1
|
Akter MS, Punom NJ, Eshik MME, Ahmmed S, Rabbane MG, Rahman MS. Investigation of Tilapia (Oreochromis niloticus) Mortality Events Targeting Tilapia Lake Virus Disease (TiLVD) in Bangladesh. Vet Med Sci 2025; 11:e70262. [PMID: 39950541 PMCID: PMC11826325 DOI: 10.1002/vms3.70262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 01/14/2025] [Accepted: 02/04/2025] [Indexed: 02/17/2025] Open
Abstract
BACKGROUND Tilapia lake virus (TiLV) is an emerging threat to the global tilapia industry. In early 2017, FAO declared that Bangladesh was in a high-risk zone of TiLV disease (TiLVD) spread. OBJECTIVES Considering the current scenario, the present work was designed to investigate the occurrence of TiLV in cultured Nile tilapia (Oreochromis niloticus) causing TiLVD in Bangladesh. METHODS In this study, several unusual tilapia mortality incidences were investigated. A total of 102 pooled organ samples of 102 tilapia fish were collected from 34 ponds of 25 farms in the regions of 12 Upazilas in Bangladesh from May to October 2019. As a part of the classical approach, histopathological analysis was performed. For molecular identification, both conventional and real-time PCR were used as diagnostic tools to identify TiLV in farm-raised Nile tilapia. RESULTS A total of 12 representative organ samples did not show any pathognomonic lesions related to TiLV infection in histopathological analysis. Conventional and real-time PCR assays yielded negative results for TiLV. CONCLUSIONS In our investigation, no trace of TiLV was detected in the studied samples. A large-scale study involving a broader range of samples collected across Bangladesh, along with the application of a viral metagenomics approach, could provide valuable insights into the unusual mortalities of tilapia in the country.
Collapse
Affiliation(s)
- Mst. Sabrina Akter
- Aquatic Animal Health Group, Department of Fisheries, Faculty of Biological SciencesUniversity of DhakaDhakaBangladesh
| | - Nusrat Jahan Punom
- Aquatic Animal Health Group, Department of Fisheries, Faculty of Biological SciencesUniversity of DhakaDhakaBangladesh
| | - Md. Mostavi Enan Eshik
- Aquatic Animal Health Group, Department of Fisheries, Faculty of Biological SciencesUniversity of DhakaDhakaBangladesh
| | - Shawon Ahmmed
- Aquatic Animal Health Group, Department of Fisheries, Faculty of Biological SciencesUniversity of DhakaDhakaBangladesh
| | - Md. Golam Rabbane
- Fisheries Genetics and Biotechnology Laboratory, Department of Fisheries, Faculty of Biological SciencesUniversity of DhakaDhakaBangladesh
| | - Mohammad Shamsur Rahman
- Aquatic Animal Health Group, Department of Fisheries, Faculty of Biological SciencesUniversity of DhakaDhakaBangladesh
| |
Collapse
|
2
|
Lertwanakarn T, Khemthong M, Setthawong P, Phaonakrop N, Roytrakul S, Ploypetch S, Surachetpong W. Proteomic and phosphoproteomic profilings reveal distinct cellular responses during Tilapinevirus tilapiae entry and replication. PeerJ 2025; 13:e18923. [PMID: 39995988 PMCID: PMC11849505 DOI: 10.7717/peerj.18923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 01/10/2025] [Indexed: 02/26/2025] Open
Abstract
Background Tilapia Lake virus (TiLV) poses a significant threat to global tilapia aquaculture, causing high mortality rates and severe economic losses. However, the molecular mechanisms underlying TiLV-host interactions remain largely unexplored. Methodology We investigated the proteomic and phosphoproteomic changes in two piscine cell lines, E-11 and RHTiB cells, following TiLV inoculation at different time points. Differential protein expressions at 10-min and 24-h post infection were selected for constructing protein-protein interactions and analyzing enriched pathways related to the viral entry and replication. Results Our findings revealed significant alterations in protein expression and phosphorylation states, highlighting distinct responses between the cell lines. In E-11 cells, TiLV infection suppressed proteins involved in the Janus kinase-signal transducer and activator of transcription and Fas-associated death domain protein-tumor necrosis factor receptor-associated factor pathways, leading to activation of nucleotide oligomerization domain signaling and apoptosis. In RHTiB cells, TiLV suppressed host cellular metabolism by reducing protein phosphatase activity to facilitate early viral entry, while later stages of infection showed increased activity of myosin heavy chain 9 and enhanced host immune responses via phosphorylation of ribosomal protein L17 and GTPase immunity-associated protein 7 (GIMAP7). Conclusion Our study suggested that TiLV employs different strategies to manipulate host cellular pathways depending on the cell type. Further studies are essential to validate these findings and ultimately facilitate the development of effective antiviral strategies.
Collapse
Affiliation(s)
- Tuchakorn Lertwanakarn
- Department of Physiology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
| | - Matepiya Khemthong
- Department of Veterinary Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
| | - Piyathip Setthawong
- Department of Physiology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
| | - Narumon Phaonakrop
- Functional Proteomics Technology Laboratory, National Center for Genetic Engineering and Biotechnology, Pathum Thani, Thailand
| | - Sittiruk Roytrakul
- Functional Proteomics Technology Laboratory, National Center for Genetic Engineering and Biotechnology, Pathum Thani, Thailand
| | - Sekkarin Ploypetch
- Department of Clinical Sciences and Public Health, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand
| | - Win Surachetpong
- Department of Veterinary Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
- Research Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok, Thailand
| |
Collapse
|
3
|
Kembou-Ringert JE, Hotio FN, Steinhagen D, Thompson KD, Surachetpong W, Rakus K, Daly JM, Goonawardane N, Adamek M. Knowns and unknowns of TiLV-associated neuronal disease. Virulence 2024; 15:2329568. [PMID: 38555518 PMCID: PMC10984141 DOI: 10.1080/21505594.2024.2329568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 03/07/2024] [Indexed: 04/02/2024] Open
Abstract
Tilapia Lake Virus (TiLV) is associated with pathological changes in the brain of infected fish, but the mechanisms driving the virus's neuropathogenesis remain poorly characterized. TiLV establishes a persistent infection in the brain of infected fish even when the virus is no longer detectable in the peripheral organs, rendering therapeutic interventions and disease management challenging. Moreover, the persistence of the virus in the brain may pose a risk for viral reinfection and spread and contribute to ongoing tissue damage and neuroinflammatory processes. In this review, we explore TiLV-associated neurological disease. We discuss the possible mechanism(s) used by TiLV to enter the central nervous system (CNS) and examine TiLV-induced neuroinflammation and brain immune responses. Lastly, we discuss future research questions and knowledge gaps to be addressed to significantly advance this field.
Collapse
Affiliation(s)
- Japhette E. Kembou-Ringert
- Department of infection, immunity and Inflammation, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Fortune N. Hotio
- Department of Animal Biology, Faculty of Science, University of Dschang, Dschang, Cameroon
| | - Dieter Steinhagen
- Fish Disease Research Unit, Institute for parasitology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Kim D. Thompson
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, UK
| | - Win Surachetpong
- Department of Veterinary Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
| | - Krzysztof Rakus
- Department of Evolutionary Immunology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Krakow, Poland
| | - Janet M. Daly
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, UK
| | - Niluka Goonawardane
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Mikolaj Adamek
- Fish Disease Research Unit, Institute for parasitology, University of Veterinary Medicine Hannover, Hannover, Germany
| |
Collapse
|
4
|
Soto E, LaFrentz BR, Yun S, Megarani D, Henderson E, Piewbang C, Johnston AE, Techangamsuwan S, Ng TFF, Warg J, Surachetpong W, Subramaniam K. Diagnosis, isolation and description of a novel amnoonvirus recovered from diseased fancy guppies, Poecilia reticulata. JOURNAL OF FISH DISEASES 2024; 47:e13937. [PMID: 38440909 DOI: 10.1111/jfd.13937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/13/2024] [Accepted: 02/15/2024] [Indexed: 03/06/2024]
Abstract
The guppy, Poecilia reticulata, is one of the most common cultured ornamental fish species, and a popular pet fish highly desired by hobbyists worldwide due to its availability of many brilliantly coloured fish of many varieties. The susceptibility of guppies to diseases presents a remarkable concern for both breeders and hobbyists. In this study, we report the emergence of disease in fancy guppies caused by a previously uncharacterized virus in the USA. This virus was isolated from moribund guppies in two separate outbreaks in California and Alabama, from December 2021 to June 2023. The infected guppies presented with acute morbidity and mortality shortly after shipping, displaying nonspecific clinical signs and gross changes including lethargy, anorexia, swimming at the water surface, gill pallor, mild to moderate coelomic distension and occasional skin lesions including protruding scales, skin ulcers and hyperaemia. Histological changes in affected fish were mild and nonspecific; however, liver and testes from moribund fish were positive for Tilapia lake virus (TiLV), the single described member in the family Amnoonviridae, using immunohistochemistry and in situ hybridization, although the latter was weak. A virus was successfully recovered following tissue inoculation on epithelioma papulosum cyprini and snakehead fish cell lines. Whole genome sequencing and phylogenetic analyses revealed nucleotide and amino acid homologies from 78.3%-91.2%, and 78.2%-97.7%, respectively, when comparing the guppy virus genomes to TiLV isolates. Based on the criteria outlined herein, we propose the classification of this new virus, fancy tailed guppy virus (FTGV), as a member of the family Amnoonviridae, with the name Tilapinevirus poikilos (from the Greek 'poikilos', meaning of many colours; various sorts, akin to 'poecilia').
Collapse
Affiliation(s)
- Esteban Soto
- Department of Veterinary Medicine and Epidemiology, School of Veterinary Medicine University of California, Davis, California, USA
| | | | - Susan Yun
- Department of Veterinary Medicine and Epidemiology, School of Veterinary Medicine University of California, Davis, California, USA
| | - Dorothea Megarani
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, Florida, USA
| | - Eileen Henderson
- California Animal Health and Food Safety Lab, School of Veterinary Medicine, University of California, Davis, California, USA
| | - Chutchai Piewbang
- Animal Virome and Diagnostic Development Research Unit, Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Amber E Johnston
- Aquatic Animal Health Research Unit, USDA-ARS, Auburn, Alabama, USA
| | - Somporn Techangamsuwan
- Animal Virome and Diagnostic Development Research Unit, Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Terry Fei Fan Ng
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Janet Warg
- Diagnostic Virology Laboratory, National Veterinary Services Laboratories, United States Department of Agriculture, Ames, Iowa, USA
| | - Win Surachetpong
- Department of Veterinary Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
| | - Kuttichantran Subramaniam
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, Florida, USA
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
5
|
Mohamad A, Khemthong M, Trongwongsa P, Lertwanakarn T, Setthawong P, Surachetpong W. A New Cell Line from the Brain of Red Hybrid Tilapia ( Oreochromis spp.) for Tilapia Lake Virus Propagation. Animals (Basel) 2024; 14:1522. [PMID: 38891569 PMCID: PMC11171066 DOI: 10.3390/ani14111522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/17/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024] Open
Abstract
Tilapia lake virus (TiLV) presents a substantial threat to global tilapia production. Despite the development of numerous cell lines for TiLV isolation and propagation, none have been specifically derived from red hybrid tilapia (Oreochromis spp.). In this study, we successfully established a new cell line, RHTiB, from the red hybrid tilapia brain. RHTiB cells were cultured for 1.5 years through over 50 passages and demonstrated optimal growth at 25 °C in Leibovitz-15 medium supplemented with 10% fetal bovine serum at pH 7.4. Morphologically, RHTiB cells displayed a fibroblast-like appearance, and cytochrome oxidase I gene sequencing confirmed their origin from Oreochromis spp. Mycoplasma contamination testing yielded negative results. The revival rate of the cells post-cryopreservation was observed to be between 75 and 80% after 30 days. Chromosomal analysis at the 25th passage revealed a diploid count of 22 pairs (2n = 44). While no visible cytopathic effects were observed, both immunofluorescence microscopy and RT-qPCR analysis demonstrated successful TiLV propagation in the RHTiB cell line, with a maximum TiLV concentration of 107.82 ± 0.22 viral copies/400 ng cDNA after 9 days of incubation. The establishment of this species-specific cell line represents a valuable advancement in the diagnostic and isolation tools for viral diseases potentially impacting red hybrid tilapia.
Collapse
Affiliation(s)
- Aslah Mohamad
- Department of Veterinary Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand; (A.M.); (M.K.); (P.T.)
| | - Matepiya Khemthong
- Department of Veterinary Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand; (A.M.); (M.K.); (P.T.)
| | - Pirada Trongwongsa
- Department of Veterinary Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand; (A.M.); (M.K.); (P.T.)
| | - Tuchakorn Lertwanakarn
- Department of Physiology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand;
| | - Piyathip Setthawong
- Department of Physiology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand;
| | - Win Surachetpong
- Department of Veterinary Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand; (A.M.); (M.K.); (P.T.)
- Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok 10210, Thailand
| |
Collapse
|
6
|
Valsalam A, Bedekar MK, Kezhedath J, Sood N, Poojary N, Namdeo MS, Shrivastava N, Rajendran KV. Isolation, in vitro, and in vivo pathogenicity test of Tilapia lake virus (TiLV) and development of a prognostic semi-quantitative lesion scoring system for differentiating clinical/subclinical infection in farmed tilapia (Oreochromis niloticus L.). Microb Pathog 2024; 186:106475. [PMID: 38048839 DOI: 10.1016/j.micpath.2023.106475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 11/10/2023] [Accepted: 11/28/2023] [Indexed: 12/06/2023]
Abstract
Tilapia lake virus ('TiLV-MH-2022') was recently recovered from the naturally infected farmed tilapia. Reverse transcription-polymerase chain reaction (RT-PCR) using segment 1 specific primers, followed by Sanger sequencing, confirmed the infection. The pairwise sequence homology of segment 1 showed its close relationship with the previous isolates. The virus was successfully detected from the mucus, which emphasised the possibility of non-invasive screening of tilapia on a large scale. The virus inoculum prepared from the infected tissues was tested for in vivo and in vitro pathogenicity. Around 100-140 nm-sized electron-dense virus particles were observed in the infected OnlL cells. Based on the onset of symptoms and lesions, all RT-PCR-positive fish were categorised into two groups, 'clinical' and 'subclinical'. A lesion-scoring technique was developed for assessing the pathogenicity of the virus isolate. The external and internal gross lesions and histopathological alterations in the critical organs of the fish, such as the brain, kidney, gills, and liver, were assessed on a scale of 0 (no gross lesion) to 5 (most severe lesions). Overall lesion score was significantly high in the clinical and subclinical groups for gross and histopathology, respectively. This study is the first such attempt to standardise a semi-quantitative lesion scoring technique for TiLV infection, which establishes a clinical relevance and prognostic ability to distinguish between the apparent and inapparent infection.
Collapse
Affiliation(s)
- Anisha Valsalam
- ICAR- Central Institute of Fisheries Education, Mumbai, India
| | | | - Jeena Kezhedath
- ICAR- Central Institute of Fisheries Education, Mumbai, India
| | - Neeraj Sood
- ICAR- National Bureau of Fish Genetic Resources, Lucknow, India
| | - Nalini Poojary
- ICAR- Central Institute of Fisheries Education, Mumbai, India
| | | | - Nidhi Shrivastava
- College of Veterinary Science & Animal Husbandry, MHOW (NDVSU, Jabalpur), India
| | | |
Collapse
|
7
|
Raksaseri P, Lertwanakarn T, Tattiyapong P, Kijtawornrat A, Klomkleaw W, Surachetpong W. Tilapia lake virus causes mitochondrial damage: a proposed mechanism that leads to extensive death in fish cells. PeerJ 2023; 11:e16190. [PMID: 37814626 PMCID: PMC10560495 DOI: 10.7717/peerj.16190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 09/06/2023] [Indexed: 10/11/2023] Open
Abstract
Background Tilapia lake virus (TiLV), also known as Tilapinevirus tilapiae, poses a significant threat to tilapia aquaculture, causing extensive mortality and economic losses. Understanding the mechanisms and pathogenesis of TiLV is crucial to mitigate its impact on this valuable fish species. Methodology In this study, we utilized transmission electron microscopy to investigate the ultrastructural changes in E-11 cells following TiLV infection. We also examined the presence of TiLV particles within the cells. Cellular viability and mitochondrial functions were assessed using MTT and ATP measurement assays and mitochondrial probes including JC-1 staining and MitoTracker™ Red. Results Our findings provide novel evidence demonstrating that TiLV causes cytotoxicity through the destruction of mitochondria. Transmission electron micrographs showed that TiLV particles were present in the cytoplasm of E-11 cells as early as 1 h after infection. Progressive swelling of mitochondria and ultrastructural damage to the cells were observed at 1, 3 and 6 days post-infection. Furthermore, losses of mitochondrial mass and membrane potential (MMP) were detected at 1 day after TiLV inoculation, as determined by mitochondrial probes. The results of the MTT assay also supported the hypothesis that the cell deaths in E-11 cells during TiLV infection may be caused by the disruption of mitochondrial structure and function. Conclusions Our study reveals the significant role of mitochondrial disruption in contributing to cellular death during the early stages of TiLV infection. These findings advance the understanding of TiLV pathogenesis and further enhance our knowledge of viral diseases in fish.
Collapse
Affiliation(s)
- Promporn Raksaseri
- Department of Anatomy, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Tuchakorn Lertwanakarn
- Department of Physiology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
| | - Puntanat Tattiyapong
- Department of Veterinary Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
| | - Anusak Kijtawornrat
- Department of Physiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Wuthichai Klomkleaw
- Department of Anatomy, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Win Surachetpong
- Department of Veterinary Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
| |
Collapse
|
8
|
Mazur M, Rakus K, Adamek M, Surachetpong W, Chadzinska M, Pijanowski L. Effects of light and circadian clock on the antiviral immune response in zebrafish. FISH & SHELLFISH IMMUNOLOGY 2023; 140:108979. [PMID: 37532067 DOI: 10.1016/j.fsi.2023.108979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 07/28/2023] [Accepted: 07/30/2023] [Indexed: 08/04/2023]
Abstract
The circadian clock mechanism, which is evolutionarily conserved across various organisms, plays a crucial role in synchronizing physiological responses to external conditions, primarily in response to light availability. By maintaining homeostasis of biological processes and behavior, the circadian clock serves as a key regulator. This biological mechanism also coordinates diurnal oscillations of the immune response during infections. However there is limited information available regarding the influence of circadian oscillation on immune regulation, especially in lower vertebrates like teleost fish. Therefore, the present study aimed to investigate the effects of light and the timing of infection induction on the antiviral immune response in zebrafish. To explore the relationship between the timing of infection and the response activated by viral pathogens, we used a zebrafish model infected with tilapia lake virus (TiLV). Our findings demonstrated that light availability significantly affects the antiviral immune response and the functioning of the molecular clock mechanism during TiLV infection. This is evident through alterations in the expression of major core clock genes and the regulation of TiLV replication and type I IFN pathway genes in the kidney of fish maintained under LD (light-dark) conditions compared to constant darkness (DD) conditions. Moreover, infection induced during the light phase of the LD cycle, in contrast to nocturnal infection, also exhibited similar effects on the expression of genes associated with the antiviral response. This study indicates a more effective mechanism of the zebrafish antiviral response during light exposure, which inherently involves modification of the expression of key components of the molecular circadian clock. It suggests that the zebrafish antiviral response to infection is regulated by both light and the circadian clock.
Collapse
Affiliation(s)
- Mikolaj Mazur
- Department of Evolutionary Immunology, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, PL30-387, Krakow, Poland; Doctoral School of Exact and Natural Sciences, Jagiellonian University, Łojasiewicza 11, PL30-348, Krakow, Poland
| | - Krzysztof Rakus
- Department of Evolutionary Immunology, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, PL30-387, Krakow, Poland
| | - Mikolaj Adamek
- Fish Disease Research Unit, University of Veterinary Medicine Hannover, Buenteweg 17, 30559, Hannover, Germany
| | - Win Surachetpong
- Department of Veterinary Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, 50 Ngam Wong Wan Road, Ladyao, Chatuchak, 10900, Bangkok, Thailand
| | - Magdalena Chadzinska
- Department of Evolutionary Immunology, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, PL30-387, Krakow, Poland
| | - Lukasz Pijanowski
- Department of Evolutionary Immunology, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, PL30-387, Krakow, Poland.
| |
Collapse
|
9
|
Kembou-Ringert JE, Steinhagen D, Thompson KD, Daly JM, Adamek M. Immune responses to Tilapia lake virus infection: what we know and what we don't know. Front Immunol 2023; 14:1240094. [PMID: 37622112 PMCID: PMC10445761 DOI: 10.3389/fimmu.2023.1240094] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 07/20/2023] [Indexed: 08/26/2023] Open
Abstract
Tilapia lake virus (TiLV) is a novel contagious pathogen associated with a lethal disease affecting and decimating tilapia populations on several continents across the globe. Fish viral diseases, such as Tilapia lake virus disease (TiLVD), represent a serious threat to tilapia aquaculture. Therefore, a better understanding of the innate immune responses involved in establishing an antiviral state can help shed light on TiLV disease pathogenesis. Moreover, understanding the adaptive immune mechanisms involved in mounting protection against TiLV could greatly assist in the development of vaccination strategies aimed at controlling TiLVD. This review summarizes the current state of knowledge on the immune responses following TiLV infection. After describing the main pathological findings associated with TiLVD, both the innate and adaptive immune responses and mechanisms to TiLV infection are discussed, in both disease infection models and in vitro studies. In addition, our work, highlights research questions, knowledge gaps and research areas in the immunology of TiLV infection where further studies are needed to better understand how disease protection against TiLV is established.
Collapse
Affiliation(s)
- Japhette E. Kembou-Ringert
- Department of Infection, Immunity and Inflammation, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Dieter Steinhagen
- Fish Disease Research Unit, Institute for Parasitology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Kim D. Thompson
- Moredun Research Institute, Pentlands Science Park, Penicuik, United Kingdom
| | - Janet M. Daly
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, United Kingdom
| | - Mikolaj Adamek
- Fish Disease Research Unit, Institute for Parasitology, University of Veterinary Medicine Hannover, Hannover, Germany
| |
Collapse
|
10
|
Turner JK, Sakulpolwat S, Sukdanon S, Lertwanakarn T, Waiyamitra P, Piewbang C, Pierezan F, Techangamsuwan S, Soto E, Surachetpong W. Tilapia lake virus (TiLV) causes severe anaemia and systemic disease in tilapia. JOURNAL OF FISH DISEASES 2023; 46:643-651. [PMID: 36848441 DOI: 10.1111/jfd.13775] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 05/07/2023]
Abstract
Tilapia lake virus disease (TiLVD) is an emerging disease in tilapia that is associated with mass mortality affecting global tilapia aquaculture. In this study, red hybrid tilapias (Oreochromis spp.) were experimentally infected by intracoelomic injection with Tilapia lake virus (TiLV) to gain a better understanding of the clinicopathological changes during infection. Pale bodies and gill were observed in infected fish after 7 days of post-challenge (dpc) associated with severe anaemia. Further haematological analysis in TiLV-infected fish revealed decreased levels of haemoglobin and haematocrit at 3 dpc. Common pathological findings included pale and friable liver, pale intestine with catarrhal content, and dark and shrunken spleen in TiLV-infected fish at 7 dpc and 14 dpc. Histologically, reduced numbers of red blood cells and accumulation of melano-macrophage centre in the spleen were found in infected fish at 3 dpc, and severe lesions were more commonly observed at 7 and 14 dpc. Lymphocyte infiltration, syncytial cell formation and multifocal necrotic hepatitis were the prominent pathological findings in the liver of infected fish. The severity of pathological changes was associated with TiLV-infection with higher viral loads and with the expression pattern of pro-inflammatory cytokines and antiviral genes, including interferon regulatory factor 1 (irf1), interleukin (il-8), radical s-adenosyl methionine domain containing 2 (rsad2) and mx. Our study provides a comprehensive analysis of the haematological profile and pathological changes in tilapia during TiLV infection. Overall, lesions present in various organs, together with alteration of host immune response in TiLV-infected fish, indicate the systemic infection of this virus. The knowledge gained from this study improves our understanding of how TiLV causes pathological and haematological changes in tilapia.
Collapse
Affiliation(s)
- Jessica Kaye Turner
- Department of Veterinary Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
| | - Sasakorn Sakulpolwat
- Department of Veterinary Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
| | - Suchanuch Sukdanon
- Department of Veterinary Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
| | - Tuchakorn Lertwanakarn
- Department of Physiology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
| | - Pitchaporn Waiyamitra
- Department of Veterinary Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
| | - Chutchai Piewbang
- Animal Virome and Diagnostic Development Research Unit, Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Felipe Pierezan
- Department of Pathology, Veterinary Clinics and Surgery, School of Veterinary Medicine, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Somporn Techangamsuwan
- Animal Virome and Diagnostic Development Research Unit, Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Esteban Soto
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, California, USA
| | - Win Surachetpong
- Department of Veterinary Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
| |
Collapse
|
11
|
Valsalam A, Rajendran KV, Kezhedath J, Godavarikar A, Sood N, Bedekar MK. Development of an indirect ELISA test for the detection of Tilapia lake virus (TiLV) in fish tissue and mucus samples. J Virol Methods 2023; 315:114707. [PMID: 36882146 DOI: 10.1016/j.jviromet.2023.114707] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/26/2023] [Accepted: 03/04/2023] [Indexed: 03/07/2023]
Abstract
A serological test for screening of TiLV in Oreochromis niloticus would be useful for the epidemiological investigations. Using polyclonal antisera against TiLV (TiLV-Ab), an indirect enzyme-linked immune sorbent assay (iELISA) was developed for the detection of TiLV antigen in fish tissue and mucus. After a cutoff value was established and antigen and antibody concentrations were optimized, the iELISA's sensitivity and specificity were assessed. We found the ideal dilutions of TiLV-Ab as 1: 4000 and secondary antibody as 1:65,000. High analytical sensitivity and moderate specificity were displayed by the developed iELISA. The Positive and Negative Likelihood Ratio (LR+, LR-) were 1.75 and 0.29, respectively. The estimated Positive and Negative Predictive Values (PPV and NPV) of the test were 76.19% and 65.62%, respectively. The accuracy of the developed iELISA was estimated as 73.28%. An immunological survey was performed using the developed iELISA with samples from the field and 155/195 fishes tested positive, indicating a 79.48% TiLV antigen positives. Among the pooled organs and mucus tested, the highest positive rate of 92.3% (36/39) is observed in mucus compared to other tissues, and least positive rate is found in liver of 46% (18/39). The newly designed iELISA proved sensitive and may be helpful for extensive examinations of TiLV infections and monitoring disease status even from apparently healthy samples using a non-invasive technology by collecting mucus as sample for iELISA.
Collapse
Affiliation(s)
- Anisha Valsalam
- ICAR, Central Institute of Fisheries Education, Mumbai, India
| | | | - Jeena Kezhedath
- ICAR, Central Institute of Fisheries Education, Mumbai, India
| | | | - Neeraj Sood
- ICAR, National Bureau of Fish Genetic Resources, Lucknow, India
| | | |
Collapse
|
12
|
Lertwanakarn T, Khemthong M, Tattiyapong P, Surachetpong W. The Modulation of Immune Responses in Tilapinevirus tilapiae-Infected Fish Cells through MAPK/ERK Signalling. Viruses 2023; 15:v15040900. [PMID: 37112880 PMCID: PMC10144228 DOI: 10.3390/v15040900] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 03/28/2023] [Accepted: 03/30/2023] [Indexed: 04/03/2023] Open
Abstract
Tilapia lake virus (TiLV) is a novel RNA virus that has been causing substantial economic losses across the global tilapia industry. Despite extensive research on potential vaccines and disease control methods, the understanding of this viral infection and the associated host cell responses remains incomplete. In this study, the involvement of the mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) pathway in the early stages of TiLV infection was investigated. The results showed a distinct pattern of ERK phosphorylation (p-ERK) upon TiLV infection in two fish cell lines, E-11 and TiB. Specifically, the p-ERK levels in the TiB cells decreased substantially, while the p-ERK levels in the E-11 cells remained constant. Interestingly, a large number of cytopathic effects were observed in the infected E-11 cells but none in the infected TiB cells. Furthermore, when p-ERK was suppressed using the inhibitor PD0325901, a significant reduction in the TiLV load and decrease in the mx and rsad2 gene expression levels were observed in the TiB cells in days 1–7 following infection. These findings highlight the role of the MAPK/ERK signalling pathway and provide new insights into the cellular mechanisms during TiLV infection that could be useful in developing new strategies to control this virus.
Collapse
Affiliation(s)
- Tuchakorn Lertwanakarn
- Department of Physiology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand
| | - Matepiya Khemthong
- Department of Veterinary Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand
| | - Puntanut Tattiyapong
- Department of Veterinary Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand
| | - Win Surachetpong
- Department of Veterinary Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand
| |
Collapse
|
13
|
Ahamad Bustamam MS, Pantami HA, Shaari K, Min CC, Mediani A, Ismail IS. Immunomodulatory effects of Isochrysis galbana incorporated diet on Oreochromis sp. (red hybrid tilapia) via Sera- 1H NMR metabolomics study. FISH & SHELLFISH IMMUNOLOGY 2023; 132:108455. [PMID: 36464078 DOI: 10.1016/j.fsi.2022.108455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 11/22/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
Tilapia is one of the most common fish species that is intensively produced all over the world. However, significant measures at improving aquaculture health must be taken since disease outbreaks are often encountered in the rapidly developing aquaculture industry. Therefore, the objective of the study was designed to evaluate the metabolite changes in tilapia' sera through 1H NMR metabolomics in identifying the potential biomarkers responsible for immunomodulatory effect by the indigenous species of Malaysian microalgae Isochrysis galbana (IG). The results showed that IG-incorporated diet mainly at 5.0% has improved the immune response of innate immunity as observed in serum bactericidal activity (SBA) and serum lysozyme activity (SLA). The orthogonal partial least squares (OPLS) analysis indicated 5 important metabolites significantly upregulated namely as ethanol, lipoprotein, lipid, α-glucose and unsaturated fatty acid (UFA) in the 5.0% IG-incorporated diet compared to control. In conclusion, this study had successfully determined IG in improving aquaculture health through its potential use as an immune modulator. This work also demonstrated the effective use of metabolomics approach in the development of alternative nutritious diet from microalgae species to boost fish health in fulfilling the aquaculture's long-term goals.
Collapse
Affiliation(s)
- Muhammad Safwan Ahamad Bustamam
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia
| | - Hamza Ahmed Pantami
- Department of Chemistry, Faculty of Science, P.M.B 127, Gombe State University, Nigeria
| | - Khozirah Shaari
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia
| | - Chong Chou Min
- Department of Aquaculture, Faculty of Agriculture, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Ahmed Mediani
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, 43600, UKM Bangi, Selangor, Malaysia
| | - Intan Safinar Ismail
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia; Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia.
| |
Collapse
|
14
|
Abbadi M, Basso A, Biasini L, Quartesan R, Buratin A, Davidovich N, Toffan A. Tilapia lake virus: A structured phylogenetic approach. Front Genet 2023; 14:1069300. [PMID: 37144122 PMCID: PMC10151519 DOI: 10.3389/fgene.2023.1069300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 03/31/2023] [Indexed: 05/06/2023] Open
Abstract
Tilapia Lake Virus (TiLV), also known as Tilapia tilapinevirus, is an emerging pathogen affecting both wild and farmed tilapia (Oreochromis spp.), which is considered one of the most important fish species for human consumption. Since its first report in Israel in 2014, Tilapia Lake Virus has spread globally causing mortality rates up to 90%. Despite the huge socio-economic impact of this viral species, to date the scarce availability of Tilapia Lake Virus complete genomes is severely affecting the knowledge on the origin, evolution and epidemiology of this virus. Herein, along with the identification, isolation and complete genome sequencing of two Israeli Tilapia Lake Virus deriving from outbreaks occurred in tilapia farms in Israel in 2018, we performed a bioinformatics multifactorial approach aiming to characterize each genetic segment before carrying out phylogenetic analysis. Results highlighted the suitability of using the concatenated ORFs 1, 3, and 5 in order to obtain the most reliable, fixed and fully supported tree topology. Finally, we also attempted to investigate the presence of potential reassortment events in all the studied isolates. As a result, we report a reassortment event detected in segment 3 of isolate TiLV/Israel/939-9/2018 involved in the present study, and confirmed almost all the other events previously reported.
Collapse
Affiliation(s)
- Miriam Abbadi
- National Reference Laboratory for fish diseases, Istituto Zooprofilattico Sperimentale Delle Venezie, Legnaro, Padova, Italy
- *Correspondence: Miriam Abbadi,
| | - Andrea Basso
- National Reference Laboratory for fish diseases, Istituto Zooprofilattico Sperimentale Delle Venezie, Legnaro, Padova, Italy
| | - Lorena Biasini
- National Reference Laboratory for fish diseases, Istituto Zooprofilattico Sperimentale Delle Venezie, Legnaro, Padova, Italy
| | - Rosita Quartesan
- National Reference Laboratory for fish diseases, Istituto Zooprofilattico Sperimentale Delle Venezie, Legnaro, Padova, Italy
| | - Alessandra Buratin
- National Reference Laboratory for fish diseases, Istituto Zooprofilattico Sperimentale Delle Venezie, Legnaro, Padova, Italy
| | | | - Anna Toffan
- National Reference Laboratory for fish diseases, Istituto Zooprofilattico Sperimentale Delle Venezie, Legnaro, Padova, Italy
| |
Collapse
|
15
|
Megarani DV, Al-Hussinee L, Subramaniam K, Sriwanayos P, Imnoi K, Keleher B, Nicholson P, Surachetpong W, Tattiyapong P, Hick P, Gustafson LL, Waltzek TB. Development of a TaqMan quantitative reverse transcription PCR assay to detect tilapia lake virus. DISEASES OF AQUATIC ORGANISMS 2022; 152:147-158. [PMID: 36546687 DOI: 10.3354/dao03700] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Tilapia lake virus disease (TiLVD) is an emerging viral disease associated with high morbidity and mortality in cultured tilapia worldwide. In this study, we have developed and validated a TaqMan quantitative reverse transcription PCR (RT-qPCR) assay for TiLV, targeting a conserved region within segment 10 of the genome. The RT-qPCR assay was efficient (mean ± SD: 96.71 ± 3.20%), sensitive with a limit of detection of 10 RNA viral copies per reaction, and detected TiLV strains from different geographic regions including North America, South America, Africa, and Asia. The intra- and inter-assay variability ranged over 0.18-1.41% and 0.21-2.21%, respectively. The TaqMan RT-qPCR assay did not cross-react with other RNA viruses of fish, including an orthomyxovirus, a betanodavirus, a picornavirus, and a rhabdovirus. Analysis of 91 proven-positive and 185 proven-negative samples yielded a diagnostic sensitivity of 96.7% and a diagnostic specificity of 100%. The TaqMan RT-qPCR assay also detected TiLV RNA in infected Nile tilapia liver tissue extracts following an experimental challenge study, and it successfully detected TiLV RNA in SSN-1 (E-11 clone) cell cultures displaying cytopathic effects following their inoculation with TiLV-infected tissue homogenates. Thus, the validated TaqMan RT-qPCR assay should be useful for both research and diagnostic purposes. Additionally, the TiLV qPCR assay returns the clinically relevant viral load of a sample which can assist health professionals in determining the role of TiLV during disease investigations. This RT-qPCR assay could be integrated into surveillance programs aimed at mitigating the effects of TiLVD on global tilapia production.
Collapse
Affiliation(s)
- Dorothea V Megarani
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, Florida 32610, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Abu Rass R, Kembou-Ringert JE, Zamostiano R, Eldar A, Ehrlich M, Bacharach E. Mapping of Tilapia Lake Virus entry pathways with inhibitors reveals dependence on dynamin activity and cholesterol but not endosomal acidification. Front Cell Dev Biol 2022; 10:1075364. [PMID: 36605723 PMCID: PMC9809973 DOI: 10.3389/fcell.2022.1075364] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
Tilapia Lake Virus (TiLV) is an emerging virus lethal to tilapia, which threatens the global tilapia aquaculture with severe implications for food security. TiLV possesses similar features to orthomyxoviruses but is classified in the sole and the monotypic genus Tilapinevirus of the family Amnoonviridae. TiLV enveloped virions encapsidate a genome comprising ten segments of single-stranded, negative RNA. Remarkably, nine of TiLV's ten major proteins lack sequence homology to any known viral or cellular proteins. The mode of TiLV entry into tilapia cells is not known. Following the measurement of the entry window of TiLV (∼3 h), we applied a panel of inhibitors of known regulators of endocytic functions to map the molecular requirements for TiLV entry. We identified productive entry by quantification of TiLV nucleoprotein expression and the generation of infectious particles. Inhibition of dynamin activity with dynasore or dynole, or depletion of cholesterol with methyl-β-cyclodextrin, strongly inhibited TiLV protein synthesis and infectious virion production. Moreover, inhibition of actin cytoskeleton polymerization with latrunculin A or microtubule polymerization with nocodazole within the entry window resulted in partial inhibition of TiLV infection. In contrast, inhibitors of endosomal acidification (NH4Cl, bafilomycin A1, or chloroquine), an inhibitor of clathrin-coated pit assembly (pitstop 2), and erlotinib-an inhibitor of the endocytic Cyclin G-associated kinase (GAK), did not affect TiLV entry. Altogether, these results suggest that TiLV enters via dynamin-mediated endocytosis in a cholesterol-, cytoskeleton-dependent manner, and clathrin-, pH-independent manner. Thus, despite being an orthomyxo-like virus, when compared to the prototypical orthomyxovirus (influenza A virus), TiLV shows a distinct set of requirements for entry into cells.
Collapse
Affiliation(s)
- Reem Abu Rass
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv-Yafo, Israel
| | - Japhette Esther Kembou-Ringert
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv-Yafo, Israel
| | - Rachel Zamostiano
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv-Yafo, Israel
| | - Avi Eldar
- Department of Virology, The Kimron Veterinary Institute, Beit Dagan, Israel
| | - Marcelo Ehrlich
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv-Yafo, Israel,*Correspondence: Marcelo Ehrlich, ; Eran Bacharach,
| | - Eran Bacharach
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv-Yafo, Israel,*Correspondence: Marcelo Ehrlich, ; Eran Bacharach,
| |
Collapse
|
17
|
Tattiyapong P, Kitiyodom S, Yata T, Jantharadej K, Adamek M, Surachetpong W. Chitosan nanoparticle immersion vaccine offers protection against tilapia lake virus in laboratory and field studies. FISH & SHELLFISH IMMUNOLOGY 2022; 131:972-979. [PMID: 36351543 DOI: 10.1016/j.fsi.2022.10.063] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 10/27/2022] [Accepted: 10/30/2022] [Indexed: 06/16/2023]
Abstract
Tilapia lake virus (TiLV), an enveloped negative-sense single-stranded RNA virus, causes tilapia lake virus disease (TiLVD), which is associated with mass mortality and severe economic impacts in wild and farmed tilapia industries worldwide. In this study, we developed a chitosan nanoparticle TiLV immersion vaccine and assessed the efficacy of the vaccine in laboratory and field trials. Transmission electron microscopy showed that the inactivated vaccine had a particle size of 210.3 nm, while the nano inactivated vaccine had a spherical shape with a diameter of 120.4 nm. Further analysis using fluorescent staining and immunohistochemistry analysis revealed the mucoadhesive properties of the nanovaccine (CN-KV) through fish gills. We assessed the efficacy of an immersion-based TiLV nanovaccine using a cohabitation challenge model. The fish that received the nanovaccine showed better relative percent survival (RPS) at 68.17% compared with the RPS of the inactivated virus vaccine (KV) group at 25.01%. The CN-KV group also showed a higher TiLV-specific antibody response than the control and KV groups (p < 0.05). Importantly, under field conditions, the fish receiving the CN-KV nanovaccine had better RPS at 52.2% than the nonvaccinated control group. Taken together, the CN-KV nanovaccinated fish showed better survival and antibody response than the control and KV groups both under laboratory control challenge conditions and field trials. The newly developed immersion-based nanovaccine is easy to administer in small fish, is less labor-intensive, and allows for mass vaccination to protect fish from TiLV infection.
Collapse
Affiliation(s)
- Puntanat Tattiyapong
- Interdisciplinary Program in Genetic Engineering and Bioinformatics, Graduate School, Kasetsart University, Bangkok, Thailand; Department of Veterinary Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Thailand
| | - Sirikorn Kitiyodom
- Department of Physiology, Faculty of Veterinary Science, Chulalongkorn University, Thailand
| | - Teerapong Yata
- Department of Physiology, Faculty of Veterinary Science, Chulalongkorn University, Thailand
| | - Krittayapong Jantharadej
- Department of Veterinary Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Thailand
| | - Mikolaj Adamek
- Fish Disease Research Unit, Institute for Parasitology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Win Surachetpong
- Interdisciplinary Program in Genetic Engineering and Bioinformatics, Graduate School, Kasetsart University, Bangkok, Thailand; Department of Veterinary Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Thailand.
| |
Collapse
|
18
|
Abd El-Hack ME, El-Saadony MT, Ellakany HF, Elbestawy AR, Abaza SS, Geneedy AM, Khafaga AF, Salem HM, Abd El-Aziz AH, Selim S, Babalghith AO, AbuQamar SF, El-Tarabily KA. Inhibition of microbial pathogens in farmed fish. MARINE POLLUTION BULLETIN 2022; 183:114003. [PMID: 36030638 DOI: 10.1016/j.marpolbul.2022.114003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/18/2022] [Accepted: 07/27/2022] [Indexed: 06/15/2023]
Abstract
Aquaculture, also known as aqua farming, is defined as farming fish, crustaceans, mollusks, aquatic plants, algae, and other marine organisms. It includes cultivating fresh- and saltwater populations under controlled conditions compared to commercial fishing or wild fish harvesting. Worldwide, carp, salmon, tilapia, and catfish are the most common fish species used in fish farming in descending order. Disinfectants prevent and/or treat different infections in aquatic animals. The current review indicates the uses of different disinfectants against some important pathogens in aquaculture, with particular reference to tilapia (Oreochromis niloticus) farming. A single review cannot cover all aspects of disinfection throughout aquaculture, so the procedures and principles of disinfection in tilapia farming/aquaculture have been chosen for illustration purposes.
Collapse
Affiliation(s)
- Mohamed E Abd El-Hack
- Department of Poultry, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Mohamed T El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Hany F Ellakany
- Department of Poultry and Fish Diseases, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Egypt
| | - Ahmed R Elbestawy
- Department of Poultry and Fish Diseases, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Egypt
| | - Samar S Abaza
- Department of Poultry and Fish Diseases, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Egypt
| | - Amr M Geneedy
- Department of Poultry and Fish Diseases, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Egypt
| | - Asmaa F Khafaga
- Department of Pathology, Faculty of Veterinary Medicine, Alexandria University, Edfina 22758, Egypt
| | - Heba M Salem
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - Ayman H Abd El-Aziz
- Animal Husbandry and Animal Wealth Development Department, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Egypt
| | - Samy Selim
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka 72388, Saudi Arabia
| | - Ahmad O Babalghith
- Medical Genetics Department, College of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Synan F AbuQamar
- Department of Biology, College of Science, United Arab Emirates University, Al Ain 15551, United Arab Emirates.
| | - Khaled A El-Tarabily
- Department of Biology, College of Science, United Arab Emirates University, Al Ain 15551, United Arab Emirates; Khalifa Center for Genetic Engineering and Biotechnology, United Arab Emirates University, Al Ain 15551, United Arab Emirates; Harry Butler Institute, Murdoch University, Murdoch 6150, Western Australia, Australia.
| |
Collapse
|
19
|
Tran TH, Nguyen VTH, Bui HCN, Tran YBT, Tran HTT, Le TTT, Vu HTT, Ngo TPH. Tilapia Lake Virus (TiLV) from Vietnam is genetically distantly related to TiLV strains from other countries. JOURNAL OF FISH DISEASES 2022; 45:1389-1401. [PMID: 35696542 DOI: 10.1111/jfd.13669] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 05/29/2022] [Accepted: 06/01/2022] [Indexed: 06/15/2023]
Abstract
Tilapia Lake Virus (TiLV) is reported as a threat to tilapia aquaculture in 16 countries on four continents with outbreaks causing up to 90% mortality. This research is one of the first studies on TiLVs from Vietnam. We propagated successfully one TiLV isolate HB196-VN-2020 from a diseased tilapia sample using an E-11 cell line and evaluated its virulence in two different weights of red hybrid tilapia and three serial 10-fold diluted viral titers. Smaller fish (4.5 ± 1.98 g) were proved to be more susceptible to TiLV infection at the viral titre of 9.1 × 105 TCID50 fish-1 than larger fish (20.8 ± 7.5 g) with the mortalities of 92.5% and 12.5%, respectively. Reassortant detection analysis revealed seven potential reassortment events among 23 TiLV genomes, indicating the mixed infection of multiple TiLV isolates at the farms and the fish movement among different regions. Seven maximum likelihood phylogenetic trees based on the individual segments or the concatenated coding regions of some segments showed the genetically distant relationship of the Southern Vietnamese isolate RIA2-VN-2019 with the 21 reference isolates, and suggest the different origins of two Vietnamese TiLV isolates (RIA2-VN-2019 and HB196-VN-2020). However, additional sequences from various sampling locations and times are required to better understand the impacts of genetic diversity and reassortments on the evolution, migration and natural selection of TiLVs in Vietnam and other countries.
Collapse
Affiliation(s)
- Triet Hanh Tran
- Division of Aquacultural Biotechnology, Biotechnology Center of Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Vy Thuy Hoang Nguyen
- Division of Aquacultural Biotechnology, Biotechnology Center of Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Hieu Chi Nguyen Bui
- Division of Aquacultural Biotechnology, Biotechnology Center of Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Yen Binh Thi Tran
- Department of Genetics, Faculty of Biology and Biotechnology, University of Science, Vietnam National University Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Huong Thanh Thi Tran
- Division of Aquacultural Biotechnology, Biotechnology Center of Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Thao Thu Thi Le
- Division of Aquacultural Biotechnology, Biotechnology Center of Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Huong Thanh Thi Vu
- Division of Aquacultural Biotechnology, Biotechnology Center of Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Thao Phuong Huynh Ngo
- Division of Aquacultural Biotechnology, Biotechnology Center of Ho Chi Minh City, Ho Chi Minh City, Vietnam
| |
Collapse
|
20
|
Chamtim P, Suwan E, Dong HT, Sirisuay S, Areechon N, Wangkahart E, Hirono I, Mavichak R, Unajak S. Combining segments 9 and 10 in DNA and recombinant protein vaccines conferred superior protection against tilapia lake virus in hybrid red tilapia ( oreochromis sp.) compared to single segment vaccines. Front Immunol 2022; 13:935480. [PMID: 35958595 PMCID: PMC9359061 DOI: 10.3389/fimmu.2022.935480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 06/27/2022] [Indexed: 11/30/2022] Open
Abstract
Tilapia lake virus (TiLV) now affects Nile tilapia culture worldwide, with no available commercial vaccine for disease prevention. DNA and recombinant protein-based vaccines were developed and tested following viral isolation and characterization. The viral strain isolated from diseased hybrid red tilapia (Oreochromis sp.) shared high levels of morphological and genomic similarity (95.49-99.52%) with other TiLV isolates in the GenBank database. TiLV segment 9 (Tis9) and segment 10 (Tis10) DNA vaccines (pcDNA-Tis9 and pcDNA-Tis10) and recombinant protein vaccines (Tis9 and Tis10) were prepared and tested for their efficacy in juvenile hybrid red tilapia. Fish were immunized with either single vaccines (pcDNA-Tis9, pcDNA-Tis10, Tis9 and Tis10) or combined vaccines (pcDNA-Tis9 + pcDNA-Tis10 and Tis9 + Tis10) by intramuscular injection and intraperitoneal injection for DNA and protein vaccines, respectively. Negative controls were injected with PBS or a naked pcDNA3.1 vector in the same manner. An experimental challenge with TiLV was carried out at 4 weeks post-vaccination (wpv) by intraperitoneal injection with a dose of 1 × 105 TCID50 per fish. Relative percent survival (RPS) ranged from 16.67 ± 00.00 to 61.11 ± 9.62%. The Tis10 and pcDNA-Tis10 vaccines conferred better protection compared to Tis9 and pcDNA-Tis9. Highest levels of protection were observed in pcDNA-Tis9 + pcDNA-Tis10 (61.11 ± 9.62%) and Tis9 + Tis10 (55.56 ± 9.62%) groups. Specific antibody was detected in all vaccinated groups at 1-4 wpv by Dot Blot method, with the highest integrated density at 2 and 3 wpv. In silico analysis of Tis9 and Tis10 revealed a number of B-cell epitopes in their coil structure, possibly reflecting their immunogenicity. Findings suggested that the combination of Tis9 and Tis10 in DNA and recombinant protein vaccine showed high efficacy for the prevention of TiLV disease in hybrid red tilapia.
Collapse
Affiliation(s)
- Pitakthai Chamtim
- Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok, Thailand
| | - Eukote Suwan
- Faculty of Veterinary Technology, Kasetsart University, Bangkok, Thailand
| | - Ha Thanh Dong
- Aquaculture and Aquatic Resources Management Program, Department of Food, Agriculture and Bioresources (AARM/FAB), School of Environment, Resources and Development, Asian Institute of Technology, Pathum Thani, Thailand
| | - Soranuth Sirisuay
- Department of Aquaculture, Faculty of Fisheries, Kasetsart University, Bangkok, Thailand
| | - Nontawith Areechon
- Department of Aquaculture, Faculty of Fisheries, Kasetsart University, Bangkok, Thailand
| | - Eakapol Wangkahart
- Division of Fisheries, Department of Agricultural Technology, Faculty of Technology, Mahasarakham University, Maha Sarakham, Thailand
| | - Ikuo Hirono
- Graduate School of Marine Science and Technology, Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - Rapeepat Mavichak
- Molecular Biology Research Department, Charoen Pokphand Foods Public Co., Ltd., Aquatic Animal Health Research Center, Samut Sakhon, Thailand
| | - Sasimanas Unajak
- Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok, Thailand
| |
Collapse
|
21
|
Adamek M, Rebl A, Matras M, Lodder C, Abd El Rahman S, Stachnik M, Rakus K, Bauer J, Falco A, Jung-Schroers V, Piewbang C, Techangamsuwan S, Surachetpong W, Reichert M, Tetens J, Steinhagen D. Immunological insights into the resistance of Nile tilapia strains to an infection with tilapia lake virus. FISH & SHELLFISH IMMUNOLOGY 2022; 124:118-133. [PMID: 35367372 DOI: 10.1016/j.fsi.2022.03.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 03/12/2022] [Accepted: 03/20/2022] [Indexed: 06/14/2023]
Abstract
The emergence of viral diseases affecting fish and causing very high mortality can lead to the disruption of aquaculture production. Recently, this occurred in Nile tilapia aquaculture where a disease caused by a systemic infection with a novel virus named tilapia lake virus (TiLV) caused havoc in cultured populations. With mortality surpassing 90% in young tilapia, the disease caused by TiLV has become a serious challenge for global tilapia aquaculture. In order to partly mitigate the losses, we explored the natural resistance to TiLV-induced disease in three genetic strains of tilapia which were kept at the University of Göttingen, Germany. We used two strains originating from Nilotic regions (Lake Mansala (MAN) and Lake Turkana (ELM)) and one from an unknown location (DRE). We were able to show that the virus is capable of overcoming the natural resistance of tilapia when injected, providing inaccurate mortality results that might complicate finding the resistant strains. Using the cohabitation infection model, we found an ELM strain that did not develop any clinical signs of the infection, which resulted in nearly 100% survival rate. The other two strains (DRE and MAN) showed severe clinical signs and much lower survival rates of 29.3% in the DRE strain and 6.7% in the MAN strain. The disease resistance of tilapia from the ELM strain was correlated with lower viral loads both at the mucosa and internal tissues. Our results suggest that the lower viral load could be caused by a higher magnitude of a mx1-based antiviral response in the initial phase of infection. The lower pro-inflammatory responses also found in the resistant strain might additionally contribute to its protection from developing pathological changes related to the disease. In conclusion, our results suggest the possibility of using TiLV-resistant strains as an ad hoc, cost-effective solution to the TiLV challenge. However, as the fish from the disease-resistant strain still retained significant virus loads in liver and brain and thus could become persistent virus carriers, they should be used within an integrative approach also combining biosecurity, diagnostics and vaccination measures.\.
Collapse
Affiliation(s)
- Mikolaj Adamek
- Fish Disease Research Unit, Institute for Parasitology, University of Veterinary Medicine Hannover, Hannover, Germany.
| | - Alexander Rebl
- Fish Genetics Unit, Institute of Genome Biology, Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Marek Matras
- Laboratory of Fish Diseases, National Veterinary Research Institute, Pulawy, Poland
| | - Christian Lodder
- Department of Animal Sciences, Georg-August-University of Göttingen, Göttingen, Germany
| | - Sahar Abd El Rahman
- Department of Virology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Magdalena Stachnik
- Laboratory of Fish Diseases, National Veterinary Research Institute, Pulawy, Poland
| | - Krzysztof Rakus
- Department of Evolutionary Immunology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Krakow, Poland
| | - Julia Bauer
- Fish Disease Research Unit, Institute for Parasitology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Alberto Falco
- Institute of Research, Development, and Innovation in Healthcare Biotechnology in Elche (IDiBE), Miguel Hernández University (UMH), 03202, Elche, Spain
| | - Verena Jung-Schroers
- Fish Disease Research Unit, Institute for Parasitology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Chutchai Piewbang
- Animal Virome and Diagnostic Development Research Group, Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Somporn Techangamsuwan
- Animal Virome and Diagnostic Development Research Group, Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Win Surachetpong
- Department of Veterinary Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
| | - Michal Reichert
- Laboratory of Fish Diseases, National Veterinary Research Institute, Pulawy, Poland
| | - Jens Tetens
- Department of Animal Sciences, Georg-August-University of Göttingen, Göttingen, Germany; Center for Integrated Breeding Research, Georg-August-University of Göttingen, Göttingen, Germany
| | - Dieter Steinhagen
- Fish Disease Research Unit, Institute for Parasitology, University of Veterinary Medicine Hannover, Hannover, Germany
| |
Collapse
|
22
|
Abdullah A, Pazai AMM, Ridzuan MSM, Sudirwan F, Hashim S, Abas A, Murni M, Roli Z, Ramly R, Firdaus-Nawi M. Persistent detection of Tilapia lake virus in wild tilapia and tinfoil barbs. Vet World 2022; 15:1097-1106. [PMID: 35698523 PMCID: PMC9178594 DOI: 10.14202/vetworld.2022.1097-1106] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 03/15/2022] [Indexed: 11/16/2022] Open
Abstract
Background and Aim: One of the emerging viral diseases in freshwater fish is Tilapia lake virus (TiLV), which infects all stages of fish and results in mass mortalities. Previously, a TiLV case was detected in the wild environment in Malaysia that involved tilapia and tinfoil barb. Hence, this study aimed to determine the presence of TiLV in wild tilapia (Oreochromis niloticus) as well as tinfoil barbs (Barbonymus schwanenfeldii) at the similar lake after the initial outbreak in year 2017. Materials and Methods: Both fish species were sampled from this lake at a month interval for two years and subjected to TiLV detection using reverse transcriptase-polymerase chain reaction and cell culture isolation. Concurrently, bacterial isolation and water quality measurements were performed to deduce their correlation with TiLV occurrence. Other wild fish species and mollusk were also occasionally sampled during the fish inventory activity at this lake. The fish’s weight, length, and associated clinical signs were noted throughout the entire study period. Results: Mortality was not observed throughout the whole study period, and results indicated a moderate to high prevalence of TiLV infection in both tilapia and tinfoil barbs. There was no correlation between TiLV infection with the isolation rate of opportunistic bacteria such as Aeromonas spp., Plesiomonas spp., and Edwardsiella spp. in the study site. At the same time, the Pearson correlation test revealed a moderate negative correlation between the water pH with the presence of TiLV (R=−0.4472; p<0.05) and a moderate positive correlation between the water iron content with the monthly detection of Aeromonas spp. in wild tilapia. This is contrary to tinfoil barbs, where there was a moderate negative correlation between the water iron content with the monthly isolation of Aeromonas spp. (R=−0.5190; p<0.05). Furthermore, isolation of TiLV on cell culture-induced viral invasion was resulted in the cytopathic effects. Conclusions: Our results suggest that the wild fish may harbor TiLV for an extended period following a massive die-off event in 2017 without any obvious clinical signs and mortality. The persistency of viruses in the wild may need continuous and effective control as well as prevention strategies.
Collapse
Affiliation(s)
- Azila Abdullah
- National Fish Health Research Division (NaFisH), Fisheries Research Institute (FRI) Batu Maung, Department of Fisheries Malaysia,11960 Batu Maung, Penang, Malaysia
| | - Afzan Muntaziana Mohd Pazai
- Freshwater Aquaculture Fisheries Research Division, Fisheries Research Institute (FRI) Glami Lemi, Department of Fisheries Malaysia, 71650 Titi Jelebu, Negeri Sembilan, Malaysia
| | - Mohd Syafiq Mohammad Ridzuan
- National Fish Health Research Division (NaFisH), Fisheries Research Institute (FRI) Batu Maung, Department of Fisheries Malaysia,11960 Batu Maung, Penang, Malaysia
| | - Fahmi Sudirwan
- National Fish Health Research Division (NaFisH), Fisheries Research Institute (FRI) Batu Maung, Department of Fisheries Malaysia,11960 Batu Maung, Penang, Malaysia
| | - Shahidan Hashim
- National Fish Health Research Division (NaFisH), Fisheries Research Institute (FRI) Batu Maung, Department of Fisheries Malaysia,11960 Batu Maung, Penang, Malaysia
| | - Adnan Abas
- Perlis State Fisheries Department, Department of Fisheries Malaysia, Lot 636 Kuala Perlis Road, 02000 Perlis, Malaysia
| | - Munira Murni
- National Fish Health Research Division (NaFisH), Fisheries Research Institute (FRI) Batu Maung, Department of Fisheries Malaysia,11960 Batu Maung, Penang, Malaysia
| | - Zuraidah Roli
- National Fish Health Research Division (NaFisH), Fisheries Research Institute (FRI) Batu Maung, Department of Fisheries Malaysia,11960 Batu Maung, Penang, Malaysia
| | - Rimatulhana Ramly
- National Fish Health Research Division (NaFisH), Fisheries Research Institute (FRI) Batu Maung, Department of Fisheries Malaysia,11960 Batu Maung, Penang, Malaysia
| | - Mohd Firdaus-Nawi
- Department of Marine Science, Kulliyyah of Science, International Islamic University Malaysia, 25200 Kuantan, Pahang, Malaysia
| |
Collapse
|
23
|
Inferring protein function in an emerging virus: detection of the nucleoprotein in Tilapia Lake Virus. J Virol 2022; 96:e0175721. [PMID: 35107373 DOI: 10.1128/jvi.01757-21] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Emerging viruses impose global threats to animal and human populations and may bear novel genes with limited homology to known sequences, necessitating the development of novel approaches to infer and test protein functions. This challenge is dramatically evident in tilapia lake virus (TiLV), an emerging orthomyxo-like virus that threatens the global tilapia aquaculture and food security of millions of people. The majority of TiLV proteins have no homology to known sequences, impeding functionality assessments. Using a novel bioinformatics approach, we predicted that TiLV's Protein 4 encodes the nucleoprotein - a factor essential for viral RNA replication. Multiple methodologies revealed the expected properties of orthomyxoviral nucleoproteins. A modified yeast three-hybrid assay detected Protein 4-RNA interactions, which were independent of the RNA sequence, and identified specific positively charged residues involved. Protein 4-RNA interactions were uncovered by R-DeeP and XRNAX methodologies. Immunoelectron microscopy found that multiple Protein 4 copies localized along enriched ribonucleoproteins. TiLV RNA from cells and virions co-immunoprecipitated with Protein 4. Immunofluorescence microscopy detected Protein 4 in the cytoplasm and nuclei, and nuclear Protein 4 increased upon CRM1 inhibition, suggesting CRM1-dependent nuclear export of TiLV RNA. Together, these data reveal TiLV's nucleoprotein and highlight the ability to infer protein functionality, including novel RNA-binding proteins, in emerging pathogens. These are important in light of the expected discovery of many unknown viruses and the zoonotic potential of such pathogens. Importance Tilapia is an important source of dietary protein, especially in developing countries. Massive losses of tilapia were identified worldwide, risking the food security of millions of people. Tilapia lake virus (TiLV) is an emerging pathogen responsible for these disease outbreaks. TiLV's genome encodes ten major proteins, nine of which show no homology to other known viral or cellular proteins, hindering functionality assessment of these proteins. Here we describe a novel bioinformatics approach to infer the functionality of TiLV proteins, which predicted Protein 4 as the nucleoprotein - a factor essential for viral RNA replication. We provided experimental support for this prediction by applying multiple molecular, biochemical, and imaging approaches. Overall, we illustrate a strategy for functional analyses in viral discovery. The strategy is important in light of the expected discovery of many unknown viruses and the zoonotic potential of such pathogens.
Collapse
|
24
|
Mai TT, Kayansamruaj P, Soontara C, Kerddee P, Nguyen DH, Senapin S, Costa JZ, del-Pozo J, Thompson KD, Rodkhum C, Dong HT. Immunization of Nile Tilapia ( Oreochromis niloticus) Broodstock with Tilapia Lake Virus (TiLV) Inactivated Vaccines Elicits Protective Antibody and Passive Maternal Antibody Transfer. Vaccines (Basel) 2022; 10:167. [PMID: 35214626 PMCID: PMC8879158 DOI: 10.3390/vaccines10020167] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/17/2022] [Accepted: 01/19/2022] [Indexed: 02/06/2023] Open
Abstract
Tilapia lake virus (TiLV), a major pathogen of farmed tilapia, is known to be vertically transmitted. Here, we hypothesize that Nile tilapia (Oreochromis niloticus) broodstock immunized with a TiLV inactivated vaccine can mount a protective antibody response and passively transfer maternal antibodies to their fertilized eggs and larvae. To test this hypothesis, three groups of tilapia broodstock, each containing four males and eight females, were immunized with either a heat-killed TiLV vaccine (HKV), a formalin-killed TiLV vaccine (FKV) (both administered at 3.6 × 106 TCID50 per fish), or with L15 medium. Booster vaccination with the same vaccines was given 3 weeks later, and mating took place 1 week thereafter. Broodstock blood sera, fertilized eggs and larvae were collected from 6-14 weeks post-primary vaccination for measurement of TiLV-specific antibody (anti-TiLV IgM) levels. In parallel, passive immunization using sera from the immunized female broodstock was administered to naïve tilapia juveniles to assess if antibodies induced in immunized broodstock were protective. The results showed that anti-TiLV IgM was produced in the majority of both male and female broodstock vaccinated with either the HKV or FKV and that these antibodies could be detected in the fertilized eggs and larvae from vaccinated broodstock. Higher levels of maternal antibody were observed in fertilized eggs from broodstock vaccinated with HKV than those vaccinated with FKV. Low levels of TiLV-IgM were detected in some of the 1-3 day old larvae but were undetectable in 7-14 day old larvae from the vaccinated broodstock, indicating a short persistence of TiLV-IgM in larvae. Moreover, passive immunization proved that antibodies elicited by TiLV vaccination were able to confer 85% to 90% protection against TiLV challenge in naïve juvenile tilapia. In conclusion, immunization of tilapia broodstock with TiLV vaccines could be a potential strategy for the prevention of TiLV in tilapia fertilized eggs and larvae, with HKV appearing to be more promising than FKV for maternal vaccination.
Collapse
Affiliation(s)
- Thao Thu Mai
- Center of Excellence in Fish Infectious Diseases (CE FID), Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand; (T.T.M.); (D.-H.N.)
- The International Graduate Program of Veterinary Science and Technology (VST), Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
- Division of Aquacultural Biotechnology, Biotechnology Center of Ho Chi Minh City, Ho Chi Minh 700000, Vietnam
| | - Pattanapon Kayansamruaj
- Center of Excellence in Aquatic Animal Health Management, Faculty of Fisheries, Kasetsart University, Bangkok 10900, Thailand; (P.K.); (C.S.); (P.K.)
| | - Chayanit Soontara
- Center of Excellence in Aquatic Animal Health Management, Faculty of Fisheries, Kasetsart University, Bangkok 10900, Thailand; (P.K.); (C.S.); (P.K.)
| | - Pattarawit Kerddee
- Center of Excellence in Aquatic Animal Health Management, Faculty of Fisheries, Kasetsart University, Bangkok 10900, Thailand; (P.K.); (C.S.); (P.K.)
| | - Dinh-Hung Nguyen
- Center of Excellence in Fish Infectious Diseases (CE FID), Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand; (T.T.M.); (D.-H.N.)
| | - Saengchan Senapin
- Fish Health Platform, Center of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Faculty of Science, Mahidol University, Bangkok 10400, Thailand;
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khlong Nueng 12120, Thailand
| | - Janina Z. Costa
- Aquaculture Research Group, Moredun Research Institute, Edinburgh EH26 0PZ, UK; (J.Z.C.); (K.D.T.)
| | - Jorge del-Pozo
- Infection and Immunity Division, Roslin Institute, Edinburgh EH25 9RG, UK;
| | - Kim D. Thompson
- Aquaculture Research Group, Moredun Research Institute, Edinburgh EH26 0PZ, UK; (J.Z.C.); (K.D.T.)
| | - Channarong Rodkhum
- Center of Excellence in Fish Infectious Diseases (CE FID), Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand; (T.T.M.); (D.-H.N.)
- The International Graduate Program of Veterinary Science and Technology (VST), Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Ha Thanh Dong
- Aquaculture and Aquatic Resources Program, Department of Food, Agriculture and Bioresources, School of Environment, Resources and Development, Asian Institute of Technology, Khlong Nueng 12120, Thailand
| |
Collapse
|
25
|
Aich N, Paul A, Choudhury TG, Saha H. Tilapia Lake Virus (TiLV) disease: Current status of understanding. AQUACULTURE AND FISHERIES 2022. [DOI: 10.1016/j.aaf.2021.04.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
26
|
Swaminathan TR, Nithyanantham SR, Narendrakumar L, Dharmaratnam A, Sood N, Pradhan PK, Sulumane Ramachandra KS, Lal KK. Co-infection of Lactococcus garvieae and Tilapia lake virus (TiLV) in Nile tilapia Oreochromis niloticus cultured in India. DISEASES OF AQUATIC ORGANISMS 2021; 147:127-140. [PMID: 34913441 DOI: 10.3354/dao03638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Tilapia lake virus (TiLV) and Lactococcus garvieae are 2 major pathogens of cultured Nile tilapia Oreochromis niloticus. In June-July 2018, a disease outbreak was reported in Nile tilapia cultured in brackish water floating cages in Kerala, India. Affected fish died gradually, and cumulative mortality reached ~75% within 1 mo. In the present study, TiLV and L. garvieae were isolated from the infected fish and confirmed. Nucleotide analysis of the partial sequence of segment 3 revealed that the present TiLV isolate showed 100% similarity with TiLV MF574205 and 97.65% similarity with TiLV KU552135 isolated in Israel. The partial 16S rDNA nucleotide sequence of L. garvieae shared 99% similarity with the 16S rDNA nucleotide sequence of L. garvieae isolated from Nile tilapia in Brazil. Eight virulence genes (hly1, hly2, hly3, NADH oxidase, adhPav, LPxTG-1, LPxTG-4, adhC1) were amplified in the present isolate. In the experimental challenge study, the onset of mortality started earlier in fish co-infected with TiLV and L. garvieae (3 d post-infection [dpi]) compared to other groups. Cumulative mortality (90% at 12 dpi) was significantly higher in the co-infected group than in fish infected with TiLV (60% at 12 dpi) and L. garvieae (40% at 12 dpi) alone. This study reveals that synergistic co-infection with TiLV and other bacteria may increase mortality in disease outbreaks. To the best of our knowledge, this is the first reported co-infection of L. garvieae with TiLV associated with mass mortality in Nile tilapia in India.
Collapse
Affiliation(s)
- Thangaraj Raja Swaminathan
- Peninsular and Marine Fish Genetic Resources Centre, ICAR National Bureau of Fish Genetic Resources, CMFRI Campus, Kochi, Kerala 682 018, India
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Lertwanakarn T, Trongwongsa P, Yingsakmongkol S, Khemthong M, Tattiyapong P, Surachetpong W. Antiviral Activity of Ribavirin against Tilapia tilapinevirus in Fish Cells. Pathogens 2021; 10:1616. [PMID: 34959571 PMCID: PMC8705004 DOI: 10.3390/pathogens10121616] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 12/08/2021] [Accepted: 12/09/2021] [Indexed: 11/16/2022] Open
Abstract
The outbreak of the novel Tilapia tilapinevirus or Tilapia lake virus (TiLV) is having a severe economic impact on global tilapia aquaculture. Effective treatments and vaccines for TiLV are lacking. In this study, we demonstrated the antiviral activity of ribavirin against TiLV in E-11 cells. Our findings revealed that at concentrations above 100 μg/mL, ribavirin efficiently attenuates the cytopathic effect of the TiLV infection in fish cells. When administered in a dose-dependent manner, ribavirin significantly improved cell survival compared to the untreated control cells. Further investigation revealed that the cells exposed to ribavirin and TiLV had a lower viral load (p < 0.05) than the untreated cells. However, at concentrations above 1000 μg/mL, ribavirin led to cell toxicity. Taken together, our results demonstrate the efficacy of this antiviral drug against TiLV and could be a useful tool for future research on the pathogenesis and replication mechanism of TiLV as well as other piscine viruses.
Collapse
Affiliation(s)
- Tuchakorn Lertwanakarn
- Department of Physiology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand;
| | - Pirada Trongwongsa
- Department of Veterinary Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand; (P.T.); (S.Y.); (M.K.); (P.T.)
| | - Sangchai Yingsakmongkol
- Department of Veterinary Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand; (P.T.); (S.Y.); (M.K.); (P.T.)
| | - Matepiya Khemthong
- Department of Veterinary Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand; (P.T.); (S.Y.); (M.K.); (P.T.)
| | - Puntanat Tattiyapong
- Department of Veterinary Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand; (P.T.); (S.Y.); (M.K.); (P.T.)
- Interdisciplinary Genetic Engineering Program, The Graduate School, Kasetsart University, Bangkok 10900, Thailand
| | - Win Surachetpong
- Department of Veterinary Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand; (P.T.); (S.Y.); (M.K.); (P.T.)
- Interdisciplinary Genetic Engineering Program, The Graduate School, Kasetsart University, Bangkok 10900, Thailand
| |
Collapse
|
28
|
Mai TT, Kayansamruaj P, Taengphu S, Senapin S, Costa JZ, del‐Pozo J, Thompson KD, Rodkhum C, Dong HT. Efficacy of heat-killed and formalin-killed vaccines against Tilapia tilapinevirus in juvenile Nile tilapia (Oreochromis niloticus). JOURNAL OF FISH DISEASES 2021; 44:2097-2109. [PMID: 34477227 PMCID: PMC9291230 DOI: 10.1111/jfd.13523] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 08/03/2021] [Accepted: 08/03/2021] [Indexed: 06/02/2023]
Abstract
Tilapia tilapinevirus (also known as tilapia lake virus, TiLV) is considered to be a new threat to the global tilapia industry. The objective of this study was to develop simple cell culture-based heat-killed (HKV) and formalin-killed (FKV) vaccines for the prevention of disease caused by TiLV. The fish were immunized with 100 µl of either HKV or FKV by intraperitoneal injection with each vaccine containing 1.8 × 106 TCID50- inactivated virus. A booster vaccination was carried out at 21-day post-vaccination (dpv) using the same protocol. The fish were then challenged with a lethal dose of TiLV at 28 dpv. The expression of five immune genes (IgM, IgD, IgT, CD4 and CD8) in the head kidney and spleen of experimental fish was assessed at 14 and 21 dpv and again after the booster vaccination at 28 dpv. TiLV-specific IgM responses were measured by ELISA at the same time points. The results showed that both vaccines conferred significant protection, with relative percentage survival of 71.3% and 79.6% for HKV and FKV, respectively. Significant up-regulation of IgM and IgT was observed in the head kidney of fish vaccinated with HKV at 21 dpv, while IgM, IgD and CD4 expression increased in the head kidney of fish receiving FKV at the same time point. After booster vaccination, IgT and CD8 transcripts were significantly increased in the spleen of fish vaccinated with the HKV, but not with FKV. Both vaccines induced a specific IgM response in both serum and mucus. In summary, this study showed that both HKV and FKV are promising injectable vaccines for the prevention of disease caused by TiLV in Nile tilapia.
Collapse
Affiliation(s)
- Thao Thu Mai
- Center of Excellence in Fish Infectious Diseases (CE FID), Department of Veterinary MicrobiologyFaculty of Veterinary ScienceChulalongkorn UniversityBangkokThailand
- The International Graduate Program of Veterinary Science and Technology (VST)Faculty of Veterinary ScienceChulalongkorn UniversityBangkokThailand
- Division of Aquacultural BiotechnologyBiotechnology Center of Ho Chi Minh CityHo Chi MinhVietnam
| | - Pattanapon Kayansamruaj
- Center of Excellence in Aquatic Animal Health ManagementFaculty of FisheriesKasetsart UniversityBangkokThailand
| | - Suwimon Taengphu
- Fish Health PlatformCenter of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp)Faculty of ScienceMahidol UniversityBangkokThailand
- National Center for Genetic Engineering and Biotechnology (BIOTEC)National Science and Technology Development Agency (NSTDA)Pathum ThaniThailand
| | - Saengchan Senapin
- Fish Health PlatformCenter of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp)Faculty of ScienceMahidol UniversityBangkokThailand
- National Center for Genetic Engineering and Biotechnology (BIOTEC)National Science and Technology Development Agency (NSTDA)Pathum ThaniThailand
| | - Janina Z. Costa
- Aquaculture Research GroupMoredun Research InstituteEdinburghUK
| | - Jorge del‐Pozo
- Infection and Immunity DivisionRoslin InstituteEdinburghUK
| | - Kim D. Thompson
- Aquaculture Research GroupMoredun Research InstituteEdinburghUK
| | - Channarong Rodkhum
- Center of Excellence in Fish Infectious Diseases (CE FID), Department of Veterinary MicrobiologyFaculty of Veterinary ScienceChulalongkorn UniversityBangkokThailand
- The International Graduate Program of Veterinary Science and Technology (VST)Faculty of Veterinary ScienceChulalongkorn UniversityBangkokThailand
| | - Ha Thanh Dong
- Faculty of Science and TechnologySuan Sunandha Rajabhat UniversityBangkokThailand
- Department of Food, Agriculture and BioresourcesSchool of Environment, Resources and DevelopmentAsian Institute of TechnologyPathum ThaniThailand
| |
Collapse
|
29
|
Mojzesz M, Widziolek M, Adamek M, Orzechowska U, Podlasz P, Prajsnar TK, Pooranachandran N, Pecio A, Michalik A, Surachetpong W, Chadzinska M, Rakus K. Tilapia Lake Virus-Induced Neuroinflammation in Zebrafish: Microglia Activation and Sickness Behavior. Front Immunol 2021; 12:760882. [PMID: 34707620 PMCID: PMC8544261 DOI: 10.3389/fimmu.2021.760882] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 09/20/2021] [Indexed: 12/29/2022] Open
Abstract
In mammals, the relationship between the immune system and behavior is widely studied. In fish, however, the knowledge concerning the brain immune response and behavioral changes during brain viral infection is very limited. To further investigate this subject, we used the model of tilapia lake virus (TiLV) infection of zebrafish (Danio rerio), which was previously developed in our laboratory. We demonstrated that TiLV persists in the brain of adult zebrafish for at least 90 days, even when the virus is not detectable in other peripheral organs. The virions were found in the whole brain. During TiLV infection, zebrafish displayed a clear sickness behavior: decreased locomotor activity, reduced food intake, and primarily localizes near the bottom zone of aquaria. Moreover, during swimming, individual fish exhibited also unusual spiral movement patterns. Gene expression study revealed that TiLV induces in the brain of adult fish strong antiviral and inflammatory response and upregulates expression of genes encoding microglia/macrophage markers. Finally, using zebrafish larvae, we showed that TiLV infection induces histopathological abnormalities in the brain and causes activation of the microglia which is manifested by changes in cell shape from a resting ramified state in mock-infected to a highly ameboid active state in TiLV-infected larvae. This is the first study presenting a comprehensive analysis of the brain immune response associated with microglia activation and subsequent sickness behavior during systemic viral infection in zebrafish.
Collapse
Affiliation(s)
- Miriam Mojzesz
- Department of Evolutionary Immunology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Krakow, Poland
| | - Magdalena Widziolek
- Department of Evolutionary Immunology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Krakow, Poland
| | - Mikolaj Adamek
- Fish Disease Research Unit, Institute for Parasitology, University of Veterinary Medicine, Hannover, Germany
| | - Urszula Orzechowska
- Department of Evolutionary Immunology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Krakow, Poland
| | - Piotr Podlasz
- Department of Pathophysiology, Forensic Veterinary Medicine and Administration, Faculty of Veterinary Medicine, University of Warmia and Mazury, Olsztyn, Poland
| | - Tomasz K Prajsnar
- Department of Evolutionary Immunology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Krakow, Poland
| | - Niedharsan Pooranachandran
- Department of Evolutionary Immunology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Krakow, Poland
| | - Anna Pecio
- Department of Comparative Anatomy, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Krakow, Poland
| | - Anna Michalik
- Department of Invertebrate Development and Morphology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Krakow, Poland
| | - Win Surachetpong
- Department of Veterinary Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
| | - Magdalena Chadzinska
- Department of Evolutionary Immunology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Krakow, Poland
| | - Krzysztof Rakus
- Department of Evolutionary Immunology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Krakow, Poland
| |
Collapse
|
30
|
Kampeera J, Dangtip S, Suvannakad R, Khumwan P, Senapin S, Kiatpathomchai W. Reverse transcription loop-mediated isothermal amplification (RT-LAMP) combined with colorimetric gold nanoparticle (AuNP) probe assay for visual detection of tilapia lake virus (TiLV) in Nile and red hybrid tilapia. JOURNAL OF FISH DISEASES 2021; 44:1595-1607. [PMID: 34170523 DOI: 10.1111/jfd.13482] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 06/11/2021] [Indexed: 05/23/2023]
Abstract
Tilapia is one of the major aquaculture species with a global economic significance. Despite a high scale of production worldwide, mortality in many tilapia cultures has recently become a problem concerned with not only intensive farming but also the prevalence of infectious pathogens. Tilapia lake virus (TiLV) has emerged as a serious single-stranded RNA disease agent that thus far has continued to cause a number of incidences across the continents. Conventional PCR-based molecular detection techniques, despite having high sensitivity for TiLV, are not best suited for the onsite identification of infected fish mainly due to their requirement of laboratory resources and extended assay turnaround time. To address this practical limitation, we have developed a novel colorimetric assay based on reverse transcription-loop-mediated isothermal amplification (RT-LAMP) and gold nanoparticle (AuNP)-labelled oligonucleotide reporter probe targeting the viral genomic segment 9 that enables the assay to be completed within an hour. This technique has been shown to be compatible with a rapid nucleic extraction method that does not demand centrifugation steps or any benchtop laboratory equipment. When validated with field-acquired tilapia samples, our RT-LAMP-AuNP assay exhibited a near-perfect agreement with the semi-nested RT-PCR assay recommended by OIE with Cohen's κ coefficient of .869, yet requiring significantly less time to perform.
Collapse
Affiliation(s)
- Jantana Kampeera
- Bioengineering and Sensing Technology Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khlong Nueng, Khlong Luang, Thailand
| | - Sirintip Dangtip
- Bioengineering and Sensing Technology Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khlong Nueng, Khlong Luang, Thailand
| | - Rapheephat Suvannakad
- Bioengineering and Sensing Technology Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khlong Nueng, Khlong Luang, Thailand
| | - Pakapreud Khumwan
- Bioengineering and Sensing Technology Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khlong Nueng, Khlong Luang, Thailand
| | - Saengchan Senapin
- Fish Health Platform, Center of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Faculty of Science, Mahidol University, Bangkok, Thailand
- Fish and Shrimp Molecular Biology and Biotechnology Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khlong Nueng, Khlong Luang, Thailand
| | - Wansika Kiatpathomchai
- Bioengineering and Sensing Technology Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khlong Nueng, Khlong Luang, Thailand
| |
Collapse
|
31
|
Piewbang C, Tattiyapong P, Techangamsuwan S, Surachetpong W. Tilapia lake virus immunoglobulin G (TiLV IgG) antibody: Immunohistochemistry application reveals cellular tropism of TiLV infection. FISH & SHELLFISH IMMUNOLOGY 2021; 116:115-123. [PMID: 34186182 DOI: 10.1016/j.fsi.2021.06.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/16/2021] [Accepted: 06/24/2021] [Indexed: 06/13/2023]
Abstract
Tilapia lake virus (TiLV) is a notable contagious agent that causes massive economic losses in the tilapia industry globally. Evaluations of the histological changes associated with TiLV infection are not only crucial for diagnosis, but also to gain an understanding of the disease. We therefore synthesized a rabbit polyclonal immunoglobulin G antibody against TiLV and developed an immunohistochemical (IHC) procedure to detect TiLV localization in the tissues of infected fish for comparison with in situ hybridization (ISH) testing. A total of four different sample cohorts derived from TiLV-infected fish was used to validate the IHC procedure. The TiLV IHC application was successfully developed and facilitated nuclear and cytoplasmic immunolabelling in the intestines, gills, brain, liver, pancreas, spleen, and kidneys that corresponded with the ISH results. Apart from the ISH results, TiLV-IHC signals were clearly evident in the endothelial cells of various organs, the circulating leukocytes in the blood vessels, and the areas of tissue inflammation. Among the tested sample cohorts, the intestines, gills, and brain had IHC-positive signals, highlighting the possibility of these organs as common TiLV targets. Immunological staining pattern and distribution corresponded with the TiLV viral load but not the inoculation route. The TiLV IHC was also capable of detecting TiLV infection in the experimentally challenged ornamental cichlids, Mozambique tilapia, giant gourami, and naturally infected tilapia, indicating the dynamic range of IHC for TiLV detection. Overall, our study delivers the first IHC platform to detect TiLV infection and provides novel evidence of cellular tropism during TiLV infection. Our findings also reveal the TiLV distribution pattern of infected fish and propose the endotheliotropism and lymphotropism of this virus, which requires further elaboration. Importantly, this new IHC procedure could be applied to study the pathogenesis and interaction of TiLV in future research.
Collapse
Affiliation(s)
- Chutchai Piewbang
- Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand; Animal Virome and Diagnostic Development Research Group, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Puntanat Tattiyapong
- Department of Veterinary Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand
| | - Somporn Techangamsuwan
- Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand; Animal Virome and Diagnostic Development Research Group, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand.
| | - Win Surachetpong
- Department of Veterinary Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand.
| |
Collapse
|
32
|
Dinh-Hung N, Sangpo P, Kruangkum T, Kayansamruaj P, Rung-Ruangkijkrai T, Senapin S, Rodkhum C, Dong HT. Dissecting the localization of Tilapia tilapinevirus in the brain of the experimentally infected Nile tilapia, Oreochromis niloticus (L.). JOURNAL OF FISH DISEASES 2021; 44:1053-1064. [PMID: 33724491 DOI: 10.1111/jfd.13367] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 03/03/2021] [Accepted: 03/04/2021] [Indexed: 05/08/2023]
Abstract
Tilapia tilapinevirus or tilapia lake virus (TiLV) is an emerging virus that inflicts significant mortality on farmed tilapia globally. Previous studies reported detection of the virus in multiple organs of the infected fish; however, little is known about the in-depth localization of the virus in the central nervous system. Herein, we determined the distribution of TiLV in the entire brain of experimentally infected Nile tilapia. In situ hybridization (ISH) using TiLV-specific probes revealed that the virus was broadly distributed throughout the brain. The strongest positive signals were dominantly detected in the forebrain (responsible for learning, appetitive behaviour and attention) and the hindbrain (involved in controlling locomotion and basal physiology). The permissive cell zones for viral infection were observed mostly to be along the blood vessels and the ventricles. This indicates that the virus may productively enter into the brain through the circulatory system and widen broad regions, possibly through the cerebrospinal fluid along the ventricles, and subsequently induce the brain dysfunction. Understanding the pattern of viral localization in the brain may help elucidate the neurological disorders of the diseased fish. This study revealed the distribution of TiLV in the whole infected brain, providing new insights into fish-virus interactions and neuropathogenesis.
Collapse
Affiliation(s)
- Nguyen Dinh-Hung
- Fish Infectious Diseases Research Unit (FID RU), Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- The International Graduate Course of Veterinary Science and Technology (VST), Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Pattiya Sangpo
- Faculty of Science and Technology, Suan Sunandha Rajabhat University, Bangkok, Thailand
- Center of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Thanapong Kruangkum
- Center of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Faculty of Science, Mahidol University, Bangkok, Thailand
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Pattanapon Kayansamruaj
- Center of Excellence in Aquatic Animal Health Management, Faculty of Fisheries, Kasetsart University, Bangkok, Thailand
| | - Tilladit Rung-Ruangkijkrai
- Department of Veterinary Anatomy, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Saengchan Senapin
- Center of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Faculty of Science, Mahidol University, Bangkok, Thailand
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Channarong Rodkhum
- Fish Infectious Diseases Research Unit (FID RU), Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- The International Graduate Course of Veterinary Science and Technology (VST), Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Ha Thanh Dong
- Faculty of Science and Technology, Suan Sunandha Rajabhat University, Bangkok, Thailand
| |
Collapse
|
33
|
An Age-Structured Model for Tilapia Lake Virus Transmission in Freshwater with Vertical and Horizontal Transmission. Bull Math Biol 2021; 83:90. [PMID: 34232396 DOI: 10.1007/s11538-021-00923-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 06/21/2021] [Indexed: 10/20/2022]
Abstract
This paper proposes a mathematical model for tilapia lake virus (TiLV) transmission in wild and farmed tilapias within freshwater. This model takes into account two routes of transmission: vertical and horizontal. This latter route integrates both the direct and indirect transmission. We define an explicit formula for the reproductive number [Formula: see text] and show by means of the Fatou's lemma that the disease-free equilibrium is globally asymptotically stable when [Formula: see text]. Furthermore, we find an explicit formula of the endemic equilibria and study its local stability as well as the uniform persistence of the disease when [Formula: see text]. Finally, a numerical scheme to solve the model is developed and some parameters of the model are estimated based on biological data. The numerical results illustrate the role of routes of transmission on the epidemic evolution.
Collapse
|
34
|
Roy SRK, Yamkasem J, Tattiyapong P, Surachetpong W. Weight-dependent susceptibility of tilapia to tilapia lake virus infection. PeerJ 2021; 9:e11738. [PMID: 34277154 PMCID: PMC8269736 DOI: 10.7717/peerj.11738] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 06/17/2021] [Indexed: 12/15/2022] Open
Abstract
The emergence of tilapia lake virus (TiLV) has had a severely negative impact on global tilapia aquaculture. TiLV infection has been reported at different life stages of tilapia, with more emphasis on fry and fingerlings; however, the virulence and pathology of TiLV at different tilapia size remains unexplored. In this study, tilapias from a single spawning were raised to 5 g, 25 g, and 65 g, and subsequently challenged by the intraperitoneal injection and cohabitation of a virulent strain of TiLV. The cumulative mortality, viral load, and histopathology of the fish were determined until 22 days post-infection (dpi). The cumulative mortality of the 5 g, 25 g, and 65 g fish was 85% (±1.67), 55% (±2.89), and 51.67% (±7.49), respectively. At 14 dpi, the mean TiLV load in the liver of the 5 g fish was significantly higher than in the 25 g and 65 g fish. All the weight groups showed severe pathological changes in the liver, spleen, and intestine after TiLV infection, but no particular difference was otherwise noted during the study with the exception of higher pathological scores in the liver of the small fish at 14 dpi. Overall, this study indicated that small fish are more susceptible to TiLV infection than large fish. Although multiple factors, including environmental factors, farm management practices, strains of virus could contribute to different susceptibility of fish to viral infection, the present study provides the evidence to support that fish weight affects the mortality and clinical outcome during TiLV infection. More intensive measures such as strict biosecurity and disease surveillance during the susceptible weight should therefore be emphasized to reduce the impact of this virus.
Collapse
Affiliation(s)
- Sri Rajiv Kumar Roy
- Department of Veterinary Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Kasetsart University, Bangkok, Thailand
| | - Jidapa Yamkasem
- Department of Veterinary Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Kasetsart University, Bangkok, Thailand
| | - Puntanat Tattiyapong
- Department of Veterinary Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Kasetsart University, Bangkok, Thailand
| | - Win Surachetpong
- Department of Veterinary Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Kasetsart University, Bangkok, Thailand
| |
Collapse
|
35
|
Waiyamitra P, Piewbang C, Techangamsuwan S, Liew WC, Surachetpong W. Infection of Tilapia tilapinevirus in Mozambique Tilapia ( Oreochromis mossambicus), a Globally Vulnerable Fish Species. Viruses 2021; 13:v13061104. [PMID: 34207768 PMCID: PMC8228971 DOI: 10.3390/v13061104] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 06/05/2021] [Accepted: 06/06/2021] [Indexed: 12/16/2022] Open
Abstract
Tilapia tilapinevirus, or tilapia lake virus (TiLV), is a highly contagious virus found in tilapia and its hybrid species that has been reported worldwide, including in Asia, the Americas, and Africa. In this study, we experimentally challenged Mozambique tilapia (Oreochromis mossambicus) with a virulent TiLV strain, VETKU-TV01, at both low (1 × 103 TCID50/mL) and high (1 × 105 TCID50/mL) concentration. After the challenge, the Mozambique tilapia showed pale skin with some hemorrhage and erosion, lethargy, abdominal swelling, congestion around the eye, and exophthalmos; there was a cumulative mortality rate at 48.89% and 77.78% in the groups that received the low and high concentration, respectively. Quantitative PCR and in situ hybridization confirmed the presence of TiLV in the internal organs of moribund fish. Notably, severe histopathological changes, including glycogen depletion, syncytial hepatic cells containing multiple nuclei and intracytoplasmic inclusion bodies, and infiltration of melanomacrophage into the spleen, were frequently found in the Mozambique tilapia challenged with high TiLV concentration. Comparatively, the infectivity and pathology of the TiLV infection in Mozambique tilapia and red hybrid tilapia (Oreochromis spp.) were found to be similar. Our results confirmed the susceptibility of Mozambique tilapia, which has recently been determined to be a vulnerable species, to TiLV infection, expanding knowledge that the virus can cause disease in this fish species.
Collapse
Affiliation(s)
- Pitchaporn Waiyamitra
- Department of Veterinary Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand;
| | - Chutchai Piewbang
- Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand; (C.P.); (S.T.)
- Animal Virome and Diagnostic Development Research Group, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Somporn Techangamsuwan
- Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand; (C.P.); (S.T.)
- Animal Virome and Diagnostic Development Research Group, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Woei Chang Liew
- Temasek Life Sciences Laboratory, Singapore 117604, Singapore;
| | - Win Surachetpong
- Department of Veterinary Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand;
- Correspondence:
| |
Collapse
|
36
|
Yamkasem J, Tattiyapong P, Gorgoglione B, Surachetpong W. Uncovering the first occurrence of Tilapia parvovirus in Thailand in tilapia during co-infection with Tilapia tilapinevirus. Transbound Emerg Dis 2021; 68:3136-3144. [PMID: 33960141 DOI: 10.1111/tbed.14143] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/21/2021] [Accepted: 05/02/2021] [Indexed: 01/13/2023]
Abstract
The recently discovered Tilapia parvovirus (TiPV) was the first Parvovirus confirmed to infect fish, causing mortality outbreaks in farmed adult Nile tilapia in China. Severe mortality outbreaks caused by Tilapia tilapinevirus (TiLV) to farmed tilapia in Thailand revealed the concomitant occurrence of TiPV. Out of ten fish farms screened, TiPV was detected in one site rearing juvenile red hybrid tilapia. Clinical signs included abnormal swimming, scale protrusion, skin and muscle haemorrhaging, exophthalmia and generalized anaemia. Histological findings showed extensive infiltration of lymphocytes, with increased melanomacrophage centres in the anterior kidney and spleen, erythrocyte depletion in the spleen and hepatic syncytial cells. Both TiLV and TiPV were systemically distributed in the body of moribund fish. The analysis of the near-complete TiPV genome isolated from Thailand revealed 98.74% sequence identity to the formerly isolated from China, together with a highly conserved and comparable genomic organization and with a 3 nucleotides deletion in the 5-UTR. The viral genome structure was highly conserved for each of its components, with nucleotide and amino acid identity ranging from 100% for ORF1 to 97% for ORF2, and with conserved HuH and Walker loop motifs within NS1. Taken together, our results document the first detection of TiPV outside China, thus for the first time in Thailand. Moreover, TiPV was detected for the first time during a natural occurrence in farmed red hybrid tilapia and involved in co-infection pattern with TiLV. Diagnostic investigations during tilapia disease outbreaks should include the screening for TiPV. Further studies are needed to elucidate TiPV genomic variance, pathobiology, including focussing on the outcomes of TiLV-TiPV co-infection patterns, necessary to enable risk assessment for the worldwide spreading of TiPV and to design adequate control measures against these emerging viruses in tilapia.
Collapse
Affiliation(s)
- Jidapa Yamkasem
- Faculty of Veterinary Medicine, Department of Veterinary Microbiology and Immunology, Kasetsart University, Bangkok, Thailand
| | - Puntanat Tattiyapong
- Faculty of Veterinary Medicine, Department of Veterinary Microbiology and Immunology, Kasetsart University, Bangkok, Thailand
| | - Bartolomeo Gorgoglione
- Aquatic Animal Health Laboratory, Department of Pathobiology and Diagnostic Investigation, CVM & Department of Fisheries and Wildlife, CANR - Michigan State University, East Lansing, MI, USA
| | - Win Surachetpong
- Faculty of Veterinary Medicine, Department of Veterinary Microbiology and Immunology, Kasetsart University, Bangkok, Thailand
| |
Collapse
|
37
|
Contreras H, Vallejo A, Mattar S, Ruiz L, Guzmán C, Calderón A. First report of tilapia lake virus emergence in fish farms in the department of Córdoba, Colombia. Vet World 2021; 14:865-872. [PMID: 34083933 PMCID: PMC8167540 DOI: 10.14202/vetworld.2021.865-872] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 12/21/2020] [Indexed: 11/16/2022] Open
Abstract
Background and Aim In 2016, the tilapia-producing farms in the department of Córdoba, Colombia, had witnessed outbreaks of disease with clinical signs compatible with those caused by the tilapia lake virus (TiLV). This study was conducted to confirm the presence of TiLV in some fish farms in the department of Córdoba. Materials and Methods A descriptive cross-sectional study was conducted in seven farms using a non-random sampling method from July 2016 to December 2017. A total of 66 fish, including 33 healthy fish and 33 fish with clinical signs, were caught, from which 178 tissue samples of spleen, liver, and brain were collected. RNA was extracted from each organ using TRIzol®. cDNA was synthesized using a retrotranscriptase and a universal amplification primer. The polymerase chain reaction was performed using primers specific to TiLV, in which the primers were amplified in a 491 bp region in segment 3 of TiLV, and the amplicons were sequenced using the Sanger method. Results Of the seven farms surveyed, 3 (42.85%) had TiLV in the collected fish. Of the 66 collected fish, 18 (27.27%) were infected with TiLV. The virus was detected in the brain (64.3%, 18/28), spleen (61.9%, 13/21), and liver (35.7%, 10/28). The sequences were recorded in GenBank with the codes MH338228, MH350845, and MH350846. Nucleotide homology analyses revealed that this study's circulating strains exhibited 97% identity with the Israeli strain (GenBank KU751816.1). Conclusion This is the first official report of TiLV in the department of Córdoba, Colombia. The circulating strains detected in this study exhibited 97% identity with the Israeli strain.
Collapse
Affiliation(s)
- Héctor Contreras
- Institute of Biological Research of the Tropic, University of Córdoba, Colombia
| | - Adriana Vallejo
- Aquatic Health and Water Quality laboratory, Aquaculture Program, University of Córdoba, Colombia
| | - Salim Mattar
- Institute of Biological Research of the Tropic, University of Córdoba, Colombia
| | - Luis Ruiz
- Aquatic Health and Water Quality laboratory, Aquaculture Program, University of Córdoba, Colombia
| | - Camilo Guzmán
- Department of Pharmacy, Faculty of Health Sciences, University of Córdoba, Colombia
| | - Alfonso Calderón
- Institute of Biological Research of the Tropic, University of Córdoba, Colombia
| |
Collapse
|
38
|
Widziolek M, Janik K, Mojzesz M, Pooranachandran N, Adamek M, Pecio A, Surachetpong W, Levraud JP, Boudinot P, Chadzinska M, Rakus K. Type I interferon-dependent response of zebrafish larvae during tilapia lake virus (TiLV) infection. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 116:103936. [PMID: 33242567 DOI: 10.1016/j.dci.2020.103936] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 11/16/2020] [Accepted: 11/17/2020] [Indexed: 06/11/2023]
Abstract
Tilapia lake virus (TiLV; genus: Tilapinevirus, family: Amnoonviridae) is a recently characterised enveloped virus with a linear, negative-sense single-stranded RNA genome, which causes high mortality in tilapia species. In the present study, we demonstrated that zebrafish (Danio rerio) larvae are susceptible to TiLV infection upon systemic injection. TiLV replicated in zebrafish larvae and caused their high mortality (of about 70%). Histopathological examination revealed that TiLV infection caused pathological abnormalities in zebrafish larvae that were well visible within the brain. Moreover, gene expression analysis revealed that TiLV infection induced up-regulation of the expression of the immune-related genes encoding pathogen recognition receptors involved in sensing of viral dsRNA (rig-I (ddx58), tlr3, tlr22), transcription factors (irf3, irf7), type I interferon (infϕ1), antiviral protein (mxa), and pro-inflammatory cytokine (il-1β). We also demonstrated the protective role of the recombinant zebrafish IFNϕ1 on the survival of zebrafish larvae during TiLV infection. Our results show the importance of type I IFN response during TiLV infection in zebrafish larvae and demonstrate that zebrafish is a good model organism to study interactions between TiLV - a newly emerging in aquaculture virus, and fish host.
Collapse
Affiliation(s)
- Magdalena Widziolek
- Department of Evolutionary Immunology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Gronostajowa 9, 30-387, Krakow, Poland
| | - Klaudia Janik
- Department of Evolutionary Immunology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Gronostajowa 9, 30-387, Krakow, Poland
| | - Miriam Mojzesz
- Department of Evolutionary Immunology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Gronostajowa 9, 30-387, Krakow, Poland
| | - Niedharsan Pooranachandran
- Department of Evolutionary Immunology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Gronostajowa 9, 30-387, Krakow, Poland
| | - Mikolaj Adamek
- Fish Disease Research Unit, Institute for Parasitology, University of Veterinary Medicine, Buenteweg 17, 30559, Hannover, Germany
| | - Anna Pecio
- Department of Comparative Anatomy, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Gronostajowa 9, 30-387, Krakow, Poland
| | - Win Surachetpong
- Department of Veterinary Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, 50 Ngam Wong Wan Road, Ladyao, Chatuchak, 10900, Bangkok, Thailand
| | - Jean-Pierre Levraud
- Macrophages et Développement de l'Immunité, Institut Pasteur, CNRS UMR3738, 75015, Paris, France
| | - Pierre Boudinot
- University of Paris-Saclay, INRAE, UVSQ, VIM, 78350, Jouy-en-Josas, France
| | - Magdalena Chadzinska
- Department of Evolutionary Immunology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Gronostajowa 9, 30-387, Krakow, Poland
| | - Krzysztof Rakus
- Department of Evolutionary Immunology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Gronostajowa 9, 30-387, Krakow, Poland.
| |
Collapse
|
39
|
Zeng W, Wang Y, Hu H, Wang Q, Bergmann SM, Wang Y, Li B, Lv Y, Li H, Yin J, Li Y. Cell Culture-Derived Tilapia Lake Virus-Inactivated Vaccine Containing Montanide Adjuvant Provides High Protection against Viral Challenge for Tilapia. Vaccines (Basel) 2021; 9:vaccines9020086. [PMID: 33503930 PMCID: PMC7911875 DOI: 10.3390/vaccines9020086] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 12/16/2022] Open
Abstract
Tilapia lake virus (TiLV) is a newly emerging pathogen responsible for high mortality and economic losses in the global tilapia industry. Currently, no antiviral therapy or vaccines are available for the control of this disease. The goal of the present study was to evaluate the immunological effects and protective efficacy of formaldehyde- and β-propiolactone-inactivated vaccines against TiLV in the presence and absence of the Montanide IMS 1312 VG adjuvant in tilapia. We found that β-propiolactone inactivation of viral particles generated a vaccine with a higher protection efficacy against virus challenge than did formaldehyde. The relative percent survivals of vaccinated fish at doses of 108, 107, and 106 50% tissue culture infectious dose (TCID50)/mL were 42.9%, 28.5%, and 14.3% in the absence of the adjuvant and 85.7%, 64.3%, and 32.1% in its presence, respectively. The vaccine generated specific IgM and neutralizing antibodies against TiLV at 3 weeks following immunization that were significantly increased after a second booster immunization. The steady state mRNA levels of the genes tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), interferon γ (IFN-γ), cluster of differentiation 4 (CD4), major histocompatibility complex (MHC)-Ia, and MHC-II were all increased and indicated successful immune stimulation against TiLV. The vaccine also significantly lowered the viral loads and resulted in significant increases in survival, indicating that the vaccine may also inhibit viral proliferation as well as stimulate a protective antibody response. The β-propiolactone-inactivated TiLV vaccine coupled with the adjuvant Montanide IMS 1312 VG and booster immunizations can provide a high level of protection from virus challenge in tilapia.
Collapse
Affiliation(s)
- Weiwei Zeng
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan 528000, China; (H.L.); (J.Y.)
- Key Laboratory of Aquatic Animal Immune Technology, Key Laboratory of Fishery Drug Development, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Ministry of Agriculture, Guangzhou 510380, China; (Y.W.); (H.H.); (Y.W.); (B.L.); (Y.L.); (Y.L.)
- Correspondence: (W.Z.); (Q.W.)
| | - Yingying Wang
- Key Laboratory of Aquatic Animal Immune Technology, Key Laboratory of Fishery Drug Development, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Ministry of Agriculture, Guangzhou 510380, China; (Y.W.); (H.H.); (Y.W.); (B.L.); (Y.L.); (Y.L.)
| | - Huzi Hu
- Key Laboratory of Aquatic Animal Immune Technology, Key Laboratory of Fishery Drug Development, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Ministry of Agriculture, Guangzhou 510380, China; (Y.W.); (H.H.); (Y.W.); (B.L.); (Y.L.); (Y.L.)
| | - Qing Wang
- Key Laboratory of Aquatic Animal Immune Technology, Key Laboratory of Fishery Drug Development, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Ministry of Agriculture, Guangzhou 510380, China; (Y.W.); (H.H.); (Y.W.); (B.L.); (Y.L.); (Y.L.)
- Correspondence: (W.Z.); (Q.W.)
| | - Sven M. Bergmann
- Institute of Infectology, Friedrich-Loffler-Institut (FLI), Federal Research Institute for Animal Health, Greifswald-Insel Riems, 17493 Greifswald, Germany;
| | - Yahui Wang
- Key Laboratory of Aquatic Animal Immune Technology, Key Laboratory of Fishery Drug Development, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Ministry of Agriculture, Guangzhou 510380, China; (Y.W.); (H.H.); (Y.W.); (B.L.); (Y.L.); (Y.L.)
| | - Bo Li
- Key Laboratory of Aquatic Animal Immune Technology, Key Laboratory of Fishery Drug Development, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Ministry of Agriculture, Guangzhou 510380, China; (Y.W.); (H.H.); (Y.W.); (B.L.); (Y.L.); (Y.L.)
| | - Yuefeng Lv
- Key Laboratory of Aquatic Animal Immune Technology, Key Laboratory of Fishery Drug Development, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Ministry of Agriculture, Guangzhou 510380, China; (Y.W.); (H.H.); (Y.W.); (B.L.); (Y.L.); (Y.L.)
| | - Hua Li
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan 528000, China; (H.L.); (J.Y.)
| | - Jiyuan Yin
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan 528000, China; (H.L.); (J.Y.)
| | - Yingying Li
- Key Laboratory of Aquatic Animal Immune Technology, Key Laboratory of Fishery Drug Development, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Ministry of Agriculture, Guangzhou 510380, China; (Y.W.); (H.H.); (Y.W.); (B.L.); (Y.L.); (Y.L.)
| |
Collapse
|
40
|
Pierezan F, Yun S, Piewbang C, Surachetpong W, Soto E. Pathogenesis and immune response of Nile tilapia (Oreochromis niloticus) exposed to Tilapia lake virus by intragastric route. FISH & SHELLFISH IMMUNOLOGY 2020; 107:289-300. [PMID: 33096246 DOI: 10.1016/j.fsi.2020.10.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 10/16/2020] [Accepted: 10/18/2020] [Indexed: 06/11/2023]
Abstract
Tilapia lake virus (TiLV) is regarded as one of the most important pathogens in tilapia aquaculture worldwide. Despite this, little is known regarding disease pathogenesis and immune responses to infection. The main objective of this study was to investigate the tissue distribution, histopathological changes, and immune response of fish exposed to TiLV. Nile tilapia (Oreochromis niloticus) maintained at 25 ± 2 °C were challenged with TiLV via intragastric-gavage. At 0.5, 1, 3, 5, 7, 10 and 15 days post-challenge (dpc), six fish per treatment were euthanized and subjected to complete necropsy. TiLV exposed fish presented 45% cumulative mortality at the end of the study. Gross lesions included cutaneous petechiae and ecchymoses, scale losses, skin ulcers, and exophthalmia. Mild multifocal hepatocellular degeneration and necrosis was observed as early as 3 dpc occasionally accompanied by syncytial formation, intracytoplasmic inclusion bodies, and inflammatory infiltrates of lymphocytes at subsequent time points. Necrosis of epithelial cells of the gastric glands and intestinal glands was also observed as early as 5 dpc. Intestinal samples showed reactive in situ hybridization signals as early as 1 dpc. No other lesions were observed in the brain or other organs. Histological changes were associated with viral dissemination and disease progression, as evidenced by increased TiLV detection in the intestine, gills, liver and spleen. Highest TiLV abundance was detected 7 dpc in gills, intestine, and liver showing an average of 6 LOG genome equivalent per ng of total RNA. Different transcript abundance was detected for the pro-inflammatory cytokine interleukin-1β and interferon-induced myxovirus resistance protein gene in the mucosal sites (gills and intestine). Interferon regulatory transcription factor 3 transcript was more abundant in systemic organs (liver and spleen) while the expression in gills and intestine showed mixed expression at different time points. On the other hand, transforming growth factor β expression patterns differed amongst the tissues with a trend towards downregulation of the gene in liver and gills, and a trend towards upregulation in the spleen and intestine. Overall, these results demonstrate the intestinal routes as a main port of entry for TiLV, which subsequently spreads systematically throughout the fish body.
Collapse
Affiliation(s)
- Felipe Pierezan
- Department of Veterinary Clinics and Surgery, School of Veterinary Medicine, Federal University of Minas Gerais, 31270-901, Belo Horizonte, MG, Brazil
| | - Susan Yun
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California Davis, 95616, Davis, CA, USA
| | - Chutchai Piewbang
- Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Win Surachetpong
- Department of Veterinary Microbiology and Immunology and Center for Advanced Studies for Agriculture and Food, Kasetsart University Institute for Advanced Studies, Kasetsart University, Bangkok, Thailand
| | - Esteban Soto
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California Davis, 95616, Davis, CA, USA.
| |
Collapse
|
41
|
Tilapia lake virus downplays innate immune responses during early stage of infection in Nile tilapia (Oreochromis niloticus). Sci Rep 2020; 10:20364. [PMID: 33230226 PMCID: PMC7684318 DOI: 10.1038/s41598-020-73781-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 09/16/2020] [Indexed: 11/23/2022] Open
Abstract
Tilapia lake virus (TiLV) causes high mortality and high economic losses in tilapines. We describe an experimental challenge study focusing on early post challenge innate immune responses. Nile tilapia (Oreochromis niloticus) were infected with 105 TCID50/mL TiLV intraperitoneally, followed by virus quantification, histopathology and gene expression analysis in target (brain/liver) and lymphoid (spleen/headkidney) organs at 3, 7, 12, 17, and 34 days post challenge (dpc). Onset of mortality was from 21 dpc, and cumulative mortality was 38.5% by 34 dpc. Liver and kidney histopathology developed over the period 3–17 dpc, characterized by anisocytosis, anisokaryocytosis, and formation of multinucleated hepatocytes. Viral loads were highest at early time (3 dpc) in liver, spleen and kidney, declining towards 34 dpc. In brain, viral titer peaked 17 dpc. Innate sensors, TLRs 3/7 were inversely correlated with virus titer in brain and headkidney, and IFN-ß and Mx showed a similar pattern. All organs showed increased mRNA IgM expression over the course of infection. Overall, high virus titers downplay innate responses, and an increase is seen when viral titers decline. In silico modeling found that TiLV segments 4, 5 and 10 carry nucleolar localization signals. Anti-viral effects of TiLV facilitate production of virus at early stage of infection.
Collapse
|
42
|
Basri L, Nor RM, Salleh A, Md. Yasin IS, Saad MZ, Abd. Rahaman NY, Barkham T, Amal MNA. Co-Infections of Tilapia Lake Virus, Aeromonas hydrophila and Streptococcus agalactiae in Farmed Red Hybrid Tilapia. Animals (Basel) 2020; 10:E2141. [PMID: 33217902 PMCID: PMC7698767 DOI: 10.3390/ani10112141] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/03/2020] [Accepted: 11/06/2020] [Indexed: 02/02/2023] Open
Abstract
A high death rate among red hybrid tilapias was observed in a farm in Selangor, Malaysia, in January 2020. The affected fish appeared lethargic, isolated from schooling group, showed loss of appetite, red and haemorrhagic skin, exophthalmia and enlarged gall bladders. Histopathological assessment revealed deformation of kidney tubules, and severe congestion with infiltrations of inflammatory cells in the brains and kidneys. Syncytial cells and intracytoplasmic inclusion bodies were occasionally observed in the liver and brain sections. Tilapia Lake Virus (TiLV), Aeromonas hydrophila and Streptococcus agalactiae were identified in the affected fish, either through isolation or through PCR and sequencing analysis. The phylogenetic tree analysis revealed that the TiLV strain in this study was closely related to the previously reported Malaysian strain that was isolated in 2019. On the other hand, A. hydrophila and S. agalactiae were closer to Algerian and Brazilian strains, respectively. The multiple antibiotic resistance index for A. hydrophila and S. agalactiae was 0.50 and 0.25, respectively. Co-infections of virus and bacteria in cultured tilapia is a new threat for the tilapia industry.
Collapse
Affiliation(s)
- Lukman Basri
- Aquatic Animal Health and Therapeutics Laboratory, Institute of Bioscience, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia; (L.B.); (A.S.); (I.S.M.Y.); (M.Z.S.)
| | - Roslindawani Md. Nor
- Department of Veterinary Laboratory Diagnosis, Faculty of Veterinary Medicine, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia; (R.M.N.); (N.Y.A.R.)
| | - Annas Salleh
- Aquatic Animal Health and Therapeutics Laboratory, Institute of Bioscience, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia; (L.B.); (A.S.); (I.S.M.Y.); (M.Z.S.)
- Department of Veterinary Laboratory Diagnosis, Faculty of Veterinary Medicine, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia; (R.M.N.); (N.Y.A.R.)
| | - Ina Salwany Md. Yasin
- Aquatic Animal Health and Therapeutics Laboratory, Institute of Bioscience, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia; (L.B.); (A.S.); (I.S.M.Y.); (M.Z.S.)
- Department of Aquaculture, Faculty of Agriculture, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia
| | - Mohd Zamri Saad
- Aquatic Animal Health and Therapeutics Laboratory, Institute of Bioscience, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia; (L.B.); (A.S.); (I.S.M.Y.); (M.Z.S.)
- Department of Veterinary Laboratory Diagnosis, Faculty of Veterinary Medicine, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia; (R.M.N.); (N.Y.A.R.)
| | - Nor Yasmin Abd. Rahaman
- Department of Veterinary Laboratory Diagnosis, Faculty of Veterinary Medicine, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia; (R.M.N.); (N.Y.A.R.)
| | - Timothy Barkham
- Department of Laboratory Medicine, Tan Tock Seng Hospital, Singapore 308433, Singapore;
| | - Mohammad Noor Azmai Amal
- Aquatic Animal Health and Therapeutics Laboratory, Institute of Bioscience, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia; (L.B.); (A.S.); (I.S.M.Y.); (M.Z.S.)
- Department of Biology, Faculty of Science, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia
| |
Collapse
|
43
|
Probiotics Modulate Tilapia Resistance and Immune Response against Tilapia Lake Virus Infection. Pathogens 2020; 9:pathogens9110919. [PMID: 33172079 PMCID: PMC7694748 DOI: 10.3390/pathogens9110919] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/25/2020] [Accepted: 11/04/2020] [Indexed: 11/23/2022] Open
Abstract
Tilapia lake virus (TiLV) causes an emerging viral disease associated with high mortality and economic damage in tilapia farming around the world. The use of probiotics in aquaculture has been suggested as an alternative to antibiotics and drugs to reduce the negative impact of bacterial and viral infections. In this study, we investigate the effect of probiotic Bacillus spp. supplementation on mortality, viral load, and expression of immune-related genes in red hybrid tilapia (Oreochromis spp.) upon TiLV infection. Fish were divided into three groups, and fed with: control diet, 0.5% probiotics-supplemented diet, and 1% probiotics-supplemented diet. After 21 days of experimental feeding, the three groups were infected with TiLV and monitored for mortality and growth performances, while organs were sampled at different time points to measure viral load and the transcription modulation of immune response markers. No significant difference was found among the groups in terms of weight gain (WG), average daily gain (ADG), feed efficiency (FE), or feed conversion ratio (FCR). A lower cumulative mortality was retrieved from fish fed 0.5% and 1% probiotics (25% and 24%, respectively), compared to the control group (32%). Moreover, fish fed with 1% probiotic diet had a significantly lower viral load, than those fed with 0.5% probiotic and control diet at 5, 6, 9, and 12 days post infection-challenge (dpc). The expression patterns of immune-related genes, including il-8 (also known as CXCL8), ifn-γ, irf-3, mx, rsad-2 (also known as VIPERIN) showed significant upregulation upon probiotic treatment during the peak of TiLV pathogenesis (between 9 and 12 dpc) and during most of the study period in fish fed with 1% probiotics-supplemented diet. Taken together, these findings indicate that dietary supplementation using Bacillus spp. probiotics may have beneficial effects to strengthen tilapia immunity and resistance against TiLV infections. Therefore, probiotic treatments may be preventively administered to reduce losses caused by this emerging viral infection in tilapia aquaculture.
Collapse
|
44
|
Tattiyapong P, Dechavichitlead W, Waltzek TB, Surachetpong W. Tilapia develop protective immunity including a humoral response following exposure to tilapia lake virus. FISH & SHELLFISH IMMUNOLOGY 2020; 106:666-674. [PMID: 32858185 DOI: 10.1016/j.fsi.2020.08.031] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 08/02/2020] [Accepted: 08/19/2020] [Indexed: 05/08/2023]
Abstract
Tilapia lake virus (TiLV) is an emerging virus associated with high mortality in cultured tilapia. Since the first report of tilapia lake virus, it has been detected in diseased tilapia in sixteen countries around the world. Thus, there is an urgent need to develop an efficacious vaccine to prevent TiLV disease (TiLVD) and reduce its global economic impact. Understanding the role of the adaptive immune response following exposure of tilapia to TiLV is a critical step in the development of such a vaccine. In this study, we challenged red hybrid tilapia by cohabitation or intraperitoneal injection and demonstrated that surviving fish develop a protective immunity. We also demonstrated that tilapia that survived experimental infections possess significant antibodies against the protein encoded by the TiLV segment 4. We then developed a TiLV indirect ELISA to determine the antibody response in tilapia. The ELISA revealed high antibody levels in survivors of experimental challenges and following outbreaks on farms. The ELISA effectively distinguished TiLV-exposed from unexposed tilapia and was used to monitor anti-TiLV antibody kinetics following infection. During the primary infection, tilapia developed an antibody response as early as 7 days post TiLV challenge (dpc), peaked at 15 dpc, showed a gradual decline up until about 42 dpc, but persisted in some fish up until day 110 dpc. Upon re-infection, an increased antibody response occurred within 7-14 days, demonstrating that tilapia that survive TiLV infections develop humoral memory. In conclusion, our results demonstrated that tilapia mount antibody responses against TiLV that supports protective immunity to subsequent TiLV disease. The persistence of anti-TiLV antibodies in survivors following a single exposure suggests a single vaccination might be adequate to protect tilapia during the entire grow-out period. This study provides important information about the immune response of tilapia following exposure to TiLV as a first step in the development of an efficacious vaccine against this emerging and economically important viral disease.
Collapse
Affiliation(s)
- Puntanat Tattiyapong
- Department of Veterinary Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University. Thailand; Center for Advanced Studies for Agriculture and Food, Kasetsart University, Institute for Advanced Studies, Kasetsart University, Bangkok, 10900, Thailand (CASAF, NRU-KU), Thailand
| | - Worawan Dechavichitlead
- Department of Veterinary Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University. Thailand; Center for Advanced Studies for Agriculture and Food, Kasetsart University, Institute for Advanced Studies, Kasetsart University, Bangkok, 10900, Thailand (CASAF, NRU-KU), Thailand
| | - Thomas B Waltzek
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL, USA; Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA
| | - Win Surachetpong
- Department of Veterinary Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University. Thailand; Center for Advanced Studies for Agriculture and Food, Kasetsart University, Institute for Advanced Studies, Kasetsart University, Bangkok, 10900, Thailand (CASAF, NRU-KU), Thailand.
| |
Collapse
|
45
|
Surachetpong W, Roy SRK, Nicholson P. Tilapia lake virus: The story so far. JOURNAL OF FISH DISEASES 2020; 43:1115-1132. [PMID: 32829488 DOI: 10.1111/jfd.13237] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 07/16/2020] [Accepted: 07/17/2020] [Indexed: 05/08/2023]
Abstract
Tilapia lake virus (TiLV) is a highly contagious pathogen that has detrimental effects on tilapia farming. This virus was discovered in 2014 and has received tremendous global attention from the aquaculture sector due to its association with high fish mortalities and its strong economic impact on the tilapia aquaculture industry. Currently, TiLV has been reported in 16 countries, and this number is continuing to rise due to improved diagnostic assays and surveillance activities around the world. In this review, we summarize the up-to-date knowledge of TiLV with regard to TiLV host species, the clinical signs of a TiLV infection, the affected tissues, pathogenesis and potential disease risk factors. We also describe the reported information concerning the virus itself: its morphology, genetic make-up and transmission pathways. We review the current methods for virus detection and potential control measures. We close the review of the TiLV story so far, by offering a commentary on the major TiLV research gaps, why these are delaying future TiLV research and why the TiLV field needs to come together and proceed as a more collaborative scientific community if there is any hope limiting the impact of this serious virus.
Collapse
Affiliation(s)
- Win Surachetpong
- Department of Veterinary Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
| | - Sri Rajiv Kumar Roy
- Department of Veterinary Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
| | - Pamela Nicholson
- Next Generation Sequencing Platform, Institute of Genetics, Vetsuisse, University of Bern, Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| |
Collapse
|
46
|
Kuebutornye FKA, Abarike ED, Lu Y, Hlordzi V, Sakyi ME, Afriyie G, Wang Z, Li Y, Xie CX. Mechanisms and the role of probiotic Bacillus in mitigating fish pathogens in aquaculture. FISH PHYSIOLOGY AND BIOCHEMISTRY 2020; 46:819-841. [PMID: 31953625 DOI: 10.1007/s10695-019-00754-y] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 12/26/2019] [Indexed: 06/10/2023]
Abstract
Diseases are natural components of the environment, and many have economic implications for aquaculture and fisheries. Aquaculture is a fast-growing industry with the aim to meet the high protein demand of the ever-increasing global population; however, the emergence of diseases is a major setback to the industry. Probiotics emerged as a better solution to curb the disease problem in aquaculture among many alternatives. Probiotic Bacillus has been proven to better combat a wide range of fish pathogens relative to other probiotics in aquaculture; therefore, understanding the various mechanisms used by Bacillus in combating diseases will help improve their mode of action hence yielding better results in their combat against pathogens in the aquaculture industry. Thus, an overview of the mechanisms (production of bacteriocins, suppression of virulence gene expression, competition for adhesion sites, production of lytic enzymes, production of antibiotics, immunostimulation, competition for nutrients and energy, and production of organic acids) used by Bacillus probiotics in mitigating fish pathogens ranging from Aeromonas, Vibrio, Streptococcus, Yersinia, Pseudomonas, Clostridium, Acinetobacter, Edwardsiella, Flavobacterium, white spot syndrome virus, and infectious hypodermal and hematopoietic necrosis virus proven to be mitigated by Bacillus have been provided.
Collapse
Affiliation(s)
- Felix K A Kuebutornye
- College of Fisheries, Guangdong Ocean University, Huguang Yan East, Zhanjiang, 524088, Guangdong Province, China
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518120, Guangdong, China
- Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Animals, Zhanjiang, 524088, China
- Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen, 518120, China
- Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen, 518120, China
- Guangdong Key Laboratory of Control for Diseases of Aquatic Economic Animals, Zhanjiang, 524088, China
| | - Emmanuel Delwin Abarike
- Department of Fisheries and Aquatic Resources Management, University for Development Studies, Tamale, Ghana
| | - Yishan Lu
- College of Fisheries, Guangdong Ocean University, Huguang Yan East, Zhanjiang, 524088, Guangdong Province, China.
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518120, Guangdong, China.
- Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Animals, Zhanjiang, 524088, China.
- Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen, 518120, China.
- Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen, 518120, China.
- Guangdong Key Laboratory of Control for Diseases of Aquatic Economic Animals, Zhanjiang, 524088, China.
| | - Vivian Hlordzi
- Laboratory of Aquatic Animal Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, 524088, Guangdong, China
| | - Michael Essien Sakyi
- College of Fisheries, Guangdong Ocean University, Huguang Yan East, Zhanjiang, 524088, Guangdong Province, China
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518120, Guangdong, China
- Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Animals, Zhanjiang, 524088, China
- Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen, 518120, China
- Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen, 518120, China
- Guangdong Key Laboratory of Control for Diseases of Aquatic Economic Animals, Zhanjiang, 524088, China
| | - Gyamfua Afriyie
- Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, Fisheries College, Guangdong Ocean University, Zhanjiang, 524025, China
| | - Zhiwen Wang
- College of Fisheries, Guangdong Ocean University, Huguang Yan East, Zhanjiang, 524088, Guangdong Province, China
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518120, Guangdong, China
- Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Animals, Zhanjiang, 524088, China
- Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen, 518120, China
- Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen, 518120, China
- Guangdong Key Laboratory of Control for Diseases of Aquatic Economic Animals, Zhanjiang, 524088, China
| | - Yuan Li
- College of Fisheries, Guangdong Ocean University, Huguang Yan East, Zhanjiang, 524088, Guangdong Province, China
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518120, Guangdong, China
- Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Animals, Zhanjiang, 524088, China
- Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen, 518120, China
- Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen, 518120, China
- Guangdong Key Laboratory of Control for Diseases of Aquatic Economic Animals, Zhanjiang, 524088, China
| | - Cai Xia Xie
- College of Fisheries, Guangdong Ocean University, Huguang Yan East, Zhanjiang, 524088, Guangdong Province, China
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518120, Guangdong, China
- Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Animals, Zhanjiang, 524088, China
- Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen, 518120, China
- Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen, 518120, China
- Guangdong Key Laboratory of Control for Diseases of Aquatic Economic Animals, Zhanjiang, 524088, China
| |
Collapse
|
47
|
Rakus K, Mojzesz M, Widziolek M, Pooranachandran N, Teitge F, Surachetpong W, Chadzinska M, Steinhagen D, Adamek M. Antiviral response of adult zebrafish (Danio rerio) during tilapia lake virus (TiLV) infection. FISH & SHELLFISH IMMUNOLOGY 2020; 101:1-8. [PMID: 32201348 DOI: 10.1016/j.fsi.2020.03.040] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 02/12/2020] [Accepted: 03/18/2020] [Indexed: 06/10/2023]
Abstract
Tilapia lake virus (TiLV) is a novel enveloped orthomyxo-like virus with a genome of 10 segments of linear negative-sense single-stranded RNA. It causes massive mortality of wild and farmed tilapia species and because of its spread in Asia, Africa, South and North America, it is considered a threat to tilapia aquaculture. Here, we have evaluated the possible use of zebrafish (Danio rerio) to study immune response and host-pathogen interactions during an infection with TiLV. Adult zebrafish were infected with TiLV by intraperitoneal (i.p) injection or by cohabitation. Increased viral load was observed in liver, spleen and kidney of i.p. injected fish at 1, 3, 6, and 14 days post infection (dpi) but not in fish from the cohabitation group (only liver was tested). We also demonstrated that in spleen and kidney i.p. injection of TiLV induced up-regulation of the expression of the immune-related genes encoding pathogen recognition receptors involved in sensing of viral dsRNA (rig-I, tlr3, tlr22), transcription factors (irf3, irf7), type I interferon (infϕ1), antiviral protein (mxa), pro-inflammatory (il-1β, tnf-α, il-8, ifnγ1-2) and anti-inflammatory (il-10) cytokines, CD4 markers (cd4-1, cd4-2), and IgM (igm). Moreover, tissue tropism of TiLV and histopathological changes were analyzed in selected organs of i.p. injected zebrafish. Our results indicate that zebrafish is a good model to study mechanisms of the TiLV infection and to follow antiviral responses.
Collapse
Affiliation(s)
- Krzysztof Rakus
- Department of Evolutionary Immunology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Gronostajowa 9, 30-387, Krakow, Poland.
| | - Miriam Mojzesz
- Department of Evolutionary Immunology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Gronostajowa 9, 30-387, Krakow, Poland
| | - Magdalena Widziolek
- Department of Evolutionary Immunology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Gronostajowa 9, 30-387, Krakow, Poland
| | - Niedharsan Pooranachandran
- Department of Evolutionary Immunology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Gronostajowa 9, 30-387, Krakow, Poland
| | - Felix Teitge
- Fish Disease Research Unit, Institute for Parasitology, University of Veterinary Medicine, Buenteweg 17, 30559, Hannover, Germany
| | - Win Surachetpong
- Department of Veterinary Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, 50 Ngam Wong Wan Road, Ladyao, Chatuchak, 10900, Bangkok, Thailand
| | - Magdalena Chadzinska
- Department of Evolutionary Immunology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Gronostajowa 9, 30-387, Krakow, Poland
| | - Dieter Steinhagen
- Fish Disease Research Unit, Institute for Parasitology, University of Veterinary Medicine, Buenteweg 17, 30559, Hannover, Germany
| | - Mikolaj Adamek
- Fish Disease Research Unit, Institute for Parasitology, University of Veterinary Medicine, Buenteweg 17, 30559, Hannover, Germany.
| |
Collapse
|
48
|
Wang Y, Wang Q, Li Y, Yin J, Ren Y, Shi C, Bergmann SM, Zhu X, Zeng W. Integrated analysis of mRNA-miRNA expression in Tilapia infected with Tilapia lake virus (TiLV) and identifies primarily immuneresponse genes. FISH & SHELLFISH IMMUNOLOGY 2020; 99:208-226. [PMID: 32001353 DOI: 10.1016/j.fsi.2020.01.041] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 12/27/2019] [Accepted: 01/22/2020] [Indexed: 06/10/2023]
Abstract
We investigated differential gene expression in Tilapia infected with the Tilapia Lake virus (TiLV).We used high-throughput sequencing to identify mRNAs and miRNAs involved in TiLV infection progression We identified 25,359 differentially expressed genes that included 863 new genes. We identified 1770, 4142 and 4947 differently expressed genes comparing non-infected controls with 24 and 120 h infections and between the infected groups, respectively. These genes were enriched to 291 GO terms and 62 KEGG pathways and included immune system progress and virion genes. High-throughput miRNA sequencing identified 316 conserved miRNAs, 525 known miRNAs and 592 novel miRNAs. Furthermore, 138, 198 and 153 differently expressed miRNAs were found between the 3 groups listed above, respectively. Target prediction revealed numerous genes including erythropoietin isoform X2, double-stranded RNA-specific adenosine deaminase isoform X1, bone morphogenetic protein 4 and tapasin-related protein that are involved in immune responsiveness. Moreover, these target genes overlapped with differentially expressed mRNAs obtained from RNA-seq. These target genes were significantly enriched to GO terms and KEGG pathways including immune system progress, virion and Wnt signaling pathways. Expression patterns of differentially expressed mRNA and miRNAs were validated in 20 mRNA and 19 miRNAs by qRT-PCR. We also were able to construct a miRNA-mRNA target network that can further understand the molecular mechanisms on the pathogenesis of TiLV and guide future research in developing effective agents and strategies to combat TiLV infections in Tilapia.
Collapse
Affiliation(s)
- Yingying Wang
- Key Laboratory of Fishery Drug Development of Ministry of Agriculture, Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, 510380, PR China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, PR China.
| | - Qing Wang
- Key Laboratory of Fishery Drug Development of Ministry of Agriculture, Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, 510380, PR China.
| | - Yingying Li
- Key Laboratory of Fishery Drug Development of Ministry of Agriculture, Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, 510380, PR China
| | - Jiyuan Yin
- Key Laboratory of Fishery Drug Development of Ministry of Agriculture, Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, 510380, PR China
| | - Yan Ren
- Key Laboratory of Fishery Drug Development of Ministry of Agriculture, Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, 510380, PR China
| | - Cunbin Shi
- Key Laboratory of Fishery Drug Development of Ministry of Agriculture, Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, 510380, PR China
| | - Sven M Bergmann
- Friedrich-Loeffler-Institut (FLI), Federal Research Institute for Animal Health, Institute of Infectology, Südufer 10, 17493, Greifswald-Insel Riems, Germany
| | - Xinping Zhu
- Key Laboratory of Fishery Drug Development of Ministry of Agriculture, Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, 510380, PR China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, PR China
| | - Weiwei Zeng
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, 528231, China.
| |
Collapse
|
49
|
Acharya V, Chakraborty HJ, Rout AK, Balabantaray S, Behera BK, Das BK. Structural Characterization of Open Reading Frame-Encoded Functional Genes from Tilapia Lake Virus (TiLV). Mol Biotechnol 2020; 61:945-957. [PMID: 31664705 DOI: 10.1007/s12033-019-00217-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
In recent years, large-scale mortalities are observed in tilapia due to infection with a novel orthomyxo-like virus named, tilapia lake virus (TiLV) which is marked to be a severe threat to universal tilapia industry. Currently, there are knowledge gaps relating to the antiviral peptide as well as there are no affordable vaccines or drugs available against TiLV yet. To understand the spreading of infection of TiLV in different organs of Oreochromis niloticus, RT-PCR analysis has been carried out. The gene segments of TiLV were retrieved from the NCBI database for computational biology analysis. The 14 functional genes were predicted from the 10 gene segments of TiLV. Phylogenetic analysis was employed to find out a better understanding for the evolution of tilapia lake virus genes. Out of 14 proteins, only six proteins show transmembrane helix region. Moreover, molecular modeling and molecular dynamics simulations of the predicted proteins revealed structural stability of the protein stabilized after 10-ns simulation. Overall, our study provided a basic bioinformatics on functional proteome of TiLV. Further, this study could be useful for development of novel peptide-based therapeutics to control TiLV infection.
Collapse
Affiliation(s)
- Varsha Acharya
- Biotechnology Laboratory, ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata, West Bengal, 700120, India
| | - Hirak Jyoti Chakraborty
- Biotechnology Laboratory, ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata, West Bengal, 700120, India
| | - Ajaya Kumar Rout
- Biotechnology Laboratory, ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata, West Bengal, 700120, India
| | - Sucharita Balabantaray
- Department of Bioinformatics, Odisha University of Agriculture and Technology, Bhubaneswar, Odisha, 751003, India
| | - Bijay Kumar Behera
- Biotechnology Laboratory, ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata, West Bengal, 700120, India
| | - Basanta Kumar Das
- Biotechnology Laboratory, ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata, West Bengal, 700120, India.
| |
Collapse
|
50
|
Hossain MMM, Uddin MI, Hossain MM, Islam H, . AA, Farjana N, Afroz R. Molecular Detection of Tilapia Lake Virus (TiLV) in Farmed Mono-sex Nile Tilapia (Tilapia niloticus) in Bangladesh. ACTA ACUST UNITED AC 2019. [DOI: 10.3923/ajsr.2020.67.78] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|