1
|
Opgenorth J, Mayorga EJ, Abeyta MA, Goetz BM, Rodriguez-Jimenez S, Freestone AD, McGill JL, Baumgard LH. Intravenous lipopolysaccharide challenge in early- versus mid-lactation dairy cattle. I: The immune and inflammatory responses. J Dairy Sci 2024; 107:6225-6239. [PMID: 38428491 DOI: 10.3168/jds.2023-24350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 02/02/2024] [Indexed: 03/03/2024]
Abstract
Cows in early lactation (EL) are purportedly immune suppressed, which renders them more susceptible to disease. Thus, the study objective was to compare key biomarkers of immune activation from i.v. LPS between EL and mid-lactation (ML) cows. Multiparous EL (20 ± 2 DIM; n = 11) and ML (131 ± 31 DIM; n = 12) cows were enrolled in a 2 × 2 factorial design and assigned to 1 of 2 treatments by lactation stage (LS): (1) EL (EL-LPS; n = 6) or ML (ML-LPS; n = 6) cows administered a single LPS bolus from Escherichia coli O55:B5 (0.09 µg/kg of BW), or (2) pair-fed (PF) EL (EL-PF; n = 5) or ML (ML-PF; n = 6) cows administered i.v. saline. After LPS administration, cows were intensely evaluated for 3 d to analyze their response and recovery to LPS. Rectal temperature increased in LPS relative to PF cows (1.1°C in the first 9 h), and the response was more severe in EL-LPS relative to ML-LPS cows (2.3 vs. 1.3°C increase at 4 h post-LPS; respectively). Respiration rate increased only in EL-LPS cows (47% relative to ML-LPS in the first hour post-LPS). Circulating tumor necrosis factor-α, IL-6, monocyte chemoattractant protein-1, macrophage inflammatory protein (MIP)-1α, MIP-1β, and IFN-γ-inducible protein-10 increased within the first 6 h after LPS and these changes were exacerbated in EL-LPS relative to ML-LPS cows (6.3-fold, 4.8-fold, 57%, 93%, 10%, and 61%, respectively). All cows administered LPS had decreased circulating iCa relative to PF cows (34% at the 6 h nadir), but the hypocalcemia was more severe in EL-LPS than ML-LPS cows (14% at 6 h nadir). In response to LPS, neutrophils decreased regardless of LS, then increased into neutrophilia by 24 h in all LPS relative to PF cows (2-fold); however, the neutrophilic phase was augmented in EL- compared with ML-LPS cows (63% from 24 to 72 h). Lymphocytes and monocytes rapidly decreased then gradually returned to baseline in LPS cows regardless of LS; however, monocytes were increased (57%) at 72 h in EL-LPS relative to ML-LPS cows. Platelets were reduced (46%) in LPS relative to PF cows throughout the 3-d following LPS, and from 24 to 48 h, platelets were further decreased (41%) in EL-LPS compared with ML-LPS. During the 3-d following LPS, serum amyloid A (SAA), LPS-binding protein (LBP), and haptoglobin (Hp) increased in LPS compared with PF groups (9-fold, 72%, and 153-fold, respectively), and the LBP and Hp responses were more exaggerated in EL-LPS than ML-LPS cows (85 and 79%, respectively) whereas the SAA response did not differ by LS. Thus, our data indicates that EL immune function does not appear "suppressed," and in fact many aspects of the immune response are seemingly functionally robust.
Collapse
Affiliation(s)
- J Opgenorth
- Department of Animal Science, Iowa State University, Ames, IA 50011
| | - E J Mayorga
- Department of Animal Science, Iowa State University, Ames, IA 50011
| | - M A Abeyta
- Department of Animal Science, Iowa State University, Ames, IA 50011
| | - B M Goetz
- Department of Animal Science, Iowa State University, Ames, IA 50011
| | | | - A D Freestone
- Department of Animal Science, Iowa State University, Ames, IA 50011
| | - J L McGill
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA 50011
| | - L H Baumgard
- Department of Animal Science, Iowa State University, Ames, IA 50011.
| |
Collapse
|
2
|
Welboren AC, Van Baal J, Ghaffari MH, Sauerwein H, Renaud JB, Martín-Tereso J, Steele MA, Leal LN. Gastrointestinal permeability and inflammatory status of preweaning dairy calves in response to decreasing the ratio of n-6 to n-3 fatty acid in milk replacer. J Dairy Sci 2023; 106:3662-3679. [PMID: 37002139 DOI: 10.3168/jds.2022-22568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 12/05/2022] [Indexed: 03/31/2023]
Abstract
The ratio of n-6 to n-3 fatty acid (FA) is between 2 and 10 times higher in milk replacer (MR) than in whole milk, which may promote inflammation and compromise the integrity of the intestinal epithelium. To evaluate how decreasing the n-6:n-3 FA ratio of MR affects gastrointestinal (GIT) permeability and inflammatory status, 30 dairy calves (2.8 ± 1.06 d of age; mean ± standard deviation) were randomly assigned to be fed an MR with an n-6:n-3 FA ratio of 40:1 (CON; 29.3% crude fat of DM; n = 15) or 6.5:1 (n-3; 29.1% crude fat of DM; n = 15). Calves were fed 7.0 L/d in 2 meals. Calves were weighed and fecal consistency was analyzed weekly. On d 22, calves were administered Cr-EDTA, lactulose, and d-mannitol to assess GIT permeability. Blood and total urine were sequentially collected for 6 and 24 h, respectively, and analyzed for marker content. Whole blood collected 4 h after the meal was subjected to an ex vivo lipopolysaccharide (LPS) challenge to evaluate cytokine secretion from blood cells. Calves were euthanized on d 25 for collection of intestinal tissue samples. Tissue samples were processed to assess FA composition by gas chromatography, histomorphology by bright-field microscopy, and gene expression of tight junction proteins, lipid metabolism enzymes, and immune molecules by real-time quantitative PCR. Data were analyzed using PROC GLIMMIX in SAS (version 9.4, SAS Institute Inc.). Growth performance and fecal consistency were unaffected. Calves fed MR with a lower ratio of n-6 to n-3 FA had 2-fold higher n-3 FA contents and 2-fold lower ratios of n-6 to n-3 FA in proximal jejunum and ileum tissues. Total urinary recovery (0-24 h relative to marker administration) and plasma concentrations of the markers were unaffected. Expression of TJP1 tended to be higher in proximal jejunum tissue and lower in ileum tissue of n-3 calves. The expression of TLR4 and TNFA tended to be higher and CD14 was higher in ileum tissue of n-3 calves. Plasma concentrations of interleukin-4 were decreased in response to the ex vivo LPS challenge in n-3 calves. Histomorphology and GIT permeability were largely unaffected by treatment. Furthermore, the inclusion of linseed and algae oil may promote inflammation, as suggested by greater concentrations of the acute-phase proteins haptoglobin and serum amyloid A postprandially, demonstrating that fat sources should be evaluated for their suitability for MR formulations. Understanding how MR composition affects dairy calf health may improve nutritional strategies on farm.
Collapse
Affiliation(s)
- A C Welboren
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada, N1G 2W1
| | - J Van Baal
- Trouw Nutrition Research and Development, PO Box 299, 3800 AG, Amersfoort, the Netherlands
| | - M H Ghaffari
- Institute of Animal Science, University of Bonn, 53111 Bonn, Germany
| | - H Sauerwein
- Institute of Animal Science, University of Bonn, 53111 Bonn, Germany
| | - J B Renaud
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada, N5V 4T3
| | - J Martín-Tereso
- Trouw Nutrition Research and Development, PO Box 299, 3800 AG, Amersfoort, the Netherlands
| | - M A Steele
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada, N1G 2W1
| | - L N Leal
- Trouw Nutrition Research and Development, PO Box 299, 3800 AG, Amersfoort, the Netherlands.
| |
Collapse
|
3
|
Brink AA, Weber WJ, Lippolis JD, Cole JB, Godden SM, Seykora A, Crooker BA. Effect of Holstein genotype on ex-vivo cytokine response to lipopolysaccharide (LPS) and lipoteichoic acid (LTA) during the periparturient period. Vet Immunol Immunopathol 2022; 251:110463. [PMID: 35878562 DOI: 10.1016/j.vetimm.2022.110463] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/30/2022] [Accepted: 07/18/2022] [Indexed: 11/18/2022]
Abstract
Effects of Holstein genotype on innate immune response were assessed with ex-vivo lipopolysaccharide (LPS) and lipoteichoic acid (LTA) stimulation of whole blood from unselected (UH, n = 10) and contemporary (CH, n = 11) Holsteins that differ in production by more than 4,500 kg/lactation. Blood was collected at -14, 7, 28, and 49 days in milk (DIM), mixed with a pathogen-associated molecular pattern (PAMP) molecule (0.01 or 1.0 µg LPS or 10 or 100 µg LTA per mL blood) and incubated (4 h, 37 °C). Plasma cytokines were quantified by ELISA, log10-transformed and analyzed by repeated measures with DIM as the repeated effect. Cytokine responses increased with PAMP dose and decreased as DIM increased. There was a genotype by LPS dose interaction for IL-1β as response to the low dose was greater in UH but did not differ between genotypes for the high dose. The IL-1β response was greater while the IL-6 response to LTA tended to be greater in UH than in CH cows. The more negative energy balance of CH cows did not impact genotype difference in cytokine responses. Results indicate selection since the mid-1960s has decreased ex-vivo, whole blood cytokine response of CH cows to LPS and to LTA.
Collapse
Affiliation(s)
- Amber A Brink
- Department of Animal Science, University of Minnesota, Saint Paul, MN 55108, USA
| | - Wanda J Weber
- Department of Animal Science, University of Minnesota, Saint Paul, MN 55108, USA
| | - John D Lippolis
- Ruminant Diseases and Immunology Research Unit, USDA Agricultural Research Service, National Animal Disease Center, Ames, IA 50010, USA
| | - John B Cole
- Animal Genomics and Improvement Laboratory, USDA Agricultural Research Service, Beltsville, MD 20705, USA
| | - Sandra M Godden
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, MN 55108, USA
| | - Anthony Seykora
- Department of Animal Science, University of Minnesota, Saint Paul, MN 55108, USA
| | - Brian A Crooker
- Department of Animal Science, University of Minnesota, Saint Paul, MN 55108, USA.
| |
Collapse
|
4
|
Kononov SU, Meyer J, Frahm J, Kersten S, Kluess J, Bühler S, Wegerich A, Rehage J, Meyer U, Huber K, Dänicke S. Dietary L-Carnitine Affects Leukocyte Count and Function in Dairy Cows Around Parturition. Front Immunol 2022; 13:784046. [PMID: 35370999 PMCID: PMC8965741 DOI: 10.3389/fimmu.2022.784046] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 02/21/2022] [Indexed: 12/04/2022] Open
Abstract
In early lactation, an energy deficit leading to a negative energy balance (NEB) is associated with increased susceptibility to disease and has been shown to be an important factor during transition in dairy cows. L-carnitine as a key factor in the mitochondrial transport of fatty acids and subsequently for β-oxidation and energy release is known to modulate mitochondrial biogenesis and thus influence metabolism and immune system. In the current study, we characterized hematological changes around parturition and investigated the potential effects of dietary L-carnitine supplementation on immune cell functions. For this approach, dairy cows were assigned either to a control (CON, n = 30) or an L-carnitine group [CAR, n = 29, 25 g rumen-protected L-carnitine per cow and day (d)]. Blood samples were taken from d 42 ante partum (ap) until d 110 post-partum (pp), with special focus and frequent sampling from 0.5 to72 h post-calving to clarify the impact of L-carnitine supplementation on leukocyte count, formation of reactive oxygen species (ROS) in polymorphonuclear cells (PMN) and peripheral mononuclear cells (PBMC) and their phagocytosis activity. Blood cortisol concentration and the capacity of PBMC proliferation was also investigated. All populations of leukocytes were changed during the peripartal period, especially granulocytes showed a characteristic increase up to 4 h pp. L-carnitine supplementation resulted in increased levels of eosinophils which was particularly pronounced one day before to 4 h pp, indicating a possible enhanced support for tissue repair and recovery. Non-supplemented cows showed a higher phagocytic activity in PBMC as well as a higher phagocytic capacity of PMN during the most demanding period around parturition, which may relate to a decrease in plasma levels of non-esterified fatty acids reported previously. L-carnitine, on the other hand, led to an increased efficiency to form ROS in stimulated PMN. Finally, a short period around calving proved to be a sensitive period in which L-carnitine administration was effective.
Collapse
Affiliation(s)
- Susanne Ursula Kononov
- Institute of Animal Nutrition, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Braunschweig, Germany.,Department of Functional Anatomy of Livestock, Institute of Animal Science, University of Hohenheim, Stuttgart, Germany
| | - Jennifer Meyer
- Institute of Animal Nutrition, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Braunschweig, Germany
| | - Jana Frahm
- Institute of Animal Nutrition, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Braunschweig, Germany
| | - Susanne Kersten
- Institute of Animal Nutrition, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Braunschweig, Germany
| | - Jeannette Kluess
- Institute of Animal Nutrition, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Braunschweig, Germany
| | - Susanne Bühler
- Institute of Animal Nutrition, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Braunschweig, Germany
| | - Anja Wegerich
- Clinic for Cattle, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Jürgen Rehage
- Clinic for Cattle, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Ulrich Meyer
- Institute of Animal Nutrition, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Braunschweig, Germany
| | - Korinna Huber
- Department of Functional Anatomy of Livestock, Institute of Animal Science, University of Hohenheim, Stuttgart, Germany
| | - Sven Dänicke
- Institute of Animal Nutrition, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Braunschweig, Germany
| |
Collapse
|
5
|
Khatun M, Damgaard BM, Andersen JB, Røntved CM. Effect of polymyxin B on ex vivo tumor necrosis factor-alpha responsiveness of blood leukocytes in Danish Holstein Friesian cows. Vet Immunol Immunopathol 2021; 238:110293. [PMID: 34284224 DOI: 10.1016/j.vetimm.2021.110293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/14/2021] [Accepted: 07/14/2021] [Indexed: 10/20/2022]
Abstract
Whole blood stimulation assay (WBA) with killed gram-positive and gram-negative udder pathogens were used to investigate the interference of the endotoxin-binding antibiotic polymyxin B (PMB) on the ex vivo TNF-α response. Blood samples were collected from first to third lactating dairy cows in their early lactation (<50 days in milk, n = 32) period. The WBA was stimulated with both inactivated bacteria (e.g., dead Escherichia coli, Staphylococcus aureus, Streptococcus dysgalactiae, Streptococcus uberis), at a concentration of 2.5 × 106/mL; and pathogen-associated molecular pattern molecules, namely E. coli LPS (10 μg/mL), and S. aureus peptidoglycan (PG, 10 μg/mL). The PMB was added at a concentration of 0, 12.5, 25, 50, 100, and 200 μg/mL to each stimulant, respectively. All bacteria stimulants resulted in an increased TNF-α response compared to the negative control. The PMB affected the TNF-α responses of gram-positive (except S. dysgalactaie), gram-negative bacteria; and bacterial cell wall components at a PMB concentration of 25-50 μg/mL. The LPS and E. coli had similar TNF-α response but PG had a lower TNF-α response than gram-positive bacteria. The doses of PMB (≥ 25 μg/mL) should be used with caution when using different types of pathogens or should be avoided in ex vivo TNF-α studies.
Collapse
Affiliation(s)
- Momena Khatun
- Aarhus University, Faculty of Science and Technology, Department of Animal Science, Blichers Allé 20, P.O. Box 50, DK-8300, Tjele, Denmark.
| | - Birthe M Damgaard
- Aarhus University, Faculty of Science and Technology, Department of Animal Science, Blichers Allé 20, P.O. Box 50, DK-8300, Tjele, Denmark.
| | - Jens B Andersen
- Aarhus University, Faculty of Science and Technology, Department of Animal Science, Blichers Allé 20, P.O. Box 50, DK-8300, Tjele, Denmark.
| | - Christine M Røntved
- Aarhus University, Faculty of Science and Technology, Department of Animal Science, Blichers Allé 20, P.O. Box 50, DK-8300, Tjele, Denmark; Christine Røntved, CMR On-Site RD, Graverhusvej 53, Langholt, 9310, Vodskov, Denmark.
| |
Collapse
|
6
|
Proudfoot KL, Kull JA, Krawczel PD, Bewley JM, O'Hara BF, Donohue KD, Pighetti GM. Effects of acute lying and sleep deprivation on metabolic and inflammatory responses of lactating dairy cows. J Dairy Sci 2021; 104:4764-4774. [PMID: 33663819 DOI: 10.3168/jds.2020-19332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 11/18/2020] [Indexed: 11/19/2022]
Abstract
Dairy cows that are restricted from lying down have a reduced ability to sleep. In other species, sleep loss is a key risk factor for disease, mediated by changes in metabolic and inflammatory responses. The cumulative effect of lying and sleep deprivation on cow health is unknown. The objective was to determine the effects of lying and sleep deprivation on metabolic and inflammatory responses of dairy cows. Data were collected from 8 multiparous and 4 primiparous lactating cows (199 ± 44 d in milk, 77 ± 30 d pregnant; mean ± standard deviation) enrolled in a study using a crossover design. Each cow was exposed to 2 treatments meant to induce sleep loss: (1) human disturbance (imposed by researchers making noise or physical contact when the cow's posture suggested sleep) and (2) lying deprivation (imposed by a wooden grid placed on the pen floor). Cows experienced a 24-h baseline period (d -1) followed by a 24-h treatment period (d 0), with a 12-d washout period between treatments. Baseline and treatment periods were imposed from 2100 to 2059 h. Cows were housed in individual pens during the acclimation period (d -3 and -2), d -1, and d 0. Nonesterified fatty acid and glucose concentrations were measured at 0300, 0900, 1500, and 2059 h on d -1 and 0. Proinflammatory cytokine mRNA [tumor necrosis factor (TNF), interleukin-1B (IL1B), and interleukin-6 (IL6)] abundance in whole-blood leukocytes, both nonstimulated and stimulated with lipopolysaccharide, were assessed at 2059 h on d -1 (end of baseline) and d 0 (end of treatment). Nonesterified fatty acids and glucose varied by time of day but were not affected by treatment or day. The abundances of TNF and IL1B from both stimulated and nonstimulated cells were higher following 24 h of lying deprivation (d 0) compared with baseline (d -1). Abundance of IL6 was increased in nonstimulated cells after lying deprivation compared with baseline. In contrast, human disturbance for 24 h did not alter TNF, IL1B, or IL6 abundance relative to baseline levels. These results suggest that a short period of lying deprivation generally increases inflammatory responses but not metabolic responses.
Collapse
Affiliation(s)
- K L Proudfoot
- Health Management, University of Prince Edward Island, Charlottetown, PE, Canada C1B1L2.
| | | | - P D Krawczel
- Department of Agricultural Sciences, University of Helsinki, Helsinki, Finland FI-00014
| | - J M Bewley
- Holstein Association USA Inc., Brattleboro, VT, 05301
| | - B F O'Hara
- Department of Biology, University of Kentucky, Lexington, 40506
| | - K D Donohue
- Department of Electrical and Computer Engineering, University of Kentucky, Lexington, 40506
| | - G M Pighetti
- Department of Animal Science, University of Tennessee, Knoxville, 37996.
| |
Collapse
|
7
|
Ex vivo tumor necrosis factor-alpha response of blood leukocytes in Danish Holstein-Friesian cows stimulated by Gram-positive and Gram-negative bacteria isolated from mastitic milk. Vet Immunol Immunopathol 2021; 234:110204. [PMID: 33611159 DOI: 10.1016/j.vetimm.2021.110204] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 01/31/2021] [Accepted: 02/06/2021] [Indexed: 01/15/2023]
Abstract
A whole blood stimulation assay was used to investigate the effects of parity, number of weeks after calving and Gram-positive and Gram-negative bacteria on the ex vivo TNF-α responsiveness of Danish Holstein-Friesian cows of first to third lactation (n = 28). Blood samples were collected in weeks 2, 3, 5 and 8 after parturition and stimulated with Escherichia coli LPS (10 μg/mL), Staphylococcus aureus peptidoglycan (PGN, 10 μg/mL) and dead Escherichia coli, Streptococcus uberis, Staphylococcus aureus, and Streptococcus dysgalactiae at a concentration of 2.5 × 106/mL. The antibiotic polymyxin-B (100 μg/mL) was added to the Gram-positive bacteria to avoid the influence of environmental endotoxin by ELISA test. Overall, parity had no effect, whereas number of weeks after calving altered the TNF-α responsiveness of the majority of the stimulants. Ex vivo, Gram-positive bacteria always resulted in a higher TNF-α response than Gram-negative bacteria with large differences within the individual cows. High correlations were found within the Gram-negative stimulants panel (r = 0.83) and within the Gram-positive (r = 0.81 to 0.86) stimulants panel except PGN. The higher TNF-α responsiveness by Gram-positive bacteria is in agreement with in vitro studies in human but in contrast to the in vivo TNF-α responsiveness in bovine udder.
Collapse
|
8
|
Mezzetti M, Minuti A, Piccioli-Cappelli F, Trevisi E. Inflammatory status and metabolic changes at dry-off in high-yield dairy cows. ITALIAN JOURNAL OF ANIMAL SCIENCE 2019. [DOI: 10.1080/1828051x.2019.1691472] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Matteo Mezzetti
- Department of Animal Sciences, Food and Nutrition (DIANA), Facoltà di Scienze Agrarie, Alimentari e Ambientali, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Andrea Minuti
- Department of Animal Sciences, Food and Nutrition (DIANA), Facoltà di Scienze Agrarie, Alimentari e Ambientali, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Fiorenzo Piccioli-Cappelli
- Department of Animal Sciences, Food and Nutrition (DIANA), Facoltà di Scienze Agrarie, Alimentari e Ambientali, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Erminio Trevisi
- Department of Animal Sciences, Food and Nutrition (DIANA), Facoltà di Scienze Agrarie, Alimentari e Ambientali, Università Cattolica del Sacro Cuore, Piacenza, Italy
| |
Collapse
|
9
|
Mezzetti M, Minuti A, Piccioli-Cappelli F, Amadori M, Bionaz M, Trevisi E. The role of altered immune function during the dry period in promoting the development of subclinical ketosis in early lactation. J Dairy Sci 2019; 102:9241-9258. [PMID: 31378488 DOI: 10.3168/jds.2019-16497] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 06/04/2019] [Indexed: 12/16/2022]
Abstract
Subclinical ketosis (SCK) may impair white blood cell (WBC) function and thus contribute to the risk of disease postpartum. This preliminary study investigated changes occurring in the immune system before disease onset to elucidate their role in the occurrence of SCK. A group of 13 Holstein dairy cows were housed in tie-stalls and retrospectively divided into 2 groups based on their levels of β-hydroxybutyrate (BHB) measured in plasma between calving day and 35 d from calving (DFC). Levels of BHB <1.4 mmol/L were found in 7 cows (control cows, CTR group) and levels >1.4 mmol/L were found in 6 cows at ≥1 of 6 time points considered (cows with SCK, KET group). From -48 to 35 DFC, body condition score, body weight, dry matter intake, rumination time, and milk yield were measured, and blood samples were collected regularly to assess the hematochemical profile and test the WBC function by ex vivo challenge assays. Data were submitted for ANOVA testing using a mixed model for repeated measurements that included health status and time and their interactions as fixed effects. Compared with CTR cows, KET cows had more pronounced activation of the immune system (higher plasma concentrations of proinflammatory cytokines, myeloperoxidase, and oxidant species, and greater IFN-γ responses to Mycobacterium avium), higher blood concentrations of γ-glutamyl transferase, and lower plasma concentrations of minerals before calving. Higher levels of nonesterified fatty acids, BHB, and glucose were detected in KET cows than in CTR cows during the dry period. The effect observed during the dry period was associated with a reduced dry matter intake, reduced plasma glucose, and increased fat mobilization (further increases in nonesterified fatty acids and BHB) during early lactation. A reduced milk yield was also detected in KET cows compared with CTR. The KET cows had an accentuated acute-phase response after calving (with greater concentrations of positive acute-phase proteins and lower concentrations of retinol than CTR cows) and impaired liver function (higher blood concentrations of glutamate-oxaloacetate transaminase and bilirubin). The WBC of the KET cows, compared with CTR cows, had a reduced response to an ex vivo stimulation assay, with lower production of proinflammatory cytokines and greater production of lactate. These alterations in the WBC could have been driven by the combined actions of metabolites related to the mobilization of lipids and the occurrence of a transient unresponsive state against stimulation aimed at preventing excessive inflammation. The associations identified here in a small number of cows in one herd should be investigated in larger studies.
Collapse
Affiliation(s)
- M Mezzetti
- Department of Animal Sciences, Food and Nutrition, Faculty of Agriculture, Food and Environmental Science, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| | - A Minuti
- Department of Animal Sciences, Food and Nutrition, Faculty of Agriculture, Food and Environmental Science, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| | - F Piccioli-Cappelli
- Department of Animal Sciences, Food and Nutrition, Faculty of Agriculture, Food and Environmental Science, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| | - M Amadori
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia-Romagna, Laboratory of Cellular Immunology, 25124 Brescia, Italy
| | - M Bionaz
- Department of Animal and Rangeland Sciences, Oregon State University, Corvallis 97331
| | - E Trevisi
- Department of Animal Sciences, Food and Nutrition, Faculty of Agriculture, Food and Environmental Science, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy.
| |
Collapse
|
10
|
Lange J, Ganesh S, Meier S, Kay JK, Crookenden MA, Walker CG, Mitchell MD, Loor JJ, Roche JR, Heiser A. Far-off and close-up feeding levels affect immunological performance in grazing dairy cows during the transition period. J Anim Sci 2019; 97:192-207. [PMID: 30428048 PMCID: PMC6313127 DOI: 10.1093/jas/sky427] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Indexed: 12/12/2022] Open
Abstract
During the peripartum period, dairy cows often have signs of inflammation. Various stresses, including infectious and metabolic diseases, have been discussed as causative for this inflammation. In this study, expression profiles for 17 immune markers were measured in whole blood preparations from 78 dairy cows over a time frame starting 1 wk before calving to 4 wk after calving. Additionally, the effects of far-off and close-up feeding on immune function of dairy cows during the peripartum period were investigated. Cows were assigned to 1 of 2 feeding levels in late lactation to achieve a low and high BCS at the time of dry-off (approximately 4.25 and 5.0 on a 10-point scale). Following dry-off, both herds were managed to achieve a BCS of 5.0 one month before calving; this involved controlled feeding (i.e., maintenance) and over-feeding of ME during the far-off dry period. Within each far-off feeding-level treatment, cows were offered 65, 90, or 120% of their precalving ME requirements for 3 wk precalving in a 2 × 3 factorial arrangement. Analysis of gene expression profiles from blood cells revealed effects of time indicating that the transition cow's immune system counteracts the peripartum inflammation, whereas later postcalving it becomes activated to provide protection against postpartum infections. Far-off feeding affected (P < 0.05) the expression of 2 of the investigated genes at calving. Interleukin-6 (IL-6) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) expression in unstimulated, peripheral leukocytes were lower (P < 0.05) in animals from the Far-Off_Over-fed group compared with the Far-Off_Control-fed group. Close-up feeding had several effects on gene expression, indicating that immune function in Feed120 animals was distinct from the Feed90 and Feed65. In conclusion, feeding management precalving becomes an important intervention to ensure immunocompetence at and after calving.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Murray D Mitchell
- Centre for Clinical Research, University of Queensland, Royal Brisbane and Women’s Hospital Campus, Herston, Australia
| | - Juan J Loor
- Department of Animal Sciences, University of Illinois, Urbana, IL
| | | | | |
Collapse
|
11
|
Mansouryar M, Mirzaei-Alamouti H, Dehghan Banadaky M, Sauerwein H, Mielenz M, Nielsen M. Short communication: Relationship between body condition score and plasma adipokines in early-lactating Holstein dairy cows. J Dairy Sci 2018; 101:8552-8558. [DOI: 10.3168/jds.2017-14122] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 04/07/2018] [Indexed: 12/15/2022]
|
12
|
Ling T, Hernandez-Jover M, Sordillo LM, Abuelo A. Maternal late-gestation metabolic stress is associated with changes in immune and metabolic responses of dairy calves. J Dairy Sci 2018; 101:6568-6580. [PMID: 29729919 DOI: 10.3168/jds.2017-14038] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 03/20/2018] [Indexed: 01/12/2023]
Abstract
Metabolic stress in periparturient dairy cows is characterized by excessive lipid mobilization, inflammation, and oxidative stress that is associated with immune dysfunction. Thus, metabolic stress around the time calving is linked to the development of various early-lactation health disorders. Maternal status during late pregnancy can have carryover effects on several health and production variables of neonatal calves. However, the effects of metabolic stress during gestation on metabolic and immune responses of newborn calves remain unknown. Thus, we aimed to investigate whether metabolic stress in late-gestation dairy cows is associated with changes in the metabolic and immune responses of their offspring during the first month of life. Holstein-Friesian cows (n = 12) were blood sampled at 28 and 15 d before expected calving. The average between these 2 sampling points in the serum concentrations of nonesterified fatty acids (NEFA), haptoglobin (Hp), and oxidant status index (OSi)-defined as the ratio between reactive oxygen and nitrogen species and total antioxidant potential-were calculated as indicators of the degree of lipid mobilization, inflammation, and oxidant status (OS), respectively. Calves were subsequently divided into groups (n = 6 each) according to their dams' high or low degree of lipid mobilization, inflammation, and OS. The metabolic responses of calves in each of these groups were compared weekly throughout their first month of life by assessing serum concentration of NEFA, Hp, and OSi. Additionally, whole blood was obtained from calves at each sampling period and subjected to a lipopolysaccharide (LPS)-stimulated tumor necrosis factor-α (TNF-α) production assay to assess cell-mediated innate immunity against induced inflammatory responses, using high (5 μg/mL of blood) and low (10 ng/mL) concentrations of LPS. Calves born to cows with higher NEFA or OSi showed lower body weight at birth and throughout the study, whereas no association between any of the maternal groups and average daily gain at 4 wk of age was identified. Serum concentrations of reactive oxygen and nitrogen species were higher in calves exposed to higher maternal NEFA concentrations or OSi when compared with calves born to cows with lower values of these biomarkers. Calves exposed to high maternal OS also had higher circulating concentrations of Hp and TNF-α, indicating greater basal inflammatory responses when compared with calves born to cows with a lower OSi. In contrast, LPS-induced inflammatory responses were less robust in calves exposed to higher maternal biomarkers of inflammation or OS, suggesting compromised immune responses to microbial agonists. Collectively, these data suggest that prenatal exposure to maternal parameters of metabolic stress may adversely affect some metabolic and inflammatory responses of the offspring that could influence disease susceptibility.
Collapse
Affiliation(s)
- Tahlia Ling
- School of Animal and Veterinary Sciences, Faculty of Science, Charles Sturt University, Boorooma Street, Wagga Wagga NSW 2678, Australia
| | - Marta Hernandez-Jover
- School of Animal and Veterinary Sciences, Faculty of Science, Charles Sturt University, Boorooma Street, Wagga Wagga NSW 2678, Australia; Graham Centre for Agricultural Innovation (Charles Sturt University and NSW Department of Primary Industries), Albert Pugsley Place, Wagga Wagga NSW 2650, Australia
| | - Lorraine M Sordillo
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing 48824
| | - Angel Abuelo
- School of Animal and Veterinary Sciences, Faculty of Science, Charles Sturt University, Boorooma Street, Wagga Wagga NSW 2678, Australia; Graham Centre for Agricultural Innovation (Charles Sturt University and NSW Department of Primary Industries), Albert Pugsley Place, Wagga Wagga NSW 2650, Australia; Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing 48824.
| |
Collapse
|
13
|
Dänicke S, Meyer U, Kersten S, Frahm J. Animal models to study the impact of nutrition on the immune system of the transition cow. Res Vet Sci 2018; 116:15-27. [PMID: 29428254 DOI: 10.1016/j.rvsc.2018.01.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 11/10/2017] [Accepted: 01/31/2018] [Indexed: 12/22/2022]
Abstract
The immune system is particularly challenged in transition cows as marked physiological changes occur in this period which are driven by late gestation, partus and onset of lactation. As a consequence, the metabolic and nutritional state of the cow also changes significantly with possible implications for the plasticity and flexibility of the immune system. In order to understand how the balance between metabolism, nutritional status and the immune system is maintained under challenging conditions, such as an infection, various animal models can be used which specifically manipulate the nutritional status through various feeding and management strategies. Such models aim at exploring the immunological response to a challenge under largely varying nutritional and metabolic states. As energy balance (EB) is strongly associated both with the metabolic state and with the immunoreactivity of the cows the manipulation of the EB by either influencing energy intake or energy excretion with milk, or by both, offers model opportunities for studying EB effects on the immune system. For example, assigning cows with a higher body condition score (BCS) at least 6 weeks prior to calving to an energy-dense diet exceeding the energy requirement in combination with a decelerated increase in the concentrate feed proportion post partum was shown to be effective in inducing a ketotic metabolic state under ad libitum feeding conditions. Compared to an adequately managed control group this model allows studying immune responses in the transit period and in dependence on dietary interventions.
Collapse
Affiliation(s)
- Sven Dänicke
- Institute of Animal Nutrition, Friedrich-Loeffler-Institute (FLI), Federal Research Institute for Animal Health (FLI), Braunschweig, Germany.
| | - Ulrich Meyer
- Institute of Animal Nutrition, Friedrich-Loeffler-Institute (FLI), Federal Research Institute for Animal Health (FLI), Braunschweig, Germany
| | - Susanne Kersten
- Institute of Animal Nutrition, Friedrich-Loeffler-Institute (FLI), Federal Research Institute for Animal Health (FLI), Braunschweig, Germany
| | - Jana Frahm
- Institute of Animal Nutrition, Friedrich-Loeffler-Institute (FLI), Federal Research Institute for Animal Health (FLI), Braunschweig, Germany
| |
Collapse
|
14
|
Larsen M, Røntved CM, Theil PK, Khatun M, Lauridsen C, Kristensen NB. Effect of experimentally increased protein supply to postpartum dairy cows on plasma protein synthesis, rumen tissue proliferation, and immune homeostasis. J Anim Sci 2017; 95:2097-2110. [PMID: 28727010 DOI: 10.2527/jas.2016.1055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The effect of experimentally increasing the postpartum protein supply on plasma protein synthesis, rumen tissue proliferation, and immune homeostasis was studied using 8 periparturient Holstein cows in a complete randomized design. At calving, cows were assigned to abomasal infusion of water (CTRL) or casein (CAS) in addition to a lactation diet. Casein infusion was gradually decreased from 696 ± 1 g/d at +2 d relative to calving (DRTC) to 212 ± 10 g/d at +29 DRTC to avoid excessive supply. Synthesis rate of plasma proteins was measured at -14, +4, +15, and +29 DRTC by measuring [C]Phe isotopic enrichment in arterial plasma free Phe, total plasma proteins, and albumin after 3, 5, and 7 h of jugular ring[C]Phe infusion. Plasma volume was determined at +4 and +29 DRTC by dilution of a [I]BSA dose. Synthesis rate of tissue protein in biopsied rumen papillae was determined by measuring [C]Phe isotopic enrichment, and mRNA expression of selected genes was measured by real-time qPCR. Total and differential leukocyte counts were performed and immune responsiveness of monocytes was evaluated by tumor necrosis factor ɑ (TNFɑ) concentration on ex vivo whole blood stimulation with Escherichia coli lipopolysaccharide (LPS) and responsiveness of T-lymphocytes by interferon γ (IFNγ) concentration on stimulation with Staphylococcus aureus enterotoxin β (SEB). Further, ELISA plasma concentrations of IgM, IgA, and IgG were determined. The DRTC affected the majority of investigated parameters as expected. The CAS treatment increased milk protein yield (P = 0.04), and tended to lower TNFɑ (P = 0.06), and lowered IFNγ (P = 0.03) responsiveness per monocyte and lymphocyte, respectively, compared with CTRL. Further, fractional synthesis rate of albumin was greater at +4 DRTC for CAS compared with CTRL but did not differ by +29 DRTC (interaction: P = 0.01). In rumen papillae, synthesis rate of tissue protein was greater for CAS compared with CTRL (P < 0.01) and mRNA expression of genes for cell proliferation tended to be or were greater for CAS compared with CTRL (P ≤ 0.07). In conclusion, increased postpartum protein supply seem to enhance vital body functions as interpreted from increased liver synthesis of albumin, increased rumen papillae proliferation, and stabilized the ex vivo inflammatory responsiveness of leukocytes. Further studies are needed to enlighten the importance of increased postpartum protein supply in periparturient cows.
Collapse
|
15
|
Whole blood optimization and genetic association of ex vivo TNF-α responsiveness to killed E. coli in Danish Holstein cows. Livest Sci 2017. [DOI: 10.1016/j.livsci.2017.04.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
16
|
Eger M, Horn J, Hussen J, Schuberth HJ, Scharf M, Meyer U, Dänicke S, Bostedt H, Breves G. Effects of dietary CLA supplementation, parity and different concentrate levels before calving on immunoglobulin G1, G2 and M concentrations in dairy cows. Res Vet Sci 2017; 114:287-293. [PMID: 28601035 DOI: 10.1016/j.rvsc.2017.05.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 05/02/2017] [Accepted: 05/30/2017] [Indexed: 10/19/2022]
Abstract
Peripartal dairy cows exhibit a higher susceptibility for infectious diseases, which might be linked to the negative energy balance occurring at the onset of lactation. A dietary supplementation of conjugated linoleic acids (CLA) may reduce milk fat yield and subsequently lower the energy deficit. The utilization of immunoglobulins (Ig) for colostrogenesis might impair humoral immunity in peripartal dairy cows; therefore this study investigated the effects of a CLA supplement, parity and different dietary energy levels on plasma and colostrum IgG1, IgG2 and IgM levels in dairy cows and their calves. Blood samples were collected from 64 cows from 21days before until 56days after parturition and colostrum samples for the first 3days of lactation. Plasma immunoglobulin concentrations of 19 calves were determined before colostrum uptake. Neither plasma IgG1, nor IgG2 levels were affected by CLA or dietary energy level. However, immunoglobulin levels were affected by parity. Heifers possessed the lowest IgG1 concentrations. IgG2 concentrations were highest in cows with 2 lactations prior to parturition and in heifers after parturition. Plasma IgM levels were characterized by a sharp decrease 3days prior to parturition and were scarcely affected by the feeding regimen or parity. Generally, immunoglobulin levels appear to be mostly independent from the peripartal energy balance of the cows and are not influenced by dietary CLA. However, pronounced differences among parities for IgG1 and IgG2 were revealed which should be further evaluated.
Collapse
Affiliation(s)
- Melanie Eger
- Department of Physiology, University of Veterinary Medicine Hannover, Bischofsholer Damm 15, D-30173 Hannover, Germany.
| | - Jana Horn
- Department of Physiology, University of Veterinary Medicine Hannover, Bischofsholer Damm 15, D-30173 Hannover, Germany
| | - Jamal Hussen
- Immunology Unit, University of Veterinary Medicine Hannover, Bischofsholer Damm 15, D-30173 Hannover, Germany
| | - Hans-Joachim Schuberth
- Immunology Unit, University of Veterinary Medicine Hannover, Bischofsholer Damm 15, D-30173 Hannover, Germany
| | - Maria Scharf
- Institute of Animal Nutrition, Friedrich-Loeffler-Institut (FLI), Federal Research Institute for Animal Health, Bundesallee 50, D-38116 Braunschweig, Germany
| | - Ulrich Meyer
- Institute of Animal Nutrition, Friedrich-Loeffler-Institut (FLI), Federal Research Institute for Animal Health, Bundesallee 50, D-38116 Braunschweig, Germany
| | - Sven Dänicke
- Institute of Animal Nutrition, Friedrich-Loeffler-Institut (FLI), Federal Research Institute for Animal Health, Bundesallee 50, D-38116 Braunschweig, Germany
| | - Hartwig Bostedt
- Department for Obstetrics, Gynecology and Andrology of Large and Small Animals, Faculty of Veterinary Medicine, Justus-Liebig University Giessen, Frankfurter Straße 106, D-35392 Giessen, Germany
| | - Gerhard Breves
- Department of Physiology, University of Veterinary Medicine Hannover, Bischofsholer Damm 15, D-30173 Hannover, Germany
| |
Collapse
|
17
|
Vailati-Riboni M, Zhou Z, Jacometo CB, Minuti A, Trevisi E, Luchini DN, Loor JJ. Supplementation with rumen-protected methionine or choline during the transition period influences whole-blood immune response in periparturient dairy cows. J Dairy Sci 2017; 100:3958-3968. [PMID: 28318590 DOI: 10.3168/jds.2016-11812] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 01/29/2017] [Indexed: 12/25/2022]
Abstract
Methionine, together with Lys, is the most limiting AA for milk production in dairy cows. Besides its crucial role in milk production, Met and its derivate metabolites (e.g., glutathione, taurine, polyamines) are well-known immunonutrients in nonruminants, helping support and boost immune function and activity. In the present study, the effects of Met or choline, as its precursor, were investigated using an ex vivo whole blood challenge. The study involved 33 multiparous Holstein cows (from a larger cohort with a factorial arrangement of treatments) assigned from d -21 to +30 relative to parturition to a basal control (CON) diet, CON plus rumen-protected Met (MET, Smartamine M, Adisseo NA, Alpharetta, GA) at a rate of 0.08% of dry matter, or CON plus rumen-protected choline (CHOL, ReaShure, Balchem Inc., New Hampton, NY) at 60 g/d. Blood was sampled on d -15, -7, 2, 7, and 20 for ex vivo lipopolysaccharide (LPS) challenge, and on d 1, 4, 14, and 28 relative to parturition for phagocytosis and oxidative burst assays. The MET cows had greater energy-corrected milk production and milk protein content. Overall, IL-6 response to LPS increased around parturition, whereas IL-1β remained constant, casting doubt on the existence of systemic immunosuppression in the peripartal period. Supplementation with MET dampened the postpartal blood response to LPS (lower IL-1β), while improving postpartum neutrophil and monocyte phagocytosis capacity and oxidative burst activity. In contrast, CHOL supplementation increased monocyte phagocytosis capacity. Overall, the data revealed a peripartal immune hyper-response, which appeared to have been mitigated by MET supplementation. Both MET and CHOL effectively improved immune function; however, MET affected the immune and antioxidant status before parturition, which might have been beneficial to prepare the cow to respond to metabolic challenges after parturition. These results provide insights on potential differences in the immunomodulatory action of methionine and choline in dairy cows. As such, the effects observed could have implications for ration formulation and dietary strategies.
Collapse
Affiliation(s)
- M Vailati-Riboni
- Mammalian NutriPhysioGenomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801
| | - Z Zhou
- Mammalian NutriPhysioGenomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801
| | - C B Jacometo
- Mammalian NutriPhysioGenomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801; Programa de Zootecnia, Facultad de Ciencias Agropecuarias, Universidad de La Salle, 110231, Bogotá DC, Colombia; NUPEEC, Departamento de Clínicas Veterinária, Programa de Pós-Graduação em Biotecnologia, Universidade Federal de Pelotas, 96010-900, Pelotas, RS, Brazil
| | - A Minuti
- Istituto di Zootecnica, Facoltà di Scienze Agrarie, Alimentari e Ambientali, Università Cattolica del Sacro Cuore, 29122, Piacenza, Italy
| | - E Trevisi
- Istituto di Zootecnica, Facoltà di Scienze Agrarie, Alimentari e Ambientali, Università Cattolica del Sacro Cuore, 29122, Piacenza, Italy
| | | | - J J Loor
- Mammalian NutriPhysioGenomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801.
| |
Collapse
|
18
|
Ryman V, Packiriswamy N, Norby B, Schmidt S, Lock A, Sordillo L. Supplementation of linoleic acid (C18:2n-6) or α-linolenic acid (C18:3n-3) changes microbial agonist-induced oxylipid biosynthesis. J Dairy Sci 2017; 100:1870-1887. [DOI: 10.3168/jds.2016-11599] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 11/18/2016] [Indexed: 12/25/2022]
|
19
|
Reverchon M, Rame C, Bunel A, Chen W, Froment P, Dupont J. VISFATIN (NAMPT) Improves In Vitro IGF1-Induced Steroidogenesis and IGF1 Receptor Signaling Through SIRT1 in Bovine Granulosa Cells. Biol Reprod 2016; 94:54. [PMID: 26792944 DOI: 10.1095/biolreprod.115.134650] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 01/19/2016] [Indexed: 12/26/2022] Open
Abstract
VISFATIN is a novel adipokine, also known as a nicotinamide phosphorybosyltransferase (NAMPT), that is able to modulate different processes, including lipid and glucose metabolism, oxidative stress, inflammation, and insulin resistance. Recent data suggest that it also plays a role in reproductive function in rats, humans, and chickens. Here we identified VISFATIN in the bovine ovary and investigated the in vitro effects of this hormone on granulosa cell steroidogenesis and proliferation and oocyte maturation. By RT-PCR, immunoblotting, and immunohistochemistry, we found VISFATIN in various ovarian cells, including granulosa and theca cells, corpus luteum, and oocytes. In cultured bovine granulosa cells, we showed that IGF1 (10(-8) M) and VISFATIN (10 and 100 ng/ml) but not FSH (10(-8) M) increased mRNA expression levels of NAMPT after 48 h of stimulation. Moreover, we observed that human recombinant VISFATIN (hVisf, 10 ng/ml, 48 h) increased the release of progesterone and estradiol secretion, and this was associated with an increase in the protein level of STAR, the HSD3B activity, and the phosphorylation levels of IGF1R and MAPK ERK1/2 in the presence or absence of IGF1 (10(-8) M). All these effects were abolished when NAMPT was knocked down and when the sirtuin pharmacological inhibitors CHIC-35 (60 nM) and EX-527 (0.5 μM) were preincubated in bovine granulosa cells. Thus, in cultured bovine granulosa cells, VISFATIN improves basal and IGF1-induced steroidogenesis and IGF1 receptor signaling through SIRT1.
Collapse
Affiliation(s)
- Maxime Reverchon
- Unité Mixte de Recherches 7247 Institut National de la Recherche Agronomique-Centre National de la Recherche Scientifique-Université de Tours-Institut Français du Cheval et de l'Equitation, Nouzilly, France
| | - Christelle Rame
- Unité Mixte de Recherches 7247 Institut National de la Recherche Agronomique-Centre National de la Recherche Scientifique-Université de Tours-Institut Français du Cheval et de l'Equitation, Nouzilly, France
| | - Audrey Bunel
- Unité Mixte de Recherches 7247 Institut National de la Recherche Agronomique-Centre National de la Recherche Scientifique-Université de Tours-Institut Français du Cheval et de l'Equitation, Nouzilly, France
| | - Wenyong Chen
- Beckman Research Institute of the City of Hope, Duarte, California
| | - Pascal Froment
- Unité Mixte de Recherches 7247 Institut National de la Recherche Agronomique-Centre National de la Recherche Scientifique-Université de Tours-Institut Français du Cheval et de l'Equitation, Nouzilly, France
| | - Joëlle Dupont
- Unité Mixte de Recherches 7247 Institut National de la Recherche Agronomique-Centre National de la Recherche Scientifique-Université de Tours-Institut Français du Cheval et de l'Equitation, Nouzilly, France
| |
Collapse
|
20
|
Eger M, Hussen J, Koy M, Dänicke S, Schuberth HJ, Breves G. Glucose transporter expression differs between bovine monocyte and macrophage subsets and is influenced by milk production. J Dairy Sci 2015; 99:2276-2287. [PMID: 26723114 DOI: 10.3168/jds.2015-10435] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 11/11/2015] [Indexed: 01/22/2023]
Abstract
The peripartal period of dairy cows is characterized by negative energy balance and higher incidences of infectious diseases such as mastitis or metritis. With the onset of lactation, milk production is prioritized and large amounts of glucose are transported into the mammary gland. Decreased overall energy availability might impair the function of monocytes acting as key innate immune cells, which give rise to macrophages and dendritic cells and link innate and adaptive immunity. Information on glucose requirements of bovine immune cells is rare. Therefore, this study aims to evaluate glucose transporter expression of the 3 bovine monocyte subsets (classical, intermediate, and nonclassical monocytes) and monocyte-derived macrophages and to identify influences of the peripartal period. Blood samples were either collected from nonpregnant healthy cows or from 16 peripartal German Holstein cows at d -14, +7, and +21 relative to parturition. Quantitative real-time PCR was applied to determine mRNA expression of glucose transporters (GLUT) 1, GLUT3, and GLUT4 in monocyte subsets and monocyte-derived macrophages. The low GLUT1 and GLUT3 expression in nonclassical monocytes was unaltered during differentiation into macrophages, whereas in classical and intermediate monocytes GLUT expression was downregulated. Alternatively activated M2 macrophages consumed more glucose compared with classically activated M1 macrophages. The GLUT4 mRNA was only detectable in unstimulated macrophages. Neither monocytes nor macrophages were insulin responsive. In the peripartum period, monocyte GLUT1 and GLUT3 expression and the GLUT3/GLUT1 ratio were negatively correlated with lactose production. The high-affinity GLUT3 transporter appears to be the predominant glucose transporter on bovine monocytes and macrophages, especially in the peripartal period when blood glucose levels decline. Glucose transporter expression in monocytes is downregulated as a function of lactose production, which might impair monocyte to macrophage differentiation.
Collapse
Affiliation(s)
- M Eger
- Department of Physiology, University of Veterinary Medicine Hannover, Foundation, D-30173 Hannover, Germany; Immunology Unit, University of Veterinary Medicine Hannover, Foundation, D-30173 Hannover, Germany
| | - J Hussen
- Immunology Unit, University of Veterinary Medicine Hannover, Foundation, D-30173 Hannover, Germany
| | - M Koy
- Immunology Unit, University of Veterinary Medicine Hannover, Foundation, D-30173 Hannover, Germany
| | - S Dänicke
- Institute of Animal Nutrition, Friedrich-Loeffler Institute, Federal Research Institute for Animal Health, D-38116 Braunschweig, Germany
| | - H-J Schuberth
- Immunology Unit, University of Veterinary Medicine Hannover, Foundation, D-30173 Hannover, Germany
| | - G Breves
- Department of Physiology, University of Veterinary Medicine Hannover, Foundation, D-30173 Hannover, Germany.
| |
Collapse
|
21
|
Jahan N, Minuti A, Trevisi E. Assessment of immune response in periparturient dairy cows using ex vivo whole blood stimulation assay with lipopolysaccharides and carrageenan skin test. Vet Immunol Immunopathol 2015; 165:119-26. [DOI: 10.1016/j.vetimm.2015.04.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 03/02/2015] [Accepted: 04/01/2015] [Indexed: 10/23/2022]
|
22
|
Eger M, Hussen J, Drong C, Meyer U, von Soosten D, Frahm J, Daenicke S, Breves G, Schuberth HJ. Impacts of parturition and body condition score on glucose uptake capacity of bovine monocyte subsets. Vet Immunol Immunopathol 2015; 166:33-42. [PMID: 25980551 DOI: 10.1016/j.vetimm.2015.04.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 04/21/2015] [Accepted: 04/23/2015] [Indexed: 11/18/2022]
Abstract
The peripartal period of dairy cows is associated with a higher incidence of infectious diseases like mastitis or metritis, particularly in high-yielding animals. The onset of lactation induces a negative energy balance and a shift of glucose distribution toward the udder. Glucose is used as primary fuel by monocytes which give rise to macrophages, key cells in the defense against pathogens. The aim of this study was to analyze whether animals with high or low body condition score (BCS) differ in composition and glucose uptake capacities of bovine monocyte subsets. Blood samples were taken from 27 dairy cows starting 42 days before parturition until day 56 after parturition. The cows were allocated to two groups according to their BCS. A feeding regime was applied, in which the BCS high group received higher amounts of concentrate before parturition and concentrate feeding was more restricted in the BCS high group after parturition compared with the BCS low group, to promote postpartal lipolysis and enhance negative energy balance in the BCS high group. Blood cell counts of classical (cM), intermediate (intM) and nonclassical monocytes (ncM) were increased at day 7 after calving. In the BCS low group intM numbers were significantly higher compared to the BCS high group at day 7 after parturition. Within the BCS low group cows suffering from mastitis or metritis showed significantly higher numbers of cM, intM and ncM at day 7 after parturition. Classical monocytes and intM showed similar glucose uptake capacities while values for ncM were significantly lower. Compared with antepartal capacities and irrespective of BCS and postpartal mastitis or metritis, glucose uptake of all monocyte subsets decreased after parturition. In conclusion, whereas glucose uptake capacity of bovine monocyte subsets is altered by parturition, it is not linked to the energy supply of the animals or to postpartal infectious diseases.
Collapse
Affiliation(s)
- Melanie Eger
- Department of Physiology, University of Veterinary Medicine Hannover, Bischofsholer Damm 15, D-30173 Hannover, Germany; Immunology Unit, University of Veterinary Medicine Hannover, Bischofsholer Damm 15, D-30173 Hannover, Germany
| | - Jamal Hussen
- Immunology Unit, University of Veterinary Medicine Hannover, Bischofsholer Damm 15, D-30173 Hannover, Germany
| | - Caroline Drong
- Institute for Animal Nutrition, Friedrich-Loeffler Institute, Federal Research Institute for Animal Health, Bundesallee 50, D-38116 Braunschweig, Germany
| | - Ulrich Meyer
- Institute for Animal Nutrition, Friedrich-Loeffler Institute, Federal Research Institute for Animal Health, Bundesallee 50, D-38116 Braunschweig, Germany
| | - Dirk von Soosten
- Institute for Animal Nutrition, Friedrich-Loeffler Institute, Federal Research Institute for Animal Health, Bundesallee 50, D-38116 Braunschweig, Germany
| | - Jana Frahm
- Institute for Animal Nutrition, Friedrich-Loeffler Institute, Federal Research Institute for Animal Health, Bundesallee 50, D-38116 Braunschweig, Germany
| | - Sven Daenicke
- Institute for Animal Nutrition, Friedrich-Loeffler Institute, Federal Research Institute for Animal Health, Bundesallee 50, D-38116 Braunschweig, Germany
| | - Gerhard Breves
- Department of Physiology, University of Veterinary Medicine Hannover, Bischofsholer Damm 15, D-30173 Hannover, Germany
| | - Hans-Joachim Schuberth
- Immunology Unit, University of Veterinary Medicine Hannover, Bischofsholer Damm 15, D-30173 Hannover, Germany.
| |
Collapse
|
23
|
Thatcher WW, Santos JEP, Silvestre FT, Kim IH, Staples CR. Perspective on physiological/endocrine and nutritional factors influencing fertility in post-partum dairy cows. Reprod Domest Anim 2014; 45 Suppl 3:2-14. [PMID: 24417194 DOI: 10.1111/j.1439-0531.2010.01664.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Increasing reproductive performance of post-partum lactating dairy cows is a multi-factorial challenge involving disciplines of production medicine, nutrition, physiology and herd management. Systems of programmed timed insemination have been fine-tuned to achieve pregnancy per artificial inseminations (AI) approximating 45%. Systems have optimized follicle development, integrated follicle development with timing of induced corpus luteum regression and fine-tuned sequential timing of induced ovulation and AI. Use of programmes for insemination have identified occurrence of anovulatory ovarian status, body condition, uterine health and seasonal summer stress as factors contributing to reduced herd fertility. Furthermore, programmes of timed insemination provide a platform to evaluate efficacy of nutritional and herd health systems targeted to the transition and post-partum periods. The homeorhetic periparturient period, as cows deal with decreases in dry matter intake, results in a negative energy balance and is associated with a period of immunosuppression. Cows that transition well will cycle earlier and have a greater risk of becoming pregnant earlier post-partum. The innate arms of the immune system (acute and adaptive) are suppressed during the periparturient period. Cows experiencing the sequential complex of disorders such as dystocia, puerperal metritis, metritis, endometritis and subclinical endometritis are subsequently less fertile. Targeted strategies of providing specific nutraceuticals that provide pro- and anti-inflammatory effects, such as polyunsaturated fatty acids (e.g., linoleic, eicosapentaenoic/docosahexaenoic, conjugated linoleic acid), sequential glycogenic and lipogenic enrichment of diets, and organic selenium appear to differentially regulate and improve the immune and reproductive systems to benefit an earlier restoration of ovarian activity and increased fertility.
Collapse
Affiliation(s)
- W W Thatcher
- Department of Animal Sciences, University of Florida, Gainesville, FL, USA Department of Veterinary Medicine, College of Veterinary Medicine, Chungbuk National University, Chongju Chungbuk, South Korea
| | | | | | | | | |
Collapse
|
24
|
Karcher EL, Hill TM, Bateman HG, Schlotterbeck RL, Vito N, Sordillo LM, Vandehaar MJ. Comparison of supplementation of n-3 fatty acids from fish and flax oil on cytokine gene expression and growth of milk-fed Holstein calves. J Dairy Sci 2014; 97:2329-37. [PMID: 24485693 DOI: 10.3168/jds.2013-7160] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Accepted: 12/14/2013] [Indexed: 11/19/2022]
Abstract
The ability to reduce incidence of disease in calves and improve early vaccination strategies is of particular interest for dairy producers. The n-3 fatty acids have been reported to reduce inflammatory diseases in humans but limited research has been done in calves. The objective of this study was to compare supplementation of n-3 fatty acids from fish and flax oil on gene expression of whole blood cells and growth of milk-fed Holstein calves. Forty-eight Holstein bull calves from a commercial dairy were randomly assigned to 1 of 3 diets beginning at 4d old: (1) control milk replacer (MR) with all pork fat, (2) MR with 2% flax oil, and (3) MR with 2% fish oil. All MR were 17% fat, 27% crude protein on a dry matter (DM) basis, with all protein from whey sources. Calves were each fed 654g DM of MR daily for the first 25d and then 327g/d for d26, 27, and 28. On d28, calves were challenged with a Pasteurella vaccine and the temperature response to the vaccine was recorded. Milk and feed intake and fecal scores were recorded daily, and body weight and hip width were recorded weekly. Blood was collected from all calves on d25. One tube of collected blood was incubated with endotoxin (lipopolysaccharide; LPS) for 2h and frozen with a second tube of control blood. Quantitative real-time PCR was used to assess the effects of LPS stimulation on cytokine gene expression. During the 28 d, calves supplemented with flax oil had a greater growth rate and feed efficiency than calves fed fish oil (0.52±0.02 vs. 0.48±0.02g of gain:g of feed). Fish oil tended to decrease LPS stimulation of tumor necrosis factor-α expression. Flax oil, but not fish oil, decreased the expression of IL-4 and tended to decrease expression of osteopontin and IL-8. Flax oil tended to reduce the increase in rectal temperature in response to a Pasteurella vaccine. In conclusion, our data support the idea that supplementation with n-3 fatty acids affects cytokine gene expression.
Collapse
Affiliation(s)
- E L Karcher
- Department of Animal Science, Michigan State University, East Lansing 48824
| | - T M Hill
- Nurture Research Center, Provimi North America, Brookville, OH 45309
| | - H G Bateman
- Nurture Research Center, Provimi North America, Brookville, OH 45309
| | - R L Schlotterbeck
- Nurture Research Center, Provimi North America, Brookville, OH 45309
| | - N Vito
- Department of Animal Science, Michigan State University, East Lansing 48824
| | - L M Sordillo
- Department of Large Animal Clinical Sciences, Michigan State University, East Lansing 48824
| | - M J Vandehaar
- Department of Animal Science, Michigan State University, East Lansing 48824.
| |
Collapse
|
25
|
Donalisio C, Barbero R, Cuniberti B, Vercelli C, Casalone M, Re G. Effects of flunixin meglumine and ketoprofen on mediator production in ex vivo and in vitro models of inflammation in healthy dairy cows. J Vet Pharmacol Ther 2012; 36:130-9. [PMID: 22724509 DOI: 10.1111/j.1365-2885.2012.01396.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In this study, ex vivo assays were carried out in dairy cows to evaluate the anti-inflammatory effects of two nonsteroidal anti-inflammatory drugs: ketoprofen (KETO) and flunixin meglumine (FM). Twelve healthy Holstein dairy cattle were randomly allocated to two groups (n=6): group 1 received FM and group 2 received KETO at recommended therapeutic dosages. The anti-inflammatory effects of both drugs were determined by measuring the production of coagulation-induced thromboxane B2 (TXB2 ), lipopolysaccharides (LPS) (10 μg/mL)-induced prostaglandin E2 (PGE2 ), and calcium ionophore (60 μm)-induced leukotrien B4 (LTB4 ). Cytokine production was assessed by measuring tumor necrosis factor-α (TNF-α), interferon-γ (IFN-γ) and interleukin-8 (CXCL8) concentrations after incubation in the presence of 10 μg/mL LPS. The IC50 of FM and KETO was determined in vitro by determining the concentration of TXB2 and PGE2 in the presence of scalar drug concentrations (10(-9) -10(-3) m). Both FM and KETO inhibited the two COX isoforms in vitro, but showed a preference for COX-1. FM and KETO showed similar anti-inflammatory effects in the cow.
Collapse
Affiliation(s)
- C Donalisio
- Division of Pharmacology and Toxicology, Department of Animal Pathology, University of Torino, Torino, Italy.
| | | | | | | | | | | |
Collapse
|
26
|
Bislev SL, Kusebauch U, Codrea MC, Beynon RJ, Harman VM, Røntved CM, Aebersold R, Moritz RL, Bendixen E. Quantotypic properties of QconCAT peptides targeting bovine host response to Streptococcus uberis. J Proteome Res 2012; 11:1832-43. [PMID: 22256911 DOI: 10.1021/pr201064g] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Mammalian host response to pathogens is associated with fluctuations in high abundant proteins in body fluids as well as in regulation of proteins expressed in relatively low copy numbers like cytokines secreted from immune cells and endothelium. Hence, efficient monitoring of proteins associated with host response to pathogens remains a challenging task. In this paper, we present a targeted proteome analysis of a panel of 20 proteins that are widely believed to be key players and indicators of bovine host response to mastitis pathogens. Stable isotope-labeled variants of two concordant proteotypic peptides from each of these 20 proteins were obtained through the QconCAT method. We present the quantotypic properties of these 40 proteotypic peptides and discuss their application to research in host-pathogen interactions. Our results clearly demonstrate a robust monitoring of 17 targeted host-response proteins. Twelve of these were readily quantified in a simple extraction of mammary gland tissues, while the expression levels of the remaining proteins were too low for direct and stable quantification; hence, their accurate quantification requires further fractionation of mammary gland tissues.
Collapse
Affiliation(s)
- Stine L Bislev
- Department of Animal Science, Faculty of Science and Technology, Aarhus University , 8830 Tjele, Denmark
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Farney J, Mamedova L, Godsey B, Bradford B. Technical note: Validation of an ELISA for measurement of tumor necrosis factor alpha in bovine plasma. J Dairy Sci 2011; 94:3504-9. [DOI: 10.3168/jds.2010-4082] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Accepted: 03/30/2011] [Indexed: 11/19/2022]
|
28
|
Buitenhuis B, Røntved CM, Edwards SM, Ingvartsen KL, Sørensen P. In depth analysis of genes and pathways of the mammary gland involved in the pathogenesis of bovine Escherichia coli-mastitis. BMC Genomics 2011; 12:130. [PMID: 21352611 PMCID: PMC3053262 DOI: 10.1186/1471-2164-12-130] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Accepted: 02/28/2011] [Indexed: 12/29/2022] Open
Abstract
Background Bovine mastitis is one of the most costly and prevalent diseases affecting dairy cows worldwide. In order to develop new strategies to prevent Escherichia coli-induced mastitis, a detailed understanding of the molecular mechanisms underlying the host immune response to an E. coli infection is necessary. To this end, we performed a global gene-expression analysis of mammary gland tissue collected from dairy cows that had been exposed to a controlled E. coli infection. Biopsy samples of healthy and infected utter tissue were collected at T = 24 h post-infection (p.i.) and at T = 192 h p.i. to represent the acute phase response (APR) and chronic stage, respectively. Differentially expressed (DE) genes for each stage were analyzed and the DE genes detected at T = 24 h were also compared to data collected from two previous E. coli mastitis studies that were carried out on post mortem tissue. Results Nine-hundred-eighty-two transcripts were found to be differentially expressed in infected tissue at T = 24 (P < 0.05). Up-regulated transcripts (699) were largely associated with immune response functions, while the down-regulated transcripts (229) were principally involved in fat metabolism. At T = 192 h, all of the up-regulated transcripts were associated with tissue healing processes. Comparison of T = 24 h DE genes detected in the three E. coli mastitis studies revealed 248 were common and mainly involved immune response functions. KEGG pathway analysis indicated that these genes were involved in 12 pathways related to the pro-inflammatory response and APR, but also identified significant representation of two unexpected pathways: natural killer cell-mediated cytotoxicity pathway (KEGG04650) and the Rig-I-like receptor signalling pathway (KEGG04622). Conclusions In E. coli-induced mastitis, infected mammary gland tissue was found to significantly up-regulate expression of genes related to the immune response and down-regulate genes related to fat metabolism. Up to 25% of the DE immune response genes common to the three E. coli mastitis studies at T = 24 h were independent of E. coli strain and dose, cow lactation stage and number, tissue collection method and gene analysis method used. Hence, these DE genes likely represent important mediators of the local APR against E. coli in the mammary gland.
Collapse
Affiliation(s)
- Bart Buitenhuis
- Department of Genetics and Biotechnology, Faculty of Agricultural Sciences, Aarhus University, Blichers allé 20, P,O, Box 50, DK-8830 Tjele, Denmark.
| | | | | | | | | |
Collapse
|
29
|
Catalani E, Amadori M, Vitali A, Bernabucci U, Nardone A, Lacetera N. The Hsp72 response in peri-parturient dairy cows: relationships with metabolic and immunological parameters. Cell Stress Chaperones 2010; 15:781-90. [PMID: 20349286 PMCID: PMC3024076 DOI: 10.1007/s12192-010-0186-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2010] [Revised: 02/26/2010] [Accepted: 03/05/2010] [Indexed: 12/30/2022] Open
Abstract
The study was aimed at assessing whether the peri-parturient period is associated with changes of intracellular and plasma inducible heat shock proteins (Hsp) 72 kDa molecular weight in dairy cows, and to establish possible relationships between Hsp72, metabolic, and immunological parameters subjected to changes around calving. The study was carried out on 35 healthy peri-parturient Holstein cows. Three, two, and one week before the expected calving, and 1, 2, 3, 4, and 5 weeks after calving, body conditions score (BCS) was measured and blood samples were collected to separate plasma and peripheral blood mononuclear cells (PBMC). Concentrations of Hsp72 in PBMC and plasma increased sharply after calving. In the post-calving period, BCS and plasma glucose declined, whereas plasma nonesterified fatty acids (NEFA) and tumor necrosis factor-alpha increased. The proliferative responses of PBMC to lipopolysaccharide (LPS) declined progressively after calving. The percentage of PBMC expressing CD14 receptors and Toll-like receptors (TLR)-4 increased and decreased in the early postpartum period, respectively. Correlation analysis revealed significant positive relationships between Hsp72 and NEFA, and between PBMC proliferation in response to LPS and the percentage of PBMC expressing TLR-4. Conversely, significant negative relationships were found between LPS-triggered proliferation of PBMC and both intracellular and plasma Hsp72. Literature data and changes of metabolic and immunological parameters reported herein authorize a few interpretative hypotheses and encourage further studies aimed at assessing possible cause and effect relationships between changes of PBMC and circulating Hsp72, metabolic, and immune parameters in dairy cows.
Collapse
Affiliation(s)
- Elisabetta Catalani
- Dipartimento di Produzioni Animali, Università della Tuscia, Via San Camillo De Lellis, Viterbo, 01100 Italy
| | - Massimo Amadori
- Laboratorio di Immunologia Cellulare, Istituto Zooprofilattico Sperimentale Lombardia ed Emilia Romagna, Brescia, Italy
| | - Andrea Vitali
- Dipartimento di Produzioni Animali, Università della Tuscia, Via San Camillo De Lellis, Viterbo, 01100 Italy
| | - Umberto Bernabucci
- Dipartimento di Produzioni Animali, Università della Tuscia, Via San Camillo De Lellis, Viterbo, 01100 Italy
| | - Alessandro Nardone
- Dipartimento di Produzioni Animali, Università della Tuscia, Via San Camillo De Lellis, Viterbo, 01100 Italy
| | - Nicola Lacetera
- Dipartimento di Produzioni Animali, Università della Tuscia, Via San Camillo De Lellis, Viterbo, 01100 Italy
| |
Collapse
|
30
|
Vels L, Røntved C, Bjerring M, Ingvartsen K. Cytokine and acute phase protein gene expression in repeated liver biopsies of dairy cows with a lipopolysaccharide-induced mastitis. J Dairy Sci 2009; 92:922-34. [DOI: 10.3168/jds.2008-1209] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
31
|
Silva E, Gaivão M, Leitão S, Amaro A, Costa LLD, Mateus L. Blood COX-2 and PGES gene transcription during the peripartum period of dairy cows with normal puerperium or with uterine infection. Domest Anim Endocrinol 2008; 35:314-23. [PMID: 18692980 DOI: 10.1016/j.domaniend.2008.07.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2008] [Revised: 07/07/2008] [Accepted: 07/08/2008] [Indexed: 12/22/2022]
Abstract
In the dairy cow, puerperal uterine intra-luminal concentrations of PGE(2) are related to the establishment and severity of uterine infections. Here we evaluated whether the blood concentrations of PGE(2) and the gene transcription profiles of enzymes involved in its synthesis (cyclooxygenase-2 and prostaglandin E synthase) could be used as markers of predisposition and/or presence of puerperal uterine infections. We also studied the relationship between the endocrine status and the leukocyte profiles around parturition and the transcription patterns of the genes. Finally, we have characterized the in vitro gene transcription and expression response to a challenge of LPS. Gene transcription profiles, quantified by real-time PCR, were similar in normal puerperium and metritis/endometritis cows, indicating that they are not suitable markers of predisposition to/presence of puerperal uterine infections. Transcription decreased from 2 weeks before parturition until parturition, when a minimum was attained, and then increased during the first week postpartum. The lowest gene transcription, at parturition, was coincidental with the highest total leukocytes, polymorphonuclear neutrophils and CD14 positive cell numbers. It is suggested that by this mechanism, a large number of PMN can be recruited into the uterus after parturition, avoiding an excessive acute inflammatory response. The lowest gene transcription was also coincidental with the surge in cortisol concentrations, indicating that this hormone plays a main immunomodulatory role around parturition. Gene transcription was significantly greater after stimulation with LPS than in non-stimulated blood. We suggest that this PGE(2) producing cells might arrive to the uterine lumen, contributing to the local PGE(2) concentrations and mediating the inflammatory response.
Collapse
Affiliation(s)
- E Silva
- C.I.I.S.A., Faculty of Veterinary Medicine, Technical University of Lisbon (UTL), Lisbon, Portugal
| | | | | | | | | | | |
Collapse
|
32
|
Llamas Moya S, Alonso Gómez M, Boyle L, Mee J, O’Brien B, Arkins S. Effects of Milking Frequency on Phagocytosis and Oxidative Burst Activity of Phagocytes from Primiparous and Multiparous Dairy Cows During Early Lactation. J Dairy Sci 2008; 91:587-95. [DOI: 10.3168/jds.2007-0379] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
33
|
O'Boyle N, Corl CM, Gandy JC, Sordillo LM. Relationship of body condition score and oxidant stress to tumor necrosis factor expression in dairy cattle. Vet Immunol Immunopathol 2006; 113:297-304. [PMID: 16842861 DOI: 10.1016/j.vetimm.2006.05.013] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2006] [Accepted: 05/24/2006] [Indexed: 11/15/2022]
Abstract
The relationship between body condition score (BCS) with measures of oxidative status and TNF-alpha production was examined in 16 mid-lactation dairy cows. Cows were selected based on either a normal (2.5-2.7) or a high (> or =3.5) BCS using the standard five-point scaling system. The metabolic status of all cows was determined by plasma nonesterified fatty acid levels (NEFA). Plasma samples or white blood cell lysates also were analyzed for indices of oxidant stress and for the expression of TNF-alpha. Cows with a high BCS had significantly lower NEFA levels when compared to normal BCS cows and the over-conditioned animals were not in a state of negative energy balance. No significant changes in lipid hydroperoxide levels, glutathione peroxidase activity, or the ratio of reduced (GSH) to oxidized (GSSG) glutathione was detected with respect to BCS. However, high BCS cows did have a significantly lower overall antioxidant potential and reduced TrxR activities when compared with the normal BCS cows. Changes in the oxidative state of over-conditioned cows were accompanied by a significantly higher expression of TNF-alpha. Results from this study suggest that cows with a high BCS can experience oxidant stress in the absence of altered energy status. Increased TNF-alpha expression may be related to the pro-oxidant state of over-conditioned cows and possibly be a contributing factor to the enhanced susceptibility to disease in high BCS dairy cattle.
Collapse
Affiliation(s)
- Nial O'Boyle
- Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824, USA
| | | | | | | |
Collapse
|
34
|
Carstensen L, Røntved CM, Nielsen JP. Determination of tumor necrosis factor-α responsiveness in piglets around weaning using an ex vivo whole blood stimulation assay. Vet Immunol Immunopathol 2005; 105:59-66. [PMID: 15797475 DOI: 10.1016/j.vetimm.2004.12.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2004] [Revised: 12/06/2004] [Accepted: 12/10/2004] [Indexed: 11/30/2022]
Abstract
Ex vivo whole blood stimulation with endotoxin has proved to be a useful method for quantitative evaluations of the pro-inflammatory cytokine tumor necrosis factor alpha (TNF-alpha) response ability in humans. In the present study, a dose- and time-response study was carried out in order to develop an ex vivo whole blood stimulation assay for the quantification of TNF-alpha production in pigs. The TNF-alpha response was enhanced with increasing endotoxin stimulation dose. The maximum TNF-alpha response occurred after 2-8 h of stimulation. Subsequently, the assay was used to evaluate the TNF-alpha response in pigs (n=32) in relation to weaning. The TNF-alpha response was 332 pg ml(-1) (+/-59 pg) plasma 2 days before weaning and 127 pg ml(-1) (+/-23 pg) plasma 2 days after weaning, which was a significant reduction (p<0.001). Total and differential counts of leucocytes were the same before and after weaning. Thus the lower TNF-alpha response may be due to reduced monocyte responsiveness to the endotoxin, rather than caused by a reduction in monocyte numbers. The reduced TNF-alpha response in piglets after weaning may be a factor of importance to the increased disease susceptibility seen in piglets in this period.
Collapse
Affiliation(s)
- Lone Carstensen
- Danish Institute of Agricultural Sciences (DIAS), Department of Animal Health and Welfare, P.O. Box 50, DK-8830 Tjele, Denmark.
| | | | | |
Collapse
|