1
|
Saadh MJ, Ahmed HM, Alani ZK, Al Zuhairi RAH, Almarhoon ZM, Ahmad H, Ubaid M, Alwan NH. The Role of Gut-derived Short-Chain Fatty Acids in Multiple Sclerosis. Neuromolecular Med 2024; 26:14. [PMID: 38630350 DOI: 10.1007/s12017-024-08783-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 03/08/2024] [Indexed: 04/19/2024]
Abstract
Multiple sclerosis (MS) is a chronic condition affecting the central nervous system (CNS), where the interplay of genetic and environmental factors influences its pathophysiology, triggering immune responses and instigating inflammation. Contemporary research has been notably dedicated to investigating the contributions of gut microbiota and their metabolites in modulating inflammatory reactions within the CNS. Recent recognition of the gut microbiome and dietary patterns as environmental elements impacting MS development emphasizes the potential influence of small, ubiquitous molecules from microbiota, such as short-chain fatty acids (SCFAs). These molecules may serve as vital molecular signals or metabolic substances regulating host cellular metabolism in the intricate interplay between microbiota and the host. A current emphasis lies on optimizing the health-promoting attributes of colonic bacteria to mitigate urinary tract issues through dietary management. This review aims to spotlight recent investigations on the impact of SCFAs on immune cells pivotal in MS, the involvement of gut microbiota and SCFAs in MS development, and the considerable influence of probiotics on gastrointestinal disruptions in MS. Comprehending the gut-CNS connection holds promise for the development of innovative therapeutic approaches, particularly probiotic-based supplements, for managing MS.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman, 11831, Jordan
| | - Hani Moslem Ahmed
- Department of Dental Industry Techniques, Al-Noor University College, Nineveh, Iraq
| | - Zaid Khalid Alani
- College of Health and Medical Technical, Al-Bayan University, Baghdad, Iraq
| | | | - Zainab M Almarhoon
- Department of Chemistry, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Hijaz Ahmad
- Section of Mathematics, International Telematic University Uninettuno, Corso Vittorio Emanuele II, 39, 00186, Rome, Italy.
- Center for Applied Mathematics and Bioinformatics, Gulf University for Science and Technology, Mubarak Al-Abdullah, Kuwait.
- Department of Computer Science and Mathematics, Lebanese American University, Beirut, Lebanon.
| | - Mohammed Ubaid
- Medical Technical College, Al-Farahidi University, Baghdad, Iraq
| | | |
Collapse
|
2
|
Asare PT, Greppi A, Geirnaert A, Pennacchia A, Babst A, Lacroix C. Glycerol and reuterin-producing Limosilactobacillus reuteri enhance butyrate production and inhibit Enterobacteriaceae in broiler chicken cecal microbiota PolyFermS model. BMC Microbiol 2023; 23:384. [PMID: 38053034 PMCID: PMC10696668 DOI: 10.1186/s12866-023-03091-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 10/26/2023] [Indexed: 12/07/2023] Open
Abstract
BACKGROUND Administering probiotic strains of Limosilactobacillus reuteri to poultry has been shown to improve poultry performance and health. Some strains of L. reuteri taxa can produce reuterin, a broad-spectrum antimicrobial compound from glycerol conversion, with high inhibitory activity against enterobacteria. However, little is known about the metabolism of glycerol in the complex chicken cecal microbiota nor the effect of glycerol, either alone or combined with L. reuteri on the microbiota. In this study, we investigated the effect of L. reuteri PTA5_F13, a high-reuterin-producing chicken strain and glycerol, alone or combined, on broiler chicken cecal microbiota composition and activity using the continuous PolyFermS model recently developed to mimic chicken cecal fermentation. METHODS Three independent PolyFermS chicken cecal microbiota models were inoculated with immobilized cecal microbiota from different animals and operated continuously. The effects of two additional levels of glycerol (50 and 100 mM) with or without daily supplementation of chicken-derived L. reuteri PTA5_F13 (107 CFU/mL final concentration) were tested in parallel second-stage reactors continuously inoculated with the same microbiota. We analyzed the complex chicken gut microbiota structure and dynamics upon treatment using 16S rRNA metabarcoding and qPCR. Microbiota metabolites, short-chain and branched-chain fatty acids, and glycerol and reuterin products were analyzed by HPLC in effluent samples from stabilized reactors. RESULTS Supplementation with 100 mM glycerol alone and combined with L. reuteri PTA5_F13 resulted in a reproducible increase in butyrate production in the three modelled microbiota (increases of 18 to 25%). Glycerol alone resulted also in a reduction of Enterobacteriaceae in two of the three microbiota, but no effect was detected for L. reuteri alone. When both treatments were combined, all microbiota quantitatively inhibited Enterobacteriaceae, including in the last model that had very high initial concentrations of Enterobacteriaceae. Furthermore, a significant 1,3-PDO accumulation was measured in the effluent of the combined treatment, confirming the conversion of glycerol via the reuterin pathway. Glycerol supplementation, independent of L. reuteri addition, did not affect the microbial community diversity. CONCLUSIONS Glycerol induced a stable and reproducible butyrogenic activity for all tested microbiota and induced an inhibitory effect against Enterobacteriaceae that was strengthened when reuterin-producing L. reuteri was spiked daily. Our in vitro study suggests that co-application of L. reuteri PTA5_F13 and glycerol could be a useful approach to promote chicken gut health by enhancing metabolism and protection against Enterobacteriaceae.
Collapse
Affiliation(s)
- Paul Tetteh Asare
- Department of Health Sciences and Technology, Laboratory of Food Biotechnology, Institute of Food, Nutrition and Health, ETH Zürich, LFV D 20, Schmelzbergstrasse 7, CH-8042, Zurich, Switzerland
- Present address: Gnubiotics Sciences SA, Epalinges, Switzerland
| | - Anna Greppi
- Department of Health Sciences and Technology, Laboratory of Food Biotechnology, Institute of Food, Nutrition and Health, ETH Zürich, LFV D 20, Schmelzbergstrasse 7, CH-8042, Zurich, Switzerland
| | - Annelies Geirnaert
- Department of Health Sciences and Technology, Laboratory of Food Biotechnology, Institute of Food, Nutrition and Health, ETH Zürich, LFV D 20, Schmelzbergstrasse 7, CH-8042, Zurich, Switzerland
| | - Alessia Pennacchia
- Department of Health Sciences and Technology, Laboratory of Food Biotechnology, Institute of Food, Nutrition and Health, ETH Zürich, LFV D 20, Schmelzbergstrasse 7, CH-8042, Zurich, Switzerland
| | - Angela Babst
- Department of Health Sciences and Technology, Laboratory of Food Biotechnology, Institute of Food, Nutrition and Health, ETH Zürich, LFV D 20, Schmelzbergstrasse 7, CH-8042, Zurich, Switzerland
| | - Christophe Lacroix
- Department of Health Sciences and Technology, Laboratory of Food Biotechnology, Institute of Food, Nutrition and Health, ETH Zürich, LFV D 20, Schmelzbergstrasse 7, CH-8042, Zurich, Switzerland.
| |
Collapse
|
3
|
Obe T, Boltz T, Kogut M, Ricke SC, Brooks LA, Macklin K, Peterson A. Controlling Salmonella: strategies for feed, the farm, and the processing plant. Poult Sci 2023; 102:103086. [PMID: 37839165 PMCID: PMC10587538 DOI: 10.1016/j.psj.2023.103086] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/25/2023] [Accepted: 08/29/2023] [Indexed: 10/17/2023] Open
Abstract
Controlling Salmonella in poultry is an ongoing food safety measure and while significant progress has been made, there is a need to continue to evaluate different strategies that include understanding Salmonella-poultry interaction, Salmonella-microbiota interactions, Salmonella genetics and response to adverse conditions, and preharvest and postharvest parameters that enable persistence. The purpose of this symposium is to discuss different strategies to consider from feed milling to the farm to the processing environment. This Poultry Science Association symposium paper is divided into 5 different sections that covers 1) immunological aspects of Salmonella control, 2) application of Salmonella genetics for targeted control strategies in poultry production, 3) improving poultry feed hygienics: utilizing feed manufacture techniques and equipment to improve feed hygienics, 4) practical on farm interventions for controlling Salmonella-what works and what may not work, and 5) monitoring and mitigating Salmonella in poultry. These topics elucidate the critical need to establish control strategies that will improve poultry gut health and limit conditions that exposes Salmonella to stress causing alterations to virulence and pathogenicity both at preharvest and postharvest poultry production. This information is relevant to the poultry industry's continued efforts to ensure food safety poultry production.
Collapse
Affiliation(s)
- Tomi Obe
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, USA.
| | - Timothy Boltz
- Department of Poultry Science, Mississippi State University, Mississippi State, MS, USA
| | - Mike Kogut
- Southern Plains Agricultural Research Center, USDA-ARS, College Station, TX, USA
| | - Steven C Ricke
- Meat Science and Animal Biologics Discovery Program, Department of Animal and Dairy Sciences, University of Wisconsin - Madison, Madison, WI, USA
| | | | - Ken Macklin
- Department of Poultry Science, Mississippi State University, Mississippi State, MS, USA
| | | |
Collapse
|
4
|
Dieryck I, Dejonghe W, Van Hecke W, Delacourt J, Bautil A, Courtin CM, Vermeulen D, Buyse J, Paeshuyse J. Toward Renewable-Based Prebiotics from Woody Biomass: Potential of Tailored Xylo-Oligosaccharides Obtained by Enzymatic Hydrolysis of Beechwood Xylan as a Prebiotic Feed Supplement for Young Broilers. Animals (Basel) 2023; 13:3511. [PMID: 38003129 PMCID: PMC10668712 DOI: 10.3390/ani13223511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/09/2023] [Accepted: 11/12/2023] [Indexed: 11/26/2023] Open
Abstract
Although antibiotic resistance emerges naturally, this process has been accelerated by the worldwide overuse and misuse of antibiotics. It is essential to find effective alternatives in the broiler industry to improve poultry health while maintaining production efficiency and product safety. In this study, we aimed to evaluate a potential alternative: wood-derived xylo-oligosaccharides (XOS). The objective of this research was to investigate the potential of XOS prepared using enzymatic hydrolysis of beechwood xylan as a prebiotic feed supplement for broilers. A pilot study was conducted to explore the optimal XOS fraction profile by in vitro fermentation. Subsequently, a semi-continuous enzyme membrane reactor was used, allowing for the production of tailored XOS in large quantities. Given the strong bidirectional relationship between intestinal health, nutrition, and intestinal microbiota composition in broilers, an in vivo experiment was performed to explore the potential of XOS as a prebiotic feed supplement by investigating growth performance, feed conversion ratio, caecal short and medium chain fatty acid (SCFA and MCFA) concentration, and microbiological composition of the caecal content. Results from the pilot study indicated that higher enzyme concentrations in the hydrolysis process yield a product that leads to a higher total SCFA and MCFA- and butyric acid production during in vitro fermentation by caecal bacteria. Supplementation of the tailored XOS to the broiler diet (day 1 (d1)-d8 0.13% wt/wt XOS, d9-d15 0.32% XOS) resulted in higher Bifidobacterium counts, beneficial to the health of birds, on d11 and d15.
Collapse
Affiliation(s)
- Ines Dieryck
- Laboratory of Host Pathogen Interactions, Department of Biosystems, KU Leuven, 3001 Leuven, Belgium; (I.D.)
| | - Winnie Dejonghe
- Flemish Institute for Technological Research, 2400 Mol, Belgium; (W.D.); (W.V.H.)
| | - Wouter Van Hecke
- Flemish Institute for Technological Research, 2400 Mol, Belgium; (W.D.); (W.V.H.)
| | - Joy Delacourt
- Laboratory of Host Pathogen Interactions, Department of Biosystems, KU Leuven, 3001 Leuven, Belgium; (I.D.)
| | - An Bautil
- Laboratory of Food Chemistry and Biochemistry, Department of Microbial and Molecular Systems, KU Leuven, 3001 Leuven, Belgium; (A.B.); (C.M.C.)
| | - Christophe M. Courtin
- Laboratory of Food Chemistry and Biochemistry, Department of Microbial and Molecular Systems, KU Leuven, 3001 Leuven, Belgium; (A.B.); (C.M.C.)
| | - Daniel Vermeulen
- Laboratory of Livestock Physiology, Department of Biosystems, KU Leuven, 3001 Leuven, Belgium; (D.V.); (J.B.)
| | - Johan Buyse
- Laboratory of Livestock Physiology, Department of Biosystems, KU Leuven, 3001 Leuven, Belgium; (D.V.); (J.B.)
| | - Jan Paeshuyse
- Laboratory of Host Pathogen Interactions, Department of Biosystems, KU Leuven, 3001 Leuven, Belgium; (I.D.)
| |
Collapse
|
5
|
Kogut MH, Fernandez Miyakawa ME. Phenotype Alterations in the Cecal Ecosystem Involved in the Asymptomatic Intestinal Persistence of Paratyphoid Salmonella in Chickens. Animals (Basel) 2023; 13:2824. [PMID: 37760224 PMCID: PMC10525526 DOI: 10.3390/ani13182824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/28/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
The gastrointestinal ecosystem involves interactions between the host, gut microbiota, and external environment. To colonize the gut of poultry, Salmonella must surmount barriers levied by the intestine including mucosal innate immune responses and microbiota-mediated niche restrictions. Accordingly, comprehending Salmonella intestinal colonization in poultry requires an understanding of how the pathogen interacts with the intestinal ecosystem. In chickens, the paratyphoid Salmonella have evolved the capacity to survive the initial immune response and persist in the avian ceca for months without triggering clinical signs. The persistence of a Salmonella infection in the avian host involves both host defenses and tolerogenic defense strategies. The initial phase of the Salmonella-gut ecosystem interaction is characteristically an innate pro-inflammatory response that controls bacterial invasion. The second phase is initiated by an expansion of the T regulatory cell population in the cecum of Salmonella-infected chickens accompanied by well-defined shifts in the enteric neuro-immunometabolic pathways that changes the local phenotype from pro-inflammatory to an anti-inflammatory environment. Thus, paratyphoid Salmonella in chickens have evolved a unique survival strategy that minimizes the inflammatory response (disease resistance) during the initial infection and then induces an immunometabolic reprogramming in the cecum that alters the host defense to disease tolerance that provides an environment conducive to drive asymptomatic carriage of the bacterial pathogen.
Collapse
Affiliation(s)
- Michael H. Kogut
- Southern Plains Agricultural Research Center, USDA-ARS, College Station, TX 77845, USA
| | - Mariano Enrique Fernandez Miyakawa
- Instituto de Patobiología, Instituto Nacional de Tecnología, Nicolas Repetto y Los Reseros S/N, Hurlingham 1686, Buenos Aires, Argentina;
| |
Collapse
|
6
|
Golpour F, Abbasi-Alaei M, Babaei F, Mirzababaei M, Parvardeh S, Mohammadi G, Nassiri-Asl M. Short chain fatty acids, a possible treatment option for autoimmune diseases. Biomed Pharmacother 2023; 163:114763. [PMID: 37105078 DOI: 10.1016/j.biopha.2023.114763] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/09/2023] [Accepted: 04/20/2023] [Indexed: 04/29/2023] Open
Abstract
Gut microbiota can interact with the immune system through its metabolites. Short-chain fatty acids (SCFAs), as one of the most abundant metabolites of the resident gut microbiota play an important role in this crosstalk. SCFAs (acetate, propionate, and butyrate) regulate nearly every type of immune cell in the gut's immune cell repertoire regarding their development and function. SCFAs work through several pathways to impose protection towards colonic health and against local or systemic inflammation. Additionally, SCFAs play a role in the regulation of immune or non-immune pathways that can slow the development of autoimmunity either systematically or in situ. The present study aims to summarize the current knowledge on the immunomodulatory roles of SCFAs and the association between the SCFAs and autoimmune disorders such as celiac disease (CD), inflammatory bowel disease (IBD), rheumatoid arthritis (RA), multiple sclerosis (MS), systemic lupus erythematosus (SLE), type 1 diabetes (T1D) and other immune-mediated diseases, uncovering a brand-new therapeutic possibility to prevent or treat autoimmunity.
Collapse
Affiliation(s)
- Faezeh Golpour
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehrsa Abbasi-Alaei
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Babaei
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammadreza Mirzababaei
- Department of Clinical Biochemistry, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Siavash Parvardeh
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ghazaleh Mohammadi
- Cellular and Molecular Research Center, Research Institute for Prevention of Non-Communicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran; Department of Molecular Medicine, School of Medicine, Qazvin University of Medical Sciences, Qazvin, Iran.
| | - Marjan Nassiri-Asl
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
7
|
Zeng T, Sun H, Huang M, Guo R, Gu T, Cao Y, Li C, Tian Y, Chen L, Li G, Lu L. Dietary supplementation of coated sodium butyrate improves growth performance of laying ducks by regulating intestinal health and immunological performance. Front Immunol 2023; 14:1142915. [PMID: 36969242 PMCID: PMC10034168 DOI: 10.3389/fimmu.2023.1142915] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 02/28/2023] [Indexed: 03/12/2023] Open
Abstract
IntroductionThis study was conducted to assess the effects of dietary supplementation of coated sodium butyrate (CSB) on the growth performance, serum antioxidant, immune performance, and intestinal microbiota of laying ducks.MethodsA total of 120 48-week-old laying ducks were randomly divided into 2 treatment groups: the control group (group C fed a basal diet) and the CSB-treated group (group CSB fed the basal diet + 250 g/t of CSB). Each treatment consisted of 6 replicates, with 10 ducks per replicate, and the trial was conducted for 60 days.ResultsCompared with the group C, the group CSB showed a significant increase in the laying rate (p<0.05) of the 53-56 week-old ducks. Additionally, the serum total antioxidant capacity, superoxide dismutase activity and immunoglobulin G level were significantly higher (p<0.05), while the serum malondialdehyde content and tumor necrosis factor (TNF)-a level were significantly lower (p<0.05) in the serum of the group CSB compared to the group C. Moreover, the expression of IL-1b and TNF-a in the spleen of the group CSB was significantly lower (p<0.05) compared to that of the group C. In addition, compared with the group C, the expression of Occludin in the ileum and the villus height in the jejunum were significantly higher in the group CSB (p<0.05). Furthermore, Chao1, Shannon, and Pielou-e indices were higher in the group CSB compared to the group C (p<0.05). The abundance of Bacteroidetes in the group CSB was lower than that in the group C (p<0.05), while the abundances of Firmicutes and Actinobacteria were higher in the group CSB compared to the group C (p<0.05).ConclusionsOur results suggest that the dietary supplementation of CSB can alleviate egg-laying stress in laying ducks by enhancing immunity and maintaining the intestinal health of the ducks.
Collapse
Affiliation(s)
- Tao Zeng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Hanxue Sun
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Manman Huang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Rongbing Guo
- College of Animal Science, Zhejiang A&F University, Hangzhou, China
| | - Tiantian Gu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Yongqing Cao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Chengfeng Li
- Hubei Shendan Health Food Co., Ltd., Xiaogan, China
| | - Yong Tian
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Li Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Guoqin Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Lizhi Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- *Correspondence: Lizhi Lu,
| |
Collapse
|
8
|
Dell'Anno M, Scaglia E, Reggi S, Grossi S, Angelo Sgoifo Rossi C, Frazzini S, Caprarulo V, Rossi L. Evaluation of tributyrin supplementation in milk replacer on diarrhoea occurrence in pre-weaning Holstein calves. Animal 2023; 17:100791. [PMID: 37121158 DOI: 10.1016/j.animal.2023.100791] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 03/14/2023] [Accepted: 03/21/2023] [Indexed: 03/31/2023] Open
Abstract
Neonatal calf diarrhoea is one of the most important health challenges in cattle herds causing substantial economic losses and antimicrobial use. Due to the raising problem of antimicrobial resistance, effective alternatives are urgently required, in line with European policies. The aim of this study was to evaluate the effect of tributyrin supplementation in milk replacer on diarrhoea, performance and metabolic status in preweaning Holstein calves. Twelve newborn calves, after colostrum administration, were randomly allotted in two experimental groups for 42 days: control (CTRL) fed milk replacer, tributyrin (TRIB) fed milk replacer supplemented with 0.3% of liquid tributyrin on milk powder weight. Calves BW was recorded on a weekly basis from day 7 to day 42, and feed intake was recorded daily to calculate zootechnical performance. Faecal consistency was assessed daily through the faecal score (0-3 scale; considering diarrhoea moderate = 2 and severe = 3). Faecal samples were collected weekly from rectal ampulla for microbiological analysis by plate counting method evaluating the number of total bacteria, lactic acid bacteria and coliform bacteria. On day 0 and day 42, individual blood samples were collected from jugular vein for metabolic profile analysis. Serum samples of day 42 were also evaluated for the antioxidant barrier using a colorimetric test, while glucagon-like peptide 2 and diamine oxidase concentrations were measured through immunoenzymatic assays. Tributyrin supplementation did not influence the zootechnical performance of calves over 42 days of trial. Diarrhoea frequency was significantly lower in TRIB compared to CTRL group (27.91 and 38.37%; P < 0.01) considering the whole experimental period. In particular, the major effect was observed for moderate diarrhoea in TRIB group that showed a significantly reduced frequency compared to CTRL (P < 0.01) thus suggesting a preventive effect of tributyrin. Faecal total bacterial, lactic acid and coliform bacteria counts did not show differences between groups. Urea serum concentrations tended to be lower in TRIB compared to CTRL, indicating an efficient utilisation of dietary protein. Antioxidant barrier and glucagon-like peptide 2 were comparable between CTRL and TRIB on day 42. Diamine oxidase concentrations were significantly decreased in TRIB compared to CTRL group after 42 days of trial (P < 0.01), suggesting a higher gut epithelial integrity probably due to lower diarrhoea frequency and the nourish effect of tributyrin on enterocytes. In conclusion, tributyrin could be considered as a valuable bioactive feed additive to decrease the neonatal diarrhoea occurrence and support intestinal integrity in preweaning calves.
Collapse
|
9
|
El-Saadony MT, Yaqoob MU, Hassan FU, Alagawany M, Arif M, Taha AE, Elnesr SS, El-Tarabily KA, Abd El-Hack ME. Applications of butyric acid in poultry production: the dynamics of gut health, performance, nutrient utilization, egg quality, and osteoporosis. Anim Health Res Rev 2022; 23:136-146. [PMID: 36373971 DOI: 10.1017/s1466252321000220] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Due to the increasing demand for antibiotic-free livestock products from the consumer side and the ban on the use of antibiotic growth promoters, the poultry feed industry is increasingly interested in developing more alternatives to cope with this problem. Organic acids (butyric acid) have many beneficial effects on poultry health, performance, and egg quality when used in their diet, thus they can be considered for the replacement of antibiotics in livestock production systems. Butyric acid is most efficacious against pathogenic bacteria such as Salmonella spp. and Escherichia coli, and stimulates the population of beneficial gut bacteria. It is a primary energy source for colonocytes and augments the differentiation and maturation of the intestinal cells. Collectively, butyric acid should be considered as an alternative to antibiotic growth promoters, because it reduces pathogenic bacteria and their toxins, enhancing gut health thereby increasing nutrient digestibility, thus leading to improved growth performance and immunity among birds. The possible pathways and mechanisms through which butyric acid enhances gut health and production performance are discussed in this review. Detailed information about the use of butyric acid in poultry and its possible benefits under different conditions are also provided, and the impacts of butyric acid on egg quality and osteoporosis are noted.
Collapse
Affiliation(s)
- Mohamed T El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | | | - Faiz-Ul Hassan
- Institute of Animal and Dairy Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Mahmoud Alagawany
- Poultry Department, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Muhammad Arif
- Department of Animal Sciences, College of Agriculture, University of Sargodha, Sargodha, Punjab, Pakistan
| | - Ayman E Taha
- Department of Animal Husbandry and Animal Wealth Development, Faculty of Veterinary Medicine, Alexandria University, Edfina, 22758, Egypt
| | - Shaaban S Elnesr
- Department of Poultry Production, Faculty of Agriculture, Fayoum University, Fayoum, 63514, Egypt
| | - Khaled A El-Tarabily
- Department of Biology, College of Science, United Arab Emirates University, Al-Ain, 15551, United Arab Emirates
- Harry Butler Institute, Murdoch University, Murdoch, 6150, Western Australia, Australia
| | - Mohamed E Abd El-Hack
- Poultry Department, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| |
Collapse
|
10
|
Nouri A. Anticoccidial and immunogenic effectivity of encapsulated organic acids and anticoccidial drugs in broilers infected with Eimeria spp. Sci Rep 2022; 12:17060. [PMID: 36224232 PMCID: PMC9556528 DOI: 10.1038/s41598-022-20990-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 09/21/2022] [Indexed: 12/30/2022] Open
Abstract
The study was conducted to consider the anticoccidial and immunogenic effectivities of encapsulated organic acids and anticoccidial drugs in broilers reared on a reused litter infected with Eimeria spp. for simulating in-field exposure to avian coccidiosis. 525 mixed-sex one-day-old broiler chicks (Ross 308) were used in a 2 × 3 factorial experiment as a completely randomized design with seven experimental groups and five replicates of 15 chicks. The seven experimental groups were included: negative (uninfected; T1) and positive (infected; T2) control groups fed a diet without additive, and other infected groups (T3-T7) fed diets supplemented with 0.05% maduramicin, 0.02% diclazuril, 0.1% EOAs, 0.05% maduramicin and 0.1% EOAs, 0.02% diclazuril and 0.1% EOAs. During the experimental period, the evaluated parameters were European production efficiency factor (EPEF; at 22 days of age (d)), oocyst output per gram feces (OPG; at different ages), oocyst reduction rate (ORR; at 22-d), survival rate (SR; at 22-d), caecal lesion score (CLS at 22-d), sporulation percentage (SP; by in vitro anticoccidial tests), bloody diarrhea (BD; by scoring the bloody feces each morning from 13 to 31-d), immunity (humoral test at 28 and 35-d and cell-mediated test at 22-d), goblet cells analysis of the jejunum (GC; at 22-d) and anti-coccidiosis index (ACI; at 22-d). EOAs and anticoccidials, especially their simultaneous feeding improved (P < 0.05) broiler's EPEF, SR, OPG, ORR, SP, CLS, immunity and BD (scored). ACI was improved (P < 0.05) by EOAs more than anticoccidials (marked vs. moderate). The highest ACI was significantly observed in EOAs + diclazuril group. EOAs as a safe alternative had more intensive anticoccidial and immunogenic properties and increased the anticoccidial drugs' effectiveness, especially diclazuril in Eimeria spp-infected broilers.
Collapse
Affiliation(s)
- Ali Nouri
- grid.449232.a0000 0004 0494 0390Department of Animal Science, Garmsar Branch, Islamic Azad University, Garmsar, Iran
| |
Collapse
|
11
|
Lu Y, Zhang Y, Zhao X, Shang C, Xiang M, Li L, Cui X. Microbiota-derived short-chain fatty acids: Implications for cardiovascular and metabolic disease. Front Cardiovasc Med 2022; 9:900381. [PMID: 36035928 PMCID: PMC9403138 DOI: 10.3389/fcvm.2022.900381] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 07/12/2022] [Indexed: 11/13/2022] Open
Abstract
Cardiovascular diseases (CVDs) have been on the rise around the globe in the past few decades despite the existing guidelines for prevention and treatment. Short-chain fatty acids (SCFAs) are the main metabolites of certain colonic anaerobic bacterial fermentation in the gastrointestinal tract and have been found to be the key metabolites in the host of CVDs. Accumulating evidence suggest that the end-products of SCFAs (including acetate, propionate, and butyrate) interact with CVDs through maintaining intestinal integrity, anti-inflammation, modulating glucolipid metabolism, blood pressure, and activating gut-brain axis. Recent advances suggest a promising way to prevent and treat CVDs by controlling SCFAs. Hence, this review tends to summarize the functional roles carried out by SCFAs that are reported in CVDs studies. This review also highlights several novel therapeutic interventions for SCFAs to prevent and treat CVDs.
Collapse
Affiliation(s)
- Yingdong Lu
- Department of Cardiology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yang Zhang
- First Clinical Medical School, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xin Zhao
- Department of Cardiology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Chang Shang
- Department of Cardiology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Mi Xiang
- Department of Cardiology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Li Li
- Department of Cardiology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Li Li,
| | - Xiangning Cui
- Department of Cardiology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Xiangning Cui,
| |
Collapse
|
12
|
Purple red rice anthocyanins alleviate intestinal damage in cyclophosphamide-induced mice associated with modulation of intestinal barrier function and gut microbiota. Food Chem 2022; 397:133768. [PMID: 35908466 DOI: 10.1016/j.foodchem.2022.133768] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 07/17/2022] [Accepted: 07/21/2022] [Indexed: 11/23/2022]
Abstract
The regulatory effects of purple red rice bran anthocyanins (PRBA) on intestinal barrier function and gut microbiota in mice were investigated. Results showed that PRBA had an ameliorative effect on intestinal barrier damage, including restoration of villus length, improvement in the number of cupped cells and promotion of sIgA secretion. PRBA stimulated the production of cytokines, reduced the levels of endotoxin (ET) and lipopolysaccharide binding protein (LBP) in serum, as well as upregulated the expression of tight junction proteins (TJs) and NF-κB pathway proteins. Furthermore, PRBA not only promoted the production of short-chain fatty acids (SCFAs), but also regulated the intestinal microbiota by increasing beneficial bacteria (Lachnospiraceae, Bacteroidaceae, Ruminococcaceae) and reducing pathogenic bacteria (Shigella) to maintained intestinal homeostasis. Above results indicated that PRBA could ameliorate cyclophosphamide-induced impairment of intestinal barrier function and dysregulation of the gut microbiota, which provides a new idea for broadening the exploitation of PRBA.
Collapse
|
13
|
Fathima S, Shanmugasundaram R, Adams D, Selvaraj RK. Gastrointestinal Microbiota and Their Manipulation for Improved Growth and Performance in Chickens. Foods 2022; 11:1401. [PMID: 35626971 PMCID: PMC9140538 DOI: 10.3390/foods11101401] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 05/01/2022] [Accepted: 05/09/2022] [Indexed: 12/17/2022] Open
Abstract
The gut of warm-blooded animals is colonized by microbes possibly constituting at least 100 times more genetic material of microbial cells than that of the somatic cells of the host. These microbes have a profound effect on several physiological functions ranging from energy metabolism to the immune response of the host, particularly those associated with the gut immune system. The gut of a newly hatched chick is typically sterile but is rapidly colonized by microbes in the environment, undergoing cycles of development. Several factors such as diet, region of the gastrointestinal tract, housing, environment, and genetics can influence the microbial composition of an individual bird and can confer a distinctive microbiome signature to the individual bird. The microbial composition can be modified by the supplementation of probiotics, prebiotics, or synbiotics. Supplementing these additives can prevent dysbiosis caused by stress factors such as infection, heat stress, and toxins that cause dysbiosis. The mechanism of action and beneficial effects of probiotics vary depending on the strains used. However, it is difficult to establish a relationship between the gut microbiome and host health and productivity due to high variability between flocks due to environmental, nutritional, and host factors. This review compiles information on the gut microbiota, dysbiosis, and additives such as probiotics, postbiotics, prebiotics, and synbiotics, which are capable of modifying gut microbiota and elaborates on the interaction of these additives with chicken gut commensals, immune system, and their consequent effects on health and productivity. Factors to be considered and the unexplored potential of genetic engineering of poultry probiotics in addressing public health concerns and zoonosis associated with the poultry industry are discussed.
Collapse
Affiliation(s)
- Shahna Fathima
- Department of Poultry Science, The University of Georgia, Athens, GA 30605, USA; (S.F.); (D.A.); (R.K.S.)
| | - Revathi Shanmugasundaram
- Toxicology and Mycotoxin Research Unit, US National Poultry Research Center, Athens, GA 30605, USA
| | - Daniel Adams
- Department of Poultry Science, The University of Georgia, Athens, GA 30605, USA; (S.F.); (D.A.); (R.K.S.)
| | - Ramesh K. Selvaraj
- Department of Poultry Science, The University of Georgia, Athens, GA 30605, USA; (S.F.); (D.A.); (R.K.S.)
| |
Collapse
|
14
|
Kogut MH. Role of diet-microbiota interactions in precision nutrition of the chicken: facts, gaps, and new concepts. Poult Sci 2022; 101:101673. [PMID: 35104729 PMCID: PMC8814386 DOI: 10.1016/j.psj.2021.101673] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 12/08/2021] [Accepted: 12/14/2021] [Indexed: 12/12/2022] Open
Abstract
In the intestine, host-derived factors are genetically hardwired and difficult to modulate. However, the intestinal microbiome is more plastic and can be readily modulated by dietary factors. Further, it is becoming more apparent that the microbiome can potentially impact poultry physiology by participating in digestion, the absorption of nutrients, shaping of the mucosal immune response, energy homeostasis, and the synthesis or modulation of several potential bioactive metabolites. These activities are dependent on the quantity and quality of the microbiota alongside its metabolic potential, which are dictated in large part by diet. Thus, diet-induced microbiota alterations may be harnessed to induce changes in host physiology, including disease development and progression. In this regard, the gut microbiome is malleable and renders the gut microbiome a candidate 'organ' for the possibility of precision nutrition to induce precision microbiomics-the use of the gut microbiome as a biomarker to predict responsiveness to specific dietary constituents to generate precision diets and interventions for optimal poultry performance and health. However, it is vital to identify the causal relationships and mechanisms by which dietary components and additives affect the gut microbiome which then ultimately influence avian physiology. Further, an improved understanding of the spatial and functional relationships between the different sections of the avian gut and their regional microbiota will provide a better understanding of the role of the diet in regulating the intestinal microbiome.
Collapse
Affiliation(s)
- Michael H Kogut
- Southern Plains Agricultural Research Center, USDA-ARS, College Station, TX 77845, USA.
| |
Collapse
|
15
|
Ebeid T, Al-Homidan I, Fathi M, Al-Jamaan R, Mostafa M, Abou-Emera O, El-Razik MA, Alkhalaf A. Impact of probiotics and/or organic acids supplementation on growth performance, microbiota, antioxidative status, and immune response of broilers. ITALIAN JOURNAL OF ANIMAL SCIENCE 2021. [DOI: 10.1080/1828051x.2021.2012092] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Tarek Ebeid
- Department of Animal Production and Breeding, Qassim University, Buraydah, Saudi Arabia
- Department of Poultry Production, Kafrelsheikh University, Kafr El-Sheikh, Egypt
| | - Ibrahim Al-Homidan
- Department of Animal Production and Breeding, Qassim University, Buraydah, Saudi Arabia
| | - Moataz Fathi
- Department of Animal Production and Breeding, Qassim University, Buraydah, Saudi Arabia
- Department of Poultry Production, Ain Shams University, Cairo, Egypt
| | - Rakan Al-Jamaan
- Department of Animal Production and Breeding, Qassim University, Buraydah, Saudi Arabia
| | - Mohamed Mostafa
- Department of Animal Production and Breeding, Qassim University, Buraydah, Saudi Arabia
- Department of Poultry Production, Ain Shams University, Cairo, Egypt
| | - Osama Abou-Emera
- Department of Animal Production and Breeding, Qassim University, Buraydah, Saudi Arabia
- Agriculture Research Center, Animal Production Research Institute, Dokki, Egypt
| | - Mohamed Abd El-Razik
- Department of Food Science and Human Nutrition, Qassim University, Buraydah, Saudi Arabia
- Department of Food Science, Faculty of Agriculture, Ain Shams University, Cairo, Egypt
| | - Abdullah Alkhalaf
- Department of Veterinary Medicine, Qassim University, Buraydah, Saudi Arabia
| |
Collapse
|
16
|
Ebeid TA, Al-Homidan IH. Organic acids and their potential role for modulating the gastrointestinal tract, antioxidative status, immune response, and performance in poultry. WORLD POULTRY SCI J 2021. [DOI: 10.1080/00439339.2022.1988803] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Tarek A. Ebeid
- Department of Animal Production and Breeding, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah, Saudi Arabia
- Department of Poultry Production, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh, Egypt
| | - Ibrahim H. Al-Homidan
- Department of Animal Production and Breeding, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah, Saudi Arabia
| |
Collapse
|
17
|
Wang Y, Wang Y, Lin X, Gou Z, Fan Q, Jiang S. Effects of Clostridium butyricum, Sodium Butyrate, and Butyric Acid Glycerides on the Reproductive Performance, Egg Quality, Intestinal Health, and Offspring Performance of Yellow-Feathered Breeder Hens. Front Microbiol 2021; 12:657542. [PMID: 34603221 PMCID: PMC8481923 DOI: 10.3389/fmicb.2021.657542] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 08/12/2021] [Indexed: 01/24/2023] Open
Abstract
Butyrate has been reported to promote the performance and growth of chickens. The specific roles and efficacy of different sources of butyrate remained unclear. Thus, the present study aimed to investigate and compare the effects of Clostridium butyricum (CB), sodium butyrate (SB), and butyric acid glycerides (tributyrin, BAG) on the reproductive performance, egg quality, intestinal health, and offspring performance of yellow-feathered breeder hens. A total of 300 Lingnan yellow-feathered breeder hens were assigned to five treatment groups: control (CL), 1×108CFU/kg CB (CBL), 1×109CFU/kg CB (CBH), 500mg/kg SB, and 300mg/kg BAG. Results showed that the laying performance and egg quality were increased by CBL, CBH, and BAG. Both CB treatments increased the hatchability of fertilized eggs. Maternal supplementation with both levels of CB significantly elevated the growth performance of offspring. Treatment with CBL, CBH, SB, and BAG all improved the oviduct-related variables and reduced the plasmal antioxidant variables. The CBH, CBL, and BAG treatments also improved the intestinal morphology to different degrees. Jejunal contents of IL-6 were decreased by CBH and BAG, while those of IL-4, IL-6, IL-1β, and IgY were decreased by SB. Transcripts of nutrient transporters in jejunal mucosa were also upregulated by CBH, CBL, and SB treatments and expression of Bcl-2-associated X protein was decreased by CBL, CBH, and BAG. In cecal contents, CBL increased the abundance of Firmicutes and Bacillus, while CBH decreased the abundance of Proteobacteria. Also, the co-occurrence networks of intestinal microbes were regulated by CBH and BAG. In conclusion, dietary inclusion of CB and BAG improved the reproductive parameters, egg quality, and intestinal morphology of breeders. CB also influenced the hatching performance of breeders and growth performance of the offspring, while SB improved the oviduct-related variables. These beneficial effects may result from the regulation of cytokines, nutrient transporters, apoptosis, and gut microbiota; high-level CB had more obvious impact. Further study is needed to explore and understand the correlation between the altered gut microbiota induced by butyrate and the performance, egg quality, intestinal health, and also offspring performance.
Collapse
Affiliation(s)
- Yibing Wang
- State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agricultural and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Yang Wang
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| | - Xiajing Lin
- State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agricultural and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Zhongyong Gou
- State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agricultural and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Qiuli Fan
- State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agricultural and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Shouqun Jiang
- State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agricultural and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| |
Collapse
|
18
|
Melaku M, Zhong R, Han H, Wan F, Yi B, Zhang H. Butyric and Citric Acids and Their Salts in Poultry Nutrition: Effects on Gut Health and Intestinal Microbiota. Int J Mol Sci 2021; 22:10392. [PMID: 34638730 PMCID: PMC8508690 DOI: 10.3390/ijms221910392] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/19/2021] [Accepted: 09/22/2021] [Indexed: 12/26/2022] Open
Abstract
Intestinal dysfunction of farm animals, such as intestinal inflammation and altered gut microbiota, is the critical problem affecting animal welfare, performance and farm profitability. China has prohibited the use of antibiotics to improve feed efficiency and growth performance for farm animals, including poultry, in 2020. With the advantages of maintaining gut homeostasis, enhancing digestion, and absorption and modulating gut microbiota, organic acids are regarded as promising antibiotic alternatives. Butyric and citric acids as presentative organic acids positively impact growth performance, welfare, and intestinal health of livestock mainly by reducing pathogenic bacteria and maintaining the gastrointestinal tract (GIT) pH. This review summarizes the discovery of butyric acid (BA), citric acid (CA) and their salt forms, molecular structure and properties, metabolism, biological functions and their applications in poultry nutrition. The research findings about BA, CA and their salts on rats, pigs and humans are also briefly reviewed. Therefore, this review will fill the knowledge gaps of the scientific community and may be of great interest for poultry nutritionists, researchers and feed manufacturers about these two weak organic acids and their effects on intestinal health and gut microbiota community, with the hope of providing safe, healthy and nutrient-rich poultry products to consumers.
Collapse
Affiliation(s)
- Mebratu Melaku
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (M.M.); (R.Z.); (H.H.); (F.W.)
- Department of Animal Production and Technology, College of Agriculture, Woldia University, Woldia P.O. Box 400, Ethiopia
| | - Ruqing Zhong
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (M.M.); (R.Z.); (H.H.); (F.W.)
| | - Hui Han
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (M.M.); (R.Z.); (H.H.); (F.W.)
| | - Fan Wan
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (M.M.); (R.Z.); (H.H.); (F.W.)
- College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - Bao Yi
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (M.M.); (R.Z.); (H.H.); (F.W.)
| | - Hongfu Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (M.M.); (R.Z.); (H.H.); (F.W.)
| |
Collapse
|
19
|
Liu Y, Liu C, An K, Gong X, Xia Z. Effect of Dietary Clostridium butyricum Supplementation on Growth Performance, Intestinal Barrier Function, Immune Function, and Microbiota Diversity of Pekin Ducks. Animals (Basel) 2021; 11:ani11092514. [PMID: 34573480 PMCID: PMC8471152 DOI: 10.3390/ani11092514] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 08/19/2021] [Accepted: 08/21/2021] [Indexed: 12/28/2022] Open
Abstract
Simple Summary In poultry farming, the use of prophylactic antibiotics can lead to increased resistance, so probiotics are a good alternative. Clostridium butyricum (C. butyricum) has been widely used to improve the gut health of animals. Therefore, we carried out the current study of Pekin ducks supplemented with C. butyricum for a period of 42 days. Here, we found a clear increase in the growth performance of Pekin ducks supplemented with C. butyricum. Moreover, a high level of secretory IgA, IgM, IgG, IL-4, and IL-10 and comparatively higher short-chain fatty acids (SCFAs) and intestinal tight junction changes were found in Pekin ducks supplemented with C. butyricum. The gut microbial diversity of Pekin ducks supplemented with C. butyricum was clearly different than that of Pekin ducks fed a non-C. butyricum diet. In conclusion, our findings suggest that 400 mg/kg C. butyricum supplementation improved the intestinal health of Pekin ducks by increasing the α-diversity of intestinal microbiota, enhancing the SCFAs contents, and strengthening the intestinal barrier function and immune systems indicating that 400 mg/kg C. butyricum might be a preferable antibiotic alternative for commercial application. Abstract Clostridium butyricum (C. butyricum) is increasingly being used to test the promotion of the gut health of animals. However, the modes of action for such applications for waterfowl remain unclear. Thus, we investigated whether or not intestinal barrier function, immune-related gene expression, and the diversity of the intestinal microbiota in Pekin ducks varied under C. butyricum supplementation. A total of 500 ducks were randomly assigned into five treatments supplemented with basal diets containing: either 0 (group Control), 200 (group CB200), 400 (group CB400) and 600 (group CB600) mg/kg C. butyricum or 150 mg/kg aureomycin (group A150) for 42 days. In comparison with the control group, C. butyricum supplementation enhanced the growth performance and intestinal villus height of Pekin ducks at 42 d. Serum immune indexes and fecal short-chain fatty acids (SCFAs) were all improved at both 21 d and 42 d after C. butyricum addition. The mRNA expression levels of Mucin2, Zonula occludens-1 (ZO-1), Caudin-3, and Occludin increased at 21 d and 42 d and the mRNA expression levels of IL-4 and IL-10 only increased at 42 d after C. butyricum addition. Dietary C. butyricum also resulted in an increase in the number of diversities of operational taxonomic units (OTUs), and an increase in the α-diversity of intestinal microbiota. The addition of C. butyricum altered the composition of the intestinal microbiota from 21 d to 42 d. The relative abundance of Firmicutes and Bacteroidetes showed little changes among groups; however, the relative abundance of Firmicutes/Bacteroidetes were found to have been significantly different between the 21 d and 42 d. C. butyricum administration improved the intestinal health of Pekin ducks by increasing the diversity of intestinal microbiota, enhancing the SCFAs contents, and strengthening the intestinal barrier function and immune systems. The optimal dietary supplementation dosage was recommended as 400 mg/kg in the diet.
Collapse
Affiliation(s)
- Yanhan Liu
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (Y.L.); (K.A.); (X.G.)
- Shandong Provincial Center for Animal Disease Control, Ji’nan 250100, China;
| | - Cun Liu
- Shandong Provincial Center for Animal Disease Control, Ji’nan 250100, China;
| | - Keying An
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (Y.L.); (K.A.); (X.G.)
| | - Xiaowei Gong
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (Y.L.); (K.A.); (X.G.)
| | - Zhaofei Xia
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (Y.L.); (K.A.); (X.G.)
- Correspondence: ; Tel.: +86-10-62733781
| |
Collapse
|
20
|
Jha R, Mishra P. Dietary fiber in poultry nutrition and their effects on nutrient utilization, performance, gut health, and on the environment: a review. J Anim Sci Biotechnol 2021; 12:51. [PMID: 33866972 PMCID: PMC8054369 DOI: 10.1186/s40104-021-00576-0] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 02/22/2021] [Indexed: 01/10/2023] Open
Abstract
Dietary fiber (DF) was considered an antinutritional factor due to its adverse effects on feed intake and nutrient digestibility. However, with increasing evidence, scientists have found that DF has enormous impacts on the gastrointestinal tract (GIT) development, digestive physiology, including nutrient digestion, fermentation, and absorption processes of poultry. It may help maintain the small and large intestine's integrity by strengthening mucosal structure and functions and increasing the population and diversity of commensal bacteria in the GIT. Increasing DF content benefits digestive physiology by stimulating GIT development and enzyme production. And the inclusion of fiber at a moderate level in diets also alters poultry growth performance. It improves gut health by modulating beneficial microbiota in the large intestine and enhancing immune functions. However, determining the source, type, form, and level of DF inclusion is of utmost importance to achieve the above-noted benefits. This paper critically reviews the available information on dietary fibers used in poultry and their effects on nutrient utilization, GIT development, gut health, and poultry performance. Understanding these functions will help develop nutrition programs using proper DF at an appropriate inclusion level that will ultimately lead to enhanced DF utilization, overall health, and improved poultry growth performance. Thus, this review will help researchers and industry identify the sources, type, form, and amount of DF to be used in poultry nutrition for healthy, cost-effective, and eco-friendly poultry production.
Collapse
Affiliation(s)
- Rajesh Jha
- Department of Human Nutrition, Food and Animal Sciences, College of Tropical Agriculture and Human Resources, University of Hawaii at Manoa, Honolulu, HI, 96822, USA.
| | - Pravin Mishra
- Department of Human Nutrition, Food and Animal Sciences, College of Tropical Agriculture and Human Resources, University of Hawaii at Manoa, Honolulu, HI, 96822, USA
| |
Collapse
|
21
|
Gupta A, Bansal M, Wagle B, Sun X, Rath N, Donoghue A, Upadhyay A. Sodium Butyrate Reduces Salmonella Enteritidis Infection of Chicken Enterocytes and Expression of Inflammatory Host Genes in vitro. Front Microbiol 2020; 11:553670. [PMID: 33042060 PMCID: PMC7524895 DOI: 10.3389/fmicb.2020.553670] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 08/27/2020] [Indexed: 12/14/2022] Open
Abstract
Salmonella Enteritidis (SE) is a facultative intracellular pathogen that colonizes the chicken gut leading to contamination of carcasses during processing. A reduction in intestinal colonization by SE could result in reduced carcass contamination thereby reducing the risk of illnesses in humans. Short chain fatty acids such as butyrate are microbial metabolites produced in the gut that exert various beneficial effects. However, its effect on SE colonization is not well known. The present study investigated the effect of sub-inhibitory concentrations (SICs) of sodium butyrate on the adhesion and invasion of SE in primary chicken enterocytes and chicken macrophages. In addition, the effect of sodium butyrate on the expression of SE virulence genes and selected inflammatory genes in chicken macrophages challenged with SE were investigated. Based on the growth curve analysis, the two SICs of sodium butyrate that did not reduce SE growth were 22 and 45 mM, respectively. The SICs of sodium butyrate did not affect the viability and proliferation of chicken enterocytes and macrophage cells. The SICs of sodium butyrate reduced SE adhesion by ∼1.7 and 1.8 Log CFU/mL, respectively. The SE invasion was reduced by ∼2 and 2.93 Log CFU/mL, respectively in chicken enterocytes (P < 0.05). Sodium butyrate did not significantly affect the adhesion of SE to chicken macrophages. However, 45 mM sodium butyrate reduced invasion by ∼1.7 Log CFU/mL as compared to control (P < 0.05). Exposure to sodium butyrate did not change the expression of SE genes associated with motility (flgG, prot6E), invasion (invH), type 3 secretion system (sipB, pipB), survival in macrophages (spvB, mgtC), cell wall and membrane integrity (tatA), efflux pump regulator (mrr1) and global virulence regulation (lrp) (P > 0.05). However, a few genes contributing to type-3 secretion system (ssaV, sipA), adherence (sopB), macrophage survival (sodC) and oxidative stress (rpoS) were upregulated by at least twofold. The expression of inflammatory genes (Il1β, Il8, and Mmp9) that are triggered by SE for host colonization was significantly downregulated (at least 25-fold) by sodium butyrate as compared to SE (P < 0.05). The results suggest that sodium butyrate has an anti-inflammatory potential to reduce SE colonization in chickens.
Collapse
Affiliation(s)
- Anamika Gupta
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Mohit Bansal
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Basanta Wagle
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Xiaolun Sun
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Narayan Rath
- Poultry Production and Product Safety Research Unit, United States Department of Agriculture-Agriculture Research Station, Fayetteville, AR, United States
| | - Annie Donoghue
- Poultry Production and Product Safety Research Unit, United States Department of Agriculture-Agriculture Research Station, Fayetteville, AR, United States
| | - Abhinav Upadhyay
- Department of Animal Science, University of Connecticut, Storrs, CT, United States
| |
Collapse
|
22
|
Zhang A, Pirzado S, Liu G, Chen Z, Chang W, Cai H, Bryden W, Zheng A. Dietary supplementation with sodium humate improves egg quality and immune function of laying hens. JOURNAL OF APPLIED ANIMAL NUTRITION 2020. [DOI: 10.3920/jaan2020.0009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The aim of this study was to evaluate the influence of the dietary addition of sodium humate (HAS) on performance and immune response of laying hens during peak lay, over an eight-week period. Laying hens, aged 24 weeks old, were randomly allotted to four dietary treatments: a basal control diet or the basal diet supplemented with 0.1, 0.3 or 0.5% HAS. Each treatment had six replicates with 15 layers per replicate. Egg production, egg quality, serum antioxidant parameters and immunity indexes were measured. HAS had no significant effect on egg production or egg and shell quality, but all supplemental levels significantly improved Haugh unit values and egg yolk colour. Supplementation with all levels of HAS significantly increased serum immunoglobuline (Ig) level compared to the hens fed the control diet. Feeding either 0.1 or 0.5% HAS significantly increased serum IgM levels. The results indicated that dietary supplementation with HAS can enhance egg albumin quality and improve immunity in laying hens.
Collapse
Affiliation(s)
- A.R. Zhang
- Key Laboratory of Feed Biotechnology of the Ministry of Agriculture and Rural Affairs & National Engineering Research Center of Biological Feed Development, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China P.R
| | - S.A. Pirzado
- Key Laboratory of Feed Biotechnology of the Ministry of Agriculture and Rural Affairs & National Engineering Research Center of Biological Feed Development, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China P.R
| | - G.H. Liu
- Key Laboratory of Feed Biotechnology of the Ministry of Agriculture and Rural Affairs & National Engineering Research Center of Biological Feed Development, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China P.R
| | - Z.M. Chen
- Key Laboratory of Feed Biotechnology of the Ministry of Agriculture and Rural Affairs & National Engineering Research Center of Biological Feed Development, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China P.R
| | - W.H. Chang
- Key Laboratory of Feed Biotechnology of the Ministry of Agriculture and Rural Affairs & National Engineering Research Center of Biological Feed Development, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China P.R
| | - H.Y. Cai
- Key Laboratory of Feed Biotechnology of the Ministry of Agriculture and Rural Affairs & National Engineering Research Center of Biological Feed Development, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China P.R
| | - W.L. Bryden
- School of Agriculture and Food Sciences, University of Queensland, Gatton, QLD 4343, Australia
| | - A.J. Zheng
- Key Laboratory of Feed Biotechnology of the Ministry of Agriculture and Rural Affairs & National Engineering Research Center of Biological Feed Development, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China P.R
| |
Collapse
|
23
|
Short-chain fatty acids (SCFAs) alone or in combination regulate select immune functions of microglia-like cells. Mol Cell Neurosci 2020; 105:103493. [DOI: 10.1016/j.mcn.2020.103493] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 03/31/2020] [Accepted: 04/04/2020] [Indexed: 01/04/2023] Open
|
24
|
Lan RX, Li SQ, Zhao Z, An LL. Sodium butyrate as an effective feed additive to improve growth performance and gastrointestinal development in broilers. Vet Med Sci 2020; 6:491-499. [PMID: 32124566 PMCID: PMC7397880 DOI: 10.1002/vms3.250] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 12/23/2019] [Accepted: 01/19/2020] [Indexed: 11/09/2022] Open
Abstract
This study was conducted to evaluate the effects of dietary sodium butyrate (SB) supplementation on growth performance, the development of gastrointestinal tract and immune organs (thymus, spleen and bursa of fabricius), and serum antibody titer after Newcastle disease (ND) vaccination in broilers. The total of 288 1-day-old broilers were randomly allocated to four groups with six replications according to initial body weight. Four treatment groups were designed as follows and fed the indicated diets: CON, basal diet; T1, basal diet supplemented with 0.3 g/kg SB; T2, basal diet supplemented with 0.6 g/kg SB; T3, basal diet supplemented with 1.2 g/kg SB. During days 1-21, broilers fed the T2 diet had higher (p < .05) average daily gain (ADG) than broilers fed the CON diet. On day 21, dietary SB supplementation showed linear increase (p < .05) in relative weight of the duodenum, jejunum, ileum, small intestine (the sum weight of duodenum, jejunum and ileum), pancreas and thymus, and linear increase (p < .05) in relative length of the duodenum, jejunum, ileum, small intestine (the sum length of duodenum, jejunum and ileum) and caeca. Meanwhile, dietary SB supplementation showed linear increase in the antibody titer against ND on days 14, 21, 28 and 35. In conclusion, dietary SB supplementation improved the development of gastrointestinal by increasing the relative weight and length, as well as enhanced the immune response of ND vaccine.
Collapse
Affiliation(s)
- Rui Xia Lan
- Department of Animal Science, College of Agriculture, Guangdong Ocean University, Zhanjiang, Guangdong, P.R. China
| | - Si Qi Li
- Department of Animal Science, College of Agriculture, Guangdong Ocean University, Zhanjiang, Guangdong, P.R. China
| | - Zhihui Zhao
- Department of Animal Science, College of Agriculture, Guangdong Ocean University, Zhanjiang, Guangdong, P.R. China
| | - Li Long An
- Department of Animal Science, College of Agriculture, Guangdong Ocean University, Zhanjiang, Guangdong, P.R. China
| |
Collapse
|
25
|
Aristimunha P, Mallheiros R, Ferket P, Cardinal K, Filho AM, Santos E, Cavalcante D, Ribeiro A. Effect of Dietary Organic Acids and Humic Substance Supplementation on Performance, Immune Response and Gut Morphology of Broiler Chickens. J APPL POULTRY RES 2020. [DOI: 10.3382/japr/pfz031] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
26
|
The Control of Intestinal Inflammation: A Major Objective in the Research of Probiotic Strains as Alternatives to Antibiotic Growth Promoters in Poultry. Microorganisms 2020; 8:microorganisms8020148. [PMID: 31973199 PMCID: PMC7074883 DOI: 10.3390/microorganisms8020148] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 01/17/2020] [Accepted: 01/18/2020] [Indexed: 12/31/2022] Open
Abstract
The reduction of antimicrobial resistance is a major challenge for the scientific community. In a few decades, infections by resistant bacteria are forecasted to be the main cause of death in the world. The withdrawal of antibiotics as growth promoters and their preventive use in animal production is essential to avoid these resistances, but this may impair productivity and health due to the increase in gut inflammation. This reduction in productivity aggravates the problem of increasing meat demand in developing countries and limits the availability of raw materials. Probiotics are promising products to address this challenge due to their beneficial effects on microbiota composition, mucosal barrier integrity, and immune system to control inflammation. Although many modes of action have been demonstrated, the scientific community is not able to describe the specific effects that a probiotic should induce on the host to maximize both productivity and animal health. First, it may be necessary to define what are the innate immune pathways acting in the gut that optimize productivity and health and to then investigate which probiotic strain is able to induce the specific effect needed. This review describes several gaps in the knowledge of host-microbiota-pathogen interaction and the related mechanisms involved in the inflammatory response not demonstrated yet in poultry.
Collapse
|
27
|
Zou X, Ji J, Qu H, Wang J, Shu DM, Wang Y, Liu TF, Li Y, Luo CL. Effects of sodium butyrate on intestinal health and gut microbiota composition during intestinal inflammation progression in broilers. Poult Sci 2019; 98:4449-4456. [PMID: 31162611 DOI: 10.3382/ps/pez279] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 05/05/2019] [Indexed: 01/06/2023] Open
Abstract
Butyric acid is a beneficial feed additive used in animal production, including poultry production. However, there are few reports on butyric acid as a prophylactic treatment against intestinal inflammation in broilers. The current study explored the effect of sodium butyrate (SB) as a prophylactic treatment on the intestinal health and gut microbiota of broilers with intestinal inflammation induced by dextran sulfate sodium (DSS) by monitoring changes in intestinal histopathology, gut leakiness indicators, inflammatory cytokines, and gut microbiota composition. Sodium butyrate supplementation prior to DSS administration significantly reduced the lesion scores of intestinal bleeding (P < 0.05) and increased villus height and the total mucosa of the ileum (P < 0.05). Regardless of intestinal inflammation, supplementation with SB at 300 mg/kg significantly decreased the levels of D (-)-lactate (P < 0.05), interleukin-6, and interleukin-1β (P < 0.05) but increased the level of interleukin-10 (P < 0.05). The SB treatment did not affect the alpha diversity of intestinal microbiota during intestinal inflammation progression but altered their composition, and the microbial community structure of treated broilers was similar to that of control broilers. Taken together, our results reveal the importance of SB in improving intestinal development, inducing an anti-inflammatory effect during intestinal inflammation progression, and modulating the microbial community in broilers. Sodium butyrate seems to be optimized for anti-inflammatory effects at higher doses (300 mg/kg SB).
Collapse
Affiliation(s)
- X Zou
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangdong Public Laboratory of Animal Breeding and Nutrition, Key Laboratory of Poultry Genetics and Breeding, Ministry of Agriculture, Guangzhou 510640, China
| | - J Ji
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangdong Public Laboratory of Animal Breeding and Nutrition, Key Laboratory of Poultry Genetics and Breeding, Ministry of Agriculture, Guangzhou 510640, China
| | - H Qu
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangdong Public Laboratory of Animal Breeding and Nutrition, Key Laboratory of Poultry Genetics and Breeding, Ministry of Agriculture, Guangzhou 510640, China
| | - J Wang
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangdong Public Laboratory of Animal Breeding and Nutrition, Key Laboratory of Poultry Genetics and Breeding, Ministry of Agriculture, Guangzhou 510640, China
| | - D M Shu
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangdong Public Laboratory of Animal Breeding and Nutrition, Key Laboratory of Poultry Genetics and Breeding, Ministry of Agriculture, Guangzhou 510640, China
| | - Y Wang
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangdong Public Laboratory of Animal Breeding and Nutrition, Key Laboratory of Poultry Genetics and Breeding, Ministry of Agriculture, Guangzhou 510640, China
| | - T F Liu
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangdong Public Laboratory of Animal Breeding and Nutrition, Key Laboratory of Poultry Genetics and Breeding, Ministry of Agriculture, Guangzhou 510640, China
| | - Y Li
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangdong Public Laboratory of Animal Breeding and Nutrition, Key Laboratory of Poultry Genetics and Breeding, Ministry of Agriculture, Guangzhou 510640, China
| | - C L Luo
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangdong Public Laboratory of Animal Breeding and Nutrition, Key Laboratory of Poultry Genetics and Breeding, Ministry of Agriculture, Guangzhou 510640, China
| |
Collapse
|
28
|
Dietary administration of resistant starch improved caecal barrier function by enhancing intestinal morphology and modulating microbiota composition in meat duck. Br J Nutr 2019; 123:172-181. [PMID: 31495347 DOI: 10.1017/s0007114519002319] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Resistant starch (RS) was recently approved to exert a powerful influence on gut health, but the effect of RS on the caecal barrier function in meat ducks has not been well defined. Thus, the effect of raw potato starch (RPS), a widely adopted RS material, on microbial composition and barrier function of caecum for meat ducks was determined. A total of 360 Cherry Valley male ducks of 1-d-old were randomly divided and fed diets with 0 (control), 12, or 24 % RPS for 35 d. Diets supplemented with RPS significantly elevated villus height and villus height:crypt depth ratio in the caecum. The 16S rRNA sequence analysis indicated that the diet with 12 % RPS had a higher relative abundance of Firmicutes and the butyrate-producing bacteria Faecalibacterium, Subdoligranulum, and Erysipelatoclostridium were enriched in all diets. Lactobacillus and Bifidobacterium were significantly increased in the 24 % RPS diet v. the control diet. When compared with the control diet, the diet with 12 % RPS was also found to notably increase acetate, propionate and butyrate contents and up-regulated barrier-related genes including claudin-1, zonula occludens-1, mucin-2 and proglucagon in the caecum. Furthermore, the addition of 12 % RPS significantly reduced plasma TNF-α, IL-1β and endotoxin concentrations. These data revealed that diets supplemented with 12 % RPS partially improved caecal barrier function in meat ducks by enhancing intestinal morphology and barrier markers expression, modulating the microbiota composition and attenuating inflammatory markers.
Collapse
|
29
|
El-Aziz AHA, El-Kasrawy NI, Abo Ghanima MM, Alsenosy AEWAE, Raza SHA, Khan S, Memon S, Khan R, Ullah I. Influence of multi-enzyme preparation supplemented with sodium butyrate on growth performance blood profiles and economic benefit of growing rabbits. J Anim Physiol Anim Nutr (Berl) 2019; 104:186-195. [PMID: 31657058 DOI: 10.1111/jpn.13227] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 08/26/2019] [Accepted: 09/29/2019] [Indexed: 01/08/2023]
Abstract
The present study was carried out to explore the impacts of dietary supplementation of enzyme mixture with sodium butyrate on the growth performance, carcass traits, blood profile and economic benefit in two breeds of weanling rabbits adapted to survive in Egypt (New Zealand White and Rex). One-hundred and twenty weaned male rabbits (New Zealand White and Rex) of 6 weeks of age and 770.5 ± 20 g body weight were allotted randomly into four groups in a factorial arrangement. The obtained results indicated that there were non-significant differences in all growth performance traits, blood profile and economic parameters due to the breed effect. However, there were significant differences in most of carcass traits due to the breed effect except total giblets and New Zealand White breed showed the highest value of these parameters including dressing % (p < .01), forequarter and loin % (p < .001) and hindquarter % (p < .003) compared with Rex breed counterparts. The effect of the treatment and its interaction with the breed significantly (p < .05) improved body weight gain, feed consumption and carcass traits (percentage of dressing, forequarter, hind quarter and lion). However, final body weight and feed conversion ratio were not significantly influenced. Supplementing a diet with treatment significantly decreased blood triglycerides, cholesterol and the ratio between albumin and globulin (A/G ratio), while increased blood total protein and globulin. Although higher feed cost and total costs in treated groups than control ones in each breed, they showed higher total return and net return. Rex non-treated rabbit breed showed the lowest profitability measures compared with other groups. In conclusion, dietary supplementation of multi-enzyme with sodium butyrate is highly recommended in growing rabbits due to their beneficial effects on the growth performance and profitability.
Collapse
Affiliation(s)
- Ayman Hassan Abd El-Aziz
- Animal Husbandry and Animal Wealth Development Department, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Nagwa Ibrahim El-Kasrawy
- Animal Husbandry and Animal Wealth Development Department, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Mahmoud Mahmoud Abo Ghanima
- Animal Husbandry and Animal Wealth Development Department, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | | | - Sayed Haidar Abbas Raza
- College of Animal Science and Technology, Northwest A&F University, Yangling, People's Republic of China
| | - Samiullah Khan
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Sameeullah Memon
- Yunnan Animal Science and Veterinary Institute, Jindian, Kunming, China
| | - Rajwali Khan
- College of Animal Science and Technology, Northwest A&F University, Yangling, People's Republic of China
| | - Irfan Ullah
- Department of Biological science, Karakoram International University, Gilgit, Pakistan
| |
Collapse
|
30
|
Sodium butyrate in chicken nutrition: the dynamics of performance, gut microbiota, gut morphology, and immunity. WORLD POULTRY SCI J 2019. [DOI: 10.1017/s0043933916000210] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
31
|
Abd El-Wahab A, Mahmoud RE, Ahmed MFE, Salama MF. Effect of dietary supplementation of calcium butyrate on growth performance, carcass traits, intestinal health and pro-inflammatory cytokines in Japanese quails. J Anim Physiol Anim Nutr (Berl) 2019; 103:1768-1775. [PMID: 31385639 DOI: 10.1111/jpn.13172] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 04/22/2019] [Accepted: 07/11/2019] [Indexed: 11/26/2022]
Abstract
The objective of the present study was to evaluate the potential effect of dietary calcium butyrate on growth performance, carcass traits and gut health in Japanese quails. In total, 320 one-day-old Japanese quails were randomly assigned to 4 equal treatments, with 8 replicates of 10 Japanese quails, for 4 weeks. The Japanese quails in control treatment were fed control diet whereas in the other treatments the Japanese quails were fed diet supplemented with calcium butyrate at 0.3, 0.5 and 0.7 g/kg diet. Data concerning performance measurements were recorded weekly. In addition, eight Japanese quails (one/replicate) from each treatment were selected randomly for serum collection to measure pro- and anti-inflammatory cytokines. Pooled faecal samples from each replicate of each treatment were also collected at three time points (0, 2 and 4 weeks) for count E. coli and C. perfringens. The results showed that after 7 days of the experimental period, Japanese quails fed calcium butyrate supplemented diet at 0.7 g/kg showed a greater (p < .05) body weight and a favourable (p < .05) feed conversion ratio than the other treatments. Moreover, serum superoxide dismutase and catalase activities were increased (p < .05) in Japanese quails fed calcium butyrate supplemented diet at 0.7 g/kg. Calcium butyrate supplementation at 0.7 g/kg was associated with reduction (p < .05) in TNF-α, IL-6 and IL1-β, while IL-10 was increased (p < .05). In addition, after 2 weeks of calcium butyrate supplementation, a reduction (p < .05) in E. coli and C. perfringens counts was observed in excreta of Japanese quails fed 0.5 and 0.7 g calcium butyrate/kg diets. It is concluded that calcium butyrate supplementation improves body weight gain, reduces E. coli and C. perfringens counts and has anti-inflammatory/anti-oxidant effect in Japanese quails.
Collapse
Affiliation(s)
- Amr Abd El-Wahab
- Department of Nutrition and Nutritional Deficiency Diseases, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Rania E Mahmoud
- Department of Nutrition and Nutritional Deficiency Diseases, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Marwa F E Ahmed
- Department of Hygiene and Zoonoses, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Mohamed F Salama
- Department of Biochemistry, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| |
Collapse
|
32
|
Campbell WA, Deshmukh A, Blum S, Todd L, Mendonca N, Weist J, Zent J, Hoang TV, Blackshaw S, Leight J, Fischer AJ. Matrix-metalloproteinase expression and gelatinase activity in the avian retina and their influence on Müller glia proliferation. Exp Neurol 2019; 320:112984. [PMID: 31251936 DOI: 10.1016/j.expneurol.2019.112984] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 06/15/2019] [Accepted: 06/24/2019] [Indexed: 12/16/2022]
Abstract
Gelatinases are a class of matrix metalloproteinases (MMPs) that degrade the extracellular matrix (ECM) to regulate intercellular signaling and cell migration. Gelatinase activity is tightly regulated via proteolytic activation and through the expression of tissue inhibitors of matrix metalloproteinases (TIMPs). Gelatinase activity has been implicated in retinal pathophysiology in different animal models and human disease. However, the role of gelatinases in retinal regeneration remains uncertain. In this study we investigated the dynamic changes in gelatinase activity in response to excitotoxic damage and how this enzymatic activity influenced the formation of Müller glia progenitor cells (MGPCs) in the avian retina. This study used hydrogels containing a gelatinase-degradable fluorescent peptide to measure gelatinase activity in vitro and dye quenched gelatin to localize enzymatic activity in situ. These data were corroborated by using single cell RNA sequencing (scRNA-seq). Gelatinase mRNA, specifically MMP2, was detected in oligodendrocytes and Non-Astrocytic Inner Retinal Glia (NIRG). Total retinal gelatinase activity was reduced following NMDA-treatment, and sustained inhibition of MMP2 prior to damage or growth factor treatment increased the formation of proliferating MGPCs and c-fos signaling. We observed that microglia, Müller glia (MG), and NIRG cells were involved in regulating changes in gelatinase activity through TIMP2 and TIMP3. Collectively, these findings implicate MMP2 in reprogramming of Muller glia into MGPCs.
Collapse
Affiliation(s)
- Warren A Campbell
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH, United States of America
| | - Ameya Deshmukh
- Department of Biomedical Engineering, College of Engineering, The comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States of America
| | - Sydney Blum
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH, United States of America
| | - Levi Todd
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH, United States of America
| | - Ninoshka Mendonca
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH, United States of America
| | - Jessica Weist
- Department of Biomedical Engineering, College of Engineering, The comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States of America
| | - Joshua Zent
- Department of Biomedical Engineering, College of Engineering, The comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States of America
| | - Thanh V Hoang
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Seth Blackshaw
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Jennifer Leight
- Department of Biomedical Engineering, College of Engineering, The comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States of America
| | - Andy J Fischer
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH, United States of America.
| |
Collapse
|
33
|
Zhou Z, Yang H, Li H, Li X, Li X, Wu B, Tian S, Wu J, Wang Z, Hu S. Sodium butyrate ameliorates Corynebacterium pseudotuberculosis infection in RAW264.7 macrophages and C57BL/6 mice. Microb Pathog 2019; 131:144-149. [PMID: 30965088 DOI: 10.1016/j.micpath.2019.04.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 03/23/2019] [Accepted: 04/05/2019] [Indexed: 12/22/2022]
Abstract
Corynebacterium pseudotuberculosis (CP) infection in livestock has become highly difficult to control. To decrease the incidence of CP infection, the supplementation of feed with non-antibiotic antibacterial substances is a potential approach. The aim of this study was to assess the effects of sodium butyrate (NaB), a potential alternative to antibiotics, on CP infection in RAW264.7 macrophages and C57BL/6 mice. Our data showed that NaB (2 mM) significantly ameliorated CPinfection in RAW264.7 macrophages and decreased the bacterial load in the spleens of infected mice. By real-time PCR, we found that NaB induced significant decreases in zinc-dependent superoxide dismutase (sodC) and tip protein C (spaC) expression in CP from infected-RAW264.7 cells and in phospholipase D (pld) and spaC expression in CP from the spleens of infected mice. NaB treatment significantly up-regulated cathelicidin-related antimicrobial peptide (cramp) expression in spleens of mice infected with CP. Furthermore, NaB alleviated histopathological changes in spleens of CP-infected mice. In conclusion, NaB ameliorated CP infection in RAW264.7 macrophages and C57BL/6 mice, and these effects may be related to the modulation of sodC, spaC, pld, and cramp expression.
Collapse
Affiliation(s)
- Zuoyong Zhou
- College of Animal Science, Rongchang Campus of Southwest University, No. 160 Xueyuan Road, Rongchang District, Chongqing, 402460, China; Veterinary Science Engineering Research Center of Chongqing, No. 160 Xueyuan Road, Rongchang District, Chongqing, 402460, China.
| | - Haoyue Yang
- College of Animal Science, Rongchang Campus of Southwest University, No. 160 Xueyuan Road, Rongchang District, Chongqing, 402460, China.
| | - Hexian Li
- College of Animal Science, Rongchang Campus of Southwest University, No. 160 Xueyuan Road, Rongchang District, Chongqing, 402460, China.
| | - Xiaoxia Li
- College of Animal Science, Rongchang Campus of Southwest University, No. 160 Xueyuan Road, Rongchang District, Chongqing, 402460, China.
| | - Xiao Li
- College of Animal Science, Rongchang Campus of Southwest University, No. 160 Xueyuan Road, Rongchang District, Chongqing, 402460, China.
| | - Bi Wu
- College of Animal Science, Rongchang Campus of Southwest University, No. 160 Xueyuan Road, Rongchang District, Chongqing, 402460, China.
| | - Shangquan Tian
- College of Animal Science, Rongchang Campus of Southwest University, No. 160 Xueyuan Road, Rongchang District, Chongqing, 402460, China.
| | - Junjun Wu
- College of Animal Science, Rongchang Campus of Southwest University, No. 160 Xueyuan Road, Rongchang District, Chongqing, 402460, China.
| | - Zhiying Wang
- College of Animal Science, Rongchang Campus of Southwest University, No. 160 Xueyuan Road, Rongchang District, Chongqing, 402460, China; Veterinary Science Engineering Research Center of Chongqing, No. 160 Xueyuan Road, Rongchang District, Chongqing, 402460, China.
| | - Shijun Hu
- College of Animal Science, Rongchang Campus of Southwest University, No. 160 Xueyuan Road, Rongchang District, Chongqing, 402460, China; Veterinary Science Engineering Research Center of Chongqing, No. 160 Xueyuan Road, Rongchang District, Chongqing, 402460, China.
| |
Collapse
|
34
|
Zhou JS, Guo P, Yu HB, Ji H, Lai ZW, Chen YA. Growth performance, lipid metabolism, and health status of grass carp (Ctenopharyngodon idella) fed three different forms of sodium butyrate. FISH PHYSIOLOGY AND BIOCHEMISTRY 2019; 45:287-298. [PMID: 30238219 DOI: 10.1007/s10695-018-0561-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 08/20/2018] [Indexed: 06/08/2023]
Abstract
Sodium butyrate (SB) can be coated with fatty acid matrix. In this study, the effects of three SB forms, being zero-lipid-coated (SB-A), half-lipid-coated (SB-B), and 2/3 lipid-coated (SB-C) (w/w), on growth, lipid metabolism, and health status of grass carp (Ctenopharyngodon idella) were investigated. The three forms of SB were added to a control diet to form three SB diets, Con., SB-A, SB-B, and SB-C, where the pure SB in each SB diet was kept at the same level (500 mg kg-1). A total of 216 C. idella (14.10 ± 0.60 g/fish) were allotted into four groups (triplicate per group) and fed the four diets respectively for 56 days, and then fish were sampled and determined. Fish growth was not affected by any of the three forms of SB. Viscerosomatic index, intraperitoneal fat index, and crude lipid of hepatopancreas and muscle were significantly decreased and villus height of intestine and mRNA expression of MyD88 and TLR22 in hepatopancreas were significantly improved in SB diets compared with control (p < 0.05), respectively. MiSeq sequencing of the V3-V4 region of bacterial 16S rRNA gene revealed that SB increased the relative abundances of intestinal healthy bacteria, Fusobacteria and Bacteroides, and the abundances of Cetobacterium decreased in the SB-C group. In conclusion, the present results showed that three forms of SB, without affecting the growth of fish, respectively decreased lipid accumulation and probably have a beneficial effect on health of C. idella.
Collapse
Affiliation(s)
- Ji Shu Zhou
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Pan Guo
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Hai Bo Yu
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Hong Ji
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Zhou Wen Lai
- New Austrian Biotechnology Co., Ltd., Xiamen, 361004, Fujian Province, China
| | - Yi An Chen
- New Austrian Biotechnology Co., Ltd., Xiamen, 361004, Fujian Province, China
| |
Collapse
|
35
|
Effect of dietary sodium butyrate supplementation on growth, blood biochemistry, haematology and histomorphometry of intestine and immune organs of Japanese quail. Animal 2019; 13:1234-1244. [DOI: 10.1017/s1751731118002732] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
36
|
Mohammadi A, Sharifi A, Pourpaknia R, Mohammadian S, Sahebkar A. Manipulating macrophage polarization and function using classical HDAC inhibitors: Implications for autoimmunity and inflammation. Crit Rev Oncol Hematol 2018; 128:1-18. [DOI: 10.1016/j.critrevonc.2018.05.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 03/18/2018] [Accepted: 05/10/2018] [Indexed: 02/06/2023] Open
|
37
|
Zheng H, Yang B, Xu D, Wang W, Tan J, Sun L, Li Q, Sun L, Xia X. Induction of specific T helper-9 cells to inhibit glioma cell growth. Oncotarget 2018; 8:4864-4874. [PMID: 28002799 PMCID: PMC5354876 DOI: 10.18632/oncotarget.13981] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 12/05/2016] [Indexed: 12/20/2022] Open
Abstract
The effects of Staphylococcal enterotoxin B (SEB) on regulation of immune response have been recognized; whether SEB can enhance the effects of immunotherapy on glioma remains to be investigated. This study tests a hypothesis that administration with SEB enhances the effects of specific immunotherapy on glioma growth in mice. In this study, a glioma-bearing mouse model was developed by adoptive transfer with GL261 cells (a mouse glioma cell line). The mice were treated with the GL261 cell extracts (used as an Ag) with or without administration of SEB. We observed that treating glioma-bearing mice with the glioma Ag and SEB induced glioma-specific Th9 cells in both glioma tissue and the spleen. Treating CD4+ CD25− T cells with SEB increased p300 phosphorylation, histone H3K4 acetylation at the interleukin (IL)-9 promoter locus, and increased the IL-9 transcriptional factor binding to the IL-9 promoter. Treating CD4+ CD25− T cells with both SEB and glioma Ag induced glioma-specific Th9 cells. The glioma-specific Th9 cells induced glioma cell apoptosis in the culture. Treating the glioma-bearing mice with SEB and glioma Ag significantly inhibited the glioma growth. In conclusion, SEB plus glioma Ag immunotherapy inhibits the experimental glioma growth, which may be a novel therapeutic remedy for the treatment of glioma.
Collapse
Affiliation(s)
- Haiyan Zheng
- Department of Neurosurgery, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, 322000, Zhejiang, China
| | - Baohua Yang
- Department of Neurosurgery, Guilin Medical University, Affiliated Hospital, Guilin, 541001, China
| | - Dedong Xu
- Department of Neurosurgery, Hainan General Hospital, Haikou, 570311, China
| | - Wenbo Wang
- Department of Neurosurgery, Guilin Medical University, Affiliated Hospital, Guilin, 541001, China
| | - Jie Tan
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, 541001, China
| | - Liyuan Sun
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, 541001, China
| | - Qinghua Li
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, 541001, China
| | - Li Sun
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, 541001, China
| | - Xuewei Xia
- Department of Neurosurgery, Guilin Medical University, Affiliated Hospital, Guilin, 541001, China.,Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, 541001, China
| |
Collapse
|
38
|
Dietary modulation of endogenous host defense peptide synthesis as an alternative approach to in-feed antibiotics. ACTA ACUST UNITED AC 2018; 4:160-169. [PMID: 30140755 PMCID: PMC6104571 DOI: 10.1016/j.aninu.2018.01.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Revised: 01/01/2018] [Accepted: 01/06/2018] [Indexed: 12/11/2022]
Abstract
Traditionally, antibiotics are included in animal feed at subtherapeutic levels for growth promotion and disease prevention. However, recent links between in-feed antibiotics and a rise in antibiotic-resistant pathogens have led to a ban of all antibiotics in livestock production by the European Union in January 2006 and a removal of medically important antibiotics in animal feeds in the United States in January 2017. An urgent need arises for antibiotic alternatives capable of maintaining animal health and productivity without triggering antimicrobial resistance. Host defense peptides (HDP) are a critical component of the animal innate immune system with direct antimicrobial and immunomodulatory activities. While in-feed supplementation of recombinant or synthetic HDP appears to be effective in maintaining animal performance and alleviating clinical symptoms in the context of disease, dietary modulation of the synthesis of endogenous host defense peptides has emerged as a cost-effective, antibiotic-alternative approach to disease control and prevention. Several different classes of small-molecule compounds have been found capable of promoting HDP synthesis. Among the most efficacious compounds are butyrate and vitamin D. Moreover, butyrate and vitamin D synergize with each other in enhancing HDP synthesis. This review will focus on the regulation of HDP synthesis by butyrate and vitamin D in humans, chickens, pigs, and cattle and argue for potential application of HDP-inducing compounds in antibiotic-free livestock production.
Collapse
|
39
|
Suresh G, Das RK, Kaur Brar S, Rouissi T, Avalos Ramirez A, Chorfi Y, Godbout S. Alternatives to antibiotics in poultry feed: molecular perspectives. Crit Rev Microbiol 2017; 44:318-335. [DOI: 10.1080/1040841x.2017.1373062] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
| | - Ratul Kumar Das
- INRS-ETE, Université du Québec, Québec, QC, Canada
- TERI Deakin Nanobiotechnology Centre, TERI Gram, The Energy and Resources Institute, Gurgaon, India
| | | | | | - Antonio Avalos Ramirez
- Centre National en Électrochimie et en Technologie Environnementales Inc, Shawinigan, Canada
| | - Younes Chorfi
- Département de biomédecine vétérinaire, Université de Montréal, St-Hyacinthe, Canada
| | - Stephane Godbout
- Institut de recherche et de développement en agroenvironnement, Québec, Canada
| |
Collapse
|
40
|
Zhou Z, Nie K, Huang Q, Li K, Sun Y, Zhou R, Wang Z, Hu S. Changes of cecal microflora in chickens following Eimeria tenella challenge and regulating effect of coated sodium butyrate. Exp Parasitol 2017; 177:73-81. [PMID: 28455119 DOI: 10.1016/j.exppara.2017.04.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 04/10/2017] [Accepted: 04/23/2017] [Indexed: 12/18/2022]
Abstract
Eimeria tenella, one of the most important parasitic protozoa in the genus Eimeria, is responsible for chicken caecal coccidiosis resulting in huge economic losses to poultry industry. The present study investigated the changes in caecal microflora of E. tenella-infected chickens and the regulating effect of coated sodium butyrate, a potential alternative to antibiotics. Using high-throughput sequencing of 16S rRNA V3-V4 region of bacteria we found significant changes in caecal microflora of E. tenella-infected chickens indicated by an increase of Firmicutes (mainly Ruminococcaceae, Lachnospiraceae and vadin BB60) and Proteobacteria (mainly Enterobacteriaceae) and a decrease of Bacteroidetes (predominantly Bacteroidaceae). Inclusion of coated sodium butyrate in the diet of chickens per se had no significant effect on caecal microflora of normal healthy chickens but significantly prevented the increase in Firmicute abundance and decrease of Bacteroidetes abundance in E. tenella-infected birds. No significant changes to caecal microflora were observed at the phylum level between control and E. tenella-infected birds given coated sodium butyrate. In conclusion, our results show that coated sodium butyrate can balance the disorders of cecal microflora caused by E. tenella; thus, it can be a useful supplement for the control of avian coccidiosis.
Collapse
Affiliation(s)
- Zuoyong Zhou
- Department of Veterinary Medicine, Rongchang Campus of Southwest University, 160 Xueyuan Road, Rongchang District, Chongqing, 402460, China; Veterinary Science Engineering Research Center of Chongqing, 160 Xueyuan Road, Rongchang District, Chongqing, 402460, China.
| | - Kui Nie
- College of Animal Science and Technology, Southwest University, Beibei District Chongqing, 400715, China
| | - Qingzhou Huang
- Department of Veterinary Medicine, Rongchang Campus of Southwest University, 160 Xueyuan Road, Rongchang District, Chongqing, 402460, China; Veterinary Science Engineering Research Center of Chongqing, 160 Xueyuan Road, Rongchang District, Chongqing, 402460, China
| | - Kai Li
- Department of Veterinary Medicine, Rongchang Campus of Southwest University, 160 Xueyuan Road, Rongchang District, Chongqing, 402460, China
| | - Yingying Sun
- Department of Veterinary Medicine, Rongchang Campus of Southwest University, 160 Xueyuan Road, Rongchang District, Chongqing, 402460, China
| | - Rongqiong Zhou
- Department of Veterinary Medicine, Rongchang Campus of Southwest University, 160 Xueyuan Road, Rongchang District, Chongqing, 402460, China; Veterinary Science Engineering Research Center of Chongqing, 160 Xueyuan Road, Rongchang District, Chongqing, 402460, China
| | - Zhiying Wang
- Department of Veterinary Medicine, Rongchang Campus of Southwest University, 160 Xueyuan Road, Rongchang District, Chongqing, 402460, China; Veterinary Science Engineering Research Center of Chongqing, 160 Xueyuan Road, Rongchang District, Chongqing, 402460, China
| | - Shijun Hu
- Department of Veterinary Medicine, Rongchang Campus of Southwest University, 160 Xueyuan Road, Rongchang District, Chongqing, 402460, China; Veterinary Science Engineering Research Center of Chongqing, 160 Xueyuan Road, Rongchang District, Chongqing, 402460, China
| |
Collapse
|
41
|
Qi X, Liu C, Li R, Zhang H, Xu X, Wang J. Modulation of the innate immune-related genes expression in H9N2 avian influenza virus-infected chicken macrophage-like cells (HD11) in response to Escherichia coli LPS stimulation. Res Vet Sci 2017; 111:36-42. [DOI: 10.1016/j.rvsc.2016.11.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2016] [Revised: 11/07/2016] [Accepted: 11/16/2016] [Indexed: 01/08/2023]
|
42
|
Sikandar A, Zaneb H, Younus M, Masood S, Aslam A, Khattak F, Ashraf S, Yousaf MS, Rehman H. Effect of sodium butyrate on performance, immune status, microarchitecture of small intestinal mucosa and lymphoid organs in broiler chickens. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2017; 30:690-699. [PMID: 28111438 PMCID: PMC5411829 DOI: 10.5713/ajas.16.0824] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 11/22/2016] [Accepted: 01/03/2017] [Indexed: 01/28/2023]
Abstract
Objective This study aimed to examine the effect of sodium butyrate (SB) on growth performance, immune status, organs weights, and microarchitecture of lymphoid organs and small intestine. Methods A total of 120, 1-d-old broiler chicks were distributed into the following four treatment groups: corn-soy based basal diet (BD) without supplement (control), or the same BD supplemented with 0.1 g/kg zinc bacitracin (ZnB), 0.5 g/kg SB (SB-0.5), or 1.0 g/kg SB (SB-1), respectively. Six birds/group were killed on d-21 and d-35, and samples were collected. Results Cell-mediated immune response at 48 h post-Phytohemagglutinin-P injection, and antibody titer against Newcastle disease vaccine and sheep red blood cells on d-35 was noted higher (p<0.05) in SB-1 compared to ZnB and control. Lower (p<0.05) feed conversion ratio (FCR) was attained by the supplemented groups. Thymus and spleen weighed more (p<0.05) in SB-1, and bursa registered more (p<0.05) weight in both SB groups compared to control. On d-21, areas of thymus medulla and spleen germinal centers were noted higher (p<0.05) in SB-1 group. The villus height and villus surface area increased (p<0.05) in duodenum and jejunum in both SB groups on d-21, and in SB-1 on d-35, respectively compared to ZnB and control. On d-21, number of goblet cells containing mucins of acidic nature increased (p<0.05) in all the segments of small intestines in SB-1 group compared to control, and on d-35 in ileum compared to other groups. Conclusion In conclusion, SB improved growth performance and immunity as well as modulated morphology of lymphoid organs and gut mucosa in broiler chickens.
Collapse
Affiliation(s)
- Arbab Sikandar
- Sub-campus, Jhang, University of Veterinary and Animal Sciences, Lahore 35200, Pakistan
| | - Hafsa Zaneb
- University of Veterinary and Animal Sciences, Lahore 54000, Pakistan
| | - Muhammad Younus
- Sub-campus, Jhang, University of Veterinary and Animal Sciences, Lahore 35200, Pakistan
| | - Saima Masood
- University of Veterinary and Animal Sciences, Lahore 54000, Pakistan
| | - Asim Aslam
- University of Veterinary and Animal Sciences, Lahore 54000, Pakistan
| | - Farina Khattak
- Monogastric Science Research Centre, Scotland's Rural College, Ayr KA6 5HW, UK
| | - Saima Ashraf
- University of Veterinary and Animal Sciences, Lahore 54000, Pakistan
| | | | - Habib Rehman
- University of Veterinary and Animal Sciences, Lahore 54000, Pakistan
| |
Collapse
|
43
|
Makkar SK, Rath NC, Packialakshmi B, Zhou ZY, Huff GR, Donoghue AM. Nutritional Supplement of Hatchery Eggshell Membrane Improves Poultry Performance and Provides Resistance against Endotoxin Stress. PLoS One 2016; 11:e0159433. [PMID: 27463239 PMCID: PMC4963089 DOI: 10.1371/journal.pone.0159433] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 07/01/2016] [Indexed: 12/02/2022] Open
Abstract
Eggshells are significant part of hatchery waste which consist of calcium carbonate crust, membranes, and proteins and peptides of embryonic origins along with other entrapped contaminants including microbes. We hypothesized that using this product as a nutritional additive in poultry diet may confer better immunity to the chickens in the paradigm of mammalian milk that enhances immunity. Therefore, we investigated the effect of hatchery eggshell membranes (HESM) as a short term feed supplement on growth performance and immunity of chickens under bacterial lipopolysaccharide (LPS) challenged condition. Three studies were conducted to find the effect of HESM supplement on post hatch chickens. In the first study, the chickens were fed either a control diet or diets containing 0.5% whey protein or HESM as supplement and evaluated at 5 weeks of age using growth, hematology, clinical chemistry, plasma immunoglobulins, and corticosterone as variables. The second and third studies were done to compare the effects of LPS on control and HESM fed birds at 5 weeks of age following at 4 and 24 h of treatment where the HESM was also sterilized with ethanol to deplete bacterial factors. HESM supplement caused weight gain in 2 experiments and decreased blood corticosterone concentrations. While LPS caused a significant loss in body weight at 24 h following its administration, the HESM supplemented birds showed significantly less body weight loss compared with the control fed birds. The WBC, heterophil/lymphocyte ratio, and the levels of IgG were low in chickens fed diets with HESM supplement compared with control diet group. LPS challenge increased the expression of pro-inflammatory cytokine gene IL-6 but the HESM fed birds showed its effect curtailed, also, which also, favored the up-regulation of anti-inflammatory genes compared with control diet fed chickens. Post hatch supplementation of HESM appears to improve performance, modulate immunity, and increase resistance of chickens to endotoxin.
Collapse
Affiliation(s)
- S. K. Makkar
- Poultry Production & Product Safety Research Unit, Agricultural Research Service, USDA, Fayetteville, Arkansas, United States of America
- Department of Poultry Science, University of Arkansas, Fayetteville, Arkansas, United States of America
| | - N. C. Rath
- Poultry Production & Product Safety Research Unit, Agricultural Research Service, USDA, Fayetteville, Arkansas, United States of America
- * E-mail:
| | - B. Packialakshmi
- Department of Poultry Science, University of Arkansas, Fayetteville, Arkansas, United States of America
| | - Z. Y. Zhou
- Department of Veterinary Medicine, Rongchang campus of Southwest University, Rongchang County, China
| | - G. R. Huff
- Poultry Production & Product Safety Research Unit, Agricultural Research Service, USDA, Fayetteville, Arkansas, United States of America
| | - A. M. Donoghue
- Poultry Production & Product Safety Research Unit, Agricultural Research Service, USDA, Fayetteville, Arkansas, United States of America
| |
Collapse
|
44
|
Awaad M, El-Ghany WAA, Nasef S, El-Halawan MS, Mohamed FF, Gaber AF. Effect of Na-butyrate Supplementation on Electromicroscopy, Virulence Gene Expression Analysis and Gut Integrity of Experimentally Induced Salmonella enteritidis in Broiler Chickens. ACTA ACUST UNITED AC 2016. [DOI: 10.3923/ajpsaj.2016.126.133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
45
|
Butyric acid stimulates bovine neutrophil functions and potentiates the effect of platelet activating factor. Vet Immunol Immunopathol 2016; 176:18-27. [PMID: 27288853 DOI: 10.1016/j.vetimm.2016.05.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2015] [Revised: 04/11/2016] [Accepted: 05/05/2016] [Indexed: 11/24/2022]
Abstract
Increased short-chain fatty acid (SCFA) production is associated with subacute ruminal acidosis (SARA) and activation of inflammatory processes. In humans and rodents, SCFAs modulate inflammatory responses in the gut via free fatty acid receptor 2 (FFA2). In bovines, butyric acid is one of the most potent FFA2 agonists. Its expression in bovine neutrophils has recently been demonstrated, suggesting a role in innate immune response in cattle. This study aimed to evaluate if butyric acid modulates oxidative and non-oxidative functions or if it can potentiate other inflammatory mediators in bovine neutrophils. Our results showed that butyric acid can activate bovine neutrophils, inducing calcium (Ca(2+)) influx and mitogen-activated protein kinase (MAPK) phosphorylation, two second messengers involved in FFA2 activation. Ca(2+) influx induced by butyric acid was dependent on the extracellular and intracellular Ca(2+) source and phospholipase C (PLC) activation. Butyric acid alone had no significant effect on reactive oxygen species (ROS) production and chemotaxis; however, a priming effect on platelet-activating factor (PAF), a potent inflammatory mediator, was observed. Butyric acid increased CD63 expression and induced the release of neutrophil granule markers matrix metalloproteinase-9 (MMP-9) and lactoferrin. Finally, we observed that butyric acid induced neutrophil extracellular trap (NET) formation without affecting cellular viability. These findings suggest that butyric acid, a component of the ruminal fermentative process, can modulate the innate immune response of ruminants.
Collapse
|