1
|
Fan Y, Hou Y, Duan Y, Li Q, Le X, Jiang J, Xu X, Wang B, Xia X. Genome Characterization of a Tailam Virus Discovered in Brown Rats in Yunnan Province, China. Vector Borne Zoonotic Dis 2024; 24:689-693. [PMID: 38683604 DOI: 10.1089/vbz.2024.0007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2024] Open
Abstract
Paramyxoviridae is one of the most well known and largest virus families, including some animal and human pathogens, such as the Hendra, Nipah, and Rinderpest viruses, with a high potential for the emergence of human diseases. Based on recent phylogenetic analyses, two new genera (Narmovirus and Jeilongvirus) have been described. The newly recognized genus Jeilongvirus has rapidly increased in number and has grown to 15 species from 7 a few years ago. However, little is known about the diversity, host range, or evolution of Jeilongvirus. As a well-known host reservoir for many pathogens, rodents have always been the focus for characterizing their pathogenic potential. In this study, we isolated a Tailam virus strain (RN-JH-YN-2022-1) belonging to the genus Jeilongvirus from Rattus norvegicus in Yunnan Province, China. The virus presented a near-complete genome (19,046 nucleotides). Similar to other members of the genus Jeilongvirus, the genome of RN-JH-YN-2022-1 contains eight basic genes (3'-N-P/V/C-M-F-SH-TM-G-L-5') with 88.88% sequence identity to Tailam virus (TL8K). Additionally, we discuss the pattern of genus Jeilongvirus diversity and the possible route of spread of the Tailam virus, which could provide new clues into the host range, virus diversity, and geographical distribution of the genus Jeilongvirus.
Collapse
Affiliation(s)
- Yayu Fan
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, P.R. China
| | - Yutong Hou
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, P.R. China
| | - Yimeng Duan
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, P.R. China
| | - Qian Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, P.R. China
| | - Xiang Le
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, P.R. China
| | - Jinyong Jiang
- Yunnan International Joint Laboratory of Vector Biology and Control and Yunnan Provincial Key Laboratory of Vector-Borne Diseases Control and Research of Yunnan Institute of Parasitic Diseases, Puer, P.R. China
| | - Xiang Xu
- Yunnan International Joint Laboratory of Vector Biology and Control and Yunnan Provincial Key Laboratory of Vector-Borne Diseases Control and Research of Yunnan Institute of Parasitic Diseases, Puer, P.R. China
| | - Binghui Wang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, P.R. China
- School of Public Health, Kunming Medical University, Kunming, P.R. China
| | - Xueshan Xia
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, P.R. China
- School of Public Health, Kunming Medical University, Kunming, P.R. China
| |
Collapse
|
2
|
Gan M, Hu B, Ding Q, Zhang N, Wei J, Nie T, Cai K, Zheng Z. Discovery and characterization of novel jeilongviruses in wild rodents from Hubei, China. Virol J 2024; 21:146. [PMID: 38918816 PMCID: PMC11201313 DOI: 10.1186/s12985-024-02417-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 06/14/2024] [Indexed: 06/27/2024] Open
Abstract
The genus Jeilongvirus comprises non-segmented negative-stranded RNA viruses that are classified within the Paramyxoviridae family by phylogeny. Jeilongviruses are found in various reservoirs, including rodents and bats. Rodents are typical viral reservoirs with diverse spectra and zoonotic potential. Little is currently known about jeilongviruses in rodents from central China. The study utilized high-throughput and Sanger sequencing to obtain jeilongvirus genomes, including those of two novel strains (HBJZ120/CHN/2021 (17,468 nt) and HBJZ157/CHN/2021 (19,143 nt)) and three known viruses (HBXN18/CHN/2021 (19,212 nt), HBJZ10/CHN/2021 (19,700 nt), HBJM106/CHN/2021 (18,871 nt)), which were characterized by genome structure, identity matrix, and phylogenetic analysis. Jeilongviruses were classified into three subclades based on their topology, phylogeny, and hosts. Based on the amino acid sequence identities and phylogenetic analysis of the L protein, HBJZ120/CHN/2021 and HBJZ157/CHN/2021 were found to be strains rather than novel species. Additionally, according to specific polymerase chain reaction screening, the positive percentage of Beilong virus in Hubei was 6.38%, suggesting that Beilong virus, belonging to the Jeilongvirus genus, is likely to be widespread in wild rodents. The identification of novel strains further elucidated the genomic diversity of jeilongviruses. Additionally, the prevalence of jeilongviruses in Hubei, China, was profiled, establishing a foundation for the surveillance and early warning of emerging paramyxoviruses.
Collapse
Affiliation(s)
- Min Gan
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, Hubei, China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Bing Hu
- Hubei Provincial Center for Disease Control and Prevention, Wuhan, 430079, Hubei, China
| | - Qingwen Ding
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, Hubei, China
| | - Nailou Zhang
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, Hubei, China
| | - Jinbo Wei
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, Hubei, China
| | - Tao Nie
- Xianning Municipal Center for Disease Control and Prevention, Xianning, 437199, Hubei, China
| | - Kun Cai
- Hubei Provincial Center for Disease Control and Prevention, Wuhan, 430079, Hubei, China.
| | - Zhenhua Zheng
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, Hubei, China.
| |
Collapse
|
3
|
May AJ, Acharya P. Structural Studies of Henipavirus Glycoproteins. Viruses 2024; 16:195. [PMID: 38399971 PMCID: PMC10892422 DOI: 10.3390/v16020195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 01/19/2024] [Accepted: 01/24/2024] [Indexed: 02/25/2024] Open
Abstract
Henipaviruses are a genus of emerging pathogens that includes the highly virulent Nipah and Hendra viruses that cause reoccurring outbreaks of disease. Henipaviruses rely on two surface glycoproteins, known as the attachment and fusion proteins, to facilitate entry into host cells. As new and divergent members of the genus have been discovered and structurally characterized, key differences and similarities have been noted. This review surveys the available structural information on Henipavirus glycoproteins, complementing this with information from related biophysical and structural studies of the broader Paramyxoviridae family of which Henipaviruses are members. The process of viral entry is a primary focus for vaccine and drug development, and this review aims to identify critical knowledge gaps in our understanding of the mechanisms that drive Henipavirus fusion.
Collapse
Affiliation(s)
- Aaron J. May
- Duke Human Vaccine Institute, Duke University, Durham, NC 27710, USA
- Department of Biochemistry, Duke University, Durham, NC 27710, USA
| | - Priyamvada Acharya
- Duke Human Vaccine Institute, Duke University, Durham, NC 27710, USA
- Department of Biochemistry, Duke University, Durham, NC 27710, USA
- Department of Surgery, Duke University, Durham, NC 27710, USA
| |
Collapse
|
4
|
Fan Y, Hou Y, Li Q, Dian Z, Wang B, Xia X. RNA virus diversity in rodents. Arch Microbiol 2023; 206:9. [PMID: 38038743 DOI: 10.1007/s00203-023-03732-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/01/2023] [Accepted: 11/02/2023] [Indexed: 12/02/2023]
Abstract
Many zoonotic disease emergencies are associated with RNA viruses in rodents that substantially impact public health. With the widespread application of meta-genomics and meta-transcriptomics for virus discovery over the last decade, viral sequences deposited in public databases have expanded rapidly, and the number of novel viruses discovered in rodents has increased. As important reservoirs of zoonotic viruses, rodents have attracted increasing attention for the risk of potential spillover of rodent-borne viruses. However, knowledge of rodent viral diversity and the major factors contributing to the risk of zoonotic epidemic outbreaks remains limited. Therefore, this study analyzes the diversity and composition of rodent RNA viruses using virus records from the Database of Rodent-associated Viruses (DRodVir/ZOVER), which covers the published literatures and records in GenBank database, reviews the main rodent RNA virus-induced human infectious diseases, and discusses potential challenges in this field.
Collapse
Affiliation(s)
- Yayu Fan
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, 650500, People's Republic of China
| | - Yutong Hou
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, 650500, People's Republic of China
| | - Qian Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, 650500, People's Republic of China
| | - Ziqin Dian
- Department of Clinical Laboratory, The First People's Hospital of Yunnan Province, Kunming, Yunnan, 650032, People's Republic of China
| | - Binghui Wang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, 650500, People's Republic of China.
| | - Xueshan Xia
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, 650500, People's Republic of China.
| |
Collapse
|
5
|
Stelfox AJ, Oguntuyo KY, Rissanen I, Harlos K, Rambo R, Lee B, Bowden TA. Crystal structure and solution state of the C-terminal head region of the narmovirus receptor binding protein. mBio 2023; 14:e0139123. [PMID: 37737607 PMCID: PMC10653815 DOI: 10.1128/mbio.01391-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 07/05/2023] [Indexed: 09/23/2023] Open
Abstract
IMPORTANCE Genetically diverse paramyxoviruses are united in their presentation of a receptor-binding protein (RBP), which works in concert with the fusion protein to facilitate host-cell entry. The C-terminal head region of the paramyxoviral RBP, a primary determinant of host-cell tropism and inter-species transmission potential, forms structurally distinct classes dependent upon protein and glycan receptor specificity. Here, we reveal the architecture of the C-terminal head region of the RBPs from Nariva virus (NarV) and Mossman virus (MosV), two archetypal rodent-borne paramyxoviruses within the recently established genus Narmovirus, family Paramyxoviridae. Our analysis reveals that while narmoviruses retain the general architectural features associated with paramyxoviral RBPs, namely, a six-bladed β-propeller fold, they lack the structural motifs associated with known receptor-mediated host-cell entry pathways. This investigation indicates that the RBPs of narmoviruses exhibit pathobiological features that are distinct from those of other paramyxoviruses.
Collapse
Affiliation(s)
- Alice J. Stelfox
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
- European Molecular Biology Laboratory, Grenoble, France
| | | | - Ilona Rissanen
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
- Institute of Biotechnology, Helsinki Institute of Life Science HiLIFE, University of Helsinki, Helsinki, Finland
| | - Karl Harlos
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Robert Rambo
- Diamond Light Source Ltd, Harwell Science & Innovation Campus, Oxford, United Kingdom
| | - Benhur Lee
- Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Thomas A. Bowden
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
6
|
Su H, Wang Y, Han Y, Jin Q, Yang F, Wu Z. Discovery and characterization of novel paramyxoviruses from bat samples in China. Virol Sin 2023; 38:198-207. [PMID: 36649817 PMCID: PMC10176441 DOI: 10.1016/j.virs.2023.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 11/14/2022] [Indexed: 01/15/2023] Open
Abstract
Many paramyxoviruses are responsible for a variety of mild to severe human and animal diseases. Based on the novel discoveries over the past several decades, the family Paramyxoviridae infecting various hosts across the world includes 4 subfamilies, 17 classified genera and 78 species now. However, no systematic surveys of bat paramyxoviruses are available from the Chinese mainland. In this study, 13,064 samples from 54 bat species were collected and a comprehensive paramyxovirus survey was conducted. We obtained 94 new genome sequences distributed across paramyxoviruses from 22 bat species in seven provinces. Bayesian phylodynamic and phylogenetic analyses showed that there were four different lineages in the Jeilongvirus genus. Based on available data, results of host and region switches showed that the bat colony was partial to interior, whereas the rodent colony was exported, and the felines and hedgehogs were most likely the intermediate hosts from Scotophilus spp. rather than rodents. Based on the evolutionary trend, genus Jeilongvirus may have originated from Mus spp. in Australia, then transmitted to bats and rodents in Africa, Asia and Europe, and finally to bats and rodents in America.
Collapse
Affiliation(s)
- Haoxiang Su
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Yuyang Wang
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Yelin Han
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Qi Jin
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China.
| | - Fan Yang
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China.
| | - Zhiqiang Wu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China; Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
7
|
Siering O, Cattaneo R, Pfaller CK. C Proteins: Controllers of Orderly Paramyxovirus Replication and of the Innate Immune Response. Viruses 2022; 14:v14010137. [PMID: 35062341 PMCID: PMC8778822 DOI: 10.3390/v14010137] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/07/2022] [Accepted: 01/09/2022] [Indexed: 01/07/2023] Open
Abstract
Particles of many paramyxoviruses include small amounts of proteins with a molecular weight of about 20 kDa. These proteins, termed “C”, are basic, have low amino acid homology and some secondary structure conservation. C proteins are encoded in alternative reading frames of the phosphoprotein gene. Some viruses express nested sets of C proteins that exert their functions in different locations: In the nucleus, they interfere with cellular transcription factors that elicit innate immune responses; in the cytoplasm, they associate with viral ribonucleocapsids and control polymerase processivity and orderly replication, thereby minimizing the activation of innate immunity. In addition, certain C proteins can directly bind to, and interfere with the function of, several cytoplasmic proteins required for interferon induction, interferon signaling and inflammation. Some C proteins are also required for efficient virus particle assembly and budding. C-deficient viruses can be grown in certain transformed cell lines but are not pathogenic in natural hosts. C proteins affect the same host functions as other phosphoprotein gene-encoded proteins named V but use different strategies for this purpose. Multiple independent systems to counteract host defenses may ensure efficient immune evasion and facilitate virus adaptation to new hosts and tissue environments.
Collapse
Affiliation(s)
- Oliver Siering
- Division of Veterinary Medicine, Paul-Ehrlich-Institute, 63225 Langen, Germany;
| | - Roberto Cattaneo
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55906, USA
- Correspondence: (R.C.); (C.K.P.)
| | - Christian K. Pfaller
- Division of Veterinary Medicine, Paul-Ehrlich-Institute, 63225 Langen, Germany;
- Correspondence: (R.C.); (C.K.P.)
| |
Collapse
|
8
|
Abstract
Paramyxoviruses are a diverse group of negative-sense, single-stranded RNA viruses of which several species cause significant mortality and morbidity. In recent years the collection of paramyxoviruses sequences detected in wild mammals has substantially grown, however little is known about paramyxovirus diversity in North American mammals. To better understand natural paramyxovirus diversity, host range, and host specificity, we sought to comprehensively characterize paramyxoviruses across a range of diverse co-occurring wild small mammals in Southern Arizona. We used highly degenerate primers to screen fecal and urine samples and obtained a total of 55 paramyxovirus sequences from 12 rodent species and 6 bat species. We also performed illumina RNA-seq and de novo assembly on 14 of the positive samples to recover a total of five near full-length viral genomes. We show there are at least two clades of rodent-borne paramyxoviruses in Arizona, while bat-associated paramyxoviruses formed a putative single clade. Using structural homology modeling of the viral attachment protein, we infer that three of the five novel viruses likely bind sialic acid in a manner similar to other Respiroviruses, while the other two viruses from Heteromyid rodents likely bind a novel host receptor. We find no evidence for cross-species transmission, even among closely related sympatric host species. Taken together, these data suggest paramyxoviruses are a common viral infection in some bat and rodent species present in North America, and illuminate the evolution of these viruses. Importance There are a number of viral lineages that are potential zoonotic threats to humans. One of these, paramyxoviruses, have jumped into humans multiple times from wild and domestic animals. We conducted one of the largest viral surveys of wild mammals in the United States to better understand paramyxovirus diversity and evolution.
Collapse
|
9
|
Distribution and characteristics of Beilong virus among wild rodents and shrews in China. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2020; 85:104454. [PMID: 32634600 PMCID: PMC7335238 DOI: 10.1016/j.meegid.2020.104454] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 06/24/2020] [Accepted: 06/30/2020] [Indexed: 12/02/2022]
Abstract
Beilong virus (BeiV), a member of the newly recognized genus Jeilongvirus of family Paramyxoviridae, has been reported with limited geographic and host scopes, only in Hongkong, China and from two rat species. Here, by next-generation sequencing (NGS) on dominant wild small animal species in 4 provinces in China, we obtained a complete sequence of BeiV strain from Rattus norvegicus in Guangdong, neighboring HongKong, China. We then made an expanded epidemiological investigation in 11 provinces to obtain the geographic distribution and genetic features of this virus. Altogether 7168 samples from 2005 animals (1903 rodents, 100 shrews, 2 mustelidaes) that belonged to 33 species of Cricetidae, Muridae, Sciuridae and Dipodidae family of Rodentia, 3 species of Soricidae family of Soricomorpha, 2 species of Mustelidae family of Carnivora were examined by RT-PCR and sequencing. A positive rate of 3.7% (266/7168) was obtained that was detected from 22 animal species, including 5 species of Cricetidae family, 12 species of Muridae family, 2 species of Sciuridae family and 3 species of Soricidae family. Phylogenetic analyses based on 154 partial Large gene sequences grouped the current BeiV into two lineages, that were related to their geographic regions and animal hosts. Our study showed the wide distribution of BeiV in common species of wild rodents and shrews in China, highlighting the necessity of epidemiological study in wider regions.
Collapse
|
10
|
Abstract
This chapter discusses infections of rats with viruses in the following 14 virus families: Adenoviridae, Arenaviridae, Coronaviridae, Flaviviridae, Hantaviridae, Hepeviridae, Herpesviridae, Paramyxoviridae, Parvoviridae, Picornaviridae, Pneumoviridae, Polyomaviridae, Poxviridae, and Reoviridae . Serological surveys indicate that parvoviruses, coronaviruses, cardioviruses, and pneumoviruses are the most prevalent in laboratory rats. A new polyomavirus and a new cardiovirus that cause disease in laboratory rats are described. Metagenomic analyses of feces or intestinal contents from wild rats have detected viruses from an additional nine virus families that could potentially cause infections in laboratory rats.
Collapse
|
11
|
Tsoleridis T, Chappell JG, Monchatre-Leroy E, Umhang G, Shi M, Bennett M, Tarlinton RE, McClure CP, Holmes EC, Ball JK. Discovery and Prevalence of Divergent RNA Viruses in European Field Voles and Rabbits. Viruses 2019; 12:E47. [PMID: 31906044 PMCID: PMC7019641 DOI: 10.3390/v12010047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 12/24/2019] [Accepted: 12/27/2019] [Indexed: 12/13/2022] Open
Abstract
The advent of unbiased metagenomic virus discovery has revolutionized studies of virus biodiversity and evolution. Despite this, our knowledge of the virosphere, including in mammalian species, remains limited. We used unbiased metagenomic sequencing to identify RNA viruses in European field voles and rabbits. Accordingly, we identified a number of novel RNA viruses including astrovirus, rotavirus A, picorna-like virus and a morbilli-like paramyxovirus. In addition, we identified a sobemovirus and a novel luteovirus that likely originated from the rabbit diet. These newly discovered viruses were often divergent from those previously described. The novel astrovirus was most closely related to a virus sampled from the rodent-eating European roller bird (Coracias garrulous). PCR screening revealed that the novel morbilli-like paramyxovirus in the UK field vole had a prevalence of approximately 4%, and shared common ancestry with other rodent morbilli-like viruses sampled globally. Two novel rotavirus A sequences were detected in a UK field vole and a French rabbit, the latter with a prevalence of 5%. Finally, a highly divergent picorna-like virus found in the gut of the French rabbit virus was only ~35% similar to an arilivirus at the amino acid level, suggesting the presence of a novel viral genus within the Picornaviridae.
Collapse
Affiliation(s)
- Theocharis Tsoleridis
- School of Life Sciences, The University of Nottingham, Nottingham NG7 2UH, UK; (J.G.C.); (C.P.M.)
- Wolfson Centre for Global Virus Infections, The University of Nottingham, Nottingham NG7 2UH, UK
| | - Joseph G. Chappell
- School of Life Sciences, The University of Nottingham, Nottingham NG7 2UH, UK; (J.G.C.); (C.P.M.)
- Wolfson Centre for Global Virus Infections, The University of Nottingham, Nottingham NG7 2UH, UK
| | - Elodie Monchatre-Leroy
- Anses, Laboratoire de la Rage et de la Faune Sauvage, 54220 Malzeville, France; (E.M.-L.); (G.U.)
| | - Gérald Umhang
- Anses, Laboratoire de la Rage et de la Faune Sauvage, 54220 Malzeville, France; (E.M.-L.); (G.U.)
| | - Mang Shi
- Marie Bashir Institute for Infectious Diseases and Biosecurity, School of Life and Environmental Sciences and School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia; (M.S.); (E.C.H.)
| | - Malcolm Bennett
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK; (M.B.); (R.E.T.)
| | - Rachael E. Tarlinton
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK; (M.B.); (R.E.T.)
| | - C. Patrick McClure
- School of Life Sciences, The University of Nottingham, Nottingham NG7 2UH, UK; (J.G.C.); (C.P.M.)
- Wolfson Centre for Global Virus Infections, The University of Nottingham, Nottingham NG7 2UH, UK
| | - Edward C. Holmes
- Marie Bashir Institute for Infectious Diseases and Biosecurity, School of Life and Environmental Sciences and School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia; (M.S.); (E.C.H.)
| | - Jonathan K. Ball
- School of Life Sciences, The University of Nottingham, Nottingham NG7 2UH, UK; (J.G.C.); (C.P.M.)
- Wolfson Centre for Global Virus Infections, The University of Nottingham, Nottingham NG7 2UH, UK
| |
Collapse
|
12
|
Onyuok SO, Hu B, Li B, Fan Y, Kering K, Ochola GO, Zheng XS, Obanda V, Ommeh S, Yang XL, Agwanda B, Shi ZL. Molecular Detection and Genetic Characterization of Novel RNA Viruses in Wild and Synanthropic Rodents and Shrews in Kenya. Front Microbiol 2019; 10:2696. [PMID: 31824465 PMCID: PMC6881279 DOI: 10.3389/fmicb.2019.02696] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 11/06/2019] [Indexed: 12/13/2022] Open
Abstract
The majority of emerging and reemerging zoonotic viral pathogens are RNA viruses. Pathogen discovery programs of emerging infectious diseases (EIDs) in wildlife have implicated rodents and shrews as hosts of diverse human pathogens, such as hantaviruses, arenaviruses, paramyxoviruses, etc. Despite these threats, little is known about the diversity of viruses circulating among rodents and shrews in Kenya, meaning the risk of infectious disease outbreak from these small mammals could be oblivious. This study reports the first surveillance toward understanding the diversity of RNA viruses carried by rodents and shrews in areas of high-potential contact with humans in Kenya through molecular detection. A total of 617 samples comprising fecal, urine, and tissues from 138 rodents and 5 shrews were screened for eight different families of viruses using RT-PCR assays. The results highlight the presence of diverse astroviruses, paramyxoviruses, hepeviruses, and arenavirus, circulating in both wild and synanthropic Kenyan rodents and shrews. Most of the viruses detected in this study are novel strains and some belong to the families that contain important human viral pathogens. Notably, a novel arenavirus was detected in Grammomys macmillani, a rodent species newly identified to harbor arenavirus, and it potentially represent a novel arenavirus species. Our findings demonstrate the need for continued pathogen surveillance among these small mammals as well as among the vulnerable and exposed livestock and humans. This would help in development and implementation of effective preventive and control strategies on EIDs in countries with rich wildlife biodiversity like Kenya.
Collapse
Affiliation(s)
- Samson Omondi Onyuok
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, China.,Mammalogy Section, National Museums of Kenya, Nairobi, Kenya.,University of Chinese Academy of Sciences, Beijing, China
| | - Ben Hu
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Bei Li
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Yi Fan
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Kelvin Kering
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Griphin Ochieng Ochola
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, China.,Mammalogy Section, National Museums of Kenya, Nairobi, Kenya.,University of Chinese Academy of Sciences, Beijing, China
| | - Xiao-Shuang Zheng
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Vincent Obanda
- Veterinary Services Department, Kenya Wildlife Service, Nairobi, Kenya
| | - Sheila Ommeh
- Institute of Biotechnology Research, Jomo Kenyatta University of Science and Technology, Nairobi, Kenya
| | - Xing-Lou Yang
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Bernard Agwanda
- Mammalogy Section, National Museums of Kenya, Nairobi, Kenya
| | - Zheng-Li Shi
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
13
|
Amarasinghe GK, Ayllón MA, Bào Y, Basler CF, Bavari S, Blasdell KR, Briese T, Brown PA, Bukreyev A, Balkema-Buschmann A, Buchholz UJ, Chabi-Jesus C, Chandran K, Chiapponi C, Crozier I, de Swart RL, Dietzgen RG, Dolnik O, Drexler JF, Dürrwald R, Dundon WG, Duprex WP, Dye JM, Easton AJ, Fooks AR, Formenty PBH, Fouchier RAM, Freitas-Astúa J, Griffiths A, Hewson R, Horie M, Hyndman TH, Jiāng D, Kitajima EW, Kobinger GP, Kondō H, Kurath G, Kuzmin IV, Lamb RA, Lavazza A, Lee B, Lelli D, Leroy EM, Lǐ J, Maes P, Marzano SYL, Moreno A, Mühlberger E, Netesov SV, Nowotny N, Nylund A, Økland AL, Palacios G, Pályi B, Pawęska JT, Payne SL, Prosperi A, Ramos-González PL, Rima BK, Rota P, Rubbenstroth D, Shī M, Simmonds P, Smither SJ, Sozzi E, Spann K, Stenglein MD, Stone DM, Takada A, Tesh RB, Tomonaga K, Tordo N, Towner JS, van den Hoogen B, Vasilakis N, Wahl V, Walker PJ, Wang LF, Whitfield AE, Williams JV, Zerbini FM, Zhāng T, Zhang YZ, Kuhn JH. Taxonomy of the order Mononegavirales: update 2019. Arch Virol 2019; 164:1967-1980. [PMID: 31089958 PMCID: PMC6641539 DOI: 10.1007/s00705-019-04247-4] [Citation(s) in RCA: 202] [Impact Index Per Article: 40.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
In February 2019, following the annual taxon ratification vote, the order Mononegavirales was amended by the addition of four new subfamilies and 12 new genera and the creation of 28 novel species. This article presents the updated taxonomy of the order Mononegavirales as now accepted by the International Committee on Taxonomy of Viruses (ICTV).
Collapse
Affiliation(s)
- Gaya K Amarasinghe
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - María A Ayllón
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Campus de Montegancedo, Pozuelo de Alarcón, Madrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, UPM, Madrid, Spain
| | - Yīmíng Bào
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Christopher F Basler
- Center for Microbial Pathogenesis, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - Sina Bavari
- United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD, USA
| | - Kim R Blasdell
- Australian Animal Health Laboratory, CSIRO Health and Biosecurity, Geelong, VIC, Australia
| | - Thomas Briese
- Center for Infection and Immunity, and Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Paul A Brown
- VIPAC Unit, Agence Nationale de Sécurité Sanitaire, Laboratoire de Ploufragan-Plouzané-Niort, Université Bretagne Loire, Ploufragan, France
| | | | - Anne Balkema-Buschmann
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Novel and Emerging Infectious Diseases, Greifswald-Insel Riems, Germany
| | - Ursula J Buchholz
- RNA Viruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | | | - Kartik Chandran
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Chiara Chiapponi
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna, Brescia, Italy
| | - Ian Crozier
- Integrated Research Facility at Fort Detrick (IRF-Frederick), Clinical Monitoring Research Program Directorate, Frederick, National Laboratory for Cancer Research sponsored by the National Cancer Institute, Frederick, MD, USA
| | - Rik L de Swart
- Department of Viroscience, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, The Netherlands
| | - Ralf G Dietzgen
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, QLD, Australia
| | - Olga Dolnik
- Institute of Virology, Philipps University Marburg, Marburg, Germany
| | - Jan F Drexler
- Institute of Virology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | | | - William G Dundon
- Animal Production and Health Laboratory, Department of Nuclear Sciences and Applications, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Vienna, Austria
| | - W Paul Duprex
- School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - John M Dye
- United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD, USA
| | - Andrew J Easton
- School of Life Sciences, University of Warwick, Coventry, UK
| | | | | | - Ron A M Fouchier
- Department of Viroscience, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, The Netherlands
| | | | - Anthony Griffiths
- Department of Microbiology and National Emerging Infectious Diseases Laboratories, Boston University School of Medicine, Boston, MA, USA
| | - Roger Hewson
- Public Health England, Porton Down, Wiltshire, Salisbury, UK
| | - Masayuki Horie
- Hakubi Center for Advanced Research, Kyoto University, Kyoto, Japan
| | - Timothy H Hyndman
- School of Veterinary Medicine, Murdoch University, Murdoch, WA, Australia
| | - Dàohóng Jiāng
- State Key Laboratory of Agricultural Microbiology, The Provincial Key Lab of Plant Pathology of Húběi Province, College of Plant Science and Technology, Huázhōng Agricultural University, Wuhan, China
| | - Elliott W Kitajima
- Departamento de Fitopatologia e Nematologia, Escola Superior de Agricultura "Luiz de Queiroz, Universidade de São Paulo, Piracicaba, São Paulo, Brazil
| | - Gary P Kobinger
- Department of Microbiology, Immunology and Infectious Diseases, Université Laval, Quebec City, Canada
| | - Hideki Kondō
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan
| | - Gael Kurath
- US Geological Survey Western Fisheries Research Center, Seattle, WA, USA
| | - Ivan V Kuzmin
- US Department of Agriculture, Animal and Plant Health Inspection, National Veterinary Services Laboratories, Diagnostic Virology Laboratory, New York, USA
| | - Robert A Lamb
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
- Howard Hughes Medical Institute, Northwestern University, Evanston, IL, USA
| | - Antonio Lavazza
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna, Brescia, Italy
| | - Benhur Lee
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Davide Lelli
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna, Brescia, Italy
| | - Eric M Leroy
- Centre International de Recherches Médicales de Franceville, Institut de Recherche pour le Développement, Franceville, Gabon
| | - Jiànróng Lǐ
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA
| | - Piet Maes
- Zoonotic Infectious Diseases Unit, KU Leuven, Rega Institute, Leuven, Belgium
| | - Shin-Yi L Marzano
- Department of Biology and Microbiology, Department of Plant Sciences, South Dakota State University, Brookings, SD, USA
| | - Ana Moreno
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna, Brescia, Italy
| | - Elke Mühlberger
- Department of Microbiology and National Emerging Infectious Diseases Laboratories, Boston University School of Medicine, Boston, MA, USA
| | - Sergey V Netesov
- Novosibirsk State University, Novosibirsk, Novosibirsk Oblast, Russia
| | - Norbert Nowotny
- Institute of Virology, University of Veterinary Medicine, Vienna, Austria
- Department of Basic Medical Sciences, College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Are Nylund
- Fish Disease Research Group, Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Arnfinn L Økland
- Fish Disease Research Group, Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Gustavo Palacios
- United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD, USA
| | - Bernadett Pályi
- National Biosafety Laboratory, National Public Health Center, Budapest, Hungary
| | - Janusz T Pawęska
- Center for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases of the National Health Laboratory Service, Sandringham-Johannesburg, Gauteng, South Africa
| | - Susan L Payne
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Alice Prosperi
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna, Brescia, Italy
| | | | - Bertus K Rima
- Centre for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, The Queen's University of Belfast, Belfast, Northern Ireland, UK
| | - Paul Rota
- National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Dennis Rubbenstroth
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Mǎng Shī
- The University of Sydney, Sydney, Australia
| | - Peter Simmonds
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | | | - Enrica Sozzi
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna, Brescia, Italy
| | - Kirsten Spann
- School of Biomedical Science, Queensland University of Technology, Brisbane, QLD, Australia
| | - Mark D Stenglein
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - David M Stone
- Centre for Environment, Fisheries and Aquaculture Science, Weymouth, Dorset, UK
| | - Ayato Takada
- Division of Global Epidemiology, Hokkaido University Research Center for Zoonosis Control, Sapporo, Japan
| | - Robert B Tesh
- The University of Texas Medical Branch, Galveston, TX, USA
| | - Keizō Tomonaga
- Institute for Frontier Life and Medical Sciences (inFront), Kyoto University, Kyoto, Japan
| | - Noël Tordo
- Institut Pasteur, Unité des Stratégies Antivirales, WHO Collaborative Centre for Viral Haemorrhagic Fevers and Arboviruses, OIE Reference Laboratory for RVFV and CCHF, Paris, France
- Institut Pasteur de Guinée, Conakry, Guinea
| | - Jonathan S Towner
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Bernadette van den Hoogen
- Department of Viroscience, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, The Netherlands
| | | | - Victoria Wahl
- National Biodefense Analysis and Countermeasures Center, Fort Detrick, Frederick, MD, USA
| | - Peter J Walker
- School of Biological Sciences, University of Queensland, St. Lucia, QLD, Australia
| | - Lin-Fa Wang
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Anna E Whitfield
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, USA
| | - John V Williams
- School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - F Murilo Zerbini
- Departamento de Fitopatologia, Instituto de Biotecnologia Aplicada à Agropecuária, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Tāo Zhāng
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Yong-Zhen Zhang
- Chinese Center for Disease Control and Prevention, National Institute for Communicable Disease Control and Prevention, Changping, Beijing, China
- Shanghai Public Health Clinical Center and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Jens H Kuhn
- Integrated Research Facility at Fort Detrick (IRF-Frederick), Division of Clinical Research (DCR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), B-8200 Research Plaza, Fort Detrick, Frederick, MD, 2170, USA.
| |
Collapse
|
14
|
Johnson RI, Tachedjian M, Clayton BA, Layton R, Bergfeld J, Wang LF, Marsh GA. Characterization of Teviot virus, an Australian bat-borne paramyxovirus. J Gen Virol 2019; 100:403-413. [PMID: 30688635 DOI: 10.1099/jgv.0.001214] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Bats are the reservoir hosts for multiple viruses with zoonotic potential, including coronaviruses, paramyxoviruses and filoviruses. Urine collected from Australian pteropid bats was assessed for the presence of paramyxoviruses. One of the viruses isolated was Teviot virus (TevPV), a novel rubulavirus previously isolated from pteropid bat urine throughout the east coast of Australia. Here, we further characterize TevPV through analysis of whole-genome sequencing, growth kinetics, antigenic relatedness and the experimental infection of ferrets and mice. TevPV is phylogenetically and antigenically most closely related to Tioman virus (TioPV). Unlike many other rubulaviruses, cell receptor attachment by TevPV does not appear to be sialic acid-dependent, with the receptor for host cell entry being unknown. The infection of ferrets and mice suggested that TevPV has a low pathogenic potential in mammals. Infected ferrets seroconverted by 10 days post-infection without clinical signs of disease. Furthermore, infected ferrets did not shed virus in any respiratory secretions, suggesting a low risk of onward transmission of TevPV. No productive infection was observed in the mouse infection study.
Collapse
Affiliation(s)
- Rebecca I Johnson
- 1CSIRO Health and Biosecurity, Australian Animal Health Laboratory, Geelong, Australia
| | - Mary Tachedjian
- 1CSIRO Health and Biosecurity, Australian Animal Health Laboratory, Geelong, Australia
| | - Bronwyn A Clayton
- 1CSIRO Health and Biosecurity, Australian Animal Health Laboratory, Geelong, Australia
| | - Rachel Layton
- 1CSIRO Health and Biosecurity, Australian Animal Health Laboratory, Geelong, Australia
| | - Jemma Bergfeld
- 1CSIRO Health and Biosecurity, Australian Animal Health Laboratory, Geelong, Australia
| | - Lin-Fa Wang
- 2Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore
| | - Glenn A Marsh
- 1CSIRO Health and Biosecurity, Australian Animal Health Laboratory, Geelong, Australia
| |
Collapse
|
15
|
Alston Virus, a Novel Paramyxovirus Isolated from Bats Causes Upper Respiratory Tract Infection in Experimentally Challenged Ferrets. Viruses 2018; 10:v10120675. [PMID: 30487438 PMCID: PMC6315912 DOI: 10.3390/v10120675] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 11/14/2018] [Accepted: 11/15/2018] [Indexed: 12/12/2022] Open
Abstract
Multiple viruses with zoonotic potential have been isolated from bats globally. Here we describe the isolation and characterization of a novel paramyxovirus, Alston virus (AlsPV), isolated from urine collected from an Australian pteropid bat colony in Alstonville, New South Wales. Characterization of AlsPV by whole-genome sequencing and analyzing antigenic relatedness revealed it is a rubulavirus that is closely related to parainfluenza virus 5 (PIV5). Intranasal exposure of mice to AlsPV resulted in no clinical signs of disease, although viral RNA was detected in the olfactory bulbs of two mice at 21 days post exposure. Oronasal challenge of ferrets resulted in subclinical upper respiratory tract infection, viral shedding in respiratory secretions, and detection of viral antigen in the olfactory bulb of the brain. These results imply that AlsPV may be similar to PIV5 in its ability to infect multiple mammalian host species. This isolation of a novel paramyxovirus with the potential to transmit from bats to other mammalian species reinforces the importance of continued surveillance of bats as a source of emerging viruses.
Collapse
|
16
|
Vanmechelen B, Bletsa M, Laenen L, Lopes AR, Vergote V, Beller L, Deboutte W, Korva M, Avšič Županc T, Goüy de Bellocq J, Gryseels S, Leirs H, Lemey P, Vrancken B, Maes P. Discovery and genome characterization of three new Jeilongviruses, a lineage of paramyxoviruses characterized by their unique membrane proteins. BMC Genomics 2018; 19:617. [PMID: 30115009 PMCID: PMC6097224 DOI: 10.1186/s12864-018-4995-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 08/03/2018] [Indexed: 11/20/2022] Open
Abstract
Background In the past decade, many new paramyxoviruses that do not belong to any of the seven established genera in the family Paramyxoviridae have been discovered. Amongst them are J-virus (JPV), Beilong virus (BeiPV) and Tailam virus (TlmPV), three paramyxovirus species found in rodents. Based on their similarities, it has been suggested that these viruses should compose a new genus, tentatively called ‘Jeilongvirus’. Results Here we present the complete genomes of three newly discovered paramyxoviruses, one found in a bank vole (Myodes glareolus) from Slovenia and two in a single, co-infected Rungwe brush-furred rat (Lophuromys machangui) from Mozambique, that represent three new, separate species within the putative genus ‘Jeilongvirus’. The genome organization of these viruses is similar to other paramyxoviruses, but like JPV, BeiPV and TlmPV, they possess an additional open reading frame, encoding a transmembrane protein, that is located between the F and G genes. As is the case for all Jeilongviruses, the G genes of the viruses described here are unusually large, and their encoded proteins are characterized by a remarkable amino acid composition pattern that is not seen in other paramyxoviruses, but resembles certain motifs found in Orthopneumovirus G proteins. Conclusions The phylogenetic clustering of JPV, BeiPV and TlmPV with the viruses described here, as well as their shared features that set them apart from other paramyxoviruses, provide additional support for the recognition of the genus ‘Jeilongvirus’. Electronic supplementary material The online version of this article (10.1186/s12864-018-4995-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Bert Vanmechelen
- Department of Microbiology and Immunology, Laboratory of Clinical Virology, Rega Institute for Medical Research, KU Leuven - University of Leuven, Herestraat 49, Box 1040, BE3000, Leuven, Belgium
| | - Magda Bletsa
- Department of Microbiology and Immunology, Laboratory of Evolutionary and Computational Virology, Rega Institute for Medical Research, KU Leuven - University of Leuven, Herestraat 49, Box 1040, BE3000, Leuven, Belgium
| | - Lies Laenen
- Department of Microbiology and Immunology, Laboratory of Clinical Virology, Rega Institute for Medical Research, KU Leuven - University of Leuven, Herestraat 49, Box 1040, BE3000, Leuven, Belgium
| | - Ana Rita Lopes
- Department of Microbiology and Immunology, Laboratory of Clinical Virology, Rega Institute for Medical Research, KU Leuven - University of Leuven, Herestraat 49, Box 1040, BE3000, Leuven, Belgium
| | - Valentijn Vergote
- Department of Microbiology and Immunology, Laboratory of Clinical Virology, Rega Institute for Medical Research, KU Leuven - University of Leuven, Herestraat 49, Box 1040, BE3000, Leuven, Belgium
| | - Leen Beller
- Department of Microbiology and Immunology, Laboratory of Viral Metagenomics, Rega Institute for Medical Research, KU Leuven - University of Leuven, Herestraat 49, Box 1040, BE3000, Leuven, Belgium
| | - Ward Deboutte
- Department of Microbiology and Immunology, Laboratory of Viral Metagenomics, Rega Institute for Medical Research, KU Leuven - University of Leuven, Herestraat 49, Box 1040, BE3000, Leuven, Belgium
| | - Miša Korva
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Zaloška 4, SI-1000, Ljubljana, Slovenia
| | - Tatjana Avšič Županc
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Zaloška 4, SI-1000, Ljubljana, Slovenia
| | - Joëlle Goüy de Bellocq
- The Czech Academy of Sciences, Institute of Vertebrate Biology, Květná 8, 603 65, Brno, Czech Republic
| | - Sophie Gryseels
- Department of Microbiology and Immunology, Laboratory of Evolutionary and Computational Virology, Rega Institute for Medical Research, KU Leuven - University of Leuven, Herestraat 49, Box 1040, BE3000, Leuven, Belgium.,Department of Biology, Evolutionary Ecology Group, University of Antwerp, Universiteitsplein 1, 2610, Antwerpen, Belgium.,Ecology and Evolutionary Biology Department, University of Arizona, 1041 E. Lowell St, Tucson, AZ, 85719, USA
| | - Herwig Leirs
- Department of Biology, Evolutionary Ecology Group, University of Antwerp, Universiteitsplein 1, 2610, Antwerpen, Belgium
| | - Philippe Lemey
- Department of Microbiology and Immunology, Laboratory of Evolutionary and Computational Virology, Rega Institute for Medical Research, KU Leuven - University of Leuven, Herestraat 49, Box 1040, BE3000, Leuven, Belgium
| | - Bram Vrancken
- Department of Microbiology and Immunology, Laboratory of Evolutionary and Computational Virology, Rega Institute for Medical Research, KU Leuven - University of Leuven, Herestraat 49, Box 1040, BE3000, Leuven, Belgium
| | - Piet Maes
- Department of Microbiology and Immunology, Laboratory of Clinical Virology, Rega Institute for Medical Research, KU Leuven - University of Leuven, Herestraat 49, Box 1040, BE3000, Leuven, Belgium.
| |
Collapse
|
17
|
Genetic characterization of bank vole virus (BaVV), a new paramyxovirus isolated from kidneys of bank voles in Russia. Arch Virol 2017; 163:755-759. [DOI: 10.1007/s00705-017-3639-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Accepted: 10/30/2017] [Indexed: 10/18/2022]
|
18
|
Engeland CE, Bossow S, Hudacek AW, Hoyler B, Förster J, Veinalde R, Jäger D, Cattaneo R, Ungerechts G, Springfeld C. A Tupaia paramyxovirus vector system for targeting and transgene expression. J Gen Virol 2017; 98:2248-2257. [PMID: 28809150 DOI: 10.1099/jgv.0.000887] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Viruses from the diverse family of Paramyxoviridae include important pathogens and are applied in gene therapy and for cancer treatment. The Tupaia paramyxovirus (TPMV), isolated from the kidney of a tree shrew, does not infect human cells and neutralizing antibodies against other Paramyxoviridae do not cross-react with TPMV. Here, we present a vector system for de novo generation of infectious TPMV that allows for insertion of additional genes as well as targeting using antibody single-chain variable fragments. We show that the recombinant TPMV specifically infect cells expressing the targeted receptor and replicate in human cells. This vector system provides a valuable tool for both basic research and therapeutic applications.
Collapse
Affiliation(s)
- Christine E Engeland
- Department of Medical Oncology, National Center for Tumor Diseases and University Hospital Heidelberg, Heidelberg, Germany.,Department of Translational Oncology, National Center for Tumor Diseases and German Cancer Research Center, Heidelberg, Germany
| | - Sascha Bossow
- Department of Translational Oncology, National Center for Tumor Diseases and German Cancer Research Center, Heidelberg, Germany.,Present address: Ottawa Hospital Research Institute, Centre for Innovative Cancer Research, Ottawa, Ontario, Canada
| | - Andrew W Hudacek
- Department of Molecular Medicine, Mayo Clinic, and Virology and Gene Therapy Track, Mayo Graduate School, Rochester, MN, USA
| | - Birgit Hoyler
- Department of Medical Oncology, National Center for Tumor Diseases and University Hospital Heidelberg, Heidelberg, Germany.,Department of Translational Oncology, National Center for Tumor Diseases and German Cancer Research Center, Heidelberg, Germany
| | - Judith Förster
- Department of Translational Oncology, National Center for Tumor Diseases and German Cancer Research Center, Heidelberg, Germany
| | - Rūta Veinalde
- Department of Translational Oncology, National Center for Tumor Diseases and German Cancer Research Center, Heidelberg, Germany
| | - Dirk Jäger
- Department of Medical Oncology, National Center for Tumor Diseases and University Hospital Heidelberg, Heidelberg, Germany
| | - Roberto Cattaneo
- Department of Molecular Medicine, Mayo Clinic, and Virology and Gene Therapy Track, Mayo Graduate School, Rochester, MN, USA
| | - Guy Ungerechts
- Department of Medical Oncology, National Center for Tumor Diseases and University Hospital Heidelberg, Heidelberg, Germany.,Department of Translational Oncology, National Center for Tumor Diseases and German Cancer Research Center, Heidelberg, Germany.,Ottawa Hospital Research Institute, Centre for Innovative Cancer Research, Ottawa, Ontario, Canada
| | - Christoph Springfeld
- Department of Medical Oncology, National Center for Tumor Diseases and University Hospital Heidelberg, Heidelberg, Germany
| |
Collapse
|
19
|
Rissanen I, Ahmed AA, Azarm K, Beaty S, Hong P, Nambulli S, Duprex WP, Lee B, Bowden TA. Idiosyncratic Mòjiāng virus attachment glycoprotein directs a host-cell entry pathway distinct from genetically related henipaviruses. Nat Commun 2017; 8:16060. [PMID: 28699636 PMCID: PMC5510225 DOI: 10.1038/ncomms16060] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 05/25/2017] [Indexed: 12/28/2022] Open
Abstract
In 2012, cases of lethal pneumonia among Chinese miners prompted the isolation of a rat-borne henipavirus (HNV), Mòjiāng virus (MojV). Although MojV is genetically related to highly pathogenic bat-borne henipaviruses, the absence of a conserved ephrin receptor-binding motif in the MojV attachment glycoprotein (MojV-G) indicates a differing host-cell recognition mechanism. Here we find that MojV-G displays a six-bladed β-propeller fold bearing limited similarity to known paramyxoviral attachment glycoproteins, in particular at host receptor-binding surfaces. We confirm the inability of MojV-G to interact with known paramyxoviral receptors in vitro, indicating an independence from well-characterized ephrinB2/B3, sialic acid and CD150-mediated entry pathways. Furthermore, we find that MojV-G is antigenically distinct, indicating that MojV would less likely be detected in existing large-scale serological screening studies focused on well-established HNVs. Altogether, these data indicate a unique host-cell entry pathway for this emerging and potentially pathogenic HNV. The attachment glycoprotein (HNV-G) of henipaviruses interacts with host receptors at the cell surface and is a major determinant of species tropism. Here the authors provide structural and functional evidence that the emergent henipavirus, Mòjiang virus, uses an entry mechanism that is independent of known paramyoxviral cellular receptors.
Collapse
Affiliation(s)
- Ilona Rissanen
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, Oxfordshire OX3 7BN, UK
| | - Asim A Ahmed
- Division of Infectious Disease, Boston Children's Hospital, Boston, Massachusetts 02115, USA
| | - Kristopher Azarm
- Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, #1124, New York, New York 10029, USA
| | - Shannon Beaty
- Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, #1124, New York, New York 10029, USA
| | - Patrick Hong
- Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, #1124, New York, New York 10029, USA
| | - Sham Nambulli
- Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | - W Paul Duprex
- Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | - Benhur Lee
- Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, #1124, New York, New York 10029, USA
| | - Thomas A Bowden
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, Oxfordshire OX3 7BN, UK
| |
Collapse
|
20
|
Ghawar W, Pascalis H, Bettaieb J, Mélade J, Gharbi A, Snoussi MA, Laouini D, Goodman SM, Ben Salah A, Dellagi K. Insight into the global evolution of Rodentia associated Morbilli-related paramyxoviruses. Sci Rep 2017; 7:1974. [PMID: 28512347 PMCID: PMC5434063 DOI: 10.1038/s41598-017-02206-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 04/07/2017] [Indexed: 11/11/2022] Open
Abstract
One portion of the family Paramyxoviridae is a group of Unclassified Morbilli-Related Viruses (UMRV) recently recognized in wild small mammals. At a global level, the evolutionary history of these viruses is not properly understood and the relationships between UMRV and their hosts still remain largely unstudied. The present study revealed, for the first time, that Rodentia associated UMRV emerged from a common ancestor in southern Africa more than 4000 years ago. Sequenced UMRV originating from different regions in the world, clustered into four well-supported viral lineages, which suggest that strain diversification occurred during host dispersal and associated exchanges, with purifying selection pressure as the principal evolutionary force. In addition, multi-introductions on different continents and islands of Rodentia associated UMRV and spillover between rodent species, most probably Rattus rattus, were detected and indicate that these animals are implicated in the vectoring and in the worldwide emergence of this virus group. The natural history and the evolution dynamics of these zoonotic viruses, originating from and hosted by wild animals, are most likely shaped by commensalism related to human activities.
Collapse
Affiliation(s)
- Wissem Ghawar
- Centre de Recherche et de Veille sur les maladies émergentes dans l'Océan Indien (CRVOI), Plateforme de Recherche CYROI, Sainte Clotilde, La Réunion, France. .,Laboratory of Medical Epidemiology, Institut Pasteur de Tunis (IPT), Tunis-Belvédère, Tunis, Tunisia. .,Laboratory of Transmission, Control and Immunobiology of Infections (LTCII), LR11IPT02, Institut Pasteur de Tunis (IPT), Tunis-Belvédère, Tunis, Tunisia. .,Université Tunis El Manar, Tunis, Tunisia.
| | - Hervé Pascalis
- Centre de Recherche et de Veille sur les maladies émergentes dans l'Océan Indien (CRVOI), Plateforme de Recherche CYROI, Sainte Clotilde, La Réunion, France. .,Université de La Réunion, UMR PIMIT "Processus Infectieux en Milieu Insulaire Tropical", INSERM U1187, CNRS 9192, IRD 249, Plateforme de Recherche CYROI, Saint Denis, La Réunion, France.
| | - Jihéne Bettaieb
- Laboratory of Medical Epidemiology, Institut Pasteur de Tunis (IPT), Tunis-Belvédère, Tunis, Tunisia.,Laboratory of Transmission, Control and Immunobiology of Infections (LTCII), LR11IPT02, Institut Pasteur de Tunis (IPT), Tunis-Belvédère, Tunis, Tunisia.,Université Tunis El Manar, Tunis, Tunisia
| | - Julien Mélade
- Centre de Recherche et de Veille sur les maladies émergentes dans l'Océan Indien (CRVOI), Plateforme de Recherche CYROI, Sainte Clotilde, La Réunion, France.,Université de La Réunion, UMR PIMIT "Processus Infectieux en Milieu Insulaire Tropical", INSERM U1187, CNRS 9192, IRD 249, Plateforme de Recherche CYROI, Saint Denis, La Réunion, France
| | - Adel Gharbi
- Laboratory of Medical Epidemiology, Institut Pasteur de Tunis (IPT), Tunis-Belvédère, Tunis, Tunisia.,Laboratory of Transmission, Control and Immunobiology of Infections (LTCII), LR11IPT02, Institut Pasteur de Tunis (IPT), Tunis-Belvédère, Tunis, Tunisia.,Université Tunis El Manar, Tunis, Tunisia
| | - Mohamed Ali Snoussi
- Laboratory of Medical Epidemiology, Institut Pasteur de Tunis (IPT), Tunis-Belvédère, Tunis, Tunisia.,Laboratory of Transmission, Control and Immunobiology of Infections (LTCII), LR11IPT02, Institut Pasteur de Tunis (IPT), Tunis-Belvédère, Tunis, Tunisia.,Université Tunis El Manar, Tunis, Tunisia
| | - Dhafer Laouini
- Laboratory of Transmission, Control and Immunobiology of Infections (LTCII), LR11IPT02, Institut Pasteur de Tunis (IPT), Tunis-Belvédère, Tunis, Tunisia.,Université Tunis El Manar, Tunis, Tunisia
| | - Steven M Goodman
- Field Museum of Natural History, 1400 S. Lake Shore Dr, Chicago, IL, 60605-2496, USA.,Association Vahatra, BP 3972, Antananarivo, 101, Madagascar
| | - Afif Ben Salah
- Laboratory of Medical Epidemiology, Institut Pasteur de Tunis (IPT), Tunis-Belvédère, Tunis, Tunisia.,Laboratory of Transmission, Control and Immunobiology of Infections (LTCII), LR11IPT02, Institut Pasteur de Tunis (IPT), Tunis-Belvédère, Tunis, Tunisia.,Université Tunis El Manar, Tunis, Tunisia
| | - Koussay Dellagi
- Centre de Recherche et de Veille sur les maladies émergentes dans l'Océan Indien (CRVOI), Plateforme de Recherche CYROI, Sainte Clotilde, La Réunion, France.,Laboratory of Transmission, Control and Immunobiology of Infections (LTCII), LR11IPT02, Institut Pasteur de Tunis (IPT), Tunis-Belvédère, Tunis, Tunisia.,Université de La Réunion, UMR PIMIT "Processus Infectieux en Milieu Insulaire Tropical", INSERM U1187, CNRS 9192, IRD 249, Plateforme de Recherche CYROI, Saint Denis, La Réunion, France
| |
Collapse
|
21
|
Affiliation(s)
- Antra Zeltina
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Thomas A. Bowden
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
- * E-mail: (TAB); (BL)
| | - Benhur Lee
- Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- * E-mail: (TAB); (BL)
| |
Collapse
|
22
|
Wu Z, Yang L, Yang F, Ren X, Jiang J, Dong J, Sun L, Zhu Y, Zhou H, Jin Q. Novel Henipa-like virus, Mojiang Paramyxovirus, in rats, China, 2012. Emerg Infect Dis 2015; 20:1064-6. [PMID: 24865545 PMCID: PMC4036791 DOI: 10.3201/eid2006.131022] [Citation(s) in RCA: 119] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
23
|
Muzyka D, Pantin-Jackwood M, Stegniy B, Rula O, Bolotin V, Stegniy A, Gerilovych A, Shutchenko P, Stegniy M, Koshelev V, Maiorova K, Tkachenko S, Muzyka N, Usova L, Afonso CL. Wild bird surveillance for avian paramyxoviruses in the Azov-black sea region of Ukraine (2006 to 2011) reveals epidemiological connections with Europe and Africa. Appl Environ Microbiol 2014; 80:5427-38. [PMID: 24973063 PMCID: PMC4136112 DOI: 10.1128/aem.00733-14] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 06/18/2014] [Indexed: 11/20/2022] Open
Abstract
Despite the existence of 10 avian paramyxovirus (APMV) serotypes, very little is known about the distribution, host species, and ecological factors affecting virus transmission. To better understand the relationship among these factors, we conducted APMV wild bird surveillance in regions of Ukraine suspected of being intercontinental (north to south and east to west) flyways. Surveillance for APMV was conducted in 6,735 wild birds representing 86 species and 8 different orders during 2006 to 2011 through different seasons. Twenty viruses were isolated and subsequently identified as APMV-1 (n = 9), APMV-4 (n = 4), APMV-6 (n = 3), and APMV-7 (n = 4). The highest isolation rate occurred during the autumn migration (0.61%), with viruses isolated from mallards, teals, dunlins, and a wigeon. The rate of isolation was lower during winter (December to March) (0.32%), with viruses isolated from ruddy shelducks, mallards, white-fronted geese, and a starling. During spring migration, nesting, and postnesting (April to August) no APMV strains were isolated out of 1,984 samples tested. Sequencing and phylogenetic analysis of four APMV-1 and two APMV-4 viruses showed that one APMV-1 virus belonging to class 1 was epidemiologically linked to viruses from China, three class II APMV-1 viruses were epidemiologically connected with viruses from Nigeria and Luxembourg, and one APMV-4 virus was related to goose viruses from Egypt. In summary, we have identified the wild bird species most likely to be infected with APMV, and our data support possible intercontinental transmission of APMVs by wild birds.
Collapse
Affiliation(s)
- Denys Muzyka
- National Scientific Center Institute of Experimental and Clinical Veterinary Medicine, Kharkiv, Ukraine
| | - Mary Pantin-Jackwood
- Southeast Poultry Research Laboratory, Agricultural Research Service, USDA, Athens, Georgia, USA
| | - Borys Stegniy
- National Scientific Center Institute of Experimental and Clinical Veterinary Medicine, Kharkiv, Ukraine
| | - Oleksandr Rula
- National Scientific Center Institute of Experimental and Clinical Veterinary Medicine, Kharkiv, Ukraine
| | - Vitaliy Bolotin
- National Scientific Center Institute of Experimental and Clinical Veterinary Medicine, Kharkiv, Ukraine
| | - Anton Stegniy
- National Scientific Center Institute of Experimental and Clinical Veterinary Medicine, Kharkiv, Ukraine
| | - Anton Gerilovych
- National Scientific Center Institute of Experimental and Clinical Veterinary Medicine, Kharkiv, Ukraine
| | - Pavlo Shutchenko
- National Scientific Center Institute of Experimental and Clinical Veterinary Medicine, Kharkiv, Ukraine
| | - Maryna Stegniy
- National Scientific Center Institute of Experimental and Clinical Veterinary Medicine, Kharkiv, Ukraine
| | - Vasyl Koshelev
- National Scientific Center Institute of Experimental and Clinical Veterinary Medicine, Kharkiv, Ukraine
| | - Klavdii Maiorova
- National Scientific Center Institute of Experimental and Clinical Veterinary Medicine, Kharkiv, Ukraine
| | - Semen Tkachenko
- National Scientific Center Institute of Experimental and Clinical Veterinary Medicine, Kharkiv, Ukraine
| | - Nataliia Muzyka
- National Scientific Center Institute of Experimental and Clinical Veterinary Medicine, Kharkiv, Ukraine
| | - Larysa Usova
- National Scientific Center Institute of Experimental and Clinical Veterinary Medicine, Kharkiv, Ukraine
| | - Claudio L Afonso
- Southeast Poultry Research Laboratory, Agricultural Research Service, USDA, Athens, Georgia, USA
| |
Collapse
|
24
|
Fatal systemic necrotizing infections associated with a novel paramyxovirus, anaconda paramyxovirus, in green anaconda juveniles. J Clin Microbiol 2014; 52:3614-23. [PMID: 25078906 DOI: 10.1128/jcm.01653-14] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Beginning in July 2011, 31 green anaconda (Eunectes murinus) juveniles from an oceanarium in Hong Kong died over a 12-month period. Necropsy revealed at least two of the following features in 23 necropsies: dermatitis, severe pan-nephritis, and/or severe systemic multiorgan necrotizing inflammation. Histopathological examination revealed severe necrotizing inflammation in various organs, most prominently the kidneys. Electron microscopic examination of primary tissues revealed intralesional accumulations of viral nucleocapsids with diameters of 10 to 14 nm, typical of paramyxoviruses. Reverse transcription (RT)-PCR results were positive for paramyxovirus (viral loads of 2.33 × 10(4) to 1.05 × 10(8) copies/mg tissue) in specimens from anaconda juveniles that died but negative in specimens from the two anaconda juveniles and anaconda mother that survived. None of the other snakes in the park was moribund, and RT-PCR results for surveillance samples collected from other snakes were negative. The virus was isolated from BHK21 cells, causing cytopathic effects with syncytial formation. The virus could also replicate in 25 of 27 cell lines of various origins, in line with its capability for infecting various organs. Electron microscopy with cell culture material revealed enveloped virus with the typical "herringbone" appearance of helical nucleocapsids in paramyxoviruses. Complete genome sequencing of five isolates confirmed that the infections originated from the same clone. Comparative genomic and phylogenetic analyses and mRNA editing experiments revealed a novel paramyxovirus in the genus Ferlavirus, named anaconda paramyxovirus, with a typical Ferlavirus genomic organization of 3'-N-U-P/V/I-M-F-HN-L-5'. Epidemiological and genomic analyses suggested that the anaconda juveniles acquired the virus perinatally from the anaconda mother rather than from other reptiles in the park, with subsequent interanaconda juvenile transmission.
Collapse
|
25
|
Brooks F, Wood AR, Thomson J, Deane D, Everest DJ, McInnes CJ. Preliminary characterisation of Pentlands paramyxovirus-1, -2 and -3, three new paramyxoviruses of rodents. Vet Microbiol 2014; 170:391-7. [DOI: 10.1016/j.vetmic.2014.02.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 02/04/2014] [Accepted: 02/05/2014] [Indexed: 10/25/2022]
|
26
|
Sasaki M, Muleya W, Ishii A, Orba Y, Hang’ombe BM, Mweene AS, Moonga L, Thomas Y, Kimura T, Sawa H. Molecular epidemiology of paramyxoviruses in Zambian wild rodents and shrews. J Gen Virol 2014; 95:325-330. [DOI: 10.1099/vir.0.058404-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Rodents and shrews are known to harbour various viruses. Paramyxoviruses have been isolated from Asian and Australian rodents, but little is known about them in African rodents. Recently, previously unknown paramyxovirus sequences were found in South African rodents. To date, there have been no reports related to the presence and prevalence of paramyxoviruses in shrews. We found a high prevalence of paramyxoviruses in wild rodents and shrews from Zambia. Semi-nested reverse transcription-PCR assays were used to detect paramyxovirus RNA in 21 % (96/462) of specimens analysed. Phylogenetic analysis revealed that these viruses were novel paramyxoviruses and could be classified as morbillivirus- and henipavirus-related viruses, and previously identified rodent paramyxovirus-related viruses. Our findings suggest the circulation of previously unknown paramyxoviruses in African rodents and shrews, and provide new information regarding the geographical distribution and genetic diversity of paramyxoviruses.
Collapse
Affiliation(s)
- Michihito Sasaki
- Division of Molecular Pathobiology, Research Center for Zoonosis Control, Hokkaido University, N20, W10, Kita-ku, Sapporo 001-0020, Japan
| | - Walter Muleya
- Division of Molecular Pathobiology, Research Center for Zoonosis Control, Hokkaido University, N20, W10, Kita-ku, Sapporo 001-0020, Japan
| | - Akihiro Ishii
- Hokudai Center for Zoonosis Control in Zambia, PO Box 32379, Lusaka, Zambia
| | - Yasuko Orba
- Division of Molecular Pathobiology, Research Center for Zoonosis Control, Hokkaido University, N20, W10, Kita-ku, Sapporo 001-0020, Japan
| | - Bernard M. Hang’ombe
- Department of Paraclinical Studies, School of Veterinary and Medicine, University of Zambia, PO Box 32379, Lusaka, Zambia
| | - Aaron S. Mweene
- Department of Disease Control, School of Veterinary and Medicine, University of Zambia, PO Box 32379, Lusaka, Zambia
| | - Ladslav Moonga
- Department of Paraclinical Studies, School of Veterinary and Medicine, University of Zambia, PO Box 32379, Lusaka, Zambia
| | - Yuka Thomas
- Hokudai Center for Zoonosis Control in Zambia, PO Box 32379, Lusaka, Zambia
| | - Takashi Kimura
- Division of Molecular Pathobiology, Research Center for Zoonosis Control, Hokkaido University, N20, W10, Kita-ku, Sapporo 001-0020, Japan
| | - Hirofumi Sawa
- Division of Molecular Pathobiology, Research Center for Zoonosis Control, Hokkaido University, N20, W10, Kita-ku, Sapporo 001-0020, Japan
| |
Collapse
|
27
|
Lau SKP, Woo PCY, Wu Y, Wong AYP, Wong BHL, Lau CCY, Fan RYY, Cai JP, Tsoi HW, Chan KH, Yuen KY. Identification and characterization of a novel paramyxovirus, porcine parainfluenza virus 1, from deceased pigs. J Gen Virol 2013; 94:2184-2190. [PMID: 23918408 DOI: 10.1099/vir.0.052985-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
We describe the discovery and characterization of a novel paramyxovirus, porcine parainfluenza virus 1 (PPIV-1), from swine. The virus was detected in 12 (3.1 %) of 386 nasopharyngeal and two (0.7 %) of 303 rectal swab samples from 386 deceased pigs by reverse transcription-PCR, with viral loads of up to 10(6) copies ml(-1). Complete genome sequencing and phylogenetic analysis showed that PPIV-1 represented a novel paramyxovirus within the genus Respirovirus, being most closely related to human parainfluenza virus 1 (HPIV-1) and Sendai virus (SeV). In contrast to HPIV-1, PPIV-1 possessed a mRNA editing function in the phosphoprotein gene. Moreover, PPIV-1 was unique among respiroviruses in having two G residues instead of three to five G residues following the A6 run at the editing site. Nevertheless, PPIV-1, HPIV-1 and SeV share common genomic features and may belong to a separate group within the genus Respirovirus. The presence of PPIV-1 in mainly respiratory samples suggests a possible association with respiratory disease, similar to HPIV-1 and SeV.
Collapse
Affiliation(s)
- Susanna K P Lau
- Department of Microbiology, University of Hong Kong, Hong Kong, PR China.,Carol Yu Center for Infection, University of Hong Kong, Hong Kong, PR China.,State Key Laboratory of Emerging Infectious Diseases, University of Hong Kong, Hong Kong, PR China.,Research Centre of Infection and Immunology, University of Hong Kong, Hong Kong, PR China
| | - Patrick C Y Woo
- State Key Laboratory of Emerging Infectious Diseases, University of Hong Kong, Hong Kong, PR China.,Research Centre of Infection and Immunology, University of Hong Kong, Hong Kong, PR China.,Department of Microbiology, University of Hong Kong, Hong Kong, PR China.,Carol Yu Center for Infection, University of Hong Kong, Hong Kong, PR China
| | - Ying Wu
- Department of Microbiology, University of Hong Kong, Hong Kong, PR China
| | - Annette Y P Wong
- Department of Microbiology, University of Hong Kong, Hong Kong, PR China
| | - Beatrice H L Wong
- Department of Microbiology, University of Hong Kong, Hong Kong, PR China
| | - Candy C Y Lau
- Department of Microbiology, University of Hong Kong, Hong Kong, PR China
| | - Rachel Y Y Fan
- Department of Microbiology, University of Hong Kong, Hong Kong, PR China
| | - Jian-Piao Cai
- Department of Microbiology, University of Hong Kong, Hong Kong, PR China
| | - Hoi-Wah Tsoi
- Department of Microbiology, University of Hong Kong, Hong Kong, PR China
| | - Kwok-Hung Chan
- Department of Microbiology, University of Hong Kong, Hong Kong, PR China
| | - Kwok-Yung Yuen
- State Key Laboratory of Emerging Infectious Diseases, University of Hong Kong, Hong Kong, PR China.,Carol Yu Center for Infection, University of Hong Kong, Hong Kong, PR China.,Research Centre of Infection and Immunology, University of Hong Kong, Hong Kong, PR China.,Department of Microbiology, University of Hong Kong, Hong Kong, PR China
| |
Collapse
|
28
|
Identification of novel paramyxoviruses in insectivorous bats of the Southwest Indian Ocean. Virus Res 2012; 170:159-63. [PMID: 22982204 DOI: 10.1016/j.virusres.2012.08.022] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Revised: 08/20/2012] [Accepted: 08/31/2012] [Indexed: 11/23/2022]
Abstract
Bats are reservoirs for many emerging zoonotic viruses. In this study, we screened 197 animals from 15 different bat species of the Southwest Indian Ocean for paramyxovirus infection and identified paramyxoviruses in five insectivorous bat-species from the Union of the Comoros (3/66), Mauritius (1/55) and Madagascar (4/76). Viral isolation was possible via cell culture and phylogenetic analysis revealed these viruses clustered in a Morbillivirus-related lineage, with relatively high nucleotide sequence similarity to other recently discovered insectivorous-bat paramyxoviruses but distinct from those known to circulate in frugivorous bats.
Collapse
|
29
|
Cleveland SB, Davies J, McClure MA. A bioinformatics approach to the structure, function, and evolution of the nucleoprotein of the order mononegavirales. PLoS One 2011; 6:e19275. [PMID: 21559282 PMCID: PMC3086907 DOI: 10.1371/journal.pone.0019275] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2010] [Accepted: 04/01/2011] [Indexed: 01/09/2023] Open
Abstract
The goal of this Bioinformatic study is to investigate sequence conservation in relation to evolutionary function/structure of the nucleoprotein of the order Mononegavirales. In the combined analysis of 63 representative nucleoprotein (N) sequences from four viral families (Bornaviridae, Filoviridae, Rhabdoviridae, and Paramyxoviridae) we predict the regions of protein disorder, intra-residue contact and co-evolving residues. Correlations between location and conservation of predicted regions illustrate a strong division between families while high- lighting conservation within individual families. These results suggest the conserved regions among the nucleoproteins, specifically within Rhabdoviridae and Paramyxoviradae, but also generally among all members of the order, reflect an evolutionary advantage in maintaining these sites for the viral nucleoprotein as part of the transcription/replication machinery. Results indicate conservation for disorder in the C-terminus region of the representative proteins that is important for interacting with the phosphoprotein and the large subunit polymerase during transcription and replication. Additionally, the C-terminus region of the protein preceding the disordered region, is predicted to be important for interacting with the encapsidated genome. Portions of the N-terminus are responsible for N∶N stability and interactions identified by the presence or lack of co-evolving intra-protein contact predictions. The validation of these prediction results by current structural information illustrates the benefits of the Disorder, Intra-residue contact and Compensatory mutation Correlator (DisICC) pipeline as a method for quickly characterizing proteins and providing the most likely residues and regions necessary to target for disruption in viruses that have little structural information available.
Collapse
Affiliation(s)
- Sean B Cleveland
- Department of Microbiology and the Center for Computational Biology, Montana State University, Bozeman, Montana, USA.
| | | | | |
Collapse
|
30
|
Shi SH, Huang Y, Cui SJ, Cheng LF, Fu GH, Li X, Chen Z, Peng CX, Lin F, Lin JS, Su JL. Genomic sequence of an avian paramyxovirus type 1 strain isolated from Muscovy duck (Cairina moschata) in China. Arch Virol 2010; 156:405-12. [PMID: 21152939 DOI: 10.1007/s00705-010-0866-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2010] [Accepted: 11/15/2010] [Indexed: 12/01/2022]
Abstract
The complete sequence of an avian paramyxovirus type 1 (APMV-1) strain, FP1/02, isolated from Muscovy duck in China, was determined. Sequence analysis indicated that the complete genome of strain FP1/02 contained 15,192 nucleotides (nt), following the rule of six. The genome contained an extra 6-nt insertion in the non-coding region of the NP gene when compared with other APMV-1 strains, such as strains La Sota and Beaudette C. The cleavage site of the F protein was (112)R-R-Q-K-R↓F(117), indicating that the FP1/02 strain was virulent, but the morbidity and mortality varied with the species of duck. Genotypic analysis based on the F gene revealed that APMV-1 FP1/02 was a member of genotype VII. Phylogenetic analysis showed that the FP1/02 strain shared high identity with other APMV-1 strains such as ZJ1, SF02 and NA-1 isolated from geese.
Collapse
Affiliation(s)
- S-H Shi
- Institute of Animal Husbandry and Veterinary, Fujian Academy of Agricultural Sciences, Fuzhou 350013, Fujian, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Miller PJ, Afonso CL, Spackman E, Scott MA, Pedersen JC, Senne DA, Brown JD, Fuller CM, Uhart MM, Karesh WB, Brown IH, Alexander DJ, Swayne DE. Evidence for a new avian paramyxovirus serotype 10 detected in rockhopper penguins from the Falkland Islands. J Virol 2010; 84:11496-504. [PMID: 20702635 PMCID: PMC2953191 DOI: 10.1128/jvi.00822-10] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2010] [Accepted: 07/16/2010] [Indexed: 11/20/2022] Open
Abstract
The biological, serological, and genomic characterization of a paramyxovirus recently isolated from rockhopper penguins (Eudyptes chrysocome) suggested that this virus represented a new avian paramyxovirus (APMV) group, APMV10. This penguin virus resembled other APMVs by electron microscopy; however, its viral hemagglutination (HA) activity was not inhibited by antisera against any of the nine defined APMV serotypes. In addition, antiserum generated against this penguin virus did not inhibit the HA of representative viruses of the other APMV serotypes. Sequence data produced using random priming methods revealed a genomic structure typical of APMV. Phylogenetic evaluation of coding regions revealed that amino acid sequences of all six proteins were most closely related to APMV2 and APMV8. The calculation of evolutionary distances among proteins and distances at the nucleotide level confirmed that APMV2, APMV8, and the penguin virus all were sufficiently divergent from each other to be considered different serotypes. We propose that this isolate, named APMV10/penguin/Falkland Islands/324/2007, be the prototype virus for APMV10. Because of the known problems associated with serology, such as antiserum cross-reactivity and one-way immunogenicity, in addition to the reliance on the immune response to a single protein, the hemagglutinin-neuraminidase, as the sole base for viral classification, we suggest the need for new classification guidelines that incorporate genome sequence comparisons.
Collapse
Affiliation(s)
- Patti J. Miller
- Southeast Poultry Research Laboratory, Agricultural Research Service, United States Department of Agriculture, Athens, Georgia, Diagnostic Virology Laboratory, National Veterinary Services Laboratory, United States Department of Agriculture, Ames, Iowa, Southeastern Cooperative Wildlife Disease Study, University of Georgia, Athens, Georgia, Veterinary Laboratories Agency, Weybridge, Surrey, United Kingdom, Wildlife Conservation Society, Bronx, New York
| | - Claudio L. Afonso
- Southeast Poultry Research Laboratory, Agricultural Research Service, United States Department of Agriculture, Athens, Georgia, Diagnostic Virology Laboratory, National Veterinary Services Laboratory, United States Department of Agriculture, Ames, Iowa, Southeastern Cooperative Wildlife Disease Study, University of Georgia, Athens, Georgia, Veterinary Laboratories Agency, Weybridge, Surrey, United Kingdom, Wildlife Conservation Society, Bronx, New York
| | - Erica Spackman
- Southeast Poultry Research Laboratory, Agricultural Research Service, United States Department of Agriculture, Athens, Georgia, Diagnostic Virology Laboratory, National Veterinary Services Laboratory, United States Department of Agriculture, Ames, Iowa, Southeastern Cooperative Wildlife Disease Study, University of Georgia, Athens, Georgia, Veterinary Laboratories Agency, Weybridge, Surrey, United Kingdom, Wildlife Conservation Society, Bronx, New York
| | - Melissa A. Scott
- Southeast Poultry Research Laboratory, Agricultural Research Service, United States Department of Agriculture, Athens, Georgia, Diagnostic Virology Laboratory, National Veterinary Services Laboratory, United States Department of Agriculture, Ames, Iowa, Southeastern Cooperative Wildlife Disease Study, University of Georgia, Athens, Georgia, Veterinary Laboratories Agency, Weybridge, Surrey, United Kingdom, Wildlife Conservation Society, Bronx, New York
| | - Janice C. Pedersen
- Southeast Poultry Research Laboratory, Agricultural Research Service, United States Department of Agriculture, Athens, Georgia, Diagnostic Virology Laboratory, National Veterinary Services Laboratory, United States Department of Agriculture, Ames, Iowa, Southeastern Cooperative Wildlife Disease Study, University of Georgia, Athens, Georgia, Veterinary Laboratories Agency, Weybridge, Surrey, United Kingdom, Wildlife Conservation Society, Bronx, New York
| | - Dennis A. Senne
- Southeast Poultry Research Laboratory, Agricultural Research Service, United States Department of Agriculture, Athens, Georgia, Diagnostic Virology Laboratory, National Veterinary Services Laboratory, United States Department of Agriculture, Ames, Iowa, Southeastern Cooperative Wildlife Disease Study, University of Georgia, Athens, Georgia, Veterinary Laboratories Agency, Weybridge, Surrey, United Kingdom, Wildlife Conservation Society, Bronx, New York
| | - Justin D. Brown
- Southeast Poultry Research Laboratory, Agricultural Research Service, United States Department of Agriculture, Athens, Georgia, Diagnostic Virology Laboratory, National Veterinary Services Laboratory, United States Department of Agriculture, Ames, Iowa, Southeastern Cooperative Wildlife Disease Study, University of Georgia, Athens, Georgia, Veterinary Laboratories Agency, Weybridge, Surrey, United Kingdom, Wildlife Conservation Society, Bronx, New York
| | - Chad M. Fuller
- Southeast Poultry Research Laboratory, Agricultural Research Service, United States Department of Agriculture, Athens, Georgia, Diagnostic Virology Laboratory, National Veterinary Services Laboratory, United States Department of Agriculture, Ames, Iowa, Southeastern Cooperative Wildlife Disease Study, University of Georgia, Athens, Georgia, Veterinary Laboratories Agency, Weybridge, Surrey, United Kingdom, Wildlife Conservation Society, Bronx, New York
| | - Marcela M. Uhart
- Southeast Poultry Research Laboratory, Agricultural Research Service, United States Department of Agriculture, Athens, Georgia, Diagnostic Virology Laboratory, National Veterinary Services Laboratory, United States Department of Agriculture, Ames, Iowa, Southeastern Cooperative Wildlife Disease Study, University of Georgia, Athens, Georgia, Veterinary Laboratories Agency, Weybridge, Surrey, United Kingdom, Wildlife Conservation Society, Bronx, New York
| | - William B. Karesh
- Southeast Poultry Research Laboratory, Agricultural Research Service, United States Department of Agriculture, Athens, Georgia, Diagnostic Virology Laboratory, National Veterinary Services Laboratory, United States Department of Agriculture, Ames, Iowa, Southeastern Cooperative Wildlife Disease Study, University of Georgia, Athens, Georgia, Veterinary Laboratories Agency, Weybridge, Surrey, United Kingdom, Wildlife Conservation Society, Bronx, New York
| | - Ian H. Brown
- Southeast Poultry Research Laboratory, Agricultural Research Service, United States Department of Agriculture, Athens, Georgia, Diagnostic Virology Laboratory, National Veterinary Services Laboratory, United States Department of Agriculture, Ames, Iowa, Southeastern Cooperative Wildlife Disease Study, University of Georgia, Athens, Georgia, Veterinary Laboratories Agency, Weybridge, Surrey, United Kingdom, Wildlife Conservation Society, Bronx, New York
| | - Dennis J. Alexander
- Southeast Poultry Research Laboratory, Agricultural Research Service, United States Department of Agriculture, Athens, Georgia, Diagnostic Virology Laboratory, National Veterinary Services Laboratory, United States Department of Agriculture, Ames, Iowa, Southeastern Cooperative Wildlife Disease Study, University of Georgia, Athens, Georgia, Veterinary Laboratories Agency, Weybridge, Surrey, United Kingdom, Wildlife Conservation Society, Bronx, New York
| | - David E. Swayne
- Southeast Poultry Research Laboratory, Agricultural Research Service, United States Department of Agriculture, Athens, Georgia, Diagnostic Virology Laboratory, National Veterinary Services Laboratory, United States Department of Agriculture, Ames, Iowa, Southeastern Cooperative Wildlife Disease Study, University of Georgia, Athens, Georgia, Veterinary Laboratories Agency, Weybridge, Surrey, United Kingdom, Wildlife Conservation Society, Bronx, New York
| |
Collapse
|
32
|
Samuel AS, Paldurai A, Kumar S, Collins PL, Samal SK. Complete genome sequence of avian paramyxovirus (APMV) serotype 5 completes the analysis of nine APMV serotypes and reveals the longest APMV genome. PLoS One 2010; 5:e9269. [PMID: 20174645 PMCID: PMC2822847 DOI: 10.1371/journal.pone.0009269] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2009] [Accepted: 01/27/2010] [Indexed: 01/08/2023] Open
Abstract
Background Avian paramyxoviruses (APMV) consist of nine known serotypes. The genomes of representatives of all APMV serotypes except APMV type 5 have recently been fully sequenced. Here, we report the complete genome sequence of the APMV-5 prototype strain budgerigar/Kunitachi/74. Methodology/Principal Findings APMV-5 Kunitachi virus is unusual in that it lacks a virion hemagglutinin and does not grow in the allantoic cavity of embryonated chicken eggs. However, the virus grew in the amniotic cavity of embryonated chicken eggs and in twelve different established cell lines and two primary cell cultures. The genome is 17,262 nucleotides (nt) long, which is the longest among members of genus Avulavirus, and encodes six non-overlapping genes in the order of 3′N-P/V/W-M-F-HN-L-5′ with intergenic regions of 4–57 nt. The genome length follows the ‘rule of six’ and contains a 55-nt leader sequence at the 3′end and a 552 nt trailer sequence at the 5′ end. The phosphoprotein (P) gene contains a conserved RNA editing site and is predicted to encode P, V, and W proteins. The cleavage site of the F protein (G-K-R-K-K-R↓F) conforms to the cleavage site motif of the ubiquitous cellular protease furin. Consistent with this, exogenous protease was not required for virus replication in vitro. However, the intracerebral pathogenicity index of APMV-5 strain Kunitachi in one-day-old chicks was found to be zero, indicating that the virus is avirulent for chickens despite the presence of a polybasic F cleavage site. Conclusions/Significance Phylogenetic analysis of the sequences of the APVM-5 genome and proteins versus those of the other APMV serotypes showed that APMV-5 is more closely related to APMV-6 than to the other APMVs. Furthermore, these comparisons provided evidence of extensive genome-wide divergence that supports the classification of the APMVs into nine separate serotypes. The structure of the F cleavage site does not appear to be a reliable indicator of virulence among APMV serotypes 2–9. The availability of sequence information for all known APMV serotypes will facilitate studies in epidemiology and vaccinology.
Collapse
Affiliation(s)
- Arthur S Samuel
- Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, College Park, Maryland, United States of America.
| | | | | | | | | |
Collapse
|
33
|
Kumar S, Nayak B, Samuel AS, Xiao S, Collins PL, Samal SK. Complete genome sequence of avian paramyxovirus-3 strain Wisconsin: evidence for the existence of subgroups within the serotype. Virus Res 2010; 149:78-85. [PMID: 20079781 DOI: 10.1016/j.virusres.2009.12.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2009] [Revised: 12/29/2009] [Accepted: 12/31/2009] [Indexed: 12/27/2022]
Abstract
The complete consensus genome sequence was determined for avian paramyxovirus (APMV) serotype 3 strain Wisconsin. The genome is 16,182 nucleotides (nt) in length, consisting of six non-overlapping genes in the order of 3'-N-P/V/W-M-F-HN-L-5', with a 55-nt leader at its 3' end and a 681-nt trailer at its 5' end. Comparison of the APMV-3 strain Wisconsin nt and the aggregate predicted amino acid (aa) sequences with those of APMV-3 strain Netherlands revealed 67% and 78%, identity, respectively. The nt and aa sequence identities between the two APMV-3 strains were lower than between the two antigenic subgroups of human respiratory syncytial virus (81% and 88% identity, respectively) and the two subgroups of human metapeumovirus (80% and 90% identity, respectively). Reciprocal cross-hemagglutination inhibition and cross-neutralization assays using post-infection sera from chickens indicated that strains Wisconsin and Netherlands are highly related antigenically, with only a 2- to 4-fold difference in antibody reactivity between the homologous and heterologous strains. Taken together, our results indicate that the two APMV-3 strains represent a single serotype with two subgroups that differ substantially based on nt and aa sequences, but with only a modest antigenic difference.
Collapse
Affiliation(s)
- Sachin Kumar
- Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, College Park, MD 20742, USA
| | | | | | | | | | | |
Collapse
|
34
|
Complete genome sequence and pathogenicity of two swine parainfluenzavirus 3 isolates from pigs in the United States. J Virol 2009; 84:686-94. [PMID: 19906928 DOI: 10.1128/jvi.00847-09] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Two novel paramyxoviruses, 81-19252 (Texas81) and 92-7783 (ISU92), isolated from the brains of pigs in the United States in the 1980s and 1990s, were characterized. The complete genome of Texas81 virus was 15,456 nucleotides (nt) in length, that of ISU92 was 15,480 nt, and both genomes consisted of six nonoverlapping genes, predicted to encode nine proteins, with conserved and complementary 3' leader and 5' trailer regions and conserved gene starts, gene stops, and trinucleotide intergenic sequences similar to those in paramyxoviruses. The corresponding genes from these two viruses were similar in length, except for the F genes, of which the ISU92 form had an additional 24-nt U-rich 3' untranslated region. The P genes of swine viruses were predicted to produce V and D mRNAs by RNA editing (one to four G insertions in Texas81 and one to nine G insertions in ISU92) or C mRNA by alternative translation initiation. Sequence-specific features related to virus replication and host-specific amino acid signatures indicated that these viruses originated from bovine parainfluenzavirus 3 (bPIV3). Phylogenetic analysis of individual genes suggested that these viruses are novel members of the genus Respirovirus of the Paramyxovirinae subfamily and may be grouped into two subgenotypes of genotype A of bPIV3. Our comprehensive studies revealed that these swine PIV3 are variants of bPIV3 and were possibly transferred from cattle to pigs but failed to establish an active enzootic state. These two viruses were mildly pathogenic to conventionally reared pigs, and results from a limited enzyme-linked immunosorbent assay-based serosurvey of swine farms in Minnesota and Iowa in 2007 and 2008 were negative.
Collapse
|
35
|
Xiao S, Paldurai A, Nayak B, Subbiah M, Collins PL, Samal SK. Complete genome sequence of avian paramyxovirus type 7 (strain Tennessee) and comparison with other paramyxoviruses. Virus Res 2009; 145:80-91. [PMID: 19540277 PMCID: PMC3292215 DOI: 10.1016/j.virusres.2009.06.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2009] [Revised: 06/04/2009] [Accepted: 06/05/2009] [Indexed: 11/22/2022]
Abstract
The complete genome sequence of avian paramyxovirus serotype 7 (APMV-7) prototype strain dove/Tennessee/4/75 was determined. The genome size is 15,480 nucleotides (nt) long and follows the "rule of six". The genome contains six non-overlapping genes in the order of 3'-N-P/V/W-M-F-HN-L-5'. The 3'-leader and 5'-trailer sequences of the genome are 55 and 127nt long, respectively. The first 12nt of the leader and trailer sequences are complementary to each other. The viral genes are flanked by highly conserved gene-start (GS) and gene-end (GE) transcription signals, and in addition the 3'-leader sequence contains a sequence ((35)AAUUAUUUUUU(45)) that is identical to the GE signal present at two of the genes. The genes are separated by intergenic sequences (IGS) ranging between 11 and 70nt. The phosphoprotein (P) gene contains a conserved RNA editing site (3'-UUUUUCCC-5') presumed to be involved in the production of V and W proteins. The viral fusion (F) protein has a single basic amino acid at the putative cleavage site ((101)TLPSSR [see formula in text] F(107)); however, the virus did not require exogenous protease for in vitro replication. The virus grew in only a few established cell lines, indicating a restricted host range. Sequence alignment and phylogenetic analysis of the predicted amino acid sequence of APMV-7 proteins with the cognate proteins of the viruses of all five genera of the family Paramyxoviridae showed that APMV-7 is more closely related to APMV-2, -6, -8 than to APMV-1, -3, -4 and -9. The mean death time in embryonated chicken eggs was found to be more than 144h, indicating APMV-7 to be avirulent for chickens.
Collapse
Affiliation(s)
- Sa Xiao
- Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, College Park, Maryland, USA
| | - Anandan Paldurai
- Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, College Park, Maryland, USA
| | - Baibaswata Nayak
- Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, College Park, Maryland, USA
| | - Madhuri Subbiah
- Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, College Park, Maryland, USA
| | - Peter L. Collins
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, USA
| | - Siba K Samal
- Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, College Park, Maryland, USA
| |
Collapse
|
36
|
Samuel AS, Kumar S, Madhuri S, Collins PL, Samal SK. Complete sequence of the genome of avian paramyxovirus type 9 and comparison with other paramyxoviruses. Virus Res 2009; 142:10-8. [PMID: 19185593 DOI: 10.1016/j.virusres.2008.12.016] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2008] [Revised: 12/22/2008] [Accepted: 12/24/2008] [Indexed: 11/17/2022]
Abstract
The complete genome consensus sequence was determined for avian paramyxovirus (APMV) serotype 9 prototype strain PMV-9/domestic Duck/New York/22/78. The genome is 15,438 nucleotides (nt) long and encodes six non-overlapping genes in the order of 3'-N-P/V/W-M-F-HN-L-5' with intergenic regions of 0-30 nt. The genome length follows the "rule of six" and contains a 55-nt leader sequence at the 3' end and a 47-nt trailer sequence at the 5' end. The cleavage site of the F protein is I-R-E-G-R-I downward arrowF, which does not conform to the conventional cleavage site of the ubiquitous cellular protease furin. The virus required exogenous protease for in vitro replication and grew only in a few established cell lines, indicating a restricted host range. Alignment and phylogenetic analysis of the predicted amino acid sequences of APMV-9 proteins with the cognate proteins of viruses of all five genera of family Paramyxoviridae showed that APMV-9 is more closely related to APMV-1 than to other APMVs. The mean death time in embryonated chicken eggs was found to be more than 120h, indicating APMV-9 to be avirulent for chickens.
Collapse
Affiliation(s)
- Arthur S Samuel
- Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, College Park, Maryland, MD 20742, USA
| | | | | | | | | |
Collapse
|
37
|
Lambeth LS, Yu M, Anderson DE, Crameri G, Eaton BT, Wang LF. Complete genome sequence of Nariva virus, a rodent paramyxovirus. Arch Virol 2008; 154:199-207. [PMID: 19104752 PMCID: PMC7086651 DOI: 10.1007/s00705-008-0287-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2008] [Accepted: 11/19/2008] [Indexed: 12/05/2022]
Abstract
Nariva virus (NarPV) was isolated from forest rodents (Zygodontomys b. brevicauda) in eastern Trinidad in the early 1960s. Initial classification within the family Paramyxoviridae was based mainly on morphological observations including the structure of nucleocapsids and virion surface projections. Here, we report the characterization of the complete genome sequence of NarPV. The genome is 15,276 nucleotides in length, conforming to the rule-of-six, and has a genome organization typical of most members of the family, with six transcriptional units in the order 3′-N–P-M-F–H-L-5′. The gene junctions contain highly conserved gene start and stop signals and a tri-nucleotide intergenic sequence present in most members of the subfamily Paramyxovirinae. Sequence comparison studies indicate that NarPV is most closely related to Mossman virus, which was isolated from wild rats (Rattus leucopus) in Queensland, Australia, in 1970. This study confirmed the classification of NarPV as a member of the subfamily Paramyxovirinae and established the close genome organization and sequence relationship between the two rodent paramyxoviruses isolated almost a decade apart and from two locations separated by more than 15,000 km.
Collapse
Affiliation(s)
- L. S. Lambeth
- CSIRO Livestock Industries, Australian Animal Health Laboratory, PO Bag 24, Geelong, VIC 3220 Australia
- Present Address: Division of Microbiology, Institute for Animal Health, Compton, Berkshire UK
| | - M. Yu
- CSIRO Livestock Industries, Australian Animal Health Laboratory, PO Bag 24, Geelong, VIC 3220 Australia
| | - D. E. Anderson
- CSIRO Livestock Industries, Australian Animal Health Laboratory, PO Bag 24, Geelong, VIC 3220 Australia
- Present Address: INRS-Institut Armand-Frappier, Université du Québec, Laval, QC Canada
| | - G. Crameri
- CSIRO Livestock Industries, Australian Animal Health Laboratory, PO Bag 24, Geelong, VIC 3220 Australia
| | - B. T. Eaton
- CSIRO Livestock Industries, Australian Animal Health Laboratory, PO Bag 24, Geelong, VIC 3220 Australia
| | - L.-F. Wang
- CSIRO Livestock Industries, Australian Animal Health Laboratory, PO Bag 24, Geelong, VIC 3220 Australia
| |
Collapse
|
38
|
Batts WN, Falk K, Winton JR. Genetic analysis of paramyxovirus isolates from Pacific salmon reveals two independently co-circulating lineages. JOURNAL OF AQUATIC ANIMAL HEALTH 2008; 20:215-224. [PMID: 19306611 DOI: 10.1577/h07-050.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Viruses with the morphological and biochemical characteristics of the family Paramyxoviridae (paramyxoviruses) have been isolated from adult salmon returning to rivers along the Pacific coast of North America since 1982. These Pacific salmon paramyxoviruses (PSPV), which have mainly been isolated from Chinook salmon Oncorhynchus tshawytscha, grow slowly in established fish cell lines and have not been associated with disease. Genetic analysis of a 505-base-pair region of the polymerase gene from 47 PSPV isolates produced 17 nucleotide sequence types that could be grouped into two major sublineages, designated A and B. The two independently co-circulating sublineages differed by 12.1-13.9% at the nucleotide level but by only 1.2% at the amino acid level. Isolates of PSPV from adult Pacific salmon returning to rivers from Alaska to California over a 25-year period showed little evidence of geographic or temporal grouping. Phylogenetic analyses revealed that these paramyxoviruses of Pacific salmon were most closely related to the Atlantic salmon paramyxovirus (ASPV) from Norway, having a maximum nucleotide diversity of 26.1% and an amino acid diversity of 19.0%. When compared with homologous sequences of other paramyxoviruses, PSPV and ASPV were sufficiently distinct to suggest that they are not clearly members of any of the established genera in the family Paramyxoviridae. In the course of this study, a polymerase chain reaction assay was developed that can be used for confirmatory identification of PSPV.
Collapse
Affiliation(s)
- William N Batts
- U.S. Geological Survey, Western Fisheries Research Center, 6505 Northeast 65th Street, Seattle, Washington 98115, USA.
| | | | | |
Collapse
|
39
|
Nayak B, Kumar S, Collins PL, Samal SK. Molecular characterization and complete genome sequence of avian paramyxovirus type 4 prototype strain duck/Hong Kong/D3/75. Virol J 2008; 5:124. [PMID: 18937854 PMCID: PMC2577636 DOI: 10.1186/1743-422x-5-124] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2008] [Accepted: 10/20/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Avian paramyxoviruses (APMVs) are frequently isolated from domestic and wild birds throughout the world. All APMVs, except avian metapneumovirus, are classified in the genus Avulavirus of the family Paramyxoviridae. At present, the APMVs of genus Avulavirus are divided into nine serological types (APMV 1-9). Newcastle disease virus represents APMV-1 and is the most characterized among all APMV types. Very little is known about the molecular characteristics and pathogenicity of APMV 2-9. RESULTS As a first step towards understanding the molecular genetics and pathogenicity of APMV-4, we have sequenced the complete genome of APMV-4 strain duck/Hong Kong/D3/75 and determined its pathogenicity in embryonated chicken eggs. The genome of APMV-4 is 15,054 nucleotides (nt) in length, which is consistent with the "rule of six". The genome contains six non-overlapping genes in the order 3'-N-P/V-M-F-HN-L-5'. The genes are flanked on either side by highly conserved transcription start and stop signals and have intergenic sequences varying in length from 9 to 42 nt. The genome contains a 55 nt leader region at 3' end. The 5' trailer region is 17 nt, which is the shortest in the family Paramyxoviridae. Analysis of mRNAs transcribed from the P gene showed that 35% of the transcripts were edited by insertion of one non-templated G residue at an editing site leading to production of V mRNAs. No message was detected that contained insertion of two non-templated G residues, indicating that the W mRNAs are inefficiently produced in APMV-4 infected cells. The cleavage site of the F protein (DIPQR downward arrowF) does not conform to the preferred cleavage site of the ubiquitous intracellular protease furin. However, exogenous proteases were not required for the growth of APMV-4 in cell culture, indicating that the cleavage does not depend on a furin site. CONCLUSION Phylogenic analysis of the nucleotide sequences of viruses of all five genera of the family Paramyxoviridae showed that APMV-4 is more closely related to the APMVs than to other paramyxoviruses, reinforcing the classification of all APMVs in the genus Avulavirus of the family Paramyxoviridae.
Collapse
Affiliation(s)
- Baibaswata Nayak
- Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, College Park, Maryland, USA.
| | | | | | | |
Collapse
|
40
|
Jeon WJ, Lee EK, Kwon JH, Choi KS. Full-length genome sequence of avain paramyxovirus type 4 isolated from a mallard duck. Virus Genes 2008; 37:342-50. [PMID: 18770019 DOI: 10.1007/s11262-008-0267-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2008] [Accepted: 07/25/2008] [Indexed: 12/01/2022]
Abstract
Avian paramyxovirus (APMV) consists of nine serotypes, APMV-1 through -9, of which only APMV-1 and APMV-6 have been fully sequenced. Here, we present the complete 15,054 nt RNA genome of APMV-4 isolated from a mallard duck, which conformed to the "rule of six." The APMV-4 genome had six transcriptional units in the order 3'-NP-P/V-M-F-HN-L-5', which coded for the nucleocapsid (N), phospho- (P), matrix (M), fusion (F), hemagglutinin-neuraminidase (HN), and large (L) proteins. Similar to APMV-1 but unlike APMV-6, APMV-4 lacked a small hydrophobic protein. The leader and trailer sequences were 55 and 17 nt in length, respectively, and the 12 nt-terminal regions of both ends of the APMV-4 genome were complementary. Using phylogenetic analysis, APMV-4 was classified as a member of the genus Avulavirus, and was more closely related to APMV-1 than to APMV-2 or APMV-6. These results may help establish the taxonomic position of Paramyxoviridae, Avulavirus members.
Collapse
Affiliation(s)
- Woo-Jin Jeon
- Avian Diseases Division, Veterinary Research Institute, National Veterinary Research and Quarantine Service, 480 Anyang-6, Anyang, Gyeonggi, 430-824, South Korea
| | | | | | | |
Collapse
|
41
|
Complete genome sequence of avian paramyxovirus type 3 reveals an unusually long trailer region. Virus Res 2008; 137:189-97. [PMID: 18691616 DOI: 10.1016/j.virusres.2008.07.012] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2008] [Revised: 07/05/2008] [Accepted: 07/07/2008] [Indexed: 12/27/2022]
Abstract
The complete genome sequence was determined for prototype parakeet/Netherlands/449/75 strain of avian paramyxovirus (APMV) serotype 3. The genome is 16,272 nucleotides (nt) in length, consisting of six non-overlapping genes in the order of 3'-N-P/V/W-M-F-HN-L-5', with intergenic regions of 31-63nt. APMV-3 genome follows the "rule of six" and is the largest among the avian paramyxoviruses reported to date, with a trailer region of 707nt, the longest in the family Paramyxoviridae. The cleavage site of F protein, A-R-P-R-G-R downward arrowL, does not conform to the preferred cleavage site of the ubiquitous cellular protease furin. Therefore, exogenous protease was needed for replication in vitro. Alignment and phylogenetic analysis of the predicted amino acid sequences of strain Netherlands proteins with the cognate proteins of viruses of all of the five genera of family Paramyxoviridae showed that APMV-3 strain Netherlands is more closely related to APMV-1 than APMV-6.
Collapse
|
42
|
Subbiah M, Xiao S, Collins PL, Samal SK. Complete sequence of the genome of avian paramyxovirus type 2 (strain Yucaipa) and comparison with other paramyxoviruses. Virus Res 2008; 137:40-8. [PMID: 18603323 DOI: 10.1016/j.virusres.2008.05.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2008] [Revised: 05/21/2008] [Accepted: 05/23/2008] [Indexed: 10/21/2022]
Abstract
The complete RNA genome sequence of avian paramyxovirus (APMV) serotype 2, strain Yucaipa isolated from chicken has been determined. With genome size of 14,904 nucleotides (nt), strain Yucaipa is consistent with the "rule of six" and is the smallest virus reported to date among the members of subfamily Paramyxovirinae. The genome contains six non-overlapping genes in the order 3'-N-P/V-M-F-HN-L-5'. The genes are flanked on either side by highly conserved transcription start and stop signals and have intergenic sequences varying in length from 3 to 23nt. The genome contains a 55nt leader sequence at 3' end and a 154nt trailer sequence at 5' end. Alignment and phylogenetic analysis of the predicted amino acid sequences of strain Yucaipa proteins with the cognate proteins of viruses of all of the five genera of family Paramyxoviridae showed that APMV-2 strain Yucaipa is more closely related to APMV-6 than APMV-1.
Collapse
Affiliation(s)
- Madhuri Subbiah
- Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, College Park, MD 20742 USA
| | | | | | | |
Collapse
|
43
|
Falk K, Batts WN, Kvellestad A, Kurath G, Wiik-Nielsen J, Winton JR. Molecular characterisation of Atlantic salmon paramyxovirus (ASPV): a novel paramyxovirus associated with proliferative gill inflammation. Virus Res 2008; 133:218-27. [PMID: 18304670 DOI: 10.1016/j.virusres.2008.01.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2007] [Revised: 01/11/2008] [Accepted: 01/12/2008] [Indexed: 10/22/2022]
Abstract
Atlantic salmon paramyxovirus (ASPV) was isolated in 1995 from gills of farmed Atlantic salmon suffering from proliferative gill inflammation. The complete genome sequence of ASPV was determined, revealing a genome 16,968 nucleotides in length consisting of six non-overlapping genes coding for the nucleo- (N), phospho- (P), matrix- (M), fusion- (F), haemagglutinin-neuraminidase- (HN) and large polymerase (L) proteins in the order 3'-N-P-M-F-HN-L-5'. The various conserved features related to virus replication found in most paramyxoviruses were also found in ASPV. These include: conserved and complementary leader and trailer sequences, tri-nucleotide intergenic regions and highly conserved transcription start and stop signal sequences. The P gene expression strategy of ASPV was like that of the respiro-, morbilli- and henipaviruses, which express the P and C proteins from the primary transcript and edit a portion of the mRNA to encode V and W proteins. Sequence similarities among various features related to virus replication, pairwise comparisons of all deduced ASPV protein sequences with homologous regions from other members of the family Paramyxoviridae, and phylogenetic analyses of these amino acid sequences suggested that ASPV was a novel member of the sub-family Paramyxovirinae, most closely related to the respiroviruses.
Collapse
Affiliation(s)
- K Falk
- National Veterinary Institute, Section for Fish Health, P.O. Box 8156 Dep., N-0033 Oslo, Norway.
| | | | | | | | | | | |
Collapse
|
44
|
Nylund S, Karlsen M, Nylund A. The complete genome sequence of the Atlantic salmon paramyxovirus (ASPV). Virology 2007; 373:137-48. [PMID: 18155122 DOI: 10.1016/j.virol.2007.11.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2007] [Revised: 10/05/2007] [Accepted: 11/16/2007] [Indexed: 11/17/2022]
Abstract
The complete RNA genome of the Atlantic salmon paramyxovirus (ASPV), isolated from Atlantic salmon suffering from proliferative gill inflammation (PGI), has been determined. The genome is 16,965 nucleotides in length and consists of six nonoverlapping genes in the order 3'- N - P/C/V - M - F - HN - L -5', coding for the nucleocapsid, phospho-, matrix, fusion, hemagglutinin-neuraminidase and large polymerase proteins, respectively. The gene junctions contain highly conserved transcription start and stop signal sequences and trinucleotide intergenic regions similar to those of other Paramyxoviridae. The ASPV P-gene expression strategy is like that of the respiro- and morbilliviruses, which express the phosphoprotein from the primary transcript, and edit a portion of the mRNA to encode the accessory proteins V and W. It also encodes the C-protein by ribosomal choice of translation initiation. Pairwise comparisons of amino acid identities, and phylogenetic analysis of deduced ASPV protein sequences with homologous sequences from other Paramyxoviridae, show that ASPV has an affinity for the genus Respirovirus, but may represent a new genus within the subfamily Paramyxovirinae.
Collapse
Affiliation(s)
- Stian Nylund
- Department of Biology, University of Bergen, N-5020, Norway.
| | | | | |
Collapse
|
45
|
Magoffin DE, Mackenzie JS, Wang LF. Genetic analysis of J-virus and Beilong virus using minireplicons. Virology 2007; 364:103-11. [PMID: 17397895 DOI: 10.1016/j.virol.2007.01.045] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2006] [Revised: 01/02/2007] [Accepted: 01/31/2007] [Indexed: 11/16/2022]
Abstract
J-virus (JPV), isolated from wild mice in Australia, and Beilong virus (BeiPV), originally isolated from human mesangial cells in China and subsequently detected in rat mesangial cells, represent a new group of paramyxoviruses which have exceptionally large genomes (>19 kb) and contain more than six transcriptional units. In this study, minireplicons were employed to assess the taxonomic status of JPV and BeiPV. Our results demonstrated that, whilst the genome replication machineries of JPV and BeiPV can be interchanged, they were not functional when exchanged with that of Nipah virus. These studies indicate that JPV and BeiPV are closely related to each other and support the classification of these two viruses into a separate genus. In addition, the minireplicons were also used to demonstrate that these large-genome viruses also comply with the 'rule of six' and that over-expression of the C protein has a detrimental effect on minigenome replication.
Collapse
Affiliation(s)
- Danielle E Magoffin
- CSIRO Livestock Industries, CSIRO Australian Animal Health Laboratory, PO Bag 24, Geelong, Victoria 3220, Australia
| | | | | |
Collapse
|
46
|
Wang LF, Hansson E, Yu M, Chua KB, Mathe N, Crameri G, Rima BK, Moreno-López J, Eaton BT. Full-length genome sequence and genetic relationship of two paramyxoviruses isolated from bat and pigs in the Americas. Arch Virol 2007; 152:1259-71. [PMID: 17385069 PMCID: PMC7086891 DOI: 10.1007/s00705-007-0959-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2006] [Accepted: 02/07/2007] [Indexed: 11/30/2022]
Abstract
Mapuera virus (MPRV) was isolated from a fruit bat in Brazil in 1979, but its host range and disease-causing potential are unknown. Porcine rubulavirus (PoRV) was identified as the aetiological agent of disease outbreaks in pigs in Mexico during early 1980s, but the origin of PoRV remains elusive. In this study, the completed genome sequence of MPRV was determined, and the complete genome sequence of PoRV was assembled from previously published protein-coding genes and the non-coding genome regions determined from this study. Comparison of sequence and genome organization indicated that PoRV is more closely related to MPRV than to any other members of the genus Rubulavirus. In the P gene coding region of both viruses, there is an ORF located at the 5' end of the P gene overlapping with the P protein coding region, similar to the C protein ORF present in most viruses of the subfamily Paramyxovirinae, but absent in other known rubulaviruses. Based on these findings, we hypothesise that PoRV may also originate from bats, and spillover events from bats to pigs, either directly or via an intermediate host, were responsible for the sporadic disease outbreaks observed in Mexico.
Collapse
Affiliation(s)
- L-F Wang
- CSIRO Livestock Industries, Australian Animal Health Laboratory, Geelong, VIC, Australia.
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Magoffin DE, Halpin K, Rota PA, Wang LF. Effects of single amino acid substitutions at the E residue in the conserved GDNE motif of the Nipah virus polymerase (L) protein. Arch Virol 2006; 152:827-32. [PMID: 17143779 DOI: 10.1007/s00705-006-0881-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2006] [Accepted: 10/20/2006] [Indexed: 10/23/2022]
Abstract
Nipah virus (NiV) is an emergent zoonotic paramyxovirus. The L proteins of most paramyxoviruses contain a GDNQ motif, thought to be part of the catalytic site for polymerase activity. Conversely, NiV L has GDNE in this position. We substituted the E residue with eight different amino acid residues and examined the effect on L function in an in vitro replication assay. Our results demonstrated that NiV L functioned with similar efficiency with either GDNE or GDNQ, but polymerase activity was severely reduced or abolished when a structurally destabilising residue (such as K, P or G) was introduced at this site.
Collapse
Affiliation(s)
- D E Magoffin
- CSIRO Livestock Industries, Australian Animal Health Laboratory, Geelong, Vic, Australia
| | | | | | | |
Collapse
|
48
|
Ulitsky I, Burstein D, Tuller T, Chor B. The Average Common Substring Approach to Phylogenomic Reconstruction. J Comput Biol 2006; 13:336-50. [PMID: 16597244 DOI: 10.1089/cmb.2006.13.336] [Citation(s) in RCA: 165] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We describe a novel method for efficient reconstruction of phylogenetic trees, based on sequences of whole genomes or proteomes, whose lengths may greatly vary. The core of our method is a new measure of pairwise distances between sequences. This measure is based on computing the average lengths of maximum common substrings, which is intrinsically related to information theoretic tools (Kullback-Leibler relative entropy). We present an algorithm for efficiently computing these distances. In principle, the distance of two l long sequences can be calculated in O(l) time. We implemented the algorithm using suffix arrays our implementation is fast enough to enable the construction of the proteome phylogenomic tree for hundreds of species and the genome phylogenomic forest for almost two thousand viruses. An initial analysis of the results exhibits a remarkable agreement with "acceptable phylogenetic and taxonomic truth." To assess our approach, our results were compared to the traditional (single-gene or protein-based) maximum likelihood method. The obtained trees were compared to implementations of a number of alternative approaches, including two that were previously published in the literature, and to the published results of a third approach. Comparing their outcome and running time to ours, using a "traditional" trees and a standard tree comparison method, our algorithm improved upon the "competition" by a substantial margin. The simplicity and speed of our method allows for a whole genome analysis with the greatest scope attempted so far. We describe here five different applications of the method, which not only show the validity of the method, but also suggest a number of novel phylogenetic insights.
Collapse
Affiliation(s)
- Igor Ulitsky
- School of Computer Science, Tel Aviv University, Ramat Aviv, Israel
| | | | | | | |
Collapse
|
49
|
Li Z, Yu M, Zhang H, Magoffin DE, Jack PJM, Hyatt A, Wang HY, Wang LF. Beilong virus, a novel paramyxovirus with the largest genome of non-segmented negative-stranded RNA viruses. Virology 2005; 346:219-28. [PMID: 16325221 DOI: 10.1016/j.virol.2005.10.039] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2005] [Revised: 09/22/2005] [Accepted: 10/26/2005] [Indexed: 10/25/2022]
Abstract
During a subtraction study on gene expression in human kidney mesangial cells (HMCs), cDNA clones with sequence homology to paramyxovirus P, M and F genes were isolated. Subsequent investigation revealed that this particular HMC line was infected with a previously unknown paramyxovirus. Here, we report the isolation and genome characterization of this new virus, now named Beilong virus (BeV). The genome of BeV is 19,212 nucleotides (nt) in length and is the largest among all known members of the order Mononegavirales. The BeV genome contains eight genes in the order 3'-N-P/V/C-M-F-SH-TM-G-L-5'. The SH and TM genes code for a small hydrophobic protein of 76 aa and a transmembrane protein of 254 aa, respectively. The BeV G gene, at 4527 nt, codes for an attachment protein of 734 aa and contains two additional open reading frames (ORFs) in the 3' half of the gene, coding for putative proteins of 299 and 394 aa in length. Although the exact origin of BeV is presently unknown, we provide evidence indicating that BeV was present in a rat mesangial cell line used in the same laboratory prior to the acquisition of the HMC line, suggesting a potential rodent origin for BeV.
Collapse
Affiliation(s)
- Zhuo Li
- Renal Division and Institute of Nephrology, Peking University First Hospital, Beijing, China
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Jack PJM, Boyle DB, Eaton BT, Wang LF. The complete genome sequence of J virus reveals a unique genome structure in the family Paramyxoviridae. J Virol 2005; 79:10690-700. [PMID: 16051861 PMCID: PMC1182632 DOI: 10.1128/jvi.79.16.10690-10700.2005] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
J virus (J-V) was isolated from feral mice (Mus musculus) trapped in Queensland, Australia, during the early 1970s. Although studies undertaken at the time revealed that J-V was a new paramyxovirus, it remained unclassified beyond the family level. The complete genome sequence of J-V has now been determined, revealing a genome structure unique within the family Paramyxoviridae. At 18,954 nucleotides (nt), the J-V genome is the largest paramyxovirus genome sequenced to date, containing eight genes in the order 3'-N-P/V/C-M-F-SH-TM-G-L-5'. The two genes located between the fusion (F) and attachment (G) protein genes, which have been named the small hydrophobic (SH) protein gene and the transmembrane (TM) protein gene, encode putative proteins of 69 and 258 amino acids, respectively. The 4,401-nt J-V G gene, much larger than other paramyxovirus attachment protein genes sequenced to date, encodes a putative attachment protein of 709 amino acids and distally contains a second open reading frame (ORF) of 2,115 nt, referred to as ORF-X. Taken together, these novel features represent the most significant divergence to date from the common six-gene genome structure of Paramyxovirinae. Although genome analysis has confirmed that J-V can be classified as a member of the subfamily Paramyxovirinae, it cannot be assigned to any of the five existing genera within this subfamily. Interestingly, a recently isolated paramyxovirus appears to be closely related to J-V, and preliminary phylogenetic analyses based on putative matrix protein sequences indicate that these two viruses will likely represent a new genus within the subfamily Paramyxovirinae.
Collapse
Affiliation(s)
- Philippa J M Jack
- CSIRO Livestock Industries, Australian Animal Health Laboratory, Private Bag 24, Geelong, Victoria 3220, Australia
| | | | | | | |
Collapse
|