous success of mRNA vaccines in effectively combatting coronavirus disease 2019 (COVID-19) evidences the unlimited medical and therapeutic potential of mRNA technology. Overcoming challenges related to mRNA stability, immunogenicity, and precision targeting has been made possible by recent advancements in lipid nanoparticles (LNPs). This review summarizes state-of-the-art LNP-mRNA-based therapeutics, including their structure, material compositions, design guidelines, and screening principles. Additionally, we highlight current preclinical and clinical trends in LNP-mRNA therapeutics in a broad range of treatments in ophthalmological conditions, cancer immunotherapy, gene editing, and rare-disease medicine. Particular attention is given to the translation and evolution of LNP-mRNA vaccines into a broader spectrum of therapeutics. We explore concerns in the aspects of inadequate extrahepatic targeting efficacy, elevated doses, safety concerns, and challenges of large-scale production procedures. This discussion may offer insights and perspectives on near- and long-term clinical development prospects for LNP-mRNA therapeutics.
Collapse
Affiliation(s)
| | - Yishan Ma
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering,
Chinese Academy of Sciences, Beijing, PR China
| | - Guanghui Ma
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering,
Chinese Academy of Sciences, Beijing, PR China
- School of Chemical Engineering,
University of Chinese Academy of Sciences, Beijing, PR China
| | - Yufei Xia
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering,
Chinese Academy of Sciences, Beijing, PR China
- School of Chemical Engineering,
University of Chinese Academy of Sciences, Beijing, PR China
| |
Collapse
|
35
|
Parveen A, Elkordy AA. Brief Insights into mRNA Vaccines: Their Successful Production and Nanoformulation for Effective Response against COVID-19 and Their Potential Success for Influenza A and B. Pathogens 2024; 13:500. [PMID: 38921798 PMCID: PMC11206352 DOI: 10.3390/pathogens13060500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/06/2024] [Accepted: 06/07/2024] [Indexed: 06/27/2024] Open
Abstract
A mRNA vaccine is a type of vaccine that induces an immune response. Antigen-encoding mRNA is delivered via vaccine carriers into the immune cells, which are produced because of antigen-encoding mRNA translation, a protein. For example, COVID-19 mRNA vaccines produce the spike protein of the COVID-19 virus, whereas for influenza virus, mRNA vaccines target the haemagglutinin protein to treat the flu, and it requires modifications depending on the pandemic or seasonal viruses as it is capable of adapting the immune response, which makes the development of vaccines arduous. The protein molecule promotes an adaptive immune response that eliminates and terminates the corresponding virus or pathogen. There are many challenges to delivering an mRNA vaccine into the body; hence, the encapsulation of the mRNA (usually within lipid nanoparticles) is necessary to protect the mRNA from the body's surrounding environment. In this review article, we focus mainly on the production, formulation, and stabilization of mRNA vaccines in general, elaborating more on and focusing more on SARS-CoV-2, or COVID-19, and influenza viruses, which have become a major concern as these viruses have turned into life-threatening diseases.
Collapse
Affiliation(s)
| | - Amal Ali Elkordy
- School of Pharmacy and Pharmaceutical Sciences, Faculty of Health Sciences and Wellbeing, University of Sunderland, Sunderland SR1 3SD, UK;
| |
Collapse
|
36
|
Meulewaeter S, Aernout I, Deprez J, Engelen Y, De Velder M, Franceschini L, Breckpot K, Van Calenbergh S, Asselman C, Boucher K, Impens F, De Smedt SC, Verbeke R, Lentacker I. Alpha-galactosylceramide improves the potency of mRNA LNP vaccines against cancer and intracellular bacteria. J Control Release 2024; 370:379-391. [PMID: 38697317 DOI: 10.1016/j.jconrel.2024.04.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 05/04/2024]
Abstract
Although various types of mRNA-based vaccines have been explored, the optimal conditions for induction of both humoral and cellular immunity remain rather unknown. In this study, mRNA vaccines of nucleoside-modified mRNA in lipoplexes (LPXs) or lipid nanoparticles (LNPs) were evaluated after administration in mice through different routes, assessing mRNA delivery, tolerability and immunogenicity. In addition, we investigated whether mRNA vaccines could benefit from the inclusion of the adjuvant alpha-galactosylceramide (αGC), an invariant Natural Killer T (iNKT) cell ligand. Intramuscular (IM) vaccination with ovalbumin (OVA)-encoding mRNA encapsulated in LNPs adjuvanted with αGC showed the highest antibody- and CD8+ T cell responses. Furthermore, we observed that addition of signal peptides and endocytic sorting signals of either LAMP1 or HLA-B7 in the OVA-encoding mRNA sequence further enhanced CD8+ T cell activation although reducing the induction of IgG antibody responses. Moreover, mRNA LNPs with the ionizable lipidoid C12-200 exhibited higher pro-inflammatory- and reactogenic activity compared to mRNA LNPs with SM-102, correlating with increased T cell activation and antitumor potential. We also observed that αGC could further enhance the cellular immunity of clinically relevant mRNA LNP vaccines, thereby promoting therapeutic antitumor potential. Finally, a Listeria monocytogenes mRNA LNP vaccine supplemented with αGC showed synergistic protective effects against listeriosis, highlighting a key advantage of co-activating iNKT cells in antibacterial mRNA vaccines. Taken together, our study offers multiple insights for optimizing the design of mRNA vaccines for disease applications, such as cancer and intracellular bacterial infections.
Collapse
Affiliation(s)
- Sofie Meulewaeter
- Ghent Research Group on Nanomedicines, Faculty of Pharmacy, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent University Hospital, Ghent, Belgium
| | - Ilke Aernout
- Ghent Research Group on Nanomedicines, Faculty of Pharmacy, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent University Hospital, Ghent, Belgium
| | - Joke Deprez
- Inflammation Research Center, VIB-UGent, Zwijnaarde, Belgium
| | - Yanou Engelen
- Ghent Research Group on Nanomedicines, Faculty of Pharmacy, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent University Hospital, Ghent, Belgium
| | - Margo De Velder
- Ghent Research Group on Nanomedicines, Faculty of Pharmacy, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent University Hospital, Ghent, Belgium
| | - Lorenzo Franceschini
- Translational Oncology Research Center, Laboratory for Molecular and Cellular Therapy, Vrije Universiteit Brussel, Brussels, Belgium
| | - Karine Breckpot
- Translational Oncology Research Center, Laboratory for Molecular and Cellular Therapy, Vrije Universiteit Brussel, Brussels, Belgium
| | - Serge Van Calenbergh
- Laboratory of Medicinal Chemistry, Faculty of Pharmacy, Ghent University, Ghent, Belgium
| | - Caroline Asselman
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Katie Boucher
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent, Belgium; VIB Proteomics Core, VIB, Ghent, Belgium
| | - Francis Impens
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent, Belgium; VIB Proteomics Core, VIB, Ghent, Belgium
| | - Stefaan C De Smedt
- Ghent Research Group on Nanomedicines, Faculty of Pharmacy, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent University Hospital, Ghent, Belgium
| | - Rein Verbeke
- Ghent Research Group on Nanomedicines, Faculty of Pharmacy, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent University Hospital, Ghent, Belgium.
| | - Ine Lentacker
- Ghent Research Group on Nanomedicines, Faculty of Pharmacy, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent University Hospital, Ghent, Belgium.
| |
Collapse
|
37
|
Kayesh MEH, Kohara M, Tsukiyama-Kohara K. Recent Insights into the Molecular Mechanisms of the Toll-like Receptor Response to Influenza Virus Infection. Int J Mol Sci 2024; 25:5909. [PMID: 38892096 PMCID: PMC11172706 DOI: 10.3390/ijms25115909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 05/23/2024] [Accepted: 05/26/2024] [Indexed: 06/21/2024] Open
Abstract
Influenza A viruses (IAVs) pose a significant global threat to human health. A tightly controlled host immune response is critical to avoid any detrimental effects of IAV infection. It is critical to investigate the association between the response of Toll-like receptors (TLRs) and influenza virus. Because TLRs may act as a double-edged sword, a balanced TLR response is critical for the overall benefit of the host. Consequently, a thorough understanding of the TLR response is essential for targeting TLRs as a novel therapeutic and prophylactic intervention. To date, a limited number of studies have assessed TLR and IAV interactions. Therefore, further research on TLR interactions in IAV infection should be conducted to determine their role in host-virus interactions in disease causation or clearance of the virus. Although influenza virus vaccines are available, they have limited efficacy, which should be enhanced to improve their efficacy. In this study, we discuss the current status of our understanding of the TLR response in IAV infection and the strategies adopted by IAVs to avoid TLR-mediated immune surveillance, which may help in devising new therapeutic or preventive strategies. Furthermore, recent advances in the use of TLR agonists as vaccine adjuvants to enhance influenza vaccine efficacy are discussed.
Collapse
Affiliation(s)
- Mohammad Enamul Hoque Kayesh
- Department of Microbiology and Public Health, Faculty of Animal Science and Veterinary Medicine, Patuakhali Science and Technology University, Barishal 8210, Bangladesh
| | - Michinori Kohara
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan;
| | - Kyoko Tsukiyama-Kohara
- Transboundary Animal Diseases Centre, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima 890-0065, Japan
| |
Collapse
|
38
|
Zhang Y, Zhai S, Huang H, Qin S, Sun M, Chen Y, Lan X, Li G, Huang Z, Wang D, Luo Y, Xiao W, Li H, He X, Chen M, Peng X, Song X. Efficient signal sequence of mRNA vaccines enhances the antigen expression to expand the immune protection against viral infection. J Nanobiotechnology 2024; 22:295. [PMID: 38807131 PMCID: PMC11134928 DOI: 10.1186/s12951-024-02488-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 04/17/2024] [Indexed: 05/30/2024] Open
Abstract
The signal sequence played a crucial role in the efficacy of mRNA vaccines against virus pandemic by influencing antigen translation. However, limited research had been conducted to compare and analyze the specific mechanisms involved. In this study, a novel approach was introduced by substituting the signal sequence of the mRNA antigen to enhance its immune response. Computational simulations demonstrated that various signal peptides differed in their binding capacities with the signal recognition particle (SRP) 54 M subunit, which positively correlated with antigen translation efficiency. Our data revealed that the signal sequences of tPA and IL-6-modified receptor binding domain (RBD) mRNA vaccines sequentially led to higher antigen expression and elicited more robust humoral and cellular immune protection against the SARS-CoV-2 compared to the original signal sequence. By highlighting the importance of the signal sequence, this research provided a foundational and safe approach for ongoing modifications in signal sequence-antigen design, aiming to optimize the efficacy of mRNA vaccines.
Collapse
Affiliation(s)
- Yupei Zhang
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Songhui Zhai
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Hai Huang
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Shugang Qin
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Min Sun
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yuting Chen
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xing Lan
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Guohong Li
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhiying Huang
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Denggang Wang
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yaoyao Luo
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Wen Xiao
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Hao Li
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xi He
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Meiwan Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China.
| | - Xingchen Peng
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Xiangrong Song
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
39
|
Furey C, Scher G, Ye N, Kercher L, DeBeauchamp J, Crumpton JC, Jeevan T, Patton C, Franks J, Rubrum A, Alameh MG, Fan SHY, Phan AT, Hunter CA, Webby RJ, Weissman D, Hensley SE. Development of a nucleoside-modified mRNA vaccine against clade 2.3.4.4b H5 highly pathogenic avian influenza virus. Nat Commun 2024; 15:4350. [PMID: 38782954 PMCID: PMC11116520 DOI: 10.1038/s41467-024-48555-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 05/06/2024] [Indexed: 05/25/2024] Open
Abstract
mRNA lipid nanoparticle (LNP) vaccines would be useful during an influenza virus pandemic since they can be produced rapidly and do not require the generation of egg-adapted vaccine seed stocks. Highly pathogenic avian influenza viruses from H5 clade 2.3.4.4b are circulating at unprecedently high levels in wild and domestic birds and have the potential to adapt to humans. Here, we generate an mRNA lipid nanoparticle (LNP) vaccine encoding the hemagglutinin (HA) glycoprotein from a clade 2.3.4.4b H5 isolate. The H5 mRNA-LNP vaccine elicits strong T cell and antibody responses in female mice, including neutralizing antibodies and broadly-reactive anti-HA stalk antibodies. The H5 mRNA-LNP vaccine elicits antibodies at similar levels compared to whole inactivated vaccines in female mice with and without prior H1N1 exposures. Finally, we find that the H5 mRNA-LNP vaccine is immunogenic in male ferrets and prevents morbidity and mortality of animals following 2.3.4.4b H5N1 challenge. Together, our data demonstrate that a monovalent mRNA-LNP vaccine expressing 2.3.4.4b H5 is immunogenic and protective in pre-clinical animal models.
Collapse
MESH Headings
- Animals
- Influenza Vaccines/immunology
- Influenza Vaccines/administration & dosage
- Female
- Mice
- Ferrets
- Nanoparticles/chemistry
- Male
- Influenza A Virus, H5N1 Subtype/immunology
- Influenza A Virus, H5N1 Subtype/genetics
- Antibodies, Viral/immunology
- Hemagglutinin Glycoproteins, Influenza Virus/immunology
- Hemagglutinin Glycoproteins, Influenza Virus/genetics
- Orthomyxoviridae Infections/prevention & control
- Orthomyxoviridae Infections/immunology
- Orthomyxoviridae Infections/virology
- mRNA Vaccines/immunology
- Antibodies, Neutralizing/immunology
- Mice, Inbred BALB C
- Influenza in Birds/prevention & control
- Influenza in Birds/immunology
- Influenza in Birds/virology
- Humans
- RNA, Messenger/genetics
- RNA, Messenger/immunology
- RNA, Messenger/metabolism
- Influenza A Virus, H1N1 Subtype/immunology
- Influenza A Virus, H1N1 Subtype/genetics
- Birds/virology
- Lipids/chemistry
- Liposomes
Collapse
Affiliation(s)
- Colleen Furey
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Gabrielle Scher
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Naiqing Ye
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Lisa Kercher
- Department of Host-Microbe Interactions, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jennifer DeBeauchamp
- Department of Host-Microbe Interactions, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jeri Carol Crumpton
- Department of Host-Microbe Interactions, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Trushar Jeevan
- Department of Host-Microbe Interactions, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Christopher Patton
- Department of Host-Microbe Interactions, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, USA
| | - John Franks
- Department of Host-Microbe Interactions, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Adam Rubrum
- Department of Host-Microbe Interactions, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Mohamad-Gabriel Alameh
- Infectious Disease Division, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Institute for RNA Innovation, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Anthony T Phan
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Christopher A Hunter
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Richard J Webby
- Department of Host-Microbe Interactions, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Drew Weissman
- Infectious Disease Division, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Institute for RNA Innovation, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Scott E Hensley
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
40
|
Reneer ZB, Bergeron HC, Reynolds S, Thornhill-Wadolowski E, Feng L, Bugno M, Truax AD, Tripp RA. mRNA vaccines encoding influenza virus hemagglutinin (HA) elicits immunity in mice from influenza A virus challenge. PLoS One 2024; 19:e0297833. [PMID: 38635725 PMCID: PMC11025922 DOI: 10.1371/journal.pone.0297833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/11/2024] [Indexed: 04/20/2024] Open
Abstract
Influenza viruses cause epidemics and can cause pandemics with substantial morbidity with some mortality every year. Seasonal influenza vaccines have incomplete effectiveness and elicit a narrow antibody response that often does not protect against mutations occurring in influenza viruses. Thus, various vaccine approaches have been investigated to improve safety and efficacy. Here, we evaluate an mRNA influenza vaccine encoding hemagglutinin (HA) proteins in a BALB/c mouse model. The results show that mRNA vaccination elicits neutralizing and serum antibodies to each influenza virus strain contained in the current quadrivalent vaccine that is designed to protect against four different influenza viruses including two influenza A viruses (IAV) and two influenza B (IBV), as well as several antigenically distinct influenza virus strains in both hemagglutination inhibition assay (HAI) and virus neutralization assays. The quadrivalent mRNA vaccines had antibody titers comparable to the antibodies elicited by the monovalent vaccines to each tested virus regardless of dosage following an mRNA booster vaccine. Mice vaccinated with mRNA encoding an H1 HA had decreased weight loss and decreased lung viral titers compared to mice not vaccinated with an mRNA encoding an H1 HA. Overall, this study demonstrates the efficacy of mRNA-based seasonal influenza vaccines are their potential to replace both the currently available split-inactivated, and live-attenuated seasonal influenza vaccines.
Collapse
Affiliation(s)
- Z. Beau Reneer
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, Unites States of America
| | - Harrison C. Bergeron
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, Unites States of America
| | - Stephen Reynolds
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, Unites States of America
| | | | - Lan Feng
- Immorna Biotherapeutics, Morrisville, NC, United States of America
| | - Marcin Bugno
- Immorna Biotherapeutics, Morrisville, NC, United States of America
| | | | - Ralph A. Tripp
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, Unites States of America
| |
Collapse
|
41
|
Mazunina EP, Gushchin VA, Kleymenov DA, Siniavin AE, Burtseva EI, Shmarov MM, Mukasheva EA, Bykonia EN, Kozlova SR, Evgrafova EA, Zolotar AN, Shidlovskaya EV, Kirillova ES, Krepkaia AS, Usachev EV, Kuznetsova NA, Ivanov IA, Dmitriev SE, Ivanov RA, Logunov DY, Gintsburg AL. Trivalent mRNA vaccine-candidate against seasonal flu with cross-specific humoral immune response. Front Immunol 2024; 15:1381508. [PMID: 38690272 PMCID: PMC11058219 DOI: 10.3389/fimmu.2024.1381508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 03/29/2024] [Indexed: 05/02/2024] Open
Abstract
Seasonal influenza remains a serious global health problem, leading to high mortality rates among the elderly and individuals with comorbidities. Vaccination is generally accepted as the most effective strategy for influenza prevention. While current influenza vaccines are effective, they still have limitations, including narrow specificity for certain serological variants, which may result in a mismatch between vaccine antigens and circulating strains. Additionally, the rapid variability of the virus poses challenges in providing extended protection beyond a single season. Therefore, mRNA technology is particularly promising for influenza prevention, as it enables the rapid development of multivalent vaccines and allows for quick updates of their antigenic composition. mRNA vaccines have already proven successful in preventing COVID-19 by eliciting rapid cellular and humoral immune responses. In this study, we present the development of a trivalent mRNA vaccine candidate, evaluate its immunogenicity using the hemagglutination inhibition assay, ELISA, and assess its efficacy in animals. We demonstrate the higher immunogenicity of the mRNA vaccine candidate compared to the inactivated split influenza vaccine and its enhanced ability to generate a cross-specific humoral immune response. These findings highlight the potential mRNA technology in overcoming current limitations of influenza vaccines and hold promise for ensuring greater efficacy in preventing seasonal influenza outbreaks.
Collapse
Affiliation(s)
- Elena P. Mazunina
- Federal State Budget Institution “National Research Centre for Epidemiology and Microbiology Named after Honorary Academician N. F. Gamaleya” of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Vladimir A. Gushchin
- Federal State Budget Institution “National Research Centre for Epidemiology and Microbiology Named after Honorary Academician N. F. Gamaleya” of the Ministry of Health of the Russian Federation, Moscow, Russia
- Department of Virology, Lomonosov Moscow State University, Moscow, Russia
- Department of Medical Genetics, I. M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Denis A. Kleymenov
- Federal State Budget Institution “National Research Centre for Epidemiology and Microbiology Named after Honorary Academician N. F. Gamaleya” of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Andrei E. Siniavin
- Federal State Budget Institution “National Research Centre for Epidemiology and Microbiology Named after Honorary Academician N. F. Gamaleya” of the Ministry of Health of the Russian Federation, Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia
| | - Elena I. Burtseva
- Federal State Budget Institution “National Research Centre for Epidemiology and Microbiology Named after Honorary Academician N. F. Gamaleya” of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Maksim M. Shmarov
- Federal State Budget Institution “National Research Centre for Epidemiology and Microbiology Named after Honorary Academician N. F. Gamaleya” of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Evgenya A. Mukasheva
- Federal State Budget Institution “National Research Centre for Epidemiology and Microbiology Named after Honorary Academician N. F. Gamaleya” of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Evgeniia N. Bykonia
- Federal State Budget Institution “National Research Centre for Epidemiology and Microbiology Named after Honorary Academician N. F. Gamaleya” of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Sofia R. Kozlova
- Federal State Budget Institution “National Research Centre for Epidemiology and Microbiology Named after Honorary Academician N. F. Gamaleya” of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Elina A. Evgrafova
- Federal State Budget Institution “National Research Centre for Epidemiology and Microbiology Named after Honorary Academician N. F. Gamaleya” of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Anastasia N. Zolotar
- Federal State Budget Institution “National Research Centre for Epidemiology and Microbiology Named after Honorary Academician N. F. Gamaleya” of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Elena V. Shidlovskaya
- Federal State Budget Institution “National Research Centre for Epidemiology and Microbiology Named after Honorary Academician N. F. Gamaleya” of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Elena S. Kirillova
- Federal State Budget Institution “National Research Centre for Epidemiology and Microbiology Named after Honorary Academician N. F. Gamaleya” of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Anastasiya S. Krepkaia
- Federal State Budget Institution “National Research Centre for Epidemiology and Microbiology Named after Honorary Academician N. F. Gamaleya” of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Evgeny V. Usachev
- Federal State Budget Institution “National Research Centre for Epidemiology and Microbiology Named after Honorary Academician N. F. Gamaleya” of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Nadezhda A. Kuznetsova
- Federal State Budget Institution “National Research Centre for Epidemiology and Microbiology Named after Honorary Academician N. F. Gamaleya” of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Igor A. Ivanov
- Federal State Budget Institution “National Research Centre for Epidemiology and Microbiology Named after Honorary Academician N. F. Gamaleya” of the Ministry of Health of the Russian Federation, Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia
| | - Sergey E. Dmitriev
- Federal State Budget Institution “National Research Centre for Epidemiology and Microbiology Named after Honorary Academician N. F. Gamaleya” of the Ministry of Health of the Russian Federation, Moscow, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
| | - Roman A. Ivanov
- Translational Medicine Research Center, Sirius University of Science and Technology, Sochi, Russia
| | - Denis Y. Logunov
- Federal State Budget Institution “National Research Centre for Epidemiology and Microbiology Named after Honorary Academician N. F. Gamaleya” of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Alexander L. Gintsburg
- Federal State Budget Institution “National Research Centre for Epidemiology and Microbiology Named after Honorary Academician N. F. Gamaleya” of the Ministry of Health of the Russian Federation, Moscow, Russia
- Infectiology Department, I. M. Sechenov First Moscow State Medical University, Moscow, Russia
| |
Collapse
|
42
|
Wang J, Zhu H, Gan J, Liang G, Li L, Zhao Y. Engineered mRNA Delivery Systems for Biomedical Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308029. [PMID: 37805865 DOI: 10.1002/adma.202308029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/05/2023] [Indexed: 10/09/2023]
Abstract
Messenger RNA (mRNA)-based therapeutic strategies have shown remarkable promise in preventing and treating a staggering range of diseases. Optimizing the structure and delivery system of engineered mRNA has greatly improved its stability, immunogenicity, and protein expression levels, which has led to a wider range of uses for mRNA therapeutics. Herein, a thorough analysis of the optimization strategies used in the structure of mRNA is first provided and delivery systems are described in great detail. Furthermore, the latest advancements in biomedical engineering for mRNA technology, including its applications in combatting infectious diseases, treating cancer, providing protein replacement therapy, conducting gene editing, and more, are summarized. Lastly, a perspective on forthcoming challenges and prospects concerning the advancement of mRNA therapeutics is offered. Despite these challenges, mRNA-based therapeutics remain promising, with the potential to revolutionize disease treatment and contribute to significant advancements in the biomedical field.
Collapse
Affiliation(s)
- Ji Wang
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Haofang Zhu
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Jingjing Gan
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Gaofeng Liang
- Institute of Organoids on Chips Translational Research, Henan Academy of Sciences, Zhengzhou, 450009, China
| | - Ling Li
- Department of Endocrinology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Yuanjin Zhao
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
- Institute of Organoids on Chips Translational Research, Henan Academy of Sciences, Zhengzhou, 450009, China
| |
Collapse
|
43
|
Parhiz H, Atochina-Vasserman EN, Weissman D. mRNA-based therapeutics: looking beyond COVID-19 vaccines. Lancet 2024; 403:1192-1204. [PMID: 38461842 DOI: 10.1016/s0140-6736(23)02444-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 07/06/2023] [Accepted: 10/30/2023] [Indexed: 03/12/2024]
Abstract
Recent advances in mRNA technology and its delivery have enabled mRNA-based therapeutics to enter a new era in medicine. The rapid, potent, and transient nature of mRNA-encoded proteins, without the need to enter the nucleus or the risk of genomic integration, makes them desirable tools for treatment of a range of diseases, from infectious diseases to cancer and monogenic disorders. The rapid pace and ease of mass-scale manufacturability of mRNA-based therapeutics supported the global response to the COVID-19 pandemic. Nonetheless, challenges remain with regards to mRNA stability, duration of expression, delivery efficiency, and targetability, to broaden the applicability of mRNA therapeutics beyond COVID-19 vaccines. By learning from the rapidly expanding preclinical and clinical studies, we can optimise the mRNA platform to meet the clinical needs of each disease. Here, we will summarise the recent advances in mRNA technology; its use in vaccines, immunotherapeutics, protein replacement therapy, and genomic editing; and its delivery to desired specific cell types and organs for development of a new generation of targeted mRNA-based therapeutics.
Collapse
Affiliation(s)
- Hamideh Parhiz
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Drew Weissman
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
44
|
Deyhimfar R, Izady M, Shoghi M, Kazazi MH, Ghazvini ZF, Nazari H, Fekrirad Z, Arefian E. The clinical impact of mRNA therapeutics in the treatment of cancers, infections, genetic disorders, and autoimmune diseases. Heliyon 2024; 10:e26971. [PMID: 38486748 PMCID: PMC10937594 DOI: 10.1016/j.heliyon.2024.e26971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/19/2024] [Accepted: 02/22/2024] [Indexed: 03/17/2024] Open
Abstract
mRNA-based therapeutics have revolutionized medicine and the pharmaceutical industry. The recent progress in the optimization and formulation of mRNAs has led to the development of a new therapeutic platform with a broad range of applications. With a growing body of evidence supporting the use of mRNA-based drugs for precision medicine and personalized treatments, including cancer immunotherapy, genetic disorders, and autoimmune diseases, this emerging technology offers a rapidly expanding category of therapeutic options. Furthermore, the development and deployment of mRNA vaccines have facilitated a prompt and flexible response to medical emergencies, exemplified by the COVID-19 outbreak. The establishment of stable and safe mRNA molecules carried by efficient delivery systems is now available through recent advances in molecular biology and nanotechnology. This review aims to elucidate the advancements in the clinical applications of mRNAs for addressing significant health-related challenges such as cancer, autoimmune diseases, genetic disorders, and infections and provide insights into the efficacy and safety of mRNA therapeutics in recent clinical trials.
Collapse
Affiliation(s)
- Roham Deyhimfar
- Department of Stem Cells Technology and Tissue Regeneration, School of Biology, College of Science, University of Tehran, Tehran, Iran
- Urology Research Center, Sina Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehrnaz Izady
- Department of Stem Cells Technology and Tissue Regeneration, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | | | - Mohammad Hossein Kazazi
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, ON, Canada
| | - Zahra Fakhraei Ghazvini
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Hojjatollah Nazari
- School of Biomedical Engineering, University of Technology Sydney, Sydney, Australia
| | - Zahra Fekrirad
- Department of Biology, Faculty of Basic Sciences, Shahed University, Tehran, Iran
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Ehsan Arefian
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran
- Pediatric Cell and Gene Therapy Research Center, Gene, Cell & Tissue Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
45
|
Abdalla AME, Miao Y, Ahmed AIM, Meng N, Ouyang C. CAR-T cell therapeutic avenue for fighting cardiac fibrosis: Roadblocks and perspectives. Cell Biochem Funct 2024; 42:e3955. [PMID: 38379220 DOI: 10.1002/cbf.3955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/06/2024] [Accepted: 02/09/2024] [Indexed: 02/22/2024]
Abstract
Heart diseases remain the primary cause of human mortality in the world. Although conventional therapeutic opportunities fail to halt or recover cardiac fibrosis, the promising clinical results and therapeutic efficacy of engineered chimeric antigen receptor (CAR) T cell therapy show several advancements. However, the current models of CAR-T cells need further improvement since the T cells are associated with the triggering of excessive inflammatory cytokines that directly affect cardiac functions. Thus, the current study highlights the critical function of heart immune cells in tissue fibrosis and repair. The study also confirms CAR-T cell as an emerging therapeutic for treating cardiac fibrosis, explores the current roadblocks to CAR-T cell therapy, and considers future outlooks for research development.
Collapse
Affiliation(s)
- Ahmed M E Abdalla
- School of Biological Sciences and Technology, University of Jinan, Jinan, China
- Department of Biochemistry, College of Applied Science, University of Bahri, Khartoum, Sudan
| | - Yu Miao
- NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu Provincial Hospital, Lanzhou, China
- Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province, Gansu Provincial Hospital, Lanzhou, Gansu, China
| | - Ahmed I M Ahmed
- Department of Biochemistry, College of Applied Science, University of Bahri, Khartoum, Sudan
| | - Ning Meng
- School of Biological Sciences and Technology, University of Jinan, Jinan, China
| | - Chenxi Ouyang
- Department of Vascular Surgery, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
46
|
Lim CML, Komarasamy TV, Adnan NAAB, Radhakrishnan AK, Balasubramaniam VRMT. Recent Advances, Approaches and Challenges in the Development of Universal Influenza Vaccines. Influenza Other Respir Viruses 2024; 18:e13276. [PMID: 38513364 PMCID: PMC10957243 DOI: 10.1111/irv.13276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 02/21/2024] [Accepted: 02/24/2024] [Indexed: 03/23/2024] Open
Abstract
Every year, influenza virus infections cause significant morbidity and mortality worldwide. They pose a substantial burden of disease, in terms of not only health but also the economy. Owing to the ability of influenza viruses to continuously evolve, annual seasonal influenza vaccines are necessary as a prophylaxis. However, current influenza vaccines against seasonal strains have limited effectiveness and require yearly reformulation due to the virus undergoing antigenic drift or shift. Vaccine mismatches are common, conferring suboptimal protection against seasonal outbreaks, and the threat of the next pandemic continues to loom. Therefore, there is a great need to develop a universal influenza vaccine (UIV) capable of providing broad and durable protection against all influenza virus strains. In the quest to develop a UIV that would obviate the need for annual vaccination and formulation, a multitude of strategies is currently underway. Promising approaches include targeting the highly conserved epitopes of haemagglutinin (HA), neuraminidase (NA), M2 extracellular domain (M2e) and internal proteins of the influenza virus. The identification and characterization of broadly neutralizing antibodies (bnAbs) targeting conserved regions of the viral HA protein, in particular, have provided important insight into novel vaccine designs and platforms. This review discusses universal vaccine approaches presently under development, with an emphasis on those targeting the highly conserved stalk of the HA protein, recent technological advancements used and the future prospects of a UIV in terms of its advantages, developmental obstacles and potential shortcomings.
Collapse
Affiliation(s)
- Caryn Myn Li Lim
- Infection and Immunity Research Strength, Jeffrey Cheah School of Medicine & Health SciencesMonash University MalaysiaBandar SunwayMalaysia
| | - Thamil Vaani Komarasamy
- Infection and Immunity Research Strength, Jeffrey Cheah School of Medicine & Health SciencesMonash University MalaysiaBandar SunwayMalaysia
| | - Nur Amelia Azreen Binti Adnan
- Infection and Immunity Research Strength, Jeffrey Cheah School of Medicine & Health SciencesMonash University MalaysiaBandar SunwayMalaysia
| | - Ammu Kutty Radhakrishnan
- Infection and Immunity Research Strength, Jeffrey Cheah School of Medicine & Health SciencesMonash University MalaysiaBandar SunwayMalaysia
| | - Vinod R. M. T. Balasubramaniam
- Infection and Immunity Research Strength, Jeffrey Cheah School of Medicine & Health SciencesMonash University MalaysiaBandar SunwayMalaysia
| |
Collapse
|
47
|
Jiang AY, Witten J, Raji IO, Eweje F, MacIsaac C, Meng S, Oladimeji FA, Hu Y, Manan RS, Langer R, Anderson DG. Combinatorial development of nebulized mRNA delivery formulations for the lungs. NATURE NANOTECHNOLOGY 2024; 19:364-375. [PMID: 37985700 PMCID: PMC10954414 DOI: 10.1038/s41565-023-01548-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 10/16/2023] [Indexed: 11/22/2023]
Abstract
Inhaled delivery of mRNA has the potential to treat a wide variety of diseases. However, nebulized mRNA lipid nanoparticles (LNPs) face several unique challenges including stability during nebulization and penetration through both cellular and extracellular barriers. Here we develop a combinatorial approach addressing these barriers. First, we observe that LNP formulations can be stabilized to resist nebulization-induced aggregation by altering the nebulization buffer to increase the LNP charge during nebulization, and by the addition of a branched polymeric excipient. Next, we synthesize a combinatorial library of ionizable, degradable lipids using reductive amination, and evaluate their delivery potential using fully differentiated air-liquid interface cultured primary lung epithelial cells. The final combination of ionizable lipid, charge-stabilized formulation and stability-enhancing excipient yields a significant improvement in lung mRNA delivery over current state-of-the-art LNPs and polymeric nanoparticles.
Collapse
Affiliation(s)
- Allen Y Jiang
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jacob Witten
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Idris O Raji
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Anesthesiology, Boston Children's Hospital, Boston, MA, USA
| | - Feyisayo Eweje
- Harvard and MIT Division of Health Science and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Harvard/MIT MD-PhD Program, Boston, MA, USA
| | - Corina MacIsaac
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Harvard and MIT Division of Health Science and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Sabrina Meng
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Favour A Oladimeji
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Yizong Hu
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Rajith S Manan
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Robert Langer
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Anesthesiology, Boston Children's Hospital, Boston, MA, USA
- Harvard and MIT Division of Health Science and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Daniel G Anderson
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Anesthesiology, Boston Children's Hospital, Boston, MA, USA.
- Harvard and MIT Division of Health Science and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
48
|
Gingerich MC, Nair N, Azevedo JF, Samanta K, Kundu S, He B, Gomes-Solecki M. Intranasal vaccine for Lyme disease provides protection against tick transmitted Borrelia burgdorferi beyond one year. NPJ Vaccines 2024; 9:33. [PMID: 38360853 PMCID: PMC10869809 DOI: 10.1038/s41541-023-00802-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 10/23/2023] [Indexed: 02/17/2024] Open
Abstract
Strategies for disease control are necessary to reduce incidence of Lyme Disease (LD) including development of safe vaccines for human use. Parainfluenza virus 5 (PIV5) vector has an excellent safety record in animals and PIV5-vectored vaccines are currently under clinical development. We constructed PIV5-vectored LD vaccine candidates expressing OspA from B. burgdorferi (OspAB31) and a chimeric protein containing sequences from B. burgdorferi and B. afzelii (OspABPBPk). Immunogenicity and vaccine efficacy were analyzed in C3H-HeN mice after prime-boost intranasal vaccination with live PIV5-OspAB31 or PIV5-OspABPBPk, subcutaneous (s.c.) vaccination with rOspAB31+Alum, and the respective controls. Mice vaccinated intranasally with live PIV5-AB31 or PIV5-ABPBPk had higher endpoint titers of serum antibody against OspAB31 at 6- and 12- months post vaccination, compared to mice vaccinated s.c. with rOspAB31. Neutralization activity of antibody was maintained up to 18-months post-immunization, with the response greater in live PIV5-delivered OspA vaccines, than that induced by s.c. rOspAB31. Challenge with infected ticks carrying 10-19 strains of B. burgdorferi performed at 4-, 9- or 15-months post-immunization showed increased breakthrough infections in mice vaccinated with s.c. rOspAB31 compared to intranasal PIV5-AB31 or PIV5-ABPBPk at 9- and 15-months, as determined by quantification of serologic antibodies to B. burgdorferi proteins as well as flaB DNA in tissues, and by visualization of motile B. burgdorferi in culture of tissues under dark field microscope. These findings indicate that immunization of mice with PIV5 delivered OspA generates immune responses that produce longer-lasting protection ( > 1 year) against tick-transmitted B. burgdorferi than a parenteral recombinant OspA vaccine.
Collapse
Affiliation(s)
- Maria Cristina Gingerich
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
- CyanVac, LLC, Athens, GA, USA
| | - Nisha Nair
- Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Science Center, Tennessee, USA
| | - Jose F Azevedo
- Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Science Center, Tennessee, USA
- Immuno Technologies, Inc., Memphis, TN, USA
| | - Kamalika Samanta
- Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Science Center, Tennessee, USA
- Merck & Co., West Point, PA, USA
| | - Suman Kundu
- Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Science Center, Tennessee, USA
- Immuno Technologies, Inc., Memphis, TN, USA
| | - Biao He
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
- CyanVac, LLC, Athens, GA, USA
| | - Maria Gomes-Solecki
- Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Science Center, Tennessee, USA.
- Immuno Technologies, Inc., Memphis, TN, USA.
| |
Collapse
|
49
|
Poston TB. Advances in vaccine development for Chlamydia trachomatis. Pathog Dis 2024; 82:ftae017. [PMID: 39043447 PMCID: PMC11338180 DOI: 10.1093/femspd/ftae017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/18/2024] [Accepted: 07/25/2024] [Indexed: 07/25/2024] Open
Abstract
Chlamydia trachomatis is the most prevalent bacterial sexually transmitted infection globally. Antibiotic treatment is highly effective, but infection is often asymptomatic resulting in most individuals going undetected and untreated. This untreated infection can ascend to the upper female genital tract to cause pelvic inflammatory disease, tubal factor infertility, and ectopic pregnancy. Chlamydia screening and treatment programs have failed to control this epidemic and demonstrate the need for an efficacious vaccine to prevent transmission and disease. Animal models and human epidemiological data reveal that natural immunity can provide partial or short-lived sterilizing immunity. These data further demonstrate the importance of eliciting interferon gamma (IFNγ)-producing cluster of differentiation 4 (CD4) T cells (Th1 and Th1/17 cells) that can likely synergize with antibody-mediated opsonophagocytosis to provide optimal protection. These studies have guided preclinical rational vaccine design for decades and the first Phase 1 clinical trials have recently been completed. Recent advances have led to improvements in vaccine platforms and clinically safe adjuvants that help provide a path forward. This review describes vaccine models, correlates of immunity, antigen and adjuvant selection, and future clinical testing for Chlamydia vaccine development.
Collapse
Affiliation(s)
- Taylor B Poston
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| |
Collapse
|
50
|
Chatterjee A, Ambrose K, Canaday DH, Delair S, Ezike N, Huber VC, Jhaveri R, Nyquist AC, Sporer A, Varman M, Vivekanandan R, Wojcik R, Jandhyala R. The association between influenza vaccine effectiveness and egg-based manufacturing technology: literature review and US expert consensus. Curr Med Res Opin 2024; 40:335-343. [PMID: 38054898 DOI: 10.1080/03007995.2023.2284386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 11/13/2023] [Indexed: 12/07/2023]
Abstract
BACKGROUND Influenza is associated with significant disease burden in the US and is currently best controlled by vaccination programs. Influenza vaccine effectiveness (VE) is low and may be reduced by several factors, including egg adaptations. Although non-egg-based influenza vaccines reportedly have greater VE in egg-adapted seasons, evidence for egg adaptations' reduction of VE is indirect and dissociated, apart from two previous European consensuses. METHODS This study replicated the methodology used in a 2020 literature review and European consensus, providing an updated review and consensus opinion of 10 US experts on the evidence for a mechanistic basis for reduction of VE due to egg-based manufacturing methods. A mechanistic basis was assumed if sufficient evidence was found for underlying principles proposed to give rise to such an effect. Evidence for each principle was brought forward from the 2020 review and identified here by structured literature review and expert panel. Experts rated the strength of support for each principle and a mechanistic basis for reduction of VE due to egg-based influenza vaccine manufacture in a consensus method (consensus for strong/very strong evidence = ≥ 3.5 on 5-point Likert scale). RESULTS Experts assessed 251 references (from previous study: 185; this study: 66). The majority of references for all underlying principles were rated as strong or very strong supporting evidence (52-86%). Global surveillance, WHO candidate vaccine virus selection, and manufacturing stages involving eggs were identified as most likely to impact influenza VE. CONCLUSION After review of extensive evidence for reduction of VE due to egg-based influenza vaccine manufacture, influenza experts in the US joined those in Europe in unanimous agreement for a mechanistic basis for the effect. Vaccine providers and administrators should consider use of non-egg-based influenza vaccine manufacture to reduce the risk of egg adaptations and likely impact on VE.
Collapse
Affiliation(s)
- Archana Chatterjee
- Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | | | | | | | | | | | - Ravi Jhaveri
- Feinberg School of Medicine, Northwestern, IL, USA
| | | | | | | | | | | | - Ravi Jandhyala
- Medialis Ltd, Milton Keynes, UK
- King's College London, London, UK
| |
Collapse
|