1
|
Luczo JM, Spackman E. Epitopes in the HA and NA of H5 and H7 avian influenza viruses that are important for antigenic drift. FEMS Microbiol Rev 2024; 48:fuae014. [PMID: 38734891 PMCID: PMC11149724 DOI: 10.1093/femsre/fuae014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 04/23/2024] [Accepted: 05/10/2024] [Indexed: 05/13/2024] Open
Abstract
Avian influenza viruses evolve antigenically to evade host immunity. Two influenza A virus surface glycoproteins, the haemagglutinin and neuraminidase, are the major targets of host immunity and undergo antigenic drift in response to host pre-existing humoral and cellular immune responses. Specific sites have been identified as important epitopes in prominent subtypes such as H5 and H7, which are of animal and public health significance due to their panzootic and pandemic potential. The haemagglutinin is the immunodominant immunogen, it has been extensively studied, and the antigenic reactivity is closely monitored to ensure candidate vaccine viruses are protective. More recently, the neuraminidase has received increasing attention for its role as a protective immunogen. The neuraminidase is expressed at a lower abundance than the haemagglutinin on the virus surface but does elicit a robust antibody response. This review aims to compile the current information on haemagglutinin and neuraminidase epitopes and immune escape mutants of H5 and H7 highly pathogenic avian influenza viruses. Understanding the evolution of immune escape mutants and the location of epitopes is critical for identification of vaccine strains and development of broadly reactive vaccines that can be utilized in humans and animals.
Collapse
Affiliation(s)
- Jasmina M Luczo
- Australian Animal Health Laboratory, Australian Centre for Disease Preparedness, Commonwealth Scientific and Industrial Research Organisation, East Geelong, Victoria 3219, Australia
| | - Erica Spackman
- Exotic & Emerging Avian Viral Diseases Research, Southeast Poultry Research Laboratory, United States National Poultry Research Center, Agricultural Research Service, United States Department of Agriculture, Athens, GA 30605, United States
| |
Collapse
|
2
|
Rafique S, Rashid F, Mushtaq S, Ali A, Li M, Luo S, Xie L, Xie Z. Global review of the H5N8 avian influenza virus subtype. Front Microbiol 2023; 14:1200681. [PMID: 37333639 PMCID: PMC10272346 DOI: 10.3389/fmicb.2023.1200681] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 05/15/2023] [Indexed: 06/20/2023] Open
Abstract
Orthomyxoviruses are negative-sense, RNA viruses with segmented genomes that are highly unstable due to reassortment. The highly pathogenic avian influenza (HPAI) subtype H5N8 emerged in wild birds in China. Since its emergence, it has posed a significant threat to poultry and human health. Poultry meat is considered an inexpensive source of protein, but due to outbreaks of HPAI H5N8 from migratory birds in commercial flocks, the poultry meat industry has been facing severe financial crises. This review focuses on occasional epidemics that have damaged food security and poultry production across Europe, Eurasia, the Middle East, Africa, and America. HPAI H5N8 viral sequences have been retrieved from GISAID and analyzed. Virulent HPAI H5N8 belongs to clade 2.3.4.4b, Gs/GD lineage, and has been a threat to the poultry industry and the public in several countries since its first introduction. Continent-wide outbreaks have revealed that this virus is spreading globally. Thus, continuous sero- and viro-surveillance both in commercial and wild birds, and strict biosecurity reduces the risk of the HPAI virus appearing. Furthermore, homologous vaccination practices in commercial poultry need to be introduced to overcome the introduction of emergent strains. This review clearly indicates that HPAI H5N8 is a continuous threat to poultry and people and that further regional epidemiological studies are needed.
Collapse
Affiliation(s)
- Saba Rafique
- SB Diagnostic Laboratory, Sadiq Poultry Pvt. Ltd, Rawalpindi, Pakistan
| | - Farooq Rashid
- Department of Infectious Diseases, Chongqing Public Health Medical Center, Chongqing, China
| | - Sajda Mushtaq
- SB Diagnostic Laboratory, Sadiq Poultry Pvt. Ltd, Rawalpindi, Pakistan
| | - Akbar Ali
- Poultry Research Institute, Rawalpindi, Pakistan
| | - Meng Li
- Department of Biotechnology, Guangxi Veterinary Research Institute, Nanning, China
- Guangxi Key Laboratory of Veterinary Biotechnology, Nanning, China
- Key Laboratory of China (Guangxi)-ASEAN Cross-border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Nanning, China
| | - Sisi Luo
- Department of Biotechnology, Guangxi Veterinary Research Institute, Nanning, China
- Guangxi Key Laboratory of Veterinary Biotechnology, Nanning, China
- Key Laboratory of China (Guangxi)-ASEAN Cross-border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Nanning, China
| | - Liji Xie
- Department of Biotechnology, Guangxi Veterinary Research Institute, Nanning, China
- Guangxi Key Laboratory of Veterinary Biotechnology, Nanning, China
- Key Laboratory of China (Guangxi)-ASEAN Cross-border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Nanning, China
| | - Zhixun Xie
- Department of Biotechnology, Guangxi Veterinary Research Institute, Nanning, China
- Guangxi Key Laboratory of Veterinary Biotechnology, Nanning, China
- Key Laboratory of China (Guangxi)-ASEAN Cross-border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Nanning, China
| |
Collapse
|
3
|
Tang Z, Carrel M, Koylu C, Kitchen A. How human ecology landscapes shape the circulation of H5N1 avian influenza: A case study in Indonesia. One Health 2023. [DOI: 10.1016/j.onehlt.2023.100537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023] Open
|
4
|
Rehman S, Effendi MH, Witaningruma AM, Nnabuikeb UE, Bilal M, Abbas A, Abbas RZ, Hussain K. Avian influenza (H5N1) virus, epidemiology and its effects on backyard poultry in Indonesia: a review. F1000Res 2022; 11:1321. [PMID: 36845324 PMCID: PMC9947427 DOI: 10.12688/f1000research.125878.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/30/2023] [Indexed: 09/16/2023] Open
Abstract
Avian influenza (AI) is a zoonotic viral endemic disease that affects poultry, swine, and mammals, including humans. Highly pathogenic avian influenza (HPAI) is caused by influenza type A virus subtypes H5, and H7 which are naturally carried by a wild bird and often affect domestic poultry. Avian influenza (AI) is a major problem worldwide that causes significant economic losses in the poultry sector. Since 2003, the widespread H5N1 HPAI in poultry has led to high mortalities resulting in huge economic losses in the poultry sector in Indonesia. Domestic poultry is a key source of income that contributes to economic growth, both directly and indirectly, by reducing poverty among the people living in rural communities. Furthermore, in many developing countries, including Indonesia, rural people meet a portion of their food needs through backyard poultry. Nevertheless, this sector is strongly affected by biosecurity hazards, particularly in Indonesia by HPAI infections. Avian influenza (AI), subtype H5N1 has zoonotic significance, posing major risks to public health and poultry. Due to close interaction between wild migratory birds and ducks, the domestic poultry sector in Indonesia is directly affected by this virus. This virus continues to be ubiquitous in Indonesia as a result of the unpredictable mutations produced by antigenic drift and shift, which can persist from a few days to several years. In this review, the epidemiology and impact, of highly pathogenic avian influenza H5N1 subtype virus infection on backyard poultry in Indonesia were discussed.
Collapse
Affiliation(s)
- Saifur Rehman
- Division of Veterinary Public Health Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, East Java, 60115, Indonesia
| | - Mustofa Helmi Effendi
- Division of Veterinary Public Health Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, East Java, 60115, Indonesia
| | - Adiana Mutamsari Witaningruma
- Division of Veterinary Public Health Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, East Java, 60115, Indonesia
| | - Ugbo Emmanuel Nnabuikeb
- Department of Applied Microbiology, Faculty of Science, Ebonyi State University, Abakaliki,, Nigeria
| | - Muhammad Bilal
- Department of Epidemiology and Public Health, University of Veterinary and Animal Sciences, Lahore, Islamic, 40050, Pakistan
- Faculty of Veterinary Medical Sciences, University of Calgary, Alberta, Canada
| | - Asghar Abbas
- Department of Pathobiology, Muhammad Nawaz Sharif University of Agriculture, Multan, Islamic, Pakistan
| | - Rao Zahid Abbas
- Department of Parasitology, University of Agriculture, Faisalabad, Islamic, Pakistan
| | - Kashif Hussain
- Department of Parasitology, University of Agriculture, Faisalabad, Islamic, Pakistan
| |
Collapse
|
5
|
Rehman S, Effendi MH, Shehzad A, Rahman A, Rahmahani J, Witaningrum AM, Bilal M. Prevalence and associated risk factors of avian influenza A virus subtypes H5N1 and H9N2 in LBMs of East Java province, Indonesia: a cross-sectional study. PeerJ 2022. [DOI: 10.7717/peerj.14095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Background
Avian influenza A virus subtypes H5N1 and H9N2 are contagious zoonotic diseases that are circulating in Indonesia and have raised increasing concern about their potential impacts on poultry and public health. A cross-sectional study was carried out to investigate the prevalence and associated risk factors of avian influenza A virus subtypes H5N1 and H9N2 among poultry in the live bird markets of four cities in East Java province, Indonesia.
Methods
A total of 600 tracheal and cloacal swabs (267 from backyards, 179 from broilers, and 154 from layers) from healthy birds were collected. The samples were inoculated into specific pathogenic-free embryonated eggs at 9-day-old via the allantoic cavity. qRT-PCR was used for further identification of avian influenza.
Results
The overall prevalence of circulating influenza A virus subtypes H5N1 and H9N2 was 3.8% (23/600, 95%CI [0.0229–0.0537]). Prevalence was higher in backyards at 5.99% (16/267) followed by broilers (2.23% (4/179)) and layers (1.68% (3/154)). The final multivariable model revealed five risk factors for H9N2 infections: presence of ducks (p = 0.003, OR = 38.2), turkeys (p = 0.017 OR = 0.032), and pheasants in the stall (p = 0.04, OR = 18.422), dry (p = 0.006) and rainy season (p < 0.001), and household birds (p = 0.002) and seven factors for H5N1 infections including: observing rodents (p = 0.036, OR = 0.005), stray dogs access (p = 0.004 OR ≤ 0.001), presence of turkeys (p = 0.03 OR = 0.007), chukars/partridges (p = 0.024 OR = 2500), and peafowls in the stalls (p = 0.0043 OR ≤ 0.001), rainy season (p = 0.001) and birds from the household sources (p = 0.002) in the live bird markets.
Conclusions
The findings of the current study illustrate the recurring infection and presence of both avian influenza viruses and associated risk factors in the surveyed marketplaces. Effective protective measures and mitigation strategies for risks outlined in this study could help to reduce the burden of H5N1 and H9N2 AI subtypes into the live bird markets of Indonesia.
Collapse
Affiliation(s)
- Saifur Rehman
- Division of Veterinary Public Health, Faculty of Veterinary Medicine, Airlangga University, Surabaya, East Java, Indonesia
- Laboratory of Virology and Immunology Division of Microbiology, Faculty of Veterinary Medicine, Airlangga University, Surabaya, East Java, Indonesia
- Department of Epidemiology and Public Health, Faculty of Veterinary Science, University of Veterinary and Animal Sciences, Lahore, Punjab, Pakistan
| | - Mustofa Helmi Effendi
- Division of Veterinary Public Health, Faculty of Veterinary Medicine, Airlangga University, Surabaya, East Java, Indonesia
| | - Aamir Shehzad
- Laboratory of Virology and Immunology Division of Microbiology, Faculty of Veterinary Medicine, Airlangga University, Surabaya, East Java, Indonesia
| | - Attaur Rahman
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, SAR
| | - Jola Rahmahani
- Laboratory of Virology and Immunology Division of Microbiology, Faculty of Veterinary Medicine, Airlangga University, Surabaya, East Java, Indonesia
| | - Adiana Mutamsari Witaningrum
- Division of Veterinary Public Health, Faculty of Veterinary Medicine, Airlangga University, Surabaya, East Java, Indonesia
| | - Muhammad Bilal
- Department of Epidemiology and Public Health, Faculty of Veterinary Science, University of Veterinary and Animal Sciences, Lahore, Punjab, Pakistan
| |
Collapse
|
6
|
Karo-karo D, Bodewes R, Restuadi R, Bossers A, Agustiningsih A, Stegeman JA, Koch G, Muljono DH. Phylodynamics of Highly Pathogenic Avian Influenza A(H5N1) Virus Circulating in Indonesian Poultry. Viruses 2022; 14:v14102216. [PMID: 36298771 PMCID: PMC9608721 DOI: 10.3390/v14102216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/27/2022] [Accepted: 10/05/2022] [Indexed: 11/07/2022] Open
Abstract
After its first detection in 1996, the highly pathogenic avian influenza A(H5Nx) virus has spread extensively worldwide. HPAIv A(H5N1) was first detected in Indonesia in 2003 and has been endemic in poultry in this country ever since. However, Indonesia has limited information related to the phylodynamics of HPAIv A(H5N1) in poultry. The present study aimed to increase the understanding of the evolution and temporal dynamics of HPAIv H5N1 in Indonesian poultry between 2003 and 2016. To this end, HPAIv A(H5N1) hemagglutinin sequences of viruses collected from 2003 to 2016 were analyzed using Bayesian evolutionary analysis sampling trees. Results indicated that the common ancestor of Indonesian poultry HPAIv H5N1 arose approximately five years after the common ancestor worldwide of HPAI A(H5Nx). In addition, this study indicated that only two introductions of HPAIv A(H5N1) occurred, after which these viruses continued to evolve due to extensive spread among poultry. Furthermore, this study revealed the divergence of H5N1 clade 2.3.2.1c from H5N1 clade 2.3.2.1b. Both clades 2.3.2.1c and 2.3.2.1b share a common ancestor, clade 1, suggesting that clade 2.3.2.1 originated and diverged from China and other Asian countries. Since there was limited sequence and surveillance data for the HPAIv A(H5N1) from wild birds in Indonesia, the exact role of wild birds in the spread of HPAIv in Indonesia is currently unknown. The evolutionary dynamics of the Indonesian HPAIv A(H5N1) highlight the importance of continuing and improved genomic surveillance and adequate control measures in the different regions of both the poultry and wild birds. Spatial genomic surveillance is useful to take adequate control measures. Therefore, it will help to prevent the future evolution of HPAI A(H5N1) and pandemic threats.
Collapse
Affiliation(s)
- Desniwaty Karo-karo
- Department Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands
- Centre of Diagnostic Standard Indonesian Agricultural Quarantine Agency, Ministry of Agriculture, Jakarta 13220, Indonesia
| | - Rogier Bodewes
- National Institute for Public Health and the Environment, 3720 BA Bilthoven, The Netherlands
| | - Restuadi Restuadi
- Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Alex Bossers
- Department Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands
- Institute for Risk Assessment Sciences (IRAS), Department Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands
| | | | - Jan Arend Stegeman
- Department Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands
| | - Guus Koch
- Wageningen Bioveterinary Research, 8221 RA Lelystad, The Netherlands
| | - David Handojo Muljono
- Faculty of Medicine, Universitas Hasanuddin, Makassar 90245, Indonesia
- Faculty of Medicine and Health, University of Sydney, Camperdown, NSW 2006, Australia
- Eijkman Institute for Molecular Biology, Jakarta 10430, Indonesia
- Correspondence: ; Tel.: +62-8161-923-563
| |
Collapse
|
7
|
Rehman S, Effendi MH, Witaningruma AM, Nnabuikeb UE, Bilal M, Abbas A, Abbas RZ, Hussain K. Avian influenza (H5N1) virus, epidemiology and its effects on backyard poultry in Indonesia: a review. F1000Res 2022; 11:1321. [PMID: 36845324 PMCID: PMC9947427 DOI: 10.12688/f1000research.125878.2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/30/2023] [Indexed: 02/19/2023] Open
Abstract
Avian influenza (AI) is a zoonotic viral endemic disease that affects poultry, swine, and mammals, including humans. Highly pathogenic avian influenza (HPAI) is caused by influenza type A virus subtypes H5, and H7 which are naturally carried by a wild bird and often affect domestic poultry. Avian influenza (AI) is a major problem worldwide that causes significant economic losses in the poultry sector. Since 2003, the widespread H5N1 HPAI in poultry has led to high mortalities resulting in huge economic losses in the poultry sector in Indonesia. Domestic poultry is a key source of income that contributes to economic growth, both directly and indirectly, by reducing poverty among the people living in rural communities. Furthermore, in many developing countries, including Indonesia, rural people meet a portion of their food needs through backyard poultry. Nevertheless, this sector is strongly affected by biosecurity hazards, particularly in Indonesia by HPAI infections. Avian influenza (AI), subtype H5N1 has zoonotic significance, posing major risks to public health and poultry. Due to close interaction between wild migratory birds and ducks, the domestic poultry sector in Indonesia is directly affected by this virus. This virus continues to be ubiquitous in Indonesia as a result of the unpredictable mutations produced by antigenic drift and shift, which can persist from a few days to several years. In this review, the epidemiology and impact, of highly pathogenic avian influenza H5N1 subtype virus infection on backyard poultry in Indonesia were discussed.
Collapse
Affiliation(s)
- Saifur Rehman
- Division of Veterinary Public Health Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, East Java, 60115, Indonesia
| | - Mustofa Helmi Effendi
- Division of Veterinary Public Health Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, East Java, 60115, Indonesia
| | - Adiana Mutamsari Witaningruma
- Division of Veterinary Public Health Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, East Java, 60115, Indonesia
| | - Ugbo Emmanuel Nnabuikeb
- Department of Applied Microbiology, Faculty of Science, Ebonyi State University, Abakaliki,, Nigeria
| | - Muhammad Bilal
- Department of Epidemiology and Public Health, University of Veterinary and Animal Sciences, Lahore, Islamic, 40050, Pakistan.,Faculty of Veterinary Medical Sciences, University of Calgary, Alberta, Canada
| | - Asghar Abbas
- Department of Pathobiology, Muhammad Nawaz Sharif University of Agriculture, Multan, Islamic, Pakistan
| | - Rao Zahid Abbas
- Department of Parasitology, University of Agriculture, Faisalabad, Islamic, Pakistan
| | - Kashif Hussain
- Department of Parasitology, University of Agriculture, Faisalabad, Islamic, Pakistan
| |
Collapse
|
8
|
Mutisari D, Muflihanah M, Wibawa H, Hendrawati F, Putra HH, Sulistyo KP, Ahmad A, Sjahril R, Mubin RH, Sari DK, Massi MN. Phylogenetic analysis of HPAI H5N1 virus from duck swab specimens in Indonesia. J Adv Vet Anim Res 2021; 8:346-354. [PMID: 34395607 PMCID: PMC8280988 DOI: 10.5455/javar.2021.h521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 06/08/2021] [Accepted: 06/20/2021] [Indexed: 11/04/2022] Open
Abstract
Objective: A phylogenetic study was carried out on the avian influenza virus (AIV) isolated from a disease outbreak in Sidenreng Rappang Regency, South Sulawesi, Indonesia, in 2018. Material and Methods: Oropharyngeal swabs and organ samples were obtained from ducks that showed clinical symptoms: torticollis, fascial edema, neurological disorders, the corneas appear cloudy, and death occurs less than 1 day after symptoms appear. In this study, isolate A/duck/Sidenreng Rappang/07180110-11/2018 from duck was sequenced and characterized. Results: It was found that each gene segment of the virus has the highest nucleotide homology to the Indonesian highly pathogenic avian influenza (HPAI) H5N1 clade 2.3.2.1c. Multiple alignments of the sample Hemagglutinin (HA) gene with the avian influenza references virus showed that the pattern of amino acid arrangement in the cleavage site PQRERRRK-RGLF is the characteristic of the HPAI virus. In addition, the HA gene contained Q222 (glutamine) and G224 (glycine), signifying a high affinity to avian receptor binding specificity (SA α2,3 Gal). Furthermore, there was no genetic reassortment of this virus based on the phylogenetic analysis of HA, NA, PB1, PB2, PA, NP, M, and NS genes. Conclusion: The HPAI H5N1 clade 2.3.2.1c virus was identified in duck farms in South Sulawesi, Indonesia.
Collapse
Affiliation(s)
- Dewi Mutisari
- Master of Biomedical Sciences, Graduate School Hasanuddin University, Makassar, Indonesia.,Disease Investigation Center Maros, Directorate General of Livestock and Animal Health Services, Ministry of Agriculture, Maros, Indonesia
| | - Muflihanah Muflihanah
- Disease Investigation Center Maros, Directorate General of Livestock and Animal Health Services, Ministry of Agriculture, Maros, Indonesia
| | - Hendra Wibawa
- Disease Investigation Center Wates, Directorate General of Livestock and Animal Health Services, Ministry of Agriculture, Yogyakarta, Indonesia
| | - Ferra Hendrawati
- Disease Investigation Center Maros, Directorate General of Livestock and Animal Health Services, Ministry of Agriculture, Maros, Indonesia
| | - Hamdu Hamjaya Putra
- Disease Investigation Center Maros, Directorate General of Livestock and Animal Health Services, Ministry of Agriculture, Maros, Indonesia
| | - Kartika Priscillia Sulistyo
- Disease Investigation Center Maros, Directorate General of Livestock and Animal Health Services, Ministry of Agriculture, Maros, Indonesia
| | - Ahyar Ahmad
- Departement of Chemistry, Mathematics and Natural Science Faculty, Hasanuddin University, Makassar, Indonesia
| | - Rizalinda Sjahril
- Department of Microbiology, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| | - Risna Halim Mubin
- Departement of Internal Medicine, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| | - Dwi Kesuma Sari
- Veterinary Medicine Study Program, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| | - Muhammad Nasrum Massi
- Department of Microbiology, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| |
Collapse
|
9
|
Chowdhury S, Azziz-Baumgartner E, Kile JC, Hoque MA, Rahman MZ, Hossain ME, Ghosh PK, Ahmed SSU, Kennedy ED, Sturm-Ramirez K, Gurley ES. Association of Biosecurity and Hygiene Practices with Environmental Contamination with Influenza A Viruses in Live Bird Markets, Bangladesh. Emerg Infect Dis 2021; 26:2087-2096. [PMID: 32818393 PMCID: PMC7454050 DOI: 10.3201/eid2609.191029] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
In Bangladesh, live bird market environments are frequently contaminated with avian influenza viruses. Shop-level biosecurity practices might increase risk for environmental contamination. We sought to determine which shop-level biosecurity practices were associated with environmental contamination. We surveyed 800 poultry shops to describe biosecurity practices and collect environmental samples. Samples from 205 (26%) shops were positive for influenza A viral RNA, 108 (14%) for H9, and 60 (8%) for H5. Shops that slaughtered poultry, kept poultry overnight, remained open without rest days, had uneven muddy floors, held poultry on the floor, and housed sick and healthy poultry together were more frequently positive for influenza A viruses. Reported monthly cleaning seemed protective, but disinfection practices were not otherwise associated with influenza A virus detection. Slaughtering, keeping poultry overnight, weekly rest days, infrastructure, and disinfection practices could be targets for interventions to reduce environmental contamination.
Collapse
|
10
|
Yuyun I, Wibawa H, Setiaji G, Kusumastuti TA, Nugroho WS. Determining highly pathogenic H5 avian influenza clade 2.3.2.1c seroprevalence in ducks, Purbalingga, Central Java, Indonesia. Vet World 2020; 13:1138-1144. [PMID: 32801565 PMCID: PMC7396357 DOI: 10.14202/vetworld.2020.1138-1144] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 04/22/2020] [Indexed: 12/24/2022] Open
Abstract
Background and Aim In Indonesia, highly pathogenic avian influenza (HPAI) H5N1 outbreaks in poultry are still reported. The disease causes a decrease in egg production and an increase in mortality; this has an impact on the economic losses of farmers. Several studies have considered that ducks play a role in the HPAI endemicity in the country; however, little is known about whether or not the type of duck farming is associated with HPAI H5 virus infection, particularly within clade 2.3.2.1c, which has been predominantly found in poultry since 2014. A cross-sectional study was conducted to determine the HPAI seroprevalence for H5 subtype clade 2.3.2.1c in laying ducks that are kept intensively and nomadically and to determine the associated risk factors. Materials and Methods Forty-nine duck farmers were randomly selected from ten sub-districts in Purbalingga District, Central Java, Indonesia; a cross-sectional study was implemented to collect field data. Based on an expected HPAI prevalence level of 10%, estimated accuracy of ± 5%, and 95% confidence interval (CI), the total sample size was calculated at 36 individuals. Samples must be multiplied by 7 to reduce bias; thus, 252 ducks were taken as samples in this study. Considering that the maintenance and duck handling were uniform and farmers complained that the effect of activity to take duck samples would reduce egg production, this study only took samples from 245 ducks (oropharyngeal swabs and serum). Those samples were taken from five birds on each farm. Hemagglutination inhibition tests examined the serum samples for HPAI H5 Clade 2.3.2.1c, and pool swab samples (five swabs in one viral media transport) were examined by real-time reverse transcription-polymerase chain reaction (qRT-PCR) test for influenza Type A and H5 subtype virus. Information regarding farm management was obtained using a questionnaire; face-to-face interviews were conducted with the duck farmers using native Javanese language. Results Serum and swabs from 245 ducks were collected in total. For individual birds, 54.69% (134/245) of serum samples were H5 seropositive. Seroprevalence among nomadic ducks was 59.28% (95% CI: 0.48-0.61), which was higher than among intensively farmed ducks (48.57%, 95% CI: 0.38-0.58). Farm-level seroprevalence was 50% (95% CI: 0.30-0.69) for nomadic ducks but only 28.57% (95% CI: 0.11-0.51) for intensively farmed ducks. The farm-level virus prevalence (proportion of flocks with at least one bird positive for influenza Type A) was 17.85% (95% CI: 0.07-0.35) for nomadic ducks and 4.76% (1/21) for intensively farmed ducks (95% CI: 0.008-0.23). All influenza Type A positive samples were negative for the H5 subtype, indicating that another HA subtype AI viruses might have been circulating in ducks in the study area. A relationship between duck farms that were H5 seropositive and their maintenance system was present; however, this relationship was not significant, the nomadic duck system detected 2 times higher H5-seropositive ducks than the intensive farming system (OR: 2.16, 95% CI: 0.33-14.31). Conclusion This study found that the seroprevalence of HPAI in the duck population level in Purbalingga was 54.69% and demonstrated that the nomadic duck farming system was more likely to acquire HPAI H5 infection than the intensive farming duck system. Other risk factors should be further investigated as the diversity of the farming system is partially related to HPAI H5 infection.
Collapse
Affiliation(s)
- Imas Yuyun
- Magister Sain Veteriner, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia.,Directorate of Animal Health, Directorate General of Livestock and Animal Health Services, Jakarta, Indonesia
| | - Hendra Wibawa
- Disease Investigation Center, Wates, Yogyakarta, Indonesia
| | - Gunawan Setiaji
- Directorate of Veterinary Public Health, Directorate General of Livestock and Animal Health Services, Jakarta, Indonesia
| | - Tri Anggraeni Kusumastuti
- Department of Socio Economic, Faculty of Animal Science, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Widagdo Sri Nugroho
- Departement of Veterinary Public Health, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia
| |
Collapse
|
11
|
Viral Determinants in H5N1 Influenza A Virus Enable Productive Infection of HeLa Cells. J Virol 2020; 94:JVI.01410-19. [PMID: 31776276 DOI: 10.1128/jvi.01410-19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 11/04/2019] [Indexed: 12/14/2022] Open
Abstract
Influenza A virus (IAV) is a human respiratory pathogen that causes yearly global epidemics, as well as sporadic pandemics due to human adaptation of pathogenic strains. Efficient replication of IAV in different species is, in part, dictated by its ability to exploit the genetic environment of the host cell. To investigate IAV tropism in human cells, we evaluated the replication of IAV strains in a diverse subset of epithelial cell lines. HeLa cells were refractory to the growth of human H1N1 and H3N2 viruses and low-pathogenic avian influenza (LPAI) viruses. Interestingly, a human isolate of the highly pathogenic avian influenza (HPAI) H5N1 virus successfully propagated in HeLa cells to levels comparable to those in a human lung cell line. Heterokaryon cells generated by fusion of HeLa and permissive cells supported H1N1 virus growth, suggesting the absence of a host factor(s) required for the replication of H1N1, but not H5N1, viruses in HeLa cells. The absence of this factor(s) was mapped to reduced nuclear import, replication, and translation, as well as deficient viral budding. Using reassortant H1N1:H5N1 viruses, we found that the combined introduction of nucleoprotein (NP) and hemagglutinin (HA) from an H5N1 virus was necessary and sufficient to enable H1N1 virus growth. Overall, this study suggests that the absence of one or more cellular factors in HeLa cells results in abortive replication of H1N1, H3N2, and LPAI viruses, which can be circumvented upon the introduction of H5N1 virus NP and HA. Further understanding of the molecular basis of this restriction will provide important insights into the virus-host interactions that underlie IAV pathogenesis and tropism.IMPORTANCE Many zoonotic avian influenza A viruses have successfully crossed the species barrier and caused mild to life-threatening disease in humans. While human-to-human transmission is limited, there is a risk that these zoonotic viruses may acquire adaptive mutations enabling them to propagate efficiently and cause devastating human pandemics. Therefore, it is important to identify viral determinants that provide these viruses with a replicative advantage in human cells. Here, we tested the growth of influenza A virus in a subset of human cell lines and found that abortive replication of H1N1 viruses in HeLa cells can be circumvented upon the introduction of H5N1 virus HA and NP. Overall, this work leverages the genetic diversity of multiple human cell lines to highlight viral determinants that could contribute to H5N1 virus pathogenesis and tropism.
Collapse
|
12
|
Detecting influenza and emerging avian influenza virus by influenza and pneumonia surveillance systems in a large city in China, 2005 to 2016. BMC Infect Dis 2019; 19:825. [PMID: 31533638 PMCID: PMC6751661 DOI: 10.1186/s12879-019-4405-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 08/25/2019] [Indexed: 11/25/2022] Open
Abstract
Background Detecting avian influenza virus has become an important public health strategy for controlling the emerging infectious disease. Methods The HIS (hospital information system) modified influenza surveillance system (ISS) and a newly built pneumonia surveillance system (PSS) were used to monitor the influenza viruses in Changsha City, China. The ISS was used to monitor outpatients in two sentinel hospitals and to detect mild influenza and avian influenza cases, and PSS was used to monitor inpatients in 49 hospitals and to detect severe and death influenza cases. Results From 2005 to 2016, there were 3,551,917 outpatients monitored by the ISS system, among whom 126,076 were influenza-like illness (ILI) cases, with the ILI proportion (ILI%) of 3.55%. After the HIS was used, the reported incident cases of ILI and ILI% were increased significantly. From March, 2009 to September, 2016, there were 5,491,560 inpatient cases monitored by the PSS system, among which 362,743 were pneumonia cases, with a proportion of 6.61%. Among pneumonia cases, about 10.55% (38,260/362,743) of cases were severe or death cases. The pneumonia incidence increased each year in the city. Among 15 avian influenza cases reported from January, 2005 to September, 2016, there were 26.7% (4/15) mild cases detected by the HIS-modified ISS system, while 60.0% (9/15) were severe or death cases detected by the PSS system. Two H5N1 severe cases were missed by the ISS system in January, 2009 when the PSS system was not available. Conclusions The HIS was able to improve the efficiency of the ISS for monitoring ILI and emerging avian influenza virus. However, the efficiency of the system needs to be verified in a wider area for a longer time span in China.
Collapse
|
13
|
Novel Mutations Evading Avian Immunity around the Receptor Binding Site of the Clade 2.3.2.1c Hemagglutinin Gene Reduce Viral Thermostability and Mammalian Pathogenicity. Viruses 2019; 11:v11100923. [PMID: 31600990 PMCID: PMC6832455 DOI: 10.3390/v11100923] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 10/06/2019] [Accepted: 10/08/2019] [Indexed: 11/22/2022] Open
Abstract
Since 2007, highly pathogenic clade 2.3.2 H5N1 avian influenza A (A(H5N1)) viruses have evolved to clade 2.3.2.1a, b, and c; currently only 2.3.2.1c A(H5N1) viruses circulate in wild birds and poultry. During antigenic evolution, clade 2.3.2.1a and c A(H5N1) viruses acquired both S144N and V223I mutations around the receptor binding site of hemagglutinin (HA), with S144N generating an N-glycosylation sequon. We introduced single or combined reverse mutations, N144S and/or I223V, into the HA gene of the clade 2.3.2.1c A(H5N1) virus and generated PR8-derived, 2 + 6 recombinant A(H5N1) viruses. When we compared replication efficiency in embryonated chicken eggs, mammalian cells, and mice, the recombinant virus containing both N144S and I223V mutations showed increased replication efficiency in avian and mammalian hosts and pathogenicity in mice. The N144S mutation significantly decreased avian receptor affinity and egg white inhibition, but not all mutations increased mammalian receptor affinity. Interestingly, the combined reverse mutations dramatically increased the thermostability of HA. Therefore, the adaptive mutations possibly acquired to evade avian immunity may decrease viral thermostability as well as mammalian pathogenicity.
Collapse
|
14
|
Zhu W, Dong J, Zhang Y, Yang L, Li X, Chen T, Zhao X, Wei H, Bo H, Zeng X, Huang W, Li Z, Tang J, Zhou J, Gao R, Xin L, Yang J, Zou S, Chen W, Liu J, Shu Y, Wang D. A Gene Constellation in Avian Influenza A (H7N9) Viruses May Have Facilitated the Fifth Wave Outbreak in China. Cell Rep 2019; 23:909-917. [PMID: 29669294 DOI: 10.1016/j.celrep.2018.03.081] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 01/26/2018] [Accepted: 03/17/2018] [Indexed: 01/11/2023] Open
Abstract
The 2016-2017 epidemic of influenza A (H7N9) virus in China prompted concern that a genetic change may underlie increased virulence. Based on an evolutionary analysis of H7N9 viruses from all five outbreak waves, we find that additional subclades of the H7 and N9 genes have emerged. Our analysis indicates that H7N9 viruses inherited NP genes from co-circulating H7N9 instead of H9N2 viruses. Genotypic diversity among H7N9 viruses increased following wave I, peaked during wave III, and rapidly deceased thereafter with minimal diversity in wave V, suggesting that the viruses entered a relatively stable evolutionary stage. The ZJ11 genotype caused the majority of human infections in wave V. We suggest that the largest outbreak of wave V may be due to a constellation of genes rather than a single mutation. Therefore, continuous surveillance is necessary to minimize the threat of H7N9 viruses.
Collapse
Affiliation(s)
- Wenfei Zhu
- National Institute for Viral Disease Control and Prevention, Collaboration Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory for Medical Virology, National Health and Family Planning Commission, Beijing 102206, P.R. China
| | - Jie Dong
- National Institute for Viral Disease Control and Prevention, Collaboration Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory for Medical Virology, National Health and Family Planning Commission, Beijing 102206, P.R. China
| | - Ye Zhang
- National Institute for Viral Disease Control and Prevention, Collaboration Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory for Medical Virology, National Health and Family Planning Commission, Beijing 102206, P.R. China
| | - Lei Yang
- National Institute for Viral Disease Control and Prevention, Collaboration Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory for Medical Virology, National Health and Family Planning Commission, Beijing 102206, P.R. China
| | - Xiyan Li
- National Institute for Viral Disease Control and Prevention, Collaboration Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory for Medical Virology, National Health and Family Planning Commission, Beijing 102206, P.R. China
| | - Tao Chen
- National Institute for Viral Disease Control and Prevention, Collaboration Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory for Medical Virology, National Health and Family Planning Commission, Beijing 102206, P.R. China
| | - Xiang Zhao
- National Institute for Viral Disease Control and Prevention, Collaboration Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory for Medical Virology, National Health and Family Planning Commission, Beijing 102206, P.R. China
| | - Hejiang Wei
- National Institute for Viral Disease Control and Prevention, Collaboration Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory for Medical Virology, National Health and Family Planning Commission, Beijing 102206, P.R. China
| | - Hong Bo
- National Institute for Viral Disease Control and Prevention, Collaboration Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory for Medical Virology, National Health and Family Planning Commission, Beijing 102206, P.R. China
| | - Xiaoxu Zeng
- National Institute for Viral Disease Control and Prevention, Collaboration Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory for Medical Virology, National Health and Family Planning Commission, Beijing 102206, P.R. China
| | - Weijuan Huang
- National Institute for Viral Disease Control and Prevention, Collaboration Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory for Medical Virology, National Health and Family Planning Commission, Beijing 102206, P.R. China
| | - Zi Li
- National Institute for Viral Disease Control and Prevention, Collaboration Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory for Medical Virology, National Health and Family Planning Commission, Beijing 102206, P.R. China
| | - Jing Tang
- National Institute for Viral Disease Control and Prevention, Collaboration Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory for Medical Virology, National Health and Family Planning Commission, Beijing 102206, P.R. China
| | - Jianfang Zhou
- National Institute for Viral Disease Control and Prevention, Collaboration Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory for Medical Virology, National Health and Family Planning Commission, Beijing 102206, P.R. China
| | - Rongbao Gao
- National Institute for Viral Disease Control and Prevention, Collaboration Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory for Medical Virology, National Health and Family Planning Commission, Beijing 102206, P.R. China
| | - Li Xin
- National Institute for Viral Disease Control and Prevention, Collaboration Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory for Medical Virology, National Health and Family Planning Commission, Beijing 102206, P.R. China
| | - Jing Yang
- National Institute for Viral Disease Control and Prevention, Collaboration Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory for Medical Virology, National Health and Family Planning Commission, Beijing 102206, P.R. China
| | - Shumei Zou
- National Institute for Viral Disease Control and Prevention, Collaboration Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory for Medical Virology, National Health and Family Planning Commission, Beijing 102206, P.R. China
| | - Wenbing Chen
- National Institute for Viral Disease Control and Prevention, Collaboration Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory for Medical Virology, National Health and Family Planning Commission, Beijing 102206, P.R. China
| | - Jia Liu
- National Institute for Viral Disease Control and Prevention, Collaboration Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory for Medical Virology, National Health and Family Planning Commission, Beijing 102206, P.R. China
| | - Yuelong Shu
- National Institute for Viral Disease Control and Prevention, Collaboration Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory for Medical Virology, National Health and Family Planning Commission, Beijing 102206, P.R. China; School of Public Health (Shenzhen), Sun Yat-sen University, Guangdong 510275, P.R. China.
| | - Dayan Wang
- National Institute for Viral Disease Control and Prevention, Collaboration Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory for Medical Virology, National Health and Family Planning Commission, Beijing 102206, P.R. China.
| |
Collapse
|
15
|
Karo-Karo D, Pribadi ES, Sudirman FX, Kurniasih SW, Indasari I, Muljono DH, Koch G, Stegeman JA. Highly Pathogenic Avian Influenza A(H5N1) Outbreaks in West Java Indonesia 2015-2016: Clinical Manifestation and Associated Risk Factors. Microorganisms 2019; 7:E327. [PMID: 31500141 PMCID: PMC6788193 DOI: 10.3390/microorganisms7090327] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 08/20/2019] [Accepted: 09/05/2019] [Indexed: 01/13/2023] Open
Abstract
Knowledge of outbreaks and associated risk factors is helpful to improve control of the Highly Pathogenic Avian Influenza A(H5N1) virus (HPAI) in Indonesia. This study was conducted to detect outbreaks of HPAI H5N1 in endemically infected regions by enhanced passive surveillance, to describe the clinical manifestation of these outbreaks and identify associated risk factors. From November 2015 to November 2016, HPAI outbreak investigations were conducted in seven districts of West Java. In total 64 outbreaks were confirmed out of 75 reported suspicions and outbreak characteristics were recorded. The highest mortality was reported in backyard chickens (average 59%, CI95%: 49-69%). Dermal apoptosis and lesions (64%, CI95%: 52-76%) and respiratory signs (39%, CI95%: 27-51%) were the clinical signs observed overall most frequently, while neurological signs were most frequently observed in ducks (68%, CI95%: 47-90%). In comparison with 60 non-infected control farms, the rate of visitor contacts onto a farm was associated with the odds of HPAI infection. Moreover, duck farms had higher odds of being infected than backyard farms, and larger farms had lower odds than small farms. Results indicate that better external biosecurity is needed to reduce transmission of HPAI A(H5N1) in Indonesia.
Collapse
Affiliation(s)
- Desniwaty Karo-Karo
- Department of Farm Animal Health, Faculty of Veterinary Medicine Utrecht University, 3584 CL Utrecht, The Netherlands
- Centre for Diagnostic Standard of Indonesian Agricultural Quarantine Agency, Ministry of Agriculture, Jakarta 13220, Indonesia
| | - Eko Sugeng Pribadi
- Center for Tropical Animal Studies, Institute of Research and Community Empowerment, Bogor Agricultural University, Bogor 16129, Indonesia
| | | | | | - Iin Indasari
- West Java Province Animal Health Agency, Bandung 40135, Indonesia
| | | | - Guus Koch
- Wageningen Bioveterinary Research, 8221 RA Lelystad, The Netherlands
| | - Jan Arend Stegeman
- Department of Farm Animal Health, Faculty of Veterinary Medicine Utrecht University, 3584 CL Utrecht, The Netherlands.
| |
Collapse
|
16
|
Suttie A, Karlsson EA, Deng YM, Hurt AC, Greenhill AR, Barr IG, Dussart P, Horwood PF. Avian influenza in the Greater Mekong Subregion, 2003-2018. INFECTION GENETICS AND EVOLUTION 2019; 74:103920. [PMID: 31201870 DOI: 10.1016/j.meegid.2019.103920] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 05/20/2019] [Accepted: 06/11/2019] [Indexed: 12/15/2022]
Abstract
The persistent circulation of avian influenza viruses (AIVs) is an ongoing problem for many countries in South East Asia, causing large economic losses to both the agricultural and health sectors. This review analyses AIV diversity, evolution and the risk of AIV emergence in humans in countries of the Greater Mekong Subregion (GMS): Cambodia, Laos, Myanmar, Thailand and Vietnam (excluding China). The analysis was based on AIV sequencing data, serological studies, published journal articles and AIV outbreak reports available from January 2003 to December 2018. All countries of the GMS have suffered losses due repeated outbreaks of highly pathogenic (HP) H5N1 that has also caused human cases in all GMS countries. In Laos, Myanmar and Vietnam AIV outbreaks in domestic poultry have also been caused by clade 2.3.4.4 H5N6. A diverse range of low pathogenic AIVs (H1-H12) have been detected in poultry and wild bird species, though surveillance for and characterization of these subtypes is limited. Subtype H3, H4, H6 and H11 viruses have been detected over prolonged periods; whilst H1, H2, H7, H8, H10 and H12 viruses have only been detected transiently. H9 AIVs circulate endemically in Cambodia and Vietnam with seroprevalence data indicating human exposure to H9 AIVs in Cambodia, Thailand and Vietnam. As surveillance studies focus heavily on the detection of H5 AIVs in domestic poultry further research is needed to understand the true level of AIV diversity and the risk AIVs pose to humans in the GMS.
Collapse
Affiliation(s)
- Annika Suttie
- Virology Unit, Institute Pasteur in Cambodia, Phnom Penh, Cambodia; School of Applied and Biomedical Sciences, Federation University, Churchill, Australia; WHO Collaborating Centre for Reference and Research on Influenza, Victorian Infectious Diseases Reference Laboratory, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Erik A Karlsson
- Virology Unit, Institute Pasteur in Cambodia, Phnom Penh, Cambodia
| | - Yi-Mo Deng
- WHO Collaborating Centre for Reference and Research on Influenza, Victorian Infectious Diseases Reference Laboratory, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Aeron C Hurt
- WHO Collaborating Centre for Reference and Research on Influenza, Victorian Infectious Diseases Reference Laboratory, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Andrew R Greenhill
- School of Applied and Biomedical Sciences, Federation University, Churchill, Australia
| | - Ian G Barr
- WHO Collaborating Centre for Reference and Research on Influenza, Victorian Infectious Diseases Reference Laboratory, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Philippe Dussart
- Virology Unit, Institute Pasteur in Cambodia, Phnom Penh, Cambodia
| | - Paul F Horwood
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD 4811, Australia.
| |
Collapse
|
17
|
The PB2 Polymerase Host Adaptation Substitutions Prime Avian Indonesia Sub Clade 2.1 H5N1 Viruses for Infecting Humans. Viruses 2019; 11:v11030292. [PMID: 30909490 PMCID: PMC6480796 DOI: 10.3390/v11030292] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 03/21/2019] [Accepted: 03/22/2019] [Indexed: 12/27/2022] Open
Abstract
Significantly higher numbers of human infections with H5N1 virus have occurred in Indonesia and Egypt, compared with other affected areas, and it is speculated that there are specific viral factors for human infection with avian H5N1 viruses in these locations. We previously showed PB2-K526R is present in 80% of Indonesian H5N1 human isolates, which lack the more common PB2-E627K substitution. Testing the hypothesis that this mutation may prime avian H5N1 virus for human infection, we showed that: (1) K526R is rarely found in avian influenza viruses but was identified in H5N1 viruses 2–3 years after the virus emerged in Indonesia, coincident with the emergence of H5N1 human infections in Indonesia; (2) K526R is required for efficient replication of Indonesia H5N1 virus in mammalian cells in vitro and in vivo and reverse substitution to 526K in human isolates abolishes this ability; (3) Indonesian H5N1 virus, which contains K526R-PB2, is stable and does not further acquire E627K following replication in infected mice; and (4) virus containing K526R-PB2 shows no fitness deficit in avian species. These findings illustrate an important mechanism in which a host adaptive mutation that predisposes avian H5N1 virus towards infecting humans has arisen with the virus becoming prevalent in avian species prior to human infections occurring. A similar mechanism is observed in the Qinghai-lineage H5N1 viruses that have caused many human cases in Egypt; here, E627K predisposes towards human infections. Surveillance should focus on the detection of adaptation markers in avian strains that prime for human infection.
Collapse
|
18
|
Jonas M, Sahesti A, Murwijati T, Lestariningsih CL, Irine I, Ayesda CS, Prihartini W, Mahardika GN. Identification of avian influenza virus subtype H9N2 in chicken farms in Indonesia. Prev Vet Med 2018; 159:99-105. [PMID: 30314797 DOI: 10.1016/j.prevetmed.2018.09.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 02/11/2018] [Accepted: 09/04/2018] [Indexed: 11/25/2022]
Abstract
Avian influenza virus subtype H9N2 (AIV-H9N2) has become established in domestic poultry in Asia and Africa. AIV-H9N2 has not been reported previously in Indonesia. Here we describe the presence of AIV-H9N2 in chicken farms in Indonesia. Ninety-nine cases were observed in various provinces in Indonesia. Clinical signs, pathologic lesions and egg production were recorded. Confirmation was made using virus isolation, reverse transcriptase PCR (RT-PCR), and sequencing. To construct hemaglutinin (HA) phylogeny, the secondary data of Eurasian lineages were downloaded from GenBank. For neuraminidase, five sequences with the highest similarities with every sequence found in this study were downloaded. Phylogeny was inferred using Neighbor-Joining method in MEGA6 package. Forty-nine AIV-H9N2-positive cases were observed, of which 35 were tested positive for AIV-H9N2 only. The age of the infected chickens was 43.17 ± 16.56 weeks, and their egg production was 35.85 ± 17.80% lower than before outbreak. BLAST search revealed that the nucleotide sequence of the HA-encoding gene identified in this study shared 98% sequence identity with that of A/Muscovy duck/Vietnam/LBM719/2014(H9N2), while its neuraminidase-encoding gene sequences shared 94%, 98%, and 100% identities with three different influenza viruses. The phylogeny shows that the HA of AIV-H9N2 found in this study forms distinct cluster with some Vietnam and China's sequence data. The NA sequence data form three distinct clusters. We conclude that AIV-H9N2 is widespread in many provinces in Indonesia. To lessen economic losses to the poultry industry, flock biosecurity and vaccination against this virus subtype should be implemented rapidly. Thorough and rigid AIV surveillance is paramount to prevent further veterinary and public health consequences of the circulation of this virus in Indonesia.
Collapse
Affiliation(s)
- Melina Jonas
- PT Medion Farma Jaya, Jl. Babakan Ciparay #282, Bandung, Indonesia
| | - Aprilla Sahesti
- PT Medion Farma Jaya, Jl. Babakan Ciparay #282, Bandung, Indonesia
| | | | | | - Ine Irine
- PT Medion Farma Jaya, Jl. Babakan Ciparay #282, Bandung, Indonesia
| | | | - Wahyu Prihartini
- PT Medion Farma Jaya, Jl. Babakan Ciparay #282, Bandung, Indonesia
| | - Gusti Ngurah Mahardika
- Faculty of Veterinary Medicine Udayana University, Jl. PB Sudirman, 80225, Denpasar, Bali, Indonesia.
| |
Collapse
|
19
|
Parvin R, Begum JA, Nooruzzaman M, Chowdhury EH, Islam MR, Vahlenkamp TW. Review analysis and impact of co-circulating H5N1 and H9N2 avian influenza viruses in Bangladesh. Epidemiol Infect 2018; 146:1259-1266. [PMID: 29781424 PMCID: PMC9134290 DOI: 10.1017/s0950268818001292] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 04/05/2018] [Accepted: 04/23/2018] [Indexed: 12/23/2022] Open
Abstract
Almost the full range of 16 haemagglutinin (HA) and nine neuraminidase subtypes of avian influenza viruses (AIVs) has been detected either in waterfowl, land-based poultry or in the environment in Bangladesh. AIV infections in Bangladesh affected a wide range of host species of terrestrial poultry. The highly pathogenic avian influenza (AI) H5N1 and low pathogenic AI H9N2 were found to co-circulate and be well entrenched in the poultry population, which has caused serious damage to the poultry industry since 2007. By reviewing the available scientific literature, the overall situation of AIVs in Bangladesh is discussed. All Bangladeshi (BD) H5N1 and H9N2 AIV sequences available at GenBank were downloaded along with other representative sequences to analyse the genetic diversity among the circulating AIVs in Bangladesh and to compare with the global situation. Three different H5N1 clades, 2.2.2, 2.3.2.1 and 2.3.4.2, have been detected in Bangladesh. Only 2.3.2.1a is still present. The BD LP H9N2 viruses mostly belonged to the H9 G1 lineage but segregated into many branches, and some of these shared internal genes with HP viruses of subtypes H7N3 and H5N1. However, these reassortment events might have taken place before introduction to Bangladesh. Currently, H9N2 viruses continue to evolve their HA cleavage, receptor binding and glycosylation sites. Multiple mutations in the HA gene associated with adaptation to mammalian hosts were also observed. Strict biosecurity at farms and gradual phasing out of live-bird markets could be the key measures to better control AIVs, whereas stamping out is not a practicable option in Bangladesh. Vaccination also could be an additional tool, which however, requires careful planning. Continuous monitoring of AIVs through systematic surveillance and genetic characterisation of the viruses remains a hallmark of AI control.
Collapse
Affiliation(s)
- Rokshana Parvin
- Department of Pathology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Jahan Ara Begum
- Department of Pathology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
- Faculty of Veterinary Medicine, Center of Infectious Diseases, Institute of Virology, University of Leipzig, An den Tierkliniken 29, 04103 Leipzig, Germany
| | - Mohammed Nooruzzaman
- Department of Pathology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Emdadul Haque Chowdhury
- Department of Pathology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Mohammad Rafiqul Islam
- Department of Pathology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Thomas W. Vahlenkamp
- Faculty of Veterinary Medicine, Center of Infectious Diseases, Institute of Virology, University of Leipzig, An den Tierkliniken 29, 04103 Leipzig, Germany
| |
Collapse
|
20
|
Bulu PM, Robertson ID, Geong M. A targeted investigation to demonstrate the freedom of West Timor from HPAI H5N1. Prev Vet Med 2018; 150:47-51. [PMID: 29406083 DOI: 10.1016/j.prevetmed.2017.12.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 12/01/2017] [Accepted: 12/01/2017] [Indexed: 10/18/2022]
Abstract
In early 2004 highly pathogenic avian influenza (HPAI) H5N1 virus caused major outbreaks of disease in poultry in Indonesia. The disease was first reported in West Timor in eastern Indonesia in the same year, resulting in the death of approximately one hundred chickens from both commercial and backyard farms; however no evidence of disease has subsequently been reported in West Timor since 2007. A targeted survey was undertaken in 2013 in 2 districts of West Timor. Three hundred village and commercial poultry (292 chickens and 8 Muscovy ducks) from 10 villages and 5 live bird markets (LBMs) were sampled between August and October 2013. Swabs of the cloaca and trachea of the sampled birds were tested using the Anigen® Rapid Test (Bionote). All samples were negative on testing (0%; 95%CI: 0.0-1.2%). From these results it was concluded with a high level of confidence (100%, 95%CI: 99.988, 100) that this population is not infected, and these results, along with a lack of clinical evidence of disease, support the conclusion that West Timor was free from HPAI infection at the time of the survey.
Collapse
Affiliation(s)
- Petrus Malo Bulu
- College of Veterinary Medicine, School of Veterinary and Life Sciences Murdoch University, South Street Murdoch, Perth, Western Australia, 6150, Australia; Politeknik Pertanian Negeri Kupang, Jln Adisucipto Penfui Kupang, West Timor, East Nusa Tenggara, Indonesia.
| | - Ian D Robertson
- College of Veterinary Medicine, School of Veterinary and Life Sciences Murdoch University, South Street Murdoch, Perth, Western Australia, 6150, Australia; China-Australia Joint Research and Training Center for Veterinary Epidemiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People's Republic of China.
| | - Maria Geong
- Animal Health & Veterinary Services, Provincial Department of Livestock - Nusa Tenggara Timur, Kupang, West Timor, Indonesia.
| |
Collapse
|
21
|
Tarigan S, Wibowo MH, Indriani R, Sumarningsih S, Artanto S, Idris S, Durr PA, Asmara W, Ebrahimie E, Stevenson MA, Ignjatovic J. Field effectiveness of highly pathogenic avian influenza H5N1 vaccination in commercial layers in Indonesia. PLoS One 2018; 13:e0190947. [PMID: 29320563 PMCID: PMC5761929 DOI: 10.1371/journal.pone.0190947] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 12/24/2017] [Indexed: 12/30/2022] Open
Abstract
Although vaccination of poultry for control of highly pathogenic avian influenza virus (HPAIV) H5N1 has been practiced during the last decade in several countries, its effectiveness under field conditions remains largely unquantified. Effective HPAI vaccination is however essential in preventing incursions, silent infections and generation of new H5N1 antigenic variants. The objective of this study was to asses the level and duration of vaccine induced immunity in commercial layers in Indonesia. Titres of H5N1 haemagglutination inhibition (HI) antibodies were followed in individual birds from sixteen flocks, age 18-68 week old (wo). The study revealed that H5N1 vaccination had highly variable outcome, including vaccination failures, and was largely ineffective in providing long lasting protective immunity. Flocks were vaccinated with seven different vaccines, administer at various times that could be grouped into three regimes: In regime A, flocks (n = 8) were vaccinated two or three times before 19 wo; in regime B (n = 2), two times before and once after 19 wo; and in regime C (n = 6) three to four times before and two to three times after 19 wo. HI titres in regime C birds were significantly higher during the entire observation period in comparison to titres of regime A or B birds, which also differed significantly from each other. The HI titres of individual birds in each flock differed significantly from birds in other flocks, indicating that the effectiveness of field vaccination was highly variable and farm related. Protective HI titres of >4log2, were present in the majority of flocks at 18 wo, declined thereafter at variable rate and only two regime C flocks had protective HI titres at 68 wo. Laboratory challenge with HPAIV H5N1 of birds from regime A and C flocks confirmed that protective immunity differed significantly between flocks vaccinated by these two regimes. The study revealed that effectiveness of the currently applied H5N1 vaccination could be improved and measures to achieve this are discussed.
Collapse
Affiliation(s)
- Simson Tarigan
- Indonesian Research Centre for Veterinary Science, Bogor, Indonesia
| | | | - Risa Indriani
- Indonesian Research Centre for Veterinary Science, Bogor, Indonesia
| | | | - Sidna Artanto
- Faculty of Veterinary Science, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Syafrison Idris
- Directorate General of Livestock and Animal Health Services, Jakarta, Indonesia
| | - Peter A. Durr
- CSIRO Australian Animal Health Laboratory, Geelong, Victoria, Australia
| | - Widya Asmara
- Faculty of Veterinary Science, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Esmaeil Ebrahimie
- School of Information Technology and Mathematical Sciences, Division of Information Technology, Engineering and the Environment, University of South Australia, Adelaide, South Australia, Australia
| | - Mark A. Stevenson
- School of Veterinary and Agricultural Sciences, University of Melbourne, Melbourne, Victoria, Australia
| | - Jagoda Ignjatovic
- School of Veterinary and Agricultural Sciences, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
22
|
Sumo Frien U. Changes in Germs: A Potential Preemptive Strike Against the Next Pandemic. JOURNAL OF MEDICAL SCIENCES 2017. [DOI: 10.3923/jms.2018.48.55] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
23
|
Wibowo MH, Tarigan S, Sumarningsih, Artanto S, Indriani R, Anggoro D, Putra CP, Idris S, Untari T, Asmara W, Tabbu CR, Ignjatovic J. Use of M2e ELISAs for longitudinal surveillance of commercial poultry in Indonesia vaccinated against highly pathogenic avian influenza. J Virol Methods 2017; 249:181-188. [DOI: 10.1016/j.jviromet.2017.08.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Revised: 08/18/2017] [Accepted: 08/18/2017] [Indexed: 10/19/2022]
|
24
|
Creanga A, Hang NLK, Cuong VD, Nguyen HT, Phuong HVM, Thanh LT, Thach NC, Hien PT, Tung N, Jang Y, Balish A, Dang NH, Duong MT, Huong NT, Hoa DN, Tho ND, Klimov A, Kapella BK, Gubareva L, Kile JC, Hien NT, Mai LQ, Davis CT. Highly Pathogenic Avian Influenza A(H5N1) Viruses at the Animal-Human Interface in Vietnam, 2003-2010. J Infect Dis 2017; 216:S529-S538. [PMID: 28934457 DOI: 10.1093/infdis/jix003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Mutation and reassortment of highly pathogenic avian influenza A(H5N1) viruses at the animal-human interface remain a major concern for emergence of viruses with pandemic potential. To understand the relationship of H5N1 viruses circulating in poultry and those isolated from humans, comprehensive phylogenetic and molecular analyses of viruses collected from both hosts in Vietnam between 2003 and 2010 were performed. We examined the temporal and spatial distribution of human cases relative to H5N1 poultry outbreaks and characterized the genetic lineages and amino acid substitutions in each gene segment identified in humans relative to closely related viruses from avian hosts. Six hemagglutinin clades and 8 genotypes were identified in humans, all of which were initially identified in poultry. Several amino acid mutations throughout the genomes of viruses isolated from humans were identified, indicating the potential for poultry viruses infecting humans to rapidly acquire molecular markers associated with mammalian adaptation and antiviral resistance.
Collapse
Affiliation(s)
- Adrian Creanga
- Influenza Division, Centers for Disease Control and Prevention.,Battelle Memorial Institute, Atlanta, Georgia
| | | | | | - Ha T Nguyen
- Influenza Division, Centers for Disease Control and Prevention
| | | | | | | | | | | | - Yunho Jang
- Influenza Division, Centers for Disease Control and Prevention
| | - Amanda Balish
- Influenza Division, Centers for Disease Control and Prevention
| | | | | | | | | | | | | | - Bryan K Kapella
- Influenza Division, Centers for Disease Control and Prevention.,Influenza and Animal-Human Interface Program, Centers for Disease Control and Prevention, Hanoi, Vietnam
| | - Larisa Gubareva
- Influenza Division, Centers for Disease Control and Prevention
| | - James C Kile
- Influenza Division, Centers for Disease Control and Prevention.,Influenza and Animal-Human Interface Program, Centers for Disease Control and Prevention, Hanoi, Vietnam
| | | | | | - C Todd Davis
- Influenza Division, Centers for Disease Control and Prevention
| |
Collapse
|
25
|
Different cross protection scopes of two avian influenza H5N1 vaccines against infection of layer chickens with a heterologous highly pathogenic virus. Res Vet Sci 2017; 114:143-152. [PMID: 28411501 DOI: 10.1016/j.rvsc.2017.04.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 04/06/2017] [Accepted: 04/07/2017] [Indexed: 11/22/2022]
Abstract
Avian influenza (AI) virus strains vary in antigenicity, and antigenic differences between circulating field virus and vaccine virus will affect the effectiveness of vaccination of poultry. Antigenic relatedness can be assessed by measuring serological cross-reactivity using haemagglutination inhibition (HI) tests. Our study aims to determine the relation between antigenic relatedness expressed by the Archetti-Horsfall ratio, and reduction of virus transmission of highly pathogenic H5N1 AI strains among vaccinated layers. Two vaccines were examined, derived from H5N1 AI virus strains A/Ck/WJava/Sukabumi/006/2008 and A/Ck/CJava/Karanganyar/051/2009. Transmission experiments were carried out in four vaccine and two control groups, with six sets of 16 specified pathogen free (SPF) layer chickens. Birds were vaccinated at 4weeks of age with one strain and challenge-infected with the homologous or heterologous strain at 8weeks of age. No transmission or virus shedding occurred in groups challenged with the homologous strain. In the group vaccinated with the Karanganyar strain, high cross-HI responses were observed, and no transmission of the Sukabumi strain occurred. However, in the group vaccinated with the Sukabumi strain, cross-HI titres were low, virus shedding was not reduced, and multiple transmissions to contact birds were observed. This study showed large differences in cross-protection of two vaccines based on two different highly pathogenic H5N1 virus strains. This implies that extrapolation of in vitro data to clinical protection and reduction of virus transmission might not be straightforward.
Collapse
|
26
|
Tanikawa T, Kanehira K, Tsunekuni R, Uchida Y, Takemae N, Saito T. Pathogenicity of H5N8 highly pathogenic avian influenza viruses isolated from a wild bird fecal specimen and a chicken in Japan in 2014. Microbiol Immunol 2017; 60:243-52. [PMID: 26916882 DOI: 10.1111/1348-0421.12369] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 02/08/2016] [Accepted: 02/21/2016] [Indexed: 01/22/2023]
Abstract
Poultry outbreaks caused by H5N8 highly pathogenic avian influenza viruses (HPAIVs) occurred in Japan between December 2014 and January 2015. During the same period; H5N8 HPAIVs were isolated from wild birds and the environment in Japan. The hemagglutinin (HA) genes of these isolates were found to belong to clade 2.3.4.4 and three sub-groups were distinguishable within this clade. All of the Japanese isolates from poultry outbreaks belonged to the same sub-group; whereas wild bird isolates belonged to the other sub-groups. To examine whether the difference in pathogenicity to chickens between isolates of different HA sub-groups of clade 2.3.4.4 could explain why the Japanese poultry outbreaks were only caused by a particular sub-group; pathogenicities of A/chicken/Miyazaki/7/2014 (Miyazaki2014; sub-group C) and A/duck/Chiba/26-372-48/2014 (Chiba2014; sub-group A) to chickens were compared and it was found that the lethality of Miyazaki2014 in chickens was lower than that of Chiba2014; according to the 50% chicken lethal dose. This indicated that differences in pathogenicity may not explain why the Japanese poultry outbreaks only involved group C isolates.
Collapse
Affiliation(s)
- Taichiro Tanikawa
- Influenza and Prion Disease Research Center, National Institute of Animal Health, National Agriculture and Food Research Organization (NARO), 3-1-5 Kannondai, Tsukuba, Ibaraki 305-0856
| | - Katsushi Kanehira
- Influenza and Prion Disease Research Center, National Institute of Animal Health, National Agriculture and Food Research Organization (NARO), 3-1-5 Kannondai, Tsukuba, Ibaraki 305-0856
| | - Ryota Tsunekuni
- Influenza and Prion Disease Research Center, National Institute of Animal Health, National Agriculture and Food Research Organization (NARO), 3-1-5 Kannondai, Tsukuba, Ibaraki 305-0856
| | - Yuko Uchida
- Influenza and Prion Disease Research Center, National Institute of Animal Health, National Agriculture and Food Research Organization (NARO), 3-1-5 Kannondai, Tsukuba, Ibaraki 305-0856
| | - Nobuhiro Takemae
- Influenza and Prion Disease Research Center, National Institute of Animal Health, National Agriculture and Food Research Organization (NARO), 3-1-5 Kannondai, Tsukuba, Ibaraki 305-0856
| | - Takehiko Saito
- Influenza and Prion Disease Research Center, National Institute of Animal Health, National Agriculture and Food Research Organization (NARO), 3-1-5 Kannondai, Tsukuba, Ibaraki 305-0856.,United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu City 501-1193, Japan
| |
Collapse
|
27
|
El-Shesheny R, Bagato O, Kandeil A, Mostafa A, Mahmoud SH, Hassanneen HM, Webby RJ, Ali MA, Kayali G. Re-emergence of amantadine-resistant variants among highly pathogenic avian influenza H5N1 viruses in Egypt. INFECTION GENETICS AND EVOLUTION 2016; 46:102-109. [PMID: 27876611 DOI: 10.1016/j.meegid.2016.10.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 10/12/2016] [Accepted: 10/25/2016] [Indexed: 01/22/2023]
Abstract
Highly pathogenic avian influenza (HPAI) H5N1 virus continues to undergo substantial evolution. Emergence of antiviral resistance among H5N1 avian influenza viruses is a major challenge in the control of pandemic influenza. Numerous studies have focused on the genetic and evolutionary dynamics of the hemagglutinin and neuraminidase genes; however, studies on the susceptibility of HPAI H5N1 viruses to amantadine and genetic diversity of the matrix (M) gene are limited. Accordingly, we studied the amantadine susceptibility of the HPAI H5N1 viruses isolated in Egypt during 2006-2015 based on genotypic and phenotypic characteristics. We analyzed data on 253 virus sequences and constructed a phylogenetic tree to calculate selective pressures on sites in the M2 gene associated with amantadine-resistance among different clades. Selection pressure was identified in the transmembrane domain of M2 gene at positions 27 and 31. Amantadine-resistant variants emerged in 2007 but were not circulating between 2012 and 2014. By 2015, amantadine-resistant HPAI H5N1 viruses re-emerged. This may be associated with the uncontrolled prescription of amantadine for prophylaxis and control of avian influenza infections in the poultry farm sector in Egypt. More epidemiological research is required to verify this observation.
Collapse
Affiliation(s)
- Rabeh El-Shesheny
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza, Egypt; Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Ola Bagato
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza, Egypt
| | - Ahmed Kandeil
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza, Egypt
| | - Ahmed Mostafa
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza, Egypt
| | - Sara H Mahmoud
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza, Egypt
| | - Hamdi M Hassanneen
- Department of Chemistry, Faculty of Science, Cairo University, Cairo, Egypt
| | - Richard J Webby
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Mohamed A Ali
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza, Egypt.
| | - Ghazi Kayali
- Department of Epidemiology, Human Genetics, and Environmental Sciences, University of Texas Health Sciences Center, Houston, TX, USA; Human Link, Hazmieh, Lebanon.
| |
Collapse
|
28
|
Predicting Avian Influenza Co-Infection with H5N1 and H9N2 in Northern Egypt. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2016; 13:ijerph13090886. [PMID: 27608035 PMCID: PMC5036719 DOI: 10.3390/ijerph13090886] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 08/22/2016] [Accepted: 09/01/2016] [Indexed: 11/26/2022]
Abstract
Human outbreaks with avian influenza have been, so far, constrained by poor viral adaptation to non-avian hosts. This could be overcome via co-infection, whereby two strains share genetic material, allowing new hybrid strains to emerge. Identifying areas where co-infection is most likely can help target spaces for increased surveillance. Ecological niche modeling using remotely-sensed data can be used for this purpose. H5N1 and H9N2 influenza subtypes are endemic in Egyptian poultry. From 2006 to 2015, over 20,000 poultry and wild birds were tested at farms and live bird markets. Using ecological niche modeling we identified environmental, behavioral, and population characteristics of H5N1 and H9N2 niches within Egypt. Niches differed markedly by subtype. The subtype niches were combined to model co-infection potential with known occurrences used for validation. The distance to live bird markets was a strong predictor of co-infection. Using only single-subtype influenza outbreaks and publicly available ecological data, we identified areas of co-infection potential with high accuracy (area under the receiver operating characteristic (ROC) curve (AUC) 0.991).
Collapse
|
29
|
Lai S, Qin Y, Cowling BJ, Ren X, Wardrop NA, Gilbert M, Tsang TK, Wu P, Feng L, Jiang H, Peng Z, Zheng J, Liao Q, Li S, Horby PW, Farrar JJ, Gao GF, Tatem AJ, Yu H. Global epidemiology of avian influenza A H5N1 virus infection in humans, 1997-2015: a systematic review of individual case data. THE LANCET. INFECTIOUS DISEASES 2016; 16:e108-e118. [PMID: 27211899 PMCID: PMC4933299 DOI: 10.1016/s1473-3099(16)00153-5] [Citation(s) in RCA: 196] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Revised: 01/30/2016] [Accepted: 03/08/2016] [Indexed: 12/13/2022]
Abstract
Avian influenza viruses A(H5N1) have caused a large number of typically severe human infections since the first human case was reported in 1997. However, there is a lack of comprehensive epidemiological analysis of global human cases of H5N1 from 1997-2015. Moreover, few studies have examined in detail the changing epidemiology of human H5N1 cases in Egypt, especially given the most recent outbreaks since November 2014 which have the highest number of cases ever reported globally over a similar period. Data on individual cases were collated from different sources using a systematic approach to describe the global epidemiology of 907 human H5N1 cases between May 1997 and April 2015. The number of affected countries rose between 2003 and 2008, with expansion from East and Southeast Asia, then to West Asia and Africa. Most cases (67.2%) occurred from December to March, and the overall case fatality risk was 53.5% (483/903) which varied across geographical regions. Although the incidence in Egypt has increased dramatically since November 2014, compared to the cases beforehand there were no significant differences in the fatality risk , history of exposure to poultry, history of human case contact, and time from onset to hospitalization in the recent cases.
Collapse
Affiliation(s)
- Shengjie Lai
- Division of Infectious Disease, Key Laboratory of Surveillance and Early-warning on Infectious Disease, Chinese Center for Disease Control and Prevention, Beijing, China; Department of Geography and Environment, University of Southampton, Southampton, UK; Flowminder Foundation, Stockholm, Sweden
| | - Ying Qin
- Division of Infectious Disease, Key Laboratory of Surveillance and Early-warning on Infectious Disease, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Benjamin J Cowling
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Xiang Ren
- Division of Infectious Disease, Key Laboratory of Surveillance and Early-warning on Infectious Disease, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Nicola A Wardrop
- Department of Geography and Environment, University of Southampton, Southampton, UK
| | - Marius Gilbert
- Biological Control and Spatial Ecology, Université Libre de Bruxelles, Brussels, Belgium; Fonds National de la Recherche Scientifique, Brussels, Belgium
| | - Tim K Tsang
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Peng Wu
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Luzhao Feng
- Division of Infectious Disease, Key Laboratory of Surveillance and Early-warning on Infectious Disease, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Hui Jiang
- Division of Infectious Disease, Key Laboratory of Surveillance and Early-warning on Infectious Disease, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Zhibin Peng
- Division of Infectious Disease, Key Laboratory of Surveillance and Early-warning on Infectious Disease, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jiandong Zheng
- Division of Infectious Disease, Key Laboratory of Surveillance and Early-warning on Infectious Disease, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Qiaohong Liao
- Division of Infectious Disease, Key Laboratory of Surveillance and Early-warning on Infectious Disease, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Sa Li
- Division of Infectious Disease, Key Laboratory of Surveillance and Early-warning on Infectious Disease, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Peter W Horby
- Oxford University Clinical Research Unit, Wellcome Trust Major Overseas Programme, Ho Chi Minh City, Vietnam; Centre for Tropical Medicine, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK; Singapore Infectious Disease Initiative, Singapore
| | - Jeremy J Farrar
- Oxford University Clinical Research Unit, Wellcome Trust Major Overseas Programme, Ho Chi Minh City, Vietnam; Centre for Tropical Medicine, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK; Singapore Infectious Disease Initiative, Singapore; International Severe Acute Respiratory and Emerging Infection Consortium, Centre for Tropical Medicine, University of Oxford, Churchill Hospital, Oxford, UK
| | - George F Gao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China; Chinese Center for Disease Control and Prevention, Beijing, China
| | - Andrew J Tatem
- Department of Geography and Environment, University of Southampton, Southampton, UK; Flowminder Foundation, Stockholm, Sweden; Fogarty International Center, National Institutes of Health, Bethesda, MD, USA
| | - Hongjie Yu
- Division of Infectious Disease, Key Laboratory of Surveillance and Early-warning on Infectious Disease, Chinese Center for Disease Control and Prevention, Beijing, China; School of Public Health, Fudan University, Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, China.
| |
Collapse
|
30
|
Mahardika GN, Jonas M, Murwijati T, Fitria N, Suartha IN, Suartini IGA, Wibawan IWT. Molecular analysis of hemagglutinin-1 fragment of avian influenza H5N1 viruses isolated from chicken farms in Indonesia from 2008 to 2010. Vet Microbiol 2016; 186:52-8. [DOI: 10.1016/j.vetmic.2016.02.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Revised: 02/15/2016] [Accepted: 02/23/2016] [Indexed: 01/23/2023]
|
31
|
Nguyen TH, Than VT, Thanh HD, Hung VK, Nguyen DT, Kim W. Intersubtype Reassortments of H5N1 Highly Pathogenic Avian Influenza Viruses Isolated from Quail. PLoS One 2016; 11:e0149608. [PMID: 26900963 PMCID: PMC4765837 DOI: 10.1371/journal.pone.0149608] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 02/03/2016] [Indexed: 11/18/2022] Open
Abstract
H5N1 highly pathogenic avian influenza (HPAI) viruses are considered a threat to national animal industries, causing production losses and high mortality in domestic poultry. In recent years, quail has become a popular terrestrial poultry species raised for production of meat and eggs in Asia. In this study, to better understand the roles of quail in H5N1 viral evolution, two H5N1-positive samples, designated A/quail/Vietnam/CVVI-49/2010 (CVVI-49/2010) and A/quail/Vietnam/CVVI-50/2014 (CVVI-50/2014), were isolated from quail during H5N1 outbreaks in Vietnam, and their whole genome were analyzed. The phylogenetic analysis reveals new evolutionary variation in the worldwide H5N1 viruses. The quail HA genes were clustered into clades 1.1.1 (CVVI-49/2010) and clade 2.3.2.1c (CVVI-50/2014), which may have evolved from viruses circulating from chickens and/or ducks in Cambodia, mainland of China, Taiwan, Indonesia, and South Korea in recent years. Interestingly, the M2 gene of the CVVI-49/2010 strain contained amino acid substitutions at position 26L-I and 31S-N that are related to amantadine-resistance. In particular, the CVVI-50/2014 strain revealed evidence of multiple intersubtype reassortment events between virus clades 2.3.2.1c, 2.3.2.1b, and 2.3.2.1a. Data from this study supports the possible role of quail as an important intermediate host in avian influenza virus evolution. Therefore, additional surveillance is needed to monitor these HPAI viruses both serologically and virologically in quail.
Collapse
Affiliation(s)
- Tinh Huu Nguyen
- Department of Microbiology, Chung-Ang University College of Medicine, Seoul, South Korea
- Central Vietnam Veterinary Institute, Nha Trang, Vietnam
| | - Van Thai Than
- Department of Microbiology, Chung-Ang University College of Medicine, Seoul, South Korea
| | - Hien Dang Thanh
- Department of Microbiology, Chung-Ang University College of Medicine, Seoul, South Korea
- Central Vietnam Veterinary Institute, Nha Trang, Vietnam
| | - Vu-Khac Hung
- Central Vietnam Veterinary Institute, Nha Trang, Vietnam
| | - Duc Tan Nguyen
- Central Vietnam Veterinary Institute, Nha Trang, Vietnam
| | - Wonyong Kim
- Department of Microbiology, Chung-Ang University College of Medicine, Seoul, South Korea
- * E-mail:
| |
Collapse
|
32
|
Richard M, Fouchier RAM. Influenza A virus transmission via respiratory aerosols or droplets as it relates to pandemic potential. FEMS Microbiol Rev 2016; 40:68-85. [PMID: 26385895 PMCID: PMC5006288 DOI: 10.1093/femsre/fuv039] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 01/13/2015] [Accepted: 08/20/2015] [Indexed: 12/11/2022] Open
Abstract
Many respiratory viruses of humans originate from animals. For instance, there are now eight paramyxoviruses, four coronaviruses and four orthomxoviruses that cause recurrent epidemics in humans but were once confined to other hosts. In the last decade, several members of the same virus families have jumped the species barrier from animals to humans. Fortunately, these viruses have not become established in humans, because they lacked the ability of sustained transmission between humans. However, these outbreaks highlighted the lack of understanding of what makes a virus transmissible. In part triggered by the relatively high frequency of occurrence of influenza A virus zoonoses and pandemics, the influenza research community has started to investigate the viral genetic and biological traits that drive virus transmission via aerosols or respiratory droplets between mammals. Here we summarize recent discoveries on the genetic and phenotypic traits required for airborne transmission of zoonotic influenza viruses of subtypes H5, H7 and H9 and pandemic viruses of subtypes H1, H2 and H3. Increased understanding of the determinants and mechanisms of respiratory virus transmission is not only key from a basic scientific perspective, but may also aid in assessing the risks posed by zoonotic viruses to human health, and preparedness for such risks.
Collapse
Affiliation(s)
- Mathilde Richard
- Department of Viroscience, Postgraduate School Molecular Medicine, Erasmus MC, 3000 CA Rotterdam, the Netherlands
| | - Ron A M Fouchier
- Department of Viroscience, Postgraduate School Molecular Medicine, Erasmus MC, 3000 CA Rotterdam, the Netherlands
| |
Collapse
|
33
|
Saito T, Tanikawa T, Uchida Y, Takemae N, Kanehira K, Tsunekuni R. Intracontinental and intercontinental dissemination of Asian H5 highly pathogenic avian influenza virus (clade 2.3.4.4) in the winter of 2014-2015. Rev Med Virol 2015; 25:388-405. [PMID: 26458727 DOI: 10.1002/rmv.1857] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 08/02/2015] [Accepted: 08/13/2015] [Indexed: 11/08/2022]
Affiliation(s)
- Takehiko Saito
- Influenza and Prion Disease Research Center; National Institute of Animal Health National Agriculture and Food Research Organization (NARO); Tsukuba Ibaraki Japan
- United Graduate School of Veterinary Sciences; Gifu University; Gifu City Japan
| | - Taichiro Tanikawa
- Influenza and Prion Disease Research Center; National Institute of Animal Health National Agriculture and Food Research Organization (NARO); Tsukuba Ibaraki Japan
| | - Yuko Uchida
- Influenza and Prion Disease Research Center; National Institute of Animal Health National Agriculture and Food Research Organization (NARO); Tsukuba Ibaraki Japan
| | - Nobuhiro Takemae
- Influenza and Prion Disease Research Center; National Institute of Animal Health National Agriculture and Food Research Organization (NARO); Tsukuba Ibaraki Japan
| | - Katsushi Kanehira
- Influenza and Prion Disease Research Center; National Institute of Animal Health National Agriculture and Food Research Organization (NARO); Tsukuba Ibaraki Japan
| | - Ryota Tsunekuni
- Influenza and Prion Disease Research Center; National Institute of Animal Health National Agriculture and Food Research Organization (NARO); Tsukuba Ibaraki Japan
| |
Collapse
|
34
|
Taft AS, Ozawa M, Fitch A, Depasse JV, Halfmann PJ, Hill-Batorski L, Hatta M, Friedrich TC, Lopes TJS, Maher EA, Ghedin E, Macken CA, Neumann G, Kawaoka Y. Identification of mammalian-adapting mutations in the polymerase complex of an avian H5N1 influenza virus. Nat Commun 2015; 6:7491. [PMID: 26082035 PMCID: PMC4557292 DOI: 10.1038/ncomms8491] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 05/14/2015] [Indexed: 01/01/2023] Open
Abstract
Avian influenza viruses of the H5N1 subtype pose a serious global health threat due to the high mortality (>60%) associated with the disease caused by these viruses and the lack of protective antibodies to these viruses in the general population. The factors that enable avian H5N1 influenza viruses to replicate in humans are not completely understood. Here we use a high-throughput screening approach to identify novel mutations in the polymerase genes of an avian H5N1 virus that confer efficient polymerase activity in mammalian cells. Several of the identified mutations (which have previously been found in natural isolates) increase viral replication in mammalian cells and virulence in infected mice compared with the wild-type virus. The identification of amino-acid mutations in avian H5N1 influenza virus polymerase complexes that confer increased replication and virulence in mammals is important for the identification of circulating H5N1 viruses with an increased potential to infect humans. Understanding the factors that enable some bird flu viruses to infect humans is important for the identification of circulating viruses with higher potential to infect us. Here, Taft et al.identify novel mutations in the polymerase of an avian H5N1 virus that help the virus to replicate in human cells and in mice![]()
Collapse
Affiliation(s)
- Andrew S Taft
- Influenza Research Institute, School of Veterinary Medicine, Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin 53711, USA
| | - Makoto Ozawa
- 1] Laboratory of Animal Hygiene, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima 890-0065, Japan [2] Transboundary Animal Diseases Center, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima 890-0065, Japan
| | - Adam Fitch
- University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA
| | - Jay V Depasse
- University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA
| | - Peter J Halfmann
- Influenza Research Institute, School of Veterinary Medicine, Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin 53711, USA
| | - Lindsay Hill-Batorski
- Influenza Research Institute, School of Veterinary Medicine, Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin 53711, USA
| | - Masato Hatta
- Influenza Research Institute, School of Veterinary Medicine, Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin 53711, USA
| | - Thomas C Friedrich
- 1] Wisconsin National Primate Research Center, Madison Wisconsin 53715, USA [2] Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison WI 53711, USA
| | - Tiago J S Lopes
- 1] Influenza Research Institute, School of Veterinary Medicine, Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin 53711, USA [2] Division of Virology, Department of Microbiology and Immunology and International Research Center for Infectious Diseases, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
| | - Eileen A Maher
- Influenza Research Institute, School of Veterinary Medicine, Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin 53711, USA
| | - Elodie Ghedin
- 1] University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA [2] Department of Biology, New York University, New York, New York 10003, USA
| | - Catherine A Macken
- Bioinformatics Institute, University of Auckland, Auckland 1010, New Zealand
| | - Gabriele Neumann
- Influenza Research Institute, School of Veterinary Medicine, Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin 53711, USA
| | - Yoshihiro Kawaoka
- 1] Influenza Research Institute, School of Veterinary Medicine, Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin 53711, USA [2] Division of Virology, Department of Microbiology and Immunology and International Research Center for Infectious Diseases, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan [3] Infection-Induced Host Responses Project, Exploratory Research for Advanced Technology, Saitama 332-0012, Japan
| |
Collapse
|
35
|
Wei K, Liu X. Phylogenetic Analysis and Functional Characterization of the Influenza A H5N1 PB2 Gene. Transbound Emerg Dis 2015; 64:374-388. [PMID: 25990872 DOI: 10.1111/tbed.12376] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Indexed: 12/23/2022]
Abstract
Highly pathogenic avian influenza (HPAI) H5N1 viruses are endemic in poultry and cause continued inter-species transmission to human in Asia, such as China and Vietnam, leading to pandemic concerns and socio-economic challenges. Phylogenetic analysis of H5N1 viruses isolated from China and Vietnam during 2001-2012 showed that several geographically distinct sublineages have become established in these two countries. Subsequently, we reassigned HPAI H5N1 viruses into three distinct groups to reveal the intrasubtype reassortment. Apart from six reassortants detected here, we found that several viral strains showed signals for homologous recombination within PB2 and PB1 genes, suggestive of the fluidity of the H5N1 virus gene pool. Furthermore, sequenced-based analyses revealed that the viral polymerase displayed a higher level of genetic polymorphism but associated with lower substitution rate when compared with those of other gene segments. In addition, the selection pressure analysis indicated that purifying selection was predominant in eight genomic segments especially in the polymerase complex. However, the site-by-site analysis helped to detect 14 positively selected sites in the PB1, PA, HA, NA, MP and NS proteins. Despite the fact that PB2 protein of H5N1 viruses was highly conserved at the amino acid level, eleven adaptive mutations were still observed in the protein. Further comparative structural analysis of the K627E mutation indicated that there were no structural differences between the variants, which possessed either PB2-627E or PB2-627K. Transcriptomic analysis suggested the non-mitochondrial PB2 protein of H5N1 virus that forms a stable complex with the mitochondrial antiviral signalling protein (MAVS, also known as IPS-1, VISA or Cardif) can induce interferon-beta (IFN-β) expression, but the substitution (PB2-K627E) is not the sole determinant of the RIG-I-like receptors (RLR) signalling components induction in Calu-3 cells.
Collapse
Affiliation(s)
- K Wei
- School of Biological Sciences and Biotechnology, Minnan Normal University, Zhangzhou, China
| | - X Liu
- School of Biological Sciences and Biotechnology, Minnan Normal University, Zhangzhou, China
| |
Collapse
|
36
|
Wang LC, Huang D, Cheng MC, Lee SH, Wang CH. H5 avian influenza virus pathotyping using oligonucleotide microarray. J Virol Methods 2015; 220:39-42. [PMID: 25896189 DOI: 10.1016/j.jviromet.2015.04.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Revised: 04/02/2015] [Accepted: 04/07/2015] [Indexed: 12/09/2022]
Abstract
The H5 avian influenza virus subtype has huge impact on the poultry industry. Rapid diagnosis and accurate identification of the highly pathogenic avian influenza virus and low-pathogenicity avian influenza virus is essential, especially during H5 outbreaks and surveillance. To this end, a novel and rapid strategy for H5 virus molecular pathotyping is presented. The specific hemagglutinin gene of the H5 virus and the basic amino acid number of the motif at the hemagglutinin precursor protein cleavage site were detected using oligonucleotide microarray. Highly pathogenic and low-pathogenicity avian influenza viruses in Taiwan were differentiated using 13 microarray probes with the naked eye. The detection limit reached 3.4 viral RNA copies, 1000 times more sensitive than reverse transcription polymerase chain reaction. Thus, the oligonucleotide microarray would provide an alternative H5 pathogenicity determination using the naked eye for laboratories lacking facilities.
Collapse
Affiliation(s)
- Lih-Chiann Wang
- School of Veterinary Medicine, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan.
| | - Dean Huang
- School of Veterinary Medicine, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan.
| | - Ming-Chu Cheng
- Animal Health Research Institute, Council of Agriculture, Taipei, Taiwan.
| | - Shu-Hwae Lee
- Animal Health Research Institute, Council of Agriculture, Taipei, Taiwan.
| | - Ching-Ho Wang
- School of Veterinary Medicine, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan.
| |
Collapse
|
37
|
Antibody titer has positive predictive value for vaccine protection against challenge with natural antigenic-drift variants of H5N1 high-pathogenicity avian influenza viruses from Indonesia. J Virol 2015; 89:3746-62. [PMID: 25609805 DOI: 10.1128/jvi.00025-15] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Vaccines are used in integrated control strategies to protect poultry against H5N1 high-pathogenicity avian influenza (HPAI). H5N1 HPAI was first reported in Indonesia in 2003, and vaccination was initiated in 2004, but reports of vaccine failures began to emerge in mid-2005. This study investigated the role of Indonesian licensed vaccines, specific vaccine seed strains, and emerging variant field viruses as causes of vaccine failures. Eleven of 14 licensed vaccines contained the manufacturer's listed vaccine seed strains, but 3 vaccines contained a seed strain different from that listed on the label. Vaccines containing A/turkey/Wisconsin/1968 (WI/68), A/chicken/Mexico/28159-232/1994 (Mex/94), and A/turkey/England/N28/1973 seed strains had high serological potency in chickens (geometric mean hemagglutination inhibition [HI] titers, ≥ 1:169), but vaccines containing strain A/chicken/Guangdong/1/1996 generated by reverse genetics (rg; rgGD/96), A/chicken/Legok/2003 (Legok/03), A/chicken/Vietnam/C57/2004 generated by rg (rgVN/04), or A/chicken/Legok/2003 generated by rg (rgLegok/03) had lower serological potency (geometric mean HI titers, ≤ 1:95). In challenge studies, chickens immunized with any of the H5 avian influenza vaccines were protected against A/chicken/West Java/SMI-HAMD/2006 (SMI-HAMD/06) and were partially protected against A/chicken/Papua/TA5/2006 (Papua/06) but were not protected against A/chicken/West Java/PWT-WIJ/2006 (PWT/06). Experimental inactivated vaccines made with PWT/06 HPAI virus or rg-generated PWT/06 low-pathogenicity avian influenza (LPAI) virus seed strains protected chickens from lethal challenge, as did a combination of a commercially available live fowl poxvirus vaccine expressing the H5 influenza virus gene and inactivated Legok/03 vaccine. These studies indicate that antigenic variants did emerge in Indonesia following widespread H5 avian influenza vaccine usage, and efficacious inactivated vaccines can be developed using antigenic variant wild-type viruses or rg-generated LPAI virus seed strains containing the hemagglutinin and neuraminidase genes of wild-type viruses. IMPORTANCE H5N1 high-pathogenicity avian influenza (HPAI) virus has become endemic in Indonesian poultry, and such poultry are the source of virus for birds and mammals, including humans. Vaccination has become a part of the poultry control strategy, but vaccine failures have occurred in the field. This study identified possible causes of vaccine failure, which included the use of an unlicensed virus seed strain and induction of low levels of protective antibody because of an insufficient quantity of vaccine antigen. However, the most important cause of vaccine failure was the appearance of drift variant field viruses that partially or completely overcame commercial vaccine-induced immunity. Furthermore, experimental vaccines using inactivated wild-type virus or reverse genetics-generated vaccines containing the hemagglutinin and neuraminidase genes of wild-type drift variant field viruses were protective. These studies indicate the need for surveillance to identify drift variant viruses in the field and update licensed vaccines when such variants appear.
Collapse
|
38
|
The K526R substitution in viral protein PB2 enhances the effects of E627K on influenza virus replication. Nat Commun 2014; 5:5509. [PMID: 25409547 PMCID: PMC4263149 DOI: 10.1038/ncomms6509] [Citation(s) in RCA: 138] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 10/07/2014] [Indexed: 12/16/2022] Open
Abstract
Host-adaptive strategies, such as the E627K substitution in the PB2 protein, are critical for replication of avian influenza A viruses in mammalian hosts. Here we show that mutation PB2-K526R is present in some human H7N9 influenza isolates, in nearly 80% of H5N1 human isolates from Indonesia and, in conjunction with E627K, in almost all seasonal H3N2 viruses since 1970. Polymerase complexes containing PB2-526R derived from H7N9, H5N1 or H3N2 viruses exhibit increased polymerase activity. PB2-526R also enhances viral transcription and replication in cells. In comparison with viruses carrying 627K, H7N9 viruses carrying both 526R and 627K replicate more efficiently in mammalian (but not avian) cells and in mouse lung tissues, and cause greater body weight loss and mortality in infected mice. PB2-K526R interacts with nuclear export protein and our results suggest that it contributes to enhance replication for certain influenza virus subtypes, particularly in combination with 627K.
Collapse
|
39
|
Bird to human transmission biases and vaccine escape mutants in H5N1 infections. PLoS One 2014; 9:e100754. [PMID: 24988306 PMCID: PMC4079711 DOI: 10.1371/journal.pone.0100754] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 05/30/2014] [Indexed: 11/24/2022] Open
Abstract
Background The avian influenza A H5N1 virus occasionally infects humans, with high mortality rates. Although all current human infections are from avian-to-human transmission, it has been shown that H5N1 can be evolved to transmit between mammals, and is therefore a pandemic threat. For H5N1 surveillance, it is of interest to identify the avian isolates most likely to infect humans. In this study, we develop a method to identify mutations significantly associated with avian to human transmission. Method Using protein sequences for the surface glycoprotein hemagglutinin from avian and human H5N1 isolates in China, Egypt, and Indonesia from the years 1996–2011, we used Principle Component Analysis and a Maximum Likelihood Multinomial method to identify mutations associated with avian to human transmission. In each geographic region, transmission bias residues were identified using two signatures: a) significantly different amino-acid frequencies in human isolates compared to avian isolates from the same year, and b) significantly low probability of neutral evolution of the human isolates from the avian viral pool of the previous year. Results In each geographic region, we find specific transmission bias mutations associated with human infections. These mutations are located in antigenic regions and receptor binding, glycosylation and polybasic cleavage sites of HA. We show that human isolates derive from a limited, subset of the avian pool characterized by geography specific mutations. In Egypt, two of three PCA clusters have very few human isolates but are highly enriched in mutations associated with a vaccine escape mutant H5N1 avian sub-clade that is known to be resistant to the Mexican H5N2 vaccine Furthermore, at these transmission bias associated residues, the mutations characteristic of these two clusters are distinct from those associated with the cluster enriched in human isolates, suggesting that vaccine resistant avian strains are unable to infect humans. Our results are relevant for surveillance and vaccination strategies for human H5N1 infections.
Collapse
|
40
|
Daniels P, Wiyono A, Sawitri E, Poermadjaja B, Sims LD. H5N1 highly pathogenic avian influenza in Indonesia: retrospective considerations. Curr Top Microbiol Immunol 2014; 365:171-84. [PMID: 22956392 DOI: 10.1007/82_2012_265] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Abstract
Indonesia is one of the five countries where highly pathogenic avian influenza viruses of the H5N1 subtype (H5N1 HPAI) remain endemic in poultry. Importantly, it is one of the countries where the virus causes human infections. WHO data indicate that as of 2 May 2012, 189 human cases of Influenza A (H5N1) had been reported in Indonesia, with 157 human deaths. These human cases included a small number in which limited human-to-human transmission could have occurred. Hence, there remains a critical need in Indonesia for a more effective One Health approach to the control and prevention of this disease in people and in poultry. This chapter explores a number of aspects of the evolution of this disease in Indonesia, the virus that causes it and the control and preventive measures introduced, focusing on the successes and shortcomings of veterinary and One Health approaches. Indonesia provides many examples of situations where this latter approach has been successful, and others where further work is needed to maximize the benefits from coordinated responses to this disease leading to effective management of the risk to human health.
Collapse
Affiliation(s)
- Peter Daniels
- Australian Animal Health Laboratory, CSIRO Animal, Food and Health Sciences, PMB 24, Geelong, 3220, Australia,
| | | | | | | | | |
Collapse
|
41
|
Le TH, Nguyen NTB. Evolutionary dynamics of highly pathogenic avian influenza A/H5N1 HA clades and vaccine implementation in Vietnam. Clin Exp Vaccine Res 2014; 3:117-27. [PMID: 25003084 PMCID: PMC4083063 DOI: 10.7774/cevr.2014.3.2.117] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Revised: 05/02/2014] [Accepted: 05/11/2014] [Indexed: 01/05/2023] Open
Abstract
Based on hemagglutinin (HA) and neuraminidase (NA), influenza A virus is divided into 18 different HA (H1 to H18) and 11 NA types (N1 to N11), opening the possibility for reassortment between the HA and NA genes to generate new HxNy subtypes (where x could be any HA and y is any NA, possibly). In recent four years, since 2010, highly pathogenic avian influenza (HPAI) viruses of H5N1 subtype (HPAI A/H5N1) have become highly enzootic and dynamically evolved to form multiple H5 HA clades, particularly in China, Vietnam, Indonesia, Egypt, Cambodia, and Bangladesh. So far, after more than 10 years emerged in Vietnam (since late 2003), HPAI A/H5N1 is still posing a potential risk of causing outbreaks in poultry, with high frequency of annual endemics. Intragenic variation (referred to as antigenic drift) in HA (e.g., H5) has given rise to form numerous clades, typically marking the major timelines of the evolutionary status and vaccine application in each period. The dominance of genetically and antigenically diversified clade 2.3.2.1 (of subgroups a, b, c), clade 1.1 (1.1.1/1.1.2) and re-emergence of clade 7.1/7.2 at present, has urged Vietnam to the need for dynamically applied antigenicity-matching vaccines, i.e., the plan of importing Re-6 vaccine for use in 2014, in parallel use of Re-1/Re-5 since 2006. In this review, we summarize evolutionary features of HPAI A/H5N1 viruses and clade formation during recent 10 years (2004-2014). Dynamic of vaccine implementation in Vienam is also remarked.
Collapse
Affiliation(s)
- Thanh Hoa Le
- Department of Immunology, Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Nga Thi Bich Nguyen
- Department of Immunology, Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| |
Collapse
|
42
|
Antigenic variation of clade 2.1 H5N1 virus is determined by a few amino acid substitutions immediately adjacent to the receptor binding site. mBio 2014; 5:e01070-14. [PMID: 24917596 PMCID: PMC4056550 DOI: 10.1128/mbio.01070-14] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Highly pathogenic avian influenza (HPAI) viruses of the H5N1 subtype are genetically highly variable and have diversified into multiple phylogenetic clades over the past decade. Antigenic drift is a well-studied phenomenon for seasonal human influenza viruses, but much less is known about the antigenic evolution of HPAI H5N1 viruses that circulate in poultry. In this study, we focused on HPAI H5N1 viruses that are enzootic to Indonesia. We selected representative viruses from genetically distinct lineages that are currently circulating and determined their antigenic properties by hemagglutination inhibition assays. At least six antigenic variants have circulated between 2003, when H5N1 clade 2.1 viruses were first detected in Indonesia, and 2011. During this period, multiple antigenic variants cocirculated in the same geographic regions. Mutant viruses were constructed by site-directed mutagenesis to represent each of the circulating antigenic variants, revealing that antigenic differences between clade 2.1 viruses were due to only one or very few amino acid substitutions immediately adjacent to the receptor binding site. Antigenic variants of H5N1 virus evaded recognition by both ferret and chicken antibodies. The molecular basis for antigenic change in clade 2.1 viruses closely resembled that of seasonal human influenza viruses, indicating that the hemagglutinin of influenza viruses from different hosts and subtypes may be similarly restricted to evade antibody recognition. Highly pathogenic avian influenza (HPAI) H5N1 viruses are responsible for severe outbreaks in both commercial and backyard poultry, causing considerable economic losses and regular zoonotic transmissions to humans. Vaccination is used increasingly to reduce the burden of HPAI H5N1 virus in poultry. Influenza viruses can escape from recognition by antibodies induced upon vaccination or infection through genetic changes in the hemagglutinin protein. The evolutionary patterns and molecular basis of antigenic change in HPAI H5N1 viruses are poorly understood, hampering formulation of optimal vaccination strategies. We have shown here that HPAI H5N1 viruses in Indonesia diversified into multiple antigenic variants, that antigenic differences were due to one or a very few substitutions near the receptor binding site, and that the molecular basis for antigenic change was remarkably similar to that for seasonal human influenza viruses. These findings have consequences for future vaccination and surveillance considerations and contribute to the understanding of the antigenic evolution of influenza viruses.
Collapse
|
43
|
Shepard SS, Davis CT, Bahl J, Rivailler P, York IA, Donis RO. LABEL: fast and accurate lineage assignment with assessment of H5N1 and H9N2 influenza A hemagglutinins. PLoS One 2014; 9:e86921. [PMID: 24466291 PMCID: PMC3900692 DOI: 10.1371/journal.pone.0086921] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 12/16/2013] [Indexed: 11/30/2022] Open
Abstract
The evolutionary classification of influenza genes into lineages is a first step in understanding their molecular epidemiology and can inform the subsequent implementation of control measures. We introduce a novel approach called Lineage Assignment By Extended Learning (LABEL) to rapidly determine cladistic information for any number of genes without the need for time-consuming sequence alignment, phylogenetic tree construction, or manual annotation. Instead, LABEL relies on hidden Markov model profiles and support vector machine training to hierarchically classify gene sequences by their similarity to pre-defined lineages. We assessed LABEL by analyzing the annotated hemagglutinin genes of highly pathogenic (H5N1) and low pathogenicity (H9N2) avian influenza A viruses. Using the WHO/FAO/OIE H5N1 evolution working group nomenclature, the LABEL pipeline quickly and accurately identified the H5 lineages of uncharacterized sequences. Moreover, we developed an updated clade nomenclature for the H9 hemagglutinin gene and show a similarly fast and reliable phylogenetic assessment with LABEL. While this study was focused on hemagglutinin sequences, LABEL could be applied to the analysis of any gene and shows great potential to guide molecular epidemiology activities, accelerate database annotation, and provide a data sorting tool for other large-scale bioinformatic studies.
Collapse
MESH Headings
- Animals
- Bayes Theorem
- Cell Lineage
- Chickens
- Evolution, Molecular
- Hemagglutinin Glycoproteins, Influenza Virus/analysis
- Hemagglutinin Glycoproteins, Influenza Virus/genetics
- Influenza A Virus, H5N1 Subtype/classification
- Influenza A Virus, H5N1 Subtype/genetics
- Influenza A Virus, H5N1 Subtype/pathogenicity
- Influenza A Virus, H9N2 Subtype/classification
- Influenza A Virus, H9N2 Subtype/genetics
- Influenza A Virus, H9N2 Subtype/pathogenicity
- Influenza in Birds/genetics
- Influenza in Birds/virology
- Phylogeny
- Poultry Diseases/virology
- Sequence Analysis, DNA
- Software
Collapse
Affiliation(s)
- Samuel S. Shepard
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - C. Todd Davis
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Justin Bahl
- Laboratory of Virus Evolution in Program of Emerging Infectious Diseases, Duke-NUS Graduate Medical School, Singapore, Singapore
- Center for Infectious Diseases, The University of Texas School of Public Health, Houston, Texas, United States of America
| | - Pierre Rivailler
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Ian A. York
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Ruben O. Donis
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| |
Collapse
|
44
|
Abstract
Respiratory infections are the third highest cause of death worldwide and influenza has the highest mortality rate among lower respiratory tract infections (LRTIs). Diagnosis of LRTIs relies mostly on clinical symptoms and is not fully satisfactory. Influenza laboratory diagnosis improves the efficiency of prophylaxis or treatment of influenza by antiviral molecules and has a strong impact on the cost-effectiveness of curative treatment. Inappropriate treatment of patients may result in spreading of resistant strains. Molecular diagnostics play a central role in the surveillance and response of pandemic influenza due to highly pathogenic strains. Real-time assays can be used for diagnosis or surveillance purposes in humans and animals, and microarrays can be used to identify and monitor the spread of dangerous variants. Molecular assays are also useful to identify and distinguish influenza, other respiratory viruses and bacteria, although their cost-effectiveness must be proven on a large scale. As new antiviral options will be available to clinicians, a better treatment choice will benefit the patient and community. Recent progress in molecular techniques will be reviewed. Examples of real-time assays for the detection of influenza viruses, including the highly pathogenic influenza A strains H5N1 and H7N7, will be discussed. Promising new techniques that allow detailed genotyping of viruses or multiplex detection of several respiratory pathogens from a unique specimen will also be discussed. These techniques will, in the near future, significantly improve the quality of diagnosis and surveillance of respiratory pathogens.
Collapse
Affiliation(s)
- Guy Vernet
- BioMérieux, Emerging Pathogens R&D Department, Marcy-l'Etoile, 69280, France.
| |
Collapse
|
45
|
Sonnberg S, Webby RJ, Webster RG. Natural history of highly pathogenic avian influenza H5N1. Virus Res 2013; 178:63-77. [PMID: 23735535 PMCID: PMC3787969 DOI: 10.1016/j.virusres.2013.05.009] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Revised: 05/03/2013] [Accepted: 05/20/2013] [Indexed: 12/27/2022]
Abstract
The ecology of highly pathogenic avian influenza (HPAI) H5N1 has significantly changed from sporadic outbreaks in terrestrial poultry to persistent circulation in terrestrial and aquatic poultry and potentially in wild waterfowl. A novel genotype of HPAI H5N1 arose in 1996 in Southern China and through ongoing mutation, reassortment, and natural selection, has diverged into distinct lineages and expanded into multiple reservoir hosts. The evolution of Goose/Guangdong-lineage highly pathogenic H5N1 viruses is ongoing: while stable interactions exist with some reservoir hosts, these viruses are continuing to evolve and adapt to others, and pose an un-calculable risk to sporadic hosts, including humans.
Collapse
Affiliation(s)
- Stephanie Sonnberg
- Department of Infectious Diseases St. Jude Children's Research Hospital 262 Danny Thomas Drive MS 330, Memphis, TN, 38103 USA
| | - Richard J. Webby
- Department of Infectious Diseases St. Jude Children's Research Hospital 262 Danny Thomas Drive MS 330, Memphis, TN, 38103 USA
| | - Robert G. Webster
- corresponding author, Department of Infectious Diseases St. Jude Children's Research Hospital 262 Danny Thomas Drive MS 330, Memphis, TN, 38103 USA Tel +1 901 595 3400 Fax +1 901 595 8559
| |
Collapse
|
46
|
Guan Y, Smith GJ. The emergence and diversification of panzootic H5N1 influenza viruses. Virus Res 2013; 178:35-43. [PMID: 23735533 PMCID: PMC4017639 DOI: 10.1016/j.virusres.2013.05.012] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2012] [Revised: 04/23/2013] [Accepted: 05/20/2013] [Indexed: 02/05/2023]
Abstract
The Asian highly pathogenic avian influenza H5N1 virus was first detected in the goose population of Guangdong, China in 1996. The viruses in this lineage are unique in their ecological success, demonstrating an extremely broad host range and becoming established in poultry over much of Asia and in Africa. H5N1 viruses have also diverged into multiple clades and subclades that generally do not cross neutralize, which has greatly confounded control measures in poultry and pre-pandemic vaccine strain selection. Although H5N1 viruses currently cannot transmit efficiently between mammals they exhibit high mortality in humans and recent experimental studies have shown that it is possible to generate an H5N1 virus that is transmissible in mammals. In addition to causing unprecedented economic losses, the long-term presence of the H5N1 virus in poultry and its frequent introductions to humans continue to pose a significant pandemic threat. Here we provide a summary of the genesis, molecular epidemiology and evolution of this H5N1 lineage, particularly the factors that have contributed to the continued diversification and ecological success of H5N1 viruses, with particular reference to the poultry production systems they have emerged from.
Collapse
Affiliation(s)
- Yi Guan
- State Key Laboratory of Emerging Infectious Diseases and Center of Influenza Research, The University of Hong Kong, Hong Kong SAR, China
- International Institution of Infection and Immunity, Shantou University Medical College, Shantou, China
| | - Gavin J.D. Smith
- Duke-NUS Graduate Medical School, 8 College Road, Singapore 169857
- Duke Global Health Institute, Duke University, Box 90519, Durham, North Carolina 27708
| |
Collapse
|
47
|
The characterization of low pathogenic avian influenza viruses isolated from wild birds in northern Vietnam from 2006 to 2009. Comp Immunol Microbiol Infect Dis 2013; 36:581-90. [DOI: 10.1016/j.cimid.2013.06.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Revised: 06/26/2013] [Accepted: 06/27/2013] [Indexed: 10/26/2022]
|
48
|
Pleiotropic effects of hemagglutinin amino acid substitutions of H5 influenza escape mutants. Virology 2013; 447:233-9. [PMID: 24210119 DOI: 10.1016/j.virol.2013.09.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 08/22/2013] [Accepted: 09/13/2013] [Indexed: 01/18/2023]
Abstract
In the present study we assessed pleiotropic characteristics of the antibody-selected mutations. We examined pH optimum of fusion, temperatures of HA heat inactivation, and in vitro and in vivo replication kinetics of the previously obtained influenza H5 escape mutants. Our results showed that HA1 N142K mutation significantly lowered the pH of fusion optimum. Mutations of the escape mutants located in the HA lateral loop significantly affected H5 HA thermostability (P<0.05). HA changes at positions 131, 144, 145, and 156 and substitutions at positions 131, 142, 145, and 156 affected the replicative ability of H5 escape mutants in vitro and in vivo, respectively. Overall, a co-variation between antigenic specificity and different HA phenotypic properties has been demonstrated. We believe that the monitoring of pleiotropic effects of the HA mutations found in H5 escape mutants is essential for accurate prediction of mutants with pandemic potential.
Collapse
|
49
|
Wu C, Lu X, Wang X, Jin T, Cheng X, Fang S, Wang X, Ma H, Zhang R, Cheng J. Clinical symptoms, immune factors, and molecular characteristics of an adult male in Shenzhen, China infected with influenza virus H5N1. J Med Virol 2013; 85:760-8. [PMID: 23508902 DOI: 10.1002/jmv.23492] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/13/2012] [Indexed: 11/10/2022]
Abstract
On December 29, 2011, a man infected with a subclade of the H5N1 virus was confirmed in Shenzhen, China. The clinical symptoms and immune factors of the patient were investigated and the phylogenetic and molecular characteristics of the virus were analyzed. High fever, rapid development of serious pneumonia and multi-organ failure were the main clinical symptoms. Arterial blood gas analysis showed that PaCO2 rose sharply and PO2 decreased. Leukocyte and platelet counts decreased rapidly. Peripheral blood lymphocyte counts indicated lymphopenia and inverted ratios of CD4(+) to CD8(+) cells. Cytokine analysis showed that the levels of serum IL-6, IL-10, and IFN-r continued to increase, whereas the levels of IL-12 and TNFs decreased during the clinical course. MCP-1 and IP-10 remained at a high level after infection. Phylogenetic analysis confirmed that the virus A/Shenzhen/1/2011 belongs to the new subclade 2.3.2.1. An Arg (R) insertion at P6 and an RP8I substitution in the HA cleavage site motif were detected in the virus. Compared to the vaccine strain, 16 specific substitutions occurred in the HA1 protein. Some of them were located on the receptor-binding site, glycosylation site and the region of the antigenic determinant. In summary, serious complications and immune system disorders were the main features of the infection with H5N1. Gene variation did not weaken the highly pathogenic features of viruses and the pathogenicity and antigenicity of the new subclade virus were changed.
Collapse
Affiliation(s)
- Chunli Wu
- Center for Disease Control and Prevention, Shenzhen 518020, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
The antigenic architecture of the hemagglutinin of influenza H5N1 viruses. Mol Immunol 2013; 56:705-19. [PMID: 23933511 DOI: 10.1016/j.molimm.2013.07.010] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Revised: 07/06/2013] [Accepted: 07/14/2013] [Indexed: 11/22/2022]
Abstract
Human infection with the highly pathogenic avian influenza A virus H5N1 is associated with a high mortality and morbidity. H5N1 continues to transmit from poultry to the human population, raising serious concerns about its pandemic potential. Current influenza H5N1 vaccines are based upon the elicitation of a neutralizing antibody (Ab) response against the major epitope regions of the viral surface glycoprotein, hemagglutinin (HA). However, antigenic drift mutations in immune-dominant regions on the HA structure allow the virus to escape Ab neutralization. Epitope mapping using neutralizing monoclonal antibodies (mAb) helps define mechanisms of antigenic drift, neutralizing escape and can facilitate pre-pandemic vaccine design. This review explores the current knowledge base of the antigenic sites of the H5N1 HA molecule. The relationship between the epitope architecture of the H5N1 HA, antigenic evolution of the different H5N1 lineages and the antigenic complexity of the H5N1 virus lineages that constitute potential pandemic strains are discussed in detail.
Collapse
|