1
|
Hsieh HC, Chen CC, Liu WC, Wu SC. Intranasal booster with SARS-CoV-2 RBD protein fused to E. coli enterotoxin a subunit after primary mRNA vaccination in mice. Vaccine 2024; 42:126448. [PMID: 39413492 DOI: 10.1016/j.vaccine.2024.126448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/10/2024] [Accepted: 10/10/2024] [Indexed: 10/18/2024]
Abstract
The outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in 2019 led to the coronavirus infection diseases 2019 (COVID-19) pandemic, significantly impacting global public health and the economy. Numerous COVID-19 vaccines based on the receptor binding domain (RBD) of SARS-CoV-2 spike protein have been developed, utilizing various protein expression platforms and adjuvant systems. In a previous study, we reported using the direct fusion of the A subunit of type IIb E. coli heat-labile enterotoxin with the SARS-CoV-2 RBD protein (RBD-LTA) as an intranasal vaccine candidate (Hsieh et al., 2023). In this study, we investigated the effects of an intranasal booster of RBD-LTA/RBD mixture proteins after one or two doses of intramuscular bivalent BA.4/5 mRNA vaccination over 17 and 35 weeks. Our results indicate that the intranasal RBD-LTA/RBD mixture proteins booster maintains high levels of anti-RBD IgG and neutralizing antibodies, comparable to those elicited by a two-dose mRNA vaccination regimen. An additional RBD-LTA/RBD mixture proteins booster significantly increased antibody titers, demonstrating the potential of this approach for long-term immunity against SARS-CoV-2. Our findings suggest that combining primary mRNA vaccination with an intranasal RBD-LTA/RBD mixture proteins booster can effectively sustain antibody levels over extended periods, providing a promising strategy for long-term protection against SARS-CoV-2 and its variants.
Collapse
Affiliation(s)
- He-Chin Hsieh
- Institute of Biotechnology, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Chung-Chu Chen
- Department of Internal Medicine, MacKay Memorial Hospital, Hsinchu 30071, Taiwan; Teaching Center of Natural Science, Minghsin University of Science and Technology, Hsinchu 30401, Taiwan.
| | - Wen-Chun Liu
- Biomedical Translation Research Center, Academia Sinica, Taipei 11529, Taiwan.
| | - Suh-Chin Wu
- Institute of Biotechnology, National Tsing Hua University, Hsinchu 30013, Taiwan; Department of Medical Science, National Tsing Hua University, Hsinchu 30013, Taiwan; Adimmune Corporation, Taichung 42723, Taiwan.
| |
Collapse
|
2
|
Liu J, Han H, Yang B, Zhang N, Li J, Chen X, Wu J, Zhao Y, Yang Y. Immunogenicity and protective efficacy of the HC009 mRNA vaccine against SARS-CoV-2. Front Immunol 2024; 15:1416375. [PMID: 39131158 PMCID: PMC11310568 DOI: 10.3389/fimmu.2024.1416375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 06/27/2024] [Indexed: 08/13/2024] Open
Abstract
With the rapid global spread of COVID-19 and the continuous emergence of variants, there is an urgent need to develop safe and effective vaccines. Here, we developed a novel mRNA vaccine, HC009, based on new formulation by the QTsome delivery platform. Immunogenicity results showed that the prime-boost immunization strategy with HC009 was able to induce robust and durable humoral immunity, as well as Th1-biased cellular responses in rodents or non-human primates (NHPs). After further challenge with live SARS-CoV-2 virus, HC009 provided adequate protection against virus infection in hACE2 transgenic mice. Therefore, HC009 could provide significant immune protection against SARS-CoV-2.
Collapse
MESH Headings
- Animals
- SARS-CoV-2/immunology
- COVID-19 Vaccines/immunology
- COVID-19/prevention & control
- COVID-19/immunology
- Mice
- mRNA Vaccines/immunology
- Mice, Transgenic
- Immunogenicity, Vaccine
- Antibodies, Viral/immunology
- Antibodies, Viral/blood
- Humans
- Vaccines, Synthetic/immunology
- Vaccines, Synthetic/administration & dosage
- Immunity, Humoral
- Female
- Antibodies, Neutralizing/immunology
- Antibodies, Neutralizing/blood
- Mice, Inbred BALB C
- Vaccine Efficacy
Collapse
Affiliation(s)
- Juan Liu
- Nucleic Acid Medicine Innovation Center, Zhejiang Haichang Biotech Co., Ltd., Hangzhou, Zhejiang, China
| | | | | | | | | | | | | | | | - Yongsheng Yang
- Nucleic Acid Medicine Innovation Center, Zhejiang Haichang Biotech Co., Ltd., Hangzhou, Zhejiang, China
| |
Collapse
|
3
|
Liang CY, Raju S, Liu Z, Li Y, Asthagiri Arunkumar G, Case JB, Scheaffer SM, Zost SJ, Acreman CM, Gagne M, Andrew SF, Carvalho Dos Anjos DC, Foulds KE, McLellan JS, Crowe JE, Douek DC, Whelan SPJ, Elbashir SM, Edwards DK, Diamond MS. Imprinting of serum neutralizing antibodies by Wuhan-1 mRNA vaccines. Nature 2024; 630:950-960. [PMID: 38749479 PMCID: PMC11419699 DOI: 10.1038/s41586-024-07539-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 05/08/2024] [Indexed: 06/21/2024]
Abstract
Immune imprinting is a phenomenon in which prior antigenic experiences influence responses to subsequent infection or vaccination1,2. The effects of immune imprinting on serum antibody responses after boosting with variant-matched SARS-CoV-2 vaccines remain uncertain. Here we characterized the serum antibody responses after mRNA vaccine boosting of mice and human clinical trial participants. In mice, a single dose of a preclinical version of mRNA-1273 vaccine encoding Wuhan-1 spike protein minimally imprinted serum responses elicited by Omicron boosters, enabling generation of type-specific antibodies. However, imprinting was observed in mice receiving an Omicron booster after two priming doses of mRNA-1273, an effect that was mitigated by a second booster dose of Omicron vaccine. In both SARS-CoV-2-infected and uninfected humans who received two Omicron-matched boosters after two or more doses of the prototype mRNA-1273 vaccine, spike-binding and neutralizing serum antibodies cross-reacted with Omicron variants as well as more distantly related sarbecoviruses. Because serum neutralizing responses against Omicron strains and other sarbecoviruses were abrogated after pre-clearing with Wuhan-1 spike protein, antibodies induced by XBB.1.5 boosting in humans focus on conserved epitopes targeted by the antecedent mRNA-1273 primary series. Thus, the antibody response to Omicron-based boosters in humans is imprinted by immunizations with historical mRNA-1273 vaccines, but this outcome may be beneficial as it drives expansion of cross-neutralizing antibodies that inhibit infection of emerging SARS-CoV-2 variants and distantly related sarbecoviruses.
Collapse
Affiliation(s)
- Chieh-Yu Liang
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
- Department of Medicine, Washington University School of Medicine, St Louis, MO, USA
| | - Saravanan Raju
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - Zhuoming Liu
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO, USA
| | - Yuhao Li
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO, USA
| | | | - James Brett Case
- Department of Medicine, Washington University School of Medicine, St Louis, MO, USA
| | - Suzanne M Scheaffer
- Department of Medicine, Washington University School of Medicine, St Louis, MO, USA
| | - Seth J Zost
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Cory M Acreman
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Matthew Gagne
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Shayne F Andrew
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | | | - Kathryn E Foulds
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Jason S McLellan
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - James E Crowe
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Daniel C Douek
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Sean P J Whelan
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO, USA
| | | | | | - Michael S Diamond
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA.
- Department of Medicine, Washington University School of Medicine, St Louis, MO, USA.
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO, USA.
- The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St Louis, MO, USA.
- Center for Vaccines and Immunity to Microbial Pathogens, Washington University School of Medicine, St Louis, MO, USA.
| |
Collapse
|
4
|
Cruz Cisneros MC, Anderson EJ, Hampton BK, Parotti B, Sarkar S, Taft-Benz S, Bell TA, Blanchard M, Dillard JA, Dinnon KH, Hock P, Leist SR, Madden EA, Shaw GD, West A, Baric RS, Baxter VK, Pardo-Manuel de Villena F, Heise MT, Ferris MT. Host Genetic Variation Impacts SARS-CoV-2 Vaccination Response in the Diversity Outbred Mouse Population. Vaccines (Basel) 2024; 12:103. [PMID: 38276675 PMCID: PMC10821422 DOI: 10.3390/vaccines12010103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/12/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024] Open
Abstract
The COVID-19 pandemic led to the rapid and worldwide development of highly effective vaccines against SARS-CoV-2. However, there is significant individual-to-individual variation in vaccine efficacy due to factors including viral variants, host age, immune status, environmental and host genetic factors. Understanding those determinants driving this variation may inform the development of more broadly protective vaccine strategies. While host genetic factors are known to impact vaccine efficacy for respiratory pathogens such as influenza and tuberculosis, the impact of host genetic variation on vaccine efficacy against COVID-19 is not well understood. To model the impact of host genetic variation on SARS-CoV-2 vaccine efficacy, while controlling for the impact of non-genetic factors, we used the Diversity Outbred (DO) mouse model. We found that DO mice immunized against SARS-CoV-2 exhibited high levels of variation in vaccine-induced neutralizing antibody responses. While the majority of the vaccinated mice were protected from virus-induced disease, similar to human populations, we observed vaccine breakthrough in a subset of mice. Importantly, we found that this variation in neutralizing antibody, virus-induced disease, and viral titer is heritable, indicating that the DO serves as a useful model system for studying the contribution of genetic variation of both vaccines and disease outcomes.
Collapse
Affiliation(s)
- Marta C. Cruz Cisneros
- Genetics and Molecular Biology Curriculum, University of North Carolina, Chapel Hill, NC 27599, USA; (M.C.C.C.); (B.K.H.)
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA; (B.P.); (S.S.); (S.T.-B.); (T.A.B.); (M.B.); (P.H.); (G.D.S.); (F.P.-M.d.V.); (M.T.H.)
| | - Elizabeth J. Anderson
- Division of Comparative Medicine, University of North Carolina, Chapel Hill, NC 27599, USA; (E.J.A.); (V.K.B.)
| | - Brea K. Hampton
- Genetics and Molecular Biology Curriculum, University of North Carolina, Chapel Hill, NC 27599, USA; (M.C.C.C.); (B.K.H.)
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA; (B.P.); (S.S.); (S.T.-B.); (T.A.B.); (M.B.); (P.H.); (G.D.S.); (F.P.-M.d.V.); (M.T.H.)
| | - Breantié Parotti
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA; (B.P.); (S.S.); (S.T.-B.); (T.A.B.); (M.B.); (P.H.); (G.D.S.); (F.P.-M.d.V.); (M.T.H.)
| | - Sanjay Sarkar
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA; (B.P.); (S.S.); (S.T.-B.); (T.A.B.); (M.B.); (P.H.); (G.D.S.); (F.P.-M.d.V.); (M.T.H.)
| | - Sharon Taft-Benz
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA; (B.P.); (S.S.); (S.T.-B.); (T.A.B.); (M.B.); (P.H.); (G.D.S.); (F.P.-M.d.V.); (M.T.H.)
| | - Timothy A. Bell
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA; (B.P.); (S.S.); (S.T.-B.); (T.A.B.); (M.B.); (P.H.); (G.D.S.); (F.P.-M.d.V.); (M.T.H.)
| | - Matthew Blanchard
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA; (B.P.); (S.S.); (S.T.-B.); (T.A.B.); (M.B.); (P.H.); (G.D.S.); (F.P.-M.d.V.); (M.T.H.)
| | - Jacob A. Dillard
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC 27599, USA; (J.A.D.); (E.A.M.); (R.S.B.)
| | - Kenneth H. Dinnon
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC 27599, USA; (J.A.D.); (E.A.M.); (R.S.B.)
| | - Pablo Hock
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA; (B.P.); (S.S.); (S.T.-B.); (T.A.B.); (M.B.); (P.H.); (G.D.S.); (F.P.-M.d.V.); (M.T.H.)
| | - Sarah R. Leist
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (S.R.L.)
| | - Emily A. Madden
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC 27599, USA; (J.A.D.); (E.A.M.); (R.S.B.)
| | - Ginger D. Shaw
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA; (B.P.); (S.S.); (S.T.-B.); (T.A.B.); (M.B.); (P.H.); (G.D.S.); (F.P.-M.d.V.); (M.T.H.)
| | - Ande West
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (S.R.L.)
| | - Ralph S. Baric
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC 27599, USA; (J.A.D.); (E.A.M.); (R.S.B.)
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (S.R.L.)
| | - Victoria K. Baxter
- Division of Comparative Medicine, University of North Carolina, Chapel Hill, NC 27599, USA; (E.J.A.); (V.K.B.)
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
- Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| | - Fernando Pardo-Manuel de Villena
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA; (B.P.); (S.S.); (S.T.-B.); (T.A.B.); (M.B.); (P.H.); (G.D.S.); (F.P.-M.d.V.); (M.T.H.)
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Mark T. Heise
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA; (B.P.); (S.S.); (S.T.-B.); (T.A.B.); (M.B.); (P.H.); (G.D.S.); (F.P.-M.d.V.); (M.T.H.)
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC 27599, USA; (J.A.D.); (E.A.M.); (R.S.B.)
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Martin T. Ferris
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA; (B.P.); (S.S.); (S.T.-B.); (T.A.B.); (M.B.); (P.H.); (G.D.S.); (F.P.-M.d.V.); (M.T.H.)
| |
Collapse
|
5
|
Lassaunière R, Polacek C, Linnea Tingstedt J, Fomsgaard A. Preclinical evaluation of a SARS-CoV-2 variant B.1.351-based candidate DNA vaccine. Vaccine 2023; 41:6505-6513. [PMID: 37726179 DOI: 10.1016/j.vaccine.2023.09.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 07/22/2023] [Accepted: 09/12/2023] [Indexed: 09/21/2023]
Abstract
The SARS-CoV-2 pandemic revealed the critical shortfalls of global vaccine availability for emergent pathogens and the need for exploring additional vaccine platforms with rapid update potential in response to new variants. Thus, it remains essential, for the present evolving SARS-CoV-2/Covid-19 and future pandemics, to continuously develop and characterize new and different vaccine platforms. Here, we describe an expression-optimized DNA vaccine candidate based on the SARS-CoV-2 spike protein of the Beta variant (B.1.351), pNTC-Spike.351, and, in animal models, compare its immunogenicity with a similar DNA vaccine encoding the ancestral index strain spike protein, pNTC-Spike. Both DNA vaccines induced neutralizing antibodies and a Th1 biased immune response. In contrast to the index-specific vaccine, the Beta-specific DNA vaccine induced antibodies in mice and rabbits that, even at low levels, efficiently neutralize the otherwise antibody resistant Beta variant. It similarly neutralized unrelated variants bearing the neutralization resistant E484K spike mutation. Intensive priming using two vaccinations with pNTC-Spike and a single booster immunization with the pNTC-Spike.351 induced a more robust neutralizing antibody response with comparable magnitude against different variants of concern. Thus, DNA vaccine technology with heterologous spike protein prime-boost should be explored further using the Beta derived pNTC-Spike.351 to broaden neutralizing antibody responses against emerging variants of concern.
Collapse
Affiliation(s)
- Ria Lassaunière
- Department of Virus and Microbiological Special Diagnostic, Statens Serum Institut, Copenhagen, Denmark
| | - Charlotta Polacek
- Department of Virus and Microbiological Special Diagnostic, Statens Serum Institut, Copenhagen, Denmark
| | - Jeanette Linnea Tingstedt
- Department of Virus and Microbiological Special Diagnostic, Statens Serum Institut, Copenhagen, Denmark
| | - Anders Fomsgaard
- Department of Virus and Microbiological Special Diagnostic, Statens Serum Institut, Copenhagen, Denmark; Infectious Disease Research Unit, Clinical Institute, University of Southern Denmark, Odense, Denmark.
| |
Collapse
|
6
|
Stewart-Jones GBE, Elbashir SM, Wu K, Lee D, Renzi I, Ying B, Koch M, Sein CE, Choi A, Whitener B, Garcia-Dominguez D, Henry C, Woods A, Ma L, Montes Berrueta D, Avena LE, Quinones J, Falcone S, Hsiao CJ, Scheaffer SM, Thackray LB, White P, Diamond MS, Edwards DK, Carfi A. Domain-based mRNA vaccines encoding spike protein N-terminal and receptor binding domains confer protection against SARS-CoV-2. Sci Transl Med 2023; 15:eadf4100. [PMID: 37703353 DOI: 10.1126/scitranslmed.adf4100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 08/17/2023] [Indexed: 09/15/2023]
Abstract
With the success of messenger RNA (mRNA) vaccines against coronavirus disease 2019, strategies can now focus on improving vaccine potency, breadth, and stability. We designed and evaluated domain-based mRNA vaccines encoding the wild-type spike protein receptor binding domain (RBD) or N-terminal domain (NTD) alone or in combination. An NTD-RBD-linked candidate vaccine, mRNA-1283, showed improved antigen expression, antibody responses, and stability at refrigerated temperatures (2° to 8°C) compared with the clinically available mRNA-1273, which encodes the full-length spike protein. In BALB/c mice administered mRNA-1283 as a primary series, booster, or variant-specific booster, similar or greater immune responses from viral challenge were observed against wild-type, beta, delta, or omicron (BA.1) viruses compared with mRNA-1273-immunized mice, especially at lower vaccine dosages. K18-hACE2 mice immunized with mRNA-1283 or mRNA-1273 as a primary series demonstrated similar degrees of protection from challenge with SARS-CoV-2 Delta and Omicron variants at all vaccine dosages. These results support clinical assessment of mRNA-1283, which has now entered clinical trials (NCT05137236).
Collapse
Affiliation(s)
| | | | - Kai Wu
- Moderna, Inc., Cambridge, MA 02139, USA
| | - Diana Lee
- Moderna, Inc., Cambridge, MA 02139, USA
| | | | - Baoling Ying
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | | | | | | | - Bradley Whitener
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | | | | | | | | | | | | | | | | | | | - Suzanne M Scheaffer
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Larissa B Thackray
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | | | - Michael S Diamond
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | | | | |
Collapse
|
7
|
Berry C, Pavot V, Anosova NG, Kishko M, Li L, Tibbitts T, Raillard A, Gautheron S, Cummings S, Bangari DS, Kar S, Atyeo C, Deng Y, Alter G, Gutzeit C, Koutsoukos M, Chicz RM, Lecouturier V. Beta-containing bivalent SARS-CoV-2 protein vaccine elicits durable broad neutralization in macaques and protection in hamsters. COMMUNICATIONS MEDICINE 2023; 3:75. [PMID: 37237062 PMCID: PMC10212738 DOI: 10.1038/s43856-023-00302-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
BACKGROUND Since the beginning of the COVID-19 pandemic, several variants of concern (VOC) have emerged for which there is evidence of an increase in transmissibility, more severe disease, and/or reduced vaccine effectiveness. Effective COVID-19 vaccine strategies are required to achieve broad protective immunity against current and future VOC. METHODS We conducted immunogenicity and challenge studies in macaques and hamsters using a bivalent recombinant vaccine formulation containing the SARS-CoV-2 prefusion-stabilized Spike trimers of the ancestral D614 and the variant Beta strains with AS03 adjuvant (CoV2 preS dTM-AS03) in a primary immunization setting. RESULTS We show that a primary immunization with the bivalent CoV2 preS dTM-AS03 elicits broader and durable (1 year) neutralizing antibody responses against VOC including Omicron BA.1 and BA.4/5, and SARS-CoV-1 as compared to the ancestral D614 or Beta variant monovalent vaccines in naïve non-human primates. In addition, the bivalent formulation confers protection against viral challenge with SARS-CoV-2 prototype D614G strain as well as Alpha and Beta variant strains in hamsters. CONCLUSIONS Our findings demonstrate the potential of a Beta-containing bivalent CoV2 preS dTM-AS03 formulation to provide broad and durable immunogenicity, as well as protection against VOC in naïve populations.
Collapse
Affiliation(s)
| | | | | | | | - Lu Li
- Sanofi, Vaccines R&D, Cambridge, MA, USA
| | | | | | | | | | | | | | - Caroline Atyeo
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | - Yixiang Deng
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | - Galit Alter
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | | | | | | | | |
Collapse
|
8
|
Bollman B, Nunna N, Bahl K, Hsiao CJ, Bennett H, Butler S, Foreman B, Burgomaster KE, Aleshnick M, Kong WP, Fisher BE, Ruckwardt TJ, Morabito KM, Graham BS, Dowd KA, Pierson TC, Carfi A. An optimized messenger RNA vaccine candidate protects non-human primates from Zika virus infection. NPJ Vaccines 2023; 8:58. [PMID: 37080988 PMCID: PMC10119314 DOI: 10.1038/s41541-023-00656-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 03/29/2023] [Indexed: 04/22/2023] Open
Abstract
Zika virus (ZIKV), an arbovirus transmitted by mosquitoes, was identified as a cause of congenital disease during a major outbreak in the Americas in 2016. Vaccine design strategies relied on limited available isolate sequence information due to the rapid response necessary. The first-generation ZIKV mRNA vaccine, mRNA-1325, was initially generated and, as additional strain sequences became available, a second mRNA vaccine, mRNA-1893, was developed. Herein, we compared the immune responses following mRNA-1325 and mRNA-1893 vaccination and reported that mRNA-1893 generated comparable neutralizing antibody titers to mRNA-1325 at 1/20th of the dose and provided complete protection from ZIKV challenge in non-human primates. In-depth characterization of these vaccines indicated that the observed immunologic differences could be attributed to a single amino acid residue difference that compromised mRNA-1325 virus-like particle formation.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Bryant Foreman
- Viral Pathogenesis Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Katherine E Burgomaster
- Viral Pathogenesis Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Maya Aleshnick
- Viral Pathogenesis Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Wing-Pui Kong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Brian E Fisher
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Tracy J Ruckwardt
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Kaitlyn M Morabito
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Barney S Graham
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Kimberly A Dowd
- Viral Pathogenesis Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Theodore C Pierson
- Viral Pathogenesis Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | | |
Collapse
|
9
|
Campbell E, Dobkin J, Osorio LJ, Kolloli A, Ramasamy S, Kumar R, Sant'Angelo DB, Subbian S, Denzin LK, Anderson S. A SARS-CoV-2 Vaccine Designed for Manufacturability Results in Unexpected Potency and Non-Waning Humoral Response. Vaccines (Basel) 2023; 11:vaccines11040832. [PMID: 37112744 PMCID: PMC10145385 DOI: 10.3390/vaccines11040832] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 04/03/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
The rapid development of several highly efficacious SARS-CoV-2 vaccines was an unprecedented scientific achievement that saved millions of lives. However, now that SARS-CoV-2 is transitioning to the endemic stage, there exists an unmet need for new vaccines that provide durable immunity and protection against variants and can be more easily manufactured and distributed. Here, we describe a novel protein component vaccine candidate, MT-001, based on a fragment of the SARS-CoV-2 spike protein that encompasses the receptor binding domain (RBD). Mice and hamsters immunized with a prime-boost regimen of MT-001 demonstrated extremely high anti-spike IgG titers, and remarkably this humoral response did not appreciably wane for up to 12 months following vaccination. Further, virus neutralization titers, including titers against variants such as Delta and Omicron BA.1, remained high without the requirement for subsequent boosting. MT-001 was designed for manufacturability and ease of distribution, and we demonstrate that these attributes are not inconsistent with a highly immunogenic vaccine that confers durable and broad immunity to SARS-CoV-2 and its emerging variants. These properties suggest MT-001 could be a valuable new addition to the toolbox of SARS-CoV-2 vaccines and other interventions to prevent infection and curtail additional morbidity and mortality from the ongoing worldwide pandemic.
Collapse
Affiliation(s)
- Elliot Campbell
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ 08854, USA
- Macrotope, Inc., Princeton, NJ 08540, USA
| | - Julie Dobkin
- Child Health Institute of New Jersey, Department of Pediatrics and Pharmacology, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA
- Graduate School of Biomedical Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Louis J Osorio
- Child Health Institute of New Jersey, Department of Pediatrics and Pharmacology, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA
| | - Afsal Kolloli
- Public Health Research Institute (PHRI), New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA
| | - Santhamani Ramasamy
- Public Health Research Institute (PHRI), New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA
| | - Ranjeet Kumar
- Public Health Research Institute (PHRI), New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA
| | - Derek B Sant'Angelo
- Child Health Institute of New Jersey, Department of Pediatrics and Pharmacology, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA
| | - Selvakumar Subbian
- Public Health Research Institute (PHRI), New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA
| | - Lisa K Denzin
- Child Health Institute of New Jersey, Department of Pediatrics and Pharmacology, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA
| | - Stephen Anderson
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ 08854, USA
- Macrotope, Inc., Princeton, NJ 08540, USA
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ 08854, USA
| |
Collapse
|
10
|
Kalyoncu S, Yilmaz S, Kuyucu AZ, Sayili D, Mert O, Soyturk H, Gullu S, Akinturk H, Citak E, Arslan M, Taskinarda MG, Tarman IO, Altun GY, Ozer C, Orkut R, Demirtas A, Tilmensagir I, Keles U, Ulker C, Aralan G, Mercan Y, Ozkan M, Caglar HO, Arik G, Ucar MC, Yildirim M, Yildirim TC, Karadag D, Bal E, Erdogan A, Senturk S, Uzar S, Enul H, Adiay C, Sarac F, Ekiz AT, Abaci I, Aksoy O, Polat HU, Tekin S, Dimitrov S, Ozkul A, Wingender G, Gursel I, Ozturk M, Inan M. Process development for an effective COVID-19 vaccine candidate harboring recombinant SARS-CoV-2 delta plus receptor binding domain produced by Pichia pastoris. Sci Rep 2023; 13:5224. [PMID: 36997624 PMCID: PMC10062263 DOI: 10.1038/s41598-023-32021-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 03/21/2023] [Indexed: 04/01/2023] Open
Abstract
Recombinant protein-based SARS-CoV-2 vaccines are needed to fill the vaccine equity gap. Because protein-subunit based vaccines are easier and cheaper to produce and do not require special storage/transportation conditions, they are suitable for low-/middle-income countries. Here, we report our vaccine development studies with the receptor binding domain of the SARS-CoV-2 Delta Plus strain (RBD-DP) which caused increased hospitalizations compared to other variants. First, we expressed RBD-DP in the Pichia pastoris yeast system and upscaled it to a 5-L fermenter for production. After three-step purification, we obtained RBD-DP with > 95% purity from a protein yield of > 1 g/L of supernatant. Several biophysical and biochemical characterizations were performed to confirm its identity, stability, and functionality. Then, it was formulated in different contents with Alum and CpG for mice immunization. After three doses of immunization, IgG titers from sera reached to > 106 and most importantly it showed high T-cell responses which are required for an effective vaccine to prevent severe COVID-19 disease. A live neutralization test was performed with both the Wuhan strain (B.1.1.7) and Delta strain (B.1.617.2) and it showed high neutralization antibody content for both strains. A challenge study with SARS-CoV-2 infected K18-hACE2 transgenic mice showed good immunoprotective activity with no viruses in the lungs and no lung inflammation for all immunized mice.
Collapse
Affiliation(s)
| | - Semiramis Yilmaz
- Izmir Biomedicine and Genome Center, Izmir, Turkey
- VIB-UGent Center for Medical Biotechnology, Gent, Belgium
| | | | - Dogu Sayili
- Izmir Biomedicine and Genome Center, Izmir, Turkey
| | - Olcay Mert
- Izmir Biomedicine and Genome Center, Izmir, Turkey
| | | | - Seyda Gullu
- Izmir Biomedicine and Genome Center, Izmir, Turkey
| | | | - Erhan Citak
- Izmir Biomedicine and Genome Center, Izmir, Turkey
- VIB-UGent Center for Medical Biotechnology, Gent, Belgium
| | - Merve Arslan
- Izmir Biomedicine and Genome Center, Izmir, Turkey
- Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir, Turkey
| | | | | | | | - Ceren Ozer
- Izmir Biomedicine and Genome Center, Izmir, Turkey
- Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir, Turkey
| | - Ridvan Orkut
- Izmir Biomedicine and Genome Center, Izmir, Turkey
| | | | | | - Umur Keles
- Izmir Biomedicine and Genome Center, Izmir, Turkey
- Lund University, Lund, Sweden
| | - Ceren Ulker
- Izmir Biomedicine and Genome Center, Izmir, Turkey
| | - Gizem Aralan
- Izmir Biomedicine and Genome Center, Izmir, Turkey
| | - Yavuz Mercan
- Izmir Biomedicine and Genome Center, Izmir, Turkey
- Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir, Turkey
| | - Muge Ozkan
- Izmir Biomedicine and Genome Center, Izmir, Turkey
| | - Hasan Onur Caglar
- Izmir Biomedicine and Genome Center, Izmir, Turkey
- Erzurum Technical University, Erzurum, Turkey
| | - Gizem Arik
- Izmir Biomedicine and Genome Center, Izmir, Turkey
- Ankara Medipol University, Ankara, Turkey
| | - Mehmet Can Ucar
- Izmir Biomedicine and Genome Center, Izmir, Turkey
- Imperial College London, London, UK
| | | | | | | | - Erhan Bal
- Izmir Biomedicine and Genome Center, Izmir, Turkey
- Izmir Tinaztepe University, Izmir, Turkey
| | - Aybike Erdogan
- Izmir Biomedicine and Genome Center, Izmir, Turkey
- Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir, Turkey
| | - Serif Senturk
- Izmir Biomedicine and Genome Center, Izmir, Turkey
- Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir, Turkey
| | - Serdar Uzar
- Pendik Veterinary Research and Control Institute, Istanbul, Turkey
| | - Hakan Enul
- Pendik Veterinary Research and Control Institute, Istanbul, Turkey
| | - Cumhur Adiay
- Pendik Veterinary Research and Control Institute, Istanbul, Turkey
| | - Fahriye Sarac
- Pendik Veterinary Research and Control Institute, Istanbul, Turkey
| | | | - Irem Abaci
- Marmara Research Center, TUBITAK, Kocaeli, Turkey
| | - Ozge Aksoy
- Marmara Research Center, TUBITAK, Kocaeli, Turkey
| | | | - Saban Tekin
- Marmara Research Center, TUBITAK, Kocaeli, Turkey
- University of Health Sciences, Istanbul, Turkey
| | | | | | | | - Ihsan Gursel
- Izmir Biomedicine and Genome Center, Izmir, Turkey
| | - Mehmet Ozturk
- Izmir Biomedicine and Genome Center, Izmir, Turkey
- Izmir Tinaztepe University, Izmir, Turkey
| | - Mehmet Inan
- Izmir Biomedicine and Genome Center, Izmir, Turkey.
- Akdeniz University, Antalya, Turkey.
| |
Collapse
|
11
|
Wang Z, Ma W, Fu X, Qi Y, Zhao Y, Zhang S. Development and applications of mRNA treatment based on lipid nanoparticles. Biotechnol Adv 2023; 65:108130. [PMID: 36933868 DOI: 10.1016/j.biotechadv.2023.108130] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 12/06/2022] [Accepted: 03/13/2023] [Indexed: 03/18/2023]
Abstract
Nucleic acid-based therapies such as messenger RNA have the potential to revolutionize modern medicine and enhance the performance of existing pharmaceuticals. The key challenges of mRNA-based therapies are delivering the mRNA safely and effectively to the target tissues and cells and controlling its release from the delivery vehicle. Lipid nanoparticles (LNPs) have been widely studied as drug carriers and are considered to be state-of-the-art technology for nucleic acid delivery. In this review, we begin by presenting the advantages and mechanisms of action of mRNA therapeutics. Then we discuss the design of LNP platforms based on ionizable lipids and the applications of mRNA-LNP vaccines for prevention of infectious diseases and for treatment of cancer and various genetic diseases. Finally, we describe the challenges and future prospects of mRNA-LNP therapeutics.
Collapse
Affiliation(s)
- Zhe Wang
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, China
| | - Wanting Ma
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, China
| | - Xingxing Fu
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, China
| | - Yanfei Qi
- Centenary Institute, The University of Sydney, Sydney, NSW 2050, Australia
| | - Yinan Zhao
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, China
| | - Shubiao Zhang
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, China.
| |
Collapse
|
12
|
Cao L, Guo J, Li H, Ren H, Xiao K, Zhang Y, Zhu S, Song Y, Zhao W, Wu D, Chen Z, Zhang Y, Xia B, Ji T, Yan D, Wang D, Yang Q, Zhou Y, Li X, Hou Z, Xu W. A Beta Strain-Based Spike Glycoprotein Vaccine Candidate Induces Broad Neutralization and Protection against SARS-CoV-2 Variants of Concern. Microbiol Spectr 2023; 11:e0268722. [PMID: 36847495 PMCID: PMC10100794 DOI: 10.1128/spectrum.02687-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 02/04/2023] [Indexed: 03/01/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic is still ongoing. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern (VOCs) are circulating worldwide, making it resistant to existing vaccines and antiviral drugs. Therefore, the evaluation of variant-based expanded spectrum vaccines to optimize the immune response and provide broad protectiveness is very important. In this study, we expressed spike trimer protein (S-TM) based on the Beta variant in a GMP-grade workshop using CHO cells. Mice were immunized twice with S-TM protein combined with aluminum hydroxide (Al) and CpG Oligonucleotides (CpG) adjuvant to evaluate its safety and efficacy. BALB/c immunized with S-TM + Al + CpG induced high neutralizing antibody titers against the Wuhan-Hu-1 strain (wild-type, WT), the Beta and Delta variants, and even the Omicron variant. In addition, compared with the S-TM + Al group, the S-TM + Al + CpG group effectively induced a stronger Th1-biased cell immune response in mice. Furthermore, after the second immunization, H11-K18 hACE2 mice were well protected from challenge with the SARS-CoV-2 Beta strain, with a 100% survival rate. The virus load and pathological lesions in the lungs were significantly reduced, and no virus was detected in mouse brain tissue. Our vaccine candidate is practical and effective for current SARS-CoV-2 VOCs, which will support its further clinical development for potential sequential immune and primary immunization. IMPORTANCE Continuous emergence of adaptive mutations of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to challenge the use and development of existing vaccines and drugs. The value of variant-based vaccines that are capable of inducing a higher and broader protection immune response against SARS-CoV-2 variants is currently being evaluated. This article shows that a recombinant prefusion spike protein based on a Beta variant was highly immunogenic and could induced a stronger Th1-biased cell immune response in mice and was effectively protective against challenge with the SARS-CoV-2 Beta variant. Importantly, this Beta-based SARS-CoV-2 vaccine could also offer a robust humoral immune response with effectively broad neutralization ability against the wild type and different variants of concern (VOCs): the Beta, Delta, and Omicron BA.1 variants. To date, the vaccine described here has been produced in a pilot scale (200L), and the development, filling process, and toxicological safety evaluation have also been completed, which provides a timely response to the emerging SARS-CoV-2 variants and vaccine development.
Collapse
Affiliation(s)
- Lei Cao
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jinyuan Guo
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Hai Li
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Hu Ren
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Kang Xiao
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yan Zhang
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Shuangli Zhu
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yang Song
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Weijia Zhao
- Hwellso Biotechnology (Beijing) Co., Ltd., Beijing, China
| | - Dan Wu
- Hwellso Biotechnology (Beijing) Co., Ltd., Beijing, China
| | - Zhihui Chen
- Hwellso Biotechnology (Beijing) Co., Ltd., Beijing, China
| | - Yanan Zhang
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Baicheng Xia
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Tianjiao Ji
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Dongmei Yan
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Dongyan Wang
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Qian Yang
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yangzi Zhou
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xiaolei Li
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Zhanjun Hou
- Hwellso Biotechnology (Beijing) Co., Ltd., Beijing, China
| | - Wenbo Xu
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, China
| |
Collapse
|
13
|
Nanishi E, Borriello F, Seo HS, O’Meara TR, McGrath ME, Saito Y, Chen J, Diray-Arce J, Song K, Xu AZ, Barman S, Menon M, Dong D, Caradonna TM, Feldman J, Hauser BM, Schmidt AG, Baden LR, Ernst RK, Dillen C, Yu J, Chang A, Hilgers L, Platenburg PP, Dhe-Paganon S, Barouch DH, Ozonoff A, Zanoni I, Frieman MB, Dowling DJ, Levy O. Carbohydrate fatty acid monosulphate: oil-in-water adjuvant enhances SARS-CoV-2 RBD nanoparticle-induced immunogenicity and protection in mice. NPJ Vaccines 2023; 8:18. [PMID: 36788219 PMCID: PMC9927065 DOI: 10.1038/s41541-023-00610-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 01/24/2023] [Indexed: 02/16/2023] Open
Abstract
Development of SARS-CoV-2 vaccines that protect vulnerable populations is a public health priority. Here, we took a systematic and iterative approach by testing several adjuvants and SARS-CoV-2 antigens to identify a combination that elicits antibodies and protection in young and aged mice. While demonstrating superior immunogenicity to soluble receptor-binding domain (RBD), RBD displayed as a protein nanoparticle (RBD-NP) generated limited antibody responses. Comparison of multiple adjuvants including AddaVax, AddaS03, and AS01B in young and aged mice demonstrated that an oil-in-water emulsion containing carbohydrate fatty acid monosulphate derivative (CMS:O/W) most effectively enhanced RBD-NP-induced cross-neutralizing antibodies and protection across age groups. CMS:O/W enhanced antigen retention in the draining lymph node, induced injection site, and lymph node cytokines, with CMS inducing MyD88-dependent Th1 cytokine polarization. Furthermore, CMS and O/W synergistically induced chemokine production from human PBMCs. Overall, CMS:O/W adjuvant may enhance immunogenicity and protection of vulnerable populations against SARS-CoV-2 and other infectious pathogens.
Collapse
Affiliation(s)
- Etsuro Nanishi
- grid.2515.30000 0004 0378 8438Precision Vaccines Program, Boston Children’s Hospital, Boston, MA USA ,grid.38142.3c000000041936754XDepartment of Pediatrics, Harvard Medical School, Boston, MA USA
| | - Francesco Borriello
- grid.2515.30000 0004 0378 8438Precision Vaccines Program, Boston Children’s Hospital, Boston, MA USA ,grid.38142.3c000000041936754XDepartment of Pediatrics, Harvard Medical School, Boston, MA USA ,grid.2515.30000 0004 0378 8438Division of Immunology, Boston Children’s Hospital, Boston, MA USA ,Present Address: Generate Biomedicines, Cambridge, MA USA
| | - Hyuk-Soo Seo
- grid.65499.370000 0001 2106 9910Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA USA ,grid.38142.3c000000041936754XDepartment of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA USA
| | - Timothy R. O’Meara
- grid.2515.30000 0004 0378 8438Precision Vaccines Program, Boston Children’s Hospital, Boston, MA USA
| | - Marisa E. McGrath
- grid.411024.20000 0001 2175 4264Department of Microbiology and Immunology, Center for Pathogen Research, University of Maryland School of Medicine, Baltimore, MD USA
| | - Yoshine Saito
- grid.2515.30000 0004 0378 8438Precision Vaccines Program, Boston Children’s Hospital, Boston, MA USA
| | - Jing Chen
- grid.2515.30000 0004 0378 8438Research Computing Group, Boston Children’s Hospital, Boston, MA USA
| | - Joann Diray-Arce
- grid.2515.30000 0004 0378 8438Precision Vaccines Program, Boston Children’s Hospital, Boston, MA USA ,grid.38142.3c000000041936754XDepartment of Pediatrics, Harvard Medical School, Boston, MA USA
| | - Kijun Song
- grid.65499.370000 0001 2106 9910Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA USA
| | - Andrew Z. Xu
- grid.65499.370000 0001 2106 9910Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA USA
| | - Soumik Barman
- grid.2515.30000 0004 0378 8438Precision Vaccines Program, Boston Children’s Hospital, Boston, MA USA ,grid.38142.3c000000041936754XDepartment of Pediatrics, Harvard Medical School, Boston, MA USA
| | - Manisha Menon
- grid.2515.30000 0004 0378 8438Precision Vaccines Program, Boston Children’s Hospital, Boston, MA USA
| | - Danica Dong
- grid.2515.30000 0004 0378 8438Precision Vaccines Program, Boston Children’s Hospital, Boston, MA USA
| | - Timothy M. Caradonna
- grid.461656.60000 0004 0489 3491Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA USA
| | - Jared Feldman
- grid.461656.60000 0004 0489 3491Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA USA
| | - Blake M. Hauser
- grid.461656.60000 0004 0489 3491Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA USA
| | - Aaron G. Schmidt
- grid.461656.60000 0004 0489 3491Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA USA ,grid.38142.3c000000041936754XDepartment of Microbiology, Harvard Medical School, Boston, MA USA
| | - Lindsey R. Baden
- grid.62560.370000 0004 0378 8294Department of Medicine, Brigham and Women’s Hospital, Boston, MA USA
| | - Robert K. Ernst
- grid.411024.20000 0001 2175 4264Department of Microbial Pathogenesis, University of Maryland School of Dentistry, Baltimore, MD USA
| | - Carly Dillen
- grid.411024.20000 0001 2175 4264Department of Microbiology and Immunology, Center for Pathogen Research, University of Maryland School of Medicine, Baltimore, MD USA
| | - Jingyou Yu
- grid.38142.3c000000041936754XCenter for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA USA
| | - Aiquan Chang
- grid.38142.3c000000041936754XCenter for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA USA
| | | | | | - Sirano Dhe-Paganon
- grid.65499.370000 0001 2106 9910Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA USA ,grid.38142.3c000000041936754XDepartment of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA USA
| | - Dan H. Barouch
- grid.38142.3c000000041936754XCenter for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA USA
| | - Al Ozonoff
- grid.2515.30000 0004 0378 8438Precision Vaccines Program, Boston Children’s Hospital, Boston, MA USA ,grid.38142.3c000000041936754XDepartment of Pediatrics, Harvard Medical School, Boston, MA USA ,grid.66859.340000 0004 0546 1623Broad Institute of MIT & Harvard, Cambridge, MA USA
| | - Ivan Zanoni
- grid.38142.3c000000041936754XDepartment of Pediatrics, Harvard Medical School, Boston, MA USA ,grid.2515.30000 0004 0378 8438Division of Immunology, Boston Children’s Hospital, Boston, MA USA
| | - Matthew B. Frieman
- grid.411024.20000 0001 2175 4264Department of Microbiology and Immunology, Center for Pathogen Research, University of Maryland School of Medicine, Baltimore, MD USA
| | - David J. Dowling
- grid.2515.30000 0004 0378 8438Precision Vaccines Program, Boston Children’s Hospital, Boston, MA USA ,grid.38142.3c000000041936754XDepartment of Pediatrics, Harvard Medical School, Boston, MA USA
| | - Ofer Levy
- Precision Vaccines Program, Boston Children's Hospital, Boston, MA, USA. .,Department of Pediatrics, Harvard Medical School, Boston, MA, USA. .,Broad Institute of MIT & Harvard, Cambridge, MA, USA.
| |
Collapse
|
14
|
Vogrig M, Berger AE, Bourlet T, Waeckel L, Haccourt A, Chanavat A, Hupin D, Roche F, Botelho-Nevers E, Pozzetto B, Paul S. Monitoring of Both Humoral and Cellular Immunities Could Early Predict COVID-19 Vaccine Efficacy Against the Different SARS-CoV2 Variants. J Clin Immunol 2023; 43:31-45. [PMID: 36006568 PMCID: PMC9403229 DOI: 10.1007/s10875-022-01354-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 08/17/2022] [Indexed: 01/21/2023]
Abstract
Reliable immunoassays are essential to early predict and monitor vaccine efficacy against SARS-CoV-2. The performance of an Interferon Gamma Release Assay (IGRA, QuantiFERON® SARS-CoV-2), and a current anti-spike serological test, compared to a plaque reduction neutralization test (PRNT) taken as gold standard were compared. Eighty vaccinated individuals, whose 16% had a previous history of COVID-19, were included in a longitudinal prospective study and sampled before and two to four weeks after each dose of vaccine. In non-infected patients, 2 doses were required for obtaining both positive IGRA and PRNT assays, while serology was positive after one dose. Each dose of vaccine significantly increased the humoral and cellular response. By contrast, convalescent subjects needed a single dose of vaccine to be positive on all 3 tests. Both IGRA and current serology assay were found predictive of a positive titer of neutralizing antibodies that is correlated with vaccine protection. Patients over 65 or 80 years old had a significantly reduced response. The response tended to be better with the heterologous scheme (vs. homologous) and with the mRNA-1273 vaccine (vs. BNT162b2) in the homologous group, in patients under 55 and under 65 years old, respectively. Finally, decrease intensity or absence of IGRA response and to a less extent of anti-spike serology were also correlated to reinfection which has occurred during the follow up. In conclusion, both IGRA and current anti-spike serology assays could be used at defined thresholds to monitor the vaccine response against SARS-CoV-2 and to simply identify non-responding individuals after a complete vaccination scheme. Two available specific tests (IGRA and anti-spike antibodies) could early assess the vaccine-induced immunity against SARS-CoV-2 at the individual scale, to potentially adapt the vaccination scheme in non-responder patients.
Collapse
Affiliation(s)
- Manon Vogrig
- Immunology Department, University Hospital of Saint-Etienne, 42055, Saint-Etienne, France
- Infectious Agents and Hygiene Department, University Hospital of Saint-Etienne, Saint-Priest-en-Jarez, France
| | - Anne-Emmanuelle Berger
- Immunology Department, University Hospital of Saint-Etienne, 42055, Saint-Etienne, France
- CIRI - Centre International de Recherche en Infectiologie, Team GIMAP, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR530, F42023, Saint-Etienne, France
- CIC 1408 Inserm Vaccinology, University Hospital of Saint-Etienne, 42055, Saint-Etienne, France
| | - Thomas Bourlet
- Infectious Agents and Hygiene Department, University Hospital of Saint-Etienne, Saint-Priest-en-Jarez, France
- CIRI - Centre International de Recherche en Infectiologie, Team GIMAP, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR530, F42023, Saint-Etienne, France
- CIC 1408 Inserm Vaccinology, University Hospital of Saint-Etienne, 42055, Saint-Etienne, France
| | - Louis Waeckel
- Immunology Department, University Hospital of Saint-Etienne, 42055, Saint-Etienne, France
- CIRI - Centre International de Recherche en Infectiologie, Team GIMAP, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR530, F42023, Saint-Etienne, France
- CIC 1408 Inserm Vaccinology, University Hospital of Saint-Etienne, 42055, Saint-Etienne, France
| | - Alice Haccourt
- Immunology Department, University Hospital of Saint-Etienne, 42055, Saint-Etienne, France
| | - Alice Chanavat
- Immunology Department, University Hospital of Saint-Etienne, 42055, Saint-Etienne, France
| | - David Hupin
- Clinical and Exercise Physiology, University Hospital of Saint-Etienne, Saint-Etienne, France
- Inserm, U1059, SAINBIOSE, Université de Lyon, Université Jean-Monnet, Saint-Etienne, France
| | - Frederic Roche
- Clinical and Exercise Physiology, University Hospital of Saint-Etienne, Saint-Etienne, France
- Inserm, U1059, SAINBIOSE, Université de Lyon, Université Jean-Monnet, Saint-Etienne, France
| | - Elisabeth Botelho-Nevers
- CIRI - Centre International de Recherche en Infectiologie, Team GIMAP, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR530, F42023, Saint-Etienne, France
- CIC 1408 Inserm Vaccinology, University Hospital of Saint-Etienne, 42055, Saint-Etienne, France
- Infectious Diseases Department, University Hospital of Saint-Etienne, Saint-Priest-en-Jarez, France
| | - Bruno Pozzetto
- Infectious Agents and Hygiene Department, University Hospital of Saint-Etienne, Saint-Priest-en-Jarez, France
- CIRI - Centre International de Recherche en Infectiologie, Team GIMAP, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR530, F42023, Saint-Etienne, France
- CIC 1408 Inserm Vaccinology, University Hospital of Saint-Etienne, 42055, Saint-Etienne, France
| | - Stéphane Paul
- Immunology Department, University Hospital of Saint-Etienne, 42055, Saint-Etienne, France.
- CIRI - Centre International de Recherche en Infectiologie, Team GIMAP, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR530, F42023, Saint-Etienne, France.
- CIC 1408 Inserm Vaccinology, University Hospital of Saint-Etienne, 42055, Saint-Etienne, France.
- Faculté de Médecine, Campus Santé Innovations, 10 Rue de la Marandière, BP 80019, 42270, Saint-Priest-en-Jarez, France.
| |
Collapse
|
15
|
Wu Y, Wang S, Zhang Y, Yuan L, Zheng Q, Wei M, Shi Y, Wang Z, Ma J, Wang K, Nie M, Xiao J, Huang Z, Chen P, Guo H, Lan M, Xu J, Hou W, Hong Y, Chen D, Sun H, Xiong H, Zhou M, Liu C, Guo W, Guo H, Gao J, Gan C, Li Z, Zhang H, Wang X, Li S, Cheng T, Zhao Q, Chen Y, Wu T, Zhang T, Zhang J, Cao H, Zhu H, Yuan Q, Guan Y, Xia N. Lineage-mosaic and mutation-patched spike proteins for broad-spectrum COVID-19 vaccine. Cell Host Microbe 2022; 30:1732-1744.e7. [PMID: 36323313 PMCID: PMC9576691 DOI: 10.1016/j.chom.2022.10.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/31/2022] [Accepted: 10/14/2022] [Indexed: 01/26/2023]
Abstract
SARS-CoV-2 spread in humans results in continuous emergence of new variants, highlighting the need for vaccines with broad-spectrum antigenic coverage. Using inter-lineage chimera and mutation-patch strategies, we engineered a recombinant monomeric spike variant (STFK1628x) that contains key regions and residues across multiple SAR-CoV-2 variants. STFK1628x demonstrated high immunogenicity and mutually complementary antigenicity to its prototypic form (STFK). In hamsters, a bivalent vaccine composed of STFK and STFK1628x elicited high titers of broad-spectrum neutralizing antibodies to 19 circulating SARS-CoV-2 variants, including Omicron sublineages BA.1, BA.1.1, BA.2, BA.2.12.1, BA.2.75, and BA.4/5. Furthermore, this vaccine conferred robust protection against intranasal challenges by either SARS-CoV-2 ancestral strain or immune-evasive Beta and Omicron BA.1. Strikingly, vaccination with the bivalent vaccine in hamsters effectively blocked within-cage virus transmission of ancestral SARS-CoV-2, Beta variant, and Omicron BA.1 to unvaccinated sentinels. Thus, our study provided insight and antigen candidates for the development of next-generation COVID-19 vaccines.
Collapse
Affiliation(s)
- Yangtao Wu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health & School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Shaojuan Wang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health & School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Yali Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health & School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Lunzhi Yuan
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health & School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Qingbing Zheng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health & School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Min Wei
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health & School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Yang Shi
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health & School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Zikang Wang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health & School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Jian Ma
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health & School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Kai Wang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health & School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Meifeng Nie
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health & School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Jin Xiao
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health & School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Zehong Huang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health & School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Peiwen Chen
- State Key Laboratory of Emerging Infectious Diseases, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Guangdong-Hong Kong Joint Laboratory of Emerging Infectious Diseases, Joint Laboratory for International Collaboration in Virology and Emerging Infectious Diseases, Joint Institute of Virology (STU/HKU), Shantou University, Shantou, Guangdong 515063, China
- EKIH Pathogen Research Institute, Futian District, Shenzhen, Guangdong 518045, China
| | - Huilin Guo
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health & School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Miaolin Lan
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health & School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Jingjing Xu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health & School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Wangheng Hou
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health & School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Yunda Hong
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health & School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Dabing Chen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health & School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Hui Sun
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health & School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Hualong Xiong
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health & School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Ming Zhou
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health & School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Che Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health & School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Wenjie Guo
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health & School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Huiyu Guo
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health & School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Jiahua Gao
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health & School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Congling Gan
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health & School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Zhixiong Li
- Key Laboratory of Technical Evaluation of Fertility Regulation for Non-human Primate, National Health Commission, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350013, China
| | - Haitao Zhang
- Key Laboratory of Technical Evaluation of Fertility Regulation for Non-human Primate, National Health Commission, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350013, China
| | - Xinrui Wang
- Key Laboratory of Technical Evaluation of Fertility Regulation for Non-human Primate, National Health Commission, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350013, China
| | - Shaowei Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health & School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Tong Cheng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health & School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Qinjian Zhao
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health & School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Yixin Chen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health & School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Ting Wu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health & School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Tianying Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health & School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Jun Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health & School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Hua Cao
- Key Laboratory of Technical Evaluation of Fertility Regulation for Non-human Primate, National Health Commission, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350013, China
| | - Huachen Zhu
- State Key Laboratory of Emerging Infectious Diseases, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Guangdong-Hong Kong Joint Laboratory of Emerging Infectious Diseases, Joint Laboratory for International Collaboration in Virology and Emerging Infectious Diseases, Joint Institute of Virology (STU/HKU), Shantou University, Shantou, Guangdong 515063, China
- EKIH Pathogen Research Institute, Futian District, Shenzhen, Guangdong 518045, China
| | - Quan Yuan
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health & School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Yi Guan
- State Key Laboratory of Emerging Infectious Diseases, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Guangdong-Hong Kong Joint Laboratory of Emerging Infectious Diseases, Joint Laboratory for International Collaboration in Virology and Emerging Infectious Diseases, Joint Institute of Virology (STU/HKU), Shantou University, Shantou, Guangdong 515063, China
- EKIH Pathogen Research Institute, Futian District, Shenzhen, Guangdong 518045, China
| | - Ningshao Xia
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health & School of Life Sciences, Xiamen University, Xiamen 361102, China
- Research Unit of Frontier Technology of Structural Vaccinology, Chinese Academy of Medical Sciences, Xiamen, Fujian 361102, China
| |
Collapse
|
16
|
Musa HH, Musa TH. A systematic and thematic analysis of the top 100 cited articles on mRNA vaccine indexed in Scopus database. Hum Vaccin Immunother 2022; 18:2135927. [PMID: 36328513 DOI: 10.1080/21645515.2022.2135927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The success of mRNA vaccines against SARS-CoV-2 implies that this technology can be applied to target any pathogen. However, the scientific production and research trends using the bibliometric method are still unknown. The top 100 most cited articles on mRNA vaccine research were obtained from the Scopus database from 1995 to 2021. Bibliometrix, an R-Package, and VOSviewer 1.6.11 were used for data analysis. There is a rapid growth in scientific outputs with a gradual increase in 2021. The United States produced 45 (45%) of the articles, followed by Germany with 15 (15%) and Israel with 10 (10%). The New England Journal of Medicine published the most papers in this field 13 (13%), followed by Nature 6(6%). Barney S. Graham was the most productive author among the top 100 most cited mRNA vaccine articles. University of Pennsylvania Perelman School of Medicine, US, was the top ranking institution, having 37 (37%). The visualization map clearly and spontaneously displayed the current state and research hot spots of mRNA research from a specific perspective. The most frequent keywords were COVID-19, vaccine, mRNA vaccine, mRNA, SARS-CoV-2, and immunogenicity, among others. A systematic review of the articles provided evidence that out of 100 articles, approximately 25 (25%) were focused on vaccine production and evaluation, followed by 26 (26%) in mRNA vaccine safety and efficacy, 23 (23%) were into mRNA vaccination, 23 (23%) considered risk factors associated with mRNA vaccination, while 8 (8%) of the articles covered the issue of mRNA vaccine delivery. In addition, 42% of the articles focused on COVID-19, 17% on cancer, 8% on influenza virus, 4% on COVID-19 and kidney disease, 3% COVID-19 and myocarditis, and 3% on rabies virus, among others. The findings of this systematic and thematic analysis provided the knowledge basis for further research on mRNA vaccines globally.
Collapse
Affiliation(s)
- Hassan H Musa
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,Department of Medical Microbiology, Faculty of Medical Laboratory Sciences, University of Khartoum, Khartoum, Sudan
| | - Taha H Musa
- Biomedical Research Institute, Darfur University College, Nyala, Sudan.,Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing, China
| |
Collapse
|
17
|
Peng Q, Zhou R, Liu N, Wang H, Xu H, Zhao M, Yang D, Au KK, Huang H, Liu L, Chen Z. Naturally occurring spike mutations influence the infectivity and immunogenicity of SARS-CoV-2. Cell Mol Immunol 2022; 19:1302-1310. [PMID: 36224497 PMCID: PMC9554397 DOI: 10.1038/s41423-022-00924-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 08/28/2022] [Indexed: 11/16/2022] Open
Abstract
Mutations in SARS-CoV-2 variants of concern (VOCs) have enhanced transmissibility and immune evasion with respect to current vaccines and neutralizing antibodies (NAbs). How naturally occurring spike mutations affect the infectivity and antigenicity of VOCs remains to be investigated. The entry efficiency of individual spike mutations was determined in vitro using pseudotyped viruses. BALB/c mice were immunized with 2-dose DNA vaccines encoding B.1.1.7, B.1.351, B.1.1.529 and their single mutations. Cellular and humoral immune responses were then compared to determine the impact of individual mutations on immunogenicity. In the B.1.1.7 lineage, Del69-70 and Del 144 in NTD, A570D and P681H in SD1 and S982A and D1118H in S2 significantly increased viral entry, whereas T716I resulted in a decrease. In the B.1.351 lineage, L18F and Del 242-244 in the NTD, K417N in the RBD and A701V in S2 also increased viral entry. S982A weakened the generation of binding antibodies. All sera showed reduced cross-neutralization activity against B.1.351, B.1.617.2 (Delta) and B.1.1.529 (Omicron BA.1). S982A, L18F, and Del 242-244 hindered the induction of cross-NAbs, whereas Del 69-70, Del144, R246I, and K417N showed the opposite effects. B.1.351 elicited adequate broad cross-NAbs against both B.1.351 and B.1.617.2. All immunogens tested, however, showed low neutralization against circulating B.1.1.529. In addition, T-cell responses were unlikely affected by mutations tested in the spike. We conclude that individual spike mutations influence viral infectivity and vaccine immunogenicity. Designing VOC-targeted vaccines is likely necessary to overcome immune evasion from current vaccines and neutralizing antibodies.
Collapse
Affiliation(s)
- Qiaoli Peng
- AIDS Institute, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, PR China
- National Clinical Research Center for Infectious Diseases, HKU AIDS Institute Shenzhen Research Laboratory, The Third People's Hospital of Shenzhen and The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, Guangdong, PR China
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, PR China
| | - Runhong Zhou
- AIDS Institute, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, PR China
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, PR China
- Centre for Virology, Vaccinology and Therapeutics Limited, The University of Hong Kong, Hong Kong Special Administrative Region, PR China
| | - Na Liu
- HKU AIDS Institute Joint Laboratory, Department of Clinical Microbiology and Infection Control, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong, PR China
| | - Hui Wang
- National Clinical Research Center for Infectious Diseases, HKU AIDS Institute Shenzhen Research Laboratory, The Third People's Hospital of Shenzhen and The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, Guangdong, PR China
| | - Haoran Xu
- AIDS Institute, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, PR China
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, PR China
| | - Meiqing Zhao
- AIDS Institute, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, PR China
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, PR China
| | - Dawei Yang
- AIDS Institute, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, PR China
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, PR China
| | - Ka-Kit Au
- AIDS Institute, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, PR China
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, PR China
| | - Haode Huang
- AIDS Institute, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, PR China
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, PR China
| | - Li Liu
- AIDS Institute, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, PR China
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, PR China
- Centre for Virology, Vaccinology and Therapeutics Limited, The University of Hong Kong, Hong Kong Special Administrative Region, PR China
| | - Zhiwei Chen
- AIDS Institute, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, PR China.
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, PR China.
- Centre for Virology, Vaccinology and Therapeutics Limited, The University of Hong Kong, Hong Kong Special Administrative Region, PR China.
- HKU AIDS Institute Joint Laboratory, Department of Clinical Microbiology and Infection Control, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong, PR China.
- State Key Laboratory of Emerging Infectious Disease, The University of Hong Kong, Hong Kong Special Administrative Region, PR China.
| |
Collapse
|
18
|
The Rise and Fall of SARS-CoV-2 Variants and Ongoing Diversification of Omicron. Viruses 2022; 14:v14092009. [PMID: 36146815 PMCID: PMC9505243 DOI: 10.3390/v14092009] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/06/2022] [Accepted: 09/08/2022] [Indexed: 12/12/2022] Open
Abstract
In late December of 2019, high-throughput sequencing technologies enabled rapid identification of SARS-CoV-2 as the etiological agent of COVID-19, and global sequencing efforts are now a critical tool for monitoring the ongoing spread and evolution of this virus. Here, we provide a short retrospective analysis of SARS-CoV-2 variants by analyzing a subset (n = 97,437) of all publicly available SARS-CoV-2 genomes (n = ~11.9 million) that were randomly selected but equally distributed over the course of the pandemic. We plot the appearance of new variants of concern (VOCs) over time and show that the mutation rates in Omicron (BA.1) and Omicron sub-lineages (BA.2–BA.5) are significantly elevated compared to previously identified SARS-CoV-2 variants. Mutations in Omicron are primarily restricted to the spike and nucleocapsid proteins, while 24 other viral proteins—including those involved in SARS-CoV-2 replication—are generally conserved. Collectively, this suggests that the genetic distinction of Omicron primarily arose from selective pressures on the spike, and that the fidelity of replication of this variant has not been altered.
Collapse
|
19
|
Walls AC, VanBlargan LA, Wu K, Choi A, Navarro MJ, Lee D, Avena L, Berrueta DM, Pham MN, Elbashir S, Kraft JC, Miranda MC, Kepl E, Johnson M, Blackstone A, Sprouse K, Fiala B, O'Connor MA, Brunette N, Arunachalam PS, Shirreff L, Rogers K, Carter L, Fuller DH, Villinger F, Pulendran B, Diamond MS, Edwards DK, King NP, Veesler D. Distinct sensitivities to SARS-CoV-2 variants in vaccinated humans and mice. Cell Rep 2022; 40:111299. [PMID: 35988541 PMCID: PMC9376299 DOI: 10.1016/j.celrep.2022.111299] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 05/19/2022] [Accepted: 08/09/2022] [Indexed: 11/03/2022] Open
Abstract
The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in 2019 has led to the development of a large number of vaccines, several of which are now approved for use in humans. Understanding vaccine-elicited antibody responses against emerging SARS-CoV-2 variants of concern (VOCs) in real time is key to inform public health policies. Serum neutralizing antibody titers are the current best correlate of protection from SARS-CoV-2 challenge in non-human primates and a key metric to understand immune evasion of VOCs. We report that vaccinated BALB/c mice do not recapitulate faithfully the breadth and potency of neutralizing antibody responses elicited by various vaccine platforms against VOCs, compared with non-human primates or humans, suggesting caution should be exercised when interpreting data obtained with this animal model.
Collapse
Affiliation(s)
- Alexandra C Walls
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA.
| | - Laura A VanBlargan
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Kai Wu
- Moderna Inc., Cambridge, MA, USA
| | | | - Mary Jane Navarro
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | | | | | | | - Minh N Pham
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | | | - John C Kraft
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Marcos C Miranda
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Elizabeth Kepl
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Max Johnson
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Alyssa Blackstone
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Kaitlin Sprouse
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Brooke Fiala
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Megan A O'Connor
- Department of Microbiology, University of Washington, Seattle, WA 98195, USA; Washington National Primate Research Center, Seattle, WA 98121, USA
| | - Natalie Brunette
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Prabhu S Arunachalam
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford University, Stanford, CA, USA
| | - Lisa Shirreff
- New Iberia Research Center and Department of Biology, University of Louisiana at Lafayette, New Iberia, LA 70560, USA
| | - Kenneth Rogers
- New Iberia Research Center and Department of Biology, University of Louisiana at Lafayette, New Iberia, LA 70560, USA
| | - Lauren Carter
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Deborah H Fuller
- Department of Microbiology, University of Washington, Seattle, WA 98195, USA; Washington National Primate Research Center, Seattle, WA 98121, USA
| | - Francois Villinger
- New Iberia Research Center and Department of Biology, University of Louisiana at Lafayette, New Iberia, LA 70560, USA
| | - Bali Pulendran
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford University, Stanford, CA, USA
| | - Michael S Diamond
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA; Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA; The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO, USA
| | | | - Neil P King
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - David Veesler
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
20
|
Zhang J, Han ZB, Liang Y, Zhang XF, Jin YQ, Du LF, Shao S, Wang H, Hou JW, Xu K, Lei W, Lei ZH, Liu ZM, Zhang J, Hou YN, Liu N, Shen FJ, Wu JJ, Zheng X, Li XY, Li X, Huang WJ, Wu GZ, Su JG, Li QM. A mosaic-type trimeric RBD-based COVID-19 vaccine candidate induces potent neutralization against Omicron and other SARS-CoV-2 variants. eLife 2022; 11:e78633. [PMID: 36004719 PMCID: PMC9481243 DOI: 10.7554/elife.78633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 08/22/2022] [Indexed: 11/29/2022] Open
Abstract
Large-scale populations in the world have been vaccinated with COVID-19 vaccines, however, breakthrough infections of SARS-CoV-2 are still growing rapidly due to the emergence of immune-evasive variants, especially Omicron. It is urgent to develop effective broad-spectrum vaccines to better control the pandemic of these variants. Here, we present a mosaic-type trimeric form of spike receptor-binding domain (mos-tri-RBD) as a broad-spectrum vaccine candidate, which carries the key mutations from Omicron and other circulating variants. Tests in rats showed that the designed mos-tri-RBD, whether used alone or as a booster shot, elicited potent cross-neutralizing antibodies against not only Omicron but also other immune-evasive variants. Neutralizing antibody ID50 titers induced by mos-tri-RBD were substantially higher than those elicited by homo-tri-RBD (containing homologous RBDs from prototype strain) or the BIBP inactivated COVID-19 vaccine (BBIBP-CorV). Our study indicates that mos-tri-RBD is highly immunogenic, which may serve as a broad-spectrum vaccine candidate in combating SARS-CoV-2 variants including Omicron.
Collapse
Affiliation(s)
- Jing Zhang
- The Sixth Laboratory, National Vaccine and Serum Institute (NVSI)BeijingChina
- National Engineering Center for New Vaccine ResearchBeijingChina
| | - Zi Bo Han
- The Sixth Laboratory, National Vaccine and Serum Institute (NVSI)BeijingChina
- National Engineering Center for New Vaccine ResearchBeijingChina
| | - Yu Liang
- The Sixth Laboratory, National Vaccine and Serum Institute (NVSI)BeijingChina
- National Engineering Center for New Vaccine ResearchBeijingChina
| | - Xue Feng Zhang
- The Sixth Laboratory, National Vaccine and Serum Institute (NVSI)BeijingChina
- National Engineering Center for New Vaccine ResearchBeijingChina
| | - Yu Qin Jin
- The Sixth Laboratory, National Vaccine and Serum Institute (NVSI)BeijingChina
| | - Li Fang Du
- The Sixth Laboratory, National Vaccine and Serum Institute (NVSI)BeijingChina
- National Engineering Center for New Vaccine ResearchBeijingChina
| | - Shuai Shao
- The Sixth Laboratory, National Vaccine and Serum Institute (NVSI)BeijingChina
- National Engineering Center for New Vaccine ResearchBeijingChina
| | - Hui Wang
- Beijing Institute of Biological Products Company LimitedBeijingChina
| | - Jun Wei Hou
- The Sixth Laboratory, National Vaccine and Serum Institute (NVSI)BeijingChina
- National Engineering Center for New Vaccine ResearchBeijingChina
| | - Ke Xu
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC)BeijingChina
| | - Wenwen Lei
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC)BeijingChina
| | - Ze Hua Lei
- The Sixth Laboratory, National Vaccine and Serum Institute (NVSI)BeijingChina
- National Engineering Center for New Vaccine ResearchBeijingChina
| | - Zhao Ming Liu
- The Sixth Laboratory, National Vaccine and Serum Institute (NVSI)BeijingChina
- National Engineering Center for New Vaccine ResearchBeijingChina
| | - Jin Zhang
- Beijing Institute of Biological Products Company LimitedBeijingChina
| | - Ya Nan Hou
- The Sixth Laboratory, National Vaccine and Serum Institute (NVSI)BeijingChina
- National Engineering Center for New Vaccine ResearchBeijingChina
| | - Ning Liu
- The Sixth Laboratory, National Vaccine and Serum Institute (NVSI)BeijingChina
- National Engineering Center for New Vaccine ResearchBeijingChina
| | - Fu Jie Shen
- The Sixth Laboratory, National Vaccine and Serum Institute (NVSI)BeijingChina
- National Engineering Center for New Vaccine ResearchBeijingChina
| | - Jin Juan Wu
- The Sixth Laboratory, National Vaccine and Serum Institute (NVSI)BeijingChina
- National Engineering Center for New Vaccine ResearchBeijingChina
| | - Xiang Zheng
- The Sixth Laboratory, National Vaccine and Serum Institute (NVSI)BeijingChina
- National Engineering Center for New Vaccine ResearchBeijingChina
| | - Xin Yu Li
- The Sixth Laboratory, National Vaccine and Serum Institute (NVSI)BeijingChina
- National Engineering Center for New Vaccine ResearchBeijingChina
| | - Xin Li
- The Sixth Laboratory, National Vaccine and Serum Institute (NVSI)BeijingChina
- National Engineering Center for New Vaccine ResearchBeijingChina
| | - Wei Jin Huang
- National Institutes for Food and Drug Control (NIFDC)BeijingChina
| | - Gui Zhen Wu
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC)BeijingChina
| | - Ji Guo Su
- The Sixth Laboratory, National Vaccine and Serum Institute (NVSI)BeijingChina
- National Engineering Center for New Vaccine ResearchBeijingChina
| | - Qi Ming Li
- The Sixth Laboratory, National Vaccine and Serum Institute (NVSI)BeijingChina
- National Engineering Center for New Vaccine ResearchBeijingChina
| |
Collapse
|
21
|
Chen KWK, Tsung-Ning Huang D, Huang LM. SARS-CoV-2 variants - Evolution, spike protein, and vaccines. Biomed J 2022; 45:573-579. [PMID: 35526825 PMCID: PMC9072773 DOI: 10.1016/j.bj.2022.04.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 04/09/2022] [Accepted: 04/29/2022] [Indexed: 12/11/2022] Open
Abstract
Despite the rising natural and vaccines mediated immunity, several countries have experienced a resurgence of the Coronavirus disease of 2019 (COVID-19) due to the emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants. From Alpha to Omicron, the variants of concern (VOC) have evolved several spike protein mutations that may have an impact on virus characteristics, such as transmissibility and antigenicity. In this review, we describe the evolution of SARS-CoV-2, summarize current knowledge of epidemiological and clinical features of the variants, and discuss the response strategies in terms of vaccines to reduce the burden of COVID-19.
Collapse
Affiliation(s)
- Kai-Wei K Chen
- Department of Pediatrics, MacKay Children's Hospital, Taipei, Taiwan
| | - Daniel Tsung-Ning Huang
- Department of Pediatrics, MacKay Children's Hospital, Taipei, Taiwan; Department of Medicine, MacKay Medical College, Taipei, Taiwan
| | - Li-Min Huang
- Department of Pediatrics, National Taiwan University Children's Hospital, National Taiwan University College of Medicine, Taipei, Taiwan.
| |
Collapse
|
22
|
Zarębska-Michaluk D, Hu C, Brzdęk M, Flisiak R, Rzymski P. COVID-19 Vaccine Booster Strategies for Omicron SARS-CoV-2 Variant: Effectiveness and Future Prospects. Vaccines (Basel) 2022; 10:vaccines10081223. [PMID: 36016111 PMCID: PMC9412973 DOI: 10.3390/vaccines10081223] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/25/2022] [Accepted: 07/28/2022] [Indexed: 12/05/2022] Open
Abstract
In the light of the lack of authorized COVID-19 vaccines adapted to the Omicron variant lineage, the administration of the first and second booster dose is recommended. It remains important to monitor the efficacy of such an approach in order to inform future preventive strategies. The present paper summarizes the research progress on the effectiveness of the first and second booster doses of COVID-19. It also discusses the potential approach in vaccination strategies that could be undertaken to maintain high levels of protection during the waves of SARS-CoV-2 infections. Although this approach can be based, with some shortcomings, on the first-generation vaccines, other vaccination strategies should be explored, including developing multiple antigen-based (multivariant-adapted) booster doses with enhanced durability of immune protection, e.g., through optimization of the half-life of generated antibodies.
Collapse
Affiliation(s)
- Dorota Zarębska-Michaluk
- Department of Infectious Diseases, Jan Kochanowski University, 25-369 Kielce, Poland; (D.Z.-M.); (M.B.)
| | - Chenlin Hu
- College of Pharmacy, University of Houston, Houston, TX 77204, USA;
| | - Michał Brzdęk
- Department of Infectious Diseases, Jan Kochanowski University, 25-369 Kielce, Poland; (D.Z.-M.); (M.B.)
| | - Robert Flisiak
- Department of Infectious Diseases and Hepatology, Medical University of Białystok, 15-540 Białystok, Poland;
| | - Piotr Rzymski
- Department of Environmental Medicine, Poznan University of Medical Sciences, 60-806 Poznan, Poland
- Integrated Science Association (ISA), Universal Scientific Education and Research Network (USERN), 60-806 Poznań, Poland
- Correspondence:
| |
Collapse
|
23
|
Zhang M, Hussain A, Yang H, Zhang J, Liang XJ, Huang Y. mRNA-based modalities for infectious disease management. NANO RESEARCH 2022; 16:672-691. [PMID: 35818566 PMCID: PMC9258466 DOI: 10.1007/s12274-022-4627-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/01/2022] [Accepted: 06/03/2022] [Indexed: 06/15/2023]
Abstract
The novel coronavirus disease 2019 (COVID-19) is still rampant all over the world, causing incalculable losses to the world. Major pharmaceutical organizations around the globe are focusing on vaccine research and drug development to prevent further damage caused by the pandemic. The messenger RNA (mRNA) technology has got ample of attention after the success of the two very effective mRNA vaccines during the recent pandemic of COVID-19. mRNA vaccine has been promoted to the core stage of pharmaceutical industry, and the rapid development of mRNA technology has exceeded expectations. Beyond COVID-19, the mRNA vaccine has been tested for various infectious diseases and undergoing clinical trials. Due to the ability of constant mutation, the viral infections demand abrupt responses and immediate production, and therefore mRNA-based technology offers best answers to sudden outbreaks. The need for mRNA-based vaccine became more obvious due to the recent emergence of new Omicron variant. In this review, we summarized the unique properties of mRNA-based vaccines for infectious diseases, delivery technologies, discussed current challenges, and highlighted the prospects of this promising technology in the future. We also discussed various clinical studies as well preclinical studies conducted on mRNA therapeutics for diverse infectious diseases.
Collapse
Affiliation(s)
- Mengjie Zhang
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, School of Medical Technology (Institute of Engineering Medicine), Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing, 100081 China
| | - Abid Hussain
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, School of Medical Technology (Institute of Engineering Medicine), Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing, 100081 China
| | - Haiyin Yang
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, School of Medical Technology (Institute of Engineering Medicine), Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing, 100081 China
| | - Jinchao Zhang
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, College of Chemistry and Environmental Science, Hebei University, Baoding, 071002 China
| | - Xing-Jie Liang
- Chinese Academy of Sciences (CAS) Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology of China, Beijing, 100190 China
| | - Yuanyu Huang
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, School of Medical Technology (Institute of Engineering Medicine), Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing, 100081 China
- School of Materials and the Environment, Beijing Institute of Technology, Zhuhai, 519085 China
| |
Collapse
|
24
|
Shan X, Gong X, Li J, Wen J, Li Y, Zhang Z. Current approaches of nanomedicines in the market and various stage of clinical translation. Acta Pharm Sin B 2022; 12:3028-3048. [PMID: 35865096 PMCID: PMC9293719 DOI: 10.1016/j.apsb.2022.02.025] [Citation(s) in RCA: 104] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 11/16/2021] [Accepted: 02/21/2022] [Indexed: 12/11/2022] Open
Abstract
Compared with traditional drug therapy, nanomedicines exhibit intriguing biological features to increase therapeutic efficiency, reduce toxicity and achieve targeting delivery. This review provides a snapshot of nanomedicines that have been currently launched or in the clinical trials, which manifests a diversified trend in carrier types, applied indications and mechanisms of action. From the perspective of indications, this article presents an overview of the applications of nanomedicines involving the prevention, diagnosis and treatment of various diseases, which include cancer, infections, blood disorders, cardiovascular diseases, immuno-associated diseases and nervous system diseases, etc. Moreover, the review provides some considerations and perspectives in the research and development of nanomedicines to facilitate their translations in clinic.
Collapse
Affiliation(s)
- Xiaoting Shan
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiang Gong
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jie Li
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Yantai Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Materia Medica, Yantai 264000, China
| | - Jingyuan Wen
- School of Pharmacy, University of Auckland, Auckland 1142, New Zealand
| | - Yaping Li
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiwen Zhang
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Yantai Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Materia Medica, Yantai 264000, China
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
25
|
Sui Y, Li J, Andersen H, Zhang R, Prabhu SK, Hoang T, Venzon D, Cook A, Brown R, Teow E, Velasco J, Pessaint L, Moore IN, Lagenaur L, Talton J, Breed MW, Kramer J, Bock KW, Minai M, Nagata BM, Choo-Wosoba H, Lewis MG, Wang LX, Berzofsky JA. An intranasally administrated SARS-CoV-2 beta variant subunit booster vaccine prevents beta variant replication in rhesus macaques. PNAS NEXUS 2022; 1:pgac091. [PMID: 35873792 PMCID: PMC9295201 DOI: 10.1093/pnasnexus/pgac091] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 06/08/2022] [Indexed: 02/05/2023]
Abstract
Emergence of SARS-CoV-2 variants and waning of vaccine/infection-induced immunity pose threats to curbing the COVID-19 pandemic. Effective, safe, and convenient booster vaccines are in need. We hypothesized that a variant-modified mucosal booster vaccine might induce local immunity to prevent SARS-CoV-2 infection at the port of entry. The beta-variant is one of the hardest to cross-neutralize. Herein, we assessed the protective efficacy of an intranasal booster composed of beta variant-spike protein S1 with IL-15 and TLR agonists in previously immunized macaques. The macaques were first vaccinated with Wuhan strain S1 with the same adjuvant. A total of 1 year later, negligibly detectable SARS-CoV-2-specific antibody remained. Nevertheless, the booster induced vigorous humoral immunity including serum- and bronchoalveolar lavage (BAL)-IgG, secretory nasal- and BAL-IgA, and neutralizing antibody against the original strain and/or beta variant. Beta-variant S1-specific CD4+ and CD8+ T cell responses were also elicited in PBMC and BAL. Following SARS-CoV-2 beta variant challenge, the vaccinated group demonstrated significant protection against viral replication in the upper and lower respiratory tracts, with almost full protection in the nasal cavity. The fact that one intranasal beta-variant booster administrated 1 year after the first vaccination provoked protective immunity against beta variant infections may inform future SARS-CoV-2 booster design and administration timing.
Collapse
Affiliation(s)
- Yongjun Sui
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Jianping Li
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | | | - Roushu Zhang
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA
| | - Sunaina K Prabhu
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA
| | - Tanya Hoang
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - David Venzon
- Biostatistics and Data Management Section, Center of for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | | | | | | | | | | | - Ian N Moore
- Infectious Disease Pathogenesis Section, National Institute of Allergy and Infectious Diseases, Rockville, MD 20852, USA
| | - Laurel Lagenaur
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Jim Talton
- Alchem Laboratories, Alachua, FL 32615, USA
| | - Matthew W Breed
- Laboratory Animal Sciences Program, Frederick National Laboratory for Cancer Research, Rockville, MD 20850, USA
| | - Josh Kramer
- Laboratory Animal Sciences Program, Frederick National Laboratory for Cancer Research, Rockville, MD 20850, USA
| | - Kevin W Bock
- Infectious Disease Pathogenesis Section, National Institute of Allergy and Infectious Diseases, Rockville, MD 20852, USA
| | - Mahnaz Minai
- Infectious Disease Pathogenesis Section, National Institute of Allergy and Infectious Diseases, Rockville, MD 20852, USA
| | - Bianca M Nagata
- Infectious Disease Pathogenesis Section, National Institute of Allergy and Infectious Diseases, Rockville, MD 20852, USA
| | - Hyoyoung Choo-Wosoba
- Biostatistics and Data Management Section, Center of for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | | | - Lai-Xi Wang
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA
| | - Jay A Berzofsky
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| |
Collapse
|
26
|
Sun W, He L, Lou H, Fan W, Yang L, Cheng G, Liu W, Sun L. The Cross-Protective Immunity Landscape Among Different SARS-CoV-2 Variant RBDs. Front Immunol 2022; 13:898520. [PMID: 35757743 PMCID: PMC9226324 DOI: 10.3389/fimmu.2022.898520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 05/17/2022] [Indexed: 11/13/2022] Open
Abstract
Despite the fact that SARS-CoV-2 vaccines have been available in most parts of the world, the epidemic status remains grim with new variants emerging and escaping the immune protection of existing vaccines. Therefore, the development of more effective antigens and evaluation of their cross-protective immunity against different SARS-CoV-2 variants are particularly urgent. In this study, we expressed the wild type (WT), Alpha, Beta, Delta, and Lambda RBD proteins to immunize mice and evaluated their cross-neutralizing activity against different pseudoviruses (WT, Alpha, Beta, Delta, Lambda, and Omicron). All monovalent and pentavalent RBD antigens induced high titers of IgG antibodies against different variant RBD antigens. In contrast, WT RBD antigen-induced antibodies showed a lower neutralizing activity against Beta, Delta, Lambda, and Omicron pseudoviruses compared to neutralization against itself. Interestingly, Beta RBD antigen and multivalent antigen induced broader cross-neutralization antibodies than other variant RBD antigens. These data provide a reference for vaccine strain selection and universal COVID-19 vaccine design to fight the constant emergence of new SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Wenqiang Sun
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,Shenzhen Bay Laboratory, Institute of Infectious Diseases, Shenzhen, China.,State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources & Laboratory of Animal Infectious Diseases, College of Animal Sciences and Veterinary Medicine, Guangxi University, Nanning, China
| | - Lihong He
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Huicong Lou
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources & Laboratory of Animal Infectious Diseases, College of Animal Sciences and Veterinary Medicine, Guangxi University, Nanning, China
| | - Wenhui Fan
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Limin Yang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Gong Cheng
- Shenzhen Bay Laboratory, Institute of Infectious Diseases, Shenzhen, China.,Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Wenjun Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,Shenzhen Bay Laboratory, Institute of Infectious Diseases, Shenzhen, China.,State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources & Laboratory of Animal Infectious Diseases, College of Animal Sciences and Veterinary Medicine, Guangxi University, Nanning, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Lei Sun
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
27
|
Abstract
mRNA vaccines have brought about a great revolution in the vaccine fields owing to their simplicity and adaptability in antigen design, potential to induce both humoral and cell-mediated immune responses and demonstrated high efficacy, and rapid and low-cost production by using the same manufacturing platform for different mRNA vaccines. Multiple mRNA vaccines have been investigated for both infectious diseases and cancers, showing significant superiority to other types of vaccines. Although great success of mRNA vaccines has been achieved in the control of the coronavirus disease 2019 pandemic, there are still multiple challenges for the future development of mRNA vaccines. In this review, the most recent developments of mRNA vaccines against both infectious diseases and cancers are summarized for an overview of this field. Moreover, the challenges are also discussed on the basis of these developments.
Collapse
Affiliation(s)
- Jinjin Chen
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts, USA;
| | - Jianzhu Chen
- Koch Institute for Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA;
| | - Qiaobing Xu
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts, USA;
| |
Collapse
|
28
|
Tzeng TT, Chai KM, Shen KY, Yu CY, Yang SJ, Huang WC, Liao HC, Chiu FF, Dou HY, Liao CL, Chen HW, Liu SJ. A DNA vaccine candidate delivered by an electroacupuncture machine provides protective immunity against SARS-CoV-2 infection. NPJ Vaccines 2022; 7:60. [PMID: 35662254 PMCID: PMC9166770 DOI: 10.1038/s41541-022-00482-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 04/28/2022] [Indexed: 11/09/2022] Open
Abstract
A major challenge in the use of DNA vaccines is efficient DNA delivery in vivo. Establishing a safe and efficient electric transfer method is the key to developing rapid DNA vaccines against emerging infectious diseases. To overcome the complexity of designing new electric transfer machines for DNA delivery, a clinically approved electric transfer machine could be considered as an alternative. Here, we report an electroacupuncture machine-based method for DNA vaccine delivery after intramuscular injection of the COVID-19 DNA vaccine. The S gene of SARS-CoV-2 in the pVAX1 plasmid (pSARS2-S) was used as an antigen in this study. We optimized the clinically used electroacupuncture machine settings for efficient induction of the neutralizing antibody titer after intramuscular injection of pSARS2-S in mice. We found that pSARS2-S immunization at 40 Vpp for 3-5 s could induce high neutralizing antibody titers and Th1-biased immune responses. IFN-γ/TNF-α-secreting CD4+ and CD8+ T cells were also observed in the DNA vaccination group but not in the recombinant protein vaccination group. T-cell epitope mapping shows that the major reactive epitopes were located in the N-terminal domain (a.a. 261-285) and receptor-binding domain (a.a. 352-363). Importantly, pSARS2-S immunization in hamsters could induce protective immunity against SARS-CoV-2 challenge in vivo. In the preclinical toxicology study, blood biochemistry, hematology, and DNA persistence analysis reveal that the DNA delivery method is safe. Furthermore, the raised antisera could also cross-neutralize different variants of concern. These findings suggest that DNA vaccination using an electroacupuncture machine is feasible for use in humans in the future.
Collapse
Affiliation(s)
- Tsai-Teng Tzeng
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Kit Man Chai
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Kuan-Yin Shen
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Chia-Yi Yu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Shiu-Ju Yang
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Wan-Chun Huang
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Hung-Chun Liao
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
- Department of Life Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Fang-Feng Chiu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Horng-Yunn Dou
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Ching-Len Liao
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Hsin-Wei Chen
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan.
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan.
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
| | - Shih-Jen Liu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan.
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan.
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
| |
Collapse
|
29
|
Laurie MT, Liu J, Sunshine S, Peng J, Black D, Mitchell AM, Mann SA, Pilarowski G, Zorn KC, Rubio L, Bravo S, Marquez C, Sabatino JJ, Mittl K, Petersen M, Havlir D, DeRisi J. SARS-CoV-2 Variant Exposures Elicit Antibody Responses With Differential Cross-Neutralization of Established and Emerging Strains Including Delta and Omicron. J Infect Dis 2022; 225:1909-1914. [PMID: 34979030 PMCID: PMC8755395 DOI: 10.1093/infdis/jiab635] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 12/31/2021] [Indexed: 11/26/2022] Open
Abstract
The wide spectrum of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants with phenotypes impacting transmission and antibody sensitivity necessitates investigation of immune responses to different spike protein versions. Here, we compare neutralization of variants of concern, including B.1.617.2 (delta) and B.1.1.529 (omicron), in sera from individuals exposed to variant infection, vaccination, or both. We demonstrate that neutralizing antibody responses are strongest against variants sharing certain spike mutations with the immunizing exposure, and exposure to multiple spike variants increases breadth of variant cross-neutralization. These findings contribute to understanding relationships between exposures and antibody responses and may inform booster vaccination strategies.
Collapse
Affiliation(s)
- Matthew T Laurie
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, USA
| | - Jamin Liu
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, USA
- University of California Berkeley-University of California San Francisco Graduate Program in Bioengineering, Berkeley, California, USA
| | - Sara Sunshine
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, USA
| | - James Peng
- Department of Medicine, University of California San Francisco, San Francisco, California, USA
| | - Douglas Black
- Department of Medicine, University of California San Francisco, San Francisco, California, USA
| | - Anthea M Mitchell
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, USA
- Chan Zuckerberg Biohub, San Francisco, California, USA
| | - Sabrina A Mann
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, USA
- Chan Zuckerberg Biohub, San Francisco, California, USA
| | - Genay Pilarowski
- The Public Health Company, Oakland, California, USA
- Unidos en Salud, San Francisco, California, USA
| | - Kelsey C Zorn
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, USA
| | - Luis Rubio
- Department of Medicine, University of California San Francisco, San Francisco, California, USA
| | - Sara Bravo
- Unidos en Salud, San Francisco, California, USA
| | - Carina Marquez
- Department of Medicine, University of California San Francisco, San Francisco, California, USA
| | - Joseph J Sabatino
- Weill Institute for Neurosciences, Department of Neurology, San Francisco, California, USA
| | - Kristen Mittl
- Weill Institute for Neurosciences, Department of Neurology, San Francisco, California, USA
| | - Maya Petersen
- Division of Biostatistics, University of California Berkeley, Berkeley, California, USA
| | - Diane Havlir
- Department of Medicine, University of California San Francisco, San Francisco, California, USA
| | - Joseph DeRisi
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, USA
- Chan Zuckerberg Biohub, San Francisco, California, USA
| |
Collapse
|
30
|
Qin S, Tang X, Chen Y, Chen K, Fan N, Xiao W, Zheng Q, Li G, Teng Y, Wu M, Song X. mRNA-based therapeutics: powerful and versatile tools to combat diseases. Signal Transduct Target Ther 2022; 7:166. [PMID: 35597779 PMCID: PMC9123296 DOI: 10.1038/s41392-022-01007-w] [Citation(s) in RCA: 219] [Impact Index Per Article: 109.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 04/04/2022] [Accepted: 04/19/2022] [Indexed: 02/06/2023] Open
Abstract
The therapeutic use of messenger RNA (mRNA) has fueled great hope to combat a wide range of incurable diseases. Recent rapid advances in biotechnology and molecular medicine have enabled the production of almost any functional protein/peptide in the human body by introducing mRNA as a vaccine or therapeutic agent. This represents a rising precision medicine field with great promise for preventing and treating many intractable or genetic diseases. In addition, in vitro transcribed mRNA has achieved programmed production, which is more effective, faster in design and production, as well as more flexible and cost-effective than conventional approaches that may offer. Based on these extraordinary advantages, mRNA vaccines have the characteristics of the swiftest response to large-scale outbreaks of infectious diseases, such as the currently devastating pandemic COVID-19. It has always been the scientists’ desire to improve the stability, immunogenicity, translation efficiency, and delivery system to achieve efficient and safe delivery of mRNA. Excitingly, these scientific dreams have gradually been realized with the rapid, amazing achievements of molecular biology, RNA technology, vaccinology, and nanotechnology. In this review, we comprehensively describe mRNA-based therapeutics, including their principles, manufacture, application, effects, and shortcomings. We also highlight the importance of mRNA optimization and delivery systems in successful mRNA therapeutics and discuss the key challenges and opportunities in developing these tools into powerful and versatile tools to combat many genetic, infectious, cancer, and other refractory diseases.
Collapse
Affiliation(s)
- Shugang Qin
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoshan Tang
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yuting Chen
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Kepan Chen
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Na Fan
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Wen Xiao
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Qian Zheng
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Guohong Li
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yuqing Teng
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Min Wu
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, 58203, USA
| | - Xiangrong Song
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
31
|
Alagheband Bahrami A, Azargoonjahromi A, Sadraei S, Aarabi A, Payandeh Z, Rajabibazl M. An overview of current drugs and prophylactic vaccines for coronavirus disease 2019 (COVID-19). Cell Mol Biol Lett 2022; 27:38. [PMID: 35562685 PMCID: PMC9100302 DOI: 10.1186/s11658-022-00339-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 04/21/2022] [Indexed: 02/06/2023] Open
Abstract
Designing and producing an effective vaccine is the best possible way to reduce the burden and spread of a disease. During the coronavirus disease 2019 (COVID-19) pandemic, many large pharmaceutical and biotechnology companies invested a great deal of time and money in trying to control and combat the disease. In this regard, due to the urgent need, many vaccines are now available earlier than scheduled. Based on their manufacturing technology, the vaccines available for COVID-19 (severe acute respiratory syndrome coronavirus 2 (SAR-CoV2)) infection can be classified into four platforms: RNA vaccines, adenovirus vector vaccines, subunit (protein-based) vaccines, and inactivated virus vaccines. Moreover, various drugs have been deemed to negatively affect the progression of the infection via various actions. However, adaptive variants of the SARS-CoV-2 genome can alter the pathogenic potential of the virus and increase the difficulty of both drug and vaccine development. In this review, along with drugs used in COVID-19 treatment, currently authorized COVID-19 vaccines as well as variants of the virus are described and evaluated, considering all platforms.
Collapse
Affiliation(s)
- Armina Alagheband Bahrami
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Samin Sadraei
- Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Aryan Aarabi
- Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Payandeh
- Department Medical Biochemistry and Biophysics, Division Medical Inflammation Research, Karolinska Institute, Stockholm, Sweden
| | - Masoumeh Rajabibazl
- Department of Clinical Biochemistry, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
32
|
El Karoui K, De Vriese AS. COVID-19 in dialysis: clinical impact, immune response, prevention, and treatment. Kidney Int 2022; 101:883-894. [PMID: 35176326 PMCID: PMC8842412 DOI: 10.1016/j.kint.2022.01.022] [Citation(s) in RCA: 79] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 01/01/2022] [Accepted: 01/20/2022] [Indexed: 01/07/2023]
Abstract
The COVID-19 pandemic has profound adverse effects on the population on dialysis. Patients requiring dialysis are at an increased risk of SARS-CoV-2 infection and mortality, and many have experienced psychological distress as well as delayed or suboptimal care. COVID-19 survivors have prolonged viral shedding, but generally develop a robust and long-lasting humoral immune response that correlates with initial disease severity. However, protection against reinfection is incomplete. A growing body of evidence reveals delayed and blunted immune responses to SARS-CoV-2 vaccination. Administration of a third dose within 1 to 2 months of prime-boost vaccination significantly increases antibody levels, in particular in patients with poor initial responses. Patients on dialysis have inferior immune responses to adenoviral vector vaccines than to mRNA vaccines. The immunogenicity of the mRNA-1273 vaccine is markedly better than that of the BNT162b2 vaccine, most likely by virtue of its higher mRNA content. Despite suboptimal immune responses in patients on dialysis, preliminary data suggest that vaccination partially protects against infection and severe disease requiring hospitalization. However, progressive waning of immunity and emergence of SARS-CoV-2 variants with a high potential of immune escape call for a booster dose in all patients on dialysis 4 to 6 months after prime-boost vaccination. Patients with persistent poor vaccine responses may be candidates for primary prophylaxis strategies. In the absence of specific data in patients on dialysis, therapeutic strategies in the event of established COVID-19 must be extrapolated from evidence obtained in the population not on dialysis. Neutralizing monoclonal antibodies may be an attractive option after a high-risk exposure or during the early course of infection.
Collapse
Affiliation(s)
- Khalil El Karoui
- Department of Nephrology and Transplantation, Hôpitaux Universitaires Henri Mondor, Fédération Hospitalo-Universitaire TRUE, Université Paris Est, Créteil, France
| | - An S De Vriese
- Division of Nephrology and Infectious Diseases, AZ Sint-Jan Brugge-Oostende AV, Brugge, Belgium; Department of Internal Medicine, Ghent University, Ghent, Belgium.
| |
Collapse
|
33
|
Wang R, Sun C, Ma J, Yu C, Kong D, Chen M, Liu X, Zhao D, Gao S, Kou S, Sun L, Ge Z, Zhao J, Li K, Zhang T, Zhang Y, Luo C, Li X, Wang Y, Xie L. A Bivalent COVID-19 Vaccine Based on Alpha and Beta Variants Elicits Potent and Broad Immune Responses in Mice against SARS-CoV-2 Variants. Vaccines (Basel) 2022; 10:vaccines10050702. [PMID: 35632456 PMCID: PMC9143086 DOI: 10.3390/vaccines10050702] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/13/2022] [Accepted: 04/22/2022] [Indexed: 02/04/2023] Open
Abstract
With the emergence and rapid spread of new pandemic variants, especially variants of concern (VOCs), the development of next-generation vaccines with broad-spectrum neutralizing activities is of great importance. In this study, SCTV01C, a clinical stage bivalent vaccine based on trimeric spike extracellular domain (S-ECD) of SARS-CoV-2 variants Alpha (B.1.1.7) and Beta (B.1.351) with a squalene-based oil-in-water adjuvant was evaluated in comparison to its two corresponding (Alpha and Beta) monovalent vaccines in mouse immunogenicity studies. The two monovalent vaccines induced potent neutralizing antibody responses against the antigen-matched variants, but drastic reductions in neutralizing antibody titers against antigen-mismatched variants were observed. In comparison, the bivalent vaccine SCTV01C induced relatively higher and broad-spectrum cross-neutralizing activities against various SARS-CoV-2 variants, including the D614G variant, VOCs (B.1.1.7, B.1.351, P.1, B.1.617.2, B.1.1.529), variants of interest (VOIs) (C.37, B.1.621), variants under monitoring (VUMs) (B.1.526, B.1.617.1, B.1.429, C.36.3) and other variants (B.1.618, 20I/484Q). All three vaccines elicited potent Th1-biased T-cell immune responses. These results provide direct evidence that variant-based multivalent vaccines could play important roles in addressing the critical issue of reduced protective efficacy against the existing and emerging SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Rui Wang
- Beijing Engineering Research Center of Protein and Antibody, Sinocelltech Ltd., Beijing 100176, China; (R.W.); (C.S.); (J.M.); (C.Y.); (D.K.); (M.C.); (X.L.); (D.Z.); (S.G.); (S.K.); (L.S.); (Z.G.); (J.Z.); (K.L.); (T.Z.); (Y.Z.); (C.L.); (X.L.); (Y.W.)
| | - Chunyun Sun
- Beijing Engineering Research Center of Protein and Antibody, Sinocelltech Ltd., Beijing 100176, China; (R.W.); (C.S.); (J.M.); (C.Y.); (D.K.); (M.C.); (X.L.); (D.Z.); (S.G.); (S.K.); (L.S.); (Z.G.); (J.Z.); (K.L.); (T.Z.); (Y.Z.); (C.L.); (X.L.); (Y.W.)
| | - Juan Ma
- Beijing Engineering Research Center of Protein and Antibody, Sinocelltech Ltd., Beijing 100176, China; (R.W.); (C.S.); (J.M.); (C.Y.); (D.K.); (M.C.); (X.L.); (D.Z.); (S.G.); (S.K.); (L.S.); (Z.G.); (J.Z.); (K.L.); (T.Z.); (Y.Z.); (C.L.); (X.L.); (Y.W.)
| | - Chulin Yu
- Beijing Engineering Research Center of Protein and Antibody, Sinocelltech Ltd., Beijing 100176, China; (R.W.); (C.S.); (J.M.); (C.Y.); (D.K.); (M.C.); (X.L.); (D.Z.); (S.G.); (S.K.); (L.S.); (Z.G.); (J.Z.); (K.L.); (T.Z.); (Y.Z.); (C.L.); (X.L.); (Y.W.)
| | - Desheng Kong
- Beijing Engineering Research Center of Protein and Antibody, Sinocelltech Ltd., Beijing 100176, China; (R.W.); (C.S.); (J.M.); (C.Y.); (D.K.); (M.C.); (X.L.); (D.Z.); (S.G.); (S.K.); (L.S.); (Z.G.); (J.Z.); (K.L.); (T.Z.); (Y.Z.); (C.L.); (X.L.); (Y.W.)
| | - Meng Chen
- Beijing Engineering Research Center of Protein and Antibody, Sinocelltech Ltd., Beijing 100176, China; (R.W.); (C.S.); (J.M.); (C.Y.); (D.K.); (M.C.); (X.L.); (D.Z.); (S.G.); (S.K.); (L.S.); (Z.G.); (J.Z.); (K.L.); (T.Z.); (Y.Z.); (C.L.); (X.L.); (Y.W.)
| | - Xuejie Liu
- Beijing Engineering Research Center of Protein and Antibody, Sinocelltech Ltd., Beijing 100176, China; (R.W.); (C.S.); (J.M.); (C.Y.); (D.K.); (M.C.); (X.L.); (D.Z.); (S.G.); (S.K.); (L.S.); (Z.G.); (J.Z.); (K.L.); (T.Z.); (Y.Z.); (C.L.); (X.L.); (Y.W.)
| | - Dandan Zhao
- Beijing Engineering Research Center of Protein and Antibody, Sinocelltech Ltd., Beijing 100176, China; (R.W.); (C.S.); (J.M.); (C.Y.); (D.K.); (M.C.); (X.L.); (D.Z.); (S.G.); (S.K.); (L.S.); (Z.G.); (J.Z.); (K.L.); (T.Z.); (Y.Z.); (C.L.); (X.L.); (Y.W.)
| | - Shuman Gao
- Beijing Engineering Research Center of Protein and Antibody, Sinocelltech Ltd., Beijing 100176, China; (R.W.); (C.S.); (J.M.); (C.Y.); (D.K.); (M.C.); (X.L.); (D.Z.); (S.G.); (S.K.); (L.S.); (Z.G.); (J.Z.); (K.L.); (T.Z.); (Y.Z.); (C.L.); (X.L.); (Y.W.)
| | - Shuyuan Kou
- Beijing Engineering Research Center of Protein and Antibody, Sinocelltech Ltd., Beijing 100176, China; (R.W.); (C.S.); (J.M.); (C.Y.); (D.K.); (M.C.); (X.L.); (D.Z.); (S.G.); (S.K.); (L.S.); (Z.G.); (J.Z.); (K.L.); (T.Z.); (Y.Z.); (C.L.); (X.L.); (Y.W.)
| | - Lili Sun
- Beijing Engineering Research Center of Protein and Antibody, Sinocelltech Ltd., Beijing 100176, China; (R.W.); (C.S.); (J.M.); (C.Y.); (D.K.); (M.C.); (X.L.); (D.Z.); (S.G.); (S.K.); (L.S.); (Z.G.); (J.Z.); (K.L.); (T.Z.); (Y.Z.); (C.L.); (X.L.); (Y.W.)
| | - Zeyong Ge
- Beijing Engineering Research Center of Protein and Antibody, Sinocelltech Ltd., Beijing 100176, China; (R.W.); (C.S.); (J.M.); (C.Y.); (D.K.); (M.C.); (X.L.); (D.Z.); (S.G.); (S.K.); (L.S.); (Z.G.); (J.Z.); (K.L.); (T.Z.); (Y.Z.); (C.L.); (X.L.); (Y.W.)
| | - Jun Zhao
- Beijing Engineering Research Center of Protein and Antibody, Sinocelltech Ltd., Beijing 100176, China; (R.W.); (C.S.); (J.M.); (C.Y.); (D.K.); (M.C.); (X.L.); (D.Z.); (S.G.); (S.K.); (L.S.); (Z.G.); (J.Z.); (K.L.); (T.Z.); (Y.Z.); (C.L.); (X.L.); (Y.W.)
| | - Kuokuo Li
- Beijing Engineering Research Center of Protein and Antibody, Sinocelltech Ltd., Beijing 100176, China; (R.W.); (C.S.); (J.M.); (C.Y.); (D.K.); (M.C.); (X.L.); (D.Z.); (S.G.); (S.K.); (L.S.); (Z.G.); (J.Z.); (K.L.); (T.Z.); (Y.Z.); (C.L.); (X.L.); (Y.W.)
| | - Tao Zhang
- Beijing Engineering Research Center of Protein and Antibody, Sinocelltech Ltd., Beijing 100176, China; (R.W.); (C.S.); (J.M.); (C.Y.); (D.K.); (M.C.); (X.L.); (D.Z.); (S.G.); (S.K.); (L.S.); (Z.G.); (J.Z.); (K.L.); (T.Z.); (Y.Z.); (C.L.); (X.L.); (Y.W.)
| | - Yanjing Zhang
- Beijing Engineering Research Center of Protein and Antibody, Sinocelltech Ltd., Beijing 100176, China; (R.W.); (C.S.); (J.M.); (C.Y.); (D.K.); (M.C.); (X.L.); (D.Z.); (S.G.); (S.K.); (L.S.); (Z.G.); (J.Z.); (K.L.); (T.Z.); (Y.Z.); (C.L.); (X.L.); (Y.W.)
| | - Chunxia Luo
- Beijing Engineering Research Center of Protein and Antibody, Sinocelltech Ltd., Beijing 100176, China; (R.W.); (C.S.); (J.M.); (C.Y.); (D.K.); (M.C.); (X.L.); (D.Z.); (S.G.); (S.K.); (L.S.); (Z.G.); (J.Z.); (K.L.); (T.Z.); (Y.Z.); (C.L.); (X.L.); (Y.W.)
| | - Xuefeng Li
- Beijing Engineering Research Center of Protein and Antibody, Sinocelltech Ltd., Beijing 100176, China; (R.W.); (C.S.); (J.M.); (C.Y.); (D.K.); (M.C.); (X.L.); (D.Z.); (S.G.); (S.K.); (L.S.); (Z.G.); (J.Z.); (K.L.); (T.Z.); (Y.Z.); (C.L.); (X.L.); (Y.W.)
| | - Yang Wang
- Beijing Engineering Research Center of Protein and Antibody, Sinocelltech Ltd., Beijing 100176, China; (R.W.); (C.S.); (J.M.); (C.Y.); (D.K.); (M.C.); (X.L.); (D.Z.); (S.G.); (S.K.); (L.S.); (Z.G.); (J.Z.); (K.L.); (T.Z.); (Y.Z.); (C.L.); (X.L.); (Y.W.)
| | - Liangzhi Xie
- Beijing Engineering Research Center of Protein and Antibody, Sinocelltech Ltd., Beijing 100176, China; (R.W.); (C.S.); (J.M.); (C.Y.); (D.K.); (M.C.); (X.L.); (D.Z.); (S.G.); (S.K.); (L.S.); (Z.G.); (J.Z.); (K.L.); (T.Z.); (Y.Z.); (C.L.); (X.L.); (Y.W.)
- Cell Culture Engineering Center, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100176, China
- Correspondence: ; Tel.: +86-010-58628378; Fax: +86-010-58628299
| |
Collapse
|
34
|
Guo D, Duan H, Cheng Y, Wang Y, Hu J, Shi H. Omicron-included mutation-induced changes in epitopes of SARS-CoV-2 spike protein and effectiveness assessments of current antibodies. MOLECULAR BIOMEDICINE 2022; 3:12. [PMID: 35461370 PMCID: PMC9034971 DOI: 10.1186/s43556-022-00074-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 03/25/2022] [Indexed: 02/08/2023] Open
Abstract
The COVID-19 pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is spreading globally and continues to rage, posing a serious threat to human health and life quality. Antibody therapy and vaccines both have shown great efficacy in the prevention and treatment of COVID-19, whose development progress and adaptation range have attracted wide attention. However, with the emergence of variant strains of SARS-CoV-2, the neutralization activity of therapeutic or vaccine-induced antibodies may be reduced, requiring long-term virus monitoring and drug upgrade in response to its evolution. In this paper, conformational changes including continuous epitopes (CPs), discontinuous epitopes (DPs) and recognition interfaces of the three representative SARS-CoV-2 spike protein (SP) mutants (i.e., the Delta (B.1.617.2), Mu (B.1.621) and Omicron (B.1.1.529) strains), were analyzed to evaluate the effectiveness of current mainstream antibodies. The results showed that the conformation of SP wild type (WT) and mutants both remained stable, while the local antigenic epitopes underwent significant changes. Sufficient flexibility of SP CPs is critical for effective antibody recognition. The DPs of Delta, Mu and Omicron variants have showed stronger binding to human angiotensin converting enzyme-2 (hACE2) than WT; the possible drug resistance mechanisms of antibodies against three different epitopes (i.e., NTD_DP, RBD1_DP and RBD2_DP) were also proposed, respectively; the RBD2 of Delta, NTD of Mu, NTD and RBD2 of Omicron are deserve more attention in the subsequent design of next-generation vaccines. The simulation results not only revealed structural characteristics of SP antigenic epitopes, but also provided guidance for antibody modification, vaccine design and effectiveness evaluation.
Collapse
Affiliation(s)
- Du Guo
- Laboratory of Tumor Targeted and Immune Therapy, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, 610041, China
| | - Huaichuan Duan
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, School of Pharmacy, Chengdu University, Chengdu, 610106, China
| | - Yan Cheng
- Laboratory of Tumor Targeted and Immune Therapy, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, 610041, China
| | - Yueteng Wang
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, School of Pharmacy, Chengdu University, Chengdu, 610106, China
| | - Jianping Hu
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, School of Pharmacy, Chengdu University, Chengdu, 610106, China.
| | - Hubing Shi
- Laboratory of Tumor Targeted and Immune Therapy, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, 610041, China.
| |
Collapse
|
35
|
Chen R, Zhang X, Yuan Y, Deng X, Wu B, Xi Z, Wang G, Lin Y, Li R, Wang X, Zou F, Liang L, Yan H, Liang C, Li Y, Wu S, Deng J, Zhou M, Zhang X, Li C, Bu X, Peng Y, Ke C, Deng K, He X, Zhang Y, Zhang Z, Pan T, Zhang H. Development of Receptor Binding Domain (RBD)-Conjugated Nanoparticle Vaccines with Broad Neutralization against SARS-CoV-2 Delta and Other Variants. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105378. [PMID: 35142444 PMCID: PMC9008796 DOI: 10.1002/advs.202105378] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/21/2022] [Indexed: 05/14/2023]
Abstract
The SARS-CoV-2 Delta (B.1.617.2) strain is a variant of concern (VOC) that has become the dominant strain worldwide in 2021. Its transmission capacity is approximately twice that of the original strain, with a shorter incubation period and higher viral load during infection. Importantly, the breakthrough infections of the Delta variant have continued to emerge in the first-generation vaccine recipients. There is thus an urgent need to develop a novel vaccine with SARS-CoV-2 variants as the major target. Here, receptor binding domain (RBD)-conjugated nanoparticle vaccines targeting the Delta variant, as well as the early and Beta/Gamma strains, are developed. Under both a single-dose and a prime-boost strategy, these RBD-conjugated nanoparticle vaccines induce the abundant neutralizing antibodies (NAbs) and significantly protect hACE2 mice from infection by the authentic SARS-CoV-2 Delta strain, as well as the early and Beta strains. Furthermore, the elicitation of the robust production of broader cross-protective NAbs against almost all the notable SARS-CoV-2 variants including the Omicron variant in rhesus macaques by the third re-boost with trivalent vaccines is found. These results suggest that RBD-based monovalent or multivalent nanoparticle vaccines provide a promising second-generation vaccine strategy for SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Ran Chen
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Xiantao Zhang
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Yaochang Yuan
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Xiaohui Deng
- Center for Infection and Immunity Study, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Bolin Wu
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Zhihui Xi
- Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510080, China
| | - Guanwen Wang
- Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510080, China
| | - Yingtong Lin
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Rong Li
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Xuemei Wang
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Fan Zou
- Qianyang Biomedical Research Institute, Guangzhou, Guangdong, 510063, China
| | - Liting Liang
- Qianyang Biomedical Research Institute, Guangzhou, Guangdong, 510063, China
| | - Haiping Yan
- Department of Gastroenterology, The Eight Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, 518033, China
| | - Chaofeng Liang
- Guangzhou National Laboratory, Bio-Island, Guangzhou, Guangdong, 510320, China
| | - Yuzhuang Li
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Shijian Wu
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Jieyi Deng
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Mo Zhou
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Xu Zhang
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Congrong Li
- BSL-3 Laboratory, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Xiuqing Bu
- BSL-3 Laboratory, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Yi Peng
- BSL-3 Laboratory, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Changwen Ke
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, 511430, China
| | - Kai Deng
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
- BSL-3 Laboratory, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
- Department of Immunology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Xin He
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Yiwen Zhang
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Zhenhai Zhang
- Center for Precision Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Ting Pan
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
- Center for Infection and Immunity Study, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Hui Zhang
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
- Guangzhou National Laboratory, Bio-Island, Guangzhou, Guangdong, 510320, China
| |
Collapse
|
36
|
Pajon R, Paila YD, Girard B, Dixon G, Kacena K, Baden LR, El Sahly HM, Essink B, Mullane KM, Frank I, Denhan D, Kerwin E, Zhao X, Ding B, Deng W, Tomassini JE, Zhou H, Leav B, Schödel F. Initial analysis of viral dynamics and circulating viral variants during the mRNA-1273 Phase 3 COVE trial. Nat Med 2022; 28:823-830. [PMID: 35145311 PMCID: PMC9018421 DOI: 10.1038/s41591-022-01679-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 01/04/2022] [Indexed: 12/14/2022]
Abstract
The mRNA-1273 vaccine for coronavirus disease 2019 (COVID-19) demonstrated 93.2% efficacy in reduction of symptomatic severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections in the blinded portion of the Phase 3 Coronavirus Efficacy (COVE) trial. While mRNA-1273 demonstrated high efficacy in prevention of COVID-19, including severe disease, its effect on the viral dynamics of SARS-CoV-2 infections is not understood. Here, in exploratory analyses, we assessed the impact of mRNA-1273 vaccination in the ongoing COVE trial (number NCT04470427) on SARS-CoV-2 copy number and shedding, burden of disease and infection, and viral variants. Viral variants were sequenced in all COVID-19 and adjudicated COVID-19 cases (n = 832), from July 2020 in the blinded part A of the study to May 2021 of the open-label part B of the study, in which participants in the placebo arm started to receive the mRNA-1273 vaccine after US Food and Drug Administration emergency use authorization of mRNA-1273 in December 2020. mRNA-1273 vaccination significantly reduced SARS-CoV-2 viral copy number (95% confidence interval) by 100-fold on the day of diagnosis compared with placebo (4.1 (3.4-4.8) versus 6.2 (6.0-6.4) log10 copies per ml). Median times to undetectable viral copies were 4 days for mRNA-1273 and 7 days for placebo. Vaccination also substantially reduced the burden of disease and infection scores. Vaccine efficacies (95% confidence interval) against SARS-CoV-2 variants circulating in the United States during the trial assessed in this post hoc analysis were 82.4% (40.4-94.8%) for variants Epsilon and Gamma and 81.2% (36.1-94.5%) for Epsilon. The detection of other, non-SARS-CoV-2, respiratory viruses during the trial was similar between groups. While additional study is needed, these data show that in SARS-CoV-2-infected individuals, vaccination reduced both the viral copy number and duration of detectable viral RNA, which may be markers for the risk of virus transmission.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Ian Frank
- University of Pennsylvania, Philadelphia, PA, USA
| | | | - Edward Kerwin
- Criscor Clinical Research Institute, Medford, OR, USA
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Young M, Crook H, Scott J, Edison P. Covid-19: virology, variants, and vaccines. BMJ MEDICINE 2022; 1:e000040. [PMID: 36936563 PMCID: PMC9951271 DOI: 10.1136/bmjmed-2021-000040] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 03/01/2022] [Indexed: 12/12/2022]
Abstract
As of 25 January 2022, over 349 million individuals have received a confirmed diagnosis of covid-19, with over 5.59 million confirmed deaths associated with the SARS-CoV-2 virus. The covid-19 pandemic has prompted an extensive global effort to study the molecular evolution of the virus and develop vaccines to prevent its spread. Although rigorous determination of SARS-CoV-2 infectivity remains elusive, owing to the continuous evolution of the virus, steps have been made to understand its genome, structure, and emerging genetic mutations. The SARS-CoV-2 genome is composed of several open reading frames and structural proteins, including the spike protein, which is essential for entry into host cells. As of 25 January 2022, the World Health Organization has reported five variants of concern, two variants of interest, and three variants under monitoring. Additional sublineages have since been identified, and are being monitored. The mutations harboured in these variants confer an increased transmissibility, severity of disease, and escape from neutralising antibodies compared with the primary strain. The current vaccine strategy, including booster doses, provides protection from severe disease. As of 24 January 2022, 33 vaccines have been approved for use in 197 countries. In this review, we discuss the genetics, structure, and transmission methods of SARS-CoV-2 and its variants, highlighting how mutations provide enhanced abilities to spread and inflict disease. This review also outlines the vaccines currently in use around the world, providing evidence for every vaccine's immunogenicity and effectiveness.
Collapse
Affiliation(s)
- Megan Young
- Faculty of Medicine, Imperial College London, London, UK
| | - Harry Crook
- Faculty of Medicine, Imperial College London, London, UK
| | - Janet Scott
- Centre for Virus Research, University of Glasgow, Glasgow, UK
| | - Paul Edison
- Faculty of Medicine, Imperial College London, London, UK
- School of Medicine, Cardiff University, Cardiff, South Glamorgan, Wales, UK
| |
Collapse
|
38
|
Akamine CM, El Sahly HM. Messenger ribonucleic acid vaccines for severe acute respiratory syndrome coronavirus-2 - a review. Transl Res 2022; 242:1-19. [PMID: 34954088 PMCID: PMC8695521 DOI: 10.1016/j.trsl.2021.12.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 12/16/2021] [Accepted: 12/17/2021] [Indexed: 02/07/2023]
Abstract
The mRNA therapeutics have been studied since the 1970s and the currently available mRNA vaccines against COVID-19 are the culmination of decades of scientific research. The mRNA vaccines BNT162b2 and mRNA-1273 have played a key role in our global response to the COVID-19 pandemic as they have demonstrated significant advantages over conventional vaccines and have proven to be highly effective against COVID-19 associated hospitalization and severe illness in large clinical trials and studies using real-world data.
Collapse
Key Words
- covid-19, coronavirus disease of 2019
- sars-cov-2, severe acute respiratory syndrome coronavirus 2
- mrna, messenger ribonucleic acid
- lnp, liposomal nanoparticle
- sam, self-amplifying mrna
- dsrna, double-stranded rna
- ad5, adenovirus type 5
- apcs, antigen presenting cells
- rbd, receptor-binding domain
- mers-cov, middle east respiratory syndrome coronavirus
- gmt, geometric mean titer
- bmi, body mass index
- eua, emergency use authorization
- cdc, centers for disease control
- b.1.1.7, alpha variant
- b.1.351, beta variant
- covid-net, covid-19-associated hospitalization surveillance network
- voc, variants of concern
- utr, untranslated regions
- pamps, pathogen-associated molecular patterns
- mhc, major histocompatibility complex
- dcs, dendritic cells
- ace-2, angiotensin converting enzyme receptor
- cvncov, curevac
- gmc, geometric mean concentration
- fda, food and drug administration
- vaers, vaccine adverse event reporting system
- bau, binding antibody units
- dna, deoxyribonucleic acid
- trna, transfer ribonucleic acid
- prnt50, plaque reduction neutralization test
- nab, neutralizing antibodies
- bla, biologics license application
- ve, vaccine efficacy
- vsd, vaccine safety datalink
- va, department of veterans affairs
Collapse
Affiliation(s)
| | - Hana M El Sahly
- Baylor College of Medicine, One Baylor Plaza, Houston, Texas
| |
Collapse
|
39
|
van der Velden YU, Grobben M, Caniels TG, Burger JA, Poniman M, Oomen M, Rijnstra ESV, Tejjani K, Guerra D, Kempers R, Stegmann T, van Gils MJ, Sanders RW. A SARS-CoV-2 Wuhan spike virosome vaccine induces superior neutralization breadth compared to one using the Beta spike. Sci Rep 2022; 12:3884. [PMID: 35273217 PMCID: PMC8913678 DOI: 10.1038/s41598-022-07590-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 02/15/2022] [Indexed: 12/24/2022] Open
Abstract
Current SARS-CoV-2 vaccines are effective, but long-term protection is threatened by the emergence of virus variants. We generated a virosome vaccine containing the Beta spike protein and compared its immunogenicity in mice to a virosome vaccine containing the original Wuhan spike. Two administrations of the virosomes induced potent SARS-CoV-2 neutralizing antibodies in both vaccine groups. The level of autologous neutralization in Beta-vaccinated mice was similar to the level of autologous neutralization in Wuhan-vaccinated mice. However, heterologous neutralization to the Wuhan strain in Beta-vaccinated mice was 4.7-fold lower than autologous neutralization, whereas heterologous neutralization to the Beta strain in Wuhan-vaccinated mice was reduced by only 1.9-fold compared to autologous neutralization levels. In addition, neutralizing activity against the D614G, Alpha and Delta variants was also significantly lower after Beta spike vaccination than after Wuhan spike vaccination. Our results show that Beta spike vaccination induces inferior neutralization breadth. These results are informative for programs aimed to develop broadly active SARS-CoV-2 vaccines.
Collapse
Affiliation(s)
- Yme U van der Velden
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, Amsterdam Institute for Infection and Immunity, University of Amsterdam, 1105 AZ, Amsterdam, The Netherlands
| | - Marloes Grobben
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, Amsterdam Institute for Infection and Immunity, University of Amsterdam, 1105 AZ, Amsterdam, The Netherlands
| | - Tom G Caniels
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, Amsterdam Institute for Infection and Immunity, University of Amsterdam, 1105 AZ, Amsterdam, The Netherlands
| | - Judith A Burger
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, Amsterdam Institute for Infection and Immunity, University of Amsterdam, 1105 AZ, Amsterdam, The Netherlands
| | - Meliawati Poniman
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, Amsterdam Institute for Infection and Immunity, University of Amsterdam, 1105 AZ, Amsterdam, The Netherlands
| | - Melissa Oomen
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, Amsterdam Institute for Infection and Immunity, University of Amsterdam, 1105 AZ, Amsterdam, The Netherlands
| | - Esther Siteur-van Rijnstra
- Experimental Immunology, Amsterdam UMC, Amsterdam Institute for Infection and Immunity, University of Amsterdam, 1105 AZ, Amsterdam, The Netherlands
| | - Khadija Tejjani
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, Amsterdam Institute for Infection and Immunity, University of Amsterdam, 1105 AZ, Amsterdam, The Netherlands
| | - Denise Guerra
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, Amsterdam Institute for Infection and Immunity, University of Amsterdam, 1105 AZ, Amsterdam, The Netherlands
| | - Ronald Kempers
- Mymetics BV, JH Oortweg 21, 2333 CH, Leiden, The Netherlands
| | - Toon Stegmann
- Mymetics BV, JH Oortweg 21, 2333 CH, Leiden, The Netherlands
| | - Marit J van Gils
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, Amsterdam Institute for Infection and Immunity, University of Amsterdam, 1105 AZ, Amsterdam, The Netherlands
| | - Rogier W Sanders
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, Amsterdam Institute for Infection and Immunity, University of Amsterdam, 1105 AZ, Amsterdam, The Netherlands.
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, 1300 York Avenue, New York, NY, 10065, USA.
| |
Collapse
|
40
|
Spencer AJ, Morris S, Ulaszewska M, Powers C, Kailath R, Bissett C, Truby A, Thakur N, Newman J, Allen ER, Rudiansyah I, Liu C, Dejnirattisai W, Mongkolsapaya J, Davies H, Donnellan FR, Pulido D, Peacock TP, Barclay WS, Bright H, Ren K, Screaton G, McTamney P, Bailey D, Gilbert SC, Lambe T. The ChAdOx1 vectored vaccine, AZD2816, induces strong immunogenicity against SARS-CoV-2 beta (B.1.351) and other variants of concern in preclinical studies. EBioMedicine 2022; 77:103902. [PMID: 35228013 PMCID: PMC8881183 DOI: 10.1016/j.ebiom.2022.103902] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 02/07/2022] [Accepted: 02/10/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND There is an ongoing global effort to design, manufacture, and clinically assess vaccines against SARS-CoV-2. Over the course of the ongoing pandemic a number of new SARS-CoV-2 virus isolates or variants of concern (VoC) have been identified containing mutations in key proteins. METHODS In this study we describe the generation and preclinical assessment of a ChAdOx1-vectored vaccine (AZD2816) which expresses the spike protein of the Beta VoC (B.1.351). FINDINGS We demonstrate that AZD2816 is immunogenic after a single dose. When AZD2816 is used as a booster dose in animals primed with a vaccine encoding the original spike protein (ChAdOx1 nCoV-19/ [AZD1222]), an increase in binding and neutralising antibodies against Beta (B.1.351), Gamma (P.1) and Delta (B.1.617.2) is observed following each additional dose. In addition, a strong and polyfunctional T cell response was measured all booster regimens. INTERPRETATION Real world data is demonstrating that one or more doses of licensed SARS-CoV-2 vaccines confer reduced protection against hospitalisation and deaths caused by divergent VoC, including Omicron. Our data support the ongoing clinical development and testing of booster vaccines to increase immunity against highly mutated VoC. FUNDING This research was funded by AstraZeneca with supporting funds from MRC and BBSRC.
Collapse
Affiliation(s)
- Alexandra J Spencer
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, ORCRB, Roosevelt Drive, Oxford OX3 7DQ, United Kingdom.
| | - Susan Morris
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, ORCRB, Roosevelt Drive, Oxford OX3 7DQ, United Kingdom
| | - Marta Ulaszewska
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, ORCRB, Roosevelt Drive, Oxford OX3 7DQ, United Kingdom
| | - Claire Powers
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, ORCRB, Roosevelt Drive, Oxford OX3 7DQ, United Kingdom
| | - Reshma Kailath
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, ORCRB, Roosevelt Drive, Oxford OX3 7DQ, United Kingdom
| | - Cameron Bissett
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, ORCRB, Roosevelt Drive, Oxford OX3 7DQ, United Kingdom
| | - Adam Truby
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, ORCRB, Roosevelt Drive, Oxford OX3 7DQ, United Kingdom
| | - Nazia Thakur
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, ORCRB, Roosevelt Drive, Oxford OX3 7DQ, United Kingdom; The Pirbright Institute, Woking, Surrey, United Kingdom
| | - Joseph Newman
- The Pirbright Institute, Woking, Surrey, United Kingdom
| | - Elizabeth R Allen
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, ORCRB, Roosevelt Drive, Oxford OX3 7DQ, United Kingdom
| | - Indra Rudiansyah
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, ORCRB, Roosevelt Drive, Oxford OX3 7DQ, United Kingdom
| | - Chang Liu
- The Wellcome Trust Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, United Kingdom; Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, United Kingdom
| | - Wanwisa Dejnirattisai
- The Wellcome Trust Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, United Kingdom
| | - Juthathip Mongkolsapaya
- The Wellcome Trust Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, United Kingdom
| | - Hannah Davies
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, ORCRB, Roosevelt Drive, Oxford OX3 7DQ, United Kingdom
| | - Francesca R Donnellan
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, ORCRB, Roosevelt Drive, Oxford OX3 7DQ, United Kingdom
| | - David Pulido
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, ORCRB, Roosevelt Drive, Oxford OX3 7DQ, United Kingdom
| | - Thomas P Peacock
- Department of Infectious Disease, Imperial College London, United Kingdom
| | - Wendy S Barclay
- Department of Infectious Disease, Imperial College London, United Kingdom
| | - Helen Bright
- Virology and Vaccine Discovery, Microbial Sciences, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD United States
| | - Kuishu Ren
- Virology and Vaccine Discovery, Microbial Sciences, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD United States
| | - Gavin Screaton
- The Wellcome Trust Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, United Kingdom
| | - Patrick McTamney
- Virology and Vaccine Discovery, Microbial Sciences, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD United States
| | - Dalan Bailey
- The Pirbright Institute, Woking, Surrey, United Kingdom
| | - Sarah C Gilbert
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, ORCRB, Roosevelt Drive, Oxford OX3 7DQ, United Kingdom
| | - Teresa Lambe
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, ORCRB, Roosevelt Drive, Oxford OX3 7DQ, United Kingdom; Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, United Kingdom
| |
Collapse
|
41
|
Liang Y, Zhang J, Yuan RY, Wang MY, He P, Su JG, Han ZB, Jin YQ, Hou JW, Zhang H, Zhang XF, Shao S, Hou YN, Liu ZM, Du LF, Shen FJ, Zhou WM, Xu K, Gao RQ, Tang F, Lei ZH, Liu S, Zhen W, Wu JJ, Zheng X, Liu N, Chen S, Ma ZJ, Zheng F, Ren SY, Hu ZY, Huang WJ, Wu GZ, Ke CW, Li QM. Design of a mutation-integrated trimeric RBD with broad protection against SARS-CoV-2. Cell Discov 2022; 8:17. [PMID: 35169113 PMCID: PMC8847466 DOI: 10.1038/s41421-022-00383-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 01/30/2022] [Indexed: 12/20/2022] Open
Abstract
The continuous emergence of SARS-CoV-2 variants highlights the need of developing vaccines with broad protection. Here, according to the immune-escape capability and evolutionary convergence, the representative SARS-CoV-2 strains carrying the hotspot mutations were selected. Then, guided by structural and computational analyses, we present a mutation-integrated trimeric form of spike receptor-binding domain (mutI-tri-RBD) as a broadly protective vaccine candidate, which combined heterologous RBDs from different representative strains into a hybrid immunogen and integrated immune-escape hotspots into a single antigen. When compared with a homo-tri-RBD vaccine candidate in the stage of phase II trial, of which all three RBDs are derived from the SARS-CoV-2 prototype strain, mutI-tri-RBD induced significantly higher neutralizing antibody titers against the Delta and Beta variants, and maintained a similar immune response against the prototype strain. Pseudo-virus neutralization assay demonstrated that mutI-tri-RBD also induced broadly strong neutralizing activities against all tested 23 SARS-CoV-2 variants. The in vivo protective capability of mutI-tri-RBD was further validated in hACE2-transgenic mice challenged by the live virus, and the results showed that mutI-tri-RBD provided potent protection not only against the SARS-CoV-2 prototype strain but also against the Delta and Beta variants.
Collapse
Affiliation(s)
- Yu Liang
- The Sixth Laboratory, National Vaccine and Serum Institute (NVSI), Beijing, China
- National Engineering Center for New Vaccine Research, Beijing, China
| | - Jing Zhang
- The Sixth Laboratory, National Vaccine and Serum Institute (NVSI), Beijing, China
- National Engineering Center for New Vaccine Research, Beijing, China
| | - Run Yu Yuan
- Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, Guangdong, China
| | - Mei Yu Wang
- National Institute for Food and Drug Control (NIFDC), Beijing, China
| | - Peng He
- National Institute for Food and Drug Control (NIFDC), Beijing, China
| | - Ji Guo Su
- The Sixth Laboratory, National Vaccine and Serum Institute (NVSI), Beijing, China
- National Engineering Center for New Vaccine Research, Beijing, China
| | - Zi Bo Han
- The Sixth Laboratory, National Vaccine and Serum Institute (NVSI), Beijing, China
- National Engineering Center for New Vaccine Research, Beijing, China
| | - Yu Qin Jin
- The Sixth Laboratory, National Vaccine and Serum Institute (NVSI), Beijing, China
- National Engineering Center for New Vaccine Research, Beijing, China
| | - Jun Wei Hou
- The Sixth Laboratory, National Vaccine and Serum Institute (NVSI), Beijing, China
- National Engineering Center for New Vaccine Research, Beijing, China
| | - Hao Zhang
- The Sixth Laboratory, National Vaccine and Serum Institute (NVSI), Beijing, China
- National Engineering Center for New Vaccine Research, Beijing, China
| | - Xue Feng Zhang
- The Sixth Laboratory, National Vaccine and Serum Institute (NVSI), Beijing, China
- National Engineering Center for New Vaccine Research, Beijing, China
| | - Shuai Shao
- The Sixth Laboratory, National Vaccine and Serum Institute (NVSI), Beijing, China
- National Engineering Center for New Vaccine Research, Beijing, China
| | - Ya Nan Hou
- The Sixth Laboratory, National Vaccine and Serum Institute (NVSI), Beijing, China
- National Engineering Center for New Vaccine Research, Beijing, China
| | - Zhao Ming Liu
- The Sixth Laboratory, National Vaccine and Serum Institute (NVSI), Beijing, China
- National Engineering Center for New Vaccine Research, Beijing, China
| | - Li Fang Du
- The Sixth Laboratory, National Vaccine and Serum Institute (NVSI), Beijing, China
- National Engineering Center for New Vaccine Research, Beijing, China
| | - Fu Jie Shen
- The Sixth Laboratory, National Vaccine and Serum Institute (NVSI), Beijing, China
- National Engineering Center for New Vaccine Research, Beijing, China
| | - Wei Min Zhou
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing, China
| | - Ke Xu
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing, China
| | - Ru Qin Gao
- Qingdao Centers for Disease Control and Prevention, Qingdao, Shandong, China
| | - Fang Tang
- The Sixth Laboratory, National Vaccine and Serum Institute (NVSI), Beijing, China
- National Engineering Center for New Vaccine Research, Beijing, China
| | - Ze Hua Lei
- The Sixth Laboratory, National Vaccine and Serum Institute (NVSI), Beijing, China
- National Engineering Center for New Vaccine Research, Beijing, China
| | - Shuo Liu
- National Institute for Food and Drug Control (NIFDC), Beijing, China
| | - Wei Zhen
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing, China
| | - Jin Juan Wu
- The Sixth Laboratory, National Vaccine and Serum Institute (NVSI), Beijing, China
- National Engineering Center for New Vaccine Research, Beijing, China
| | - Xiang Zheng
- The Sixth Laboratory, National Vaccine and Serum Institute (NVSI), Beijing, China
- National Engineering Center for New Vaccine Research, Beijing, China
| | - Ning Liu
- The Sixth Laboratory, National Vaccine and Serum Institute (NVSI), Beijing, China
- National Engineering Center for New Vaccine Research, Beijing, China
| | - Shi Chen
- The Sixth Laboratory, National Vaccine and Serum Institute (NVSI), Beijing, China
- National Engineering Center for New Vaccine Research, Beijing, China
| | - Zhi Jing Ma
- The Sixth Laboratory, National Vaccine and Serum Institute (NVSI), Beijing, China
- National Engineering Center for New Vaccine Research, Beijing, China
| | - Fan Zheng
- The Sixth Laboratory, National Vaccine and Serum Institute (NVSI), Beijing, China
- National Engineering Center for New Vaccine Research, Beijing, China
| | - Si Yu Ren
- The Sixth Laboratory, National Vaccine and Serum Institute (NVSI), Beijing, China
- National Engineering Center for New Vaccine Research, Beijing, China
| | - Zhong Yu Hu
- National Institute for Food and Drug Control (NIFDC), Beijing, China.
| | - Wei Jin Huang
- National Institute for Food and Drug Control (NIFDC), Beijing, China.
| | - Gui Zhen Wu
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing, China.
| | - Chang Wen Ke
- Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, Guangdong, China.
| | - Qi Ming Li
- The Sixth Laboratory, National Vaccine and Serum Institute (NVSI), Beijing, China.
- National Engineering Center for New Vaccine Research, Beijing, China.
| |
Collapse
|
42
|
Yuan Y, Zhang X, Chen R, Li Y, Wu B, Li R, Zou F, Ma X, Wang X, Chen Q, Deng J, Zhang Y, Chen T, Lin Y, Yan S, Zhang X, Li C, Bu X, Peng Y, Ke C, Deng K, Pan T, He X, Zhang Y, Zhang H. A bivalent nanoparticle vaccine exhibits potent cross-protection against the variants of SARS-CoV-2. Cell Rep 2022; 38:110256. [PMID: 34990583 PMCID: PMC8695190 DOI: 10.1016/j.celrep.2021.110256] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/26/2021] [Accepted: 12/21/2021] [Indexed: 12/28/2022] Open
Abstract
Inoculation against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is ongoing worldwide. However, the emergence of SARS-CoV-2 variants could cause immune evasion. We developed a bivalent nanoparticle vaccine that displays the receptor binding domains (RBDs) of the D614G and B.1.351 strains. With a prime-boost or a single-dose strategy, this vaccine elicits a robust neutralizing antibody and full protection against infection with the authentic D614G or B.1.351 strain in human angiotensin-converting enzyme 2 transgene mice. Interestingly, 8 months after inoculation with the D614G-specific vaccine, a new boost with this bivalent vaccine potently elicits cross-neutralizing antibodies for SARS-CoV-2 variants in rhesus macaques. We suggest that the D614G/B.1.351 bivalent vaccine could be used as an initial single dose or a sequential enforcement dose to prevent infection with SARS-CoV-2 and its variants.
Collapse
Affiliation(s)
- Yaochang Yuan
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of the Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agents and Immunotechnology, Engineering Research Center of Gene Vaccine of the Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Xiantao Zhang
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of the Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agents and Immunotechnology, Engineering Research Center of Gene Vaccine of the Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Ran Chen
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of the Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agents and Immunotechnology, Engineering Research Center of Gene Vaccine of the Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Yuzhuang Li
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of the Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agents and Immunotechnology, Engineering Research Center of Gene Vaccine of the Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Bolin Wu
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of the Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agents and Immunotechnology, Engineering Research Center of Gene Vaccine of the Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Rong Li
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of the Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agents and Immunotechnology, Engineering Research Center of Gene Vaccine of the Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Fan Zou
- Qianyang Biomedical Research Institute, Guangzhou, Guangdong 510063, China
| | - Xiancai Ma
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of the Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agents and Immunotechnology, Engineering Research Center of Gene Vaccine of the Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Xuemei Wang
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of the Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agents and Immunotechnology, Engineering Research Center of Gene Vaccine of the Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Qier Chen
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of the Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agents and Immunotechnology, Engineering Research Center of Gene Vaccine of the Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Jieyi Deng
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of the Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agents and Immunotechnology, Engineering Research Center of Gene Vaccine of the Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Yongli Zhang
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of the Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agents and Immunotechnology, Engineering Research Center of Gene Vaccine of the Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Tao Chen
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of the Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agents and Immunotechnology, Engineering Research Center of Gene Vaccine of the Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Yingtong Lin
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of the Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agents and Immunotechnology, Engineering Research Center of Gene Vaccine of the Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Shumei Yan
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of the Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agents and Immunotechnology, Engineering Research Center of Gene Vaccine of the Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China; Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong 510060, China
| | - Xu Zhang
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of the Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agents and Immunotechnology, Engineering Research Center of Gene Vaccine of the Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Congrong Li
- BSL-3 Laboratory, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Xiuqing Bu
- BSL-3 Laboratory, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Yi Peng
- BSL-3 Laboratory, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Changwen Ke
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, Guangdong 511430, China
| | - Kai Deng
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of the Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agents and Immunotechnology, Engineering Research Center of Gene Vaccine of the Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China; BSL-3 Laboratory, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China; Department of Immunology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Ting Pan
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of the Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agents and Immunotechnology, Engineering Research Center of Gene Vaccine of the Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Xin He
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of the Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agents and Immunotechnology, Engineering Research Center of Gene Vaccine of the Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Yiwen Zhang
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of the Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agents and Immunotechnology, Engineering Research Center of Gene Vaccine of the Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China.
| | - Hui Zhang
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of the Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agents and Immunotechnology, Engineering Research Center of Gene Vaccine of the Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China; National Guangzhou Laboratory, Bio-Island, Guangzhou, Guangdong 510320, China.
| |
Collapse
|
43
|
Abstract
The germinal centre (GC) response is critical for the generation of affinity-matured plasma cells and memory B cells capable of mediating long-term protective immunity. Understanding whether severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection or vaccination elicits a GC response has profound implications for the capacity of responding B cells to contribute to protection against infection. However, direct assessment of the GC response in humans remains a major challenge. Here we summarize emerging evidence for the importance of the GC response in the establishment of durable and broad immunity against SARS-CoV-2 and discuss new approaches to modulate the GC response to better protect against newly emerging SARS-CoV-2 variants. We also discuss new findings showing that the GC B cell response persists in the draining lymph nodes for at least 6 months in some individuals following vaccination with SARS-CoV-2 mRNA-based vaccines.
Collapse
Affiliation(s)
- Brian J Laidlaw
- Division of Allergy and Immunology, Department of Medicine, Washington University School of Medicine, St Louis, MO, USA.
| | - Ali H Ellebedy
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA.
- The Andrew M. and Jane M. Bursky Center for Human Immunology & Immunotherapy Programs, Washington University School of Medicine, St Louis, MO, USA.
- Center for Vaccines and Immunity to Microbial Pathogens, Washington University School of Medicine, St Louis, MO, USA.
| |
Collapse
|
44
|
SARS-CoV-2 variant exposures elicit antibody responses with differential cross-neutralization of established and emerging strains including Delta and Omicron. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2021:2021.09.08.21263095. [PMID: 34981075 PMCID: PMC8722618 DOI: 10.1101/2021.09.08.21263095] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The wide spectrum of SARS-CoV-2 variants with phenotypes impacting transmission and antibody sensitivity necessitates investigation of the immune response to different spike protein versions. Here, we compare the neutralization of variants of concern, including B.1.617.2 (Delta) and B.1.1.529 (Omicron) in sera from individuals exposed to variant infection, vaccination, or both. We demonstrate that neutralizing antibody responses are strongest against variants sharing certain spike mutations with the immunizing exposure. We also observe that exposure to multiple spike variants increases the breadth of variant cross-neutralization. These findings contribute to understanding relationships between exposures and antibody responses and may inform booster vaccination strategies. SUMMARY This study characterizes neutralization of eight different SARS-CoV-2 variants, including Delta and Omicron, with respect to nine different prior exposures, including vaccination, booster, and infections with Delta, Epsilon, and others. Different exposures were found to confer substantially differing neutralization specificity.
Collapse
|
45
|
Nitika, Wei J, Hui AM. The Development of mRNA Vaccines for Infectious Diseases: Recent Updates. Infect Drug Resist 2021; 14:5271-5285. [PMID: 34916811 PMCID: PMC8668227 DOI: 10.2147/idr.s341694] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 11/25/2021] [Indexed: 12/27/2022] Open
Abstract
mRNA-based technologies have been of interest for the past few years to be used for therapeutics. Several mRNA vaccines for various diseases have been in preclinical and clinical stages. With the outbreak of the COVID-19 pandemic, the emergence of mRNA vaccines has transformed modern science. Recently, two major mRNA vaccines have been developed and approved by global health authorities for administration on the general population for protection against SARS-CoV-2. They have been proven to be successful in conferring protection against the ongoing SARS-CoV-2 and its emerging variants. This will draw attention to various mRNA vaccines against infectious diseases that are in the early stages of clinical trials. mRNA vaccines offer several advantages ranging from rapid design, generation, manufacturing, and administration and have strong potential to be used against various diseases in the future. Here, we summarize the mRNA-based vaccines in development against various infectious diseases.
Collapse
Affiliation(s)
- Nitika
- Fosun Pharma USA Inc., Boston, MA, USA.,Shanghai Fosun Pharmaceutical Industrial Development, Co., Ltd., Shanghai, People's Republic of China
| | - Jiao Wei
- Fosun Pharma USA Inc., Boston, MA, USA.,Shanghai Fosun Pharmaceutical Industrial Development, Co., Ltd., Shanghai, People's Republic of China
| | - Ai-Min Hui
- Fosun Pharma USA Inc., Boston, MA, USA.,Shanghai Fosun Pharmaceutical Industrial Development, Co., Ltd., Shanghai, People's Republic of China
| |
Collapse
|
46
|
Heggestad JT, Britton RJ, Kinnamon DS, Wall SA, Joh DY, Hucknall AM, Olson LB, Anderson JG, Mazur A, Wolfe CR, Oguin TH, Sullenger BA, Burke TW, Kraft BD, Sempowski GD, Woods CW, Chilkoti A. Rapid test to assess the escape of SARS-CoV-2 variants of concern. SCIENCE ADVANCES 2021; 7:eabl7682. [PMID: 34860546 PMCID: PMC8641938 DOI: 10.1126/sciadv.abl7682] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 10/15/2021] [Indexed: 05/03/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants are concerning in the ongoing coronavirus disease 2019 (COVID-19) pandemic. Here, we developed a rapid test, termed CoVariant-SCAN, that detects neutralizing antibodies (nAbs) capable of blocking interactions between the angiotensin-converting enzyme 2 receptor and the spike protein of wild-type (WT) SARS-CoV-2 and three other variants: B.1.1.7, B.1.351, and P.1. Using CoVariant-SCAN, we assessed neutralization/blocking of monoclonal antibodies and plasma from COVID-19–positive and vaccinated individuals. For several monoclonal antibodies and most plasma samples, neutralization against B.1.351 and P.1 variants is diminished relative to WT, while B.1.1.7 is largely cross-neutralized. We also showed that we can rapidly adapt the platform to detect nAbs against an additional variant—B.1.617.2 (Delta)—without reengineering or reoptimizing the assay. Results using CoVariant-SCAN are consistent with live virus neutralization assays and demonstrate that this easy-to-deploy test could be used to rapidly assess nAb response against multiple SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Jacob T. Heggestad
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC 27708, USA
| | - Rhett J. Britton
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC 27708, USA
| | - David S. Kinnamon
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC 27708, USA
| | - Simone A. Wall
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC 27708, USA
| | - Daniel Y. Joh
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC 27708, USA
| | - Angus M. Hucknall
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC 27708, USA
| | - Lyra B. Olson
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Jack G. Anderson
- Center for Applied Genomics and Precision Medicine, Department of Medicine, Duke University, Durham, NC 27710, USA
| | - Anna Mazur
- Center for Applied Genomics and Precision Medicine, Department of Medicine, Duke University, Durham, NC 27710, USA
| | - Cameron R. Wolfe
- Division of Infectious Diseases, Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - Thomas H. Oguin
- Department of Medicine and the Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Bruce A. Sullenger
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC 27708, USA
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Surgery, Duke University School of Medicine, Durham, NC 27710, USA
| | - Thomas W. Burke
- Center for Applied Genomics and Precision Medicine, Department of Medicine, Duke University, Durham, NC 27710, USA
| | - Bryan D. Kraft
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - Gregory D. Sempowski
- Department of Medicine and the Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Christopher W. Woods
- Center for Applied Genomics and Precision Medicine, Department of Medicine, Duke University, Durham, NC 27710, USA
- Department of Medicine and the Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Ashutosh Chilkoti
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC 27708, USA
| |
Collapse
|