1
|
Khaskheli AA, Niknafs S, Meijer MMY, Tan X, Ferket PR, Roura E. The in ovo screening of 27 single essential oils showed selective effects on hatchability, performance and gene expression relevant to gut functions in broilers at hatch. Poult Sci 2024; 104:104670. [PMID: 39693964 DOI: 10.1016/j.psj.2024.104670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 12/09/2024] [Accepted: 12/12/2024] [Indexed: 12/20/2024] Open
Abstract
The early post-hatching phase remains to be one of the most vulnerable phases in broiler production. Some essential oils have been reported to improve gut health and growth in broiler chickens when applied to post-hatching diets. However, in-feed applications are unable to prevent the health challenges observed immediately after hatching. Thus, pre-hatch interventions need to be considered. A research project was developed with the aim of investigating the impact of in ovo application of 27 selected essential oils (EOs) on foetal development with emphasis on gut integrity in broiler hatchlings. The eggs were incubated under standard conditions until day 17.5, when 1 mL of each EO preparation (5 µL EO + 5 µL polysorbate-80 + 990 µL saline) was injected into the amnion. Hatchability, body weight and organ weights (residual yolk, gizzard-proventriculus, intestines, liver, and heart) were measured at hatch. Five essential oils eugenol, clove, tea tree, lemongrass, and thyme, significantly (P < 0.05) reduced hatchability (66.67 %, 58.33, 83.30 and 83.30 %) compared to the saline (96.80 %), were discarded from the rest of the study. The other 22 essential oils were investigated in a second phase to assess their impact on expression of gut biomarkers including: a) jejunum integrity; b) digestive enzymes and nutrient transporters; and c) immune system. The results indicated that lemon myrtle significantly increased and oregano EO decreased body weight at hatch (BW0) compared to the saline (P < 0.05). Ylang ylang, clary sage, bergamot, lemon myrtle, and black pepper upregulated the expressions of biomarkers regulating gut integrity and barrier functions (ZO-1, ZO-2, CLDN1, MARVELD2, EGFR and EGF), nutrients transporters (EAAT3, PEPT1, I-FABP1, SGLT1), and digestive enzymes (APN, SI). Ylang ylang, turmeric acid, star anise, clary sage, and black pepper upregulated the expression of gut immunity biomarkers IL1B, IL10, IGMH, CD3D, and BU1 compared to the saline. In conclusion, in ovo delivery of selected EOs has the potential to improve embryonic development relevant to nutrient digestion and absorption, gut integrity and immunity in broilers.
Collapse
Affiliation(s)
- Asad A Khaskheli
- Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Australia
| | - Shahram Niknafs
- Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Australia
| | - Mila M Y Meijer
- Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Australia
| | - Xinle Tan
- Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Australia
| | - Peter R Ferket
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, USA
| | - Eugeni Roura
- Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Australia.
| |
Collapse
|
2
|
Javanmiri E, Rahimi S, Karimi Torshizi MA, Nabiyan S, Behnamifar A, Grimes J. Comparison of the effect of anticoccidial drug, probiotic, synbiotic, phytochemicals and vaccine in prevention and control of coccidiosis in broiler chickens challenged with Eimeria spp. Poult Sci 2024; 103:104357. [PMID: 39426225 PMCID: PMC11535999 DOI: 10.1016/j.psj.2024.104357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/04/2024] [Accepted: 09/22/2024] [Indexed: 10/21/2024] Open
Abstract
The objective of this study was to investigate the effects of an anti-coccidiosis drug, vaccine, probiotic, symbiotic, and phytochemicals in the prevention and control of coccidia infection in broilers. A total of 525 one-day-old Ross 308 chicks were randomly allocated to 7 experimental diets with 5 replicates of 15 birds each in a completely randomized design. Experimental diets consisted of negative control (NC) without any additives and not challenged. The other 6 groups were challenged with mixed Eimeria and fed the basal diet with no additives (Positive Control, PC) or supplemented with Coxidine 100 (1 g / 1 kg), probiotic, synbiotic, Livacox T vaccine and phytobiotic additives based on the manufacturer's recommended dose. Body weight gain (WG), feed intake (FI) and feed conversion ratio (FCR) were recorded weekly. Oocysts per gram of excreta (OPG) were determined on d 25 to 33 and 42. One bird per cage was euthanized to analyze lesion score and jejunum and ileum inflammatory genes expression. Coccidial challenge reduced WG (P < 0.05) during 15 to 28 d and vaccine treatment was more effective in improving WG and FCR on d 29 to 42 and 1 to 42 (P < 0.05) than other treatments. Birds in the PC group had higher (P < 0.05) OPG than NC group for all days and the vaccine treatment resulted in the lowest rate of OPG compared to other treatments (P < 0.05) at 27, 28, 29, 30, 32, and 33 d of age and overall average. Relative mRNA levels of IFN-γ, IL-1β and IL-10 were significantly upregulated among treatments under coccidiosis challenge in jejunum and ileum except for IL-1β expression in the ileum. In conclusion, based on the results of this study the individual characteristics of feed additives for the prevention of coccidiosis can be different depending on the type and source of feed additives, duration, and amount used, levels of oocyst inoculation and Eimeria types.
Collapse
Affiliation(s)
- Eghbal Javanmiri
- Department of Poultry Science, Faculty of Agriculture, Tarbiat Modares University, P. O. Box 14115-336, Tehran, Iran
| | - Shaban Rahimi
- Department of Poultry Science, Faculty of Agriculture, Tarbiat Modares University, P. O. Box 14115-336, Tehran, Iran
| | - Mohammad Amir Karimi Torshizi
- Department of Poultry Science, Faculty of Agriculture, Tarbiat Modares University, P. O. Box 14115-336, Tehran, Iran
| | - Sedigheh Nabiyan
- Department of Parasitology, Faculty of Veterinary Medicine, University of Tehran, P. O. Box 1419963114, Tehran, Iran
| | - Alireza Behnamifar
- Department of Poultry Science, Faculty of Agriculture, Tarbiat Modares University, P. O. Box 14115-336, Tehran, Iran
| | - Jesse Grimes
- Prestage Department of Poultry Science, College of Agriculture and Life Sciences, North Carolina State University, Raleigh, NC 27695-7608, USA.
| |
Collapse
|
3
|
Fries-Craft K, Anderson C, Schmitz-Esser S, Bobeck EA. Sequencing approaches to identify distal jejunum microbial community composition and function in broiler chickens fed anti-interleukin-10 during coccidiosis and necrotic enteritis challenge. Poult Sci 2024; 103:104001. [PMID: 39002368 PMCID: PMC11298949 DOI: 10.1016/j.psj.2024.104001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/10/2024] [Accepted: 06/19/2024] [Indexed: 07/15/2024] Open
Abstract
Strategies to counteract interleukin (IL)-10-mediated immune evasion by Eimeria spp. during coccidiosis- like anti-IL-10 antibodies- may protect broiler chicken health and reduce incidence of secondary necrotic enteritis (Clostridium perfringens) via undetermined mechanisms. Objectives were to use sequencing techniques to evaluate jejunal microbial community composition and function in anti-IL-10-fed broilers during coccidiosis and necrotic enteritis. On d0, Ross 308 chicks were placed in 32 cages (15 chicks/ cage) for a 25-d study and randomly assigned to diets ± 0.03% anti-IL-10. Six chicks/ diet were euthanized for distal jejunum content and tissue collection on d 14 (baseline) before inoculating the remainder with saline or 15,000 E. maxima oocysts (M6 strain). Half the chicks challenged with E. maxima were challenged with C. perfringens (1×108 colony forming units) on d 18 and 19. Follow-up samples (6 chicks/treatment) were collected at 7 and 11 d postinoculation (pi) for the E. maxima-only group, or 3 and 7 dpi for the E. maxima + C. perfringens group with 3/7 dpi being designated as peak and 7/11dpi as postpeak challenge. DNA was extracted from digesta for microbiota composition analysis (16S rRNA gene sequencing) while RNA was extracted from tissue to evaluate the metatranscriptome (RNA sequencing). Alpha diversity and genus relative abundances were analyzed using the diet or challenge main effects with associated interactions (SAS 9.4; P ≤ 0.05). No baseline microbial changes were associated with dietary anti-IL-10. At peak challenge, a diet main effect reduced observed species 36.7% in chicks fed anti-IL-10 vs. control; however, the challenge effect reduced observed species and Shannon diversity 51.2-58.3% and 33.0 to 35.5%, respectively, in chicks challenged with E. maxima ± C. perfringens compared to their unchallenged counterparts (P ≤ 0.05). Low sequencing depth limited metatranscriptomic analysis of jejunal microbial function via RNA sequencing. This study demonstrates that challenge impacted the broiler distal jejunum microbiota more than anti-IL-10 while future research to characterize the microbial metatranscriptome may benefit from investigating other intestinal compartments.
Collapse
Affiliation(s)
- K Fries-Craft
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - C Anderson
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA; Interdepartmental Microbiology Graduate Program, Iowa State University, Ames, IA 50011, USA
| | - S Schmitz-Esser
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA; Interdepartmental Microbiology Graduate Program, Iowa State University, Ames, IA 50011, USA
| | - E A Bobeck
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA.
| |
Collapse
|
4
|
Fries-Craft K, Schmitz-Esser S, Bobeck EA. Broiler chicken distal jejunum microbial communities are more responsive to coccidiosis or necrotic enteritis challenge than dietary anti-interleukin-10 in a model using Salmonella Typhimurium- Eimeria maxima- Clostridium perfringens coinfection. Poult Sci 2024; 103:104000. [PMID: 39002369 PMCID: PMC11519688 DOI: 10.1016/j.psj.2024.104000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/10/2024] [Accepted: 06/19/2024] [Indexed: 07/15/2024] Open
Abstract
Dietary anti-interleukin (IL)-10 antibodies may protect broiler performance during coccidiosis by inhibiting Eimeria host-evasion pathways; however, anti-IL-10's effects on microbial communities during coccidiosis and secondary Clostridium perfringens (necrotic enteritis) challenge is unknown. The study objectives were to assess the jejunal microbiota of broilers fed anti-IL-10 during E. maxima ± C. perfringens challenge. Two replicate studies using Ross 308 chicks placed in wire-floor cages (32 cages/ replicate study; 20 chicks/ cage) were conducted, with chicks assigned to diets ± 0.03% anti-IL-10 for 25 d. In both replicate studies, challenge-designated chicks were inoculated with 1 × 108Salmonella Typhimurium colony forming units (CFU) at placement. On d14, S. Typhimurium-inoculated chicks were gavaged with 15,000 sporulated Eimeria maxima M6 oocysts and half the E. maxima-challenged chicks received 1×108C. perfringens CFUs on d 18 and 19. Six chicks/ treatment were euthanized for distal jejunum content collection at baseline (d 14), 7 d post-inoculation (pi) with E. maxima/ 3 dpi with C. perfringens (peak) or 11 dpi with E. maxima/ 7 dpi with C. perfringens (post-peak) for 16S rRNA gene amplicon sequencing. Sequences were quality screened (Mothur V.1.43.0) and clustered into de novo operation taxonomical units (OTU; 99% similarity) using the SILVA reference database (v138). Alpha diversity and log-transformed relative abundance data were analyzed in SAS 9.4 with replicate study, diet, challenge, and timepoint main effects plus associated interactions (P ≤ 0.05). Few baseline changes were observed, but E. maxima ± C. perfringens challenge reduced Romboutsia and Staphylococcus relative abundance 4- to 800-fold in both replicate studies (P ≤ 0.008). At peak challenge with secondary C. perfringens, feeding anti-IL-10 instead of the control diet reduced Clostridium sensu stricto 1 relative abundance 13- and 1,848-fold in both replicate studies (P < 0.0001); however, OTUs identified as C. perfringens were not affected by dietary anti-IL-10. These results indicate that anti-IL-10 does not affect the jejunal microbiota of unchallenged broilers, while coccidiosis or necrotic enteritis challenge generally contributed to greater microbiota alterations than diet.
Collapse
Affiliation(s)
- K Fries-Craft
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - S Schmitz-Esser
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA; Interdepartmental Graduate Microbiology Program, Iowa State University, Ames, IA 50011, USA
| | - E A Bobeck
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA.
| |
Collapse
|
5
|
Sun Y, Liu P, Guo W, Guo J, Chen J, Xue X, Duan C, Wang Z, Yan X. Study on the alleviative effect of Lactobacillus plantarum on Eimeria falciformis infection. Infect Immun 2024; 92:e0013024. [PMID: 38842306 PMCID: PMC11324035 DOI: 10.1128/iai.00130-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 05/16/2024] [Indexed: 06/07/2024] Open
Abstract
Coccidia of the genus Eimeria are specialized intracellular parasitic protozoa that cause severe coccidiosis when they infect their hosts. Animals infected with Eimeria develop clinical symptoms, such as anorexia, diarrhea, and hematochezia, which can even cause death. Although the current preferred regimen for the treatment of coccidiosis is antibiotics, this treatment strategy is limited by the ban on antibiotics and the growing problem of drug resistance. Therefore, the exploration of alternative methods for controlling coccidiosis has attracted much attention. Lactobacillus plantarum has been shown to have many beneficial effects. In this study, L. plantarum M2 was used as a research object to investigate the effect of L. plantarum on intestinal inflammation induced by infection with Eimeria falciformis in mice by detecting indicators, such as oocyst output, serum cytokines, and the intestinal microbiota. Compared with that in the infection group, the percent weight loss of the mice that were administered with L. plantarum M2 was significantly reduced (P < 0.05). Supplemented L. plantarum M2 and probiotics combined with diclazuril can reduce the total oocyst output significantly (P < 0.05, P < 0.001). L. plantarum M2 had outstanding performance in maintaining intestinal barrier function, and the levels of the mucin MUC1 and the tight junction protein E-cadherin were significantly elevated (P < 0.01, P < 0.05). Studies have shown that probiotic supplementation can alleviate adverse reactions after infection and significantly improve intestinal barrier function. In addition, probiotics combined with diclazuril could optimize the partial efficacy of diclazuril, which not only enhanced the effect of antibiotics but also alleviated their adverse effects. This study expands the application of probiotics, provides new ideas for alternative strategies for coccidia control, and suggests a basis for related research on lactobacilli antagonizing intracellular pathogen infection.IMPORTANCECoccidia of the genus Eimeria are specialized intracellular parasitic protozoa, and the current preferred regimen for the treatment of coccidiosis is antibiotics. However, due to antibiotic bans and drug resistance, the exploration of alternative methods for controlling coccidiosis has attracted much attention. In this work, we focused on Lactobacillus plantarum M2 and found that probiotic supplementation can alleviate adverse reactions after infection and improve intestinal barrier function. This study proposes the possibility of using lactic acid bacteria to control coccidiosis, and its potential mechanism needs further exploration.
Collapse
Affiliation(s)
- Yufei Sun
- College of Food
Science and Engineering, Inner Mongolia Agricultural
University, Hohhot,
Inner Mongolia, China
| | - Pufang Liu
- College of Food
Science and Engineering, Inner Mongolia Agricultural
University, Hohhot,
Inner Mongolia, China
| | - Wenhui Guo
- College of Food
Science and Engineering, Inner Mongolia Agricultural
University, Hohhot,
Inner Mongolia, China
| | - Jun Guo
- College of Food
Science and Engineering, Inner Mongolia Agricultural
University, Hohhot,
Inner Mongolia, China
| | - Jia Chen
- College of Food
Science and Engineering, Inner Mongolia Agricultural
University, Hohhot,
Inner Mongolia, China
| | - Xinyu Xue
- College of Food
Science and Engineering, Inner Mongolia Agricultural
University, Hohhot,
Inner Mongolia, China
| | - Chao Duan
- College of Food
Science and Engineering, Inner Mongolia Agricultural
University, Hohhot,
Inner Mongolia, China
| | - Zixuan Wang
- College of Food
Science and Engineering, Inner Mongolia Agricultural
University, Hohhot,
Inner Mongolia, China
| | - Xinlei Yan
- College of Food
Science and Engineering, Inner Mongolia Agricultural
University, Hohhot,
Inner Mongolia, China
| |
Collapse
|
6
|
Tompkins YH, Choppa VSR, Kim WK. n-3 enriched Fish oil diet enhanced intestinal barrier integrity in broilers after Eimeria infection. Poult Sci 2024; 103:103660. [PMID: 38552568 PMCID: PMC11000185 DOI: 10.1016/j.psj.2024.103660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 03/08/2024] [Accepted: 03/11/2024] [Indexed: 04/11/2024] Open
Abstract
Coccidiosis caused by Eimeria spp. results in substantial economic losses in the poultry industry. The objective of this study was to investigate the effects of dietary supplementation with n-3 polyunsaturated fatty acids-enriched fish oil on growth performance, intestinal barrier integrity, and intestinal immune response of broilers challenged with Eimeria spp. A total of 576 fourteen-day-old broilers were randomly assigned in a completely randomized design with a 3 × 2 factorial arrangement, comprising 2 diets supplemented with either 5% fish oil or 5% soybean oil, and 3 Eimeria spp. infection levels: a nonchallenge control, a low dose of Eimeria challenge, and a high challenge dose. The results of the study revealed significant interactions between diet and Eimeria challenge to parameters of gut barrier integrity and feed intake. A significant interaction was observed in feed intake between 5 and 8 d postinfection (DPI), where the fish oil groups exhibited a higher amount of feed intake compared to the soybean oil diet groups after coccidiosis infection. The effects of the fish oil diet resulted in enhanced gut barrier integrity, as evidenced by a trend of decreased gastrointestinal leakage and a lower mean of small intestine lesion scores after Eimeria challenge. Additionally, significant interactions were noted between Eimeria spp. challenge and diet regarding jejunal crypt depth. The positive impact of the fish oil diet was particularly noticeable with the high Eimeria challenge dose. Overall, these findings underscore the relationship between the fish oil diet and Eimeria challenge on broiler chicken intestinal health. Dietary supplementation of fish oil has the potential to maintain small intestine barrier integrity with severe Eimeria infection conditions.
Collapse
Affiliation(s)
- Yuguo Hou Tompkins
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA
| | | | - Woo Kyun Kim
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
7
|
Fries-Craft K, Bobeck EA. Coccidiosis and necrotic enteritis model may have a greater impact than dietary anti-interleukin-10 on broiler chicken systemic immunometabolic responses. Poult Sci 2024; 103:103551. [PMID: 38417332 PMCID: PMC10909892 DOI: 10.1016/j.psj.2024.103551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/07/2024] [Accepted: 02/09/2024] [Indexed: 03/01/2024] Open
Abstract
Dietary egg yolk-derived anti-interleukin (IL)-10 may preserve broiler chicken performance during coccidiosis due to Eimeria spp. infection while effects on secondary Clostridium perfringens (necrotic enteritis) are unknown. Some necrotic enteritis models implement Salmonella Typhimurium to improve repeatability; however, Salmonella upregulation of IL-10 may be a confounder when evaluating anti-IL-10. The study objective was to investigate anti-IL-10 effects on systemic cytokine concentrations and immunometabolism during E. maxima ± C. perfringens challenge in models ± S. Typhimurium. Three 25 d replicate studies using Ross 308 chicks were conducted in wire-floor cages (32 cages/ replicate) with chicks assigned to diets ± 0.03% anti-IL-10. 640 chicks (20/ cage; replicates 1 and 2) were inoculated with sterile saline ± 1×108 colony forming units (CFU) S. Typhimurium while 480 chicks (15/ cage) were placed in replicate 3. In all replicates, blood samples were collected on d 14 (6 chicks/treatment) before administering 15,000 sporulated E. maxima M6 oocysts to S. Typhimurium-inoculated (replicates 1 and 2) or challenge-designated chicks (replicate 3). Half the E. maxima-challenged chicks received 1×108 CFU C. perfringens on d 18 and 19. Blood samples were collected at 1, 3, 7, and 11 d post-inoculation (dpi) with E. maxima and 1, 3, and 7 dpi with secondary C. perfringens. Plasma cytokines were determined by ELISA while immunometabolic assays evaluated peripheral blood mononuclear cell ATP production and glycolytic rate responses. Data were analyzed with diet and challenge fixed effects plus associated interactions (SAS 9.4; P ≤ 0.05). Replicates 1 and 2 showed few immunometabolic responses within 3 dpi with E. maxima, but 25 to 31% increased ATP production and 32% increased compensatory glycolysis at 1 dpi with C. perfringens in challenged vs. unchallenged chicks (P ≤ 0.04). In replicate 3, total ATP production and compensatory glycolysis were increased 25 and 40%, respectively, by the E. maxima main effect at 1dpi (P ≤ 0.05) with unobserved responsiveness to C. perfringens. These outcomes indicate that model type had greater impacts on systemic immunity than anti-IL-10.
Collapse
Affiliation(s)
- K Fries-Craft
- Department of Animal Science, Iowa State University, Ames, IA, 50011, USA
| | - E A Bobeck
- Department of Animal Science, Iowa State University, Ames, IA, 50011, USA.
| |
Collapse
|
8
|
Kasem SM, Mira NM, Helal IB, Mahfouz ME. Prophylactic and Therapeutic Efficacy of Ultrasonicated Rosmarinus officinalis Ethanolic Extract and its Chitosan-Loaded Nanoparticles Against Eimeria tenella Infected Broiler Chickens. Acta Parasitol 2024; 69:951-999. [PMID: 38492183 PMCID: PMC11001757 DOI: 10.1007/s11686-024-00793-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 01/09/2024] [Indexed: 03/18/2024]
Abstract
PURPOSE The in vivo efficacy of ultrasonicated Rosmarinus officinalis ethanolic extract (UROEE) and its chitosan-loaded nanoparticles (UROEE-CsNPs) was investigated as a dietary prophylactic agent and as a therapeutic treatment against Eimeria tenella infected broiler chickens. METHODS Chickens were infected with 4 × 104 E. tenella oocysts at 21 days old for primary infection and with 8 × 104 oocysts at 35 days old for secondary infection. Eleven experimental groups were conducted. Dietary addition of 100 mg/kg UROEE and 20 mg/kg for CsNPs as well as UROEE-CsNPs were included for prophylactic groups from day 1 to 42. The same doses were used for therapeutic treatment groups for 5 constitutive days. Oocyst output in feces was counted. Histopathological and immunohistochemical studies were conducted. Gene expression of pro-inflammatory cytokines as IFN-γ, IL-1β and IL-6 as well as anti-inflammatory cytokines as IL-10 and TGF-β4 was analyzed using semi-quantitative reverse transcriptase-PCR. RESULTS The results showed an efficacy of UROEE, CsNPs and UROEE-CsNPs in reduction of oocyst excretion and improving the cecal tissue architecture. CD4+ and CD8+ T lymphocytes protein expression were reduced. E. tenella infection lead to upregulation of pro-inflammatory cytokines as IFN-γ, IL-1β, IL-6 and anti-inflammatory cytokines as TGF-β4 following primary infection, while their expression was downregulated following secondary infection. CONCLUSION The dietary prophylactic additives and therapeutic treatments with UROEE, CsNPs and UROEE-CsNPs could decrease the inflammatory response to E. tenella as indicated by oocyst output reduction, histopathological improvements, CD4+ and CD8+ T cells protein expression reduction as well as reducing mRNA expression levels of the tested cytokines following primary and secondary infections. Consequently, these results will help to develop better-combating strategies for the control and prevention of coccidiosis on poultry farms as a dietary prophylactic agent or as a therapeutic treatment.
Collapse
Affiliation(s)
- Shaimaa M Kasem
- Zoology Department, Faculty of Science, Kafrelsheikh University, Kafr ElSheikh, 33516, Egypt.
| | - Nabila M Mira
- Zoology Department, Faculty of Science, Kafrelsheikh University, Kafr ElSheikh, 33516, Egypt
| | - Ibrahim B Helal
- Zoology Department, Faculty of Science, Tanta University, EL Gharbia, 31527, Egypt
| | - Magdy E Mahfouz
- Zoology Department, Faculty of Science, Kafrelsheikh University, Kafr ElSheikh, 33516, Egypt
| |
Collapse
|
9
|
Liu G, Sharma MK, Tompkins YH, Teng PY, Kim WK. Impacts of varying methionine to cysteine supplementation ratios on growth performance, oxidative status, intestinal health, and gene expression of immune response and methionine metabolism in broilers under Eimeria spp. challenge. Poult Sci 2024; 103:103300. [PMID: 38100947 PMCID: PMC10762478 DOI: 10.1016/j.psj.2023.103300] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/12/2023] [Accepted: 11/14/2023] [Indexed: 12/17/2023] Open
Abstract
A study was conducted to investigate effects of different methionine (Met) to cysteine (Cys) supplementation ratios (MCR) on growth performance, oxidative status, intestinal health, immune responses, and methionine metabolism in broilers under Eimeria challenge. A total of 720 male Cobb500 broilers (14-day-old) were allocated in a 2 × 5 factorial arrangement (5 diets, with or without challenge) with 6 replicates per treatment. The total sulfur amino acid concentrations were consistent across treatments meeting the breeder's recommendation, only MCR varied. The diets were labeled as MET100; MET75; MET50; MET25; and MET0, representing MCR of 100:0; 75:25; 50:50; 25:75; and 0:100, respectively. Data were analyzed by 2-way ANOVA and orthogonal polynomial contrast. Growth performance declined linearly or quadratically as MCR decreased (P < 0.01). On 6-day postinoculation (DPI), interaction effects (P < 0.01) were found; BW and body weight gain were lower in MET0 compared to the other treatments in the nonchallenged groups, whereas not in the challenged groups. On 6 and 9 DPI, serum total antioxidant capacity linearly decreased as MCR decreased (P < 0.05). Hepatic activities of glutathione peroxidase on 6 DPI and superoxide dismutase on 9 DPI changed quadratically as MCR decreased (P < 0.05). The digestibility of Met linearly decreased whereas the digestibility of Cys linearly increased as MCR decreased. The ileal crypt depth linearly decreased as MCR decreased (P < 0.01) on 6 DPI. The expression of transforming growth factor beta on 6 and 9 DPI, tumor necrotic factor alpha and interleukin 10 on 9 DPI changed quadratically as MCR decreased (P < 0.05). Eimeria challenge increased expression of Met adenosyltransferase and cystathionine gamma-lyase, whereas decreasing the expression of other Met metabolism genes (P < 0.01) on 6 DPI. Expression of Met metabolism genes linearly increased as MCR decreased (P < 0.05). In conclusion, different Met to Cys supplementation ratios exerted linearly or quadratically effects on the growth performance, oxidative status, intestinal health, and metabolism of Met in broiler chickens under Eimeria infection.
Collapse
Affiliation(s)
- Guanchen Liu
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA
| | - Milan K Sharma
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA
| | - Yuguo H Tompkins
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA
| | - Po-Yun Teng
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA
| | - Woo K Kim
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
10
|
Mousa MR, Attia MM, Salem HM, Al-Hoshani N, Thabit H, Ibrahim MA, Albohiri HH, Khan SA, El-Saadony MT, El-Tarabily KA, El-Saied MA. Coinfection of the gut with protozoal and metazoal parasites in broiler and laying chickens. Poult Sci 2024; 103:103227. [PMID: 38041891 PMCID: PMC10731381 DOI: 10.1016/j.psj.2023.103227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/18/2023] [Accepted: 10/20/2023] [Indexed: 12/04/2023] Open
Abstract
The chicken business faces substantial economic losses due to the risk of parasitic coinfection. Because the current study aimed to investigate enteric parasitic coinfections problems among the suspected examined chicken farms, samples were collected during the field investigation from suspected freshly dead birds, clinically diseased, apparently healthy, and litter samples for further laboratory parasitological, histopathological, and immunological examinations. Variable mortalities with various clinical indicators, such as ruffled feathers, weight loss, diarrhea of various colors, and a decline in egg production, occurred on the farms under investigation. In addition, the treatment protocols of each of the farms that were evaluated were documented and the m-RNA levels of some cytokines and apoptotic genes among the infected poultry have been assessed. The prevalence rate of parasitic coinfection in the current study was found to be 8/120 (6.66%). Parasitological analysis of the samples revealed that they belonged to distinct species of Eimeria, cestodes, and Ascaridia galli. When deposited, A. galli eggs were nonembryonated and ellipsoidal, but cestodes eggs possessed a thin, translucent membrane that was subspherical. Eimeria spp. oocysts in layer chickens were identified as Eimeria acervulina and Eimeria maxima in broiler chickens. Our findings proved that coinfection significantly upregulated the IL-1β, BAX, and Cas-3 genes. Conversely, the IL-10, BCL-2, and AKT mRNA levels were downregulated, indicating that nematode triggered apoptosis. The existence of parasite coinfection was verified by histological investigation of the various intestinal segments obtained from affected flocks. A. galli and cestodes obstructed the intestinal lumen, causing different histological alternations in the intestinal mucosa. Additionally, the lamina propria revealed different developmental stages of Eimeria spp. It was determined that parasite coinfection poses a significant risk to the poultry industry. It was recommended that stringent sanitary measures management methods, together with appropriate treatment and preventative procedures, be employed in order to resolve such issues.
Collapse
Affiliation(s)
- Mohamed R Mousa
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - Marwa M Attia
- Department of Parasitology, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - Heba M Salem
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - Nawal Al-Hoshani
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Hasnaa Thabit
- Department of Zoology and Entomology, Faculty of Science, Assiut University, Assiut 71526, Egypt
| | - Marwa A Ibrahim
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - Haleema H Albohiri
- Department of Biology, College of Science, University of Jeddah, Jeddah 21589, Saudi Arabia
| | - Samar Ahmad Khan
- Department of Biology, College of Science, University of Jeddah, Jeddah 21589, Saudi Arabia
| | - Mohamed T El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Khaled A El-Tarabily
- Department of Biology, College of Science, United Arab Emirates University, Al Ain 15551, United Arab Emirates.
| | - Mohamed A El-Saied
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| |
Collapse
|
11
|
Fries-Craft K, Bobeck EA. Early Salmonella Typhimurium inoculation may obscure anti-interleukin-10 protective effects on broiler performance during coccidiosis and necrotic enteritis challenge. Poult Sci 2024; 103:103187. [PMID: 37980755 PMCID: PMC10665935 DOI: 10.1016/j.psj.2023.103187] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/20/2023] [Accepted: 10/09/2023] [Indexed: 11/21/2023] Open
Abstract
Anti-interleukin (IL)-10 may preserve broiler performance during coccidiosis by diminishing Eimeria spp. host-evasion but has not been evaluated during secondary Clostridium perfringens challenge (necrotic enteritis). Early Salmonella Typhimurium inoculation is implemented in some models to improve repeatability-a potential confounder due to Salmonella using similar IL-10 host evasion pathways. The objective was to evaluate performance and disease outcomes in broilers fed anti-IL-10 during necrotic enteritis challenge ± S. Typhimurium. Three 42 d replicate studies in wire-floor cages (32 cages/replicate) were conducted with Ross 308 chicks assigned to diets ± 0.03% anti-IL-10 for 25 d before moving to floor pens for the study remainder. In replicates 1 and 2, 640 chicks were placed at hatch (20/cage) and inoculated with sterile saline ± 1 × 108 colony forming units (CFU) S. Typhimurium. Replicate 3 placed 480 chicks (15/cage) at hatch. On d 14, S. Typhimurium-inoculated chicks (replicates 1 and 2) or those designated for challenge (replicate 3) were inoculated with 15,000 sporulated Eimeria maxima M6 oocysts. On d 18 and 19, half the E. maxima-challenged chicks were gavaged with 1 × 108 CFU C. perfringens. Body weight (BW) and feed intake were measured throughout, while 6 chicks/ treatment were scored for jejunal lesions at 7 and 3 d postinoculation (pi) with E. maxima and C. perfringens, respectively. Oocyst shedding was measured at 8 and 4 dpi with E. maxima and C. perfringens, respectively. Performance and oocyst shedding were analyzed with diet and challenge fixed effects (SAS 9.4), whereas lesion scores and mortalities were analyzed by ordinal logistic regression (R 4.2.2; P ≤ 0.05). In replicate 3, no wk 3 feed conversion ratio (FCR) differences were observed between chicks fed anti-IL-10 challenged with E. maxima ± C. perfringens, whereas control-fed chicks had a 50 point less efficient FCR during E. maxima + C. perfringens challenge vs. E. maxima only (P = 0.04). Outcomes suggest anti-IL-10 may preserve bird feed efficiency during necrotic enteritis challenge in models without S. Typhimurium.
Collapse
Affiliation(s)
- K Fries-Craft
- Department of Animal Science, Iowa State University, Ames, IA, 50011, USA
| | - E A Bobeck
- Department of Animal Science, Iowa State University, Ames, IA, 50011, USA.
| |
Collapse
|
12
|
Pan X, Kong R, Liu Q, Jia Z, Bai B, Chen H, Zhi W, Wang B, Ma C, Ma D. Probiotic Enterococcus faecalis surface-delivering key domain of EtMIC3 proteins: immunoprotective efficacies against Eimeria tenella infection in chickens. Microbiol Spectr 2023; 11:e0245523. [PMID: 37855592 PMCID: PMC10715111 DOI: 10.1128/spectrum.02455-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 09/15/2023] [Indexed: 10/20/2023] Open
Abstract
IMPORTANCE Avian coccidiosis caused by Eimeria brings huge economic losses to the poultry industry. Although live vaccines and anti-coccidial drugs were used for a long time, Eimeria infection in chicken farms all over the world commonly occurred. The exploration of novel, effective vaccines has become a research hotspot. Eimeria parasites have complex life cycles, and effective antigens are particularly critical to developing anti-coccidial vaccines. Microneme proteins (MICs), secreted from microneme organelles located at the parasite apex, are considered immunodominant antigens. Eimeria tenella microneme 3 (EtMIC3) contains four conserved repeats (MARc1, MARc2, MARc3, and MARc4) and three divergent repeats (MARa, MARb, and MARd), which play a vital role during the Eimeria invasion. Enterococcus faecalis is a native probiotic in animal intestines and can regulate intestinal flora. In this study, BC1 and C4D domains of EtMIC3, BC1 or C4D fusing to dendritic cells targeting peptides, were surface-displyed by E. faecalis, respectively. Oral immunizations were performed to investigate immune protective effects against Eimeria infection.
Collapse
Affiliation(s)
- Xinghui Pan
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Rui Kong
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Qiuju Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Zhipeng Jia
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Bingrong Bai
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Hang Chen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Wenjing Zhi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Biao Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Chunli Ma
- College of Food Science, Northeast Agricultural University, Harbin, China
| | - Dexing Ma
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- Heilongjiang Provincial Key Laboratory of Pathogenic Mechanism for Animal Disease and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| |
Collapse
|
13
|
Fries-Craft K, Schmitz-Esser S, Bobeck EA. Dietary peptide-specific antibodies against interleukin-4 differentially alter systemic immune cell responses during Eimeria challenge with minimal impacts on the cecal microbiota. Poult Sci 2023; 102:103134. [PMID: 37844527 PMCID: PMC10585638 DOI: 10.1016/j.psj.2023.103134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 10/18/2023] Open
Abstract
Eimeria spp. induce host interleukin (IL)-4 production, a potent immune regulator, during coccidiosis to evade immune responses. Dietary anti-IL-4 may preserve bird performance during challenge; however, specific mechanisms have not been investigated. Study objectives were to develop peptide-specific anti-IL-4 antibodies and evaluate immune cell profiles and the cecal microbiota during Eimeria challenge. Four candidate IL-4 peptides were selected based on antigenicity and location. Hens were injected with conjugated peptide or carrier-only control (3/injection), eggs were collected post-vaccination and yolks were pooled by peptide before freeze-drying. On d 0, 300 Ross 708 broilers were placed in floor pens (10/pen) and assigned to 5 diets consisting of basal diet + 2% egg yolk powder containing antibodies against 1 of 4 target peptides or carrier-only control for 14-d starter and grower periods (28 d total). Baseline blood and cecal contents were collected on d 14 (6 birds/diet) before half the remainder were inoculated with 10X Coccivac-B52 (Merck Animal Health, Kenilworth, NJ). Body weight (BW) and feed intake (FI) were recorded weekly and blood and cecal samples were collected at 3, 7, and 14 d post-inoculation (pi; 3/treatment). Immune cell profiles in peripheral blood mononuclear cells (PBMC) were evaluated flow cytometrically and cecal microbial communities determined by 16S/18S rRNA gene amplicon sequencing. Data were log-transformed when necessary and analyzed with diet, Eimeria, and timepoint fixed effects plus associated interactions (SAS 9.4; P ≤ 0.05). Anti-IL-4 did not alter baseline performance but generally increased PBMC Bu-1+ B cells 38.0 to 55.4% (P < 0.0001). Eimeria challenge reduced FI and BWG 16.1 and 30.3%, respectively, regardless of diet (P < 0.0001) with only birds fed peptide 4 antibodies not recovering feed conversion by d 28. Minimal diet-associated cecal microbiota changes were observed, indicating that anti-IL-4 effects were likely host-specific. Eimeria-challenged birds fed peptide 3 antibodies displayed minimal immune cell fluctuations compared to unchallenged counterparts, suggesting these antibodies potentially modulated intestinal immune responses to minimize systemic requirements, making them good candidates for further research.
Collapse
Affiliation(s)
- K Fries-Craft
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - S Schmitz-Esser
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA; Interdepartmental Microbiology Graduate Program, Iowa State University, Ames, IA 50011, USA
| | - E A Bobeck
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA.
| |
Collapse
|
14
|
Felici M, Tugnoli B, Ghiselli F, Baldo D, Ratti C, Piva A, Grilli E. Investigating the effects of essential oils and pure botanical compounds against Eimeria tenella in vitro. Poult Sci 2023; 102:102898. [PMID: 37573847 PMCID: PMC10448326 DOI: 10.1016/j.psj.2023.102898] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/18/2023] [Accepted: 06/24/2023] [Indexed: 08/15/2023] Open
Abstract
Essential oils (EO) and natural bioactive compounds are well-known antibacterial and anti-inflammatory factors; however, little is known about their anticoccidial activity and mode of action. EO deriving from basil (BEO), garlic (GAR), oregano (OEO), thyme (TEO), and their main bioactive compounds were investigated for their anticoccidial proprieties and compared to salinomycin (SAL) and amprolium (AMP) in vitro. The invasion of Eimeria tenella sporozoites was studied on 2 cell models: Madin-Darby Bovine Kidney (MDBK) cells and primary chicken epithelial cells (cIEC). Invasion efficiency was evaluated at 2 and 24 h postinfection (hpi) with counts of extracellular sporozoites and by detection of intracellular E. tenella DNA by PCR. Results show that at both timepoints, the EO were most effective in preventing the invasion of E. tenella with an average reduction of invasion at 24 hpi by 36% in cIEC and 55% in MDBK. The study also examined cytokine gene expression in cIEC at 24 hpi and found that AMP, BEO, OEO, TEO, carvacrol (CAR), and thymol (THY) significantly reduced interleukin (IL)8 expression, with CAR also reducing expression of IL1β and IL6 compared to the infected control. In addition, this work investigated the morphology of E. tenella sporozoites treated with anticoccidial drugs and EO using a scanning electron microscope. All the treatments induced morphological anomalies, characterized by a reduction of area, perimeter and length of sporozoites. SAL had a significant impact on altering sporozoite shape only at 24 h, whereas CAR and THY significantly compromised the morphology already at 2 hpi, compared to the untreated control. OEO and GAR showed the most significant alterations among all the treatments. The findings of this study highlight the potential of EO as an alternative to traditional anticoccidial drugs in controlling E. tenella invasion and in modulating primary immune response.
Collapse
Affiliation(s)
| | | | | | - David Baldo
- DISTAL, University of Bologna, Bologna, Italy
| | | | - Andrea Piva
- DIMEVET, University of Bologna, Bologna, Italy; Vetagro S.p.A., Reggio Emilia, Italy
| | - Ester Grilli
- DIMEVET, University of Bologna, Bologna, Italy; Vetagro Inc., Chicago, IL 60603, USA.
| |
Collapse
|
15
|
Franco L, Boulianne M, Parent E, Barjesteh N, Costa MC. Colonization of the Gastrointestinal Tract of Chicks with Different Bacterial Microbiota Profiles. Animals (Basel) 2023; 13:2633. [PMID: 37627423 PMCID: PMC10451890 DOI: 10.3390/ani13162633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/25/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
This study aimed to investigate the consequences of early-life microbiota transplantation using different caecal content sources in broiler chicks. We hypothesized that chicks receiving at-hatch microbiota from organic hens would harbour a distinct microbiota from chicks receiving industry-raised broiler microbiota after six weeks of age. Three hundred Cobb broilers eggs were randomly assigned to one of four groups according to the caecal content received: organic laying hens (Organic); autoclaved caecal content of organic laying hens (Autoclaved); conventionally grown broilers (Conventional); and sterile saline (Control). caecal microbiota transplantation was given by gavage on day 1. Ten birds/group were euthanized on days 2, 7, 14, 28, and 42. The caecal tonsils and contents were collected for cytokines and microbiota analyses. The microbiota from chicks receiving live inocula resembled the donors' microbiota from day seven until day 42. The microbiota composition from the chickens who received the Organic inoculum remained markedly different. Starting on day 7, the Organic group had higher richness. Simpson and Shannon's indices were higher in the Conventional group on days 2 and 7. Chickens in the Conventional group presented higher production of IL-1β and IL-6 in plasma on days 2 and 28, increased IL-6 expression in the caecal tonsils at days 7 and 42, and increased IL-12 expression on day 7. However, the Conventional group was infected with Eimeria spp., which likely caused inflammation. In conclusion, microbiota transplantation using different microbiota profiles persistently colonized newly hatched broiler chicks. Future studies evaluating the importance of microbiota composition during infections with common enteropathogens are necessary. This study also highlights the need for a strict screening protocol for pathogens in the donors' intestinal content.
Collapse
Affiliation(s)
- Laura Franco
- Department of Veterinary Biomedical Sciences, Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada;
| | - Martine Boulianne
- Department of Clinical Sciences, Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada; (M.B.); (E.P.)
| | - Eric Parent
- Department of Clinical Sciences, Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada; (M.B.); (E.P.)
| | - Neda Barjesteh
- Department of Pathology and Microbiology, Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada;
- Global Companion Animal Therapeutics, Zoetis, Kalamazoo, MI 49007, USA
| | - Marcio C. Costa
- Department of Veterinary Biomedical Sciences, Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada;
| |
Collapse
|
16
|
Sontakke T, Biradar A, Nalage D. The role of genetics in determining resistance to coccidiosis in goats a review of current research and future directions. Mol Biol Rep 2023:10.1007/s11033-023-08520-3. [PMID: 37231218 DOI: 10.1007/s11033-023-08520-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 05/10/2023] [Indexed: 05/27/2023]
Abstract
Coccidiosis is a significant parasitic disease in goats, with significant impacts on animal health, productivity, and economic losses for producers. Although various management practices can help control and prevent coccidiosis, a growing body of research suggests that genetics play an important role in determining resistance to the disease. This review explores the current understanding of the genetics of coccidiosis resistance in goats, including the potential genetic factors and mechanisms involved, and the implications for breeding and selection programs. The review will also discuss current research and future directions in this field, including the use of genomic tools and technologies to better understand the genetics of resistance and to improve breeding programs for coccidiosis resistance in goats. This review will be of interest to veterinary practitioners, goat producers, animal breeders, and researchers working in the field of veterinary parasitology and animal genetics.
Collapse
Affiliation(s)
- Tejswini Sontakke
- Department of Zoology, MGV's, Mahilaratna Pushpatai Hiray Arts, Science and Commerce Mahila Mahavidyalaya Malegaon Camp, Malegaon, 423105, Dist. Nashik (MH), India
| | - Ashwini Biradar
- Department of Microbiology, Dr. B. A. M. University, Sub Campus Osmanabad, Osmanabad, 413501, India
| | - Dinesh Nalage
- Molecular Biology, R & D Department, SRL Limited, Plot No 1, Prime Square building, S.V. Road, Goregaon West, Mumbai, 400062, MH, India.
| |
Collapse
|
17
|
El-Ghareeb WR, Kishawy ATY, Anter RGA, Aboelabbas Gouda A, Abdelaziz WS, Alhawas B, Meligy AMA, Abdel-Raheem SM, Ismail H, Ibrahim D. Novel Antioxidant Insights of Myricetin on the Performance of Broiler Chickens and Alleviating Experimental Infection with Eimeria spp.: Crosstalk between Oxidative Stress and Inflammation. Antioxidants (Basel) 2023; 12:antiox12051026. [PMID: 37237892 DOI: 10.3390/antiox12051026] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/06/2023] [Accepted: 04/24/2023] [Indexed: 05/28/2023] Open
Abstract
In the modern poultry industry, the application of novel phytogenic bioactive compounds with antioxidant potential aims to enhance productivity and quality and to minimize the stress of associated diseases. Herein, myricetin, a natural flavonoid, was evaluated for the first time on broiler chickens' performance, antioxidants and immune modulating functions, and tackling avian coccidiosis. A total of 500 one-day-old chicks were divided into five groups. The negative (NC) and infected control (IC) groups were fed a control diet without additives, and the latter was infected with Eimeria spp. Groups supplemented with myricetin (Myc) were fed a control diet of Myc (200, 400 and 600 mg/kg diet each). On d 14, all chicks except those in NC were challenged with oocysts of mixed Eimeria spp. Significant improvements in the overall growth rate and feed conversion ratio were detected in the group that was fed 600 mg/kg, unlike the IC group. Notably, groups that were fed 400 and 600 mg/kg showed higher total meat antioxidant capacity with an inverse reduction in oxidative and lipid peroxidation biomarkers (hydrogen peroxide: H2O2; reactive oxygen species: ROS; Malondialdehyde: MDA). Of note, the upregulation of glutathione peroxidase; GSH-Px, catalase; CAT, superoxide dismutase; SOD, heme oxygenase-1; HO-1 and NAD(P)H dehydrogenase quinone 1 NQO1 genes in jejunum and muscle were prominently observed with increasing levels of supplemental Myc. At 21 dpi, the severity of coccoidal lesions (p < 0.05) induced by mixed Eimeria spp. and oocyst excretion were greatly reduced in the group that was fed 600 mg/kg of Myc. In the IC group, higher serum levels of C-reactive protein; CRP and nitric oxide; and NO and the upregulated expression of inflammatory biomarkers (interleukin-1β; IL-1β, interleukin-6; IL-6, tumor necrosis factor-α; TNF-α, chemotactic cytokines; CCL20, stromal cell-derived factor-1; CXCL13, and avian defensins; AvBD612) were subsided in higher levels in the Myc-fed groups. Taken together, these findings indicate the promising antioxidant role of Myc in modulating immune responses and reducing growth depression associated with coccidia challenges.
Collapse
Affiliation(s)
- Waleed Rizk El-Ghareeb
- Department of Public Health, College of Veterinary Medicine, King Faisal University, P.O. Box 400, Hofuf 31982, Al-Ahsa, Saudi Arabia
- Food Control Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Asmaa T Y Kishawy
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
| | - Reham G A Anter
- Department of Parasitology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
| | - Asmaa Aboelabbas Gouda
- Department of Parasitology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
| | - Walaa S Abdelaziz
- Avian and Rabbit Medicine Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
| | - Bassam Alhawas
- Department of Public Health, College of Veterinary Medicine, King Faisal University, P.O. Box 400, Hofuf 31982, Al-Ahsa, Saudi Arabia
| | - Ahmed M A Meligy
- Department of Clinical Science, Central Lab, College of Veterinary Medicine, King Faisal University, P.O. Box 400, Hofuf 31982, Al-Ahsa, Saudi Arabia
- Department of Physiology, Agricultural Research Center (ARC), Giza 12511, Egypt
| | - Sherief M Abdel-Raheem
- Department of Public Health, College of Veterinary Medicine, King Faisal University, P.O. Box 400, Hofuf 31982, Al-Ahsa, Saudi Arabia
- Department of Animal Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Assiut University, Assiut 71526, Egypt
| | - Hesham Ismail
- Department of Public Health, College of Veterinary Medicine, King Faisal University, P.O. Box 400, Hofuf 31982, Al-Ahsa, Saudi Arabia
- Food Hygiene Department, Faculty of Veterinary Medicine, Assiut University, Assiut 71526, Egypt
| | - Doaa Ibrahim
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
| |
Collapse
|
18
|
Teng PY, Choi J, Yadav S, Marshall B, Castro FLS, Ferrel J, Kim WK. Evaluation of a dacitic (rhyolitic) tuff breccia use on performance, inflammatory, and antioxidant responses in broilers mildly challenged with Eimeria spp. Poult Sci 2023; 102:102697. [PMID: 37141812 DOI: 10.1016/j.psj.2023.102697] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/30/2023] [Accepted: 04/01/2023] [Indexed: 05/06/2023] Open
Abstract
The objective of the study was to investigate the effects of a dacitic tuff breccia (DTB) on Eimeria-infected broilers. A total of 600 one-day-old Cobb 500 male chickens were randomly assigned to 5 treatments with 10 replicates of 12 birds. Treatments were: an unchallenged control (UC), a challenged (CC) control (0% DTB), and 3 challenged groups with 0.125, 0.25, or 0.5% DTB. At d 14, birds in the CC and DTB groups were orally gavaged with mixed Eimeria spp., while the UC received water. Growth performance was evaluated during prechallenge, challenge, and postchallenge periods (0-14 d; 14-20 d; and 20-26 d, respectively). Gastrointestinal permeability was measured at 5 days postinfection (dpi). Intestinal histology and nutrient digestibility of dry matter (DM), crude protein (CP), and ileal digestible energy (IDE) were measured at 6 dpi. Liver activity of glutathione peroxidase (GSH-Px) was determined at 6 dpi, and concentrations of reduced (GSH) and oxidized glutathione (GSSG) were analyzed at 6 and 12 dpi. Data were analyzed using a linear mixed model analysis and Tukey's test (P ≤ 0.05). From 0 to 14 d, similar average daily gain (ADG) and average daily feed intake (ADFI, P > 0.05) were observed. Gain:feed ratio (GF) was higher in 0.125, 0.25, and 0.5% of DTB than the CC and UC (P < 0.001). From 14 to 20 d, the UC had the highest ADG, ADFI, and GF (P < 0.001). At 5 dpi, intestinal permeability was higher in the challenged groups than the UC. Additionally, the UC showed the highest apparent ileal digestibility of CP, whereas 0.125% DTB had higher CP digestibility than the CC and 0.5% DTB (P < 0.001). At 6 dpi, 0.125% DTB increased GSH-Px activity compared to the CC, 0.5% DTB, and UC (P < 0.001). At 12 dpi, 0.125% DTB showed increased GSH concentration compared to the CC, 0.25% DTB, and 0.5% DTB (P < 0.01). The mild coccidia infection negatively impacted growth performance, apparent ileal nutrient digestibility, intestinal histology, and gastrointestinal integrity in broilers. The use of 0.125% DTB exhibited potential in improving antioxidant responses, apparent ileal digestibility of CP, and growth performance.
Collapse
Affiliation(s)
- P-Y Teng
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA
| | - J Choi
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA
| | - S Yadav
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA
| | - B Marshall
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA
| | - F L S Castro
- AZOMITE Mineral Products Inc., Nephi, UT 84648, USA
| | - J Ferrel
- AZOMITE Mineral Products Inc., Nephi, UT 84648, USA
| | - W K Kim
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
19
|
Kulkarni RR, Gaghan C, Gorrell K, Fletcher OJ. Mucosal and systemic lymphoid immune responses against Clostridium perfringens strains with variable virulence in the production of necrotic enteritis in broiler chickens. Avian Pathol 2023; 52:108-118. [PMID: 36453684 DOI: 10.1080/03079457.2022.2154195] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Necrotic enteritis (NE), caused by Clostridium perfringens, is an economically important disease of chickens. Although NE pathogenesis is moderately well studied, the host immune responses against C. perfringens are poorly understood. The present study used an experimental NE model to characterize lymphoid immune responses in the caecal tonsils (CT), bursa of Fabricius, Harderian gland (HG) and spleen tissues of broiler chickens infected with four netB+ C. perfringens strains (CP1, CP5, CP18, and CP26), of which CP18 and CP26 strains also carried the tpeL gene. The gross and histopathological lesions in chickens revealed CP5 to be avirulent, while CP1, CP18, and CP26 strains were virulent with CP26 being "very virulent". Gene expression analysis showed that, while the virulent strains induced a significantly upregulated expression of pro-inflammatory IL-1β gene in CT, the CP26-infected birds had significantly higher CT transcription of IFNγ and IL-6 pro-inflammatory genes compared to CP5-infected or uninfected chickens. Furthermore, CP26 infection also led to significantly increased bursal and HG expression of the anti-inflammatory/regulatory genes, IL-10 or TGFβ, compared to control, CP5 and CP1 groups. Additionally, the splenic pro- and anti-inflammatory transcriptional changes were observed only in the CP26-infected chickens. An antibody-mediated response, as characterized by increased IL-4 and/or IL-13 transcription and elevated IgM levels in birds infected with virulent strains, particularly in the CP26-infected group compared to uninfected controls, was also evident. Collectively, our findings suggest that lymphoid immune responses during NE in chickens are spatially regulated such that the inflammatory responses against C. perfringens depend on the virulence of the strain.
Collapse
Affiliation(s)
- Raveendra R Kulkarni
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Carissa Gaghan
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Kaitlin Gorrell
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Oscar J Fletcher
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
20
|
Rodríguez SP, Herrera AL, Parra JE. Gene expression of pro-inflammatory (IL-8, IL-18, TNF-α, and IFN-γ) and anti-inflammatory (IL-10) cytokines in the duodenum of broiler chickens exposed to lipopolysaccharides from Escherichia coli and Bacillus subtilis. Vet World 2023; 16:564-570. [PMID: 37041838 PMCID: PMC10082750 DOI: 10.14202/vetworld.2023.564-570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 01/24/2023] [Indexed: 04/13/2023] Open
Abstract
Background and Aim Intestinal infections are associated with Gram-negative bacteria like Escherichia coli. When eliminated by treatments during replication, E. coli release lipopolysaccharides (LPS) that can activate the intestinal immune system and increase the expression of cytokines, such as interleukin (IL)-8, IL-18, tumor necrosis factor-alpha (TNF-α), and interferon-gamma (IFN-γ), by the intestinal epithelium under pathological conditions. This study aimed to evaluate the addition of Bacillus subtilis to the duodenal gene expression of pro-inflammatory and anti-inflammatory cytokines in broilers exposed to LPS from E. coli. Materials and Methods RNA was extracted using the Zymo Research total RNA commercial kit, according to the manufacturer's specifications, from the intestinal tissue of the duodenum previously resuspended in the lysis buffer of the kit. The expression of the cytokines of interest was measured using the QuantiNova SYBR green real-time polymerase chain reaction kit (Qiagen). Transcript quantification was performed by the ΔΔC(t) method using glyceraldehyde 3-phosphate dehydrogenase as a normalizing constitutive gene. Results For the measurement of pro-inflammatory (IL-8, IL-18, TNF-α, and IFN-γ) and anti-inflammatory (IL-10) cytokines, there was no statistically significant difference (p > 0.05) between the basal diet and the diet with antibiotic (avilamycin). There was a statistical difference (p < 0.05) between diets with LPS. The diet with B. subtilis presented the lowest expression; the results differed on each sampling day (days 14, 28, and 42). Conclusion A decrease in the expression of pro-inflammatory cytokines (IL-8, IL-18, TNF-α, and IFN-γ) and an increase in IL-10 (anti-inflammatory) was observed; in this way, a balance of the inflammatory response to bacterial infection is achieved, suggesting that the use of B. subtilis as an additive in a broiler diet has a similar effect to that produced with antibiotic growth promoter.
Collapse
Affiliation(s)
- Sandra Paola Rodríguez
- Department of Animal Production, Faculty of Agricultural Sciences, Universidad Nacional de Colombia, Medellín campus 050034, Colombia
- Corresponding author: Sandra Paola Rodríguez, e-mail: Co-authors: ALH: , JEP:
| | - Albeiro López Herrera
- Department of Animal Production, Faculty of Agricultural Sciences, Universidad Nacional de Colombia, Medellín campus 050034, Colombia
| | - Jaime Eduardo Parra
- Department of Animal Production, Faculty of Agricultural Sciences, Universidad Nacional de Colombia, Medellín campus 050034, Colombia
| |
Collapse
|
21
|
Ren Z, Yan J, Whelan R, Liao X, Bütz DE, Arendt MK, Cook ME, Yang X, Crenshaw TD. Dietary supplementation of sulfur amino acids improves intestinal immunity to Eimeria in broilers treated with anti-interleukin-10 antibody. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2022; 10:382-389. [PMID: 35949200 PMCID: PMC9356037 DOI: 10.1016/j.aninu.2022.06.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 03/10/2022] [Accepted: 06/15/2022] [Indexed: 12/24/2022]
Abstract
Oral antibody to interleukin-10 (anti-IL-10) enhances the intestinal immune defense against Eimeria. The sulfur amino acids methionine and cysteine (M+C) play essential roles in inducing and maintaining protective immune responses during intestinal infections. Hence, increased dietary M+C may support the anti-IL-10-induced intestinal immunity to Eimeria. Broilers (n = 640) were arranged in a 2 × 2 × 2 factorial design with 2 levels of each of the 3 main factors: dietary standardized ileal digestible (SID) M+C levels (0.6% or 0.8%), dietary anti-IL-10 supplementation (with or without), and coccidiosis challenge (control or challenge). Briefly, the broilers were supplied with either 0.6% or 0.8% SID M+C, each with or without anti-IL-10 (300 μg/kg), from d 10 to 21. On d 14, broilers from each diet were gavaged with either PBS or Eimeria. The resulting Eimeria infection induced fecal oocyst shedding and intestinal lesions. Broilers fed 0.8% SID M+C (main effects, P ≤ 0.05) had decreased feed-to-gain ratio, increased duodenum and cecum luminal anti-Eimeria IgA titers, and decreased fecal oocyst counts, when compared to 0.6% SID M+C. The supplementation of anti-IL-10 (main effects, P ≤ 0.05) increased cecum luminal total IgA concentration and decreased cecum lesions. Interactions (P ≤ 0.05) were detected for growth performance and cecum luminal IFN-γ. Briefly, the highest body weight gain and feed intake were reached in PBS-gavaged broilers fed 0.8% SID M+C with no anti-IL-10 and in Eimeria-challenged broilers fed 0.8% SID M+C with anti-IL-10. In Eimeria-infected broilers, anti-IL-10 increased intestinal luminal IFN-γ and body weight gain only at 0.8% SID M+C. Collectively, anti-IL-10 increased intestinal luminal IFN-γ levels, decreased cecum lesions and restored growth only when fed with adequate amounts of sulfur amino acids. Our findings underscore the importance of providing sufficient essential nutrients to support the anti-IL-10 induced immunity against coccidiosis.
Collapse
Affiliation(s)
- Zhouzheng Ren
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
- Department of Animal Sciences, University of Wisconsin, Madison, WI, USA
| | - Jiakun Yan
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Rose Whelan
- Evonik Operations GmbH, Hanau-Wolfgang, Germany
| | - Xujie Liao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Daniel E. Bütz
- Department of Animal Sciences, University of Wisconsin, Madison, WI, USA
| | - Maria K. Arendt
- Department of Animal Sciences, University of Wisconsin, Madison, WI, USA
| | - Mark E. Cook
- Department of Animal Sciences, University of Wisconsin, Madison, WI, USA
| | - Xiaojun Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Thomas D. Crenshaw
- Department of Animal Sciences, University of Wisconsin, Madison, WI, USA
| |
Collapse
|
22
|
Sedghi M, Mohammadi I, Sarrami Z, Ghasemi R, Azarfar A. Effects of a yeast cell wall product on the performance of broiler chickens and PGC-1α, TLR4, IL-10 and PPARγ genes expression. ITALIAN JOURNAL OF ANIMAL SCIENCE 2022. [DOI: 10.1080/1828051x.2021.2025161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Mohammad Sedghi
- Department of Animal Sciences, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
| | - Ishmael Mohammadi
- Department of Animal Sciences, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
| | - Zahra Sarrami
- Department of Animal Sciences, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
| | - Razie Ghasemi
- Department of Animal Sciences, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
| | - Arash Azarfar
- Department of Animal Science, Faculty of Agriculture, Lorestan University, Khorramabad, Iran
| |
Collapse
|
23
|
Dual transcriptomics to determine interferon-gamma independent host response to intestinal Cryptosporidium parvum infection. Infect Immun 2021; 90:e0063821. [PMID: 34928716 PMCID: PMC8852703 DOI: 10.1128/iai.00638-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Animals with a chronic infection of the parasite Toxoplasma gondii are protected against lethal secondary infection with other pathogens. Our group previously determined that soluble T. gondii antigens (STAg) can mimic this protection and be used as a treatment against several lethal pathogens. Because treatments are limited for the parasite Cryptosporidium parvum, we tested STAg as a C. parvum therapeutic. We determined that STAg treatment reduced C. parvum Iowa II oocyst shedding in gamma interferon knockout (IFN-γ-KO) mice. Murine intestinal sections were then sequenced to define the IFN-γ-independent transcriptomic response to C. parvum infection. Gene Ontology and transcript abundance comparisons showed host immune response and metabolism changes. Transcripts for type I interferon-responsive genes were more abundant in C. parvum-infected mice treated with STAg. Comparisons between phosphate-buffered saline (PBS) and STAg treatments showed no significant differences in C. parvum gene expression. C. parvum transcript abundance was highest in the ileum and mucin-like glycoproteins and the GDP-fucose transporter were among the most abundant. These results will assist the field in determining both host- and parasite-directed future therapeutic targets.
Collapse
|
24
|
Probiotic Pediococcus pentosaceus ABY 118 to Modulation of ChIFN- γ and ChIL-10 in Broilers Infected by Eimeria tenella Oocyst. Vet Med Int 2021; 2021:1473208. [PMID: 34659734 PMCID: PMC8519706 DOI: 10.1155/2021/1473208] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 09/28/2021] [Indexed: 11/29/2022] Open
Abstract
Eimeria causes coccidiosis, which has long been recognized as a disease in chickens that significantly affects the economy. The global chicken population continues to grow, and its contribution to food security increases, making it increasingly important to produce chicken meat that is safe for human and health. This study aims to prove Pediococcus pentosaceus ABY 118 to modulation of ChIFN-γ and ChIL-10 in chickens infected with E. tenella oocysts. This study used 100 of day-old chickens (DOC), randomly divided into 5 treatments; each treatment consists of 20 chickens. The treatments was as follows: P0 (−): negative control; P0 (+): positive control; P1: monensin; P2: probiotic 1.5 × 108 CFU/ml; and P3: probiotic 3.0 × 108 CFU/ml. At the age of 20 days, Eimeria tenella (E. tenella) oocysts were inoculated orally at a dose of 1 × 104. The probiotic P. pentosaceus ABY 118 was given orally through drinking water from DOC to 35 days. Monensin was given orally through feed from the age of 14–26 days. The results of statistical analysis showed that there was a significant difference (P < 0.05) between treatments on ChIFN-γ and ChIL-10 at 6 and 8 days postinfected with E. tenella oocysts. Based on the results of this study, it can be concluded that the use of P. pentosaceus ABY 118 isolates at a dose of 1.5 × 108 CFU/ml and 3.0 × 108 CFU/ml per liter of drinking water can increase health by stimulation of ChIFN-γ and ChIL-10 in broiler infected with E. tenella oocyst.
Collapse
|
25
|
Emami NK, Dalloul RA. Centennial Review: Recent developments in host-pathogen interactions during necrotic enteritis in poultry. Poult Sci 2021; 100:101330. [PMID: 34280643 PMCID: PMC8318987 DOI: 10.1016/j.psj.2021.101330] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/06/2021] [Accepted: 06/08/2021] [Indexed: 02/08/2023] Open
Abstract
Necrotic enteritis (NE) is a significant enteric disease in commercial poultry with considerable economic effect on profitability manifested by an estimated $6 billion in annual losses to the global industry. NE presents a unique challenge, being a complex enteric disease that often leads to either clinical (acute) or subclinical (chronic) form. The latter typically results in poor performance (reduced feed intake, weight gain and eventually higher feed conversion ratio [FCR]) with low mortality rates, and represents the greatest economic impact on poultry production. The use of antibiotic growth promoters (AGPs) has been an effective tool in protecting birds from enteric diseases by maintaining enteric health and modifying gut microbiota, thus improving broilers’ production efficiency and overall health. The removal of AGPs presented the poultry industry with several challenges, including reduced bird health and immunity as well as questioning the safety of poultry products. Consequently, research on antibiotic alternatives that can support gut health was intensified. Probiotics, prebiotics, essential oils, and organic acids were among various additives that have been tested for their efficacy against NE with some being effective but not to the level of AGPs. The focus of this review is on the relationship between NE pathogenesis, microbiome, and host immune responses, along with references to recent reviews addressing production aspects of NE. With a comprehensive understanding of these dynamic changes, new and programmed strategies could be developed to make use of the current products more effectively or build a stepping stone toward the development of a new generation of supplements.
Collapse
Affiliation(s)
- Nima K Emami
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA
| | - Rami A Dalloul
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
26
|
Martorelli Di Genova B, Knoll LJ. Comparisons of the Sexual Cycles for the Coccidian Parasites Eimeria and Toxoplasma. Front Cell Infect Microbiol 2020; 10:604897. [PMID: 33381466 PMCID: PMC7768002 DOI: 10.3389/fcimb.2020.604897] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 11/12/2020] [Indexed: 12/11/2022] Open
Abstract
Toxoplasma gondii and Eimeria spp. are widely prevalent Coccidian parasites that undergo sexual reproduction during their life cycle. T. gondii can infect any warm-blooded animal in its asexual cycle; however, its sexual cycle is restricted to felines. Eimeria spp. are usually restricted to one host species, and their whole life cycle is completed within this same host. The literature reviewed in this article comprises the recent findings regarding the unique biology of the sexual development of T. gondii and Eimeria spp. The molecular basis of sex in these pathogens has been significantly unraveled by new findings in parasite differentiation along with transcriptional analysis of T. gondii and Eimeria spp. pre-sexual and sexual stages. Focusing on the metabolic networks, analysis of these transcriptome datasets shows enrichment for several different metabolic pathways. Transcripts for glycolysis enzymes are consistently more abundant in T. gondii cat infection stages than the asexual tachyzoite stage and Eimeria spp. merozoite and gamete stages compared to sporozoites. Recent breakthroughs in host-pathogen interaction and host restriction have significantly expanded the understating of the unique biology of these pathogens. This review aims to critically explore advances in the sexual cycle of Coccidia parasites with the ultimate goal of comparing and analyzing the sexual cycle of Eimeria spp. and T. gondii.
Collapse
Affiliation(s)
| | - Laura J. Knoll
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
27
|
Nunes RA, Duarte MDS, Campos PHRF, de Oliveira LL, e Silva FF, Kreuz BS, Mirabile CG, Borges SO, Calderano AA. Active vitamin D3-glycoside preserves weight gain and modulates the inflammatory response in broiler chickens challenged with lipopolysaccharide. Anim Feed Sci Technol 2020. [DOI: 10.1016/j.anifeedsci.2020.114704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
28
|
Guo L, Huang W, Tong F, Chen X, Cao S, Xu H, Luo W, Li Z, Nie Q. Whole Transcriptome Analysis of Chicken Bursa Reveals Candidate Gene That Enhances the Host's Immune Response to Coccidiosis. Front Physiol 2020; 11:573676. [PMID: 33192575 PMCID: PMC7662072 DOI: 10.3389/fphys.2020.573676] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 10/08/2020] [Indexed: 12/11/2022] Open
Abstract
Coccidiosis is a major hazard to the chicken industry, but the host’s immune response to coccidiosis remains unclear. Here, we performed Eimeria coccidia challenge in 28-day-old ROSS 308 broilers and selected the bursa from the three most severely affected individuals and three healthy individuals for RNA sequencing. We obtained 347 DEGs from RNA-seq and found that 7 upregulated DEGs were enriched in Cytokine-cytokine receptor interaction pathway. As the DEGs with the highest expression abundance in these 7 genes, TNFRSF6B was speculated to participate in the process of host’s immune response to coccidiosis. It is showed that TNFRSF6B can polarize macrophages to M1 subtype and promote inflammatory cytokines expression. In addition, the expression of TNFRSF6B suppressed HD11 cells apoptosis by downregulating Fas signal pathway. Besides, TNFRSF6B-mediated macrophages immunity activation can be reversed by apoptosis. Overall, our study indicates that TNFRSF6B upregulated in BAE, is capable of aggravating the inflammatory response by inhibiting macrophages apoptosis via downregulating Fas signal pathway, which may participate in host’s immune response to coccidiosis.
Collapse
Affiliation(s)
- Lijin Guo
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, South China Agricultural University, Guangzhou, China
| | - Weiling Huang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, South China Agricultural University, Guangzhou, China
| | - Feng Tong
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, South China Agricultural University, Guangzhou, China
| | - Xiaolan Chen
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, South China Agricultural University, Guangzhou, China
| | - Sen Cao
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, South China Agricultural University, Guangzhou, China
| | - Haiping Xu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, South China Agricultural University, Guangzhou, China
| | - Wei Luo
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, South China Agricultural University, Guangzhou, China
| | - Zhenhui Li
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, South China Agricultural University, Guangzhou, China
| | - Qinghua Nie
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, South China Agricultural University, Guangzhou, China
| |
Collapse
|
29
|
Han S, Hu W, Kan W, Ge Z, Song X, Li L, Shang Y, Zeng Q, Zhou JH. Analyses of genetics and pathogenesis of Salmonella enterica QH with narrow spectrum of antibiotic resistance isolated from yak. INFECTION GENETICS AND EVOLUTION 2020; 82:104293. [PMID: 32247035 DOI: 10.1016/j.meegid.2020.104293] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 03/18/2020] [Accepted: 03/20/2020] [Indexed: 02/06/2023]
Abstract
Salmonella is an important pathogen for public health due to food poisoning and acute infectious intestinal disease by zoonotic trait. We isolated Salmonella enterica QH which represents the normal growth condition in Luria-Bertani culture and displays a wide range of susceptibility for multiple antibiotics. To further investigate genetic and pathogenic traits of S. enterica QH, the sequencing genome of S. enterica QH and oral Salmonella infection in mice were performed in this study. Compared with other Salmonella strains, several large sequences containing prophages and genomic islands were inserted into S. enterica QH genome. Furthermore, nucleotide and synonymous codon usage patterns display mutation pressure and natural selection serving as drivers for the evolutionary trend of S. enterica QH at gene level. The unique codon usage pattern of S. enterica QH probably contributes to adaptation to environmental/host niches and to pathogenicity. In an early oral S. enterica QH infection, the levels of CD4+ and CD8+ lymphocytes significantly reduce in peripheral blood of mice, but the increasing transcription levels of some cytokines (IFN-β1, IFN-γ and CXCL10) might have pleiotypic immune effects against S. enterica QH infection. Of note, IL10 displays significant enhancement at levels of transcription and translation, suggesting that immunosuppressive effects mediated by IL10 may function as an early oral S. enterica QH infection. The systemic investigations, including genomic and genetic characterizations and biological traits of S. enterica QH in vivo and in vitro may reflect the basic lifestyle of S. enterica QH, requiring intestine colonization, undergoing environmental stresses and performing dissemination.
Collapse
Affiliation(s)
- Shengyi Han
- The College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, Gansu Province, PR China; State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, Gansu, PR China
| | - Wen Hu
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, Gansu, PR China; Gansu Police Vocational College, Lanzhou, 730046, Gansu, PR China
| | - Wei Kan
- The College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, Gansu Province, PR China; Qinghai Animal Disease Prevention and Control Center, Xi-ning 810000, PR China
| | - Zhiyi Ge
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, Gansu, PR China
| | - Xiangyang Song
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, Gansu, PR China
| | - Lingxia Li
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, Gansu, PR China
| | - Youjun Shang
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, Gansu, PR China
| | - Qiaoying Zeng
- The College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, Gansu Province, PR China.
| | - Jian-Hua Zhou
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, Gansu, PR China.
| |
Collapse
|