1
|
Reichert I, Lee JY, Weber L, Fuh MM, Schlaeger L, Rößler S, Kinast V, Schlienkamp S, Conradi J, Vondran FWR, Pfaender S, Scaturro P, Steinmann E, Bartenschlager R, Pietschmann T, Heeren J, Lauber C, Vieyres G. The triglyceride-synthesizing enzyme diacylglycerol acyltransferase 2 modulates the formation of the hepatitis C virus replication organelle. PLoS Pathog 2024; 20:e1012509. [PMID: 39241103 PMCID: PMC11410266 DOI: 10.1371/journal.ppat.1012509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 09/18/2024] [Accepted: 08/15/2024] [Indexed: 09/08/2024] Open
Abstract
The replication organelle of hepatitis C virus (HCV), called membranous web, is derived from the endoplasmic reticulum (ER) and mainly comprises double membrane vesicles (DMVs) that concentrate the viral replication complexes. It also tightly associates with lipid droplets (LDs), which are essential for virion morphogenesis. In particular acyl-CoA:diacylglycerol acyltransferase 1 (DGAT1), a rate-limiting enzyme in triglyceride synthesis, promotes early steps of virus assembly. The close proximity between ER membranes, DMVs and LDs therefore permits the efficient coordination of the HCV replication cycle. Here, we demonstrate that exaggerated LD accumulation due to the excessive expression of the DGAT1 isozyme, DGAT2, dramatically impairs the formation of the HCV membranous web. This effect depended on the enzymatic activity and ER association of DGAT2, whereas the mere LD accumulation was not sufficient to hamper HCV RNA replication. Our lipidomics data indicate that both HCV infection and DGAT2 overexpression induced membrane lipid biogenesis and markedly increased phospholipids with long chain polyunsaturated fatty acids, suggesting a dual use of these lipids and their possible competition for LD and DMV biogenesis. On the other hand, overexpression of DGAT2 depleted specific phospholipids, particularly oleyl fatty acyl chain-containing phosphatidylcholines, which, in contrast, are increased in HCV-infected cells and likely essential for viral infection. In conclusion, our results indicate that lipid exchanges occurring during LD biogenesis regulate the composition of intracellular membranes and thereby affect the formation of the HCV replication organelle. The potent antiviral effect observed in our DGAT2 overexpression system unveils lipid flux that may be relevant in the context of steatohepatitis, a hallmark of HCV infection, but also in physiological conditions, locally in specific subdomains of the ER membrane. Thus, LD formation mediated by DGAT1 and DGAT2 might participate in the spatial compartmentalization of HCV replication and assembly factories within the membranous web.
Collapse
Affiliation(s)
| | - Ji-Young Lee
- Heidelberg University, Medical Faculty Heidelberg, Department of Infectious Diseases, Molecular Virology, Center for Integrative Infectious Diseases Research, Heidelberg, Germany
- German Center for Infection Research (DZIF), partner site Heidelberg, Heidelberg, Germany
| | - Laura Weber
- Leibniz Institute of Virology (LIV), Hamburg, Germany
| | - Marceline M Fuh
- Department of Biochemistry and Molecular Cell Biology, Center for Experimental Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | | | - Volker Kinast
- Department of Medical Microbiology and Virology, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
- Department of Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany
| | - Sarah Schlienkamp
- Department of Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany
| | - Janina Conradi
- Leibniz Institute of Virology (LIV), Hamburg, Germany
- Integrative Analysis of Pathogen-Induced Compartments, Leibniz ScienceCampus InterACt, Hamburg, Germany
| | - Florian W R Vondran
- ReMediES, Department of General, Visceral and Transplantation Surgery, Hannover Medical School, Hannover, Germany
| | - Stephanie Pfaender
- Leibniz Institute of Virology (LIV), Hamburg, Germany
- Institute of Virology and Cell Biology, University of Luebeck, Luebeck, Germany
| | | | - Eike Steinmann
- Department of Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany
| | - Ralf Bartenschlager
- Heidelberg University, Medical Faculty Heidelberg, Department of Infectious Diseases, Molecular Virology, Center for Integrative Infectious Diseases Research, Heidelberg, Germany
- German Center for Infection Research (DZIF), partner site Heidelberg, Heidelberg, Germany
- German Cancer Research Center (DKFZ), Division Virus-Associated Carcinogenesis, Heidelberg, Germany
| | - Thomas Pietschmann
- Institute for Experimental Virology, TWINCORE Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, Hannover, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| | - Joerg Heeren
- Department of Biochemistry and Molecular Cell Biology, Center for Experimental Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Chris Lauber
- Institute for Experimental Virology, TWINCORE Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, Hannover, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| | - Gabrielle Vieyres
- Leibniz Institute of Virology (LIV), Hamburg, Germany
- Integrative Analysis of Pathogen-Induced Compartments, Leibniz ScienceCampus InterACt, Hamburg, Germany
- Institute of Virology and Cell Biology, University of Luebeck, Luebeck, Germany
| |
Collapse
|
2
|
Pham N, Benhammou JN. Statins in Chronic Liver Disease: Review of the Literature and Future Role. Semin Liver Dis 2024; 44:191-208. [PMID: 38701856 DOI: 10.1055/a-2319-0694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
Chronic liver disease (CLD) is a major contributor to global mortality, morbidity, and healthcare burden. Progress in pharmacotherapeutic for CLD management is lagging given its impact on the global population. While statins are indicated for the management of dyslipidemia and cardiovascular disease, their role in CLD prevention and treatment is emerging. Beyond their lipid-lowering effects, their liver-related mechanisms of action are multifactorial and include anti-inflammatory, antiproliferative, and immune-protective effects. In this review, we highlight what is known about the clinical benefits of statins in viral and nonviral etiologies of CLD and hepatocellular carcinoma (HCC), and explore key mechanisms and pathways targeted by statins. While their benefits may span the spectrum of CLD and potentially HCC treatment, their role in CLD chemoprevention is likely to have the largest impact. As emerging data suggest that genetic variants may impact their benefits, the role of statins in precision hepatology will need to be further explored.
Collapse
Affiliation(s)
- Nguyen Pham
- Department of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Jihane N Benhammou
- Department of Medicine, University of California, Los Angeles, Los Angeles, California
- Veterans Affairs Greater Los Angeles, Los Angeles, California
- Comprehensive Liver Research Center at University of California, Los Angeles, Los Angeles, California
| |
Collapse
|
3
|
Dansako H, Ikeda M, Ariumi Y, Togashi Y, Kato N. Hepatitis C virus NS5B triggers an MDA5-mediated innate immune response by producing dsRNA without the replication of viral genomes. FEBS J 2024; 291:1119-1130. [PMID: 37863517 DOI: 10.1111/febs.16980] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 09/19/2023] [Accepted: 10/17/2023] [Indexed: 10/22/2023]
Abstract
During the replication of viral genomes, RNA viruses produce double-stranded RNA (dsRNA), through the activity of their RNA-dependent RNA polymerases (RdRps) as viral replication intermediates. Recognition of viral dsRNA by host pattern recognition receptors - such as retinoic acid-induced gene-I (RIG-I)-like receptors and Toll-like receptor 3 - triggers the production of interferon (IFN)-β via the activation of IFN regulatory factor (IRF)-3. It has been proposed that, during the replication of viral genomes, each of RIG-I and melanoma differentiation-associated gene 5 (MDA5) form homodimers for the efficient activation of a downstream signalling pathway in host cells. We previously reported that, in the non-neoplastic human hepatocyte line PH5CH8, the RdRp NS5B derived from hepatitis C virus (HCV) could induce IFN-β expression by its RdRp activity without the actual replication of viral genomes. However, the exact mechanism by which HCV NS5B produced IFN-β remained unknown. In the present study, we first showed that NS5B derived from another Flaviviridae family member, GB virus B (GBV-B), also possessed the ability to induce IFN-β in PH5CH8 cells. Similarly, HCV NS5B, but not its G317V mutant, which lacks RdRp activity, induced the dimerization of MDA5 and subsequently the activation of IRF-3. Interestingly, immunofluorescence analysis showed that HCV NS5B produced dsRNA. Like HCV NS5B, GBV-B NS5B also triggered the production of dsRNA and subsequently the dimerization of MDA5. Taken together, our results show that HCV NS5B triggers an MDA5-mediated innate immune response by producing dsRNA without the replication of viral genomes in human hepatocytes.
Collapse
Affiliation(s)
- Hiromichi Dansako
- Department of Tumor Microenvironment, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Japan
| | - Masanori Ikeda
- Division of Biological Information Technology, Joint Research Center for Human Retrovirus Infection, Kagoshima University, Japan
| | - Yasuo Ariumi
- Management Department of Biosafety, Laboratory Animal, and Pathogen Bank, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yosuke Togashi
- Department of Tumor Microenvironment, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Japan
| | - Nobuyuki Kato
- Department of Tumor Microenvironment, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Japan
| |
Collapse
|
4
|
Alkafaas SS, Abdallah AM, Hassan MH, Hussien AM, Elkafas SS, Loutfy SA, Mikhail A, Murad OG, Elsalahaty MI, Hessien M, Elshazli RM, Alsaeed FA, Ahmed AE, Kamal HK, Hafez W, El-Saadony MT, El-Tarabily KA, Ghosh S. Molecular docking as a tool for the discovery of novel insight about the role of acid sphingomyelinase inhibitors in SARS- CoV-2 infectivity. BMC Public Health 2024; 24:395. [PMID: 38321448 PMCID: PMC10848368 DOI: 10.1186/s12889-024-17747-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 01/11/2024] [Indexed: 02/08/2024] Open
Abstract
Recently, COVID-19, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its variants, caused > 6 million deaths. Symptoms included respiratory strain and complications, leading to severe pneumonia. SARS-CoV-2 attaches to the ACE-2 receptor of the host cell membrane to enter. Targeting the SARS-CoV-2 entry may effectively inhibit infection. Acid sphingomyelinase (ASMase) is a lysosomal protein that catalyzes the conversion of sphingolipid (sphingomyelin) to ceramide. Ceramide molecules aggregate/assemble on the plasma membrane to form "platforms" that facilitate the viral intake into the cell. Impairing the ASMase activity will eventually disrupt viral entry into the cell. In this review, we identified the metabolism of sphingolipids, sphingolipids' role in cell signal transduction cascades, and viral infection mechanisms. Also, we outlined ASMase structure and underlying mechanisms inhibiting viral entry 40 with the aid of inhibitors of acid sphingomyelinase (FIASMAs). In silico molecular docking analyses of FIASMAs with inhibitors revealed that dilazep (S = - 12.58 kcal/mol), emetine (S = - 11.65 kcal/mol), pimozide (S = - 11.29 kcal/mol), carvedilol (S = - 11.28 kcal/mol), mebeverine (S = - 11.14 kcal/mol), cepharanthine (S = - 11.06 kcal/mol), hydroxyzin (S = - 10.96 kcal/mol), astemizole (S = - 10.81 kcal/mol), sertindole (S = - 10.55 kcal/mol), and bepridil (S = - 10.47 kcal/mol) have higher inhibition activity than the candidate drug amiodarone (S = - 10.43 kcal/mol), making them better options for inhibition.
Collapse
Affiliation(s)
- Samar Sami Alkafaas
- Molecular Cell Biology Unit, Division of Biochemistry, Department of Chemistry, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
| | - Abanoub Mosaad Abdallah
- Narcotic Research Department, National Center for Social and Criminological Research (NCSCR), Giza, 11561, Egypt
| | - Mai H Hassan
- Molecular Cell Biology Unit, Division of Biochemistry, Department of Chemistry, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Aya Misbah Hussien
- Biotechnology department at Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| | - Sara Samy Elkafas
- Production Engineering and Mechanical Design Department, Faculty of Engineering, Menofia University, Menofia, Egypt
- Faculty of Control System and Robotics, ITMO University, Saint-Petersburg, 197101, Russia
| | - Samah A Loutfy
- Virology and Immunology Unit, Cancer Biology Department, National Cancer Institute, Cairo University, Cairo, Egypt
- Nanotechnology Research Center, British University, Cairo, Egypt
| | - Abanoub Mikhail
- Department of Physics, Faculty of Science, Minia University, Minia, Egypt
- Faculty of Physics, ITMO University, Saint Petersburg, Russia
| | - Omnia G Murad
- Division of Biochemistry, Department of Chemistry, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Mohamed I Elsalahaty
- Division of Biochemistry, Department of Chemistry, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Mohamed Hessien
- Molecular Cell Biology Unit, Division of Biochemistry, Department of Chemistry, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Rami M Elshazli
- Biochemistry and Molecular Genetics Unit, Department of Basic Sciences, Faculty of Physical Therapy, Horus University - Egypt, New Damietta, 34517, Egypt
| | - Fatimah A Alsaeed
- Department of Biology, College of Science, King Khalid University, Muhayl, Saudi Arabia
| | - Ahmed Ezzat Ahmed
- Biology Department, College of Science, King Khalid University, Abha, 61413, Saudi Arabia
| | - Hani K Kamal
- Anatomy and Histology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Wael Hafez
- NMC Royal Hospital, 16Th Street, 35233, Khalifa City, Abu Dhabi, United Arab Emirates
- Medical Research Division, Department of Internal Medicine, The National Research Centre, 12622, 33 El Buhouth St, Ad Doqi, Dokki, Cairo Governorate, Egypt
| | - Mohamed T El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Khaled A El-Tarabily
- Department of Biology, College of Science, United Arab Emirates University, Al-Ain, 15551, United Arab Emirates
| | - Soumya Ghosh
- Department of Genetics, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein, 9301, South Africa
- Natural & Medical Science Research Center, University of Nizwa, Nizwa, Oman
| |
Collapse
|
5
|
Lee J, Ou JHJ. HCV-induced autophagy and innate immunity. Front Immunol 2024; 15:1305157. [PMID: 38370419 PMCID: PMC10874285 DOI: 10.3389/fimmu.2024.1305157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/19/2024] [Indexed: 02/20/2024] Open
Abstract
The interplay between autophagy and host innate immunity has been of great interest. Hepatitis C virus (HCV) impedes signaling pathways initiated by pattern-recognition receptors (PRRs) that recognize pathogens-associated molecular patterns (PAMPs). Autophagy, a cellular catabolic process, delivers damaged organelles and protein aggregates to lysosomes for degradation and recycling. Autophagy is also an innate immune response of cells to trap pathogens in membrane vesicles for removal. However, HCV controls the autophagic pathway and uses autophagic membranes to enhance its replication. Mitophagy, a selective autophagy targeting mitochondria, alters the dynamics and metabolism of mitochondria, which play important roles in host antiviral responses. HCV also alters mitochondrial dynamics and promotes mitophagy to prevent premature cell death and attenuate the interferon (IFN) response. In addition, the dysregulation of the inflammasomal response by HCV leads to IFN resistance and immune tolerance. These immune evasion properties of HCV allow HCV to successfully replicate and persist in its host cells. In this article, we discuss HCV-induced autophagy/mitophagy and its associated immunological responses and provide a review of our current understanding of how these processes are regulated in HCV-infected cells.
Collapse
Affiliation(s)
| | - J.-H. James Ou
- Department of Molecular Microbiology and Immunology, University of Southern California, Keck School of Medicine, Los Angeles, CA, United States
| |
Collapse
|
6
|
Thomas S, Samuel SV, Hoch A, Syphurs C, Diray-Arce J. The Implication of Sphingolipids in Viral Infections. Int J Mol Sci 2023; 24:17303. [PMID: 38139132 PMCID: PMC10743733 DOI: 10.3390/ijms242417303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 12/03/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
Sphingolipids are involved in cell signaling and metabolic pathways, and their metabolites play a critical role in host defense against intracellular pathogens. Here, we review the known mechanisms of sphingolipids in viral infections and discuss the potential implication of the study of sphingolipid metabolism in vaccine and therapeutic development.
Collapse
Affiliation(s)
- Sanya Thomas
- Precision Vaccines Program, Department of Pediatrics, Boston Children’s Hospital, Boston, MA 02115, USA; (S.T.); (A.H.); (C.S.)
- Harvard Medical School, Boston, MA 02115, USA;
| | - Stephen Varghese Samuel
- Harvard Medical School, Boston, MA 02115, USA;
- Department of Emergency Medicine, Christian Medical College and Hospital, Vellore 632004, India
| | - Annmarie Hoch
- Precision Vaccines Program, Department of Pediatrics, Boston Children’s Hospital, Boston, MA 02115, USA; (S.T.); (A.H.); (C.S.)
| | - Caitlin Syphurs
- Precision Vaccines Program, Department of Pediatrics, Boston Children’s Hospital, Boston, MA 02115, USA; (S.T.); (A.H.); (C.S.)
| | - Joann Diray-Arce
- Precision Vaccines Program, Department of Pediatrics, Boston Children’s Hospital, Boston, MA 02115, USA; (S.T.); (A.H.); (C.S.)
- Harvard Medical School, Boston, MA 02115, USA;
| |
Collapse
|
7
|
Huang WR, Wu YY, Liao TL, Nielsen BL, Liu HJ. Cell Entry of Avian Reovirus Modulated by Cell-Surface Annexin A2 and Adhesion G Protein-Coupled Receptor Latrophilin-2 Triggers Src and p38 MAPK Signaling Enhancing Caveolin-1- and Dynamin 2-Dependent Endocytosis. Microbiol Spectr 2023; 11:e0000923. [PMID: 37097149 PMCID: PMC10269738 DOI: 10.1128/spectrum.00009-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 04/05/2023] [Indexed: 04/26/2023] Open
Abstract
The specifics of cell receptor-modulated avian reovirus (ARV) entry remain unknown. By using a viral overlay protein-binding assay (VOPBA) and an in-gel digestion coupled with liquid chromatography-tandem mass spectrometry (LC-MS/MS), we determined that cell-surface annexin A2 (AnxA2) and adhesion G protein-coupled receptor Latrophilin-2 (ADGRL2) modulate ARV entry. Direct interaction between the ARV σC protein and AnxA2 and ADGRL2 in Vero and DF-1 cells was demonstrated in situ by proximity ligation assays. By using short hairpin RNAs (shRNAs) to silence the endogenous AnxA2 and ADGRL2 genes, ARV entry could be efficiently blocked. A significant decrease in virus yields and the intracellular specific signal for σC protein was observed in Vero cells preincubated with the specific AnxA2 and ADGRL2 monoclonal antibodies, indicating that AnxA2 and ADGRL2 are involved in modulating ARV entry. Furthermore, we found that cells pretreated with the AnxA2/S100A10 heterotetramer (A2t) inhibitor A2ti-1 suppressed ARV-mediated activation of Src and p38 mitogen-activated protein kinase (MAPK), demonstrating that Src and p38 MAPK serve as downstream molecules of cell-surface AnxA2 signaling. Our results reveal that suppression of cell-surface AnxA2 with the A2ti-1 inhibitor increased Csk-Cbp interaction, suggesting that ARV entry suppresses Cbp-mediated relocation of Csk to the membrane, thereby activating Src. Furthermore, reciprocal coimmunoprecipitation assays revealed that σC can interact with signaling molecules, lipid raft, and vimentin. The current study provides novel insights into cell-surface AnxA2- and ADGRL2-modulated cell entry of ARV which triggers Src and p38 MAPK signaling to enhance caveolin-1-, dynamin 2-, and lipid raft-dependent endocytosis. IMPORTANCE By analyzing results from VOPBA and LC-MS/MS, we have determined that cell-surface AnxA2 and ADGRL2 modulate ARV entry. After ARV binding to receptors, Src and p38 MAPK signaling were triggered and, in turn, increased the phosphorylation of caveolin-1 (Tyr14) and upregulated dynamin 2 expression to facilitate caveolin-1-mediated and dynamin 2-dependent endocytosis. In this work, we demonstrated that ARV triggers Src activation by impeding Cbp-mediated relocation of Csk to the membrane in the early stages of the life cycle. This work provides better insight into cell-surface AnxA2 and ADGRL2, which upregulate Src and p38MAPK signaling pathways to enhance ARV entry and productive infection.
Collapse
Affiliation(s)
- Wei-Ru Huang
- Institute of Molecular Biology, National Chung Hsing University, Taichung, Taiwan
- iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| | - Yi-Ying Wu
- Institute of Molecular Biology, National Chung Hsing University, Taichung, Taiwan
- iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| | - Tsai-Ling Liao
- Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, Taiwan
- Ph.D Program in Translational Medicine, National Chung Hsing University, Taichung, Taiwan
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Brent L. Nielsen
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, Utah, USA
| | - Hung-Jen Liu
- Institute of Molecular Biology, National Chung Hsing University, Taichung, Taiwan
- iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
- Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, Taiwan
- Ph.D Program in Translational Medicine, National Chung Hsing University, Taichung, Taiwan
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
8
|
Gee YJ, Sea YL, Lal SK. Viral modulation of lipid rafts and their potential as putative antiviral targets. Rev Med Virol 2023; 33:e2413. [PMID: 36504273 DOI: 10.1002/rmv.2413] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 11/12/2022] [Accepted: 11/20/2022] [Indexed: 12/14/2022]
Abstract
Lipid rafts are ubiquitous in cells. They are identified as cholesterol and glycosphingolipid enriched microdomains on cellular membranes. They serve as platforms for cellular communications by functioning in signal transduction and membrane trafficking. Such structural organisation fulfils cellular needs for normal function, but at the same time increases vulnerability of cells to pathogen invasion. Viruses rely heavily on lipid rafts in basically every stage of the viral life cycle for successful infection. Various mechanisms of lipid rafts modification exploited by diverse viruses for attachment, internalisation, membrane fusion, genome replication, assembly and release have been brought to light. This review focuses on virus-raft interactions and how a wide range of viruses manipulate lipid rafts at distinct stages of infection. The importance of virus-raft interactions in viral infections has inspired researchers to discover and develop antivirals that target this interaction, such as statins, methyl-β-cyclodextrin, viperin, 25-hydroxycholesterol and even anti-malarial drugs. The therapeutic modulations of lipid rafts as potential antiviral intervention from in vitro and in vivo evidence are discussed herein.
Collapse
Affiliation(s)
- Yee Jing Gee
- School of Science, Monash University, Bandar Sunway, Selangor DE, Malaysia
| | - Yi Lin Sea
- School of Science, Monash University, Bandar Sunway, Selangor DE, Malaysia
| | - Sunil Kumar Lal
- School of Science, Monash University, Bandar Sunway, Selangor DE, Malaysia.,Tropical Medicine & Biology Platform, Monash University, Bandar Sunway, Selangor DE, Malaysia
| |
Collapse
|
9
|
Structural Analyses of the Glycolipids in Lipid Rafts. Methods Mol Biol 2023; 2613:145-152. [PMID: 36587077 DOI: 10.1007/978-1-0716-2910-9_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Lipid rafts are usually isolated from cells or tissues using sucrose gradient ultracentrifugation in the presence of detergents such as Triton X-100 at 4 °C. Although detergents should be removed for further structural characterization following fractionation, these compounds are often difficult to completely remove, especially from the glycolipids. In this chapter, we describe a novel method for the fast and convenient removal of detergents from lipid raft glycolipids following fraction and describe the application of this method.
Collapse
|
10
|
Duponchel S, Monnier L, Molle J, Bendridi N, Alam MR, Gaballah A, Grigorov B, Ivanov A, Schmiel M, Odenthal M, Ovize M, Rieusset J, Zoulim F, Bartosch B. Hepatitis C virus replication requires integrity of mitochondria-associated ER membranes. JHEP REPORTS : INNOVATION IN HEPATOLOGY 2022; 5:100647. [PMID: 36718430 PMCID: PMC9883273 DOI: 10.1016/j.jhepr.2022.100647] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/15/2022] [Accepted: 11/21/2022] [Indexed: 12/13/2022]
Abstract
Background & Aims Chronic HCV infection causes cellular stress, fibrosis and predisposes to hepatocarcinogenesis. Mitochondria play key roles in orchestrating stress responses by regulating bioenergetics, inflammation and apoptosis. To better understand the role of mitochondria in the viral life cycle and disease progression of chronic hepatitis C, we studied morphological and functional mitochondrial alterations induced by HCV using productively infected hepatoma cells and patient livers. Methods Biochemical and imaging assays were used to assess localization of cellular and viral proteins and mitochondrial functions in cell cultures and liver biopsies. Cyclophilin D (CypD) knockout was performed using CRISPR/Cas9 technology. Viral replication was quantified by quantitative reverse-transcription PCR and western blotting. Results Several HCV proteins were found to associate with mitochondria-associated endoplasmic reticulum (ER) membranes (MAMs), the points of contact between the ER and mitochondria. Downregulation of CypD, which is known to disrupt MAM integrity, reduced viral replication, suggesting that MAMs play an important role in the viral life cycle. This process was rescued by ectopic CypD expression. Furthermore, HCV proteins were found to associate with voltage dependent anion channel 1 (VDAC1) at MAMs and to reduce VDAC1 protein levels at MAMs in vitro and in patient biopsies. This association did not affect MAM-associated functions in glucose homeostasis and Ca2+ signaling. Conclusions HCV proteins associate specifically with MAMs and MAMs play an important role in viral replication. The association between viral proteins and MAMs did not impact Ca2+ signaling between the ER and mitochondria or glucose homeostasis. Whether additional functions of MAMs and/or VDAC are impacted by HCV and contribute to the associated pathology remains to be assessed. Impact and implications Hepatitis C virus infects the liver, where it causes inflammation, cell damage and increases the long-term risk of liver cancer. We show that several HCV proteins interact with mitochondria in liver cells and alter the composition of mitochondrial subdomains. Importantly, HCV requires the architecture of these mitochondrial subdomains to remain intact for efficient viral replication.
Collapse
Key Words
- CypD, cyclophilin D
- DMVs, double membrane vesicles
- EM, electron microscopy
- ER, endoplasmic reticulum
- Grp75, glucose-regulated protein 75
- HCC, hepatocellular carcinoma
- HCVcc, cell culture-derived HCV
- IP, immunoprecipitation
- IP3R1, inositol trisphosphate receptor 1
- KO, knockout
- MAMs, mitochondria-associated ER membranes
- MOI, multiplicity of infection
- OMM, outer mitochondrial membrane
- PLA, proximity ligation assay
- S1R, sigma 1 receptor
- VDAC, voltage-dependent anion channel
- dpi, days post infection
- fibrosis
- hepatitis C virus
- mitochondria-associated ER membranes
- voltage-dependent anion channel 1
Collapse
Affiliation(s)
- Sarah Duponchel
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon, 69434, France
| | - Lea Monnier
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon, 69434, France
| | - Jennifer Molle
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon, 69434, France
| | - Nadia Bendridi
- Laboratoire CarMeN, INSERM U-1060, INRA U-1397, Université Lyon, Université Claude Bernard Lyon 1, Pierre Bénite, 69495, France
| | - Muhammad Rizwan Alam
- CarMeN Laboratory, Hôpital Louis Pradel, Hospices Civils de Lyon, Université de Lyon and Explorations Fonctionnelles Cardiovasculaires, INSERM U1060, Lyon, France
| | - Ahmed Gaballah
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon, 69434, France,Microbiology Department, Medical Research Institute, Alexandria University, Egypt
| | - Boyan Grigorov
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon, 69434, France
| | - Alexander Ivanov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Marcel Schmiel
- Institute of Pathology, University Hospital of Cologne and Center for Molecular Medicine (CMMC), University of Cologne, Germany
| | - Margarete Odenthal
- Institute of Pathology, University Hospital of Cologne and Center for Molecular Medicine (CMMC), University of Cologne, Germany
| | - Michel Ovize
- CarMeN Laboratory, Hôpital Louis Pradel, Hospices Civils de Lyon, Université de Lyon and Explorations Fonctionnelles Cardiovasculaires, INSERM U1060, Lyon, France
| | - Jennifer Rieusset
- Laboratoire CarMeN, INSERM U-1060, INRA U-1397, Université Lyon, Université Claude Bernard Lyon 1, Pierre Bénite, 69495, France
| | - Fabien Zoulim
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon, 69434, France,Hospices Civils de Lyon, France
| | - Birke Bartosch
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon, 69434, France,Corresponding author. Address: Cancer Research Center Lyon, 151 cours Albert Thomas, 69434 Lyon, France; Tel.: 0033472681975, fax: 0033472681971
| |
Collapse
|
11
|
Characterization of a multipurpose NS3 surface patch coordinating HCV replicase assembly and virion morphogenesis. PLoS Pathog 2022; 18:e1010895. [PMID: 36215335 PMCID: PMC9616216 DOI: 10.1371/journal.ppat.1010895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 10/28/2022] [Accepted: 09/25/2022] [Indexed: 11/16/2022] Open
Abstract
The hepatitis C virus (HCV) life cycle is highly regulated and characterized by a step-wise succession of interactions between viral and host cell proteins resulting in the assembly of macromolecular complexes, which catalyse genome replication and/or virus production. Non-structural (NS) protein 3, comprising a protease and a helicase domain, is involved in orchestrating these processes by undergoing protein interactions in a temporal fashion. Recently, we identified a multifunctional NS3 protease surface patch promoting pivotal protein-protein interactions required for early steps of the HCV life cycle, including NS3-mediated NS2 protease activation and interactions required for replicase assembly. In this work, we extend this knowledge by identifying further NS3 surface determinants important for NS5A hyperphosphorylation, replicase assembly or virion morphogenesis, which map to protease and helicase domain and form a contiguous NS3 surface area. Functional interrogation led to the identification of phylogenetically conserved amino acid positions exerting a critical function in virion production without affecting RNA replication. These findings illustrate that NS3 uses a multipurpose protein surface to orchestrate the step-wise assembly of functionally distinct multiprotein complexes. Taken together, our data provide a basis to dissect the temporal formation of viral multiprotein complexes required for the individual steps of the HCV life cycle.
Collapse
|
12
|
Liou JW, Mani H, Yen JH. Viral Hepatitis, Cholesterol Metabolism, and Cholesterol-Lowering Natural Compounds. Int J Mol Sci 2022; 23:ijms23073897. [PMID: 35409259 PMCID: PMC8999150 DOI: 10.3390/ijms23073897] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/27/2022] [Accepted: 03/30/2022] [Indexed: 11/24/2022] Open
Abstract
Hepatitis is defined as inflammation of the liver; it can be acute or chronic. In chronic cases, the prolonged inflammation gradually damages the liver, resulting in liver fibrosis, cirrhosis, and sometimes liver failure or cancer. Hepatitis is often caused by viral infections. The most common causes of viral hepatitis are the five hepatitis viruses—hepatitis A virus (HAV), hepatitis B virus (HBV), hepatitis C virus (HCV), hepatitis D virus (HDV), and hepatitis E virus (HEV). While HAV and HEV rarely (or do not) cause chronic hepatitis, a considerable proportion of acute hepatitis cases caused by HBV (sometimes co-infected with HDV) and HCV infections become chronic. Thus, many medical researchers have focused on the treatment of HBV and HCV. It has been documented that host lipid metabolism, particularly cholesterol metabolism, is required for the hepatitis viral infection and life cycle. Thus, manipulating host cholesterol metabolism-related genes and proteins is a strategy used in fighting the viral infections. Efforts have been made to evaluate the efficacy of cholesterol-lowering drugs, particularly 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors, in the treatment of hepatitis viral infections; promising results have been obtained. This review provides information on the relationships between hepatitis viruses and host cholesterol metabolism/homeostasis, as well as the discovery/development of cholesterol-lowering natural phytochemicals that could potentially be applied in the treatment of viral hepatitis.
Collapse
Affiliation(s)
- Je-Wen Liou
- Department of Biochemistry, School of Medicine, Tzu Chi University, Hualien 97004, Taiwan;
- Institute of Medical Sciences, Tzu Chi University, Hualien 97004, Taiwan;
| | - Hemalatha Mani
- Institute of Medical Sciences, Tzu Chi University, Hualien 97004, Taiwan;
| | - Jui-Hung Yen
- Institute of Medical Sciences, Tzu Chi University, Hualien 97004, Taiwan;
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien 97004, Taiwan
- Correspondence: or ; Tel.: +886-3-856-5301 (ext. 2683)
| |
Collapse
|
13
|
Bulankina AV, Richter RM, Welsch C. Regulatory Role of Phospholipids in Hepatitis C Virus Replication and Protein Function. Pathogens 2022; 11:102. [PMID: 35056049 PMCID: PMC8779051 DOI: 10.3390/pathogens11010102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/12/2022] [Accepted: 01/13/2022] [Indexed: 11/16/2022] Open
Abstract
Positive-strand RNA viruses such as hepatitis C virus (HCV) hijack key factors of lipid metabolism of infected cells and extensively modify intracellular membranes to support the viral lifecycle. While lipid metabolism plays key roles in viral particle assembly and maturation, viral RNA synthesis is closely linked to the remodeling of intracellular membranes. The formation of viral replication factories requires a number of interactions between virus proteins and host factors including lipids. The structure-function relationship of those proteins is influenced by their lipid environments and lipids that selectively modulate protein function. Here, we review our current understanding on the roles of phospholipids in HCV replication and of lipid-protein interactions in the structure-function relationship of the NS5A protein. NS5A is a key factor in membrane remodeling in HCV-infected cells and is known to recruit phosphatidylinositol 4-kinase III alpha to generate phosphatidylinositol 4-phosphate at the sites of replication. The dynamic interplay between lipids and viral proteins within intracellular membranes is likely key towards understanding basic mechanisms in the pathobiology of virus diseases, the mode of action of specific antiviral agents and related drug resistance mechanisms.
Collapse
Affiliation(s)
- Anna V. Bulankina
- Department of Internal Medicine 1, Goethe University Hospital Frankfurt, 60590 Frankfurt, Germany; (A.V.B.); (R.M.R.)
- Research Group “Molecular Evolution & Adaptation”, 60590 Frankfurt, Germany
| | - Rebecca M. Richter
- Department of Internal Medicine 1, Goethe University Hospital Frankfurt, 60590 Frankfurt, Germany; (A.V.B.); (R.M.R.)
- Research Group “Molecular Evolution & Adaptation”, 60590 Frankfurt, Germany
| | - Christoph Welsch
- Department of Internal Medicine 1, Goethe University Hospital Frankfurt, 60590 Frankfurt, Germany; (A.V.B.); (R.M.R.)
- Research Group “Molecular Evolution & Adaptation”, 60590 Frankfurt, Germany
| |
Collapse
|
14
|
Orlowski S, Mourad JJ, Gallo A, Bruckert E. Coronaviruses, cholesterol and statins: Involvement and application for Covid-19. Biochimie 2021; 189:51-64. [PMID: 34153377 PMCID: PMC8213520 DOI: 10.1016/j.biochi.2021.06.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 06/01/2021] [Accepted: 06/14/2021] [Indexed: 12/17/2022]
Abstract
The infectious power of coronaviruses is dependent on cholesterol present in the membranes of their target cells. Indeed, the virus enters the infected cell either by fusion or by endocytosis, in both cases involving cholesterol-enriched membrane microdomains. These membrane domains can be disorganized in-vitro by various cholesterol-altering agents, including statins that inhibit cell cholesterol biosynthesis. As a consequence, numerous cell physiology processes, such as signaling cascades, can be compromised. Also, some examples of anti-bacterial and anti-viral effects of statins have been observed for infectious agents known to be cholesterol dependent. In-vivo, besides their widely-reported hypocholesterolemic effect, statins display various pleiotropic effects mediated, at least partially, by perturbation of membrane microdomains as a consequence of the alteration of endogenous cholesterol synthesis. It should thus be worth considering a high, but clinically well-tolerated, dose of statin to treat Covid-19 patients, in the early phase of infection, to inhibit virus entry into the target cells, in order to control the viral charge and hence avoid severe clinical complications. Based on its efficacy and favorable biodisposition, an option would be considering Atorvastatin, but randomized controlled clinical trials are required to test this hypothesis. This new therapeutic proposal takes benefit from being a drug repurposing, applied to a widely-used drug presenting a high efficiency-to-toxicity ratio. Additionally, this therapeutic strategy avoids any risk of drug resistance by viral mutation since it is host-targeted. Noteworthy, the same pharmacological approach could also be proposed to address different animal coronavirus endemic infections that are responsible for heavy economic losses.
Collapse
Affiliation(s)
- Stéphane Orlowski
- Institute for Integrative Biology of the Cell (I2BC), CNRS UMR 9198, and CEA / DRF / Institut des Sciences du Vivant Frédéric-Joliot / SB2SM, and Université Paris-Saclay, 91191, Gif-sur-Yvette, Cedex, France.
| | - Jean-Jacques Mourad
- Department of Internal Medicine and ESH Excellence Centre, Groupe Hospitalier Paris Saint-Joseph, Paris, France.
| | - Antonio Gallo
- Department of Endocrinology and Prevention of Cardiovascular Diseases, Institute of Cardiometabolism and Nutrition (ICAN), La Pitié-Salpêtrière Hospital, AP-HP, Paris, France.
| | - Eric Bruckert
- Department of Endocrinology and Prevention of Cardiovascular Diseases, Institute of Cardiometabolism and Nutrition (ICAN), La Pitié-Salpêtrière Hospital, AP-HP, Paris, France.
| |
Collapse
|
15
|
Li HC, Yang CH, Lo SY. Hepatitis C Viral Replication Complex. Viruses 2021; 13:v13030520. [PMID: 33809897 PMCID: PMC8004249 DOI: 10.3390/v13030520] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/18/2021] [Accepted: 03/19/2021] [Indexed: 12/16/2022] Open
Abstract
The life cycle of the hepatitis C virus (HCV) can be divided into several stages, including viral entry, protein translation, RNA replication, viral assembly, and release. HCV genomic RNA replication occurs in the replication organelles (RO) and is tightly linked to ER membrane alterations containing replication complexes (proteins NS3 to NS5B). The amplification of HCV genomic RNA could be regulated by the RO biogenesis, the viral RNA structure (i.e., cis-acting replication elements), and both viral and cellular proteins. Studies on HCV replication have led to the development of direct-acting antivirals (DAAs) targeting the replication complex. This review article summarizes the viral and cellular factors involved in regulating HCV genomic RNA replication and the DAAs that inhibit HCV replication.
Collapse
Affiliation(s)
- Hui-Chun Li
- Department of Biochemistry, Tzu Chi University, Hualien 97004, Taiwan;
| | - Chee-Hing Yang
- Department of Laboratory Medicine and Biotechnology, Tzu Chi University, Hualien 97004, Taiwan;
| | - Shih-Yen Lo
- Department of Laboratory Medicine and Biotechnology, Tzu Chi University, Hualien 97004, Taiwan;
- Department of Laboratory Medicine, Buddhist Tzu Chi General Hospital, Hualien 97004, Taiwan
- Correspondence: ; Tel.: +886-3-8565301 (ext. 2322)
| |
Collapse
|
16
|
Sorice M, Misasi R, Riitano G, Manganelli V, Martellucci S, Longo A, Garofalo T, Mattei V. Targeting Lipid Rafts as a Strategy Against Coronavirus. Front Cell Dev Biol 2021; 8:618296. [PMID: 33614627 PMCID: PMC7890255 DOI: 10.3389/fcell.2020.618296] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 12/21/2020] [Indexed: 12/15/2022] Open
Abstract
Lipid rafts are functional membrane microdomains containing sphingolipids, including gangliosides, and cholesterol. These regions are characterized by highly ordered and tightly packed lipid molecules. Several studies revealed that lipid rafts are involved in life cycle of different viruses, including coronaviruses. Among these recently emerged the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). The main receptor for SARS-CoV-2 is represented by the angiotensin-converting enzyme-2 (ACE-2), although it also binds to sialic acids linked to host cell surface gangliosides. A new type of ganglioside-binding domain within the N-terminal portion of the SARS-CoV-2 spike protein was identified. Lipid rafts provide a suitable platform able to concentrate ACE-2 receptor on host cell membranes where they may interact with the spike protein on viral envelope. This review is focused on selective targeting lipid rafts components as a strategy against coronavirus. Indeed, cholesterol-binding agents, including statins or methyl-β-cyclodextrin (MβCD), can affect cholesterol, causing disruption of lipid rafts, consequently impairing coronavirus adhesion and binding. Moreover, these compounds can block downstream key molecules in virus infectivity, reducing the levels of proinflammatory molecules [tumor necrosis factor alpha (TNF-α), interleukin (IL)-6], and/or affecting the autophagic process involved in both viral replication and clearance. Furthermore, cyclodextrins can assemble into complexes with various drugs to form host-guest inclusions and may be used as pharmaceutical excipients of antiviral compounds, such as lopinavir and remdesivir, by improving bioavailability and solubility. In conclusion, the role of lipid rafts-affecting drugs in the process of coronavirus entry into the host cells prompts to introduce a new potential task in the pharmacological approach against coronavirus.
Collapse
Affiliation(s)
- Maurizio Sorice
- Department of Experimental Medicine, “Sapienza” University, Rome, Italy
| | - Roberta Misasi
- Department of Experimental Medicine, “Sapienza” University, Rome, Italy
| | - Gloria Riitano
- Department of Experimental Medicine, “Sapienza” University, Rome, Italy
| | | | - Stefano Martellucci
- Biomedicine and Advanced Technologies Rieti Center, “Sabina Universitas”, Rieti, Italy
| | - Agostina Longo
- Department of Experimental Medicine, “Sapienza” University, Rome, Italy
| | - Tina Garofalo
- Department of Experimental Medicine, “Sapienza” University, Rome, Italy
| | - Vincenzo Mattei
- Biomedicine and Advanced Technologies Rieti Center, “Sabina Universitas”, Rieti, Italy
| |
Collapse
|
17
|
ADAM15 Participates in Tick-Borne Encephalitis Virus Replication. J Virol 2021; 95:JVI.01926-20. [PMID: 33208450 DOI: 10.1128/jvi.01926-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 11/12/2020] [Indexed: 12/15/2022] Open
Abstract
Tick-borne encephalitis virus (TBEV), a major tick-borne viral pathogen of humans, is known to cause neurological diseases such as meningitis, encephalitis, and meningoencephalitis. However, the life cycle and pathogenesis of TBEV are not well understood. Here, we show that the knockdown or knockout of ADAM15 (a disintegrin and metalloproteinase 15), a host protein involved in neuroblastoma diseases, leads to TBEV replication and assembly defects. We characterized the disintegrin domain in ADAM15 and found that the ADAM15 subcellular localization was changed following TBEV infection. RNA interference (RNAi) screen analysis confirmed ADAM's nonredundant functions and identified a specific role for ADAM15 in TBEV infection. An RNA-sequencing analysis was also conducted to understand the causal link between TBEV infection and the cellular endomembrane network, namely, the generation of replication organelles promoting viral genome replication and virus production. Our data demonstrated that TBEV infection changes ADAM15 cellular localization, which contributes to membrane reorganization and viral replication.IMPORTANCE Tick populations are increasing, and their geographic ranges are expanding. Increases in tick-borne disease prevalence and transmission are important public health issues. Tick-borne encephalitis virus (TBEV) often results in meningitis, encephalitis, and meningoencephalitis. TBEV causes clinical disease in more than 20,000 humans in Europe and Asia per year. An increased incidence of TBE has been noted in Europe and Asia, as a consequence of climate and socioeconomic changes. The need to investigate the mechanism(s) of interaction between the virus and the host factors is apparent, as it will help us to understand the roles of host factors in the life cycle of TBEV. The significance of our research is in identifying the ADAM15 for TBEV replication, which will greatly enhance our understanding of TBEV life cycle and highlight a target for pharmaceutical consideration.
Collapse
|
18
|
Chu JYK, Ou JHJ. Autophagy in HCV Replication and Protein Trafficking. Int J Mol Sci 2021; 22:ijms22031089. [PMID: 33499186 PMCID: PMC7865906 DOI: 10.3390/ijms22031089] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/19/2021] [Accepted: 01/21/2021] [Indexed: 12/11/2022] Open
Abstract
Autophagy is a catabolic process that is important for maintaining cellular homeostasis. It is also known to possess other functions including protein trafficking and anti-microbial activities. Hepatitis C virus (HCV) is known to co-opt cellular autophagy pathway to promote its own replication. HCV regulates autophagy through multiple mechanisms to control intracellular protein and membrane trafficking to enhance its replication and suppress host innate immune response. In this review, we discuss the current knowledge on the interplay between HCV and autophagy and the crosstalk between HCV-induced autophagy and host innate immune responses.
Collapse
|
19
|
Study of membrane deformations induced by Hepatitis C protein NS4B and its terminal amphipathic peptides. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1863:183537. [PMID: 33383025 DOI: 10.1016/j.bbamem.2020.183537] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 11/27/2020] [Accepted: 12/13/2020] [Indexed: 11/21/2022]
Abstract
Many viruses destabilize cellular membranous compartments to form their replication complexes, but the mechanism(s) underlying membrane perturbation remains unknown. Expression in eukaryotic cells of NS4B, a protein of the hepatitis C virus (HCV), alters membranous complexes and induces structures similar to the so-called membranous web that appears crucial to the formation of the HCV replication complex. As over-expression of the protein is lethal to both prokaryotic and eukaryotic cells, NS4B was produced in large quantities in a "cell-free" system in the presence of detergent, after which it was inserted into lipid membranes. X-ray diffraction revealed that NS4B modifies the phase diagram of synthetic lipid aqueous phases considerably, perturbing the transition temperature and cooperativity. Cryo-electron microscopy demonstrated that NS4B introduces significant disorder in the synthetic membrane as well as discontinuities that could be interpreted as due to the formation of pores and membrane merging events. C- and N-terminal fragments of NS4B are both able to destabilize liposomes. While most NS4B amphipathic peptides perforate membranes, one NS4B peptide induces membrane fusion. Cryo-electron microscopy reveals a particular structure that can be interpreted as arising from hemi-fusion-like events. Amphipathic domains are present in many proteins, and if exposed to the aqueous cytoplasmic medium are sufficient to destabilize membranes in order to form viral replication complexes. These domains have important functions in the viral replication cycle, and thus represent potential targets for the development of anti-viral molecules.
Collapse
|
20
|
Sphingomyelin Is Essential for the Structure and Function of the Double-Membrane Vesicles in Hepatitis C Virus RNA Replication Factories. J Virol 2020; 94:JVI.01080-20. [PMID: 32938759 DOI: 10.1128/jvi.01080-20] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 09/05/2020] [Indexed: 02/07/2023] Open
Abstract
Some plus-stranded RNA viruses generate double-membrane vesicles (DMVs), one type of the membrane replication factories, as replication sites. Little is known about the lipid components involved in the biogenesis of these vesicles. Sphingomyelin (SM) is required for hepatitis C virus (HCV) replication, but the mechanism of SM involvement remains poorly understood. SM biosynthesis starts in the endoplasmic reticulum (ER) and gives rise to ceramide, which is transported from the ER to the Golgi by the action of ceramide transfer protein (CERT), where it can be converted to SM. In this study, inhibition of SM biosynthesis, either by using small-molecule inhibitors or by knockout (KO) of CERT, suppressed HCV replication in a genotype-independent manner. This reduction in HCV replication was rescued by exogenous SM or ectopic expression of the CERT protein, but not by ectopic expression of nonfunctional CERT mutants. Observing low numbers of DMVs in stable replicon cells treated with a SM biosynthesis inhibitor or in CERT-KO cells transfected with either HCV replicon or with constructs that drive HCV protein production in a replication-independent system indicated the significant importance of SM to DMVs. The degradation of SM of the in vitro-isolated DMVs affected their morphology and increased the vulnerability of HCV RNA and proteins to RNase and protease treatment, respectively. Poliovirus, known to induce DMVs, showed decreased replication in CERT-KO cells, while dengue virus, known to induce invaginated vesicles, did not. In conclusion, these findings indicated that SM is an essential constituent of DMVs generated by some plus-stranded RNA viruses.IMPORTANCE Previous reports assumed that sphingomyelin (SM) is essential for HCV replication, but the mechanism was unclear. In this study, we showed for the first time that SM and ceramide transfer protein (CERT), which is in the SM biosynthesis pathway, are essential for the biosynthesis of double-membrane vesicles (DMVs), the sites of viral replication. Low numbers of DMVs were observed in CERT-KO cells transfected with replicon RNA or with constructs that drive HCV protein production in a replication-independent system. HCV replication was rescued by ectopic expression of the CERT protein, but not by CERT mutants, that abolishes the binding of CERT to vesicle-associated membrane protein-associated protein (VAP) or phosphatidylinositol 4-phosphate (PI4P), indicating new roles for VAP and PI4P in HCV replication. The biosynthesis of DMVs has great importance to replication by a variety of plus-stranded RNA viruses. Understanding of this process is expected to facilitate the development of diagnosis and antivirus.
Collapse
|
21
|
Lin C, Chen J, Lee P, Tung H, Cheng C, Kao H, Wu Y, Pang M, Chuang T. Lipid profile changes after direct acting antiviral treatment in different genotypes of chronic hepatitis C virus‐infected patients. ADVANCES IN DIGESTIVE MEDICINE 2020. [DOI: 10.1002/aid2.13211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Cheng‐Heng Lin
- Division of Gastroenterology and Hepatology, Department of Internal Medicine Chi Mei Medical Center Liouying Tainan Taiwan
| | - Jyh‐Jou Chen
- Division of Gastroenterology and Hepatology, Department of Internal Medicine Chi Mei Medical Center Liouying Tainan Taiwan
| | - Pei‐Lun Lee
- Division of Gastroenterology and Hepatology, Department of Internal Medicine Chi Mei Medical Center Liouying Tainan Taiwan
| | - Hung‐Da Tung
- Division of Gastroenterology and Hepatology, Department of Internal Medicine Chi Mei Medical Center Liouying Tainan Taiwan
| | - Chun‐Ta Cheng
- Division of Gastroenterology and Hepatology, Department of Internal Medicine Chi Mei Medical Center Liouying Tainan Taiwan
| | - Hsu‐Ju Kao
- Division of Gastroenterology and Hepatology, Department of Internal Medicine Chi Mei Medical Center Liouying Tainan Taiwan
| | - Yu‐Hsun Wu
- Division of Gastroenterology and Hepatology, Department of Internal Medicine Chi Mei Medical Center Liouying Tainan Taiwan
| | - Mai‐Gio Pang
- Division of Gastroenterology and Hepatology, Department of Internal Medicine Chi Mei Medical Center Liouying Tainan Taiwan
| | - Tang‐Wei Chuang
- Division of Gastroenterology and Hepatology, Department of Internal Medicine Chi Mei Medical Center Liouying Tainan Taiwan
| |
Collapse
|
22
|
A Small Molecule, 4-Phenylbutyric Acid, Suppresses HCV Replication via Epigenetically Induced Hepatic Hepcidin. Int J Mol Sci 2020; 21:ijms21155516. [PMID: 32752233 PMCID: PMC7432483 DOI: 10.3390/ijms21155516] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 07/30/2020] [Accepted: 07/30/2020] [Indexed: 01/02/2023] Open
Abstract
Hepatic hepcidin is a well-known major iron regulator and has been reported to be closely related to hepatitis C virus (HCV) replication. However, pharmacological targeting of the hepcidin in HCV replication has not been reported. A short-chain fatty acid, 4-Phenyl butyrate (4-PBA), is an acid chemical chaperone that acts as a histone deacetylase inhibitor (HDACi) to promote chromosomal histone acetylation. Here, we investigated the therapeutic effect of 4-PBA on hepcidin expression and HCV replication. We used HCV genotype 1b Huh 7.5-Con1 replicon cells and engraftment of NOD/SCID mice as in vitro and in vivo models to test the effect of 4-PBA. It was found that 4-PBA inhibited HCV replication in Huh7.5-Con1 replicon cells in a concentration- and time-dependent manner through the induction of hepcidin expression by epigenetic modification and subsequent upregulation of interferon-α signaling. HCV formed a membranous web composed of double-membrane vesicles and was utilized for RNA replication. Moreover, 4-PBA also disrupted the integrity of the membranous web and interfered with the molecular interactions critical for the assembly of the HCV replication complex. These findings suggest that 4-PBA is a key epigenetic inducer of anti-HCV hepatic hepcidin and might at least in part play a role in targeting host factors related to HCV infection as an attractive complement to current HCV therapies.
Collapse
|
23
|
Palmitoylated Cysteines in Chikungunya Virus nsP1 Are Critical for Targeting to Cholesterol-Rich Plasma Membrane Microdomains with Functional Consequences for Viral Genome Replication. J Virol 2020; 94:JVI.02183-19. [PMID: 32132240 DOI: 10.1128/jvi.02183-19] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Accepted: 02/28/2020] [Indexed: 12/16/2022] Open
Abstract
In mammalian cells, alphavirus replication complexes are anchored to the plasma membrane. This interaction with lipid bilayers is mediated through the viral methyl/guanylyltransferase nsP1 and reinforced by palmitoylation of cysteine residue(s) in the C-terminal region of this protein. Lipid content of membranes supporting nsP1 anchoring remains poorly studied. Here, we explore the membrane binding capacity of nsP1 with regard to cholesterol. Using the medically important chikungunya virus (CHIKV) as a model, we report that nsP1 cosegregates with cholesterol-rich detergent-resistant membrane microdomains (DRMs), also called lipid rafts. In search for the critical factor for cholesterol partitioning, we identify nsP1 palmitoylated cysteines as major players in this process. In cells infected with CHIKV or transfected with CHIKV trans-replicase plasmids, nsP1, together with the other nonstructural proteins, are detected in DRMs. While the functional importance of CHIKV nsP1 preference for cholesterol-rich membrane domains remains to be determined, we observed that U18666A- and imipramine-induced sequestration of cholesterol in late endosomes redirected nsP1 to these compartments and simultaneously dramatically decreased CHIKV genome replication. A parallel study of Sindbis virus (SINV) revealed that nsP1 from this divergent alphavirus displays a low affinity for cholesterol and only moderately segregates with DRMs. Behaviors of CHIKV and SINV with regard to cholesterol, therefore, match with the previously reported differences in the requirement for nsP1 palmitoylation, which is dispensable for SINV but strictly required for CHIKV replication. Altogether, this study highlights the functional importance of nsP1 segregation with DRMs and provides new insight into the functional role of nsP1 palmitoylated cysteines during alphavirus replication.IMPORTANCE Functional alphavirus replication complexes are anchored to the host cell membranes through the interaction of nsP1 with the lipid bilayers. In this work, we investigate the importance of cholesterol for such an association. We show that nsP1 has affinity for cholesterol-rich membrane microdomains formed at the plasma membrane and identify conserved palmitoylated cysteine(s) in nsP1 as the key determinant for cholesterol affinity. We demonstrate that drug-induced cholesterol sequestration in late endosomes not only redirects nsP1 to this compartment but also dramatically decreases genome replication, suggesting the functional importance of nsP1 targeting to cholesterol-rich plasma membrane microdomains. Finally, we show evidence that nsP1 from chikungunya and Sindbis viruses displays different sensitivity to cholesterol sequestering agents that parallel with their difference in the requirement for nsP1 palmitoylation for replication. This research, therefore, gives new insight into the functional role of palmitoylated cysteines in nsP1 for the assembly of functional alphavirus replication complexes in their mammalian host.
Collapse
|
24
|
Surfeit 4 Contributes to the Replication of Hepatitis C Virus Using Double-Membrane Vesicles. J Virol 2020; 94:JVI.00858-19. [PMID: 31645450 DOI: 10.1128/jvi.00858-19] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 09/27/2019] [Indexed: 12/12/2022] Open
Abstract
A number of positive-strand RNA viruses, such as hepatitis C virus (HCV) and poliovirus, use double-membrane vesicles (DMVs) as replication sites. However, the role of cellular proteins in DMV formation during virus replication is poorly understood. HCV NS4B protein induces the formation of a "membranous web" structure that provides a platform for the assembly of viral replication complexes. Our previous screen of NS4B-associated host membrane proteins by dual-affinity purification, liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS), and small interfering RNA (siRNA) methods revealed that the Surfeit 4 (Surf4) gene, which encodes an integral membrane protein, is involved in the replication of the JFH1 subgenomic replicon. Here, we investigated in detail the effect of Surf4 on HCV replication. Surf4 affects HCV replication in a genotype-independent manner, whereas HCV replication does not alter Surf4 expression. The influence of Surf4 on HCV replication indicates that while Surf4 regulates replication, it has no effect on entry, translation, assembly, or release. Analysis of the underlying mechanism showed that Surf4 is recruited into HCV RNA replication complexes by NS4B and is involved in the formation of DMVs and the structural integrity of RNA replication complexes. Surf4 also participates in the replication of poliovirus, which uses DMVs as replication sites, but it has no effect on the replication of dengue virus, which uses invaginated/sphere-type vesicles as replication sites. These findings clearly show that Surf4 is a novel cofactor that is involved in the replication of positive-strand RNA viruses using DMVs as RNA replication sites, which provides valuable clues for DMV formation during positive-strand RNA virus replication.IMPORTANCE Hepatitis C virus (HCV) NS4B protein induces the formation of a membranous web (MW) structure that provides a platform for the assembly of viral replication complexes. The main constituents of the MW are double-membrane vesicles (DMVs). Here, we found that the cellular protein Surf4, which maintains endoplasmic reticulum (ER)-Golgi intermediate compartments and the Golgi compartment, is recruited into HCV RNA replication complexes by NS4B and is involved in the formation of DMVs. Moreover, Surf4 participates in the replication of poliovirus, which uses DMVs as replication sites, but has no effect on the replication of dengue virus, which uses invaginated vesicles as replication sites. These results indicate that the cellular protein Surf4 is involved in the replication of positive-strand RNA viruses that use DMVs as RNA replication sites, providing new insights into DMV formation during virus replication and potential targets for the diagnosis and treatment of positive-strand RNA viruses.
Collapse
|
25
|
The Puzzling Conservation and Diversification of Lipid Droplets from Bacteria to Eukaryotes. Results Probl Cell Differ 2020; 69:281-334. [PMID: 33263877 DOI: 10.1007/978-3-030-51849-3_11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Membrane compartments are amongst the most fascinating markers of cell evolution from prokaryotes to eukaryotes, some being conserved and the others having emerged via a series of primary and secondary endosymbiosis events. Membrane compartments comprise the system limiting cells (one or two membranes in bacteria, a unique plasma membrane in eukaryotes) and a variety of internal vesicular, subspherical, tubular, or reticulated organelles. In eukaryotes, the internal membranes comprise on the one hand the general endomembrane system, a dynamic network including organelles like the endoplasmic reticulum, the Golgi apparatus, the nuclear envelope, etc. and also the plasma membrane, which are linked via direct lateral connectivity (e.g. between the endoplasmic reticulum and the nuclear outer envelope membrane) or indirectly via vesicular trafficking. On the other hand, semi-autonomous organelles, i.e. mitochondria and chloroplasts, are disconnected from the endomembrane system and request vertical transmission following cell division. Membranes are organized as lipid bilayers in which proteins are embedded. The budding of some of these membranes, leading to the formation of the so-called lipid droplets (LDs) loaded with hydrophobic molecules, most notably triacylglycerol, is conserved in all clades. The evolution of eukaryotes is marked by the acquisition of mitochondria and simple plastids from Gram-positive bacteria by primary endosymbiosis events and the emergence of extremely complex plastids, collectively called secondary plastids, bounded by three to four membranes, following multiple and independent secondary endosymbiosis events. There is currently no consensus view of the evolution of LDs in the Tree of Life. Some features are conserved; others show a striking level of diversification. Here, we summarize the current knowledge on the architecture, dynamics, and multitude of functions of the lipid droplets in prokaryotes and in eukaryotes deriving from primary and secondary endosymbiosis events.
Collapse
|
26
|
Vazquez C, Tan CY, Horner SM. Hepatitis C Virus Infection Is Inhibited by a Noncanonical Antiviral Signaling Pathway Targeted by NS3-NS4A. J Virol 2019; 93:e00725-19. [PMID: 31534039 PMCID: PMC6854490 DOI: 10.1128/jvi.00725-19] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 09/16/2019] [Indexed: 12/30/2022] Open
Abstract
The hepatitis C virus (HCV) NS3-NS4A protease complex is required for viral replication and is the major viral innate immune evasion factor. NS3-NS4A evades antiviral innate immunity by inactivating several proteins, including MAVS, the signaling adaptor for RIG-I and MDA5, and Riplet, an E3 ubiquitin ligase that activates RIG-I. Here, we identified a Tyr-16-Phe (Y16F) change in the NS4A transmembrane domain that prevents NS3-NS4A targeting of Riplet but not MAVS. This Y16F substitution reduces HCV replication in Huh7 cells, but not in Huh-7.5 cells, known to lack RIG-I signaling. Surprisingly, deletion of RIG-I in Huh7 cells did not restore Y16F viral replication. Rather, we found that Huh-7.5 cells lack Riplet expression and that the addition of Riplet to these cells reduced HCV Y16F replication, whereas the addition of Riplet lacking the RING domain restored HCV Y16F replication. In addition, TBK1 inhibition or IRF3 deletion in Huh7 cells was sufficient to restore HCV Y16F replication, and the Y16F protease lacked the ability to prevent IRF3 activation or interferon induction. Taken together, these data reveal that the NS4A Y16 residue regulates a noncanonical Riplet-TBK1-IRF3-dependent, but RIG-I-MAVS-independent, signaling pathway that limits HCV infection.IMPORTANCE The HCV NS3-NS4A protease complex facilitates viral replication by cleaving and inactivating the antiviral innate immune signaling proteins MAVS and Riplet, which are essential for RIG-I activation. NS3-NS4A therefore prevents IRF3 activation and interferon induction during HCV infection. Here, we uncover an amino acid residue within the NS4A transmembrane domain that is essential for inactivation of Riplet but does not affect MAVS cleavage by NS3-NS4A. Our study reveals that Riplet is involved in a RIG-I- and MAVS-independent signaling pathway that activates IRF3 and that this pathway is normally inactivated by NS3-NS4A during HCV infection. Our study selectively uncouples these distinct regulatory mechanisms within NS3-NS4A and defines a new role for Riplet in the antiviral response to HCV. Since Riplet is known to be inhibited by other RNA viruses, such as such influenza A virus, this innate immune signaling pathway may also be important in controlling other RNA virus infections.
Collapse
Affiliation(s)
- Christine Vazquez
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Chin Yee Tan
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Stacy M Horner
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|
27
|
Plissonnier ML, Cottarel J, Piver E, Kullolli M, Centonze FG, Pitteri S, Farhan H, Meunier JC, Zoulim F, Parent R. LARP1 binding to hepatitis C virus particles is correlated with intracellular retention of viral infectivity. Virus Res 2019; 271:197679. [PMID: 31398365 DOI: 10.1016/j.virusres.2019.197679] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 07/27/2019] [Indexed: 12/23/2022]
Abstract
Hepatitis C virus (HCV) virions contain a subset of host liver cells proteome often composed of interesting virus-interacting factors. A proteomic analysis performed on double gradient-purified clinical HCV highlighted the translation regulator LARP1 on these virions. This finding was validated using post-virion capture and immunoelectron microscopy, as well as immunoprecipitation applied to in vitro (Huh7.5 liver cells) grown (Gt2a, JFH1 strain) and patient-derived (Gt1a) HCV particles. Upon HCV infection of Huh7.5 cells, we observed a drastic transfer of LARP1 to lipid droplets, inducing colocalization with core proteins. RNAi-mediated depletion of LARP1 using the C911 control approach decreased extracellular infectivity of HCV Gt1a (H77), Gt2a (JFH1), and Gt3a (S52 chimeric strain), yet increased their intracellular infectivity. This latter effect was unrelated to changes in the hepatocyte secretory pathway, as evidenced using a functional RUSH assay. These results indicate that LARP1 binds to HCV, an event associated with retention of intracellular infectivity.
Collapse
Affiliation(s)
- Marie-Laure Plissonnier
- Pathogenesis of Hepatitis B and C -DEVweCAN LabEx, INSERM U1052-CNRS 5286, Centre de Recherche en Cancérologie de Lyon, Université de Lyon, F-69008, Lyon, France
| | - Jessica Cottarel
- Pathogenesis of Hepatitis B and C -DEVweCAN LabEx, INSERM U1052-CNRS 5286, Centre de Recherche en Cancérologie de Lyon, Université de Lyon, F-69008, Lyon, France
| | - Eric Piver
- Morphogenesis and Antigenicity of HIV and Hepatitis Viruses, INSERM U966, Université de Tours, F-37000, Tours, France
| | - Majlinda Kullolli
- Canary Center for Cancer Early Detection, Department of Radiology, Stanford University School of Medicine, Palo Alto, CA, 94304, USA
| | | | - Sharon Pitteri
- Canary Center for Cancer Early Detection, Department of Radiology, Stanford University School of Medicine, Palo Alto, CA, 94304, USA
| | - Hesso Farhan
- Institute of Basic Medical Science, University of Oslo, N-0372, Olso, Norway
| | - Jean-Christophe Meunier
- Morphogenesis and Antigenicity of HIV and Hepatitis Viruses, INSERM U966, Université de Tours, F-37000, Tours, France
| | - Fabien Zoulim
- Pathogenesis of Hepatitis B and C -DEVweCAN LabEx, INSERM U1052-CNRS 5286, Centre de Recherche en Cancérologie de Lyon, Université de Lyon, F-69008, Lyon, France; Lyon University Hospital (Hospices civils de Lyon), Hepatogastroenterology Service, F-69001, Lyon, France
| | - Romain Parent
- Pathogenesis of Hepatitis B and C -DEVweCAN LabEx, INSERM U1052-CNRS 5286, Centre de Recherche en Cancérologie de Lyon, Université de Lyon, F-69008, Lyon, France.
| |
Collapse
|
28
|
Yager EJ, Konan KV. Sphingolipids as Potential Therapeutic Targets against Enveloped Human RNA Viruses. Viruses 2019; 11:v11100912. [PMID: 31581580 PMCID: PMC6832137 DOI: 10.3390/v11100912] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 09/27/2019] [Accepted: 09/28/2019] [Indexed: 12/28/2022] Open
Abstract
Several notable human diseases are caused by enveloped RNA viruses: influenza, AIDS, hepatitis C, dengue hemorrhagic fever, microcephaly, and Guillain-Barré Syndrome. Being enveloped, the life cycle of this group of viruses is critically dependent on host lipid biosynthesis. Viral binding and entry involve interactions between viral envelope glycoproteins and cellular receptors localized to lipid-rich regions of the plasma membrane. Subsequent infection by these viruses leads to reorganization of cellular membranes and lipid metabolism to support the production of new viral particles. Recent work has focused on defining the involvement of specific lipid classes in the entry, genome replication assembly, and viral particle formation of these viruses in hopes of identifying potential therapeutic targets for the treatment or prevention of disease. In this review, we will highlight the role of host sphingolipids in the lifecycle of several medically important enveloped RNA viruses.
Collapse
Affiliation(s)
- Eric J Yager
- Department of Basic and Clinical Sciences, Albany College of Pharmacy and Health Sciences, Albany, NY 12208, USA.
| | - Kouacou V Konan
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY 12208-3479, USA.
| |
Collapse
|
29
|
Senkerikova R, Frankova S, Jirsa M, Kreidlova M, Merta D, Neroldova M, Chmelova K, Spicak J, Sperl J. PNPLA3 rs738409 G allele carriers with genotype 1b HCV cirrhosis have lower viral load but develop liver failure at younger age. PLoS One 2019; 14:e0222609. [PMID: 31527889 PMCID: PMC6748417 DOI: 10.1371/journal.pone.0222609] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Accepted: 09/03/2019] [Indexed: 12/19/2022] Open
Abstract
Background PNPLA3 rs738409 minor allele c.444G represents a risk factor for liver steatosis and fibrosis progression also in chronic hepatitis C (HCV). We investigated its impact on the timing of liver transplantation (LT) in patients with genotype 1b HCV cirrhosis. Methods We genotyped and evaluated 172 LT candidates with liver cirrhosis owing to chronic HCV infection, genotype 1b. One hundred patients needed LT for chronic liver failure (CLF) and 72 for a small hepatocellular carcinoma (HCC) in the cirrhotic liver without CLF. Population controls (n = 647) were selected from the Czech cross-sectional study MONICA. Results The CLF patients were younger (53.5 ± 7.2 vs. 59.6 ± 6.6, P < 0.001) with more advanced liver disease than HCC patients (Child-Pugh’s score 9.1 ± 1.8 vs. 7.1 ± 1.9, P < 0.001, MELD 14.1 ± 3.9 vs. 11.1 ± 3.7, P < 0.001). PNPLA3 G allele increased the risk of LT for CLF in both allelic and recessive models (CG + GG vs. CC: OR, 1.90; 95% CI, 1.017–3.472, P = 0.045 and GG vs. CC + CG: OR, 2.94; 95% CI, 1.032–7.513, P = 0.042). Multivariate analysis identified younger age (P < 0.001) and the G allele (P < 0.05) as risk factors for CLF. The genotype frequencies between the CLF group and MONICA study significantly differed in both, allelic and recessive model (P = 0.004, OR 1.87, 95% CI 1.222–2.875; P < 0.001, OR 3.33, 95% CI 1.824–6.084, respectively). The OR values almost doubled in the recessive model compared with the allelic model suggesting the additive effect of allele G. In contrast, genotype frequencies in the HCC group were similar to the MONICA study in both models. Pretransplant viral load was significantly lower in GG than in CC + CG genotypes (median, IQR; 162,500 (61,550–319,000) IU/ml vs. 570,000 (172,000–1,595,000) IU/ml, P < 0.0009). Conclusions Our results suggest that PNPLA3 rs738409 G allele carriage may be associated with a faster progression of HCV cirrhosis to chronic liver failure.
Collapse
Affiliation(s)
- Renata Senkerikova
- Department of Hepatogastroenterology, Transplant Centre, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
- Charles University, First Faculty of Medicine, Prague, Czech Republic
| | - Sona Frankova
- Department of Hepatogastroenterology, Transplant Centre, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Milan Jirsa
- Charles University, First Faculty of Medicine, Prague, Czech Republic
- Laboratory of Experimental Hepatology, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Miluse Kreidlova
- Institute of Medical Biochemistry and Laboratory Diagnostics First Faculty of Medicine Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Dusan Merta
- Anesthesiology, Resuscitation and Intensive Care Department, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Magdalena Neroldova
- Charles University, First Faculty of Medicine, Prague, Czech Republic
- Laboratory of Experimental Hepatology, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Klara Chmelova
- Department of Hepatogastroenterology, Transplant Centre, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
- Charles University, First Faculty of Medicine, Prague, Czech Republic
| | - Julius Spicak
- Department of Hepatogastroenterology, Transplant Centre, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Jan Sperl
- Department of Hepatogastroenterology, Transplant Centre, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
- Charles University, First Faculty of Medicine, Prague, Czech Republic
- * E-mail:
| |
Collapse
|
30
|
Honarmand Ebrahimi K. A unifying view of the broad-spectrum antiviral activity of RSAD2 (viperin) based on its radical-SAM chemistry. Metallomics 2019; 10:539-552. [PMID: 29568838 DOI: 10.1039/c7mt00341b] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
RSAD2 (cig-5), also known as viperin (virus inhibitory protein, endoplasmic reticulum associated, interferon inducible), is a member of the radical S-adenosylmethionine (SAM) superfamily of enzymes. Since the discovery of this enzyme more than a decade ago, numerous studies have shown that it exhibits antiviral activity against a wide range of viruses. However, there is no clear picture demonstrating the mechanism by which RSAD2 restricts the replication process of different viruses, largely because there is no direct evidence describing its in vivo enzymatic activity. As a result, a multifunctionality model has emerged. According to this model the mechanism by which RSAD2 restricts replication of different viruses varies and in many cases is not dependent on the radical-SAM chemistry of RSAD2. If the radical-SAM activity of RSAD2 is not required for its antiviral function, the question worth asking is: why does the cellular defence mechanism induce the expression of the radical-SAM enzyme RSAD2, which is metabolically expensive due to the requirement for a [4Fe-4S] cluster and usage of SAM? Here, in contrast to the multifunctionality view, I put forward a unifying model. I postulate that the radical-SAM activity of RSAD2 modulates cellular metabolic pathways essential for viral replication and/or cell proliferation and survival. As a result, its catalytic activity restricts the replication of a wide range of viruses via a common cellular function. This view is based on recent discoveries hinting towards possible substrates of RSAD2, re-evaluation of previous studies regarding the antiviral activity of RSAD2, and accumulating evidence suggesting a role of human RSAD2 in the metabolic reprogramming of cells.
Collapse
|
31
|
Sharma G, Tripathi SK, Das S. lncRNA HULC facilitates efficient loading of HCV-core protein onto lipid droplets and subsequent virus-particle release. Cell Microbiol 2019; 21:e13086. [PMID: 31290220 DOI: 10.1111/cmi.13086] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 06/29/2019] [Accepted: 07/07/2019] [Indexed: 12/11/2022]
Abstract
The cellular lipid pool plays a central role in hepatitis C virus (HCV) life cycle, from establishing infection to virus propagation. Here, we show that a liver abundant long noncoding RNA, highly upregulated in liver carcinoma (HULC), is upregulated during HCV infection and manipulates the lipid pool to favour virus life cycle. Interestingly, HULC was found to be crucial for the increase in number of lipid droplets in infected cells. This effect was attributed to the role of HULC in lipid biogenesis. Further, we demonstrated that HULC knockdown decreases the association of HCV-core protein with lipid droplets. This exhibited a direct consequence on the release of HCV particles. The role of HULC in HCV-particle release was further substantiated by additional knockdown and mutation experiments. Additionally, we found that increased level of HULC in HCV-infected cells was a result of Retinoid X Receptor Alpha (RXRA)-mediated transcription, which seemed to be aided by HCV-core protein. Taken together, the results identify a distinct role of long noncoding RNA HULC in lipid dynamics during HCV infection, which provides new insights into the complex process of HCV propagation and pathogenesis.
Collapse
Affiliation(s)
- Geetika Sharma
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Sachin Kumar Tripathi
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Saumitra Das
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India.,National Institute of Biomedical Genomics, Kalyani, India
| |
Collapse
|
32
|
Todorovska B, Caloska-Ivanova V, Dimitrova-Genadieva M, Trajkovska M, Popova-Jovanovska R, Grivceva-Stardelova K, Licoska-Josifovic F, Andreevski V, Curakova-Ristovska E, Joksimovic N. Atorvastatin in Combination with Pegylated Interferon and Ribavirin Provided High Rate of Sustained Virological Response in Patients with Genotype 3 Hepatitis C Virus. Open Access Maced J Med Sci 2019; 7:1641-1648. [PMID: 31210815 PMCID: PMC6560281 DOI: 10.3889/oamjms.2019.459] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 05/19/2019] [Accepted: 05/20/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND: Chronic hepatitis C virus infection represents a more frequent cause of liver cirrhosis and hepatocellular carcinoma. Statins, inhibit HCV replication in vitro, enhance the antiviral effect of the already known antiviral drugs and reduce their resistance. AIM: To determine the impact of additional therapy (treatment with Atorvastatin 20 mg) to the standard antiviral therapy (pegylated interferon alpha-peg-IFN α and ribavirin) on achieving sustained virological response (SVR). MATERIAL AND METHODS: In the study which is comparative, open-label, prospective-retrospective, 70 patients diagnosed with chronic hepatitis C virus infection who met criteria for treatment with standard antiviral therapy combined with anti-lipemic therapy (Atorvastatin 20 mg) were included. Patients in the study were divided into two groups: one group of 35 patients receiving combination therapy (Atorvastatin + peg-IFN α + Ribavirin) and another group of 35 patients received only standard antiviral therapy. Those parameters were followed in all patients: genotyping, quantification of the virus, histological assessment of liver inflammation and fibrosis degree (before starting treatment), the presence of steatosis, laboratory analysis: hematology, liver, lipid and carbohydrate status, insulin blood level (the calculation of HOMA-IR) and body mass index (BMI) calculation. The overall treatment of the patients depends from the virus genotype, thus, patients with genotype 1 and 4 received 48 weeks standard antiviral therapy, but patients with genotypes 2 and 3 received 24 weeks of antiviral therapy. SVR was considered an undetectable level of HCV RNA levels 24 weeks after completion of antiviral therapy. The results were statistically analysed, and all results for p < 0.05 were considered statistically significant. RESULTS: Combination therapy leads to a slightly higher percentage of SVR (85.71%) in patients with chronic hepatitis C versus standard therapy (74.29%), but in a group of patients with genotype 3 this rate of SVR amounting to 95.83%. Combination therapy leads to significant improvement of lipid and glucose status after treatment, and in terms of side effects, there was no appearance of serious adverse events that would be a reason for discontinuation of the therapy. CONCLUSION: Combination therapy Atorvastatin + pegylated interferon alpha + Ribavirin leads to high rate of SVR of 95.83% in patients with chronic hepatitis C, genotype 3. Statins can be used safely in patients with chronic hepatitis C.
Collapse
Affiliation(s)
- Beti Todorovska
- University Clinic of Gastroenterohepatology, Faculty of Medicine, Ss Cyril and Methodius University of Skopje, Skopje, Republic of Macedonia
| | - Viktorija Caloska-Ivanova
- University Clinic of Gastroenterohepatology, Faculty of Medicine, Ss Cyril and Methodius University of Skopje, Skopje, Republic of Macedonia
| | - Magdalena Dimitrova-Genadieva
- University Clinic of Gastroenterohepatology, Faculty of Medicine, Ss Cyril and Methodius University of Skopje, Skopje, Republic of Macedonia
| | - Meri Trajkovska
- University Clinic of Gastroenterohepatology, Faculty of Medicine, Ss Cyril and Methodius University of Skopje, Skopje, Republic of Macedonia
| | - Rozalinda Popova-Jovanovska
- University Clinic of Gastroenterohepatology, Faculty of Medicine, Ss Cyril and Methodius University of Skopje, Skopje, Republic of Macedonia
| | - Kalina Grivceva-Stardelova
- University Clinic of Gastroenterohepatology, Faculty of Medicine, Ss Cyril and Methodius University of Skopje, Skopje, Republic of Macedonia
| | - Fana Licoska-Josifovic
- University Clinic of Gastroenterohepatology, Faculty of Medicine, Ss Cyril and Methodius University of Skopje, Skopje, Republic of Macedonia
| | - Vladimir Andreevski
- University Clinic of Gastroenterohepatology, Faculty of Medicine, Ss Cyril and Methodius University of Skopje, Skopje, Republic of Macedonia
| | - Elena Curakova-Ristovska
- University Clinic of Gastroenterohepatology, Faculty of Medicine, Ss Cyril and Methodius University of Skopje, Skopje, Republic of Macedonia
| | - Nenad Joksimovic
- University Clinic of Gastroenterohepatology, Faculty of Medicine, Ss Cyril and Methodius University of Skopje, Skopje, Republic of Macedonia
| |
Collapse
|
33
|
Endoplasmic Reticulum Detergent-Resistant Membranes Accommodate Hepatitis C Virus Proteins for Viral Assembly. Cells 2019; 8:cells8050487. [PMID: 31121874 PMCID: PMC6562800 DOI: 10.3390/cells8050487] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 05/15/2019] [Accepted: 05/20/2019] [Indexed: 12/12/2022] Open
Abstract
During Hepatitis C virus (HCV) morphogenesis, the non-structural protein 2 (NS2) brings the envelope proteins 1 and 2 (E1, E2), NS3, and NS5A together to form a complex at the endoplasmic reticulum (ER) membrane, initiating HCV assembly. The nature of the interactions in this complex is unclear, but replication complex and structural proteins have been shown to be associated with cellular membrane structures called detergent-resistant membranes (DRMs). We investigated the role of DRMs in NS2 complex formation, using a lysis buffer combining Triton and n-octyl glucoside, which solubilized both cell membranes and DRMs. When this lysis buffer was used on HCV-infected cells and the resulting lysates were subjected to flotation gradient centrifugation, all viral proteins and DRM-resident proteins were found in soluble protein fractions. Immunoprecipitation assays demonstrated direct protein–protein interactions between NS2 and E2 and E1 proteins, and an association of NS2 with NS3 through DRMs. The well-folded E1E2 complex and NS5A were not associated, instead interacting separately with the NS2-E1-E2-NS3 complex through less stable DRMs. Core was also associated with NS2 and the E1E2 complex through these unstable DRMs. We suggest that DRMs carrying this NS2-E1-E2-NS3-4A-NS5A-core complex may play a central role in HCV assembly initiation, potentially as an assembly platform.
Collapse
|
34
|
Ho JCS, Steininger C, Hiew SH, Kim MC, Reimhult E, Miserez A, Cho N, Parikh AN, Liedberg B. Minimal Reconstitution of Membranous Web Induced by a Vesicle-Peptide Sol-Gel Transition. Biomacromolecules 2019; 20:1709-1718. [PMID: 30856330 DOI: 10.1021/acs.biomac.9b00081] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Positive strand RNA viruses replicate in specialized niches called membranous web within the cytoplasm of host cells. These virus replication organelles sequester viral proteins, RNA, and a variety of host factors within a fluid, amorphous matrix of clusters of endoplasmic reticulum (ER) derived vesicles. They are thought to form by the actions of a nonstructural viral protein NS4B, which remodels the ER and produces dense lipid-protein condensates. Here, we used in vitro reconstitution to identify the minimal components and elucidate physical mechanisms driving the web formation. We found that the N-terminal amphipathic domain of NS4B (peptide 4BAH2) and phospholipid vesicles (∼100-200 nm in diameter) were sufficient to produce a gel-like, viscoelastic condensate. This condensate coexists with the surrounding aqueous phase and affords rapid exchange of molecules. Together, it recapitulates the essential properties of the virus-induced membranous web. Our data support a novel phase separation mechanism in which phospholipid vesicles provide a supramolecular template spatially organizing multiple self-associating peptides thereby generating programmable multivalency de novo and inducing macroscopic phase separation.
Collapse
Affiliation(s)
- James C S Ho
- Centre for Biomimetic Sensor Science , Nanyang Technological University , 50 Nanyang Drive 637553 , Singapore.,School of Materials Science and Engineering , Nanyang Technological University , 50 Nanyang Avenue 639798 , Singapore
| | - Christoph Steininger
- Centre for Biomimetic Sensor Science , Nanyang Technological University , 50 Nanyang Drive 637553 , Singapore.,School of Materials Science and Engineering , Nanyang Technological University , 50 Nanyang Avenue 639798 , Singapore.,Institute of Biologically Inspired Materials , University of Natural Resources and Life Sciences , 1190 Vienna , Austria.,International Graduate School on Bionanotechnology , University of Natural Resources and Life Sciences, Austrian Institute of Technology and Nanyang Technological University , Giefinggasse 4 , 1210 Vienna , Austria.,BioSensor Technologies , AIT-Austrian Institute of Technology GmbH , Giefinggasse 4 , 1210 Vienna , Austria
| | - Shu Hui Hiew
- Centre for Biomimetic Sensor Science , Nanyang Technological University , 50 Nanyang Drive 637553 , Singapore.,School of Materials Science and Engineering , Nanyang Technological University , 50 Nanyang Avenue 639798 , Singapore
| | - Min Chul Kim
- Centre for Biomimetic Sensor Science , Nanyang Technological University , 50 Nanyang Drive 637553 , Singapore.,School of Materials Science and Engineering , Nanyang Technological University , 50 Nanyang Avenue 639798 , Singapore
| | - Erik Reimhult
- Institute of Biologically Inspired Materials , University of Natural Resources and Life Sciences , 1190 Vienna , Austria
| | - Ali Miserez
- Centre for Biomimetic Sensor Science , Nanyang Technological University , 50 Nanyang Drive 637553 , Singapore.,School of Materials Science and Engineering , Nanyang Technological University , 50 Nanyang Avenue 639798 , Singapore.,School of Biological Sciences , Nanyang Technological University , 50 Nanyang Drive 637551 , Singapore
| | - NamJoon Cho
- Centre for Biomimetic Sensor Science , Nanyang Technological University , 50 Nanyang Drive 637553 , Singapore.,School of Materials Science and Engineering , Nanyang Technological University , 50 Nanyang Avenue 639798 , Singapore.,School of Chemical and Biomedical Engineering , Nanyang Technological University , 62 Nanyang Drive 637459 , Singapore
| | - Atul N Parikh
- Centre for Biomimetic Sensor Science , Nanyang Technological University , 50 Nanyang Drive 637553 , Singapore.,School of Materials Science and Engineering , Nanyang Technological University , 50 Nanyang Avenue 639798 , Singapore.,Departments of Biomedical Engineering and Materials Science & Engineering , University of California, Davis , Davis , California 95616 , United States
| | - Bo Liedberg
- Centre for Biomimetic Sensor Science , Nanyang Technological University , 50 Nanyang Drive 637553 , Singapore.,School of Materials Science and Engineering , Nanyang Technological University , 50 Nanyang Avenue 639798 , Singapore
| |
Collapse
|
35
|
USP15 Participates in Hepatitis C Virus Propagation through Regulation of Viral RNA Translation and Lipid Droplet Formation. J Virol 2019; 93:JVI.01708-18. [PMID: 30626683 DOI: 10.1128/jvi.01708-18] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 12/23/2018] [Indexed: 12/12/2022] Open
Abstract
Hepatitis C virus (HCV) utilizes cellular factors for efficient propagation. Ubiquitin is covalently conjugated to the substrate to alter its stability or to modulate signal transduction. In this study, we examined the importance of ubiquitination for HCV propagation. We found that inhibition of deubiquitinating enzymes (DUBs) or overexpression of nonspecific DUBs impaired HCV replication, suggesting that ubiquitination regulates HCV replication. To identify specific DUBs involved in HCV propagation, we set up RNA interference (RNAi) screening against DUBs and successfully identified ubiquitin-specific protease 15 (USP15) as a novel host factor for HCV propagation. Our studies showed that USP15 is involved in translation of HCV RNA and production of infectious HCV particles. In addition, deficiency of USP15 in human hepatic cell lines (Huh7 and Hep3B/miR-122 cells) but not in a nonhepatic cell line (293T cells) impaired HCV propagation, suggesting that USP15 participates in HCV propagation through the regulation of hepatocyte-specific functions. Moreover, we showed that loss of USP15 had no effect on innate immune responses in vitro and in vivo We also found that USP15-deficient Huh7 cells showed reductions in the amounts of lipid droplets (LDs), and the addition of palmitic acids restored the production of infectious HCV particles. Taken together, these data suggest that USP15 participates in HCV propagation by regulating the translation of HCV RNA and the formation of LDs.IMPORTANCE Although ubiquitination has been shown to play important roles in the HCV life cycle, the roles of deubiquitinating enzymes (DUBs), which cleave ubiquitin chains from their substrates, in HCV propagation have not been investigated. Here, we identified USP15 as a DUB regulating HCV propagation. USP15 showed no interaction with viral proteins and no participation in innate immune responses. Deficiency of USP15 in Huh7 cells resulted in suppression of the translation of HCV RNA and reduction in the amounts of lipid droplets, and the addition of fatty acids partially restored the production of infectious HCV particles. These data suggest that USP15 participates in HCV propagation in hepatic cells through the regulation of viral RNA translation and lipid metabolism.
Collapse
|
36
|
Zhang Z, He G, Filipowicz NA, Randall G, Belov GA, Kopek BG, Wang X. Host Lipids in Positive-Strand RNA Virus Genome Replication. Front Microbiol 2019; 10:286. [PMID: 30863375 PMCID: PMC6399474 DOI: 10.3389/fmicb.2019.00286] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 02/04/2019] [Indexed: 12/19/2022] Open
Abstract
Membrane association is a hallmark of the genome replication of positive-strand RNA viruses [(+)RNA viruses]. All well-studied (+)RNA viruses remodel host membranes and lipid metabolism through orchestrated virus-host interactions to create a suitable microenvironment to survive and thrive in host cells. Recent research has shown that host lipids, as major components of cellular membranes, play key roles in the replication of multiple (+)RNA viruses. This review focuses on how (+)RNA viruses manipulate host lipid synthesis and metabolism to facilitate their genomic RNA replication, and how interference with the cellular lipid metabolism affects viral replication.
Collapse
Affiliation(s)
- Zhenlu Zhang
- National Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA, United States
| | - Guijuan He
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA, United States
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, China
| | | | - Glenn Randall
- Department of Microbiology, The University of Chicago, Chicago, IL, United States
| | - George A. Belov
- Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, College Park, MD, United States
| | | | - Xiaofeng Wang
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|
37
|
Sharma G, Raheja H, Das S. Hepatitis C virus: Enslavement of host factors. IUBMB Life 2018; 70:41-49. [PMID: 29281185 DOI: 10.1002/iub.1702] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 11/20/2017] [Accepted: 11/28/2017] [Indexed: 12/11/2022]
Abstract
Hepatitis C virus (HCV) has infected over 170 million people world-wide. This infection causes severe liver damage that can progress to hepatocellular carcinoma leading to death of the infected patients. Development of a cell culture model system for the study of HCV infection in the recent past has helped the researchers world-wide to understand the biology of this virus. Studies over the past decade have revealed the tricks played by the virus to sustain itself, for as long as 40 years, in the host setup without being eliminated by the immune system. Today we understand that the host organelles and different cellular proteins are affected during HCV infection. This cytoplasmic virus has all the cellular organelles at its disposal to successfully replicate, from ribosomes and intracellular membranous structures to the nucleus. It modulates these organelles at both the structural and the functional levels. The vast knowledge about the viral genome and viral proteins has also helped in the development of drugs against the virus. Despite the achieved success rate to cure the infected patients, we struggle to eliminate the cases of recurrence and the non-responders. Such cases might emerge owing to the property of the viral genome to accumulate mutations during its succeeding replication cycles which favours its survival. The current situation calls an urgent need for alternate therapeutic strategies to counter this major problem of human health. © 2017 IUBMB Life, 70(1):41-49, 2018.
Collapse
Affiliation(s)
- Geetika Sharma
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, 560012, Karnataka, India
| | - Harsha Raheja
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, 560012, Karnataka, India
| | - Saumitra Das
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, 560012, Karnataka, India
| |
Collapse
|
38
|
Yu S, Yin C, Song K, Li S, Zheng GL, Li LF, Wang J, Li Y, Luo Y, Sun Y, Qiu HJ. Engagement of cellular cholesterol in the life cycle of classical swine fever virus: its potential as an antiviral target. J Gen Virol 2018; 100:156-165. [PMID: 30484759 DOI: 10.1099/jgv.0.001178] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Classical swine fever virus (CSFV), the etiological agent of classical swine fever in pigs, is a member of the Pestivirus genus within the Flaviviridae family. It has been proposed that CSFV infection is significantly inhibited by methyl-β-cyclodextrin (MβCD) treatment. However, the exact engagement of cellular cholesterol in the life cycle of CSFV remains unclear. Here, we demonstrated that pretreatment of PK-15 cells with MβCD significantly decreased the cellular cholesterol level and resulted in the inhibition of CSFV infection, while replenishment of exogenous cholesterol in MβCD-treated cells recovered the cellular cholesterol level and restored the viral infection. Moreover, we found that depletion of cholesterol acted on the early stage of CSFV infection and blocked its internalization into the host cells. Furthermore, we showed that 25-hydroxycholesterol, a regulator of cellular cholesterol biosynthesis, exhibited a potent anti-CSFV activity by reducing cellular cholesterol level. Taken together, our findings highlight the engagement of cholesterol in the life cycle of CSFV and its potential use as an antiviral target.
Collapse
Affiliation(s)
- Shaoxiong Yu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, PR China
| | - Caixia Yin
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, PR China
| | - Kun Song
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, PR China
| | - Su Li
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, PR China
| | - Guang-Lai Zheng
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, PR China
| | - Lian-Feng Li
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, PR China
| | - Jinghan Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, PR China
| | - Yongfeng Li
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, PR China
| | - Yuzi Luo
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, PR China
| | - Yuan Sun
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, PR China
| | - Hua-Ji Qiu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, PR China
| |
Collapse
|
39
|
Mingorance L, Castro V, Ávila-Pérez G, Calvo G, Rodriguez MJ, Carrascosa JL, Pérez-del-Pulgar S, Forns X, Gastaminza P. Host phosphatidic acid phosphatase lipin1 is rate limiting for functional hepatitis C virus replicase complex formation. PLoS Pathog 2018; 14:e1007284. [PMID: 30226904 PMCID: PMC6161900 DOI: 10.1371/journal.ppat.1007284] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 09/28/2018] [Accepted: 08/14/2018] [Indexed: 02/06/2023] Open
Abstract
Hepatitis C virus (HCV) infection constitutes a significant health burden worldwide, because it is a major etiologic agent of chronic liver disease, cirrhosis and hepatocellular carcinoma. HCV replication cycle is closely tied to lipid metabolism and infection by this virus causes profound changes in host lipid homeostasis. We focused our attention on a phosphatidate phosphate (PAP) enzyme family (the lipin family), which mediate the conversion of phosphatidate to diacylglycerol in the cytoplasm, playing a key role in triglyceride biosynthesis and in phospholipid homeostasis. Lipins may also translocate to the nucleus to act as transcriptional regulators of genes involved in lipid metabolism. The best-characterized member of this family is lipin1, which cooperates with lipin2 to maintain glycerophospholipid homeostasis in the liver. Lipin1-deficient cell lines were generated by RNAi to study the role of this protein in different steps of HCV replication cycle. Using surrogate models that recapitulate different aspects of HCV infection, we concluded that lipin1 is rate limiting for the generation of functional replicase complexes, in a step downstream primary translation that leads to early HCV RNA replication. Infection studies in lipin1-deficient cells overexpressing wild type or phosphatase-defective lipin1 proteins suggest that lipin1 phosphatase activity is required to support HCV infection. Finally, ultrastructural and biochemical analyses in replication-independent models suggest that lipin1 may facilitate the generation of the membranous compartment that contains functional HCV replicase complexes. Hepatitis C virus (HCV) infection is an important biomedical problem worldwide because it causes severe liver disease and cancer. Although immunological events are major players in HCV pathogenesis, interference with host cell metabolism contribute to HCV-associated pathologies. HCV utilizes resources of the cellular lipid metabolism to strongly modify subcellular compartments, using them as platforms for replication and infectious particle assembly. In particular, HCV induces the formation of a “membranous web” that hosts the viral machinery dedicated to the production of new copies of the viral genome. This lipid-rich structure provides an optimized platform for viral genome replication and hides new viral genomes from host´s antiviral surveillance. In this study, we have identified a cellular protein, lipin1, involved in the production of a subset of cellular lipids, as a rate-limiting factor for HCV infection. Our results indicate that the enzymatic activity of lipin1 is required to build the membranous compartment dedicated to viral genome replication. Lipin1 is probably contributing to the formation of the viral replication machinery by locally providing certain lipids required for an optimal membranous environment. Based on these results, interfering with lipin1 capacity to modify lipids may therefore constitute a potential strategy to limit HCV infection.
Collapse
Affiliation(s)
- Lidia Mingorance
- Department of Cellular and Molecular Biology, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas, Madrid (Spain)
| | - Victoria Castro
- Department of Cellular and Molecular Biology, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas, Madrid (Spain)
| | - Ginés Ávila-Pérez
- Department of Cellular and Molecular Biology, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas, Madrid (Spain)
| | - Gema Calvo
- Department of Cellular and Molecular Biology, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas, Madrid (Spain)
| | - María Josefa Rodriguez
- Department of Macromolecular Structures, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas, Madrid (Spain)
| | - José L. Carrascosa
- Department of Macromolecular Structures, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas, Madrid (Spain)
| | - Sofía Pérez-del-Pulgar
- Liver Unit, Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Consorcio Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Universitat de Barcelona, Barcelona (Spain)
| | - Xavier Forns
- Liver Unit, Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Consorcio Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Universitat de Barcelona, Barcelona (Spain)
| | - Pablo Gastaminza
- Department of Cellular and Molecular Biology, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas, Madrid (Spain)
- Liver Unit, Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Consorcio Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Universitat de Barcelona, Barcelona (Spain)
- * E-mail:
| |
Collapse
|
40
|
Hofmann S, Krajewski M, Scherer C, Scholz V, Mordhorst V, Truschow P, Schöbel A, Reimer R, Schwudke D, Herker E. Complex lipid metabolic remodeling is required for efficient hepatitis C virus replication. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1863:1041-1056. [PMID: 29885363 DOI: 10.1016/j.bbalip.2018.06.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 03/16/2018] [Accepted: 06/01/2018] [Indexed: 12/12/2022]
Abstract
The hepatitis C virus (HCV) life cycle is tightly linked to the host cell lipid metabolism with the endoplasmic reticulum-derived membranous web harboring viral RNA replication complexes and lipid droplets as virion assembly sites. To investigate HCV-induced changes in the lipid composition, we performed quantitative shotgun lipidomic studies of whole cell extracts and subcellular compartments. Our results indicate that HCV infection reduces the ratio of neutral to membrane lipids. While the amount of neutral lipids and lipid droplet morphology were unchanged, membrane lipids, especially cholesterol and phospholipids, accumulated in the microsomal fraction in HCV-infected cells. In addition, HCV-infected cells had a higher relative abundance of phosphatidylcholines and triglycerides with longer fatty acyl chains and a strikingly increased utilization of C18 fatty acids, most prominently oleic acid (FA [18:1]). Accordingly, depletion of fatty acid elongases and desaturases impaired HCV replication. Moreover, the analysis of free fatty acids revealed increased levels of polyunsaturated fatty acids (PUFAs) caused by HCV infection. Interestingly, inhibition of the PUFA synthesis pathway via knockdown of the rate-limiting Δ6-desaturase enzyme or by treatment with a high dose of a small-molecule inhibitor impaired viral progeny production, indicating that elevated PUFAs are needed for virion morphogenesis. In contrast, pretreatment with low inhibitor concentrations promoted HCV translation and/or early RNA replication. Taken together our results demonstrate the complex remodeling of the host cell lipid metabolism induced by HCV to enhance both virus replication and progeny production.
Collapse
Affiliation(s)
- Sarah Hofmann
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Martinistrasse 52, 20251 Hamburg, Germany
| | - Matthias Krajewski
- Division of Bioanalytical Chemistry, Research Center Borstel - Leibniz Lung Center, Parkallee 10, 23845 Borstel, Germany
| | - Christina Scherer
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Martinistrasse 52, 20251 Hamburg, Germany
| | - Verena Scholz
- Division of Bioanalytical Chemistry, Research Center Borstel - Leibniz Lung Center, Parkallee 10, 23845 Borstel, Germany
| | - Valerie Mordhorst
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Martinistrasse 52, 20251 Hamburg, Germany
| | - Pavel Truschow
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Martinistrasse 52, 20251 Hamburg, Germany
| | - Anja Schöbel
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Martinistrasse 52, 20251 Hamburg, Germany
| | - Rudolph Reimer
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Martinistrasse 52, 20251 Hamburg, Germany
| | - Dominik Schwudke
- Division of Bioanalytical Chemistry, Research Center Borstel - Leibniz Lung Center, Parkallee 10, 23845 Borstel, Germany
| | - Eva Herker
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Martinistrasse 52, 20251 Hamburg, Germany.
| |
Collapse
|
41
|
Batsaikhan B, Huang CI, Yeh ML, Huang CF, Hou NJ, Lin ZY, Chen SC, Huang JF, Yu ML, Chuang WL, Lee JC, Dai CY. The effect of antiviral therapy on serum lipid profiles in chronic hepatitis C. Oncotarget 2018; 9:21313-21321. [PMID: 29765541 PMCID: PMC5940400 DOI: 10.18632/oncotarget.25092] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 03/22/2018] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Low lipid profile is associated with hepatitis C virus (HCV) infection. Chronic HCV infection is the main cause of liver injury and serum lipid levels during antiviral treatment. We aimed to evaluate the effect of antiviral treatment on the change of lipid profiles during HCV treatment. METHODS Total 863 patients who complete the interferon-based therapy in Kaohsiung Medical University Hospital were included in this study. The lipid profile measured and evaluated in baseline and after 6 months of the treatment. RESULTS Sustained virological response (SVR) was achieved in 81.2% of all patients. The baseline triglycerides (TG) levels in the SVR group and non SVR groups were similar. The TG levels at 6 months after cessation of the treatment was significantly elevated in SVR group (102.9±57.0 mg/dL, p=0.0001) but did not elevated in non SVR group (94.5±45.6 mg/dL, p=0.690) compared with baseline TG levels. After adjusting patients by four indexes for fibrosis (FIB4) in cut-off point 3.25, serum TG levels significantly increased in low FIB4 group (103.2±57.9 mg/dL, p=0.0001) but not in high FIB4 group (98.1±49.6 mg/dL, p=0.095) after 6 months end of the treatment. Serum TG level was increased greater in patients who had low FIB4 score and patients who achieved SVR (baseline 89.1±34.8 mg/dL; 6 months after treatment 104.3±59.3 mg/dL, paired T test p=0.0001). CONCLUSION The clearance of the HCV RNA is the main determinant of the increase of lipids after PegIFN/RBV treatment. However advanced fibrosis also has an effect in increase of lipids after the treatment.
Collapse
Affiliation(s)
- Batbold Batsaikhan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Internal Medicine, Institute of Medical Sciences, Mongolian National University of Medical Sciences, Ulaanbaatar, Mongolia
| | - Ching-I Huang
- Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ming-Lun Yeh
- Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Faculty of Internal Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chung-Feng Huang
- Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Faculty of Internal Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Biotechnology, College of Life Science, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Nei-Jen Hou
- Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Zu-Yau Lin
- Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Faculty of Internal Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Shinn-Cherng Chen
- Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Faculty of Internal Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jee-Fu Huang
- Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Faculty of Internal Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ming-Lung Yu
- Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Faculty of Internal Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Wan-Long Chuang
- Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Faculty of Internal Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jin-Ching Lee
- Department of Biotechnology, College of Life Science, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chia-Yen Dai
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Faculty of Internal Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Health Management Center, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
42
|
Abstract
Macroautophagy, hereafter autophagy, is a catabolic process that is important for maintaining cellular homeostasis. It can also be used by cells to remove intracellular microbial pathogens. However, the studies on hepatitis C virus (HCV) in recent years indicated that this virus could regulate this cellular pathway and use it to enhance its replication. HCV could temporally control the autophagic flux and use the autophagic membranes for the assembly of its RNA replication complex. In this report, we will discuss the biogenesis of autophagosomes induced by HCV and how HCV uses this autophagic pathway for its RNA replication.
Collapse
Affiliation(s)
- Linya Wang
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California , Los Angeles, California
| | - Jing-Hsiung James Ou
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California , Los Angeles, California
| |
Collapse
|
43
|
Hepatitis C Virus Replication Depends on Endosomal Cholesterol Homeostasis. J Virol 2017; 92:JVI.01196-17. [PMID: 29046459 DOI: 10.1128/jvi.01196-17] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 09/28/2017] [Indexed: 01/16/2023] Open
Abstract
Similar to other positive-strand RNA viruses, hepatitis C virus (HCV) causes massive rearrangements of intracellular membranes, resulting in a membranous web (MW) composed of predominantly double-membrane vesicles (DMVs), the presumed sites of RNA replication. DMVs are enriched for cholesterol, but mechanistic details on the source and recruitment of cholesterol to the viral replication organelle are only partially known. Here we focused on selected lipid transfer proteins implicated in direct lipid transfer at various endoplasmic reticulum (ER)-membrane contact sites. RNA interference (RNAi)-mediated knockdown identified several hitherto unknown HCV dependency factors, such as steroidogenic acute regulatory protein-related lipid transfer domain protein 3 (STARD3), oxysterol-binding protein-related protein 1A and -B (OSBPL1A and -B), and Niemann-Pick-type C1 (NPC1), all residing at late endosome and lysosome membranes and required for efficient HCV RNA replication but not for replication of the closely related dengue virus. Focusing on NPC1, we found that knockdown or pharmacological inhibition caused cholesterol entrapment in lysosomal vesicles concomitant with decreased cholesterol abundance at sites containing the viral replicase factor NS5A. In untreated HCV-infected cells, unesterified cholesterol accumulated at the perinuclear region, partially colocalizing with NS5A at DMVs, arguing for NPC1-mediated endosomal cholesterol transport to the viral replication organelle. Consistent with cholesterol being an important structural component of DMVs, reducing NPC1-dependent endosomal cholesterol transport impaired MW integrity. This suggests that HCV usurps lipid transfer proteins, such as NPC1, at ER-late endosome/lysosome membrane contact sites to recruit cholesterol to the viral replication organelle, where it contributes to MW functionality.IMPORTANCE A key feature of the replication of positive-strand RNA viruses is the rearrangement of the host cell endomembrane system to produce a membranous replication organelle (RO). The underlying mechanisms are far from being elucidated fully. In this report, we provide evidence that HCV RNA replication depends on functional lipid transport along the endosomal-lysosomal pathway that is mediated by several lipid transfer proteins, such as the Niemann-Pick type C1 (NPC1) protein. Pharmacological inhibition of NPC1 function reduced viral replication, impaired the transport of cholesterol to the viral replication organelle, and altered organelle morphology. Besides NPC1, our study reports the importance of additional endosomal and lysosomal lipid transfer proteins required for viral replication, thus contributing to our understanding of how HCV manipulates their function in order to generate a membranous replication organelle. These results might have implications for the biogenesis of replication organelles of other positive-strand RNA viruses.
Collapse
|
44
|
Hepatitis C Virus Induces the Localization of Lipid Rafts to Autophagosomes for Its RNA Replication. J Virol 2017; 91:JVI.00541-17. [PMID: 28747506 DOI: 10.1128/jvi.00541-17] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 07/22/2017] [Indexed: 01/01/2023] Open
Abstract
Autophagy plays important roles in maintaining cellular homeostasis. It uses double- or multiple-membrane vesicles termed autophagosomes to remove protein aggregates and damaged organelles from the cytoplasm for recycling. Hepatitis C virus (HCV) has been shown to induce autophagy to enhance its own replication. Here we describe a procedure that combines membrane flotation and affinity chromatography for the purification of autophagosomes from cells that harbor an HCV subgenomic RNA replicon. The purified autophagosomes had double- or multiple-membrane structures with a diameter ranging from 200 nm to 600 nm. The analysis of proteins associated with HCV-induced autophagosomes by proteomics led to the identification of HCV nonstructural proteins as well as proteins involved in membrane trafficking. Notably, caveolin-1, caveolin-2, and annexin A2, which are proteins associated with lipid rafts, were also identified. The association of lipid rafts with HCV-induced autophagosomes was confirmed by Western blotting, immunofluorescence microscopy, and immunoelectron microscopy. Their association with autophagosomes was also confirmed in HCV-infected cells. The association of lipid rafts with autophagosomes was specific to HCV, as it was not detected in autophagosomes induced by nutrient starvation. Further analysis indicated that the autophagosomes purified from HCV replicon cells could mediate HCV RNA replication in a lipid raft-dependent manner, as the depletion of cholesterol, a major component of lipid rafts, from autophagosomes abolished HCV RNA replication. Our studies thus demonstrated that HCV could specifically induce the association of lipid rafts with autophagosomes for its RNA replication.IMPORTANCE HCV can cause severe liver diseases, including cirrhosis and hepatocellular carcinoma, and is one of the most important human pathogens. Infection with HCV can lead to the reorganization of membrane structures in its host cells, including the induction of autophagosomes. In this study, we developed a procedure to purify HCV-induced autophagosomes and demonstrated that HCV could induce the localization of lipid rafts to autophagosomes to mediate its RNA replication. This finding provided important information for further understanding the life cycle of HCV and its interaction with the host cells.
Collapse
|
45
|
Arora P, Basu A, Schmidt ML, Clark GJ, Donninger H, Nichols DB, Calvisi DF, Kaushik-Basu N. Nonstructural protein 5B promotes degradation of the NORE1A tumor suppressor to facilitate hepatitis C virus replication. Hepatology 2017; 65:1462-1477. [PMID: 28090674 PMCID: PMC5397368 DOI: 10.1002/hep.29049] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 01/06/2017] [Accepted: 01/09/2017] [Indexed: 12/16/2022]
Abstract
UNLABELLED Hepatitis C virus (HCV) infection is a common risk factor for the development of liver cancer. The molecular mechanisms underlying this effect are only partially understood. Here, we show that the HCV protein, nonstructural protein (NS) 5B, directly binds to the tumor suppressor, NORE1A (RASSF5), and promotes its proteosomal degradation. In addition, we show that NORE1A colocalizes to sites of HCV viral replication and suppresses the replication process. Thus, NORE1A has antiviral activity, which is specifically antagonized by NS5B. Moreover, the suppression of NORE1A protein levels correlated almost perfectly with elevation of Ras activity in primary human samples. Therefore, NORE1A inactivation by NS5B may be essential for maximal HCV replication and may make a major contribution to HCV-induced liver cancer by shifting Ras signaling away from prosenescent/proapoptotic signaling pathways. CONCLUSION HCV uses NS5B to specifically suppress NORE1A, facilitating viral replication and elevated Ras signaling. (Hepatology 2017;65:1462-1477).
Collapse
Affiliation(s)
- Payal Arora
- Department of Biochemistry and Molecular Biology, UMDNJ-New Jersey Medical School, 185 South Orange Avenue, Newark, NJ 07103, USA
| | - Amartya Basu
- Department of Biochemistry and Molecular Biology, UMDNJ-New Jersey Medical School, 185 South Orange Avenue, Newark, NJ 07103, USA
| | - M. Lee Schmidt
- Dept. Pharmacology and Toxicology, University of Louisville, Rm 417, CTRB 505, S. Hancock St., Louisville, KY 40202, USA
| | - Geoffrey J. Clark
- Dept. Pharmacology and Toxicology, University of Louisville, Rm 417, CTRB 505, S. Hancock St., Louisville, KY 40202, USA,To whom correspondence should be addressed: ,
| | - Howard Donninger
- Dept. Pharmacology and Toxicology, University of Louisville, Rm 417, CTRB 505, S. Hancock St., Louisville, KY 40202, USA
| | - Daniel B. Nichols
- Department of Biochemistry and Molecular Biology, UMDNJ-New Jersey Medical School, 185 South Orange Avenue, Newark, NJ 07103, USA,Department of Biological Sciences, Seton Hall University, South Orange, NJ 07079, USA
| | - Diego F. Calvisi
- Department of Clinical and Experimental Medicine, University of Sassari, Sassari, Italy
| | - Neerja Kaushik-Basu
- Department of Biochemistry and Molecular Biology, UMDNJ-New Jersey Medical School, 185 South Orange Avenue, Newark, NJ 07103, USA,To whom correspondence should be addressed: ,
| |
Collapse
|
46
|
Kim JH, Sung PS, Lee EB, Hur W, Park DJ, Shin EC, Windisch MP, Yoon SK. GRIM-19 Restricts HCV Replication by Attenuating Intracellular Lipid Accumulation. Front Microbiol 2017; 8:576. [PMID: 28443075 PMCID: PMC5387058 DOI: 10.3389/fmicb.2017.00576] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 03/20/2017] [Indexed: 12/15/2022] Open
Abstract
Gene-associated with retinoid-interferon-induced mortality 19 (GRIM-19) targets multiple signaling pathways involved in cell death and growth. However, the role of GRIM-19 in the pathogenesis of hepatitis virus infections remains unexplored. Here, we investigated the restrictive effects of GRIM-19 on the replication of hepatitis C virus (HCV). We found that GRIM-19 protein levels were reduced in HCV-infected Huh7 cells and Huh7 cells harboring HCV replicons. Moreover, ectopically expressed GRIM-19 caused a reduction in both intracellular viral RNA levels and secreted viruses in HCVcc-infected cell cultures. The restrictive effect on HCV replication was restored by treatment with siRNA against GRIM-19. Interestingly, GRIM-19 overexpression did not alter the level of phosphorylated STAT3 or its subcellular distribution. Strikingly, forced expression of GRIM-19 attenuated an increase in intracellular lipid droplets after oleic acid (OA) treatment or HCVcc infection. GRIM-19 overexpression abrogated fatty acid-induced upregulation of sterol regulatory element-binding transcription factor-1 (SREBP-1c), resulting in attenuated expression of its target genes such as fatty acid synthase (FAS) and acetyl CoA carboxylase (ACC). Treatment with OA or overexpression of SREBP-1c in GRIM-19-expressing, HCVcc-infected cells restored HCV replication. Our results suggest that GRIM-19 interferes with HCV replication by attenuating intracellular lipid accumulation and therefore is an anti-viral host factor that could be a promising target for HCV treatment.
Collapse
Affiliation(s)
- Jung-Hee Kim
- The Catholic University Liver Research Center and WHO Collaborating Center of Viral Hepatitis, The Catholic University of KoreaSeoul, South Korea
| | - Pil S Sung
- Laboratory of Immunology and Infectious Diseases, Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and TechnologyDaejeon, South Korea
| | - Eun B Lee
- The Catholic University Liver Research Center and WHO Collaborating Center of Viral Hepatitis, The Catholic University of KoreaSeoul, South Korea
| | - Wonhee Hur
- The Catholic University Liver Research Center and WHO Collaborating Center of Viral Hepatitis, The Catholic University of KoreaSeoul, South Korea
| | - Dong J Park
- The Catholic University Liver Research Center and WHO Collaborating Center of Viral Hepatitis, The Catholic University of KoreaSeoul, South Korea
| | - Eui-Cheol Shin
- Laboratory of Immunology and Infectious Diseases, Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and TechnologyDaejeon, South Korea
| | - Marc P Windisch
- Hepatitis Research Laboratory, Discovery Biology Department, Institut Pasteur Korea, Seongnam-siGyeonggi-do, South Korea
| | - Seung K Yoon
- The Catholic University Liver Research Center and WHO Collaborating Center of Viral Hepatitis, The Catholic University of KoreaSeoul, South Korea
| |
Collapse
|
47
|
Guo H, Huang M, Yuan Q, Wei Y, Gao Y, Mao L, Gu L, Tan YW, Zhong Y, Liu D, Sun S. The Important Role of Lipid Raft-Mediated Attachment in the Infection of Cultured Cells by Coronavirus Infectious Bronchitis Virus Beaudette Strain. PLoS One 2017; 12:e0170123. [PMID: 28081264 PMCID: PMC5231368 DOI: 10.1371/journal.pone.0170123] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Accepted: 12/29/2016] [Indexed: 11/19/2022] Open
Abstract
Lipid raft is an important element for the cellular entry of some viruses, including coronavirus infectious bronchitis virus (IBV). However, the exact role of lipid rafts in the cellular membrane during the entry of IBV into host cells is still unknown. In this study, we biochemically fractionated IBV-infected cells via sucrose density gradient centrifugation after depleting plasma membrane cholesterol with methyl-β-cyclodextrin or Mevastatin. Our results demonstrated that unlike IBV non-structural proteins, IBV structural proteins co-localized with lipid raft marker caveolin-1. Infectivity assay results of Vero cells illustrated that the drug-induced disruption of lipid rafts significantly suppressed IBV infection. Further studies revealed that lipid rafts were not required for IBV genome replication or virion release at later stages. However, the drug-mediated depletion of lipid rafts in Vero cells before IBV attachment significantly reduced the expression of viral structural proteins, suggesting that drug treatment impaired the attachment of IBV to the cell surface. Our results indicated that lipid rafts serve as attachment factors during the early stages of IBV infection, especially during the attachment stage.
Collapse
Affiliation(s)
- Huichen Guo
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping, Lanzhou, Gansu, The P.R. China
| | - Mei Huang
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping, Lanzhou, Gansu, The P.R. China
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Quan Yuan
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Yanquan Wei
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping, Lanzhou, Gansu, The P.R. China
| | - Yuan Gao
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping, Lanzhou, Gansu, The P.R. China
| | - Lejiao Mao
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping, Lanzhou, Gansu, The P.R. China
| | - Lingjun Gu
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping, Lanzhou, Gansu, The P.R. China
- College of Animal Science, Yangtze University, Jingzhou, P.R. China
| | - Yong Wah Tan
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Yanxin Zhong
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Dingxiang Liu
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping, Lanzhou, Gansu, The P.R. China
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
- * E-mail: (SS); (DL)
| | - Shiqi Sun
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping, Lanzhou, Gansu, The P.R. China
- * E-mail: (SS); (DL)
| |
Collapse
|
48
|
Wang H, Tai AW. Continuous de novo generation of spatially segregated hepatitis C virus replication organelles revealed by pulse-chase imaging. J Hepatol 2017; 66:55-66. [PMID: 27599826 PMCID: PMC5167665 DOI: 10.1016/j.jhep.2016.08.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 08/22/2016] [Accepted: 08/26/2016] [Indexed: 01/22/2023]
Abstract
BACKGROUND & AIMS Like all positive-sense RNA viruses, hepatitis C virus (HCV) induces host membrane alterations for its replication. In chronically infected cells, it is not known whether these viral replication organelles are being continually resupplied by newly synthesized viral proteins in situ, or whether they are generated de novo. Here we aimed to study temporal events in replication organelles formation and maturation. METHODS Here we use pulse-chase labeling in combination with confocal microscopy, correlative light electron microscopy and biochemical methods to identify temporally distinct populations of replication organelles in living cells and study the formation, morphogenesis as well as compositional and functional changes of replication organelles over time. RESULTS We found that HCV replication organelles are continuously generated de novo at spatially distinct sites from preformed ones. This process is accompanied by accumulated intracellular membrane alteration, increased cholesterol delivery, NS5A phosphorylation, and positive-strand RNA content, and by eventual association with HCV core protein around lipid droplets. Generation of spatially segregated foci requires viral NS5A and the host factors phosphatidylinositol 4-kinase and oxysterol-binding protein, while association of foci with lipid droplets requires cholesterol. CONCLUSIONS Our results reveal that HCV replication organelles are not static structures, but instead are continuously generated and dynamically change in composition and possibly also in function. LAY SUMMARY Hepatitis C virus replication membrane structures are continuously generated at spatially distinct sites. New replication organelles are different in composition, and possibly also in function, compared to old replication organelles.
Collapse
Affiliation(s)
- Hongliang Wang
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan
| | - Andrew W. Tai
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan
,Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan
,Medicine Service, Ann Arbor Veterans Administration Health System, Ann Arbor, Michigan
,Correspondence: Andrew W. Tai, University of Michigan, 6520 MSRB I SPC 5682, 1150 W Medical Center Dr, Ann Arbor, MI 48109-5682, Tel: (734) 764-2804, FAX: (734) 763-2535,
| |
Collapse
|
49
|
Miyamura T, Lemon SM, Walker CM, Wakita T. The HCV Replicase Complex and Viral RNA Synthesis. HEPATITIS C VIRUS I 2016. [PMCID: PMC7122888 DOI: 10.1007/978-4-431-56098-2_8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Replication of hepatitis C virus (HCV) is tightly linked to membrane alterations designated the membranous web, harboring the viral replicase complex. In this chapter we describe the morphology and 3D architecture of the HCV-induced replication organelles, mainly consisting of double membrane vesicles, which are generated by a concerted action of the nonstructural proteins NS3 to NS5B. Recent studies have furthermore identified a number of host cell proteins and lipids contributing to the biogenesis of the membranous web, which are discussed in this chapter. Viral RNA synthesis is tightly associated with these membrane alterations and mainly driven by the viral RNA dependent RNA polymerase NS5B. We summarize our current knowledge of the structure and function of NS5B, the role of cis-acting replication elements at the termini of the genome in regulating RNA synthesis and the contribution of additional viral and host factors to viral RNA synthesis, which is still ill defined.
Collapse
Affiliation(s)
- Tatsuo Miyamura
- National Institute of Infectious Diseases, Tokyo, Tokyo Japan
| | - Stanley M. Lemon
- Departments of Medicine and Microbiology & Immunology , The University of North Carolina, Chapel Hill, North Carolina USA
| | - Christopher M. Walker
- Center for Vaccines and Immunity, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio USA
| | - Takaji Wakita
- National Institute of Infectious Diseases, Tokyo, Tokyo Japan
| |
Collapse
|
50
|
Grammatikos G, Dietz J, Ferreiros N, Koch A, Dultz G, Bon D, Karakasiliotis I, Lutz T, Knecht G, Gute P, Herrmann E, Zeuzem S, Mavromara P, Sarrazin C, Pfeilschifter J. Persistence of HCV in Acutely-Infected Patients Depletes C24-Ceramide and Upregulates Sphingosine and Sphinganine Serum Levels. Int J Mol Sci 2016; 17:E922. [PMID: 27304952 PMCID: PMC4926455 DOI: 10.3390/ijms17060922] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Revised: 05/27/2016] [Accepted: 05/31/2016] [Indexed: 12/15/2022] Open
Abstract
Hepatitis C virus (HCV) substantially affects lipid metabolism, and remodeling of sphingolipids appears to be essential for HCV persistence in vitro. The aim of the current study is the evaluation of serum sphingolipid variations during acute HCV infection. We enrolled prospectively 60 consecutive patients with acute HCV infection, most of them already infected with human immunodeficiency virus (HIV), and serum was collected at the time of diagnosis and longitudinally over a six-month period until initiation of antiviral therapy or confirmed spontaneous clearance. Quantification of serum sphingolipids was performed by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Spontaneous clearance was observed in 11 out of 60 patients (18.3%), a sustained viral response (SVR) in 43 out of 45 patients (95.5%) receiving an antiviral treatment after follow-up, whereas persistence of HCV occurred in six out of 60 patients (10%). C24-ceramide (C24-Cer)-levels increased at follow-up in patients with spontaneous HCV eradication (p < 0.01), as compared to baseline. Sphingosine and sphinganine values were significantly upregulated in patients unable to clear HCV over time compared to patients with spontaneous clearance of HCV infection on follow-up (p = 0.013 and 0.006, respectively). In summary, the persistence of HCV after acute infection induces a downregulation of C24Cer and a simultaneous elevation of serum sphingosine and sphinganine concentrations.
Collapse
Affiliation(s)
- Georgios Grammatikos
- Pharmazentrum Frankfurt, Institut für Allgemeine Pharmakologie, Goethe University Hospital, Frankfurt am Main, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany.
- Medizinische Klinik 1, Goethe University Hospital, Frankfurt am Main, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany.
| | - Julia Dietz
- Medizinische Klinik 1, Goethe University Hospital, Frankfurt am Main, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany.
| | - Nerea Ferreiros
- Pharmazentrum Frankfurt, Institut für klinische Pharmakologie, Goethe University Hospital, 60590 Frankfurt am Main, Germany.
| | - Alexander Koch
- Pharmazentrum Frankfurt, Institut für Allgemeine Pharmakologie, Goethe University Hospital, Frankfurt am Main, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany.
| | - Georg Dultz
- Medizinische Klinik 1, Goethe University Hospital, Frankfurt am Main, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany.
| | - Dimitra Bon
- Institute of Biostatistics and Mathematical Modelling, Department of Medicine, Goethe University, 60590 Frankfurt am Main, Germany.
| | | | - Thomas Lutz
- Infektiologikum, 60590 Frankfurt am Main, Germany.
| | - Gaby Knecht
- Infektiologikum, 60590 Frankfurt am Main, Germany.
| | - Peter Gute
- Infektiologikum, 60590 Frankfurt am Main, Germany.
| | - Eva Herrmann
- Pharmazentrum Frankfurt, Institut für klinische Pharmakologie, Goethe University Hospital, 60590 Frankfurt am Main, Germany.
| | - Stefan Zeuzem
- Medizinische Klinik 1, Goethe University Hospital, Frankfurt am Main, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany.
| | - Penelope Mavromara
- Molecular Virology, Hellenic Pasteur Institute, 11521 Athens, Greece.
- Molecular Biology and Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece.
| | - Christoph Sarrazin
- Medizinische Klinik 1, Goethe University Hospital, Frankfurt am Main, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany.
| | - Josef Pfeilschifter
- Pharmazentrum Frankfurt, Institut für Allgemeine Pharmakologie, Goethe University Hospital, Frankfurt am Main, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany.
| |
Collapse
|