1
|
Cadenas-Fernández E, Barroso-Arévalo S, Kosowska A, Díaz-Frutos M, Gallardo C, Rodríguez-Bertos A, Bosch J, Sánchez-Vizcaíno JM, Barasona JA. Challenging boundaries: is cross-protection evaluation necessary for African swine fever vaccine development? A case of oral vaccination in wild boar. Front Immunol 2024; 15:1388812. [PMID: 39411716 PMCID: PMC11473374 DOI: 10.3389/fimmu.2024.1388812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 08/27/2024] [Indexed: 10/19/2024] Open
Abstract
African swine fever (ASF) poses a significant threat to domestic pigs and wild boar (Sus scrofa) populations, with the current epidemiological situation more critical than ever. The disease has spread across five continents, causing devastating losses in the swine industry. Although extensive research efforts are ongoing to develop an effective and safe vaccine, this goal remains difficult to achieve. Among the potential vaccine candidates, live attenuated viruses (LAVs) have emerged as the most promising option due to their ability to provide strong protection against experimental challenges. However, ASF virus (ASFV) is highly diverse, with genetic and phenotypic variations across different isolates, which differ in virulence. This study highlights the limitations of a natural LAV strain (Lv17/WB/Rie1), which showed partial efficacy against a highly virulent and partially heterologous isolate (Arm07; genotype II). However, the LAV's effectiveness was incomplete when tested against a more phylogenetically distant virus (Ken06.Bus; genotype IX). These findings raise concerns about the feasibility of developing a universal vaccine for ASFV in the near future, emphasizing the urgent need to assess the protective scope of LAV candidates across different ASFV isolates to better define their limitations.
Collapse
Affiliation(s)
- Estefanía Cadenas-Fernández
- VISAVET Health Surveillance Center, Complutense University of Madrid, Madrid, Spain
- Department of Animal Health, Faculty of Veterinary, Complutense University of Madrid, Madrid, Spain
| | - Sandra Barroso-Arévalo
- VISAVET Health Surveillance Center, Complutense University of Madrid, Madrid, Spain
- Department of Animal Health, Faculty of Veterinary, Complutense University of Madrid, Madrid, Spain
| | - Aleksandra Kosowska
- VISAVET Health Surveillance Center, Complutense University of Madrid, Madrid, Spain
- Department of Animal Health, Faculty of Veterinary, Complutense University of Madrid, Madrid, Spain
| | - Marta Díaz-Frutos
- VISAVET Health Surveillance Center, Complutense University of Madrid, Madrid, Spain
- Department of Animal Health, Faculty of Veterinary, Complutense University of Madrid, Madrid, Spain
| | - Carmina Gallardo
- European Union Reference Laboratory for African Swine Fever (ASF), Centro de Investigación en Sanidad Animal (CISA-INIA/CSIC), Valdeolmos, Spain
| | - Antonio Rodríguez-Bertos
- VISAVET Health Surveillance Center, Complutense University of Madrid, Madrid, Spain
- Department of Internal Medicine and Animal Surgery, Faculty of Veterinary, Complutense University of Madrid, Madrid, Spain
| | - Jaime Bosch
- VISAVET Health Surveillance Center, Complutense University of Madrid, Madrid, Spain
- Department of Animal Health, Faculty of Veterinary, Complutense University of Madrid, Madrid, Spain
| | - Jose M. Sánchez-Vizcaíno
- VISAVET Health Surveillance Center, Complutense University of Madrid, Madrid, Spain
- Department of Animal Health, Faculty of Veterinary, Complutense University of Madrid, Madrid, Spain
| | - Jose A. Barasona
- VISAVET Health Surveillance Center, Complutense University of Madrid, Madrid, Spain
- Department of Animal Health, Faculty of Veterinary, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
2
|
Aguilar-Vega C, Sánchez-Vizcaíno JM, Bosch J. Identifying sites where wild boars can consume anthropogenic food waste with implications for African swine fever. PLoS One 2024; 19:e0308502. [PMID: 39116050 PMCID: PMC11309469 DOI: 10.1371/journal.pone.0308502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 07/24/2024] [Indexed: 08/10/2024] Open
Abstract
Wild boar population dynamics promote the increase in numbers and distribution of the species in Eurasia, leading to a rise in the interaction with human activities, as well as generating problems with the management of certain infectious diseases, most notably African swine fever (ASF). ASF virus possesses high stability in several contaminated pork and pork products that can be a source of indirect transmission to susceptible hosts habituated to anthropogenic food waste. This transmission route is a concerning threat for the dispersion of the disease, primarily into unaffected areas given the worldwide widespread distribution of the disease and the increase of wild boar contact with humans. Thus, in this study, a straightforward tool to assess the relative risk of wild boar natural populations potentially consuming food waste is presented using synthetic data. Three risk groups were defined related to urban areas, travel, and leisure. The surrounding quality of habitat of wild boar was used to obtain the relative risk of wild boar potentially consuming anthropogenic food waste. To assign the relative risk to the corresponding risk unit, we also included the population for the urban areas group, and traffic volume for the travel risk group. The leisure group had higher scaled risk scores, followed by the urban areas group. Higher risk was found in the edges of the study area where more natural landscapes are found. The implications of this risk are discussed focusing on the context of ASF transmission. The outputs can help prioritize decision-making in terms of the improvement of preventive measures against the habituation of wild boar to anthropogenic food waste and ASFV introduction in a given study area.
Collapse
Affiliation(s)
- Cecilia Aguilar-Vega
- VISAVET Health Surveillance Centre and Animal Health Department, Complutense University of Madrid, Madrid, Spain
| | - José Manuel Sánchez-Vizcaíno
- VISAVET Health Surveillance Centre and Animal Health Department, Complutense University of Madrid, Madrid, Spain
| | - Jaime Bosch
- VISAVET Health Surveillance Centre and Animal Health Department, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
3
|
Shi R, Zhang Y. Stability Analysis of a Fractional-Order African Swine Fever Model with Saturation Incidence. Animals (Basel) 2024; 14:1929. [PMID: 38998040 PMCID: PMC11240423 DOI: 10.3390/ani14131929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/14/2024] Open
Abstract
This article proposes and analyzes a fractional-order African Swine Fever model with saturation incidence. Firstly, the existence and uniqueness of a positive solution is proven. Secondly, the basic reproduction number and the sufficient conditions for the existence of two equilibriums are obtained. Thirdly, the local and global stability of disease-free equilibrium is studied using the LaSalle invariance principle. Next, some numerical simulations are conducted based on the Adams-type predictor-corrector method to verify the theoretical results, and sensitivity analysis is performed on some parameters. Finally, discussions and conclusions are presented. The theoretical results show that the value of the fractional derivative α will affect both the coordinates of the equilibriums and the speed at which the equilibriums move towards stabilization. When the value of α becomes larger or smaller, the stability of the equilibriums will be changed, which shows the difference between the fractional-order systems and the classical integer-order system.
Collapse
Affiliation(s)
- Ruiqing Shi
- School of Mathematics and Computer Science, Shanxi Normal University, Taiyuan 030031, China
| | - Yihong Zhang
- School of Mathematics and Computer Science, Shanxi Normal University, Taiyuan 030031, China
| |
Collapse
|
4
|
Roh H, Kannimuthu D. Assessments of epidemic spread in aquaculture: comparing different scenarios of infectious bacteria incursion through spatiotemporal hybrid modeling. Front Vet Sci 2023; 10:1205506. [PMID: 37771943 PMCID: PMC10527373 DOI: 10.3389/fvets.2023.1205506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 08/21/2023] [Indexed: 09/30/2023] Open
Abstract
The sustainable development of the aquaculture sector is at risk due to the significant challenges posed by many emerging infectious diseases. While disease prevention and control measures are becoming increasingly critical, there is a dearth of studies on the epidemiological aspects of disease transmission in aquatic ecosystems. This study aims to forecast the spread of a bacterial disease between fish farms in two regions, Romsdalsfjord in Norway and Gujwa in South Korea by applying a DTU-DADS-Aqua spatiotemporal hybrid simulation model. The simulation model assessed the pattern of disease transmission between fish farms under different degrees of transmission power based on the distance between farms (ScalingInf), host susceptibility (RelSusceptibility), the origin site of disease, and the capacity of culling fish. The distance between fish farms was found to have significant associations with disease transmission. In most simulation conditions, the disease transmission between different bay management areas (BMAs) was not evident in Romsdalsfjord. In the Guwja region, where there are relatively narrow distances between fish farms, the spread of infectious disease was greatly affected by ScalingInf. The impact of RelSusceptibility on disease transmission patterns is a critical factor to consider in simulation modeling. When RelSusceptibility ranges from 0.5-1, there is little impact on the likelihood of disease transmission. Conversely, lower ranges (0.2 and 0.05) of RelSusceptibility result in a significant decrease in the area affected by the spread of disease. Eradication measures could control the patterns of infectious disease transmission, but the effectiveness of the depopulation strategy can be dramatically changed depending on the geographical environment. In conclusion, through a comparative analysis of the disease transmission and management scenarios, this study demonstrates the potential use of existing simulation models in predicting the spread of infectious diseases under different epidemiological circumstances and quarantine actions.
Collapse
Affiliation(s)
- HyeongJin Roh
- Pathogen Transmission and Disease Research Group, Institute of Marine Research, Bergen, Norway
| | | |
Collapse
|
5
|
Shi R, Zhang Y, Wang C. Dynamic Analysis and Optimal Control of Fractional Order African Swine Fever Models with Media Coverage. Animals (Basel) 2023; 13:2252. [PMID: 37508030 PMCID: PMC10376020 DOI: 10.3390/ani13142252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/24/2023] [Accepted: 07/04/2023] [Indexed: 07/30/2023] Open
Abstract
African swine fever is a highly contagious virus that causes pig disease. Its onset process is short, but the mortality rate is as high as 100%. There are still no effective drugs that have been developed to treat African swine fever, and prevention and control measures are currently the best means to avoid infection in pig herds. In this paper, two fractional order mathematical models with media coverage are constructed to describe the transmission of African swine fever. The first model is a basic model with media coverage, and no control measures are considered. For this model, the reproduction number is obtained by using the next generation matrix method. Then, the sufficient conditions for the existence and stability of two equilibriums are obtained. Based on the first model, the second model is established incorporating two control measures. By using Pontryagin's maximal principle, the optimal control solution is derived. After that, some numerical simulations are performed for the two models to verify the theoretical results. Both the qualitative analysis and numerical results indicate that timely media coverage combined with disinfection control measures is crucial to preventing the spread of disease.
Collapse
Affiliation(s)
- Ruiqing Shi
- School of Mathematics and Computer Science, Shanxi Normal University, Taiyuan 030031, China
| | - Yihong Zhang
- School of Mathematics and Computer Science, Shanxi Normal University, Taiyuan 030031, China
| | - Cuihong Wang
- School of Mathematics and Computer Science, Shanxi Normal University, Taiyuan 030031, China
| |
Collapse
|
6
|
Sykes AL, Galvis JA, O'Hara KC, Corzo C, Machado G. Estimating the effectiveness of control actions on African swine fever transmission in commercial swine populations in the United States. Prev Vet Med 2023; 217:105962. [PMID: 37354739 DOI: 10.1016/j.prevetmed.2023.105962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/23/2023] [Accepted: 06/09/2023] [Indexed: 06/26/2023]
Abstract
Given the proximity of African swine fever (ASF) to the U.S., there is an urgent need to better understand the possible dissemination pathways of the virus within the U.S. swine industry and to evaluate mitigation strategies. Here, we extended PigSpread, a farm-level spatially-explicit stochastic compartmental transmission model incorporating six transmission routes including between-farm swine movements, vehicle movements, and local spread, to model the dissemination of ASF. We then examined the effectiveness of control actions similar to the ASF national response plan. The average number of secondary infections during the first 60 days of the outbreak was 49 finisher farms, 17 nursery farms, 5 sow farms, and less than one farm in other production types. The between-farm movements of swine were the predominant route of ASF transmission with an average contribution of 71.1%, while local spread and movement of vehicles were less critical with average contributions of 14.6% and 14.4%. We demonstrated that the combination of quarantine, depopulation, movement restrictions, contact tracing, and enhanced surveillance, was the most effective mitigation strategy, resulting in an average reduction of 79.0% of secondary cases by day 140 of the outbreak. Implementing these control actions led to a median of 495,619 depopulated animals, 357,789 diagnostic tests, and 54,522 movement permits. Our results suggest that the successful elimination of an ASF outbreak is likely to require the deployment of all control actions listed in the ASF national response plan for more than 140 days, as well as estimating the resources needed for depopulation, testing, and movement permits under these controls.
Collapse
Affiliation(s)
- Abagael L Sykes
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Jason A Galvis
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Kathleen C O'Hara
- US Department of Agriculture, Animal and Plant Health Inspection Service, Veterinary Services, Strategy and Policy, Center for Epidemiology and Animal Health, Fort Collins, CO, USA
| | - Cesar Corzo
- Veterinary Population Medicine Department, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, USA
| | - Gustavo Machado
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA.
| |
Collapse
|
7
|
Yu Z, Xie L, Shuai P, Zhang J, An W, Yang M, Zheng J, Lin H. New perspective on African swine fever: a bibliometrics study and visualization analysis. Front Vet Sci 2023; 10:1085473. [PMID: 37266383 PMCID: PMC10229902 DOI: 10.3389/fvets.2023.1085473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 04/26/2023] [Indexed: 06/03/2023] Open
Abstract
Introduction African swine fever (ASF) is a contagious viral disease that can have devastating effects on domestic pigs and wild boars. Over the past decade, there has been a new wave of this ancient disease spreading around the world, prompting many scholars to dedicate themselves to researching this disease. This research aims to use bibliometric methods to organize, analyze and summarize the scientific publications on ASF that have been amassed in the past two decades. Methods This paper used VOSviewer, CiteSpace, and a bibliometric online analysis platform to conduct performance analysis and visualization studies on 1,885 academic papers about ASF in the Web of Science from January 2003 to December 2022. Results The amount of literature published on ASF has increased exponentially in recent years, and the development trend of related research is good. A group of representative scholars have appeared in this research field, and some cooperative networks have been formed. Transboundary and Emerging Diseases is the journal with the most publications in this field, while Virus Research is the journal with the most citation per article. High-productivity countries are led by China in terms of the number of articles published followed by the United States and Spain. In regard to the average number of citations, the scholars in the UK are in the lead. The institution with the most articles was the Chinese Academy of Agricultural Sciences. The analysis of high-frequency keywords showed that the pathogens and epidemiology of ASF were the research hotspots in this field, and the research content was closely related to molecular biology and immunology. The burst keywords "transmission", "identification", "virulence", "replication", and "gene" reflects the research frontier. In addition, by collating and analyzing highly cited journals and highly co-cited references, we explored the knowledge structure and theoretical basis of this field. Discussion This is the first bibliometric analysis report on ASF research, which highlights the key characteristics of ASF research and presents the research status and evolution trend in this field from a new perspective. It provides a valuable reference for further research.
Collapse
Affiliation(s)
- Zhengyu Yu
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, China
| | - Li Xie
- State Key Laboratory of Wildlife Quarantine and Surveillance (Sichuan), Technology Center of Chengdu Customs, Chengdu, China
| | - Peiqiang Shuai
- State Key Laboratory of Wildlife Quarantine and Surveillance (Sichuan), Technology Center of Chengdu Customs, Chengdu, China
| | - Jing Zhang
- State Key Laboratory of Wildlife Quarantine and Surveillance (Sichuan), Technology Center of Chengdu Customs, Chengdu, China
| | - Wei An
- State Key Laboratory of Wildlife Quarantine and Surveillance (Sichuan), Technology Center of Chengdu Customs, Chengdu, China
| | - Miao Yang
- State Key Laboratory of Wildlife Quarantine and Surveillance (Sichuan), Technology Center of Chengdu Customs, Chengdu, China
| | - Jing Zheng
- State Key Laboratory of Wildlife Quarantine and Surveillance (Sichuan), Technology Center of Chengdu Customs, Chengdu, China
| | - Hua Lin
- State Key Laboratory of Wildlife Quarantine and Surveillance (Sichuan), Technology Center of Chengdu Customs, Chengdu, China
| |
Collapse
|
8
|
Zhang Y, Zhang Y, Liu F, Mao Y, Zhang Y, Zeng H, Ren S, Guo L, Chen Z, Hrabchenko N, Wu J, Yu J. Mechanisms and applications of probiotics in prevention and treatment of swine diseases. Porcine Health Manag 2023; 9:5. [PMID: 36740713 PMCID: PMC9901120 DOI: 10.1186/s40813-022-00295-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 12/09/2022] [Indexed: 02/07/2023] Open
Abstract
Probiotics can improve animal health by regulating intestinal flora balance, improving the structure of the intestinal mucosa, and enhancing intestinal barrier function. At present, the use of probiotics has been a research hotspot in prevention and treatment of different diseases at home and abroad. This review has summarized the researchers and applications of probiotics in prevention and treatment of swine diseases, and elaborated the relevant mechanisms of probiotics, which aims to provide a reference for probiotics better applications to the prevention and treatment of swine diseases.
Collapse
Affiliation(s)
- Yue Zhang
- grid.452757.60000 0004 0644 6150Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100 China ,grid.440622.60000 0000 9482 4676College of Food Science and Engineering, Shandong Agricultural University, Taian, 271018 Shandong China
| | - Yuyu Zhang
- grid.452757.60000 0004 0644 6150Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100 China
| | - Fei Liu
- grid.452757.60000 0004 0644 6150Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100 China
| | - Yanwei Mao
- grid.440622.60000 0000 9482 4676College of Food Science and Engineering, Shandong Agricultural University, Taian, 271018 Shandong China
| | - Yimin Zhang
- grid.440622.60000 0000 9482 4676College of Food Science and Engineering, Shandong Agricultural University, Taian, 271018 Shandong China
| | - Hao Zeng
- grid.452757.60000 0004 0644 6150Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100 China
| | - Sufang Ren
- grid.452757.60000 0004 0644 6150Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100 China
| | - Lihui Guo
- grid.452757.60000 0004 0644 6150Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100 China
| | - Zhi Chen
- grid.452757.60000 0004 0644 6150Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100 China
| | - Nataliia Hrabchenko
- grid.452757.60000 0004 0644 6150Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100 China
| | - Jiaqiang Wu
- grid.452757.60000 0004 0644 6150Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100 China ,grid.440622.60000 0000 9482 4676College of Food Science and Engineering, Shandong Agricultural University, Taian, 271018 Shandong China ,grid.410585.d0000 0001 0495 1805School of Life Sciences, Shandong Normal University, Jinan, 250014 China
| | - Jiang Yu
- grid.452757.60000 0004 0644 6150Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100 China
| |
Collapse
|
9
|
Main AR, Halasa T, Olesen AS, Lohse L, Rasmussen TB, Belsham GJ, Boklund A, Bøtner A, Christiansen LE. Estimating transmission dynamics of African swine fever virus from experimental studies. Transbound Emerg Dis 2022; 69:3858-3867. [PMID: 36346271 PMCID: PMC10098825 DOI: 10.1111/tbed.14757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 10/07/2022] [Accepted: 11/01/2022] [Indexed: 11/09/2022]
Abstract
African swine fever virus (ASFV) continues to spread across the world, and currently, there are no treatments or vaccines available to combat this virus. Reliable estimates of transmission parameters for ASFV are therefore needed to establish effective contingency plans. This study used data from controlled ASFV inoculations of pigs to assess the transmission parameters. Three models were developed with (binary, piecewise-linear and exponential) time-dependent levels of infectiousness based on latency periods of 3-5 days derived from the analysis of 294 ethylenediamine tetraacetic acid-stabilized blood samples originating from 16 pigs with direct and 10 pigs with indirect contact to 8 inoculated pigs. The models were evaluated for three different discrete latency periods of infection. The likelihood ratio test showed that a binary model had an equally good fit for a latency period of 4 or 5 days as the piecewise-linear and exponential model. However, for a latency period of 3 days, the piecewise-linear and exponential models had the best fit. The modelling was done in discrete time as testing was conducted on specific days. The main contribution of this study is the estimation of ASFV genotype II transmission through the air in a confined space. The estimated transmission parameters via air are not much lower than for direct contact between pigs. The estimated parameters should be useful for future simulations of control measures against ASFV.
Collapse
Affiliation(s)
- Alastair Ronald Main
- Dynamical, Systems, Department of Applied Mathematics and Computer Science, Technical University of Denmark, Lyngby, Denmark.,Operations Research Section, Department of Technology, Management and Economics, Technical University of Denmark, Lyngby, Denmark
| | - Tariq Halasa
- Section of Animal Welfare and Disease Control, Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ann Sofie Olesen
- Section of Veterinary Virology, Department of Virus & Microbiological Special Diagnostics, Statens Serum Institut, Copenhagen, Denmark
| | - Louise Lohse
- Section of Veterinary Virology, Department of Virus & Microbiological Special Diagnostics, Statens Serum Institut, Copenhagen, Denmark
| | - Thomas Bruun Rasmussen
- Section of Veterinary Virology, Department of Virus & Microbiological Special Diagnostics, Statens Serum Institut, Copenhagen, Denmark
| | - Graham J Belsham
- Section of Veterinary Clinical Microbiology, Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anette Boklund
- Section of Animal Welfare and Disease Control, Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anette Bøtner
- Section of Veterinary Clinical Microbiology, Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lasse Engbo Christiansen
- Dynamical, Systems, Department of Applied Mathematics and Computer Science, Technical University of Denmark, Lyngby, Denmark.,Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark
| |
Collapse
|
10
|
Dankwa EA, Lambert S, Hayes S, Thompson RN, Donnelly CA. Stochastic modelling of African swine fever in wild boar and domestic pigs: Epidemic forecasting and comparison of disease management strategies. Epidemics 2022; 40:100622. [PMID: 36041286 DOI: 10.1016/j.epidem.2022.100622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 07/21/2022] [Accepted: 08/10/2022] [Indexed: 11/25/2022] Open
Abstract
African swine fever (ASF), caused by the African swine fever virus (ASFV), is highly virulent in domestic pigs and wild boar (Sus scrofa), causing up to 100% mortality. The recent epidemic of ASF in Europe has had a serious economic impact and poses a threat to global food security. Unfortunately, there is no effective treatment or vaccine against ASFV, limiting the available disease management strategies. Mathematical models allow us to further our understanding of infectious disease dynamics and evaluate the efficacy of disease management strategies. The ASF Challenge, organised by the French National Research Institute for Agriculture, Food, and the Environment, aimed to expand the development of ASF transmission models to inform policy makers in a timely manner. Here, we present the model and associated projections produced by our team during the challenge. We developed a stochastic model combining transmission between wild boar and domestic pigs, which was calibrated to synthetic data corresponding to different phases describing the epidemic progression. The model was then used to produce forward projections describing the likely temporal evolution of the epidemic under various disease management scenarios. Despite the interventions implemented, long-term projections forecasted persistence of ASFV in wild boar, and hence repeated outbreaks in domestic pigs. A key finding was that it is important to consider the timescale over which different measures are evaluated: interventions that have only limited effectiveness in the short term may yield substantial long-term benefits. Our model has several limitations, partly because it was developed in real-time. Nonetheless, it can inform understanding of the likely development of ASF epidemics and the efficacy of disease management strategies, should the virus continue its spread in Europe.
Collapse
Affiliation(s)
| | - Sébastien Lambert
- Centre for Emerging, Endemic and Exotic Diseases, Department of Pathobiology and Population Sciences, Royal Veterinary College, University of London, United Kingdom
| | - Sarah Hayes
- Department of Infectious Disease Epidemiology, Faculty of Medicine, School of Public Health, Imperial College London, United Kingdom
| | - Robin N Thompson
- Mathematics Institute, University of Warwick, Coventry, United Kingdom; Zeeman Institute for Systems Biology and Infectious Disease Epidemiology Research, University of Warwick, Coventry, United Kingdom
| | - Christl A Donnelly
- Department of Statistics, University of Oxford, Oxford, United Kingdom; Department of Infectious Disease Epidemiology, Faculty of Medicine, School of Public Health, Imperial College London, United Kingdom.
| |
Collapse
|
11
|
Savioli G, Ahmadi BV, Muñoz V, Rosso F, Schuppers M. A methodology to assess indirect economic impacts of animal disease outbreaks: A case of hypothetical African swine fever outbreak in Switzerland. Transbound Emerg Dis 2022; 69:e1768-e1786. [PMID: 35291056 PMCID: PMC9790260 DOI: 10.1111/tbed.14512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/22/2022] [Accepted: 03/09/2022] [Indexed: 12/30/2022]
Abstract
Indirect costs of animal disease outbreaks often significantly exceed the direct costs. Despite their importance, indirect costs remain poorly characterized due to their complexity. In this study, we developed a framework to assess the indirect costs of a hypothetical African swine fever outbreak in Switzerland. We collected data through international and national stakeholder interviews, analysis of national disease control regulations and industry data. We developed a framework to capture the resulting qualitative and quantitative data, categorize the impacts of these regulations, and rank the impacts in order of importance. We then developed a spreadsheet model to calculate the indirect costs of one category of control measure for an individual group of stakeholders. We developed a decision tree model to guide the most economically favourable implementation plan for a given control measure category, under different outbreak scenarios. Our results suggest that the most important measure/impact categories were 'Transport logistics', 'Consumer demand', 'Prevention of wild boar and domestic pig contact' and 'Slaughter logistics'. In our hypothetical scenario, the greatest costs associated with 'Prevention of wild boar and domestic pig contact' were due to assumed partial or total depopulation of fattening pig farms in order to reduce herd size to comply with the simulated control regulations. The model also provides suggestions on the most economically favourable strategy to reduce contact between wild boar and domestic pigs in control areas. Our approach provides a new framework to integrate qualitative and quantitative data to guide disease control strategy. This method could be useful in other countries and for other diseases, including in data- and resource-poor settings, or areas with limited experience of animal disease outbreaks.
Collapse
Affiliation(s)
- Giulia Savioli
- Veterinary Public Health InstituteVetsuisse FacultyUniversity of BernBernSwitzerland,Veterinary Services of the Swiss Armed ForcesCaserne SandBernSwitzerland,Equine DepartmentVetsuisse FacultyUniversity of ZurichZurichSwitzerland
| | - Bouda Vosough Ahmadi
- Animal Production and Health Division (NSA)Food and Agriculture Organisation (FAO)RomeItaly
| | - Violeta Muñoz
- SAFOSO AGLiebefeldSwitzerland,Section of EpidemiologyVetsuisse FacultyUniversity of ZurichZurichSwitzerland
| | - Fabrizio Rosso
- Animal Production and Health Division (NSA)Food and Agriculture Organisation (FAO)RomeItaly
| | | |
Collapse
|
12
|
Galli F, Friker B, Bearth A, Dürr S. Direct and indirect pathways for the spread of African swine fever and other porcine infectious diseases: An application of the mental models approach. Transbound Emerg Dis 2022; 69:e2602-e2616. [PMID: 35665473 PMCID: PMC9796639 DOI: 10.1111/tbed.14605] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 05/02/2022] [Accepted: 05/26/2022] [Indexed: 01/01/2023]
Abstract
In this study, we investigated the occurrence of direct and indirect infectious disease transmission pathways among pig farms in Switzerland, as well as their specific relevance for the spread of African swine fever, porcine reproductive and respiratory syndrome (PRRS), and enzootic pneumonia. Data were collected using an adapted mental models approach, involving initial interviews with experts in the field of pig health and logistics, semi-structured interviews with pig farmers, and a final expert workshop, during which all identified pathways were graded by their predicted frequency of occurrence, their likelihood of spread of the three diseases of interest, and their overall relevance considering both parameters. As many as 24 disease pathways were identified in four areas: pig trade, farmer encounters, external collaborators, and environmental or other pathways. Two thirds of the pathways were expected to occur with moderate-to-high frequency. While both direct and indirect pig trade transmission routes were highly relevant for the spread of the three pathogens, pathways from the remaining areas were especially important for PRRS due to higher spread potential via aerosols and fomites. In addition, we identified factors modifying the relevance of disease pathways, such as farm production type and affiliation with trader companies. During the interviews, we found varying levels of risk perception among farmers concerning some of the pathways, which affected adherence to biosecurity measures and were often linked to the degree of trust that farmers had towards their colleagues and external collaborators. Our findings highlight the importance of integrating indirect disease pathways into existing surveillance and control strategies and in disease modelling efforts. We also propose that biosecurity training aimed at professionals and risk communication campaigns targeting farmers should be considered to mitigate the risk of disease spread through the identified pathways.
Collapse
Affiliation(s)
- Francesco Galli
- Veterinary Public Health Institute (VPHI)Vetsuisse FacultyUniversity of BernBernSwitzerland
| | - Brian Friker
- Veterinary Public Health Institute (VPHI)Vetsuisse FacultyUniversity of BernBernSwitzerland
| | - Angela Bearth
- Consumer BehaviorInstitute for Environmental DecisionsSwiss Federal Institute of Technology Zurich (ETHZ)ZurichSwitzerland
| | - Salome Dürr
- Veterinary Public Health Institute (VPHI)Vetsuisse FacultyUniversity of BernBernSwitzerland
| |
Collapse
|
13
|
The African swine fever modelling challenge: Objectives, model description and synthetic data generation. Epidemics 2022; 40:100616. [PMID: 35878574 DOI: 10.1016/j.epidem.2022.100616] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 07/15/2022] [Accepted: 07/20/2022] [Indexed: 11/23/2022] Open
Abstract
African swine fever (ASF) is an emerging disease currently spreading at the interface between wild boar and pig farms in Europe and Asia. Current disease control regulations, which involve massive culling with significant economic and animal welfare costs, need to be improved. Modelling enables relevant control measures to be explored, but conducting the exercise during an epidemic is extremely difficult. Modelling challenges enhance modellers' ability to timely advice policy makers, improve their readiness when facing emerging threats, and promote international collaborations. The ASF-Challenge, which ran between August 2020 and January 2021, was the first modelling challenge in animal health. In this paper, we describe the objectives and rules of the challenge. We then demonstrate the mechanistic multi-host model that was used to mimic as accurately as possible an ASF-like epidemic, provide a detailed explanation of the surveillance and intervention strategies that generated the synthetic data, and describe the different management strategies that were assessed by the competing modelling teams. We then outline the different technical steps of the challenge as well as its environment. Finally, we synthesize the lessons we learnt along the way to guide future modelling challenges in animal health.
Collapse
|
14
|
Abstract
The recent and ever-growing problem of boar (Sus scrofa forms including wild boar, hybrid and feral pig) expansion is a very complex issue in wildlife management. The damages caused to biodiversity and the economies are addressed in different ways by the various countries, but research is needed to shed light on the causal factors of this emergency before defining a useful collaborative management policy. In this review, we screened more than 280 references published between 1975–2022, identifying and dealing with five hot factors (climate change, human induced habitat modifications, predator regulation on the prey, hybridization with domestic forms, and transfaunation) that could account for the boar expansion and its niche invasion. We also discuss some issues arising from this boar emergency, such as epizootic and zoonotic diseases or the depression of biodiversity. Finally, we provide new insights for the research and the development of management policies.
Collapse
|
15
|
Cadenas-Fernández E, Ito S, Aguilar-Vega C, Sánchez-Vizcaíno JM, Bosch J. The Role of the Wild Boar Spreading African Swine Fever Virus in Asia: Another Underestimated Problem. Front Vet Sci 2022; 9:844209. [PMID: 35573420 PMCID: PMC9093143 DOI: 10.3389/fvets.2022.844209] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 03/22/2022] [Indexed: 11/13/2022] Open
Abstract
African swine fever (ASF) is a highly lethal infectious disease in naive populations of domestic pigs and wild boar. In Asia, from the first outbreak in August 2018 until the end of November 2021, ASF has been reported in 16 Asian countries. The ASF virus (ASFV) circulation in domestic pigs is considered the main problem in Asia. On the other hand, there are very few reports of ASF in wild boar in this region. However, considering the high wild boar density within the same area of smallholder domestic pig farms in Asia, the occurrence of ASFV infection in wild boar may be underestimated. The role of the wild boar in other ASF epidemiological scenarios, such as Europe, is a key for the maintenance and transmission of the disease. Hence, we performed a preliminary study estimating the extent of ASFV infection in the Asian wild boar population. The potential risk area of ASF-infected wild boar was calculated based on the habitat suitability for wild boar, the kernel density of ASF notification in smallholder farms and wild boar, and the ASFV transmission rate of wild boar. As a result of the analysis, high-, medium-, and low-risk areas were identified throughout Southeast and East Asia. The highest risk area was detected in China, followed by Myanmar, Far East Russia, Thailand, Vietnam, Laos, Cambodia, and the Philippines. Additionally, another risk area was detected from northeastern China to the Korean Peninsula, including Far East Russia. This study shows hot spots where a high risk of infection in wild boar is most likely to occur, helping to control ASF.
Collapse
Affiliation(s)
- Estefanía Cadenas-Fernández
- VISAVET Health Surveillance Center, Complutense University of Madrid, Madrid, Spain
- Department of Animal Health, Faculty of Veterinary, Complutense University of Madrid, Madrid, Spain
- *Correspondence: Estefanía Cadenas-Fernández
| | - Satoshi Ito
- VISAVET Health Surveillance Center, Complutense University of Madrid, Madrid, Spain
- Department of Animal Health, Faculty of Veterinary, Complutense University of Madrid, Madrid, Spain
| | - Cecilia Aguilar-Vega
- VISAVET Health Surveillance Center, Complutense University of Madrid, Madrid, Spain
- Department of Animal Health, Faculty of Veterinary, Complutense University of Madrid, Madrid, Spain
| | - José Manuel Sánchez-Vizcaíno
- VISAVET Health Surveillance Center, Complutense University of Madrid, Madrid, Spain
- Department of Animal Health, Faculty of Veterinary, Complutense University of Madrid, Madrid, Spain
| | - Jaime Bosch
- VISAVET Health Surveillance Center, Complutense University of Madrid, Madrid, Spain
- Department of Animal Health, Faculty of Veterinary, Complutense University of Madrid, Madrid, Spain
- Jaime Bosch
| |
Collapse
|
16
|
Andraud M, Hammami P, Hayes BH, Galvis JA, Vergne T, Machado G, Rose N. Modelling African swine fever virus spread in pigs using time-respective network data: Scientific support for decision-makers. Transbound Emerg Dis 2022; 69:e2132-e2144. [PMID: 35390229 DOI: 10.1111/tbed.14550] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 03/17/2022] [Accepted: 04/05/2022] [Indexed: 11/30/2022]
Abstract
African Swine Fever (ASF) represents the main threat to swine production, with heavy economic consequences for both farmers and the food industry. The spread of the virus that causes ASF through Europe raises the issues of identifying transmission routes and assessing their relative contributions in order to provide insights to stakeholders for adapted surveillance and control measures. A simulation model was developed to assess ASF spread over the commercial swine network in France. The model was designed from raw movement data and actual farm characteristics. A metapopulation approach was used, with transmission processes at the herd level potentially leading to external spread to epidemiologically connected herds. Three transmission routes were considered: local transmission (e.g. fomites, material exchange), movement of animals from infected to susceptible sites, and transit of trucks without physical animal exchange. Surveillance was represented by prevalence and mortality detection thresholds at herd level, which triggered control measures through movement ban for detected herds and epidemiologically related herds. The time from infection to detection varied between 8 and 21 days, depending on the detection criteria, but was also dependent on the types of herds in which the infection was introduced. Movement restrictions effectively reduced the transmission between herds, but local transmission was nevertheless observed in higher proportions highlighting the need of global awareness of all actors of the swine industry to mitigate the risk of local spread. Raw movement data were directly used to build a dynamic network on a realistic time-scale. This approach allows for a rapid update of input data without any pre-treatment, which could be important in terms of responsiveness, should an introduction occur. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Mathieu Andraud
- ANSES, EPISABE Unit, Ploufragan-Plouzané-Niort Laboratory, Ploufragan, France
| | - Pachka Hammami
- ANSES, EPISABE Unit, Ploufragan-Plouzané-Niort Laboratory, Ploufragan, France
| | | | - Jason Ardila Galvis
- Department of Population Health and Pathobiology, College of Veterinary Medicine, Raleigh, NC, USA
| | - Timothée Vergne
- UMR ENVT-INRAE IHAP, National Veterinary School of Toulouse, Toulouse, France
| | - Gustavo Machado
- Department of Population Health and Pathobiology, College of Veterinary Medicine, Raleigh, NC, USA
| | - Nicolas Rose
- ANSES, EPISABE Unit, Ploufragan-Plouzané-Niort Laboratory, Ploufragan, France
| |
Collapse
|
17
|
Malladi S, Ssematimba A, Bonney PJ, St Charles KM, Boyer T, Goldsmith T, Walz E, Cardona CJ, Culhane MR. Predicting the time to detect moderately virulent African swine fever virus in finisher swine herds using a stochastic disease transmission model. BMC Vet Res 2022; 18:84. [PMID: 35236347 PMCID: PMC8889644 DOI: 10.1186/s12917-022-03188-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 02/24/2022] [Indexed: 11/10/2022] Open
Abstract
Background African swine fever (ASF) is a highly contagious and devastating pig disease that has caused extensive global economic losses. Understanding ASF virus (ASFV) transmission dynamics within a herd is necessary in order to prepare for and respond to an outbreak in the United States. Although the transmission parameters for the highly virulent ASF strains have been estimated in several articles, there are relatively few studies focused on moderately virulent strains. Using an approximate Bayesian computation algorithm in conjunction with Monte Carlo simulation, we have estimated the adequate contact rate for moderately virulent ASFV strains and determined the statistical distributions for the durations of mild and severe clinical signs using individual, pig-level data. A discrete individual based disease transmission model was then used to estimate the time to detect ASF infection based on increased mild clinical signs, severe clinical signs, or daily mortality. Results Our results indicate that it may take two weeks or longer to detect ASF in a finisher swine herd via mild clinical signs or increased mortality beyond levels expected in routine production. A key factor contributing to the extended time to detect ASF in a herd is the fairly long latently infected period for an individual pig (mean 4.5, 95% P.I., 2.4 - 7.2 days). Conclusion These transmission model parameter estimates and estimated time to detection via clinical signs provide valuable information that can be used not only to support emergency preparedness but also to inform other simulation models of evaluating regional disease spread.
Collapse
Affiliation(s)
- Sasidhar Malladi
- Secure Food Systems Team, University of Minnesota, Saint Paul, MN, 55108, USA
| | - Amos Ssematimba
- Secure Food Systems Team, University of Minnesota, Saint Paul, MN, 55108, USA. .,Department of Mathematics, Faculty of Science, Gulu University, Gulu, Uganda.
| | - Peter J Bonney
- Secure Food Systems Team, University of Minnesota, Saint Paul, MN, 55108, USA
| | | | - Timothy Boyer
- Center for Epidemiology and Animal Health, Veterinary Services, Animal and Plant Health Inspection Service, United States Department of Agriculture, Fort Collins, Colorado, USA
| | - Timothy Goldsmith
- Secure Food Systems Team, University of Minnesota, Saint Paul, MN, 55108, USA
| | - Emily Walz
- Secure Food Systems Team, University of Minnesota, Saint Paul, MN, 55108, USA
| | - Carol J Cardona
- Secure Food Systems Team, University of Minnesota, Saint Paul, MN, 55108, USA
| | - Marie R Culhane
- Secure Food Systems Team, University of Minnesota, Saint Paul, MN, 55108, USA
| |
Collapse
|
18
|
The effect of hunter-wild boar interactions and landscape heterogeneity on wild boar population size: A simulation study. Ecol Modell 2022. [DOI: 10.1016/j.ecolmodel.2021.109847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
19
|
Trivellone V, Hoberg EP, Boeger WA, Brooks DR. Food security and emerging infectious disease: risk assessment and risk management. ROYAL SOCIETY OPEN SCIENCE 2022; 9:211687. [PMID: 35223062 PMCID: PMC8847898 DOI: 10.1098/rsos.211687] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 01/20/2022] [Indexed: 05/03/2023]
Abstract
Climate change, emerging infectious diseases (EIDs) and food security create a dangerous nexus. Habitat interfaces, assumed to be efficient buffers, are being disrupted by human activities which in turn accelerate the movement of pathogens. EIDs threaten directly and indirectly availability and access to nutritious food, affecting global security and human health. In the next 70 years, food-secure and food-insecure countries will face EIDs driving increasingly unsustainable costs of production, predicted to exceed national and global gross domestic products. Our modern challenge is to transform this business as usual and embrace an alternative vision of the biosphere formalized in the Stockholm paradigm (SP). First, a pathogen-centric focus shifts our vision of risk space, determining how pathogens circulate in realized and potential fitness space. Risk space and pathogen exchange are always heightened at habitat interfaces. Second, apply the document-assess-monitor-act (DAMA) protocol developing strategic data for EID risk, to be translated, synthesized and broadcast as actionable information. Risk management is realized through targeted interventions focused around information exchanged among a community of scientists, policy practitioners of food and public health security and local populations. Ultimately, SP and DAMA protect human rights, supporting food security, access to nutritious food, health interventions and environmental integrity.
Collapse
Affiliation(s)
- Valeria Trivellone
- Illinois Natural History Survey, Prairie Research Institute, University of Illinois at Urbana Champaign, 1816 South Oak Street, Champaign, IL 61820, USA
| | - Eric P. Hoberg
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, WI 53716, USA
- Museum of Southwestern Biology, Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Walter A. Boeger
- Biological Interactions, Universidade Federal do Paraná, Cx Postal 19073, Curitiba, Brazil
| | - Daniel R. Brooks
- Department of Ecology and Evolutionary Biology, University of Toronto (emeritus), Toronto, ON, Canada
- Harold W. Manter Laboratory of Parasitology, University of Nebraska-Lincoln, NE 68588-0514, USA
- Institute for Evolution, Centre for Ecological Research, Karolina ut 29, Budapest, Hungary H-1113
| |
Collapse
|
20
|
Genotyping of African Swine Fever Virus (ASFV) Isolates in Romania with the First Report of Genotype II in Symptomatic Pigs. Vet Sci 2021; 8:vetsci8120290. [PMID: 34941817 PMCID: PMC8706303 DOI: 10.3390/vetsci8120290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 11/17/2022] Open
Abstract
The World Organisation for Animal Health has listed African swine fever as the most important deadly disease in domestic swine around the world. The virus was recently brought from South-East Africa to Georgia in 2007, and it has since expanded to Russia, Eastern Europe, China, and Southeast Asia, having a devastating impact on the global swine industry and economy. In this study, we report for the first time the molecular characterization of nine African swine fever virus (ASFV) isolates obtained from domestic pigs in Mureş County, Romania. All nine Romanian samples clustered within p72 genotype II and showed 100% identity with all compared isolates from Georgia, Armenia, Russia, Azerbaijan, Ukraine, Belarus, Lithuania, and Poland. This is the first report of ASFV genotype II in the country.
Collapse
|
21
|
Taesuji M, Rattanamas K, Punyadarsaniya D, Mamom T, Nguyen HT, Ruenphet S. In vitro primary porcine alveolar macrophage cell toxicity and African swine fever virus inactivation using five commercially supply compound disinfectants under various condition. J Vet Med Sci 2021; 83:1800-1804. [PMID: 34645734 PMCID: PMC8636871 DOI: 10.1292/jvms.21-0427] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Efficacy of African swine fever virus (ASFV) inactivation using five commercially supply compound disinfectants was evaluated under various condition. Virucidal efficacy demonstrated that
products A and E could inactivate at 1:800 within 1 min for both temperatures, while products B, C and D inactivated at 1:400. However, product D could inactivate at 1:800 when the exposure
time was extended to 30 min and effected only 20°C. In addition, the cytotoxicity demonstrated that products A, B, C, D and E did not significantly affect to cell at 1:51,200, 1:12,800,
1:12,800, 1:25,600 and 1:12,800 dilution, respectively. In conclusion, these disinfectants could inactivate ASFV, however, the application of these products should be performed under safety
precautions to prevent cytotoxicity in humans and animals.
Collapse
Affiliation(s)
- Machimaporn Taesuji
- Immunology and Virology Department, Faculty of Veterinary Medicine, Mahanakorn University of Technology, 140 Cheum-Sampan Rd. Nong Chock, Bangkok 10530, Thailand
| | - Khate Rattanamas
- Immunology and Virology Department, Faculty of Veterinary Medicine, Mahanakorn University of Technology, 140 Cheum-Sampan Rd. Nong Chock, Bangkok 10530, Thailand
| | - Darsaniya Punyadarsaniya
- Immunology and Virology Department, Faculty of Veterinary Medicine, Mahanakorn University of Technology, 140 Cheum-Sampan Rd. Nong Chock, Bangkok 10530, Thailand
| | - Thanongsak Mamom
- Pathology Department, Faculty of Veterinary Medicine, Mahanakorn University of Technology, 140 Cheum-Sampan Rd. Nong Chock, Bangkok 10530, Thailand
| | - Hoa Thi Nguyen
- Key Laboratory of Veterinary Biotechnology, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Hanoi 100000, Vietnam
| | - Sakchai Ruenphet
- Immunology and Virology Department, Faculty of Veterinary Medicine, Mahanakorn University of Technology, 140 Cheum-Sampan Rd. Nong Chock, Bangkok 10530, Thailand
| |
Collapse
|
22
|
Colomer J, Rosell C, Rodriguez-Teijeiro JD, Massei G. 'Reserve effect': An opportunity to mitigate human-wild boar conflicts. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 795:148721. [PMID: 34237539 DOI: 10.1016/j.scitotenv.2021.148721] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 06/24/2021] [Accepted: 06/24/2021] [Indexed: 06/13/2023]
Abstract
Wild boar growth in numbers and range is associated with increasing economic and environmental impact. Hunting has been traditionally used to reduce wild boar numbers. Areas where hunting is not allowed may attract wild boar from neighbouring hunting grounds. This phenomenon is called 'reserve effect' and could cause temporarily localised, high densities of wild boar in areas where hunting is banned. To investigate the occurrence of 'reserve effect', this study was conducted in two natural reserves of 400 and 250 ha inside the Montseny Natural Park, Catalonia, Spain where regular hunting of wild boar is not permitted, and only sporadic driven hunts/year are authorised for population control. The aims of the study were to evaluate if wild boar use these reserves as a refuge when hunting is carried out in the surrounding areas and to assess the effects that occasional drive hunts inside these reserves may have on wild boar numbers and social organization. From 2012 to 2015 camera traps were placed in the two reserves without using any bait. Cameras operated for 1.759 days, including hunting and non-hunting seasons, and 37.574 wild boar images were obtained. A 'reserve effect' was detected, as following hunting in the surroundings grounds, the number of wild boar increases inside reserves. Occasional driven hunts conducted in the reserves are effective in reducing the number of individuals and the effects persist for at least 45 days. Hunting disrupts wild boar social organization, as group size was significantly reduced. These results suggested that targeting refuge areas, once hunting in the surroundings causes wild boar to concentrate in these areas, is effective for population control. These findings could also be used to design trategies to optimise population control and offer opportunities for disease management such as vaccination, or to facilitate eradication in areas affected by disease outbreaks.
Collapse
Affiliation(s)
- Joana Colomer
- Minuartia, Barcelona, Spain; Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of Biology, University of Barcelona, Spain; IRBio, Institut de Recerca de la Biodiversitat, University of Barcelona, Barcelona, Spain.
| | - Carme Rosell
- Minuartia, Barcelona, Spain; Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of Biology, University of Barcelona, Spain
| | - José Domingo Rodriguez-Teijeiro
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of Biology, University of Barcelona, Spain; IRBio, Institut de Recerca de la Biodiversitat, University of Barcelona, Barcelona, Spain
| | - Giovanna Massei
- National Wildlife Management Centre, Animal and Plant Health Agency, York, United Kingdom
| |
Collapse
|
23
|
Sovijit W, Taesuji M, Rattanamas K, Punyadarsaniya D, Mamom T, Nguyen HT, Ruenphet S. In vitro cytotoxicity and virucidal efficacy of potassium hydrogen peroxymonosulfate compared to quaternary ammonium compound under various concentrations, exposure times and temperatures against African swine fever virus. Vet World 2021; 14:2936-2940. [PMID: 35017841 PMCID: PMC8743787 DOI: 10.14202/vetworld.2021.2936-2940] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 10/13/2021] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND AND AIM The selection and proper application of disinfectants are crucial to the prevention of many diseases, so disinfectants must be evaluated before being used for the prevention of African swine fever (ASF). Three disinfectant products belonging to the group of potassium hydrogen peroxymonosulfates, product A and product B, and a quaternary ammonium compound called product C, were examined in vitro for host cell cytotoxicity and the efficacy of ASF virus inactivation. The study parameters included various concentrations, exposure times, temperatures, and degrees of cytotoxicity. MATERIALS AND METHODS Three disinfectant products were evaluated for cytotoxicity using primary porcine alveolar macrophage (PAM) cells at dilutions from 1:200 to 1:51,200. Disinfectants in concentrations of 1:200, 1:400, and 1:800 were prepared, the pH and the virucidal activity were tested. An equal volume of each dilution was mixed with the ASF virus and incubated at room temperature (20°C) or on ice (4°C) for 1 min, 5 min, or 30 min. Hemadsorption (HAD) or rosette formation was observed using an inverted microscope for 5 days after inoculation, and the virus titer was calculated as HAD50/mL. Each treatment and virus control were tested in triplicate, and the titers were reported as means and standard deviations. The reduction factor was used to measure inactivation. RESULTS Products A, B, and C at 1:400, 1:800, and 1:25,600 of dilution, respectively, did not show significant cytotoxic effects on PAM cells. Products A and B could inactivate ASF virus at 1:200 dilution within 5 min after exposure at 4°C. However, at 20°C, the exposure time had to be extended to 30 min to inactivate the virus. Product C could inactivate the virus at 1:400 dilution within 5 min under both temperature conditions, whereas at 1:800 dilution, the exposure time had to be extended to 30 min to completely inactivate the virus at 20°C. CONCLUSION All disinfectants could inactivate ASF virus in various concentrations, under appropriate exposure times and reaction temperatures, and there was no evidence of host cell cytotoxicity. For the control of ASF in pig farms, the appropriate concentration, ambient temperature, and contact time of these disinfectants should be taken into account.
Collapse
Affiliation(s)
- Watcharee Sovijit
- Department of Immunology and Virology, Faculty of Veterinary Medicine, Mahanakorn University of Technology, Bangkok, Thailand
| | - Machimaporn Taesuji
- Department of Immunology and Virology, Faculty of Veterinary Medicine, Mahanakorn University of Technology, Bangkok, Thailand
| | - Khate Rattanamas
- Department of Immunology and Virology, Faculty of Veterinary Medicine, Mahanakorn University of Technology, Bangkok, Thailand
| | - Darsaniya Punyadarsaniya
- Department of Immunology and Virology, Faculty of Veterinary Medicine, Mahanakorn University of Technology, Bangkok, Thailand
| | - Thanongsak Mamom
- Department of Pathology, Faculty of Veterinary Medicine, Mahanakorn University of Technology, Bangkok, Thailand
| | - Hoa Thi Nguyen
- Key Laboratory of Veterinary Biotechnology, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Hanoi, Vietnam
| | - Sakchai Ruenphet
- Department of Immunology and Virology, Faculty of Veterinary Medicine, Mahanakorn University of Technology, Bangkok, Thailand
| |
Collapse
|
24
|
Fiori MS, Sanna D, Scarpa F, Floris M, Di Nardo A, Ferretti L, Loi F, Cappai S, Sechi AM, Angioi PP, Zinellu S, Sirica R, Evangelista E, Casu M, Franzoni G, Oggiano A, Dei Giudici S. A Deeper Insight into Evolutionary Patterns and Phylogenetic History of ASFV Epidemics in Sardinia (Italy) through Extensive Genomic Sequencing. Viruses 2021; 13:1994. [PMID: 34696424 PMCID: PMC8539718 DOI: 10.3390/v13101994] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/25/2021] [Accepted: 10/01/2021] [Indexed: 12/31/2022] Open
Abstract
African swine fever virus (ASFV) is the etiological agent of the devastating disease African swine fever (ASF), for which there is currently no licensed vaccine or treatment available. ASF is defined as one of the most serious animal diseases identified to date, due to its global spread in regions of Africa, Europe and Asia, causing massive economic losses. On the Italian island of Sardinia, the disease has been endemic since 1978, although the last control measures put in place achieved a significant reduction in ASF, and the virus has been absent from circulation since April 2019. Like many large DNA viruses, ASFV mutates at a relatively slow rate. However, the limited availability of whole-genome sequences from spatial-localized outbreaks makes it difficult to explore the small-scale genetic structure of these ASFV outbreaks. It is also unclear if the genetic variability within outbreaks can be captured in a handful of sequences, or if larger sequencing efforts can improve phylogenetic reconstruction and evolutionary or epidemiological inference. The aim of this study was to investigate the phylogenetic patterns of ASFV outbreaks between 1978 and 2018 in Sardinia, in order to characterize the epidemiological dynamics of the viral strains circulating in this Mediterranean island. To reach this goal, 58 new whole genomes of ASFV isolates were obtained, which represents the largest ASFV whole-genome sequencing effort to date. We provided a complete description of the genomic diversity of ASFV in terms of nucleotide mutations and small and large indels among the isolates collected during the outbreaks. The new sequences capture more than twice the genomic and phylogenetic diversity of all the previously published Sardinian sequences. The extra genomic diversity increases the resolution of the phylogenetic reconstruction, enabling us to dissect, for the first time, the genetic substructure of the outbreak. We found multiple ASFV subclusters within the phylogeny of the Sardinian epidemic, some of which coexisted in space and time.
Collapse
Affiliation(s)
- Mariangela Stefania Fiori
- Department of Animal Health, Istituto Zooprofilattico Sperimentale della Sardegna, 07100 Sassari, Italy; (M.S.F.); (A.M.S.); (P.P.A.); (S.Z.); (G.F.); (A.O.); (S.D.G.)
| | - Daria Sanna
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (D.S.); (M.F.)
| | - Fabio Scarpa
- Department of Veterinary Medicine, University of Sassari, 07100 Sassari, Italy; (F.S.); (M.C.)
| | - Matteo Floris
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (D.S.); (M.F.)
| | | | - Luca Ferretti
- Big Data Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX1 4BH, UK;
| | - Federica Loi
- Osservatorio Epidemiologico Veterinario Regionale, Istituto Zooprofilattico Sperimentale della Sardegna, 09125 Cagliari, Italy;
| | - Stefano Cappai
- Osservatorio Epidemiologico Veterinario Regionale, Istituto Zooprofilattico Sperimentale della Sardegna, 09125 Cagliari, Italy;
| | - Anna Maria Sechi
- Department of Animal Health, Istituto Zooprofilattico Sperimentale della Sardegna, 07100 Sassari, Italy; (M.S.F.); (A.M.S.); (P.P.A.); (S.Z.); (G.F.); (A.O.); (S.D.G.)
| | - Pier Paolo Angioi
- Department of Animal Health, Istituto Zooprofilattico Sperimentale della Sardegna, 07100 Sassari, Italy; (M.S.F.); (A.M.S.); (P.P.A.); (S.Z.); (G.F.); (A.O.); (S.D.G.)
| | - Susanna Zinellu
- Department of Animal Health, Istituto Zooprofilattico Sperimentale della Sardegna, 07100 Sassari, Italy; (M.S.F.); (A.M.S.); (P.P.A.); (S.Z.); (G.F.); (A.O.); (S.D.G.)
| | - Roberto Sirica
- Ames Polydiagnostic Group Center SRL, 80013 Napoli, Italy; (R.S.); (E.E.)
| | - Eloisa Evangelista
- Ames Polydiagnostic Group Center SRL, 80013 Napoli, Italy; (R.S.); (E.E.)
| | - Marco Casu
- Department of Veterinary Medicine, University of Sassari, 07100 Sassari, Italy; (F.S.); (M.C.)
| | - Giulia Franzoni
- Department of Animal Health, Istituto Zooprofilattico Sperimentale della Sardegna, 07100 Sassari, Italy; (M.S.F.); (A.M.S.); (P.P.A.); (S.Z.); (G.F.); (A.O.); (S.D.G.)
| | - Annalisa Oggiano
- Department of Animal Health, Istituto Zooprofilattico Sperimentale della Sardegna, 07100 Sassari, Italy; (M.S.F.); (A.M.S.); (P.P.A.); (S.Z.); (G.F.); (A.O.); (S.D.G.)
| | - Silvia Dei Giudici
- Department of Animal Health, Istituto Zooprofilattico Sperimentale della Sardegna, 07100 Sassari, Italy; (M.S.F.); (A.M.S.); (P.P.A.); (S.Z.); (G.F.); (A.O.); (S.D.G.)
| |
Collapse
|
25
|
Machado G, Farthing TS, Andraud M, Lopes FPN, Lanzas C. Modelling the role of mortality-based response triggers on the effectiveness of African swine fever control strategies. Transbound Emerg Dis 2021; 69:e532-e546. [PMID: 34590433 DOI: 10.1111/tbed.14334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 09/15/2021] [Accepted: 09/17/2021] [Indexed: 01/26/2023]
Abstract
African swine fever (ASF) is considered the most impactful transboundary swine disease. In the absence of effective vaccines, control strategies are heavily dependent on mass depopulation and shipment restrictions. Here, we developed a nested multiscale model for the transmission of ASF, combining a spatially explicit network model of animal shipments with a deterministic compartmental model for the dynamics of two ASF strains within 3 km × 3 km pixels in one Brazilian state. The model outcomes are epidemic duration, number of secondary infected farms and pigs, and distance of ASF spread. The model also shows the spatial distribution of ASF epidemics. We analyzed quarantine-based control interventions in the context of mortality trigger thresholds for the deployment of control strategies. The mean epidemic duration of a moderately virulent strain was 11.2 days, assuming the first infection is detected (best-case scenario), and 15.9 days when detection is triggered at 10% mortality. For a highly virulent strain, the epidemic duration was 6.5 days and 13.1 days, respectively. The distance from the source to infected locations and the spatial distribution was not dependent on strain virulence. Under the best-case scenario, we projected an average number of infected farms of 23.77 farms and 18.8 farms for the moderate and highly virulent strains, respectively. At 10% mortality-trigger, the predicted number of infected farms was on average 46.27 farms and 42.96 farms, respectively. We also demonstrated that the establishment of ring quarantine zones regardless of size (i.e. 5 km, 15 km) was outperformed by backward animal movement tracking. The proposed modelling framework provides an evaluation of ASF epidemic potential, providing a ranking of quarantine-based control strategies that could assist animal health authorities in planning the national preparedness and response plan.
Collapse
Affiliation(s)
- Gustavo Machado
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| | - Trevor S Farthing
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| | - Mathieu Andraud
- Anses, French Agency for Food, Environmental and Occupational Health & Safety, Ploufragan-Plouzané-Niort Laboratory, Epidemiology, Health and Welfare Research Unit, Ploufragan, France
| | - Francisco Paulo Nunes Lopes
- Departamento de Defesa Agropecuária, Secretaria da Agricultura, Pecuária e Desenvolvimento Rural, Porto Alegre, Brazil
| | - Cristina Lanzas
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
26
|
African Swine Fever in Wild Boar (Poland 2020): Passive and Active Surveillance Analysis and Further Perspectives. Pathogens 2021; 10:pathogens10091219. [PMID: 34578251 PMCID: PMC8465799 DOI: 10.3390/pathogens10091219] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 09/16/2021] [Accepted: 09/17/2021] [Indexed: 11/17/2022] Open
Abstract
African swine fever (ASF) is a fatal hemorrhagic disease of wild boar and domestic pigs which has been present in Poland since 2014. By 2020, the ASF virus (ASFV) spread across Central, Eastern and Western Europe (including Germany), and Asian countries (including China, Vietnam, and South Korea). The national ASF eradication and prevention program includes continuous passive (wild boar found dead and road-killed wild boar) and active (hunted wild boar) surveillance. The main goal of this study was to analyze the dynamic of the spread of ASF in the wild boar population across the territory of Poland in 2020. In that year in Poland, in total 6191 ASF-positive wild boar were declared. Most of them were confirmed in a group of animals found dead. The conducted statistical analysis indicates that the highest chance of obtaining an ASF-positive result in wild boar was during the winter months, from January to March, and in December 2020. Despite the biosecurity measures implemented by holdings of domestic pigs, the disease also occurred in 109 pig farms. The role of ASF surveillance in the wild boar population is crucial to apply more effective and tailored measures of disease control and eradication. The most essential measures to maintain sustainable production of domestic pigs in Poland include effective management of the wild boar population, along with strict implementation of biosecurity measures by domestic pig producers.
Collapse
|
27
|
Onyilagha C, Nash M, Perez O, Goolia M, Clavijo A, Richt JA, Ambagala A. Meat Exudate for Detection of African Swine Fever Virus Genomic Material and Anti-ASFV Antibodies. Viruses 2021; 13:v13091744. [PMID: 34578325 PMCID: PMC8472811 DOI: 10.3390/v13091744] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 08/19/2021] [Accepted: 08/26/2021] [Indexed: 12/26/2022] Open
Abstract
African swine fever (ASF) is one of the most important viral diseases of pigs caused by the ASF virus (ASFV). The virus is highly stable over a wide range of temperatures and pH and can survive in meat and meat products for several months, leading to long-distance transmission of ASF. Whole blood, serum, and organs from infected pigs are used routinely as approved sample types in the laboratory diagnosis of ASF. However, these sample types may not always be available. Here, we investigated meat exudate as an alternative sample type for the detection of ASFV-specific nucleic acids and antibodies. Pigs were infected with various ASFV strains: the highly virulent ASFV Malawi LIL 18/2 strain, the moderately-virulent ASFV Estonia 2014 strain, or the low-virulent ASFV OURT/88/3 strain. The animals were euthanized on different days post-infection (dpi), and meat exudates were collected and tested for the presence of ASFV-specific nucleic acids and antibodies. Animals infected with the ASFV Malawi LIL 18/2 developed severe clinical signs and succumbed to the infection within seven dpi, while pigs infected with ASFV Estonia 2014 also developed clinical signs but survived longer, with a few animals seroconverting before succumbing to the ASFV infection or being euthanized as they reached humane endpoints. Pigs infected with ASFV OURT/88/3 developed transient fever and seroconverted without mortality. ASFV genomic material was detected in meat exudate from pigs infected with ASFV Malawi LIL 18/2 and ASFV Estonia 2014 at the onset of viremia but at a lower amount when compared to the corresponding whole blood samples. Low levels of ASFV genomic material were detected in the whole blood of ASFV OURT/88/3-infected pigs, and no ASFV genomic material was detected in the meat exudate of these animals. Anti-ASFV antibodies were detected in the serum and meat exudate derived from ASFV OURT/88/3-infected pigs and in some of the samples derived from the ASFV Estonia 2014-infected pigs. These results indicate that ASFV genomic material and anti-ASFV antibodies can be detected in meat exudate, indicating that this sample can be used as an alternative sample type for ASF surveillance when routine sample types are unavailable or are not easily accessible.
Collapse
Affiliation(s)
- Chukwunonso Onyilagha
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, MB R3E 3M4, Canada; (C.O.); (M.N.); (O.P.); (M.G.); (A.C.)
| | - Mikyla Nash
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, MB R3E 3M4, Canada; (C.O.); (M.N.); (O.P.); (M.G.); (A.C.)
| | - Orlando Perez
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, MB R3E 3M4, Canada; (C.O.); (M.N.); (O.P.); (M.G.); (A.C.)
| | - Melissa Goolia
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, MB R3E 3M4, Canada; (C.O.); (M.N.); (O.P.); (M.G.); (A.C.)
| | - Alfonso Clavijo
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, MB R3E 3M4, Canada; (C.O.); (M.N.); (O.P.); (M.G.); (A.C.)
- National Bio and Agro-Defense Facility, Agricultural Research Service, United States Department of Agriculture, Manhattan, KS 66506, USA
| | - Juergen A. Richt
- Center of Excellence for Emerging and Zoonotic Animal Diseases, Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA;
| | - Aruna Ambagala
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, MB R3E 3M4, Canada; (C.O.); (M.N.); (O.P.); (M.G.); (A.C.)
- Department of Comparative Biology, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
- Correspondence:
| |
Collapse
|
28
|
M448R and MGF505-7R: Two African Swine Fever Virus Antigens Commonly Recognized by ASFV-Specific T-Cells and with Protective Potential. Vaccines (Basel) 2021; 9:vaccines9050508. [PMID: 34069239 PMCID: PMC8156282 DOI: 10.3390/vaccines9050508] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/30/2021] [Accepted: 05/12/2021] [Indexed: 11/16/2022] Open
Abstract
African swine fever (ASF) is today′s number one threat for the global swine industry. Neither commercial vaccine nor treatment is available against ASF and, thus far, only live attenuated viruses (LAV) have provided robust protection against lethal ASF virus (ASFV) challenge infections. Identification of ASFV proteins inducing protective immune responses is one of the major challenges to develop safer and efficient subunit vaccines. Immunopeptidomic studies recently performed in our laboratory allowed identifying ASFV antigens recognized by ASFV-specific CD8+ T-cells. Here, we used data from the SLAI-peptide repertoire presented by a single set of ASFV-infected porcine alveolar macrophages to generate a complex DNA vaccine composed by 15 plasmids encoding the individual peptide-bearing ORFs. DNA vaccine priming improved the protection afforded by a suboptimal dose of the BA71ΔCD2 LAV given as booster vaccination, against Georgia2007/1 lethal challenge. Interestingly, M448R was the only protein promiscuously recognized by the induced ASFV-specific T-cells. Furthermore, priming pigs with DNA plasmids encoding M488R and MGF505-7R, a CD8+ T-cell antigen previously described, confirmed these two proteins as T-cell antigens with protective potential. These studies might be useful to pave the road for designing safe and more efficient vaccine formulations in the future.
Collapse
|
29
|
Kürschner T, Scherer C, Radchuk V, Blaum N, Kramer‐Schadt S. Movement can mediate temporal mismatches between resource availability and biological events in host-pathogen interactions. Ecol Evol 2021; 11:5728-5741. [PMID: 34026043 PMCID: PMC8131764 DOI: 10.1002/ece3.7478] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 02/23/2021] [Accepted: 03/09/2021] [Indexed: 12/28/2022] Open
Abstract
Global change is shifting the timing of biological events, leading to temporal mismatches between biological events and resource availability. These temporal mismatches can threaten species' populations. Importantly, temporal mismatches not only exert strong pressures on the population dynamics of the focal species, but can also lead to substantial changes in pairwise species interactions such as host-pathogen systems. We adapted an established individual-based model of host-pathogen dynamics. The model describes a viral agent in a social host, while accounting for the host's explicit movement decisions. We aimed to investigate how temporal mismatches between seasonal resource availability and host life-history events affect host-pathogen coexistence, that is, disease persistence. Seasonal resource fluctuations only increased coexistence probability when in synchrony with the hosts' biological events. However, a temporal mismatch reduced host-pathogen coexistence, but only marginally. In tandem with an increasing temporal mismatch, our model showed a shift in the spatial distribution of infected hosts. It shifted from an even distribution under synchronous conditions toward the formation of disease hotspots, when host life history and resource availability mismatched completely. The spatial restriction of infected hosts to small hotspots in the landscape initially suggested a lower coexistence probability due to the critical loss of susceptible host individuals within those hotspots. However, the surrounding landscape facilitated demographic rescue through habitat-dependent movement. Our work demonstrates that the negative effects of temporal mismatches between host resource availability and host life history on host-pathogen coexistence can be reduced through the formation of temporary disease hotspots and host movement decisions, with implications for disease management under disturbances and global change.
Collapse
Affiliation(s)
- Tobias Kürschner
- Department of Ecological DynamicsLeibniz Institute for Zoo and Wildlife ResearchBerlinGermany
| | - Cédric Scherer
- Department of Ecological DynamicsLeibniz Institute for Zoo and Wildlife ResearchBerlinGermany
| | - Viktoriia Radchuk
- Department of Ecological DynamicsLeibniz Institute for Zoo and Wildlife ResearchBerlinGermany
| | - Niels Blaum
- Plant Ecology and Nature ConservationUniversity of PotsdamPotsdamGermany
| | - Stephanie Kramer‐Schadt
- Department of Ecological DynamicsLeibniz Institute for Zoo and Wildlife ResearchBerlinGermany
- Department of EcologyTechnische Universität BerlinBerlinGermany
| |
Collapse
|
30
|
Hayes BH, Andraud M, Salazar LG, Rose N, Vergne T. Mechanistic modelling of African swine fever: A systematic review. Prev Vet Med 2021; 191:105358. [PMID: 33930624 DOI: 10.1016/j.prevetmed.2021.105358] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 04/06/2021] [Accepted: 04/13/2021] [Indexed: 12/11/2022]
Abstract
The spread of African swine fever (ASF) poses a grave threat to the global swine industry. Without an available vaccine, understanding transmission dynamics is essential for designing effective prevention, surveillance, and intervention strategies. These dynamics can often be unraveled through mechanistic modelling. To examine the assumptions on transmission and objectives of the mechanistic models of ASF, a systematic review of the scientific literature was conducted. Articles were examined across multiple epidemiological and model characteristics, with filiation between models determined through the creation of a neighbor-joined tree using phylogenetic software. Thirty-four articles qualified for inclusion, with four main modelling objectives identified: estimating transmission parameters (11 studies), assessing determinants of transmission (7), examining consequences of hypothetical outbreaks (5), assessing alternative control strategies (11). Population-based (17), metapopulation (5), and individual-based (12) model frameworks were represented, with population-based and metapopulation models predominantly used among domestic pigs, and individual-based models predominantly represented among wild boar. The majority of models (25) were parameterized to the genotype II isolates currently circulating in Europe and Asia. Estimated transmission parameters varied widely among ASFV strains, locations, and transmission scale. Similarly, parameter assumptions between models varied extensively. Uncertainties on epidemiological and ecological parameters were usually accounted for to assess the impact of parameter values on the modelled infection trajectory. To date, almost all models are host specific, being developed for either domestic pigs or wild boar despite the fact that spillover events between domestic pigs and wild boar are evidenced to play an important role in ASF outbreaks. Consequently, the development of more models incorporating such transmission routes is crucial. A variety of codified and hypothetical control strategies were compared however they were all a priori defined interventions. Future models, built to identify the optimal contributions across many control methods for achieving specific outcomes should provide more useful information for policy-makers. Further, control strategies were examined in competition with each other, which is opposed to how they would actually be synergistically implemented. While comparing strategies is beneficial for identifying a rank-order efficacy of control methods, this structure does not necessarily determine the most effective combination of all available strategies. In order for ASFV models to effectively support decision-making in controlling ASFV globally, these modelling limitations need to be addressed.
Collapse
Affiliation(s)
- Brandon H Hayes
- UMR ENVT-INRAE IHAP, National Veterinary School of Toulouse, 31000, Toulouse, France; Epidemiology Health and Welfare Department, Ploufragan-Plouzané-Niort Laboratory, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), 22440, Ploufragan, France.
| | - Mathieu Andraud
- Epidemiology Health and Welfare Department, Ploufragan-Plouzané-Niort Laboratory, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), 22440, Ploufragan, France
| | - Luis G Salazar
- Epidemiology Health and Welfare Department, Ploufragan-Plouzané-Niort Laboratory, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), 22440, Ploufragan, France
| | - Nicolas Rose
- Epidemiology Health and Welfare Department, Ploufragan-Plouzané-Niort Laboratory, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), 22440, Ploufragan, France
| | - Timothée Vergne
- UMR ENVT-INRAE IHAP, National Veterinary School of Toulouse, 31000, Toulouse, France
| |
Collapse
|
31
|
Mauroy A, Depoorter P, Saegerman C, Cay B, De Regge N, Filippitzi ME, Fischer C, Laitat M, Maes D, Morelle K, Nauwynck H, Simons X, van den Berg T, Van Huffel X, Thiry E, Dewulf J. Semi-quantitative risk assessment by expert elicitation of potential introduction routes of African swine fever from wild reservoir to domestic pig industry and subsequent spread during the Belgian outbreak (2018-2019). Transbound Emerg Dis 2021; 68:2761-2773. [PMID: 33713549 DOI: 10.1111/tbed.14067] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 01/29/2021] [Accepted: 03/08/2021] [Indexed: 12/01/2022]
Abstract
Since the introduction in Georgia in 2007 of an African swine fever (ASF) genotype 2 virus strain, the virus has rapidly spread to both Western European and Asian countries. It now constitutes a major threat for the global swine industry. The ongoing European transmission cycle has been related to the 'wild boar habitat' with closed transmission events between wild boar populations and incidental spillovers to commercial and non-commercial (backyard) pig holdings. During the epidemic in Belgium, only wild boar were infected and although the introduction route has not yet been elucidated, the 'human factor' is highly suspected. While ASF was successfully contained in a small region in the Southern part of Belgium without affecting domestic pigs, the risk of spillover at the wild/domestic interface remains poorly assessed. In this study, we used a semi-quantitative method, involving national and international experts, to assess the risk associated with different transmission routes for ASF introduction from wild boar to domestic pig holdings and subsequent dissemination between holdings in the Belgian epidemiological context. Qualitative responses obtained by our questionnaire were numerically transformed and statistically processed to provide a semi-quantitative assessment of the occurrence of the hazard and a ranking of all transmission routes. 'Farmer', 'bedding material', 'veterinarian' and 'professionals from the pig sector' were considered as the most important transmission routes for ASF introduction from the wild reservoir to pig holdings. 'Animal movements', 'farmer', 'veterinarian', 'iatrogenic', 'animal transport truck' and 'animal care equipment' were considered as the most important transmission routes posing a risk of ASF spread between pig holdings. Combined with specific biosecurity checks in the holdings, this assessment helps in prioritizing risk mitigation measures against ASF introduction and further spread in the domestic pig industry, particularly while the ASF situation in Western Europe is worsening.
Collapse
Affiliation(s)
- Axel Mauroy
- Staff Direction for Risk Assessment, Directorate General Control Policy, Federal Agency for the Safety of the Food Chain, Bruxelles, Belgium
| | - Pieter Depoorter
- Staff Direction for Risk Assessment, Directorate General Control Policy, Federal Agency for the Safety of the Food Chain, Bruxelles, Belgium
| | - Claude Saegerman
- Faculty of Veterinary Medicine, Research Unit in Epidemiology and Risk Analysis Applied to Veterinary Sciences (UREAR-ULiège), Fundamental and Applied Research for Animal Health (FARAH) Centre, University of Liège, Liège, Belgium
| | - Brigitte Cay
- Service of Enzootic, Vector-Borne and Bee Diseases, Scientific Direction Infectious Diseases in Animals, Sciensano, Brussels, Belgium
| | - Nick De Regge
- Service of Enzootic, Vector-Borne and Bee Diseases, Scientific Direction Infectious Diseases in Animals, Sciensano, Brussels, Belgium
| | - Maria-Eleni Filippitzi
- Veterinary Epidemiology Unit, Department of Epidemiology and Public Health, Sciensano, Brussels, Belgium
| | - Claude Fischer
- Dept. Nature Management, University of Applied Sciences of Western Switzerland, Geneva, Switzerland
| | - Martine Laitat
- Faculty of Veterinary Medicine, Swine Clinic, Clinical Department of Production Animals, University of Liège, Liège, Belgium
| | - Dominiek Maes
- Faculty of Veterinary Medicine, Department of Reproduction, Obstetrics and Herd Health, Ghent University, Merelbeke, Belgium
| | - Kevin Morelle
- Faculty of Forestry and Wood Sciences, Department of Game Management and Wildlife Biology, Czech University of Life Sciences, Prague, Czech Republic.,Department of Migration, Max Planck Institute of Animal Behavior, Radolfzell, Germany
| | - Hans Nauwynck
- Faculty of Veterinary Medicine, Department of Virology, Parasitology and Immunology, Ghent University, Merelbeke, Belgium
| | - Xavier Simons
- Veterinary Epidemiology Unit, Department of Epidemiology and Public Health, Sciensano, Brussels, Belgium
| | | | - Xavier Van Huffel
- Staff Direction for Risk Assessment, Directorate General Control Policy, Federal Agency for the Safety of the Food Chain, Bruxelles, Belgium
| | - Etienne Thiry
- Faculty of Veterinary Medicine, Veterinary Virology, FARAH Centre, University of Liège, Liège, Belgium
| | - Jeroen Dewulf
- Faculty of Veterinary Medicine, Department of Reproduction, Obstetrics and Herd Health, Ghent University, Merelbeke, Belgium
| |
Collapse
|
32
|
High Doses of Inactivated African Swine Fever Virus Are Safe, but Do Not Confer Protection against a Virulent Challenge. Vaccines (Basel) 2021; 9:vaccines9030242. [PMID: 33802021 PMCID: PMC7999564 DOI: 10.3390/vaccines9030242] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/04/2021] [Accepted: 03/07/2021] [Indexed: 12/29/2022] Open
Abstract
African swine fever (ASF) is currently the major concern of the global swine industry, as a consequence of which a reconsideration of the containment and prevention measures taken to date is urgently required. A great interest in developing an effective and safe vaccine against ASF virus (ASFV) infection has, therefore, recently appeared. The objective of the present study is to test an inactivated ASFV preparation under a vaccination strategy that has not previously been tested in order to improve its protective effect. The following have been considered: (i) virus inactivation by using a low binary ethyleneimine (BEI) concentration at a low temperature, (ii) the use of new and strong adjuvants; (iii) the use of very high doses (6 × 109 haemadsorption in 50% of infected cultures (HAD50)), and (iv) simultaneous double inoculation by two different routes of administration: intradermal and intramuscular. Five groups of pigs were, therefore, inoculated with BEI- Pol16/DP/OUT21 in different adjuvant formulations, twice with a 4-week interval. Six weeks later, all groups were intramuscularly challenged with 10 HAD50 of the virulent Pol16/DP/OUT21 ASFV isolate. All the animals had clinical signs and pathological findings consistent with ASF. This lack of effectiveness supports the claim that an inactivated virus strategy may not be a viable vaccine option with which to fight ASF.
Collapse
|
33
|
Truong QL, Nguyen LT, Babikian HY, Jha RK, Nguyen HT, To TL. Natural oil blend formulation as an anti-African swine fever virus agent in in vitro primary porcine alveolar macrophage culture. Vet World 2021; 14:794-802. [PMID: 33935430 PMCID: PMC8076445 DOI: 10.14202/vetworld.2021.794-802] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 02/08/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND AND AIM African swine fever is one of the severe pathogens of swine. It has a significant impact on production and economics. So far, there are no known remedies, such as vaccines or drugs, reported working successfully. In the present study, the natural oil blend formulation's (NOBF) efficacy was evaluated against ASFV in vitro using porcine alveolar macrophages (PAMs) cells of swine. MATERIALS AND METHODS The capacity of NOBF against the ASFV was tested in vitro. The NOBF combines Eucalyptus globulus, Pinus sylvestris, and Lavandula latifolia. We used a 2-fold serial dilution to test the NOBF formulation dose, that is, 105 HAD50/mL, against purified lethal dose of African swine in primary PAMs cells of swine. The PAM cells survival, real-time polymerase chain reaction (PCR) test, and hemadsorption (HAD) observation were performed to check the NOBF efficacy against ASFV. RESULTS The in vitro trial results demonstrated that NOBF up to dilution 13 or 0.000625 mL deactivates the lethal dose 105 HAD50 of ASFV. There was no HAD (Rosetta formation) up to dilution 12 or 0.00125 mL of NOBF. The Ct value obtained by running real-time PCR of the NOBF group at 96 h post-infection was the same as the initial value or lower (25), whereas the Ct value of positive controls increased several folds (17.84). CONCLUSION The in vitro trial demonstrated that NOBF could deactivate the ASFV. The NOBF has the potential to act as anti-ASFV agent in the field. The next step is to conduct in vivo level trial to determine its efficacy.
Collapse
Affiliation(s)
- Quang Lam Truong
- Key Laboratory of Veterinary Biotechnology, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Hanoi, Vietnam
| | - Lan Thi Nguyen
- Key Laboratory of Veterinary Biotechnology, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Hanoi, Vietnam
| | - Haig Yousef Babikian
- Department of Research and Development, PT. Rhea Natural Sciences, Jakarta, Indonesia
| | - Rajeev Kumar Jha
- Department of Research and Development, PT. Rhea Natural Sciences, Jakarta, Indonesia
| | - Hoa Thi Nguyen
- Key Laboratory of Veterinary Biotechnology, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Hanoi, Vietnam
| | - Thanh Long To
- Key Laboratory of Veterinary Biotechnology, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Hanoi, Vietnam
| |
Collapse
|
34
|
Kirkeby C, Brookes VJ, Ward MP, Dürr S, Halasa T. A Practical Introduction to Mechanistic Modeling of Disease Transmission in Veterinary Science. Front Vet Sci 2021; 7:546651. [PMID: 33575275 PMCID: PMC7870987 DOI: 10.3389/fvets.2020.546651] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 12/21/2020] [Indexed: 11/13/2022] Open
Abstract
Computer-based disease spread models are frequently used in veterinary science to simulate disease spread. They are used to predict the impacts of the disease, plan and assess surveillance, or control strategies, and provide insights about disease causation by comparing model outputs with real life data. There are many types of disease spread models, and here we present and describe the implementation of a particular type: individual-based models. Our aim is to provide a practical introduction to building individual-based disease spread models. We also introduce code examples with the goal to make these techniques more accessible to those who are new to the field. We describe the important steps in building such models before, during and after the programming stage, including model verification (to ensure that the model does what was intended), validation (to investigate whether the model results reflect the modeled system), and convergence analysis (to ensure models of endemic diseases are stable before outputs are collected). We also describe how sensitivity analysis can be used to assess the potential impact of uncertainty about model parameters. Finally, we provide an overview of some interesting recent developments in the field of disease spread models.
Collapse
Affiliation(s)
- Carsten Kirkeby
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark,*Correspondence: Carsten Kirkeby
| | - Victoria J. Brookes
- School of Animal and Veterinary Sciences, Faculty of Science, Charles Sturt University, Wagga, NSW, Australia,Graham Centre for Agricultural Innovation (Charles Sturt University and NSW Department of Primary Industries), Wagga, NSW, Australia
| | - Michael P. Ward
- Faculty of Veterinary Science, Sydney School of Veterinary Science, University of Sydney, Sydney, NSW, Australia
| | - Salome Dürr
- Department of Clinical Research and Public Health, Veterinary Public Health Institute, University of Bern, Bern, Switzerland
| | - Tariq Halasa
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| |
Collapse
|
35
|
Brown VR, Miller RS, McKee SC, Ernst KH, Didero NM, Maison RM, Grady MJ, Shwiff SA. Risks of introduction and economic consequences associated with African swine fever, classical swine fever and foot-and-mouth disease: A review of the literature. Transbound Emerg Dis 2020; 68:1910-1965. [PMID: 33176063 DOI: 10.1111/tbed.13919] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 10/13/2020] [Accepted: 11/06/2020] [Indexed: 12/31/2022]
Abstract
African swine fever (ASF), classical swine fever (CSF) and foot-and-mouth disease (FMD) are considered to be three of the most detrimental animal diseases and are currently foreign to the U.S. Emerging and re-emerging pathogens can have tremendous impacts in terms of livestock morbidity and mortality events, production losses, forced trade restrictions, and costs associated with treatment and control. The United States is the world's top producer of beef for domestic and export use and the world's third-largest producer and consumer of pork and pork products; it has also recently been either the world's largest or second largest exporter of pork and pork products. Understanding the routes of introduction into the United States and the potential economic impact of each pathogen are crucial to (a) allocate resources to prevent routes of introduction that are believed to be more probable, (b) evaluate cost and efficacy of control methods and (c) ensure that protections are enacted to minimize impact to the most vulnerable industries. With two scoping literature reviews, pulled from global data, this study assesses the risk posed by each disease in the event of a viral introduction into the United States and illustrates what is known about the economic costs and losses associated with an outbreak.
Collapse
Affiliation(s)
- Vienna R Brown
- National Feral Swine Damage Management Program, United States Department of Agriculture, Animal and Plant Health Inspection Service, Fort Collins, CO, USA
| | - Ryan S Miller
- Center for Epidemiology and Animal Health, United States Department of Agriculture, Animal and Plant Health Inspection Service, Veterinary Services, Fort Collins, CO, USA
| | - Sophie C McKee
- National Feral Swine Damage Management Program, United States Department of Agriculture, Animal and Plant Health Inspection Service, Fort Collins, CO, USA.,Department of Economics, Colorado State University, Fort Collins, CO, USA
| | - Karina H Ernst
- National Feral Swine Damage Management Program, United States Department of Agriculture, Animal and Plant Health Inspection Service, Fort Collins, CO, USA.,Department of Economics, Colorado State University, Fort Collins, CO, USA
| | - Nicole M Didero
- National Feral Swine Damage Management Program, United States Department of Agriculture, Animal and Plant Health Inspection Service, Fort Collins, CO, USA.,Department of Economics, Colorado State University, Fort Collins, CO, USA
| | - Rachel M Maison
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Meredith J Grady
- Human Dimensions of Natural Resources Department, Colorado State University, Fort Collins, CO, USA
| | - Stephanie A Shwiff
- National Wildlife Research Center, United States Department of Agriculture, Animal and Plant Health Inspection Service, Fort Collins, CO, USA
| |
Collapse
|
36
|
Cappai S, Rolesu S, Feliziani F, Desini P, Guberti V, Loi F. Standardized Methodology for Target Surveillance against African Swine Fever. Vaccines (Basel) 2020; 8:vaccines8040723. [PMID: 33276509 PMCID: PMC7761549 DOI: 10.3390/vaccines8040723] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 11/26/2020] [Accepted: 11/30/2020] [Indexed: 12/15/2022] Open
Abstract
African swine fever (ASF) remains the most serious pig infectious disease, and its persistence in domestic pigs and wild boar (WB) is a threat for the global industry. The surveillance of WB plays a central role in controlling the disease and rapidly detecting new cases. As we are close to eradicating ASF, the need to find any possible pockets of infection is even more important. In this context, passive surveillance is the method of choice for effective surveillance in WB. Considering the time and economic resources related to passive surveillance, to prioritize these activities, we developed a standardized methodology able to identify areas where WB surveillance should be focused on. Using GIS-technology, we divided a specific Sardinian infected area into 1 km2 grids (a total of 3953 grids). Variables related to WB density, ASF cases during the last three years, sex and age of animals, and the type of land were associated with each grid. Epidemiological models were used to identify the areas with both a lack of information and an high risk of hidden ASFV persistence. The results led to the creation of a graphic tool providing specific indications about areas where surveillance should be a priority.
Collapse
Affiliation(s)
- Stefano Cappai
- OEVR—Sardinian Regional Veterinary Epidemiological Observatory, Istituto Zooprofilattico Sperimentale della Sardegna “G. Pegreffi”, 09125 Cagliari, Italy; (S.C.); (S.R.)
| | - Sandro Rolesu
- OEVR—Sardinian Regional Veterinary Epidemiological Observatory, Istituto Zooprofilattico Sperimentale della Sardegna “G. Pegreffi”, 09125 Cagliari, Italy; (S.C.); (S.R.)
| | - Francesco Feliziani
- Italian Reference Laboratory for Pestivirus and Asfivirus, Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche “Togo Rosati”, 06126 Perugia, Italy;
| | - Pietro Desini
- ATS Sardegna, ASSL Sassari, Servizio di Sanità Animale, 07100 Sassari, Italy;
| | - Vittorio Guberti
- ISPRA—Institute for Environmental Protection and Research, 00144 Roma, Italy;
| | - Federica Loi
- OEVR—Sardinian Regional Veterinary Epidemiological Observatory, Istituto Zooprofilattico Sperimentale della Sardegna “G. Pegreffi”, 09125 Cagliari, Italy; (S.C.); (S.R.)
- Correspondence: ; Tel.: +39-327-6925-232
| |
Collapse
|
37
|
Notsu K, Wiratsudakul A, Mitoma S, Daous HE, Kaneko C, El-Khaiat HM, Norimine J, Sekiguchi S. Quantitative Risk Assessment for the Introduction of Bovine Leukemia Virus-Infected Cattle Using a Cattle Movement Network Analysis. Pathogens 2020; 9:pathogens9110903. [PMID: 33126749 PMCID: PMC7693104 DOI: 10.3390/pathogens9110903] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/27/2020] [Accepted: 10/27/2020] [Indexed: 11/18/2022] Open
Abstract
The cattle industry is suffering economic losses caused by bovine leukemia virus (BLV) and enzootic bovine leukosis (EBL), the clinical condition associated with BLV infection. This pathogen spreads easily without detection by farmers and veterinarians due to the lack of obvious clinical signs. Cattle movement strongly contributes to the inter-farm transmission of BLV. This study quantified the farm-level risk of BLV introduction using a cattle movement analysis. A generalized linear mixed model predicting the proportion of BLV-infected cattle was constructed based on weighted in-degree centrality. Our results suggest a positive association between weighted in-degree centrality and the estimated number of introduced BLV-infected cattle. Remarkably, the introduction of approximately six cattle allowed at least one BLV-infected animal to be added to the farm in the worst-case scenario. These data suggest a high risk of BLV infection on farms with a high number of cattle being introduced. Our findings indicate the need to strengthen BLV control strategies, especially along the chain of cattle movement.
Collapse
Affiliation(s)
- Kosuke Notsu
- Graduate School of Medicine and Veterinary Medicine, University of Miyazaki, Miyazaki 889-1692, Japan; (K.N.); (S.M.); (H.E.D.)
| | - Anuwat Wiratsudakul
- Department of Clinical Sciences and Public Health, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom 73170, Thailand;
- The Monitoring and Surveillance Center for Zoonotic Diseases in Wildlife and Exotic Animals, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Shuya Mitoma
- Graduate School of Medicine and Veterinary Medicine, University of Miyazaki, Miyazaki 889-1692, Japan; (K.N.); (S.M.); (H.E.D.)
| | - Hala El Daous
- Graduate School of Medicine and Veterinary Medicine, University of Miyazaki, Miyazaki 889-1692, Japan; (K.N.); (S.M.); (H.E.D.)
- Faculty of Veterinary Medicine, Benha University, Toukh 13736, Egypt;
| | - Chiho Kaneko
- Center for Animal Disease Control, University of Miyazaki, Miyazaki 889-2192, Japan; (C.K.); (J.N.)
| | - Heba M. El-Khaiat
- Faculty of Veterinary Medicine, Benha University, Toukh 13736, Egypt;
| | - Junzo Norimine
- Center for Animal Disease Control, University of Miyazaki, Miyazaki 889-2192, Japan; (C.K.); (J.N.)
- Department of Veterinary Science, Faculty of Agriculture, University of Miyazaki, Miyazaki 889-2192, Japan
| | - Satoshi Sekiguchi
- Center for Animal Disease Control, University of Miyazaki, Miyazaki 889-2192, Japan; (C.K.); (J.N.)
- Department of Veterinary Science, Faculty of Agriculture, University of Miyazaki, Miyazaki 889-2192, Japan
- Correspondence: ; Tel.: +81-0985-58-7676
| |
Collapse
|
38
|
Pautienius A, Schulz K, Staubach C, Grigas J, Zagrabskaite R, Buitkuviene J, Stankevicius R, Streimikyte Z, Oberauskas V, Zienius D, Salomskas A, Sauter-Louis C, Stankevicius A. African swine fever in the Lithuanian wild boar population in 2018: a snapshot. Virol J 2020; 17:148. [PMID: 33028388 PMCID: PMC7542886 DOI: 10.1186/s12985-020-01422-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 09/28/2020] [Indexed: 01/19/2023] Open
Abstract
The first cases of African swine fever (ASF) were detected in the Lithuanian wild boar population in 2014. Since then, the disease spread slowly through the whole country, affecting both, wild boar and domestic pigs. In the other Baltic states, which both are also affected by ASF since 2014, the recent course of ASF prevalence suggests that the countries might be well under way of disease elimination. In contrast, in Lithuania the epidemic seems to be still in full progress. In the present study, we aimed to extend a previous prevalence study in Lithuania. Looking at ASF virus (ASFV) and seroprevalence estimates of wild boar in all months of 2018 and in all affected municipalities in Lithuania, the course of ASF was evaluated on a temporal and spatial scale. A non-spatial beta-binomial model was used to correct for under- or overestimation of the average prevalence estimates. Within 2018 no big differences between the prevalence estimates were seen over time. Despite of the lower sample size, highest ASFV prevalence estimates were found in dead wild boar, suggesting higher detection rates through passive surveillance than through active surveillance. Accordingly, with the maximum prevalence of 87.5% in May 2018, the ASFV prevalence estimates were very high in wild boar found dead. The number of samples originating from hunted animals (active surveillance) predominated clearly. However, the ASFV prevalence in those animals was lower with a maximum value of 2.1%, emphasizing the high value of passive surveillance. A slight increase of the seroprevalence in hunted wild boar could be seen over time. In the center of Lithuania, a cluster of municipalities with high ASFV and seroprevalence estimates was found. The results of the study indicate that ASFV is still circulating within the Lithuanian wild boar population, constituting a permanent risk of disease transmission into domestic pig holdings. However, additional, more recent data analyses are necessary to re-evaluate the course of ASF in Lithuania and thus, to be able to make a statement about the stage of the ASF epidemic in the country. This is of huge importance for Lithuania for evaluating control measures and their efficacy, but also for neighbouring countries to assess the risk of disease spread from Lithuania.
Collapse
Affiliation(s)
- Arnoldas Pautienius
- Immunology Laboratory, Department of Anatomy and Physiology, Faculty of Veterinary Medicine, Lithuanian University of Health Sciences, Tilzes Str. 18, Kaunas, Lithuania
- Faculty of Veterinary Medicine, Institute of Microbiology and Virology, Lithuanian University of Health Sciences, Tilzes Str. 18, Kaunas, Lithuania
| | - Katja Schulz
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Epidemiology, Südufer 10, 17493, Greifswald-Insel Riems, Germany.
| | - Christoph Staubach
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Epidemiology, Südufer 10, 17493, Greifswald-Insel Riems, Germany
| | - Juozas Grigas
- Immunology Laboratory, Department of Anatomy and Physiology, Faculty of Veterinary Medicine, Lithuanian University of Health Sciences, Tilzes Str. 18, Kaunas, Lithuania
- Faculty of Veterinary Medicine, Institute of Microbiology and Virology, Lithuanian University of Health Sciences, Tilzes Str. 18, Kaunas, Lithuania
| | - Ruta Zagrabskaite
- National Food and Veterinary Risk Assessment Institute, J. Kairiukscio Str. 10, Vilnius, Lithuania
| | - Jurate Buitkuviene
- National Food and Veterinary Risk Assessment Institute, J. Kairiukscio Str. 10, Vilnius, Lithuania
| | - Rolandas Stankevicius
- Department of Animal Breeding and Nutrition, Faculty of Animal Husbandry Technology, Lithuanian University of Health Sciences, Tilzes Str. 18, Kaunas, Lithuania
| | - Zaneta Streimikyte
- Faculty of Veterinary Medicine, Institute of Microbiology and Virology, Lithuanian University of Health Sciences, Tilzes Str. 18, Kaunas, Lithuania
| | - Vaidas Oberauskas
- Immunology Laboratory, Department of Anatomy and Physiology, Faculty of Veterinary Medicine, Lithuanian University of Health Sciences, Tilzes Str. 18, Kaunas, Lithuania
| | - Dainius Zienius
- Faculty of Veterinary Medicine, Institute of Microbiology and Virology, Lithuanian University of Health Sciences, Tilzes Str. 18, Kaunas, Lithuania
| | - Algirdas Salomskas
- Department of Pathobiology, Faculty of Veterinary Medicine, Lithuanian University of Health Sciences, Tilzes Str. 18, Kaunas, Lithuania
| | - Carola Sauter-Louis
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Epidemiology, Südufer 10, 17493, Greifswald-Insel Riems, Germany
| | - Arunas Stankevicius
- Immunology Laboratory, Department of Anatomy and Physiology, Faculty of Veterinary Medicine, Lithuanian University of Health Sciences, Tilzes Str. 18, Kaunas, Lithuania
| |
Collapse
|
39
|
Vergne T, Andraud M, Bonnet S, De Regge N, Desquesnes M, Fite J, Etore F, Garigliany MM, Jori F, Lempereur L, Le Potier MF, Quillery E, Saegerman C, Vial L, Bouhsira E. Mechanical transmission of African swine fever virus by Stomoxys calcitrans: Insights from a mechanistic model. Transbound Emerg Dis 2020; 68:1541-1549. [PMID: 32910533 DOI: 10.1111/tbed.13824] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/18/2020] [Accepted: 09/03/2020] [Indexed: 11/30/2022]
Abstract
African swine fever (ASF) represents a global threat with huge economic consequences for the swine industry. Even though direct contact is likely to be the main transmission route from infected to susceptible hosts, recent epidemiological investigations have raised questions regarding the role of haematophagous arthropods, in particular the stable fly (Stomoxys calcitrans). In this study, we developed a mechanistic vector-borne transmission model for ASF virus (ASFV) within an outdoor domestic pig farm in order to assess the relative contribution of stable flies to the spread of the virus. The model was fitted to the ecology of the vector, its blood-feeding behaviour and pig-to-pig transmission dynamic. Model outputs suggested that in a context of low abundance (<5 flies per pig), stable flies would play a minor role in the spread of ASFV, as they are expected to be responsible for around 10% of transmission events. However, with abundances of 20 and 50 stable flies per pig, the vector-borne transmission would likely be responsible for almost 30% and 50% of transmission events, respectively. In these situations, time to reach a pig mortality of 10% would be reduced by around 26% and 40%, respectively. The sensitivity analysis emphasized that the expected relative contribution of stable flies was strongly dependent on the volume of blood they regurgitated and the infectious dose for pigs. This study identified crucial knowledge gaps that need to be filled in order to assess more precisely the potential contribution of stable flies to the spread of ASFV, including a quantitative description of the populations of haematophagous arthropods that could be found in pig farms, a better understanding of blood-feeding behaviours of stable flies and the quantification of the probability that stable flies partially fed with infectious blood transmit the virus to a susceptible pig during a subsequent blood-feeding attempt.
Collapse
Affiliation(s)
- Timothée Vergne
- UMR ENVT-INRAE IHAP, National Veterinary School of Toulouse, France
| | - Mathieu Andraud
- Unité d'Epidémiologie et de Bien-être Animal, Laboratoire de Ploufragan/Plouzané/Niort, Anses, France
| | - Sarah Bonnet
- UMR BIPAR, Animal Health Laboratory, INRAE, ANSES, Ecole Nationale Vétérinaire d'Alfort, Université Paris-Est, Maisons-Alfort Cedex, France
| | - Nick De Regge
- Sciensano, Scientific Direction Infectious Diseases in Animals, Brussels, Belgium
| | - Marc Desquesnes
- InterTryp, University of Montpellier, CIRAD, IRD, Montpellier, France
| | - Johanna Fite
- French Agency for Food, Environmental and Occupational Health & Safety, Maisons-Alfort Cedex, France
| | - Florence Etore
- French Agency for Food, Environmental and Occupational Health & Safety, Maisons-Alfort Cedex, France
| | - Mutien-Marie Garigliany
- Fundamental and Applied Research for Animal and Health (FARAH) Center, University of Liège, Liège
| | - Ferran Jori
- UMR Animal, Santé, Territoires, Risque et Ecosystèmes (ASTRE), CIRAD-INRAE Montpellier, Montpellier, France
| | | | | | - Elsa Quillery
- UMR Animal, Santé, Territoires, Risque et Ecosystèmes (ASTRE), CIRAD-INRAE Montpellier, Montpellier, France
| | - Claude Saegerman
- Fundamental and Applied Research for Animal and Health (FARAH) Center, University of Liège, Liège
| | - Laurence Vial
- UMR Animal, Santé, Territoires, Risque et Ecosystèmes (ASTRE), CIRAD-INRAE Montpellier, Montpellier, France
| | - Emilie Bouhsira
- UMR ENVT-INRAE InTheRes, National Veterinary School of Toulouse, Toulouse, France
| |
Collapse
|
40
|
Croft S, Franzetti B, Gill R, Massei G. Too many wild boar? Modelling fertility control and culling to reduce wild boar numbers in isolated populations. PLoS One 2020; 15:e0238429. [PMID: 32946480 PMCID: PMC7500663 DOI: 10.1371/journal.pone.0238429] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 08/17/2020] [Indexed: 12/20/2022] Open
Abstract
Wild boar and feral swine number and range are increasing worldwide in parallel with their impact on biodiversity and human activities. The ecological and economic impact of this species include spread of diseases, vehicle collisions, damage to crops, amenities and infrastructures and reduction in plant and animal abundance and richness. As traditional methods such as culling have not contained the growth and spread of wild boar and feral pigs, alternative methods such as fertility control are now advocated. We used empirical data on two isolated wild boar populations to model and compare the effects of different regimes of culling and fertility control on population trends. We built a Bayesian population model and applied it to explore the implications for population control of various management options combining culling and/or contraception. The results showed that, whilst fertility control on its own was not sufficient to achieve the target reduction in wild boar number, adding fertility control to culling was more effective than culling alone. In particular, using contraceptives on 40% of the population to complement the culling of 60% of the animals, halved the time to achieve our target reduction compared with culling only. We conclude that, assuming the effort of adding fertility control to culling was found to be cost-effective in terms of population reduction, these two methods should be used simultaneously if a rapid decrease in wild boar number is required for a closed population.
Collapse
Affiliation(s)
- Simon Croft
- National Wildlife Management Centre, Animal and Plant Health Agency, York, United Kingdom
| | - Barbara Franzetti
- Institute for Environmental Protection and Research (ISPRA), Rome, Italy
| | - Robin Gill
- Centre for Ecosystems, Society and Biosecurity, Forest Research, Farnham, United Kingdom
| | - Giovanna Massei
- National Wildlife Management Centre, Animal and Plant Health Agency, York, United Kingdom
| |
Collapse
|
41
|
Mathematical Approach to Estimating the Main Epidemiological Parameters of African Swine Fever in Wild Boar. Vaccines (Basel) 2020; 8:vaccines8030521. [PMID: 32932614 PMCID: PMC7563513 DOI: 10.3390/vaccines8030521] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/09/2020] [Accepted: 09/10/2020] [Indexed: 12/15/2022] Open
Abstract
African swine fever (ASF) severely threatens the swine industry worldwide, given its spread and the absence of an available licensed vaccine, and has caused severe economic losses. Its persistence in wild boar (WB), longer than in domestic pig farms, and the knowledge gaps in ASF epidemiology hinder ASF virus (ASFV) eradication. Even in areas where disease is effectively controlled and ASFV is no longer detected, declaring eradication is difficult as seropositive WBs may still be detected. The aim of this work was to estimate the main ASF epidemiological parameters specific for the north of Sardinia, Italy. The estimated basic (R0) and effective (Re) reproduction numbers demonstrate that the ASF epidemic is declining and under control with an R0 of 1.139 (95% confidence interval (CI) = 1.123-1.153) and Re of 0.802 (95% CI = 0.612-0.992). In the last phases of an epidemic, these estimates are crucial tools for identifying the intensity of interventions required to definitively eradicate the disease. This approach is useful to understand if and when the detection of residual seropositive WB is no longer associated with any further ASFV circulation.
Collapse
|
42
|
Saegerman C, Bonnet S, Bouhsira E, De Regge N, Fite J, Etoré F, Garigliany MM, Jori F, Lempereur L, Le Potier MF, Quillery E, Vergne T, Vial L. An expert opinion assessment of blood-feeding arthropods based on their capacity to transmit African swine fever virus in Metropolitan France. Transbound Emerg Dis 2020; 68:1190-1204. [PMID: 32750188 DOI: 10.1111/tbed.13769] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 07/29/2020] [Accepted: 07/29/2020] [Indexed: 11/29/2022]
Abstract
To deal with the limited literature data on the vectorial capacity of blood-feeding arthropods (BFAs) and their role in the transmission of African swine fever virus (ASFV) in Metropolitan France, a dedicated working group of the French Agency for Food, Environmental and Occupational Health & Safety performed an expert knowledge elicitation. In total, 15 different BFAs were selected as potential vectors by the ad hoc working group involved. Ten criteria were considered to define the vectorial capacity: vectorial competence, current abundance, expected temporal abundance, spatial distribution, longevity, biting rate, active dispersal capacity, trophic preferences for Suidae, probability of contact with domestic pigs and probability of contact with wild boar. Fourteen experts participated to the elicitation. For each BFA, experts proposed a score (between 0 and 3) for each of the above criteria with an index of uncertainty (between 1 and 4). Overall, all experts gave a weight for all criteria (by distributing 100 marbles). A global weighted sum of score per BFA was calculated permitting to rank the different BFAs in decreasing order. Finally, a regression tree analysis was used to group those BFAs with comparable likelihood to play a role in ASF transmission. Out of the ten considered criteria, the experts indicated vectorial competence, abundance and biting rate as the most important criteria. In the context of Metropolitan France, the stable fly (Stomoxys calcitrans) was ranked as the most probable BFA to be a vector of ASFV, followed by lice (Haematopinus suis), mosquitoes (Aedes, Culex and Anopheles), Culicoides and Tabanidea. Since scientific knowledge on their vectorial competence for ASF is scarce and associated uncertainty on expert elicitation moderate to high, more studies are however requested to investigate the potential vector role of these BFAs could have in ASFV spread, starting with Stomoxys calcitrans.
Collapse
Affiliation(s)
- Claude Saegerman
- Fundamental and Applied Research for Animal and Health (FARAH) Center, University of Liège, Liège, Belgium
| | - Sarah Bonnet
- UMR BIPAR, Animal Health Laboratory, INRAE, ANSES, Ecole Nationale Vétérinaire d'Alfort, Université Paris-Est, Maisons-Alfort Cedex, France
| | - Emilie Bouhsira
- UMR ENVT-INRA IHAP, National Veterinary School of Toulouse, Toulouse, France
| | - Nick De Regge
- Sciensano, Scientific Direction Infectious Diseases in Animals, Bruxelles, Belgium
| | - Johanna Fite
- French Agency for Food, Environmental and Occupational Health & Safety, Maisons-Alfort Cedex, France
| | - Florence Etoré
- French Agency for Food, Environmental and Occupational Health & Safety, Maisons-Alfort Cedex, France
| | - Mutien-Marie Garigliany
- Fundamental and Applied Research for Animal and Health (FARAH) Center, University of Liège, Liège, Belgium
| | - Ferran Jori
- UMR Animal, Santé, Risque et Ecosystèmes (ASTRE), CIRAD-INRAE-Université de Montpellier, Montpellier, France
| | - Laetitia Lempereur
- Fundamental and Applied Research for Animal and Health (FARAH) Center, University of Liège, Liège, Belgium
| | - Marie-Frédérique Le Potier
- Unité de Virologie Immunologie Porcines, Laboratoire de Ploufragan/Plouzané/Niort, Anses, Ploufragan, France
| | - Elsa Quillery
- French Agency for Food, Environmental and Occupational Health & Safety, Maisons-Alfort Cedex, France
| | - Timothée Vergne
- UMR ENVT-INRA IHAP, National Veterinary School of Toulouse, Toulouse, France
| | - Laurence Vial
- UMR Animal, Santé, Risque et Ecosystèmes (ASTRE), CIRAD-INRAE-Université de Montpellier, Montpellier, France
| |
Collapse
|
43
|
Andraud M, Rose N. Modelling infectious viral diseases in swine populations: a state of the art. Porcine Health Manag 2020; 6:22. [PMID: 32843990 PMCID: PMC7439688 DOI: 10.1186/s40813-020-00160-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 06/25/2020] [Indexed: 02/06/2023] Open
Abstract
Mathematical modelling is nowadays a pivotal tool for infectious diseases studies, completing regular biological investigations. The rapid growth of computer technology allowed for development of computational tools to address biological issues that could not be unravelled in the past. The global understanding of viral disease dynamics requires to account for all interactions at all levels, from within-host to between-herd, to have all the keys for development of control measures. A literature review was performed to disentangle modelling frameworks according to their major objectives and methodologies. One hundred and seventeen articles published between 1994 and 2020 were found to meet our inclusion criteria, which were defined to target papers representative of studies dealing with models of viral infection dynamics in pigs. A first descriptive analysis, using bibliometric indexes, permitted to identify keywords strongly related to the study scopes. Modelling studies were focused on particular infectious agents, with a shared objective: to better understand the viral dynamics for appropriate control measure adaptation. In a second step, selected papers were analysed to disentangle the modelling structures according to the objectives of the studies. The system representation was highly dependent on the nature of the pathogens. Enzootic viruses, such as swine influenza or porcine reproductive and respiratory syndrome, were generally investigated at the herd scale to analyse the impact of husbandry practices and prophylactic measures on infection dynamics. Epizootic agents (classical swine fever, foot-and-mouth disease or African swine fever viruses) were mostly studied using spatio-temporal simulation tools, to investigate the efficiency of surveillance and control protocols, which are predetermined for regulated diseases. A huge effort was made on model parameterization through the development of specific studies and methodologies insuring the robustness of parameter values to feed simulation tools. Integrative modelling frameworks, from within-host to spatio-temporal models, is clearly on the way. This would allow to capture the complexity of individual biological variabilities and to assess their consequences on the whole system at the population level. This would offer the opportunity to test and evaluate in silico the efficiency of possible control measures targeting specific epidemiological units, from hosts to herds, either individually or through their contact networks. Such decision support tools represent a strength for stakeholders to help mitigating infectious diseases dynamics and limiting economic consequences.
Collapse
Affiliation(s)
- M. Andraud
- Anses, French Agency for Food, Environmental and Occupational Health & Safety, Ploufragan-Plouzané-Niort Laboratory, Epidemiology, Health and Welfare research unit, F22440 Ploufragan, France
| | - N. Rose
- Anses, French Agency for Food, Environmental and Occupational Health & Safety, Ploufragan-Plouzané-Niort Laboratory, Epidemiology, Health and Welfare research unit, F22440 Ploufragan, France
| |
Collapse
|
44
|
Faverjon C, Meyer A, Howden K, Long K, Peters L, Cameron A. Risk-based early detection system of African Swine Fever using mortality thresholds. Transbound Emerg Dis 2020; 68:1151-1161. [PMID: 32748561 DOI: 10.1111/tbed.13765] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/14/2020] [Accepted: 07/29/2020] [Indexed: 11/26/2022]
Abstract
African swine fever (ASF) is an infectious disease of swine causing major losses in the swine industry worldwide. Early detection of ASF is challenging because of the wide range of non-specific clinical signs produced and its relatively low contagiousness. Monitoring pig mortality is a promising approach for early detection of ASF, but such approach has been associated with delay in disease detection in large pig farms. The purpose of this study was to compare the effectiveness and suitability of early detection strategies for ASF in large commercial pig farms using mortality monitoring at the pen, room or barn level. The within-barn spread of the disease was modelled including the non-homogeneous probabilities of transmission within pens, between pens and between rooms. The performances of early detection surveillance based on mortality thresholds established for different epidemiological units were compared in terms of sensitivity, time to detection and number of false alarms per year. A barn with a capacity of 3,200 pigs divided into 8 rooms with 10 pens each containing 40 pigs per pen was used as an example. Our results show that using room- or pen-based mortality thresholds provided a time to detection of 8 days post-disease introduction. Similar detection performances could be achieved with barn-level mortality threshold but at the cost of an increased number of pigs to be tested each year. The different scenarios tested also show that barn characteristics such as baseline mortality rate and pen size had a limited impact on the pen-level mortality thresholds required for disease early detection. These results offer strong support for using mortality data for early detection of ASF not only in small pig herds but also in large commercial barns. Furthermore, the mortality thresholds defined in this study might be relevant to a wide range of pig production sites.
Collapse
Affiliation(s)
| | | | - Krista Howden
- One Health Scientific Solutions, Sherwood Park, Canada
| | | | | | | |
Collapse
|
45
|
Boklund A, Dhollander S, Chesnoiu Vasile T, Abrahantes JC, Bøtner A, Gogin A, Gonzalez Villeta LC, Gortázar C, More SJ, Papanikolaou A, Roberts H, Stegeman A, Ståhl K, Thulke HH, Viltrop A, Van der Stede Y, Mortensen S. Risk factors for African swine fever incursion in Romanian domestic farms during 2019. Sci Rep 2020; 10:10215. [PMID: 32576841 PMCID: PMC7311386 DOI: 10.1038/s41598-020-66381-3] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 05/18/2020] [Indexed: 01/06/2023] Open
Abstract
African swine fever (ASF) entered Georgia in 2007 and the EU in 2014. In the EU, the virus primarily spread in wild boar (Sus scrofa) in the period from 2014-2018. However, from the summer 2018, numerous domestic pig farms in Romania were affected by ASF. In contrast to the existing knowledge on ASF transmission routes, the understanding of risk factors and the importance of different transmission routes is still limited. In the period from May to September 2019, 655 Romanian pig farms were included in a matched case-control study investigating possible risk factors for ASF incursion in commercial and backyard pig farms. The results showed that close proximity to outbreaks in domestic farms was a risk factor in commercial as well as backyard farms. Furthermore, in backyard farms, herd size, wild boar abundance around the farm, number of domestic outbreaks within 2 km around farms, short distance to wild boar cases and visits of professionals working on farms were statistically significant risk factors. Additionally, growing crops around the farm, which could potentially attract wild boar, and feeding forage from ASF affected areas to the pigs were risk factors for ASF incursion in backyard farms.
Collapse
Affiliation(s)
- A Boklund
- University of Copenhagen, Faculty of Health and Medical Sciences, Section for Animal Welfare and Disease Control, Grønnegårdsvej 8, 1870, Frederiksberg C, Denmark.
| | - S Dhollander
- European Food Safety Authority, Via Carlo Magno 1A, 43126, Parma, Italy
| | - T Chesnoiu Vasile
- The National Sanitary Veterinary and Food Safety Authority, Bucharest, Piata Free Press no. 1 Body D1, District 1, Post Code 013 701, Bucharest, Romania
| | - J C Abrahantes
- European Food Safety Authority, Via Carlo Magno 1A, 43126, Parma, Italy
| | - A Bøtner
- University of Copenhagen, Faculty of Health and Medical Sciences, Section for Veterinary Clinical Microbiology, Stigbøjlen 4, 1870, Frederiksberg C, Denmark
- Statens Serum Institut, Department of Virus and Microbiological Special Diagnostics, Artillerivej 5, 2300, Copenhagen S, Denmark
| | - A Gogin
- Federal Research Center for Virology and Microbiology, 601125, Volginsky, Russia
| | | | - C Gortázar
- SaBio research group at IREC (Universidad de Castilla-La Mancha & CSIC), Ronda de Toledo 12, 13003, Ciudad Real, Spain
| | - S J More
- Centre for Veterinary Epidemiology and Risk Analysis, UCD School of Veterinary Medicine, University College Dublin, Belfield, Dublin, D04 W6F6, Ireland
| | - A Papanikolaou
- European Food Safety Authority, Via Carlo Magno 1A, 43126, Parma, Italy
| | - H Roberts
- Department for Environment Food and Rural Affairs (DEFRA), Exotic Disease Control team, Area 2D, Nobel House, 17 Smith Square, London, SW1P 3JR, England
| | - A Stegeman
- Utrecht University, Faculty of Veterinary Medicine, Yalelaan 7, Utrecht, The Netherlands
| | - K Ståhl
- National Veterinary Institute, 751 89, Uppsala, Sweden
| | - H H Thulke
- Helmholtz Centre for Environmental Research GmbH - UFZ, Department of Ecological Modelling, PG EcoEpi, Permoserstr. 15, Leipzig, Germany
| | - A Viltrop
- Estonian University of Life Sciences, Institute of Veterinary Medicine and Animal Sciences, Kreutzwaldi 62, Tartu, 51006, Estonia
| | - Y Van der Stede
- European Food Safety Authority, Via Carlo Magno 1A, 43126, Parma, Italy
| | - S Mortensen
- Danish Veterinary and Food Administration, Stationsparken 31-33, 2600, Glostrup, Denmark
| |
Collapse
|
46
|
Douglas JV, Bianco S, Edlund S, Engelhardt T, Filter M, Günther T, Hu KM, Nixon EJ, Sevilla NL, Swaid A, Kaufman JH. STEM: An Open Source Tool for Disease Modeling. Health Secur 2020; 17:291-306. [PMID: 31433284 PMCID: PMC6708268 DOI: 10.1089/hs.2019.0018] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The Spatiotemporal Epidemiologic Modeler (STEM) is an open source software project supported by the Eclipse Foundation and used by a global community of researchers and public health officials working to track and, when possible, control outbreaks of infectious disease in human and animal populations. STEM is not a model or a tool designed for a specific disease; it is a flexible, modular framework supporting exchange and integration of community models, reusable plug-in components, and denominator data, available to researchers worldwide at www.eclipse.org/stem. A review of multiple projects illustrates its capabilities. STEM has been used to study variations in transmission of seasonal influenza in Israel by strains; evaluate social distancing measures taken to curb the H1N1 epidemic in Mexico City; study measles outbreaks in part of London and inform local policy on immunization; and gain insights into H7N9 avian influenza transmission in China. A multistrain dengue fever model explored the roles of the mosquito vector, cross-strain immunity, and antibody response in the frequency of dengue outbreaks. STEM has also been used to study the impact of variations in climate on malaria incidence. During the Ebola epidemic, a weekly conference call supported the global modeling community; subsequent work modeled the impact of behavioral change and tested disease reintroduction via animal reservoirs. Work in Germany tracked salmonella in pork from farm to fork; and a recent doctoral dissertation used the air travel feature to compare the potential threats posed by weaponizing infectious diseases. Current projects include work in Great Britain to evaluate control strategies for parasitic disease in sheep, and in Germany and Hungary, to validate the model and inform policy decisions for African swine fever. STEM Version 4.0.0, released in early 2019, includes tools used in these projects and updates technical aspects of the framework to ease its use and re-use. The Spatiotemporal Epidemiologic Modeler (STEM) is an open source software project supported by the Eclipse Foundation and used by a global community of researchers and public health officials working to track and, when possible, control outbreaks of infectious disease in human and animal populations. STEM is not a model or a tool designed for a specific disease; it is a flexible, modular framework supporting exchange and integration of community models, reusable plug‐in components, and denominator data, available to researchers worldwide.
Collapse
Affiliation(s)
- Judith V Douglas
- Judith V. Douglas, MHS, was Lead Technical Writer, Science to Solutions; Simone Bianco, PhD, is a Research Staff Member, Industrial and Applied Genomics, Science to Solutions; Stefan Edlund, MS, is a Research Software Engineer, Industrial and Applied Genomics, Science to Solutions; Kun (Maggie) Hu, PhD, is Research Manager, Public Health and Food Safety; and James H. Kaufman, PhD, is Chief Scientist, Science to Solutions; all at IBM Research-Almaden, San Jose, CA
| | - Simone Bianco
- Judith V. Douglas, MHS, was Lead Technical Writer, Science to Solutions; Simone Bianco, PhD, is a Research Staff Member, Industrial and Applied Genomics, Science to Solutions; Stefan Edlund, MS, is a Research Software Engineer, Industrial and Applied Genomics, Science to Solutions; Kun (Maggie) Hu, PhD, is Research Manager, Public Health and Food Safety; and James H. Kaufman, PhD, is Chief Scientist, Science to Solutions; all at IBM Research-Almaden, San Jose, CA.,Dr. Bianco is also with the National Science Foundation Center for Cellular Construction, University of California San Francisco
| | - Stefan Edlund
- Judith V. Douglas, MHS, was Lead Technical Writer, Science to Solutions; Simone Bianco, PhD, is a Research Staff Member, Industrial and Applied Genomics, Science to Solutions; Stefan Edlund, MS, is a Research Software Engineer, Industrial and Applied Genomics, Science to Solutions; Kun (Maggie) Hu, PhD, is Research Manager, Public Health and Food Safety; and James H. Kaufman, PhD, is Chief Scientist, Science to Solutions; all at IBM Research-Almaden, San Jose, CA
| | - Tekla Engelhardt
- Tekla Engelhardt, PhD, is an Analyst, System Management and Supervision Directorate, National Food Chain Safety Office, Budapest, Hungary
| | - Matthias Filter
- Matthias Filter, Dipl, is a Research Scientist; Taras Günther, MSc, is a PhD student and Scientific Assistant; and Ahmad Swaid is a Software Developer; all in the Biological Safety Department, Food Hygiene and Technology, Supply Chains and Food Defense, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Taras Günther
- Judith V. Douglas, MHS, was Lead Technical Writer, Science to Solutions; Simone Bianco, PhD, is a Research Staff Member, Industrial and Applied Genomics, Science to Solutions; Stefan Edlund, MS, is a Research Software Engineer, Industrial and Applied Genomics, Science to Solutions; Kun (Maggie) Hu, PhD, is Research Manager, Public Health and Food Safety; and James H. Kaufman, PhD, is Chief Scientist, Science to Solutions; all at IBM Research-Almaden, San Jose, CA
| | - Kun Maggie Hu
- Judith V. Douglas, MHS, was Lead Technical Writer, Science to Solutions; Simone Bianco, PhD, is a Research Staff Member, Industrial and Applied Genomics, Science to Solutions; Stefan Edlund, MS, is a Research Software Engineer, Industrial and Applied Genomics, Science to Solutions; Kun (Maggie) Hu, PhD, is Research Manager, Public Health and Food Safety; and James H. Kaufman, PhD, is Chief Scientist, Science to Solutions; all at IBM Research-Almaden, San Jose, CA
| | - Emily J Nixon
- Emily J. Nixon is a PhD student, School of Biological Sciences, University of Bristol, UK
| | - Nereyda L Sevilla
- Nereyda L. Sevilla, PhD, is an Aerospace Physiologist, Schar School of Policy and Government, George Mason University, Fairfax, VA
| | - Ahmad Swaid
- Judith V. Douglas, MHS, was Lead Technical Writer, Science to Solutions; Simone Bianco, PhD, is a Research Staff Member, Industrial and Applied Genomics, Science to Solutions; Stefan Edlund, MS, is a Research Software Engineer, Industrial and Applied Genomics, Science to Solutions; Kun (Maggie) Hu, PhD, is Research Manager, Public Health and Food Safety; and James H. Kaufman, PhD, is Chief Scientist, Science to Solutions; all at IBM Research-Almaden, San Jose, CA
| | - James H Kaufman
- Judith V. Douglas, MHS, was Lead Technical Writer, Science to Solutions; Simone Bianco, PhD, is a Research Staff Member, Industrial and Applied Genomics, Science to Solutions; Stefan Edlund, MS, is a Research Software Engineer, Industrial and Applied Genomics, Science to Solutions; Kun (Maggie) Hu, PhD, is Research Manager, Public Health and Food Safety; and James H. Kaufman, PhD, is Chief Scientist, Science to Solutions; all at IBM Research-Almaden, San Jose, CA
| |
Collapse
|
47
|
Halasa T, Ward MP, Boklund A. The impact of changing farm structure on foot-and-mouth disease spread and control: A simulation study. Transbound Emerg Dis 2020; 67:1633-1644. [PMID: 32012445 DOI: 10.1111/tbed.13500] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 12/19/2019] [Accepted: 01/27/2020] [Indexed: 11/29/2022]
Abstract
Foot-and-mouth disease (FMD) is a highly contagious viral disease that affects ruminants and pigs. Countries with large exports of livestock products are highly vulnerable to economic damage following an FMD incursion. The faster disease spread is controlled, the lower the economic damage. During the past decades, the structure of livestock production has dramatically changed. To maintain the relevance of contingency plans, it is important to understand the effects of changes in herd structure on the spread and control of infectious diseases. In this study, we compare the spread and control of FMD based on 2006/2007 and 2018 livestock data. Spread of FMD in Denmark was simulated using the DTU-DADS model, applying different control measures. The number of cattle, swine and sheep/goat herds reduced from about 50,000 in total in 2006/2007 to about 33,000 in 2018. During this period, the average number of outgoing animal movements and the exports of swine and swine products increased by about 35% and 22%, respectively. This coincided with an overall increase in herd size of 14%. Using the EU and national control measures (Basic: 3 days standstill, depopulation of detected herds followed by cleaning and disinfection and establishment of control zones, where tracing, surveillance and contact restrictions are implemented), we found that the simulated epidemics in 2018 would be about 50% shorter in duration, affect about 50% fewer herds but cause more economic damage, compared to epidemics using 2006/2007 data. When 2006/2007 data were used, Basic + pre-emptive depopulation (Depop) overall was the optimal control strategy. When 2018 data were used, this was the case only when epidemics were initiated in cattle herds, whereas when epidemics were initiated in sow or sheep/goats herds, basic performed as well as Depop. The results demonstrate that regular assessment of measures to control the spread of infectious diseases is necessary for contingency planning.
Collapse
Affiliation(s)
- Tariq Halasa
- Section for Animal Welfare and Disease Control, Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Michael P Ward
- Sydney School of Veterinary Science, The University of Sydney, Camden, NSW, Australia
| | - Anette Boklund
- Section for Animal Welfare and Disease Control, Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg C, Denmark
| |
Collapse
|
48
|
Marcon A, Linden A, Satran P, Gervasi V, Licoppe A, Guberti V. R 0 Estimation for the African Swine Fever Epidemics in Wild Boar of Czech Republic and Belgium. Vet Sci 2019; 7:E2. [PMID: 31892104 PMCID: PMC7157672 DOI: 10.3390/vetsci7010002] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 12/21/2019] [Accepted: 12/22/2019] [Indexed: 12/23/2022] Open
Abstract
African swine fever (ASF) is a contagious haemorrhagic fever that affects both domesticated and wild pigs. Since ASF reached Europe wild boar populations have been a reservoir for the virus. Collecting reliable data on infected individuals in wild populations is challenging, and this makes it difficult to deploy an effective eradication strategy. However, for diseases with high lethality rate, infected carcasses can be used as a proxy for the number of infected individuals at a certain time. Then R0 parameter can be used to estimate the time distribution of the number of newly infected individuals for the outbreak. We estimated R0 for two ASF outbreaks in wild boar, in Czech Republic and Belgium, using the exponential growth method. This allowed us to estimate both R0 and the doubling time (Td) for those infections. The results are R0 = 1.95, Td = 4.39 for Czech Republic and R0 = 1.65, Td = 6.43 for Belgium. We suggest that, if estimated as early as possible, R0 and Td can provide an expected course for the infection against which to compare the actual data collected in the field. This would help to assess if passive surveillance is properly implemented and hence to verify the efficacy of the applied control measures.
Collapse
Affiliation(s)
- Andrea Marcon
- ISPRA Istituto Superiore per la Ricerca e la Protezione Ambientale, 40064 Ozzano E. (BO), Italy; (V.G.); (V.G.)
| | - Annick Linden
- FARAH Research Center, Faculty of Veterinary Medicine, University of Liège, 4000 Liège, Belgium;
| | - Petr Satran
- State Veterinary Administration of the Czech Republic, 100/7 Slezská, Prague, Czech Republic;
| | - Vincenzo Gervasi
- ISPRA Istituto Superiore per la Ricerca e la Protezione Ambientale, 40064 Ozzano E. (BO), Italy; (V.G.); (V.G.)
| | - Alain Licoppe
- Department of Environmental and Agricultural Studies, Public Service of Wallonia, 5030 Gembloux, Belgium;
| | - Vittorio Guberti
- ISPRA Istituto Superiore per la Ricerca e la Protezione Ambientale, 40064 Ozzano E. (BO), Italy; (V.G.); (V.G.)
| |
Collapse
|
49
|
Petit K, Dunoyer C, Fischer C, Hars J, Baubet E, López-Olvera JR, Rossi S, Collin E, Le Potier MF, Belloc C, Peroz C, Rose N, Vaillancourt JP, Saegerman C. Assessment of the impact of forestry and leisure activities on wild boar spatial disturbance with a potential application to ASF risk of spread. Transbound Emerg Dis 2019; 67:1164-1176. [PMID: 31821736 DOI: 10.1111/tbed.13447] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 11/25/2019] [Accepted: 12/02/2019] [Indexed: 11/30/2022]
Abstract
In Europe, African swine fever virus (ASFV) is one of the most threatening infectious transboundary diseases of domestic pigs and wild boar. In September 2018, ASF was detected in wild boar in the South of Belgium. France, as a bordering country, is extremely concerned about the ASF situation in Belgium, and an active preparedness is ongoing in the country. One of the questions raised by this situation relates to disturbing activities that may affect wild boar movements and their possible impact on the spread of ASFV. Despite evidence of disturbance related to hunting practices, there is a paucity of information on the impact of forestry and human leisure activities. To assess this impact on wild boar movements, a systematic review was first conducted but very few useful data were obtained. For this reason, an expert elicitation was carried out by the French Agency for Food, Environmental and Occupational Health & Safety in order to deal with this knowledge gap. A total of 30 experts originating from France and adjacent neighbouring countries (Spain, Belgium and Switzerland) were elicited about the relative importance of six factors of spatial disturbance of wild boar (noise, smell, invasion of space, modification of the environment, duration and frequency of the activity). Then, for each factor of disturbance, they were asked about the impact of 16 different commercial forestry and human leisure activities. A global weighted score was estimated in order to capture the variability of a wide range of territorial conditions and the uncertainty of expert elicitation. This estimate permitted ranking all 16 activities and aggregating them in three groups according to their potential for disturbance of wild boar, using a regression tree analysis. The results of this expert elicitation provide a methodological approach that may be useful for French and other European decision makers and stakeholders involved in the crisis management of ASF.
Collapse
Affiliation(s)
- Karine Petit
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Maisons-Alfort, France
| | - Charlotte Dunoyer
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Maisons-Alfort, France
| | - Claude Fischer
- Department of Nature Management, University of Applied Sciences and Arts - Western Switzerland (HEPIA), Jussy, Switzerland
| | - Jean Hars
- Research and Expertise Department, Diseases Unit, French Hunting and Wildlife Agency (ONCFS), St Benoist, France
| | - Eric Baubet
- Research and Expertise Department, Wild Ungulates Unit, French Hunting and Wildlife Agency (ONCFS), Birieux, France
| | - Jorge Ramón López-Olvera
- Servei d'Ecopatologia de Fauna Salvatge (SEFAS), Departament de Medicina i Cirurgia Animals, Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
| | - Sophie Rossi
- Research and Expertise Department, Diseases Unit, French Hunting and Wildlife Agency (ONCFS), St Benoist, France
| | - Eric Collin
- French National Society of Veterinary Technical Groups (SNGTV), Paris, France
| | - Marie-Frédérique Le Potier
- Pig virology and Immunology Unit, Laboratory of Ploufragan/Plouzané/Niort, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Ploufragan, France
| | - Catherine Belloc
- BIOEPAR, INRA, Oniris, Université Bretagne Loire, Nantes, France
| | - Carole Peroz
- BIOEPAR, INRA, Oniris, Université Bretagne Loire, Nantes, France
| | - Nicolas Rose
- Epidemiology, Health and Welfare Unit, Laboratory of Ploufragan/Plouzané/Niort, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Ploufragan, France
| | | | - Claude Saegerman
- Research Unit for Epidemiology and Risk Analysis applied to veterinary sciences (UREAR-ULg), Centre of Fundamental and Applied Research for Animals and Health (FARAH), University of Liège, Liège, Belgium
| |
Collapse
|
50
|
Cadenas-Fernández E, Sánchez-Vizcaíno JM, Pintore A, Denurra D, Cherchi M, Jurado C, Vicente J, Barasona JA. Free-Ranging Pig and Wild Boar Interactions in an Endemic Area of African Swine Fever. Front Vet Sci 2019; 6:376. [PMID: 31737649 PMCID: PMC6831522 DOI: 10.3389/fvets.2019.00376] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 10/11/2019] [Indexed: 12/05/2022] Open
Abstract
African swine fever virus (ASFV) is spreading throughout Eurasia and there is no vaccine nor treatment available, so the control is based on the implementation of strict sanitary measures. These measures include depopulation of infected and in-contact animals and export restrictions, which can lead to important economic losses, making currently African swine fever (ASF) the greatest threat to the global swine industry. ASF has been endemic on the island of Sardinia since 1978, the longest persistence of anywhere in Eurasia. In Sardinia, eradication programs have failed, in large part due to the lack of farm professionalism, the high density of wild boar and the presence of non-registered domestic pigs (free-ranging pigs). In order to clarify how the virus is transmitted from domestic to wild swine, we examined the interaction between free-ranging pigs and wild boar in an ASF-endemic area of Sardinia. To this end, a field study was carried out on direct and indirect interactions, using monitoring by camera trapping in different areas and risk points. Critical time windows (CTWs) for the virus to survive in the environment (long window) and remain infectious (short window) were estimated, and based on these, the number of indirect interactions were determined. Free-ranging pigs indirectly interacted often with wild boar (long window = 6.47 interactions/day, short window = 1.31 interactions/day) and these interactions (long window) were mainly at water sources. They also directly interacted 0.37 times per day, especially between 14:00 and 21:00 h, which is much higher than for other interspecific interactions observed in Mediterranean scenarios. The highly frequent interactions at this interspecific interface may help explain the more than four-decade-long endemicity of ASF on the island. Supporting that free-ranging pigs can act as a bridge to transmit ASFV between wild boar and registered domestic pigs. This study contributes broadly to improving the knowledge on the estimation of frequencies of direct and indirect interactions between wild and free-ranging domestic swine. As well as supporting the importance of the analysis of interspecific interactions in shared infectious diseases, especially for guiding disease management. Finally, this work illustrates the power of the camera-trapping method for analyzing interspecific interfaces.
Collapse
Affiliation(s)
- Estefanía Cadenas-Fernández
- VISAVET Health Surveillance Centre, Animal Health Department, Faculty of Veterinary, Complutense University of Madrid, Madrid, Spain
| | - Jose M Sánchez-Vizcaíno
- VISAVET Health Surveillance Centre, Animal Health Department, Faculty of Veterinary, Complutense University of Madrid, Madrid, Spain
| | - Antonio Pintore
- Istituto Zooprofilattico Sperimentale della Sardegna, Sardinia, Italy
| | - Daniele Denurra
- Istituto Zooprofilattico Sperimentale della Sardegna, Sardinia, Italy
| | - Marcella Cherchi
- Istituto Zooprofilattico Sperimentale della Sardegna, Sardinia, Italy
| | - Cristina Jurado
- VISAVET Health Surveillance Centre, Animal Health Department, Faculty of Veterinary, Complutense University of Madrid, Madrid, Spain
| | - Joaquín Vicente
- Spanish Wildlife Research Institute (IREC) (CSIC-UCLM), Ciudad Real, Spain
| | - Jose A Barasona
- VISAVET Health Surveillance Centre, Animal Health Department, Faculty of Veterinary, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|