1
|
Alekseeva ON, Hoa LT, Vorobyev PO, Kochetkov DV, Gumennaya YD, Naberezhnaya ER, Chuvashov DO, Ivanov AV, Chumakov PM, Lipatova AV. Receptors and Host Factors for Enterovirus Infection: Implications for Cancer Therapy. Cancers (Basel) 2024; 16:3139. [PMID: 39335111 PMCID: PMC11430599 DOI: 10.3390/cancers16183139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/29/2024] [Accepted: 09/06/2024] [Indexed: 09/30/2024] Open
Abstract
Enteroviruses, with their diverse clinical manifestations ranging from mild or asymptomatic infections to severe diseases such as poliomyelitis and viral myocarditis, present a public health threat. However, they can also be used as oncolytic agents. This review shows the intricate relationship between enteroviruses and host cell factors. Enteroviruses utilize specific receptors and coreceptors for cell entry that are critical for infection and subsequent viral replication. These receptors, many of which are glycoproteins, facilitate virus binding, capsid destabilization, and internalization into cells, and their expression defines virus tropism towards various types of cells. Since enteroviruses can exploit different receptors, they have high oncolytic potential for personalized cancer therapy, as exemplified by the antitumor activity of certain enterovirus strains including the bioselected non-pathogenic Echovirus type 7/Rigvir, approved for melanoma treatment. Dissecting the roles of individual receptors in the entry of enteroviruses can provide valuable insights into their potential in cancer therapy. This review discusses the application of gene-targeting techniques such as CRISPR/Cas9 technology to investigate the impact of the loss of a particular receptor on the attachment of the virus and its subsequent internalization. It also summarizes the data on their expression in various types of cancer. By understanding how enteroviruses interact with specific cellular receptors, researchers can develop more effective regimens of treatment, offering hope for more targeted and efficient therapeutic strategies.
Collapse
Affiliation(s)
- Olga N Alekseeva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Le T Hoa
- Department of Molecular Microbiology and Immunology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Pavel O Vorobyev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Dmitriy V Kochetkov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Yana D Gumennaya
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | | | - Denis O Chuvashov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Alexander V Ivanov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Peter M Chumakov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Anastasia V Lipatova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
2
|
Zhu M, Guo Z, Xu H, Li X, Chen H, Cao R, Lv Y. Aminoguanidine alleviates gout in goslings experimentally infected with goose astrovirus-2 by reducing kidney lesions. Poult Sci 2024; 103:103484. [PMID: 38306918 PMCID: PMC10847692 DOI: 10.1016/j.psj.2024.103484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 02/04/2024] Open
Abstract
Goose astrovirus (GAstV)-2, a novel pathogen identified in 2018, mainly causes visceral gout in goslings, leading to approximately 50% mortality. At present, no commercial veterinary products are available to prevent and treat the disease. Our previous studies showed that nitric oxide (NO) and inducible NO synthase (iNOS) were markedly higher in the kidney and spleen of goslings infected with GAstV-2, but their effects during GAstV-2 infection remain unclear. In the present study, goslings were intraperitoneally injected with aminoguanidine (AG)-an iNOS inhibitor-to examine the role of NO during GAstV-2 infection. AG significantly decreased the serum NO concentration and iNOS mRNA expression in the kidney. Moreover, AG reduced the mortality, serum uric acid and creatinine content, and urate deposition in visceral organs and joints. Histopathological analysis demonstrated that AG reduced renal tubular cell necrosis, inflammatory cell infiltration, glycogen deposition in glomerular mesangium, and interstitial fibrosis, suggesting alleviation of kidney lesions. Furthermore, AG decreased the expression of renal injury markers such as KIM-1 and desmin; inflammatory cytokine-related genes such as IL-1β, IL-8, and MMP-9; and autophagy-related genes and proteins such as LC3II, ATG5, and Beclin1. However, quantitative real-time PCR and immunohistochemistry showed that treatment with AG did not affect the kidney and liver viral load. These findings suggest that AG decreases the mortality rate and kidney lesions in goslings infected with GAstV-2 through mechanisms associated with autophagy and inhibition of inflammatory cytokine production in the kidney but not with GAstV-2 replication.
Collapse
Affiliation(s)
- Ming Zhu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zixuan Guo
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Haoran Xu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xinyang Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Hongbo Chen
- Engineering Research Center for the Prevention and Control of Animal Original Zoonosis of Fujian Province University, College of Life Science, Longyan University, Longyan, 364012, Fujian, China
| | - Ruibing Cao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yingjun Lv
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
3
|
Chen Z, Liu H, Zhu J, Duan X, Wang H, Li X, Zhou X, Zhao A, Yang S. Porcine promyelocytic leukemia protein isoforms suppress Japanese encephalitis virus replication in PK15 cells. Virol J 2023; 20:280. [PMID: 38031162 PMCID: PMC10687900 DOI: 10.1186/s12985-023-02212-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
BACKGROUND Promyelocytic leukemia protein (PML) is a primary component of PML nuclear bodies (PML-NBs). PML and PML-NBs play critical roles in processes like the cell cycle, DNA damage repair, apoptosis, and the antiviral immune response. Previously, we identified five porcine PML alternative splicing variants and observed an increase in the expression of these PML isoforms following Japanese encephalitis virus (JEV) infection. In this study, we examined the functional roles of these PML isoforms in JEV infection. METHODS PML isoforms were either knocked down or overexpressed in PK15 cells, after which they were infected with JEV. Subsequently, we analyzed the gene expression of PML isoforms, JEV, and the interferon (IFN)-β signaling pathway using quantitative reverse transcription-polymerase chain reaction (qRT-PCR) and Western blot. Viral titers were determined through 50% tissue culture infectious dose (TCID50) assays. RESULTS Our results demonstrated that the knockdown of endogenous PML promoted JEV replication, while the overexpression of PML isoforms 1, 3, 4, and 5 (PML1, PML3, PML4, and PML5) inhibited JEV replication. Further investigation revealed that PML1, PML3, PML4, and PML5 negatively regulated the expression of genes involved in the interferon (IFN)-β signaling pathway by inhibiting IFN regulatory factor 3 (IRF3) post-JEV infection. CONCLUSIONS These findings demonstrate that porcine PML isoforms PML1, PML3, PML4, and PML5 negatively regulate IFN-β and suppress viral replication during JEV infection. The results of this study provide insight into the functional roles of porcine PML isoforms in JEV infection and the regulation of the innate immune response.
Collapse
Affiliation(s)
- Zhenyu Chen
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
| | - Huaijin Liu
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
| | - Jingjing Zhu
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
| | - Xing Duan
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
| | - Han Wang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
| | - Xiangchen Li
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
| | - Xiaolong Zhou
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
| | - Ayong Zhao
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China.
| | - Songbai Yang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China.
| |
Collapse
|
4
|
Wu M, Pei Z, Long G, Chen H, Jia Z, Xia W. Mitochondrial antiviral signaling protein: a potential therapeutic target in renal disease. Front Immunol 2023; 14:1266461. [PMID: 37901251 PMCID: PMC10602740 DOI: 10.3389/fimmu.2023.1266461] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 09/26/2023] [Indexed: 10/31/2023] Open
Abstract
Mitochondrial antiviral signaling protein (MAVS) is a key innate immune adaptor on the outer mitochondrial membrane that acts as a switch in the immune signal transduction response to viral infections. Some studies have reported that MAVS mediates NF-κB and type I interferon signaling during viral infection and is also required for optimal NLRP3 inflammasome activity. Recent studies have reported that MAVS is involved in various cancers, systemic lupus erythematosus, kidney diseases, and cardiovascular diseases. Herein, we summarize the structure, activation, pathophysiological roles, and MAVS-based therapies for renal diseases. This review provides novel insights into MAVS's role and therapeutic potential in the pathogenesis of renal diseases.
Collapse
Affiliation(s)
- Meng Wu
- Department of Clinical Laboratory, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Zhiyin Pei
- Department of Clinical Laboratory, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Guangfeng Long
- Department of Clinical Laboratory, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Hongbing Chen
- Department of Clinical Laboratory, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Zhanjun Jia
- Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Weiwei Xia
- Department of Clinical Laboratory, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| |
Collapse
|
5
|
Dong Q, Zhu X, Wang L, Zhang W, Lu L, Li J, Zhong S, Ma C, Ouyang K, Chen Y, Wei Z, Qin Y, Peng H, Huang W. Replication of Porcine Astrovirus Type 1-Infected PK-15 Cells In Vitro Affected by RIG-I and MDA5 Signaling Pathways. Microbiol Spectr 2023; 11:e0070123. [PMID: 37140381 PMCID: PMC10269537 DOI: 10.1128/spectrum.00701-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 04/04/2023] [Indexed: 05/05/2023] Open
Abstract
The interferon (IFN) system is an extremely powerful antiviral response in animal cells. The subsequent effects caused by porcine astrovirus type 1 (PAstV1) IFN activation are important for the host's response to viral infections. Here, we show that this virus, which causes mild diarrhea, growth retardation, and damage of the villi of the small intestinal mucosa in piglets, induces an IFN response upon infection of PK-15 cells. Although IFN-β mRNA was detected within infected cells, this response usually occurs during the middle stages of infection, after genome replication has taken place. Treatment of PAstV1-infected cells with the interferon regulatory factor 3 (IRF3) inhibitor BX795 decreased IFN-β expression, whereas the nuclear factor kappa light chain enhancer of activated B cells (NF-κB) inhibitor BAY11-7082 did not. These findings indicate that PAstV induced the production of IFN-β via IRF3-mediated rather than NF-κB-mediated signaling pathways in PK-15 cells. Moreover, PAstV1 increased the protein expression levels of retinoic acid-inducible gene I (RIG-I) and melanoma differentiation-associated protein 5 (MDA5) in PK-15 cells. The knockdown of RIG-I and MDA5 decreased the expression levels of IFN-β and the viral loads and increased the infectivity of PAstV1. In conclusion, PAstV1 induced the production of IFN-β via the RIG-I and MDA5 signaling pathways, and the IFN-β produced during PAstV1 infection inhibited viral replication. These results will help provide new evidence that PAstV1-induced IFNs may protect against PAstV replication and pathogenesis. IMPORTANCE Astroviruses (AstVs) are widespread and can infect multiple species. Porcine astroviruses produce mainly gastroenteritis and neurological diseases in pigs. However, astrovirus-host interactions are less well studied, particularly with respect to their antagonism of IFN. Here, we report that PAstV1 acts via IRF3 transcription pathway activation of IFN-β. In addition, the knockdown of RIG-I and MDA5 attenuated the production of IFN-β induced by PAstV1 in PK-15 cells and increased efficient viral replication in vitro. We believe that these findings will help us to better understand the mechanism of how AstVs affect the host IFN response.
Collapse
Affiliation(s)
- Qinting Dong
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, China
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, Nanning, China
| | - Xinyue Zhu
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, China
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, Nanning, China
| | - Leping Wang
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Wenchao Zhang
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, China
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, Nanning, China
| | - Lifei Lu
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, China
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, Nanning, China
| | - Jun Li
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning, Guangxi, China
- Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Nanning, China
| | - Shuhong Zhong
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning, Guangxi, China
- Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Nanning, China
| | - Chunxia Ma
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning, Guangxi, China
- Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Nanning, China
| | - Kang Ouyang
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, China
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, Nanning, China
| | - Ying Chen
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, China
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, Nanning, China
| | - Zuzhang Wei
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, China
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, Nanning, China
| | - Yifeng Qin
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, China
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, Nanning, China
| | - Hao Peng
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning, Guangxi, China
- Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Nanning, China
| | - Weijian Huang
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, China
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, Nanning, China
| |
Collapse
|
6
|
Mo Q, Feng K, Dai S, Wu Q, Zhang Z, Ali A, Deng F, Wang H, Ning YJ. Transcriptome profiling highlights regulated biological processes and type III interferon antiviral responses upon Crimean-Congo hemorrhagic fever virus infection. Virol Sin 2023; 38:34-46. [PMID: 36075566 PMCID: PMC10006212 DOI: 10.1016/j.virs.2022.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 08/12/2022] [Indexed: 11/17/2022] Open
Abstract
Crimean-Congo hemorrhagic fever virus (CCHFV) is a biosafety level-4 (BSL-4) pathogen that causes Crimean-Congo hemorrhagic fever (CCHF) characterized by hemorrhagic manifestation, multiple organ failure and high mortality rate, posing great threat to public health. Despite the recently increasing research efforts on CCHFV, host cell responses associated with CCHFV infection remain to be further characterized. Here, to better understand the cellular response to CCHFV infection, we performed a transcriptomic analysis in human kidney HEK293 cells by high-throughput RNA sequencing (RNA-seq) technology. In total, 496 differentially expressed genes (DEGs), including 361 up-regulated and 135 down-regulated genes, were identified in CCHFV-infected cells. These regulated genes were mainly involved in host processes including defense response to virus, response to stress, regulation of viral process, immune response, metabolism, stimulus, apoptosis and protein catabolic process. Therein, a significant up-regulation of type III interferon (IFN) signaling pathway as well as endoplasmic reticulum (ER) stress response was especially remarkable. Subsequently, representative DEGs from these processes were well validated by RT-qPCR, confirming the RNA-seq results and the typical regulation of IFN responses and ER stress by CCHFV. Furthermore, we demonstrate that not only type I but also type III IFNs (even at low dosages) have substantial anti-CCHFV activities. Collectively, the data may provide new and comprehensive insights into the virus-host interactions and particularly highlights the potential role of type III IFNs in restricting CCHFV, which may help inform further mechanistic delineation of the viral infection and development of anti-CCHFV strategies.
Collapse
Affiliation(s)
- Qiong Mo
- State Key Laboratory of Virology and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071/430207, China; University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Kuan Feng
- State Key Laboratory of Virology and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071/430207, China
| | - Shiyu Dai
- State Key Laboratory of Virology and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071/430207, China; University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Qiaoli Wu
- State Key Laboratory of Virology and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071/430207, China
| | - Zhong Zhang
- State Key Laboratory of Virology and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071/430207, China
| | - Ashaq Ali
- University of Chinese Academy of Sciences, Beijing, 101408, China; Centre of Excellence in Science and Applied Technologies, Islamabad, 45320, Pakistan
| | - Fei Deng
- State Key Laboratory of Virology and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071/430207, China; Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071/430207, China.
| | - Hualin Wang
- State Key Laboratory of Virology and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071/430207, China; Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071/430207, China.
| | - Yun-Jia Ning
- State Key Laboratory of Virology and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071/430207, China; Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071/430207, China.
| |
Collapse
|
7
|
Dai J, Zhou P, Li S, Qiu HJ. New Insights into the Crosstalk among the Interferon and Inflammatory Signaling Pathways in Response to Viral Infections: Defense or Homeostasis. Viruses 2022; 14:v14122798. [PMID: 36560803 PMCID: PMC9783938 DOI: 10.3390/v14122798] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/07/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Innate immunity plays critical roles in eliminating viral infections, healing an injury, and restoring tissue homeostasis. The signaling pathways of innate immunity, including interferons (IFNs), nuclear factor kappa B (NF-κB), and inflammasome responses, are activated upon viral infections. Crosstalk and interplay among signaling pathways are involved in the complex regulation of antiviral activity and homeostasis. To date, accumulating evidence has demonstrated that NF-κB or inflammasome signaling exhibits regulatory effects on IFN signaling. In addition, several adaptors participate in the crosstalk between IFNs and the inflammatory response. Furthermore, the key adaptors in innate immune signaling pathways or the downstream cytokines can modulate the activation of other signaling pathways, leading to excessive inflammatory responses or insufficient antiviral effects, which further results in tissue injury. This review focuses on the crosstalk between IFN and inflammatory signaling to regulate defense and homeostasis. A deeper understanding of the functional aspects of the crosstalk of innate immunity facilitates the development of targeted treatments for imbalanced homeostasis.
Collapse
Affiliation(s)
- Jingwen Dai
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Pingping Zhou
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
- Department of Immunology, School of Basic Medicine, Harbin Medical University, Harbin 150081, China
| | - Su Li
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
- Correspondence: (S.L.); (H.-J.Q.)
| | - Hua-Ji Qiu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
- Correspondence: (S.L.); (H.-J.Q.)
| |
Collapse
|
8
|
Chang KC, Chua HH, Chen YH, Tsuei DJ, Lee MH, Chiang CL, Jeng YM, Wu JF, Chen HL, Hsu HY, Ni YH, Chang MH. Hepatitis B virus X gene impacts on the innate immunity and immune-tolerant phase in chronic hepatitis B virus infection. Liver Int 2022; 42:2154-2166. [PMID: 35762289 DOI: 10.1111/liv.15348] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 03/09/2022] [Accepted: 06/24/2022] [Indexed: 02/13/2023]
Abstract
BACKGROUND AND AIMS The immunologic features involved in the immune-tolerant phase of chronic hepatitis B (CHB) virus (HBV) infection are unclear. The hepatitis B virus X (HBx) protein disrupts IFN-β induction by downregulating MAVS and may destroy subsequent HBV-specific adaptive immunity. We aimed to analyse the impacts of genetic variability of HBx in CHB patients on the immune-tolerant phase during long-term follow-up. METHODS Children with CHB in the immune-tolerant phase were recruited and followed longitudinally. HBx gene sequencing of infecting HBV strains was performed, and the effects of HBx mutations on the immune-tolerant phase were assessed. Restoration of the host immune response to end the immune-tolerant phase was investigated by immunoblotting, immunostaining, ELISA and reporter assays of MAVS/IFN-β signalling in liver cell lines, patient liver tissues and the HBV plasmid replication system. RESULTS A total of 173 children (median age, 6.92 years) were recruited. Patients carrying HBx R87G, I127V and R87G + I127V double mutations exhibited higher cumulative incidences of immune-tolerant phase breakthrough (p = .011, p = .006 and p = .017 respectively). Cells transfected with HBx R87G and I127V mutants and pHBV1.3-B6.3 replicons containing the HBx R87G and I127V mutations exhibited statistically increased levels of IFN-β, especially under poly(I:C) stimulation or Flag-MAVS cotransfection. HA-HBx wild-type interacted with Flag-MAVS and enhanced its ubiquitination, but this ability was diminished in the R87G and I127V mutants. CONCLUSIONS HBx suppresses IFN-β induction. R87G and I127V mutation restored IFN-β production by preventing MAVS degradation, contributing to curtailing the HBV immune-tolerant phase in CHB patients.
Collapse
Affiliation(s)
- Kai-Chi Chang
- Department of Pediatrics, National Taiwan University College of Medicine and Hospital, Taipei, Taiwan.,Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Huey-Huey Chua
- Department of Pediatrics, National Taiwan University College of Medicine and Hospital, Taipei, Taiwan
| | - Ya-Hui Chen
- Department of Pediatrics, National Taiwan University College of Medicine and Hospital, Taipei, Taiwan
| | - Daw-Jen Tsuei
- Department of Pediatrics, National Taiwan University College of Medicine and Hospital, Taipei, Taiwan
| | - Mei-Hui Lee
- Department of Pediatrics, National Taiwan University College of Medicine and Hospital, Taipei, Taiwan
| | - Cheng-Lun Chiang
- Department of Pediatrics, National Taiwan University College of Medicine and Hospital, Taipei, Taiwan
| | - Yung-Ming Jeng
- Department of Pathology, National Taiwan University College of Medicine and Hospital, Taipei, Taiwan
| | - Jia-Feng Wu
- Department of Pediatrics, National Taiwan University College of Medicine and Hospital, Taipei, Taiwan
| | - Huey-Ling Chen
- Department of Pediatrics, National Taiwan University College of Medicine and Hospital, Taipei, Taiwan.,Hepatitis Research Center, National Taiwan University College of Medicine and Hospital, Taipei, Taiwan.,Medical Education and Bioethics, National Taiwan University College of Medicine and Hospital, Taipei, Taiwan
| | - Hong-Yuan Hsu
- Department of Pediatrics, National Taiwan University College of Medicine and Hospital, Taipei, Taiwan.,Medical Education and Bioethics, National Taiwan University College of Medicine and Hospital, Taipei, Taiwan
| | - Yen-Hsuan Ni
- Department of Pediatrics, National Taiwan University College of Medicine and Hospital, Taipei, Taiwan.,Hepatitis Research Center, National Taiwan University College of Medicine and Hospital, Taipei, Taiwan.,Medical Microbiota Center, College of Medicine, National Taiwan University, Taipei, Taiwan.,Center of Genomic and Precision Medicine, National Taiwan University, Taipei, Taiwan
| | - Mei-Hwei Chang
- Department of Pediatrics, National Taiwan University College of Medicine and Hospital, Taipei, Taiwan.,Hepatitis Research Center, National Taiwan University College of Medicine and Hospital, Taipei, Taiwan
| |
Collapse
|
9
|
Advances in Crosstalk between Porcine Circoviruses and Host. Viruses 2022; 14:v14071419. [PMID: 35891399 PMCID: PMC9315664 DOI: 10.3390/v14071419] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 06/20/2022] [Accepted: 06/27/2022] [Indexed: 02/06/2023] Open
Abstract
Porcine circoviruses (PCVs), including PCV1 to PCV4, are non-enveloped DNA viruses with a diameter of about 20 nm, belonging to the genus Circovirus in the family Circoviridae. PCV2 is an important causative agent of porcine circovirus disease or porcine circovirus-associated disease (PCVD/PCVAD), which is highly prevalent in pigs and seriously affects the swine industry globally. Furthermore, PCV2 mainly causes subclinical symptoms and immunosuppression, and PCV3 and PCV4 were detected in healthy pigs, sick pigs, and other animals. Although the pathogenicity of PCV3 and PCV4 in the field is still controversial, the infection rates of PCV3 and PCV4 in pigs are increasing. Moreover, PCV3 and PCV4 rescued from infected clones were pathogenic in vivo. It is worth noting that the interaction between virus and host is crucial to the infection and pathogenicity of the virus. This review discusses the latest research progress on the molecular mechanism of PCVs–host interaction, which may provide a scientific basis for disease prevention and control.
Collapse
|
10
|
Su WL, Wu CC, Wu SFV, Lee MC, Liao MT, Lu KC, Lu CL. A Review of the Potential Effects of Melatonin in Compromised Mitochondrial Redox Activities in Elderly Patients With COVID-19. Front Nutr 2022; 9:865321. [PMID: 35795579 PMCID: PMC9251345 DOI: 10.3389/fnut.2022.865321] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 05/23/2022] [Indexed: 12/17/2022] Open
Abstract
Melatonin, an endogenous indoleamine, is an antioxidant and anti-inflammatory molecule widely distributed in the body. It efficiently regulates pro-inflammatory and anti-inflammatory cytokines under various pathophysiological conditions. The melatonin rhythm, which is strongly associated with oxidative lesions and mitochondrial dysfunction, is also observed during the biological process of aging. Melatonin levels decline considerably with age and are related to numerous age-related illnesses. The signs of aging, including immune aging, increased basal inflammation, mitochondrial dysfunction, significant telomeric abrasion, and disrupted autophagy, contribute to the increased severity of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. These characteristics can worsen the pathophysiological response of the elderly to SARS-CoV-2 and pose an additional risk of accelerating biological aging even after recovery. This review explains that the death rate of coronavirus disease (COVID-19) increases with chronic diseases and age, and the decline in melatonin levels, which is closely related to the mitochondrial dysfunction in the patient, affects the virus-related death rate. Further, melatonin can enhance mitochondrial function and limit virus-related diseases. Hence, melatonin supplementation in older people may be beneficial for the treatment of COVID-19.
Collapse
Affiliation(s)
- Wen-Lin Su
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
- School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Chia-Chao Wu
- Division of Nephrology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
- Department and Graduate Institute of Microbiology and Immunology, National Defense Medical Center, Taipei, Taiwan
| | - Shu-Fang Vivienne Wu
- School of Nursing, National Taipei University of Nursing and Health Sciences, Taipei, Taiwan
| | - Mei-Chen Lee
- School of Nursing, National Taipei University of Nursing and Health Sciences, Taipei, Taiwan
| | - Min-Tser Liao
- Department of Pediatrics, Taoyuan Armed Forces General Hospital Hsinchu Branch, Hsinchu City, Taiwan
- Department of Pediatrics, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Kuo-Cheng Lu
- Division of Nephrology, Department of Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
- Division of Nephrology, Department of Medicine, Fu Jen Catholic University Hospital, School of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Chien-Lin Lu
- Division of Nephrology, Department of Medicine, Fu Jen Catholic University Hospital, School of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
| |
Collapse
|
11
|
Cui Y, Zhang S, Hu X, Gao F. Tumor-associated fibroblasts derived exosomes induce the proliferation and cisplatin resistance in esophageal squamous cell carcinoma cells through RIG-I/IFN-β signaling. Bioengineered 2022; 13:12462-12474. [PMID: 35587143 PMCID: PMC9275880 DOI: 10.1080/21655979.2022.2076008] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is a common type of malignant cancer. There is growing evidence suggesting that exosomes may participate in the cellular communication of tumor-associated fibroblasts (TAFs). However, the cisplatin resistance of TAF-derived exosomes to ESCC cells remains to be further studied. Exosomes were isolated from TAFs and characterized with Western blot and TEM assays. ESCC cell lines (TE-1 and KYSE-150) were incubated with TAFs-derived exosomes. To explore the biological function of TAF-derived exosomes in ESCC cell proliferation, apoptosis, and chemosensitivity, we conducted MTT assays and Flow Cytometry. The effects in vivo were also verified via Xenograft mice models. We found that TAFs-derived exosomes led to enhanced cell proliferation and reduced apoptosis of cells, accompanied by increased expression of RIG-I/IFN-β, and TAFs derived exosomes may affect the chemosensitivity to cisplatin via RIG-I/IFN-β signaling in ESCC. Taken together, ESCC cells could communicate with TAFs cells via TAFs-derived exosomes. Our findings might represent a novel mechanism involved in ESCC and may provide a potential biomarker for ESCC.
Collapse
Affiliation(s)
- Yayun Cui
- Department of Cancer Radiotherapy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China (Anhui Provincial Cancer Hospital), Hefei, Anhui, China
| | - Shu Zhang
- Department of Gastroenterology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Xiaohan Hu
- Laboratory of Medicine, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Fei Gao
- Department of Radiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China (Anhui Provincial Cancer Hospital), Hefei, Anhui, China
| |
Collapse
|
12
|
CAO MX, WANG XR, HU WY, YIN D, REN CZ, CHEN SY, YU ML, WEI YY, HU TJ. Regulatory effect of Panax notoginseng saponins on the oxidative stress and histone acetylation induced by porcine circovirus type 2. J Vet Med Sci 2022; 84:600-609. [PMID: 35125373 PMCID: PMC9096040 DOI: 10.1292/jvms.21-0126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 01/14/2022] [Indexed: 11/22/2022] Open
Abstract
Porcine circovirus type 2 (PCV2) exists widely in swine populations worldwide, and healthy PCV2 virus carriers have enhanced the severity of the infection, which is becoming more difficult to control. This study investigated the regulatory effect of Panax notoginseng saponins (PNS) on the oxidative stress and histone acetylation modification induced by PCV2 in vitro and in mice. In vitro, PNS significantly increased the scavenging capacities of superoxide anion radicals (O2•-) and hydroxyl radicals (•OH) and reduced the content of hydrogen peroxide (H2O2) induced by PCV2 in porcine alveolar macrophages (3D4/2). In addition, PNS decreased the protein expression level of histone H4 acetylation (Ac-H4) by increasing the activity of histone deacetylase (HDAC) in PCV2-infected 3D4/2 cells. In vivo, PNS enhanced the scavenging capacities of •OH and O2•- and reduced the content of H2O2 in the spleens of PCV2-infected mice. PNS also reduced the protein expression level of histone H3 acetylation (Ac-H3) by reducing the activity of histone acetylase (HAT) and increasing the activity of HDAC in the spleens of PCV2-infected mice. PCV2 infection activated oxidative stress and histone acetylation in vitro and in mice, but PNS ameliorated this oxidative stress. The research can provide experimental basis for exploring the antioxidant effect and the regulation of histone acetylation of PNS on PCV2-infected 3D4/2 cells and mice in vitro and in vivo, and provide new ideas for the treatment of PCV2 infection.
Collapse
Affiliation(s)
- Mi-Xia CAO
- College of Animal Science and Technology, Guangxi
University, Nanning, China
| | - Xin-Rui WANG
- College of Animal Science and Technology, Guangxi
University, Nanning, China
| | - Wen-Yue HU
- School of Life Sciences and Biotechnology, Shanghai Jiao
Tong University, Shanghai, China
| | - Dan YIN
- College of Animal Science and Technology, Guangxi
University, Nanning, China
| | - Chun-Zhi REN
- College of Animal Science and Technology, Guangxi
University, Nanning, China
| | - Si-Yu CHEN
- Guangdong Provincial Key Laboratory of Animal Molecular
Design and Precise Breeding, College of Life Science and Engineering, Foshan University,
Foshan, China
| | - Mei-Ling YU
- College of Animal Science and Technology, Guangxi
University, Nanning, China
| | - Ying-Yi WEI
- College of Animal Science and Technology, Guangxi
University, Nanning, China
| | - Ting-Jun HU
- College of Animal Science and Technology, Guangxi
University, Nanning, China
| |
Collapse
|
13
|
Razzuoli E, Armando F, De Paolis L, Ciurkiewicz M, Amadori M. The Swine IFN System in Viral Infections: Major Advances and Translational Prospects. Pathogens 2022; 11:175. [PMID: 35215119 PMCID: PMC8875149 DOI: 10.3390/pathogens11020175] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/22/2022] [Accepted: 01/24/2022] [Indexed: 02/01/2023] Open
Abstract
Interferons (IFNs) are a family of cytokines that play a pivotal role in orchestrating the innate immune response during viral infections, thus representing the first line of defense in the host. After binding to their respective receptors, they are able to elicit a plethora of biological activities, by initiating signaling cascades which lead to the transcription of genes involved in antiviral, anti-inflammatory, immunomodulatory and antitumoral effector mechanisms. In hindsight, it is not surprising that viruses have evolved multiple IFN escape strategies toward efficient replication in the host. Hence, in order to achieve insight into preventive and treatment strategies, it is essential to explore the mechanisms underlying the IFN response to viral infections and the constraints thereof. Accordingly, this review is focused on three RNA and three DNA viruses of major importance in the swine farming sector, aiming to provide essential data as to how the IFN system modulates the antiviral immune response, and is affected by diverse, virus-driven, immune escape mechanisms.
Collapse
Affiliation(s)
- Elisabetta Razzuoli
- National Reference Center of Veterinary and Comparative Oncology (CEROVEC), Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle D’Aosta, Piazza Borgo Pila 39/24, 16129 Genoa, Italy;
| | - Federico Armando
- Department of Pathology, University of Veterinary Medicine Hannover, Bünteweg 17, 30559 Hannover, Germany; (F.A.); (M.C.)
| | - Livia De Paolis
- National Reference Center of Veterinary and Comparative Oncology (CEROVEC), Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle D’Aosta, Piazza Borgo Pila 39/24, 16129 Genoa, Italy;
| | - Malgorzata Ciurkiewicz
- Department of Pathology, University of Veterinary Medicine Hannover, Bünteweg 17, 30559 Hannover, Germany; (F.A.); (M.C.)
| | - Massimo Amadori
- National Network of Veterinary Immunology (RNIV), Via Istria 3, 25125 Brescia, Italy;
| |
Collapse
|
14
|
Yang L, Liu X, Zhang L, Li X, Zhang X, Niu G, Ji W, Chen S, Ouyang H, Ren L. Porcine TRIM21 Enhances Porcine Circovirus 2 Infection and Host Immune Responses, But Inhibits Apoptosis of PCV2-Infected Cells. Viruses 2022; 14:v14010156. [PMID: 35062360 PMCID: PMC8780438 DOI: 10.3390/v14010156] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/10/2022] [Accepted: 01/14/2022] [Indexed: 12/27/2022] Open
Abstract
Tripartite motif protein 21 (TRIM21) is an interferon-inducible E3 ligase, containing one RING finger domain, one B-box motif, one coiled-coil domain at the N-terminal, as well as one PRY domain and one SPRY domain at the C-terminal. TRIM21 is expressed in many tissues and plays an important role in systemic autoimmunity. However, TRIM21 plays different roles in different virus infections. In this study, we evaluate the relationship between porcine TRIM21 and PCV2 infection as well as host immune responses. We found that PCV2 infection modulated the expression of porcine TRIM21. TRIM21 can enhance interferons and proinflammatory factors and decrease cellular apoptosis in PCV2-infected cells. These results indicate that porcine TRIM21 plays a critical role in enhancing PCV2 infection, which is a promising target for controlling and developing the treatment of PCV2 infection.
Collapse
|
15
|
Huang H, Ding R, Chen Z, Yi Z, Wang H, Lv Y, Bao E. Goose nephritic astrovirus infection increases autophagy, destroys intercellular junctions in renal tubular epithelial cells, and damages podocytes in the kidneys of infected goslings. Vet Microbiol 2021; 263:109244. [PMID: 34649010 DOI: 10.1016/j.vetmic.2021.109244] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 09/19/2021] [Indexed: 01/21/2023]
Abstract
Goose nephritic astrovirus (GNAstV) has recently been identified, which causes kidney swelling and visceral gout in goslings. However, the pathological changes in kidney tissue due to GNAstV infection have not yet been described. In the study, fifty goslings were orally infected with GNAstV, and fifty goslings received PBS as a control. Kidney tissue was collected at different days following infection (dpi) to assess the injury. GNAstV infection reduced body weight, increased the relative weight of the kidney, and increased serum uric acid and creatinine levels. GNAstV was found within renal epithelial cells, and the viral load in the kidney peaked at 7 dpi. Pale and swollen kidney tissue was observed in infected goslings, especially at 5 and 7 dpi. GNAstV infection caused degeneration and necrosis of renal epithelial cells, structural destruction of the brush border, glycogen deposition in the glomerular mesangium, increased fibrosis, and infiltration of inflammatory cells into the renal interstitium. Moreover, swollen mitochondria, broken mitochondrial ridges, autophagosomes, and autophagolysosomes were observed under ultrahistopathological examination. GNAstV infection increased levels of LC3B, ATG5, and Beclin 1, and decreased p62, and downregulated WT1 mRNA and upregulated desmin mRNA. At early stages, GNAstV infection decreased expression of intercellular junction-related genes, including ZO-1, occludin, claudin-10, and catenin-α2. In conclusion, GNAstV infection causes renal epithelial cell autophagy, destruction of brush border and intercellular junctions, podocyte damage, and increased fibrosis, ultimately resulting in damage to the kidney.
Collapse
Affiliation(s)
- Han Huang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Rui Ding
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zongyan Chen
- National Engineering Research Center for Poultry, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 518 Ziyue Road, Minhang District, Shanghai, 200241, China
| | - Zewen Yi
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Hongyu Wang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yingjun Lv
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Endong Bao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
16
|
Jiao Q, Xu W, Guo X, Liu H, Liao B, Zhu X, Chen C, Yang F, Wu L, Xie C, Peng L. NLRX1 can counteract innate immune response induced by an external stimulus favoring HBV infection by competitive inhibition of MAVS-RLRs signaling in HepG2-NTCP cells. Sci Prog 2021; 104:368504211058036. [PMID: 34825857 PMCID: PMC10461377 DOI: 10.1177/00368504211058036] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION This study is aimed at the determination of the effect of the immune-regulatory factor NLRX1 on the antiviral activity of hepatocytes against an external stimuli favoring hepatitis B virus infection, and to explore its mechanism of action. METHODS A HepG2-NTCP model was established using the LV003 lentivirus. Cells were transfected using an overexpression vector and NLRX1 siRNA to achieve overexpression and interference of NLRX1 expression (OV-NLRX1, si-NLRX1). Levels of HBsAg and HBcAg were determined using Western blotting analysis and immunohistochemical analysis. The levels of hepatitis B virus DNA and hepatitis B virus cccDNA were determined by real-time quantitative polymerase chain reaction. The expression and transcriptional activity of IFN-α, IFN-β, and IL-6 were measured using real-time quantitative polymerase chain reaction, enzyme-linked immunosorbent assay, and promoter-luciferase reporter plasmids. Co-immunoprecipitation was used to determine the effect of NLRX1 on the interaction between MAVS and RIG-1. Western blotting was used to obtain the phosphorylation of essential proteins in the MAVS-RLRs signaling pathways. RESULTS NLRX1 promoted HepG2-NTCP cell hepatitis B virus infection. Compared to the control group, the levels of HBsAg, HBcAg, hepatitis B virus cccDNA, and hepatitis B virus DNA increased in the OV-NLRX1 group and decreased in the si-NLRX1. Co-immunoprecipitation results showed that NLRX1 competitively inhibited the interaction between MAVS and RIG-1, and inhibited the phosphorylation of p65, IRF3, and IRF7. Additionally, NLRX1 reduced the transcription activity and expression levels of the final products: IFN-α, IFN-β, and IL-6. CONCLUSIONS NLRX1 can counteract innate immune response induced by an external stimuli favoring hepatitis B virus infection by competitive inhibition of MAVS-RLRs signaling in HepG2-NTCP cells. Inhibition of the MAVS-RLR-mediated signaling pathways leads to a decline in the expression levels of I-IFN and IL-6.
Collapse
Affiliation(s)
- Qian Jiao
- Department of Infectious Diseases,
Third Affiliated Hospital, Sun Yat-sen University, China
- Infectious Disease Center, Guangzhou Eighth People’s
Hospital, Guangzhou Medical University, China
| | - Wenxiong Xu
- Department of Infectious Diseases,
Third Affiliated Hospital, Sun Yat-sen University, China
| | - Xiaoyan Guo
- Department of Infectious Diseases,
Third Affiliated Hospital, Sun Yat-sen University, China
| | - Huiyuan Liu
- Infectious Disease Center, Guangzhou Eighth People’s
Hospital, Guangzhou Medical University, China
| | - Baolin Liao
- Infectious Disease Center, Guangzhou Eighth People’s
Hospital, Guangzhou Medical University, China
| | - Xiang Zhu
- Department of Infectious Diseases,
Third Affiliated Hospital, Sun Yat-sen University, China
| | - Chuming Chen
- Department of Infectious Diseases, Third People’s Hospital of
Shenzhen, China
| | - Fangji Yang
- Department of Infectious Diseases,
Third Affiliated Hospital, Sun Yat-sen University, China
| | - Lina Wu
- Department of Infectious Diseases,
Third Affiliated Hospital, Sun Yat-sen University, China
| | - Chan Xie
- Department of Infectious Diseases,
Third Affiliated Hospital, Sun Yat-sen University, China
| | - Liang Peng
- Department of Infectious Diseases,
Third Affiliated Hospital, Sun Yat-sen University, China
| |
Collapse
|
17
|
Resveratrol as an Adjunctive Therapy for Excessive Oxidative Stress in Aging COVID-19 Patients. Antioxidants (Basel) 2021; 10:antiox10091440. [PMID: 34573071 PMCID: PMC8471532 DOI: 10.3390/antiox10091440] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 08/17/2021] [Accepted: 09/06/2021] [Indexed: 02/07/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic continues to burden healthcare systems worldwide. COVID-19 symptoms are highly heterogeneous, and the patient may be asymptomatic or may present with mild to severe or fatal symptoms. Factors, such as age, sex, and comorbidities, are key determinants of illness severity and progression. Aging is accompanied by multiple deficiencies in interferon production by dendritic cells or macrophages in response to viral infections, resulting in dysregulation of inflammatory immune responses and excess oxidative stress. Age-related dysregulation of immune function may cause a more obvious pathophysiological response to SARS-CoV-2 infection in elderly patients and may accelerate the risk of biological aging, even after recovery. For more favorable treatment outcomes, inhibiting viral replication and dampening inflammatory and oxidative responses before induction of an overt cytokine storm is crucial. Resveratrol is a potent antioxidant with antiviral activity. Herein, we describe the reasons for impaired interferon production, owing to aging, and the impact of aging on innate and adaptive immune responses to infection, which leads to inflammation distress and immunosuppression, thereby causing fulminant disease. Additionally, the molecular mechanism by which resveratrol could reverse a state of excessive basal inflammatory and oxidative stress and low antiviral immunity is discussed.
Collapse
|
18
|
Kang SJ, Park IB, Chun T. Open reading frame 5 protein of porcine circovirus type 2 induces RNF128 (GRAIL) which inhibits mRNA transcription of interferon-β in porcine epithelial cells. Res Vet Sci 2021; 140:79-82. [PMID: 34416463 DOI: 10.1016/j.rvsc.2021.08.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 07/15/2021] [Accepted: 08/05/2021] [Indexed: 12/27/2022]
Abstract
A previous study has indicated that mRNA transcript of Rnf128 (Grail) is significantly increased in porcine epithelial cells expressing porcine circovirus type 2 (PCV2) open reading frame 5 (ORF5). RNF128 is an E3 ubiquitin ligase that can modulate the activity of target protein via ubiquitination of specific lysine residues. However, the function of RNF128 in PCV2-infected epithelial cells has not been well studied yet. Thus, the objective of the present study was to examine the functional role of RNF128 in porcine epithelial cells (PK15 cells) after PCV2 infection. Results clearly indicated that PCV2 ORF5 increased the expression of RNF128 which inhibited type I IFN production and enhanced viral replication of PCV2 in PK15 cells. Therefore, up-regulating RNF128 by PCV2 ORF5 can help PCV2 circumvent initial immune surveillance of porcine epithelial cells.
Collapse
Affiliation(s)
- Seok-Jin Kang
- Department of Biotechnology, School of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - In-Byung Park
- Department of Biotechnology, School of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Taehoon Chun
- Department of Biotechnology, School of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
19
|
Ding R, Huang H, Wang H, Yi Z, Qiu S, Lv Y, Bao E. Goose Nephritic Astrovirus Infection of Goslings Induces Lymphocyte Apoptosis, Reticular Fiber Destruction, and CD8 T-Cell Depletion in Spleen Tissue. Viruses 2021; 13:1108. [PMID: 34207913 PMCID: PMC8229047 DOI: 10.3390/v13061108] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/31/2021] [Accepted: 06/05/2021] [Indexed: 12/25/2022] Open
Abstract
The emergence of a novel goose nephritic astrovirus (GNAstV) has caused economic losses to the Chinese goose industry. High viral load is found in the spleen of goslings infected with GNAstV, but pathological injuries to the spleen due to GNAstV are largely unknown. In this study, 50 two-day-old goslings were infected orally with GNAstV, and 50 goslings were treated with PBS as control. Spleens were collected at different times following infection to assess damage. GNAstV infection caused visceral gout and urate deposition in joints, and resulted in 16% mortality. GNAstV was found in the lymphocytes and macrophages within the spleen. Lymphocyte loss, especially around the white pulp, and destruction and decline in the number of reticular fibers was observed in GNAstV-infected goslings. Moreover, in GNAstV-infected goslings, ultrahistopathological examination found that splenic lymphocytes exhibited condensed chromatin and apoptotic bodies, and reticular cells displayed damage to plasma membrane integrity and swollen mitochondria. Furthermore, TUNEL staining confirmed apoptosis of lymphocytes, and the mRNA levels of Fas and FasL were significantly increased in the GNAstV-infected goslings. In addition, GNAstV infection reduced the number and protein expression of CD8. In conclusion, GNAstV infection causes lymphocyte depletion, reticular cell necrosis, reticular fiber destruction, lymphocyte apoptosis, and reduction in CD8 levels, which contribute to spleen injury.
Collapse
Affiliation(s)
| | | | | | | | | | - Yingjun Lv
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (R.D.); (H.H.); (H.W.); (Z.Y.); (S.Q.); (E.B.)
| | | |
Collapse
|
20
|
Liu X, Shen H, Zhang X, Liang T, Ban Y, Yu L, Zhang L, Liu Y, Dong J, Zhang P, Lian K, Song C. Porcine circovirus type 3 capsid protein induces NF-κB activation and upregulates pro-inflammatory cytokine expression in HEK-293T cells. Arch Virol 2021; 166:2141-2149. [PMID: 34009439 DOI: 10.1007/s00705-021-05104-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 03/29/2021] [Indexed: 12/12/2022]
Abstract
Porcine circovirus type 3 (PCV3) has been widely detected throughout the world since it was first discovered on pig farms in 2015. PCV3 is closely associated with cardiac and multisystem inflammation, respiratory disease, congenital tremors, myocarditis, diarrhea, encephalitis and neurologic disease, and periarteritis. However, there have been few reports on the relationship between PCV3 and inflammatory pathways. The NF-κB signaling pathway plays an important role in the defense against viral infection. Here, we demonstrate that the capsid protein (Cap) of PCV3 plays a key role in the activation of NF-κB signaling in HEK-293T cells. Furthermore, PCV3 Cap promotes the mRNA expression of the pro-inflammatory cytokines IL6 and TNFα. In addition, PCV3 Cap promotes RIG-I and MDA5 mRNA expression in RIG-like receptor (RLR) signaling and MyD88 mRNA expression in Toll-like receptor (TLR) signaling but does not influence TRIF mRNA expression in TLR signaling. These results show that PCV3 Cap activates NF-κB signaling, possibly through the RLR and the TLR signaling pathways. This work illustrates that PCV3 Cap activates NF-κB signaling and thus may provide a basis for the pathogenesis of PCV3 and the innate immunity of the host.
Collapse
Affiliation(s)
- Xianhui Liu
- College of Animal Science and National Engineering Center for Swine Breeding Industry, South China Agricultural University, Guangzhou, 510642, China
| | - Hanqin Shen
- Wen's Foodstuff Group Co. Ltd, Guangdong Enterprise Key Laboratory for Animal Health and Environmental Control, Yunfu, 527439, China
| | - Xinming Zhang
- College of Animal Science and National Engineering Center for Swine Breeding Industry, South China Agricultural University, Guangzhou, 510642, China
| | - Tairun Liang
- College of Animal Science and National Engineering Center for Swine Breeding Industry, South China Agricultural University, Guangzhou, 510642, China
| | - Yanfang Ban
- College of Animal Science and National Engineering Center for Swine Breeding Industry, South China Agricultural University, Guangzhou, 510642, China
| | - Linyang Yu
- College of Animal Science and National Engineering Center for Swine Breeding Industry, South China Agricultural University, Guangzhou, 510642, China
| | - Leyi Zhang
- College of Animal Science and National Engineering Center for Swine Breeding Industry, South China Agricultural University, Guangzhou, 510642, China
| | - Yanling Liu
- College of Animal Science and National Engineering Center for Swine Breeding Industry, South China Agricultural University, Guangzhou, 510642, China
| | - Jianguo Dong
- School of Animal Husbandry and Medical Engineering, Xinyang Agriculture and Forestry University, No. 1 North Road, Pingqiao District, Xinyang, 464000, China
| | - Pengfei Zhang
- College of Animal Science and National Engineering Center for Swine Breeding Industry, South China Agricultural University, Guangzhou, 510642, China
| | - Kaiqi Lian
- School of Biotechnology and Food Science, Anyang Institute of Technology, Anyang, 455000, China
| | - Changxu Song
- College of Animal Science and National Engineering Center for Swine Breeding Industry, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
21
|
Genomic analysis and functional characterization of immune genes from the RIG-I- and MAVS-mediated antiviral signaling pathway in lamprey. Genomics 2021; 113:2400-2412. [PMID: 33887365 DOI: 10.1016/j.ygeno.2021.04.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 02/03/2021] [Accepted: 04/17/2021] [Indexed: 11/23/2022]
Abstract
Retinoic acid-inducible gene I (RIG-I)-like receptors (RLRs) are well-known viral RNA sensors in the cytoplasm. RIG-I-mediated antiviral signals are activated by interacting with the adapter protein mitochondrial antiviral signaling (MAVS), which triggers interferon (IFN) responses via a signaling cascade. Although the complete RIG-I receptor signaling pathway has been traced back to teleosts, definitive evidence of its presence in lampreys is lacking. Here, we identified 13 pivotal molecules in the RIG-I signaling pathway in lamprey, and demonstrated that the original RIG-I/MAVS signaling pathway was activated and mediated the expression of unique immunity factors such as RRP4, to inhibit viral proliferation after viral infection in vivo and in vitro. This study confirmed the conservation of the RIG-I pathway, and the uniqueness of the RRP4 effector molecule in lamprey, and further clarified the evolutionary process of the RIG-I antiviral signaling pathway, providing evidence on the origins of innate antiviral immunity in vertebrates.
Collapse
|
22
|
DiNicolantonio JJ, McCarty M, Barroso-Aranda J. Melatonin may decrease risk for and aid treatment of COVID-19 and other RNA viral infections. Open Heart 2021; 8:e001568. [PMID: 33741691 PMCID: PMC7985934 DOI: 10.1136/openhrt-2020-001568] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/22/2021] [Indexed: 12/17/2022] Open
Abstract
A recent retrospective study has provided evidence that COVID-19 infection may be notably less common in those using supplemental melatonin. It is suggested that this phenomenon may reflect the fact that, via induction of silent information regulator 1 (Sirt1), melatonin can upregulate K63 polyubiquitination of the mitochondrial antiviral-signalling protein, thereby boosting virally mediated induction of type 1 interferons. Moreover, Sirt1 may enhance the antiviral efficacy of type 1 interferons by preventing hyperacetylation of high mobility group box 1 (HMGB1), enabling its retention in the nucleus, where it promotes transcription of interferon-inducible genes. This nuclear retention of HMGB1 may also be a mediator of the anti-inflammatory effect of melatonin therapy in COVID-19-complementing melatonin's suppression of nuclear factor kappa B activity and upregulation of nuclear factor erythroid 2-related factor 2. If these speculations are correct, a nutraceutical regimen including vitamin D, zinc and melatonin supplementation may have general utility for the prevention and treatment of RNA virus infections, such as COVID-19 and influenza.
Collapse
Affiliation(s)
- James J DiNicolantonio
- Department of Preventive Cardiology, Saint Luke's Mid America Heart Institute, Kansas City, Missouri, USA
| | | | | |
Collapse
|
23
|
DiNicolantonio JJ, Barroso-Aranda J, McCarty MF. Azithromycin and glucosamine may amplify the type 1 interferon response to RNA viruses in a complementary fashion. Immunol Lett 2020; 228:83-85. [PMID: 33002511 PMCID: PMC7521214 DOI: 10.1016/j.imlet.2020.09.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/09/2020] [Accepted: 09/22/2020] [Indexed: 12/12/2022]
Abstract
Previous research demonstrates that, in clinically relevant concentrations, azithromycin can boost the ability of RNA viruses to induce type 1 interferon by amplifying the expression and virally-mediated activation of MDA5. O-GlcNAcylation of MAVS, a down-stream target of MDA5, renders it more effective for type 1 interferon induction. High-dose glucosamine administration up-regulates O-GlcNAcylation by increasing the cellular pool of UDP-N-acetylglucosamine. Hence, it is proposed that joint administration of azithromycin and high-dose glucosamine, early in the course of RNA virus infections, may interact in a complementary fashion to aid their control by enhancing type 1 interferon induction.
Collapse
|
24
|
Gasmi A, Tippairote T, Mujawdiya PK, Peana M, Menzel A, Dadar M, Gasmi Benahmed A, Bjørklund G. Micronutrients as immunomodulatory tools for COVID-19 management. Clin Immunol 2020; 220:108545. [PMID: 32710937 PMCID: PMC7833875 DOI: 10.1016/j.clim.2020.108545] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 07/19/2020] [Accepted: 07/19/2020] [Indexed: 01/08/2023]
Abstract
COVID-19 rapidly turned to a global pandemic posing lethal threats to overwhelming health care capabilities, despite its relatively low mortality rate. The clinical respiratory symptoms include dry cough, fever, anosmia, breathing difficulties, and subsequent respiratory failure. No known cure is available for COVID-19. Apart from the anti-viral strategy, the supports of immune effectors and modulation of immunosuppressive mechanisms is the rationale immunomodulation approach in COVID-19 management. Diet and nutrition are essential for healthy immunity. However, a group of micronutrients plays a dominant role in immunomodulation. The deficiency of most nutrients increases the individual susceptibility to virus infection with a tendency for severe clinical presentation. Despite a shred of evidence, the supplementation of a single nutrient is not promising in the general population. Individuals at high-risk for specific nutrient deficiencies likely benefit from supplementation. The individual dietary and nutritional status assessments are critical for determining the comprehensive actions in COVID-19.
Collapse
Affiliation(s)
- Amin Gasmi
- Société Francophone de Nutrithérapie et de Nutrigénétique Appliquée, Villeurbanne, France
| | - Torsak Tippairote
- Philosophy Program in Nutrition, Faculty of Medicine, Ramathibodi Hospital and Institute of Nutrition, Mahidol University, Bangkok, Thailand; Nutritional and Environmental Medicine Department, BBH Hospital, Bangkok, Thailand
| | | | | | | | - Maryam Dadar
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | | | - Geir Bjørklund
- Council for Nutritional and Environmental Medicine (CONEM), Mo i Rana, Norway.
| |
Collapse
|
25
|
Shi F, Li Q, Liu S, Liu F, Wang J, Cui D, Hou X, Zhou S, Zhang Y, Li H. Porcine circovirus type 2 upregulates endothelial-derived IL-8 production in porcine iliac artery endothelial cells via the RIG-I/MDA-5/MAVS/JNK signaling pathway. BMC Vet Res 2020; 16:265. [PMID: 32727484 PMCID: PMC7392700 DOI: 10.1186/s12917-020-02486-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 07/22/2020] [Indexed: 12/11/2022] Open
Abstract
Background Dysfunction of endothelial cells and vascular system is one of the most important pathological changes of porcine circovirus disease (PCVD) caused by porcine circovirus type 2 (PCV2). PCV2-infected endothelial cells can upregulate the production of endothelial-derived IL-8, which can inhibit the maturation of dendritic cells. Endothelial-derived IL-8 has different structural and biological characteristics compared with monocyte-derived IL-8. However, the mechanism of endothelial-derived IL-8 production is still unclear. Results Key molecules of RIG-I-like signaling pathway RIG-I, MDA-5, MAVS and a key molecule of JNK signaling pathway c-Jun in PCV2-infected porcine iliac artery endothelial cells (PIECs) were upregulated significantly detected with quantitative PCR, Western blot and fluorescence confocal microscopy, while no significant changes were found in NF-κB signaling pathway. Meanwhile, the expression of endothelial-derived IL-8 was downregulated after RIG-I, MDA-5, or MAVS genes in PIECs were knocked down and PIECs were treated by JNK inhibitor. Conclusions PCV2 can activate RIG-I/MDA-5/MAVS/JNK signaling pathway to induce the production of endothelial-derived IL-8 in PIECs, which provides an insight into the further study of endothelial dysfunction and vascular system disorder caused by PCV2.
Collapse
Affiliation(s)
- Fengyang Shi
- College of Animal Science and Technology, Beijing University of Agriculture, No. 7 Beinong Road, Beijing, 102206, Changping District, China
| | - Qiuming Li
- College of Animal Science and Technology, Beijing University of Agriculture, No. 7 Beinong Road, Beijing, 102206, Changping District, China
| | - Shiyu Liu
- College of Animal Science and Technology, Beijing University of Agriculture, No. 7 Beinong Road, Beijing, 102206, Changping District, China
| | - Fengying Liu
- College of Animal Science and Technology, Beijing University of Agriculture, No. 7 Beinong Road, Beijing, 102206, Changping District, China
| | - Jianfang Wang
- Beijing Key Laboratory of TCVM, Beijing University of Agriculture, No. 7 Beinong Road, Beijing, 102206, Changping District, China
| | - Defeng Cui
- Beijing Key Laboratory of TCVM, Beijing University of Agriculture, No. 7 Beinong Road, Beijing, 102206, Changping District, China
| | - Xiaolin Hou
- College of Animal Science and Technology, Beijing University of Agriculture, No. 7 Beinong Road, Beijing, 102206, Changping District, China
| | - Shuanghai Zhou
- College of Animal Science and Technology, Beijing University of Agriculture, No. 7 Beinong Road, Beijing, 102206, Changping District, China
| | - Yonghong Zhang
- College of Animal Science and Technology, Beijing University of Agriculture, No. 7 Beinong Road, Beijing, 102206, Changping District, China.
| | - Huanrong Li
- College of Animal Science and Technology, Beijing University of Agriculture, No. 7 Beinong Road, Beijing, 102206, Changping District, China.
| |
Collapse
|
26
|
Zhang L, Qiu S, Lu M, Huang C, Lv Y. Nuclear transporter karyopherin subunit alpha 3 levels modulate Porcine circovirus type 2 replication in PK-15 cells. Virology 2020; 548:31-38. [PMID: 32838944 DOI: 10.1016/j.virol.2020.06.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/04/2020] [Accepted: 06/05/2020] [Indexed: 11/25/2022]
Abstract
Entering the nucleus is important for Porcine circovirus type 2 (PCV2) replication. Karyopherins (KPNs) mediate the nuclear import of many cytoplasmic proteins. Our previous study showed that KPNA3 is involved in interferon production during PCV2 infection induced by Poly I:C and ISD (Interferon stimulatory DNA). However, it remains unclear whether PCV2 replication is associated with KPNA3. In the present study, knockdown of KPNA3 promoted the replication of PCV2, whereas overexpression of KPNA3 inhibited PCV2 replication in PK-15 cells. Furthermore, KPNA3 knockdown inhibited IRF3 and reduced the expression of antiviral genes including IFN-β, ISG54, Mx1 and ISG56, while the opposite results were obtained after KPNA3 overexpression. KPNA3 knockdown also promoted p65 nuclear translocation and increased the mRNA expression of IL-10 and IL-1β. These results suggested that KPNA3 facilitates IRF3 entry into the nucleus and the production of an antiviral response, resulting in PCV2 replication inhibition and blockage of NF-κB signal activation.
Collapse
Affiliation(s)
- Lili Zhang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Siyu Qiu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Mingqing Lu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Canping Huang
- Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Yingjun Lv
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
27
|
McCarty MF, DiNicolantonio JJ. Nutraceuticals have potential for boosting the type 1 interferon response to RNA viruses including influenza and coronavirus. Prog Cardiovasc Dis 2020; 63:383-385. [PMID: 32061635 PMCID: PMC7130854 DOI: 10.1016/j.pcad.2020.02.007] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Mark F McCarty
- Catalytic Longevity Foundation, United States of America
| | | |
Collapse
|
28
|
Detzner J, Gloerfeld C, Pohlentz G, Legros N, Humpf HU, Mellmann A, Karch H, Müthing J. Structural Insights into Escherichia coli Shiga Toxin (Stx) Glycosphingolipid Receptors of Porcine Renal Epithelial Cells and Inhibition of Stx-Mediated Cellular Injury Using Neoglycolipid-Spiked Glycovesicles. Microorganisms 2019; 7:microorganisms7110582. [PMID: 31752441 PMCID: PMC6920957 DOI: 10.3390/microorganisms7110582] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 11/15/2019] [Accepted: 11/16/2019] [Indexed: 11/18/2022] Open
Abstract
Shiga toxin (Stx) producing Escherichia coli (STEC) cause the edema disease in pigs by releasing the swine-pathogenic Stx2e subtype as the key virulence factor. Stx2e targets endothelial cells of animal organs including the kidney harboring the Stx receptor glycosphingolipids (GSLs) globotriaosylceramide (Gb3Cer, Galα1-4Galβ1-4Glcβ1-1Cer) and globotetraosylceramide (Gb4Cer, GalNAcβ1-3Galα1-4Galβ1-4Glcβ1-1Cer). Since the involvement of renal epithelial cells in the edema disease is unknown, in this study, we analyzed the porcine kidney epithelial cell lines, LLC-PK1 and PK-15, regarding the presence of Stx-binding GSLs, their sensitivity towards Stx2e, and the inhibitory potential of Gb3- and Gb4-neoglycolipids, carrying phosphatidylethanolamine (PE) as the lipid anchor, towards Stx2e. Immunochemical and mass spectrometric analysis revealed various Gb3Cer and Gb4Cer lipoforms as the dominant Stx-binding GSLs in both LLC-PK1 and PK-15 cells. A dihexosylceramide with proposed Galα1-4Gal-sequence (Gal2Cer) was detected in PK-15 cells, whereas LLC-PK1 cells lacked this compound. Both cell lines were susceptible towards Stx2e with LLC-PK1 representing an extremely Stx2e-sensitive cell line. Gb3-PE and Gb4-PE applied as glycovesicles significantly reduced the cytotoxic activity of Stx2e towards LLC-PK1 cells, whereas only Gb4-PE exhibited some protection against Stx2e for PK-15 cells. This is the first report identifying Stx2e receptors of porcine kidney epithelial cells and providing first data on their Stx2e-mediated damage suggesting possible involvement in the edema disease.
Collapse
Affiliation(s)
- Johanna Detzner
- Institute for Hygiene, University of Münster, 48149 Münster, Germany; (J.D.); (C.G.); (G.P.); (N.L.); (A.M.); (H.K.)
| | - Caroline Gloerfeld
- Institute for Hygiene, University of Münster, 48149 Münster, Germany; (J.D.); (C.G.); (G.P.); (N.L.); (A.M.); (H.K.)
| | - Gottfried Pohlentz
- Institute for Hygiene, University of Münster, 48149 Münster, Germany; (J.D.); (C.G.); (G.P.); (N.L.); (A.M.); (H.K.)
| | - Nadine Legros
- Institute for Hygiene, University of Münster, 48149 Münster, Germany; (J.D.); (C.G.); (G.P.); (N.L.); (A.M.); (H.K.)
| | - Hans-Ulrich Humpf
- Institute for Food Chemistry, University of Münster, 48149 Münster, Germany;
| | - Alexander Mellmann
- Institute for Hygiene, University of Münster, 48149 Münster, Germany; (J.D.); (C.G.); (G.P.); (N.L.); (A.M.); (H.K.)
| | - Helge Karch
- Institute for Hygiene, University of Münster, 48149 Münster, Germany; (J.D.); (C.G.); (G.P.); (N.L.); (A.M.); (H.K.)
| | - Johannes Müthing
- Institute for Hygiene, University of Münster, 48149 Münster, Germany; (J.D.); (C.G.); (G.P.); (N.L.); (A.M.); (H.K.)
- Correspondence: ; Tel.: +49-(0)251-8355192
| |
Collapse
|
29
|
Zhao J, Xue Y, Pan Y, Yao A, Wang G, Li D, Wang T, Zhao S, Hou Y. Toll-like receptor 3 agonist poly I:C reinforces the potency of cytotoxic chemotherapy via the TLR3-UNC93B1-IFN-β signaling axis in paclitaxel-resistant colon cancer. J Cell Physiol 2018; 234:7051-7061. [PMID: 30387134 DOI: 10.1002/jcp.27459] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Accepted: 08/29/2018] [Indexed: 12/19/2022]
Abstract
Type I interferon (IFN) signaling in neoplastic cells has a chemo-sensitizing effect in cancer therapy. Toll-like receptor 3 (TLR3) activation promotes IFN-β production, which induces apoptosis and impairs proliferation in some cancer cells. Herein, we tested whether the TLR3 agonist polyinosinic: polycytidylic acid (poly I:C) can improve chemotherapeutic efficacy in paclitaxel (PTX) resistant cell lines. Human colon cancer cell lines HCT116, SW620, HCT-8 (sensitive to PTX), and HCT-8/PTX (resistant to PTX) were treated with poly I:C and the cell viability was measured. Results showed that poly I:C specifically impaired the cell viability of HCT-8/PTX by simultaneously promoting cell apoptosis and inhibiting cell proliferation. In addition, when TLR3 was overexpressed in HCT-8/PTX cells, we found that TLR3 contributed to the production of IFN-β that reduced cell viability, and poly I:C preferentially activated the TLR3-UNC93B1 signaling pathway to mediate this effect. Moreover, cotreatment of poly I:C and PTX acted synergistically to induce cell apoptosis of HCT-8/PTX via upregulating the expression of TLR3 and its molecular chaperone UNC93B1, assisting in the secretion of IFN-β. Notably, a combination of poly I:C and PTX synergistically inhibited the PTX-resistant tumor growth in vivo without side effects. In conclusion, our studies demonstrate that poly I:C reinforces the potency of cytotoxic chemotherapeutics in PTX-resistant cell line through the TLR3-UNC93B1-IFN-β signaling pathway, which supplies a novel mechanism of poly I:C for the chemotherapy sensitizing effect in a PTX-resistant tumor.
Collapse
Affiliation(s)
- Jiaojiao Zhao
- Division of Immunology, The State Key Laboratory of Pharmaceutical Biotechnology, Medical School, Nanjing University, Nanjing, China
| | - Yaxian Xue
- Division of Immunology, The State Key Laboratory of Pharmaceutical Biotechnology, Medical School, Nanjing University, Nanjing, China
| | - Yuchen Pan
- Division of Immunology, The State Key Laboratory of Pharmaceutical Biotechnology, Medical School, Nanjing University, Nanjing, China
| | - Anran Yao
- Division of Immunology, The State Key Laboratory of Pharmaceutical Biotechnology, Medical School, Nanjing University, Nanjing, China
| | - Guoqun Wang
- Department of Oncology, First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Dan Li
- Division of Immunology, The State Key Laboratory of Pharmaceutical Biotechnology, Medical School, Nanjing University, Nanjing, China
| | - Tingting Wang
- Division of Immunology, The State Key Laboratory of Pharmaceutical Biotechnology, Medical School, Nanjing University, Nanjing, China
| | - Shuli Zhao
- General Clinical Research Center, Nanjing First hospital, Nanjing Medical University, Nanjing, China
| | - Yayi Hou
- Division of Immunology, The State Key Laboratory of Pharmaceutical Biotechnology, Medical School, Nanjing University, Nanjing, China.,Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, China
| |
Collapse
|
30
|
Ding L, Li J, Li W, Fang Z, Li N, Guo Q, Qu H, Feng D, Li J, Hong M. p53 mediated IFN-β signaling to affect viral replication upon TGEV infection. Vet Microbiol 2018; 227:61-68. [PMID: 30473353 DOI: 10.1016/j.vetmic.2018.10.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 10/19/2018] [Accepted: 10/25/2018] [Indexed: 12/17/2022]
Abstract
TGEV can induce IFN-β production, which in turn plays a vital role in host antiviral immune responses. Our previous studies showed that TGEV infection activated p53 signaling to induce host cell apoptosis, which might influence virus replication. However, whether there be an interaction between p53 and IFN-β signaling in the process of TGEV infection is unknown. In the present study, we used low dose of TGEV to infect p53 wild-type PK-15 cells (WT PK-15 cells) and p53 deficient cells (p53-/- PK-15 cells), to investigate the modulation of IFN signaling and virus replication by p53. The results showed that the IFN-β expression and production were notably inhibited in p53-/- PK-15 cells compared with that in WT PK-15 cells at early stage of TGEV infection. In addition, TGEV-induced the changes in mRNA levels of TRIF, TRAM, MDA5, RIG-I, IPS-1, IRF9, IRF3, ISG15 and ISG20 were notably hindered in p53-/- PK-15 cells before 36 h post infection (p.i.). Moreover, TGEV genomic RNA and sub genomic mRNA (N gene and ORF7) levels showed significant increase in p53-/- PK-15 cells compared with WT PK-15 cells after TGEV infection. And viral titers were observably enhanced in p53-/- PK-15 cells. Furthermore, exogenous IFN-β and polyinosinic-polycytidylic acid (poly (I:C)) treatment markedly inhibited the mRNA levels of TGEV gRNA, N and ORF7 in WT PK-15 cells and p53-/- PK-15 cells compared to control. Taken together, these results demonstrated that p53 may mediate IFN-β signaling to inhibit viral replication early after TGEV infection.
Collapse
Affiliation(s)
- Li Ding
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, College of Life Sciences, Hainan Normal University, Haikou, Hainan, 571158, China
| | - Jiawei Li
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, College of Life Sciences, Hainan Normal University, Haikou, Hainan, 571158, China
| | - Weihao Li
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, College of Life Sciences, Hainan Normal University, Haikou, Hainan, 571158, China
| | - Zhenhua Fang
- School of Tropical Agricultural Technology, Hainan College of Vocation and Technique, Haikou, Hainan, 570216, China
| | - Na Li
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, College of Life Sciences, Hainan Normal University, Haikou, Hainan, 571158, China
| | - Qiqi Guo
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, College of Life Sciences, Hainan Normal University, Haikou, Hainan, 571158, China
| | - Haoyue Qu
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, College of Life Sciences, Hainan Normal University, Haikou, Hainan, 571158, China
| | - Dan Feng
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, College of Life Sciences, Hainan Normal University, Haikou, Hainan, 571158, China
| | - Jiangyue Li
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, College of Life Sciences, Hainan Normal University, Haikou, Hainan, 571158, China
| | - Meiling Hong
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, College of Life Sciences, Hainan Normal University, Haikou, Hainan, 571158, China.
| |
Collapse
|
31
|
Huang B, Zhang L, Lu M, Li J, Lv Y. PCV2 infection activates the cGAS/STING signaling pathway to promote IFN-β production and viral replication in PK-15 cells. Vet Microbiol 2018; 227:34-40. [PMID: 30473349 DOI: 10.1016/j.vetmic.2018.10.027] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 10/20/2018] [Accepted: 10/25/2018] [Indexed: 12/16/2022]
Abstract
PCV2 is a single-stranded DNA virus that we previously found to induce IFN-β production via RIG-I and MDA-5. cGAS is known to be the most important DNA sensor for the recognition of cytosolic DNA; however, it remains unclear whether the interferon production induced by PCV2 is associated with cGAS. In the present study, PCV2 infection was found to increase the level of cGAS and STING expression, promote the release of cyclic dinucleotide cGAMP, and induce STING dimerization and translocation into the nucleus of PK-15 cells. These findings indicate that PCV2 infection activates both cGAS and STING. Furthermore, the knockdown of cGAS and STING decreased both the mRNA expression and promoter activity of IFN-β, demonstrating that the cGAS/STING signaling pathway contributes to the production of IFN-β. In addition, a knockdown of cGAS and STING also decreased the PCV2 viral load and infectivity. Therefore, PCV2 infection activates the cGAS/STING signaling pathway to induce IFN-β production and the knockdown of cGAS and STING decreases viral replication in PK-15 cells. These results provide further insight into the relationship between PCV2 and host innate immunity.
Collapse
Affiliation(s)
- Bei Huang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of veterinary medicine, Nanjing agricultural university, Nanjing, 210095, China
| | - Lili Zhang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of veterinary medicine, Nanjing agricultural university, Nanjing, 210095, China
| | - Mingqing Lu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of veterinary medicine, Nanjing agricultural university, Nanjing, 210095, China
| | - Jiansheng Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of veterinary medicine, Nanjing agricultural university, Nanjing, 210095, China
| | - Yingjun Lv
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of veterinary medicine, Nanjing agricultural university, Nanjing, 210095, China.
| |
Collapse
|
32
|
The ORF5 protein of porcine circovirus type 2 enhances viral replication by dampening type I interferon expression in porcine epithelial cells. Vet Microbiol 2018; 226:50-58. [PMID: 30389043 DOI: 10.1016/j.vetmic.2018.10.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 09/22/2018] [Accepted: 10/10/2018] [Indexed: 12/20/2022]
Abstract
Identifying the functional role of each porcine circovirus type 2 (PCV2) ORF associated with host cell modulation might provide better knowledge about the pathogenesis of postweaning multisystemic wasting syndrome (PMWS). PCV2 ORF5 was recently identified and the functional role of ORF5 during pathogenesis after PCV2 infection is largely unknown. In this study, we used RNA-seq to investigate the functional role of PCV2 ORF5 in PCV2-infected porcine epithelial cells. Our data demonstrates that PCV2 ORF5 could inhibit type I interferon (IFN) expression via transcriptional repression of genes involved in type I IFN production, thus enhancing replication of PCV2 in porcine epithelial cells. Therefore, PCV2 ORF5 might have an inhibitory role against host immune surveillance.
Collapse
|
33
|
Xie X, Gan Y, Pang M, Shao G, Zhang L, Liu B, Xu Q, Wang H, Feng Y, Yu Y, Chen R, Wu M, Zhang Z, Hua L, Xiong Q, Liu M, Feng Z. Establishment and characterization of a telomerase-immortalized porcine bronchial epithelial cell line. J Cell Physiol 2018; 233:9763-9776. [PMID: 30078190 DOI: 10.1002/jcp.26942] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 06/12/2018] [Indexed: 01/03/2023]
Abstract
Primary porcine bronchial epithelial cells (PBECs) are an ideal model to study the molecular and pathogenic mechanisms of various porcine respiratory pathogens. However, the short lifespan of primary PBECs greatly limit their application. Here, we isolated and cultured primary PBECs and established immortalized PBECs by transfecting primary PBECs with the pEGFP-hTERT recombinant plasmid containing human telomerase reverse transcriptase (hTERT). Immortalized PBECs (hTERT-PBECs) retained the morphological and functional features of primary PBECs as indicated by cytokeratin 18 expression, telomerase activity assay, proliferation assays, karyotype analysis, and quantitative reverse-transcriptase polymerase chain reaction. Compared to primary PBECs, hTERT-PBECs had higher telomerase activity, extended replicative lifespan, and displayed enhanced proliferative activity. Moreover, this cell line is not transformed in vitro and does not exhibit a malignant phenotype in vivo, suggesting that it can be safely used in further studies. Besides, hTERT-PBECs were susceptible to swine influenza virus of H3N2 subtype and porcine circovirus type 2. In conclusion, the immortalized hTERT-PBECs represent a valuable in vitro model, which can be widely used in the study of porcine respiratory pathogenic infections.
Collapse
Affiliation(s)
- Xing Xie
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Yuan Gan
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Maoda Pang
- Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality, Key Laboratory of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Guoqing Shao
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Lei Zhang
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Beibei Liu
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Qi Xu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Haiyan Wang
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Yanyan Feng
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Yanfei Yu
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Rong Chen
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Meng Wu
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Zhenzhen Zhang
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Lizhong Hua
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Qiyan Xiong
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Maojun Liu
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Zhixin Feng
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| |
Collapse
|
34
|
Dvorak CM, Puvanendiran S, Murtaugh MP. Porcine circovirus 2 infection induces IFNβ expression through increased expression of genes involved in RIG-I and IRF7 signaling pathways. Virus Res 2018; 253:38-47. [DOI: 10.1016/j.virusres.2018.05.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 05/29/2018] [Accepted: 05/30/2018] [Indexed: 12/12/2022]
|
35
|
Li J, Lu M, Huang B, Lv Y. Porcine circovirus type 2 inhibits inter-β expression by targeting Karyopherin alpha-3 in PK-15 cells. Virology 2018; 520:75-82. [PMID: 29793076 DOI: 10.1016/j.virol.2018.05.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 05/11/2018] [Accepted: 05/11/2018] [Indexed: 12/24/2022]
Abstract
Interferon (IFN)-mediated antiviral response is an important part of host defense. Previous studies reported that porcine circovirus type 2 (PCV2) inhibits interferon production, but the mechanism is still poorly understood. In this study, PCV2 suppresses IFN-β and IRF3 promoters and mRNA level of IFN-β induced by ISD or Poly(I:C), but has no effect on the activation of AP-1 and NF-κB. Furthermore, PCV2 decreases the mRNA level of IFN-β and IFN-β promoter activity driven by STING, TBK1, IRF3, and IRF3/5D, and causes a reduction in the protein level of nuclear p-IRF3. In addition, PCV2 interrupts the interaction of KPNA3, rather than KPNA4, with p-IRF3. Overexpression of KPNA3 restores IFN-β promoter activity. These results indicate that PCV2 disrupts the interaction of KPNA3 with p-IRF3 and blocks p-IRF3 translocation to the nucleus, thereby inhibiting IFN-β induction in PK-15 cells.
Collapse
Affiliation(s)
- Jiansheng Li
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Mingqing Lu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Bei Huang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Yingjun Lv
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|