1
|
Delporte M, Lambrechts L, Blomme EE, van Snippenberg W, Rutsaert S, Verschoore M, De Smet E, Noppe Y, De Langhe N, De Scheerder MA, Gerlo S, Vandekerckhove L, Trypsteen W. Integrative Assessment of Total and Intact HIV-1 Reservoir by a 5-Region Multiplexed Rainbow DNA Digital PCR Assay. Clin Chem 2025; 71:203-214. [PMID: 39749517 DOI: 10.1093/clinchem/hvae192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 10/10/2024] [Indexed: 01/04/2025]
Abstract
BACKGROUND Persistent latent reservoirs of intact HIV-1 proviruses, capable of rebounding despite suppressive antiretroviral therapy (ART), hinder efforts towards an HIV-1 cure. Hence, assays specifically quantifying intact proviruses are crucial to assess the impact of curative interventions. Two recent assays have been utilized in clinical trials: intact proviral DNA assay (IPDA) and quadruplex quantitative PCR (Q4PCR). While IPDA is more sensitive due to amplifying short fragments, it may overestimate intact fractions by relying only on quantification of 2 proviral regions. Q4PCR samples 4 proviral regions, yet is sequencing-based, favoring amplification of shorter, hence non-intact, proviral sequences. METHODS Leveraging digital PCR (dPCR) advancements, we developed the "Rainbow" 5-plex proviral HIV-1 DNA assay. This first-in-its-kind assay was evaluated using standard materials and samples from 83 people living with HIV-1, enabling simultaneous quantification of both total and intact HIV-1 DNA levels. HIV proviral unique molecular identifier (UMI)-mediated long-read sequencing (HIV-PULSE) was used to validate the specificity of the Rainbow HIV-1 DNA assay. RESULTS The Rainbow assay proved equally sensitive but more specific than IPDA and is not subjected to bias against full-length proviruses, enabling high-throughput quantification of total and intact reservoir size. The near full-length sequences allowed validation of the Rainbow specificity and the design of personalized Rainbow primer/probe sets, which enabled the detection of intact HIV-1 DNA. CONCLUSIONS This innovation offers potential for targeted evaluation and monitoring of potential rebound-competent reservoirs, contributing to HIV-1 management and cure strategies. ClinicalTrials.gov Registration Numbers: NCT04553081, NCT04305665.
Collapse
Affiliation(s)
- Mareva Delporte
- Department of Internal Medicine and Pediatrics, HIV Cure Research Center, Ghent University Hospital, Ghent University Ghent, Belgium
| | - Laurens Lambrechts
- Department of Internal Medicine and Pediatrics, HIV Cure Research Center, Ghent University Hospital, Ghent University Ghent, Belgium
- BioBix, Department of Data Analysis and Mathematical Modelling, Faculty of Bioscience Engineering, Ghent University Ghent, Belgium
| | - Evy E Blomme
- Department of Internal Medicine and Pediatrics, HIV Cure Research Center, Ghent University Hospital, Ghent University Ghent, Belgium
| | - Willem van Snippenberg
- Department of Internal Medicine and Pediatrics, HIV Cure Research Center, Ghent University Hospital, Ghent University Ghent, Belgium
| | - Sofie Rutsaert
- Department of Internal Medicine and Pediatrics, HIV Cure Research Center, Ghent University Hospital, Ghent University Ghent, Belgium
| | - Maxime Verschoore
- Department of Internal Medicine and Pediatrics, HIV Cure Research Center, Ghent University Hospital, Ghent University Ghent, Belgium
| | - Evelien De Smet
- Department of Internal Medicine and Pediatrics, HIV Cure Research Center, Ghent University Hospital, Ghent University Ghent, Belgium
| | - Ytse Noppe
- Department of Internal Medicine and Pediatrics, HIV Cure Research Center, Ghent University Hospital, Ghent University Ghent, Belgium
| | - Nele De Langhe
- Department of Internal Medicine and Pediatrics, HIV Cure Research Center, Ghent University Hospital, Ghent University Ghent, Belgium
| | - Marie-Angélique De Scheerder
- Department of Internal Medicine and Pediatrics, HIV Cure Research Center, Ghent University Hospital, Ghent University Ghent, Belgium
| | - Sarah Gerlo
- Department of Internal Medicine and Pediatrics, HIV Cure Research Center, Ghent University Hospital, Ghent University Ghent, Belgium
- Department of Biomolecular Medicine, Faculty of Medicine, Ghent University Ghent, Belgium
| | - Linos Vandekerckhove
- Department of Internal Medicine and Pediatrics, HIV Cure Research Center, Ghent University Hospital, Ghent University Ghent, Belgium
| | - Wim Trypsteen
- Department of Internal Medicine and Pediatrics, HIV Cure Research Center, Ghent University Hospital, Ghent University Ghent, Belgium
- Digital PCR Consortium, Ghent University Ghent, Belgium
| |
Collapse
|
2
|
Aouizerat BE, Garcia JN, Domingues CV, Xu K, Quach BC, Page GP, Konkle-Parker D, Bolivar HH, Lahiri CD, Golub ET, Cohen MH, Kassaye SG, DeHovitz J, Kuniholm MH, Archin NM, Tien PC, Hancock DB, Johnson EO. Frequent Cocaine Use is Associated With Larger HIV Latent Reservoir Size. J Acquir Immune Defic Syndr 2024; 97:156-164. [PMID: 39250649 PMCID: PMC11752676 DOI: 10.1097/qai.0000000000003472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Indexed: 09/11/2024]
Abstract
BACKGROUND Cocaine-one of the most frequently abused illicit drugs among persons living with HIV [people living with HIV (PLWH)]-slows the decline of viral production after antiretroviral therapy and is associated with higher HIV viral load, more rapid HIV progression, and increased mortality. SETTING We examined the impact of cocaine use on the CD4+ T-cell HIV latent reservoir (HLR) in virally suppressed PLWH participating in a national, longitudinal cohort study of the natural and treated history of HIV in the United States. METHODS CD4+ T-cell genomic DNA from 434 women of diverse ancestry (ie, 75% Black, 14% Hispanic, 12% White) who self-reported cocaine use (ie, 160 cocaine users, 59 prior users, 215 non-users) was analyzed using the Intact Proviral HIV DNA Assay, measuring intact provirus per 106 CD4+ T cells. FINDINGS HIV latent reservoir size differed by cocaine use (ie, median [interquartile range]: 72 [14-193] for never users, 165 [63-387] for prior users, 184 [28-502] for current users), which was statistically significantly larger in both prior (P = 0.023) and current (P = 0.001) cocaine users compared with never users. CONCLUSIONS Cocaine use may contribute to a larger replication competent HLR in CD4+ T cells among virologically suppressed women living with HIV. Our findings are important because women are underrepresented in HIV reservoir studies and in studies of the impact of cocaine use on outcomes among PLWH.
Collapse
Affiliation(s)
- Bradley E Aouizerat
- Department of Oral and Maxillofacial Surgery, New York University
- Translational Research Center, New York University
| | - Josephine N Garcia
- Department of Oral and Maxillofacial Surgery, New York University
- Translational Research Center, New York University
| | - Carlos V Domingues
- Department of Oral and Maxillofacial Surgery, New York University
- Translational Research Center, New York University
| | - Ke Xu
- Department of Psychiatry, School of Medicine, Yale University
- VA Connecticut Health Care
| | - Bryan C Quach
- Genomics and Translational Research Center, Analytics Practice Area, RTI International
| | - Grier P Page
- Genomics and Translational Research Center, Analytics Practice Area, RTI International
- Fellow Program, RTI International
| | - Deborah Konkle-Parker
- Division of Infectious Diseases, University of Mississippi Medical Center, Jackson, MS
| | - Hector H Bolivar
- Division of Infectious Disease, University of Miami-ACRU, Miami, FL
| | - Cecile D Lahiri
- Department of Medicine, Division of Infectious Diseases, Emory University School of Medicine, Atlanta, GA
| | - Elizabeth T Golub
- Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD
| | - Mardge H Cohen
- Department of Medicine, Stroger Hospital, Cook County Health System, Chicago, IL
| | - Seble G Kassaye
- Department of Medicine, Division of Infectious Diseases, Georgetown University, Washington, DC
| | - Jack DeHovitz
- Department of Medicine, Division of Infectious Diseases, Downstate Health Sciences University, Brooklyn, NY
| | - Mark H Kuniholm
- Department of Epidemiology and Biostatistics, University at Albany, State University of New York, Rensselaer, NY
| | - Nancie M Archin
- UNC HIV Cure Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC
- Department of Medicine, Division of Infectious Diseases, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC
| | - Phyllis C Tien
- Department of Medicine, University of California, San Francisco, CA; and
- Department of Veterans Affairs Medical Center, San Francisco, CA
| | - Dana B Hancock
- Genomics and Translational Research Center, Analytics Practice Area, RTI International
| | - Eric Otto Johnson
- Genomics and Translational Research Center, Analytics Practice Area, RTI International
- Fellow Program, RTI International
| |
Collapse
|
3
|
Yuan L, Liu Z, Zhang X, Wei F, Guo S, Guo N, Liu L, Ma Z, Ji Y, Wang R, Lu X, Li Z, Xia W, Wu H, Zhang T, Su B. Development of a droplet digital polymerase chain reaction assay for the sensitive detection of total and integrated HIV-1 DNA. Chin Med J (Engl) 2024; 137:729-736. [PMID: 38433332 PMCID: PMC10950186 DOI: 10.1097/cm9.0000000000003081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Indexed: 03/05/2024] Open
Abstract
BACKGROUND Total human immunodeficiency virus (HIV) DNA and integrated HIV DNA are widely used markers of HIV persistence. Droplet digital polymerase chain reaction (ddPCR) can be used for absolute quantification without needing a standard curve. Here, we developed duplex ddPCR assays to detect and quantify total HIV DNA and integrated HIV DNA. METHODS The limit of detection, dynamic ranges, sensitivity, and reproducibility were evaluated by plasmid constructs containing both the HIV long terminal repeat (LTR) and human CD3 gene (for total HIV DNA) and ACH-2 cells (for integrated HIV DNA). Forty-two cases on stable suppressive antiretroviral therapy (ART) were assayed in total HIV DNA and integrated HIV DNA. Correlation coefficient analysis was performed on the data related to DNA copies and cluster of differentiation 4 positive (CD4 + ) T-cell counts, CD8 + T-cell counts and CD4/CD8 T-cell ratio, respectively. The assay linear dynamic range and lower limit of detection (LLOD) were also assessed. RESULTS The assay could detect the presence of HIV-1 copies 100% at concentrations of 6.3 copies/reaction, and the estimated LLOD of the ddPCR assay was 4.4 HIV DNA copies/reaction (95% confidence intervals [CI]: 3.6-6.5 copies/reaction) with linearity over a 5-log 10 -unit range in total HIV DNA assay. For the integrated HIV DNA assay, the LLOD was 8.0 copies/reaction (95% CI: 5.8-16.6 copies/reaction) with linearity over a 3-log 10 -unit range. Total HIV DNA in CD4 + T cells was positively associated with integrated HIV DNA ( r = 0.76, P <0.0001). Meanwhile, both total HIV DNA and integrated HIV DNA in CD4 + T cells were inversely correlated with the ratio of CD4/CD8 but positively correlated with the CD8 + T-cell counts. CONCLUSIONS This ddPCR assay can quantify total HIV DNA and integrated HIV DNA efficiently with robustness and sensitivity. It can be readily adapted for measuring HIV DNA with non-B clades, and it could be beneficial for testing in clinical trials.
Collapse
Affiliation(s)
- Lin Yuan
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Zhiying Liu
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Xin Zhang
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Feili Wei
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Shan Guo
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Na Guo
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Lifeng Liu
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Zhenglai Ma
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Yunxia Ji
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Rui Wang
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Xiaofan Lu
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Zhen Li
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Wei Xia
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Hao Wu
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Tong Zhang
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Bin Su
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| |
Collapse
|
4
|
Botha JC, Demirov D, Gordijn C, Katusiime MG, Bale MJ, Wu X, Wells D, Hughes SH, Cotton MF, Mellors JW, Kearney MF, van Zyl GU. The largest HIV-1-infected T cell clones in children on long-term combination antiretroviral therapy contain solo LTRs. mBio 2023; 14:e0111623. [PMID: 37530525 PMCID: PMC10470503 DOI: 10.1128/mbio.01116-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 06/26/2023] [Indexed: 08/03/2023] Open
Abstract
Combination antiretroviral therapy (cART) suppresses viral replication but does not cure HIV infection because a reservoir of infectious (intact) HIV proviruses persists in long-lived CD4+T cells. However, a large majority (>95%) of HIV-infected cells that persist on effective cART carry defective (non-infectious) proviruses. Defective proviruses consisting of only a single LTR (solo long terminal repeat) are commonly found as endogenous retroviruses in many animal species, but the frequency of solo-LTR HIV proviruses has not been well defined. Here we show that, in five pediatric donors whose viremia was suppressed on cART for at least 5 years, the proviruses in the nine largest clones of HIV-infected cells were solo LTRs. The sizes of five of these clones were assayed longitudinally by integration site-specific quantitative PCR. Minor waxing and waning of the clones was observed, suggesting that these clones are generally stable over time. Our findings show that solo LTRs comprise a large fraction of the proviruses in infected cell clones that persist in children on long-term cART. IMPORTANCE This work highlights that severely deleted HIV-1 proviruses comprise a significant proportion of the proviral landscape and are often overlooked.
Collapse
Affiliation(s)
| | - Dimiter Demirov
- Cancer Research Technology Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | | | - Mary Grace Katusiime
- HIV Dynamics and Replication Program, National Cancer Institute, Frederick, Maryland, USA
| | - Michael J. Bale
- Laboratory of Epigenetics and Immunity, Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Xiaolin Wu
- HIV Dynamics and Replication Program, National Cancer Institute, Frederick, Maryland, USA
| | - Daria Wells
- HIV Dynamics and Replication Program, National Cancer Institute, Frederick, Maryland, USA
| | - Stephen H. Hughes
- HIV Dynamics and Replication Program, National Cancer Institute, Frederick, Maryland, USA
| | | | - John W. Mellors
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Mary F. Kearney
- HIV Dynamics and Replication Program, National Cancer Institute, Frederick, Maryland, USA
| | | |
Collapse
|
5
|
Zhang X, Chen J. HIV Reservoir: How to Measure It? Curr HIV/AIDS Rep 2023; 20:29-41. [PMID: 37004676 DOI: 10.1007/s11904-023-00653-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/08/2023] [Indexed: 04/04/2023]
Abstract
PURPOSEOF REVIEW In the current quest for a complete cure for HIV/AIDS, the persistence of a long-lived reservoir of cells carrying replication-competent proviruses is the major challenge. Here, we describe the main elements and characteristics of several widely used assays of HIV latent reservoir detection. RECENT FINDINGS To date, researchers have developed several different HIV latent reservoir detection assays. Among them, the in vitro quantitative viral outgrowth assay (QVOA) has been the gold standard for assessing latent HIV-1 viral load. The intact proviral DNA assay (IPDA) based on PCR also demonstrated the predominance of defective viruses. However, these assays all have some drawbacks and may still be inadequate in detecting the presence of ultralow levels of latent virus in many patients who were initially thought to have been cured, but eventually showed viral rebound. An accurate and precise measurement of the HIV reservoir is therefore needed to evaluate curative strategies, aimed to functional cure or sterilizing cure.
Collapse
Affiliation(s)
- Xinyu Zhang
- Scientific Research Center, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Jun Chen
- Department of Infectious Diseases and Immunology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China.
| |
Collapse
|
6
|
Aulicino PC, Momin Z, Rozenszajn M, Monzon A, Arazi-Caillaud S, Bologna R, Mangano A, Kimata JT. HIV-1 subtype F integrase polymorphisms external to the catalytic core domain contribute to severe loss of replication capacity in context of the integrase inhibitor resistance mutation Q148H. J Antimicrob Chemother 2022; 77:2793-2802. [PMID: 35897124 PMCID: PMC9989736 DOI: 10.1093/jac/dkac238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 06/20/2022] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND In prior studies, HIV-1 BF recombinants with subtype F integrases failed to develop resistance to raltegravir through the Q148H mutational pathway. We aimed to determine the role of subtype-specific polymorphisms in integrase on drug susceptibility, viral replication and integration. METHODS Integrase sequences were retrieved from the Los Alamos Database or obtained from the Garrahan HIV cohort. HIV-1 infectious molecular clones with or without Q148H (+ G140S) resistance mutations were constructed using integrases of subtype B (NL4-3) or F1(BF) ARMA159 and URTR23. Integrase chimeras were generated by reciprocal exchanges of a 200 bp fragment spanning amino acids 85-150 of the catalytic core domain (CCD) of NL4-3-Q148H and either ARMA159-Q148H or URTR23-Q148H. Viral infections were quantified by p24 ELISA and Alu-gag integration PCR assay. RESULTS At least 18 different polymorphisms distinguish subtype B from F1(BF) recombinant integrases. In phenotypic experiments, p24 at Day 15 post-infection was high (105-106 pg/mL) for WT and NL4-3-Q148H; by contrast, it was low (102-104 pg/mL) for both F1(BF)-Q148H + G140S viruses, and undetectable for the Q148H mutants. Compared with WT viruses, integrated DNA was reduced by 5-fold for NL4-3-Q148H (P = 0.05), 9-fold for URTR23-Q148H (P = 0.01) and 16000-fold for ARMA159-Q148H (P = 0.01). Reciprocal exchange between B and F1(BF) of an integrase CCD region failed to rescue the replicative defect of F1(BF) integrase mutants. CONCLUSIONS The functional impairment of Q148H in the context of subtype F integrases from BF recombinants explains the lack of selection of this pathway in vivo. Non-B polymorphisms external to the integrase CCD may influence the pathway to integrase strand transfer inhibitor resistance.
Collapse
Affiliation(s)
- Paula C Aulicino
- Laboratory of Cellular Biology and Retroviruses, Unit of Virology and Molecular Epidemiology, Hospital de Pediatría "Prof. Dr. Juan P. Garrahan", Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Zoha Momin
- Department of Molecular Virology & Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Mijael Rozenszajn
- Laboratory of Cellular Biology and Retroviruses, Unit of Virology and Molecular Epidemiology, Hospital de Pediatría "Prof. Dr. Juan P. Garrahan", Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Arturo Monzon
- Department of Molecular Virology & Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Solange Arazi-Caillaud
- Unit of Epidemiology and Infectology, Hospital de Pediatría "Prof. Dr. Juan P. Garrahan", Buenos Aires, Argentina
| | - Rosa Bologna
- Unit of Epidemiology and Infectology, Hospital de Pediatría "Prof. Dr. Juan P. Garrahan", Buenos Aires, Argentina
| | - Andrea Mangano
- Laboratory of Cellular Biology and Retroviruses, Unit of Virology and Molecular Epidemiology, Hospital de Pediatría "Prof. Dr. Juan P. Garrahan", Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Jason T Kimata
- Department of Molecular Virology & Microbiology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
7
|
Retroviral infection of human neurospheres and use of stem Cell EVs to repair cellular damage. Sci Rep 2022; 12:2019. [PMID: 35132117 PMCID: PMC8821538 DOI: 10.1038/s41598-022-05848-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 01/05/2022] [Indexed: 12/18/2022] Open
Abstract
HIV-1 remains an incurable infection that is associated with substantial economic and epidemiologic impacts. HIV-associated neurocognitive disorders (HAND) are commonly linked with HIV-1 infection; despite the development of combination antiretroviral therapy (cART), HAND is still reported to affect at least 50% of HIV-1 infected individuals. It is believed that the over-amplification of inflammatory pathways, along with release of toxic viral proteins from infected cells, are primarily responsible for the neurological damage that is observed in HAND; however, the underlying mechanisms are not well-defined. Therefore, there is an unmet need to develop more physiologically relevant and reliable platforms for studying these pathologies. In recent years, neurospheres derived from induced pluripotent stem cells (iPSCs) have been utilized to model the effects of different neurotropic viruses. Here, we report the generation of neurospheres from iPSC-derived neural progenitor cells (NPCs) and we show that these cultures are permissive to retroviral (e.g. HIV-1, HTLV-1) replication. In addition, we also examine the potential effects of stem cell derived extracellular vesicles (EVs) on HIV-1 damaged cells as there is abundant literature supporting the reparative and regenerative properties of stem cell EVs in the context of various CNS pathologies. Consistent with the literature, our data suggests that stem cell EVs may modulate neuroprotective and anti-inflammatory properties in damaged cells. Collectively, this study demonstrates the feasibility of NPC-derived neurospheres for modeling HIV-1 infection and, subsequently, highlights the potential of stem cell EVs for rescuing cellular damage induced by HIV-1 infection.
Collapse
|
8
|
Malatinkova E, Thomas J, De Spiegelaere W, Rutsaert S, Geretti AM, Pollakis G, Paxton WA, Vandekerckhove L, Ruggiero A. Measuring Proviral HIV-1 DNA: Hurdles and Improvements to an Assay Monitoring Integration Events Utilising Human Alu Repeat Sequences. Life (Basel) 2021; 11:life11121410. [PMID: 34947941 PMCID: PMC8706387 DOI: 10.3390/life11121410] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/13/2021] [Accepted: 12/13/2021] [Indexed: 12/28/2022] Open
Abstract
Integrated HIV-1 DNA persists despite antiretroviral therapy and can fuel viral rebound following treatment interruption. Hence, methods to specifically measure the integrated HIV-1 DNA portion only are important to monitor the reservoir in eradication trials. Here, we provide an up-to-date overview of the literature on the different approaches used to measure integrated HIV-1 DNA. Further, we propose an implemented standard-curve free assay to quantify integrated HIV-1 DNA, so-called Alu-5LTR PCR, which utilises novel primer combinations. We tested the Alu-5LTR PCR in 20 individuals on suppressive ART for a median of nine years; the results were compared to those produced with the standard-free Alu-gag assay. The numbers of median integrated HIV-1 DNA copies were 5 (range: 1–12) and 14 (5–26) with the Alu-gag and Alu-5LTR, respectively. The ratios between Alu-gag vs Alu-5LTR results were distributed within the cohort as follows: most patients (12/20, 60%) provided ratios between 2–5, with 3/20 (15%) and 5/20 (25%) being below or above this range, respectively. Alu-5LTR assay sensitivity was also determined using an “integrated standard”; the data confirmed the increased sensitivity of the assay, i.e., equal to 0.25 proviruses in 10,000 genomes. This work represents an improvement in the field of measuring proviral HIV-1 DNA that could be employed in future HIV-1 persistence and eradication studies.
Collapse
Affiliation(s)
- Eva Malatinkova
- HIV Cure Research Center, Department of Internal Medicine, Faculty of Medicine and Health Sciences, Ghent University, B-9000 Ghent, Belgium; (E.M.); (S.R.); (L.V.)
| | - Jordan Thomas
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L69 7BE, UK; (J.T.); (G.P.); (W.A.P.)
| | - Ward De Spiegelaere
- Laboratory of Veterinary Morphology, Faculty of Veterinary Sciences, Ghent University, B-9820 Ghent, Belgium;
| | - Sofie Rutsaert
- HIV Cure Research Center, Department of Internal Medicine, Faculty of Medicine and Health Sciences, Ghent University, B-9000 Ghent, Belgium; (E.M.); (S.R.); (L.V.)
| | - Anna Maria Geretti
- Fondazione PTV and Faculty of Medicine, University of Rome Tor Vergata, 00133 Rome, Italy;
- School of Immunology & Microbial Sciences, King’s College London, London WC2R 2LS, UK
| | - Georgios Pollakis
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L69 7BE, UK; (J.T.); (G.P.); (W.A.P.)
| | - William A. Paxton
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L69 7BE, UK; (J.T.); (G.P.); (W.A.P.)
| | - Linos Vandekerckhove
- HIV Cure Research Center, Department of Internal Medicine, Faculty of Medicine and Health Sciences, Ghent University, B-9000 Ghent, Belgium; (E.M.); (S.R.); (L.V.)
| | - Alessandra Ruggiero
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L69 7BE, UK; (J.T.); (G.P.); (W.A.P.)
- Department Neurosciences, Biomedicine and Movement Sciences, School of Medicine-University of Verona, 37129 Verona, Italy
- Correspondence: ; Tel.: +39-045-802-7190
| |
Collapse
|
9
|
Ndashimye E, Li Y, Reyes PS, Avino M, Olabode AS, Kityo CM, Kyeyune F, Nankya I, Quiñones-Mateu ME, Barr SD, Arts EJ. High-level resistance to bictegravir and cabotegravir in subtype A- and D-infected HIV-1 patients failing raltegravir with multiple resistance mutations. J Antimicrob Chemother 2021; 76:2965-2974. [PMID: 34453542 DOI: 10.1093/jac/dkab276] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 07/02/2021] [Indexed: 01/15/2023] Open
Abstract
OBJECTIVES The second-generation integrase strand transfer inhibitor (INSTI) bictegravir is becoming accessible in low- and middle-income countries (LMICs), and another INSTI, cabotegravir, has recently been approved as a long-acting injectable. Data on bictegravir and cabotegravir susceptibility in raltegravir-experienced HIV-1 subtype A- and D-infected patients carrying drug resistance mutations (DRMs) remain very scarce in LMICs. PATIENTS AND METHODS HIV-1 integrase (IN)-recombinant viruses from eight patients failing raltegravir-based third-line therapy in Uganda were genotypically and phenotypically tested for susceptibility to bictegravir and cabotegravir. Ability of these viruses to integrate into human genomes was assessed in MT-4 cells. RESULTS HIV-1 IN-recombinant viruses harbouring single primary mutations (N155H or Y143R/S) or in combination with secondary INSTI mutations (T97A, M50I, L74IM, E157Q, G163R or V151I) were susceptible to both bictegravir and cabotegravir. However, combinations of primary INSTI-resistance mutations such as E138A/G140A/G163R/Q148R or E138K/G140A/S147G/Q148K led to decreased susceptibility to both cabotegravir (fold change in EC50 values from 429 to 1000×) and bictegravir (60 to 100×), exhibiting a high degree of cross-resistance. However, these same IN-recombinant viruses showed impaired integration capacity (14% to 48%) relative to the WT HIV-1 NL4-3 strain in the absence of drug. CONCLUSIONS Though not currently widely accessible in most LMICs, bictegravir and cabotegravir offer a valid alternative to HIV-infected individuals harbouring subtype A and D HIV-1 variants with reduced susceptibility to first-generation INSTIs but previous exposure to raltegravir may reduce efficacy, more so with cabotegravir.
Collapse
Affiliation(s)
- Emmanuel Ndashimye
- Department of Microbiology and Immunology, Western University, London, Canada.,Joint Clinical Research Centre, Kampala, Uganda.,Center for AIDS Research Uganda Laboratories, Joint Clinical Research Centre, Kampala, Uganda
| | - Yue Li
- Department of Microbiology and Immunology, Western University, London, Canada
| | - Paul S Reyes
- Department of Microbiology and Immunology, Western University, London, Canada
| | - Mariano Avino
- Department of Pathology and Laboratory Medicine, Western University, London, Canada
| | - Abayomi S Olabode
- Department of Pathology and Laboratory Medicine, Western University, London, Canada
| | | | - Fred Kyeyune
- Joint Clinical Research Centre, Kampala, Uganda.,Center for AIDS Research Uganda Laboratories, Joint Clinical Research Centre, Kampala, Uganda
| | - Immaculate Nankya
- Joint Clinical Research Centre, Kampala, Uganda.,Center for AIDS Research Uganda Laboratories, Joint Clinical Research Centre, Kampala, Uganda
| | | | - Stephen D Barr
- Department of Microbiology and Immunology, Western University, London, Canada
| | - Eric J Arts
- Department of Microbiology and Immunology, Western University, London, Canada
| |
Collapse
|
10
|
Kamo M, Ito M, Toma T, Gotoh H, Shimozono R, Nakagawa R, Koga R, Monde K, Tateishi H, Misumi S, Otsuka M, Fujita M. Discovery of anti-cell migration activity of an anti-HIV heterocyclic compound by identification of its binding protein hnRNP M. Bioorg Chem 2021; 107:104627. [PMID: 33476868 DOI: 10.1016/j.bioorg.2021.104627] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/08/2020] [Accepted: 12/31/2020] [Indexed: 12/20/2022]
Abstract
One compound sometimes shows two biological functions, becoming important aspect of recent drug discovery. This study began with an attempt to confirm the previously reported molecular mechanism of the anti-human immunodeficiency virus (HIV) heterocyclic compound BMMP [2-(benzothiazol-2-ylmethylthio)-4-methylpyrimidine], i.e., induction of abnormal uncoating of the viral core at the post-entry step. Our mechanistic study gave results consistent with this mechanism. We further attempted to find out the molecular target of BMMP by a pulldown approach using previously synthesized biotinylated BMMP (Biotin-BMMP) and successfully identified heterogenous nuclear ribonucleoprotein M (hnRNP M) as a BMMP-binding protein. This protein was found not to be accountable for the anti-HIV activity of BMMP. As hnRNP M has been reported to promote cancer metastasis, we tested this mechanism and found that BMMP suppressed migration of the human lung carcinoma cell line A549 stimulated with transforming growth factor-β (TGF-β). Mechanistic study showed that BMMP suppressed the expression of CD44 mRNA via the regulation of hnRNP M. Furthermore, six new derivatives of BMMP were synthesized, and the patterns of their activities against HIV-1 and cell migration were not uniform, suggesting that the anti-HIV mechanism and the anti-cell migration mechanism of BMMP are independent. Taken together, the anti-cell migration activity of the anti-HIV heterocyclic compound BMMP was newly discovered by identification of its binding protein hnRNP M using a chemical biology approach.
Collapse
Affiliation(s)
- Masahiro Kamo
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, Kumamoto 862-0973, Japan
| | - Miu Ito
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, Kumamoto 862-0973, Japan
| | - Tsugumasa Toma
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, Kumamoto 862-0973, Japan
| | - Haruna Gotoh
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, Kumamoto 862-0973, Japan
| | - Rie Shimozono
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, Kumamoto 862-0973, Japan
| | - Riko Nakagawa
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, Kumamoto 862-0973, Japan
| | - Ryoko Koga
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, Kumamoto 862-0973, Japan
| | - Kazuaki Monde
- Department of Microbiology, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Hiroshi Tateishi
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, Kumamoto 862-0973, Japan
| | - Shogo Misumi
- Department of Environmental and Molecular Health Sciences, Faculty of Medical and Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973, Japan
| | - Masami Otsuka
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, Kumamoto 862-0973, Japan; Science Farm Ltd., Kumamoto 862-0976, Japan.
| | - Mikako Fujita
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, Kumamoto 862-0973, Japan.
| |
Collapse
|
11
|
Abdel-Mohsen M, Richman D, Siliciano RF, Nussenzweig MC, Howell BJ, Martinez-Picado J, Chomont N, Bar KJ, Yu XG, Lichterfeld M, Alcami J, Hazuda D, Bushman F, Siliciano JD, Betts MR, Spivak AM, Planelles V, Hahn BH, Smith DM, Ho YC, Buzon MJ, Gaebler C, Paiardini M, Li Q, Estes JD, Hope TJ, Kostman J, Mounzer K, Caskey M, Fox L, Frank I, Riley JL, Tebas P, Montaner LJ. Recommendations for measuring HIV reservoir size in cure-directed clinical trials. Nat Med 2020; 26:1339-1350. [PMID: 32895573 PMCID: PMC7703694 DOI: 10.1038/s41591-020-1022-1] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 07/16/2020] [Indexed: 12/28/2022]
Abstract
Therapeutic strategies are being clinically tested either to eradicate latent HIV reservoirs or to achieve virologic control in the absence of antiretroviral therapy. Attaining this goal will require a consensus on how best to measure the numbers of persistently infected cells with the potential to cause viral rebound after antiretroviral-therapy cessation in assessing the results of cure-directed strategies in vivo. Current measurements assess various aspects of the HIV provirus and its functionality and produce divergent results. Here, we provide recommendations from the BEAT-HIV Martin Delaney Collaboratory on which viral measurements should be prioritized in HIV-cure-directed clinical trials.
Collapse
Affiliation(s)
| | - Douglas Richman
- VA San Diego Healthcare System and University of California, San Diego, CA, USA
| | | | | | | | - Javier Martinez-Picado
- IrsiCaixa AIDS Research Institute, Badalona, Spain
- University of Vic-Central University of Catalonia (UVic-UCC), Vic, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | | | | | - Xu G Yu
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
- Brigham and Women's Hospital, Boston, MA, USA
| | - Mathias Lichterfeld
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
- Brigham and Women's Hospital, Boston, MA, USA
| | - Jose Alcami
- AIDS Immunopathogenesis Unit, Instituto de Salud Carlos III, Madrid and Infectious Diseases Unit, IBIDAPS, Hospital Clinic, University of Barcelona, Barcelona, Spain
| | | | | | | | | | | | | | | | - Davey M Smith
- VA San Diego Healthcare System and University of California, San Diego, CA, USA
| | - Ya-Chi Ho
- Yale School of Medicine, New Haven, CT, USA
| | - Maria J Buzon
- AIDS Immunopathogenesis Unit, Instituto de Salud Carlos III, Madrid and Infectious Diseases Unit, IBIDAPS, Hospital Clinic, University of Barcelona, Barcelona, Spain
| | | | - Mirko Paiardini
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, and Emory University, Atlanta, GA, USA
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Qingsheng Li
- School of Biological Sciences and Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Jacob D Estes
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center (ONPRC), Oregon Health and Science University (OHSU), Beaverton, OR, USA
| | | | - Jay Kostman
- Jonathan Lax Center, Philadelphia FIGHT, Philadelphia, PA, USA
| | - Karam Mounzer
- Jonathan Lax Center, Philadelphia FIGHT, Philadelphia, PA, USA
| | | | - Lawrence Fox
- Division of AIDS, NIAID, NIH, North Bethesda, MD, USA
| | - Ian Frank
- University of Pennsylvania, Philadelphia, PA, USA
| | | | - Pablo Tebas
- University of Pennsylvania, Philadelphia, PA, USA
| | | |
Collapse
|
12
|
Zhuang X, Pedroza-Pacheco I, Nawroth I, Kliszczak AE, Magri A, Paes W, Rubio CO, Yang H, Ashcroft M, Mole D, Balfe P, Borrow P, McKeating JA. Hypoxic microenvironment shapes HIV-1 replication and latency. Commun Biol 2020; 3:376. [PMID: 32665623 PMCID: PMC7360605 DOI: 10.1038/s42003-020-1103-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Accepted: 06/17/2020] [Indexed: 12/14/2022] Open
Abstract
Viral replication is defined by the cellular microenvironment and one key factor is local oxygen tension, where hypoxia inducible factors (HIFs) regulate the cellular response to oxygen. Human immunodeficiency virus (HIV) infected cells within secondary lymphoid tissues exist in a low-oxygen or hypoxic environment in vivo. However, the majority of studies on HIV replication and latency are performed under laboratory conditions where HIFs are inactive. We show a role for HIF-2α in restricting HIV transcription via direct binding to the viral promoter. Hypoxia reduced tumor necrosis factor or histone deacetylase inhibitor, Romidepsin, mediated reactivation of HIV and inhibiting HIF signaling-pathways reversed this phenotype. Our data support a model where the low-oxygen environment of the lymph node may suppress HIV replication and promote latency. We identify a mechanism that may contribute to the limited efficacy of latency reversing agents in reactivating HIV and suggest new strategies to control latent HIV-1.
Collapse
Affiliation(s)
- Xiaodong Zhuang
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7FZ, UK
| | | | - Isabel Nawroth
- Institute of Immunity and Immunotherapy, University of Birmingham, Birmingham, B15 2TT, UK
| | - Anna E Kliszczak
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7FZ, UK
| | - Andrea Magri
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7FZ, UK
| | - Wayne Paes
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7FZ, UK
| | | | - Hongbing Yang
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7FZ, UK
| | - Margaret Ashcroft
- Department of Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0AH, UK
| | - David Mole
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7FZ, UK
| | - Peter Balfe
- Institute of Immunity and Immunotherapy, University of Birmingham, Birmingham, B15 2TT, UK
| | - Persephone Borrow
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7FZ, UK
| | - Jane A McKeating
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7FZ, UK.
| |
Collapse
|
13
|
McHugh D, Myburgh R, Caduff N, Spohn M, Kok YL, Keller CW, Murer A, Chatterjee B, Rühl J, Engelmann C, Chijioke O, Quast I, Shilaih M, Strouvelle VP, Neumann K, Menter T, Dirnhofer S, Lam JK, Hui KF, Bredl S, Schlaepfer E, Sorce S, Zbinden A, Capaul R, Lünemann JD, Aguzzi A, Chiang AK, Kempf W, Trkola A, Metzner KJ, Manz MG, Grundhoff A, Speck RF, Münz C. EBV renders B cells susceptible to HIV-1 in humanized mice. Life Sci Alliance 2020; 3:3/8/e202000640. [PMID: 32576602 PMCID: PMC7335381 DOI: 10.26508/lsa.202000640] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 06/10/2020] [Accepted: 06/11/2020] [Indexed: 12/15/2022] Open
Abstract
HIV and EBV are human pathogens that cause a considerable burden to worldwide health. In combination, these viruses are linked to AIDS-associated lymphomas. We found that EBV, which transforms B cells, renders them susceptible to HIV-1 infection in a CXCR4 and CD4-dependent manner in vitro and that CXCR4-tropic HIV-1 integrates into the genome of these B cells with the same molecular profile as in autologous CD4+ T cells. In addition, we established a humanized mouse model to investigate the in vivo interactions of EBV and HIV-1 upon coinfection. The respective mice that reconstitute human immune system components upon transplantation with CD34+ human hematopoietic progenitor cells could recapitulate aspects of EBV and HIV immunobiology observed in dual-infected patients. Upon coinfection of humanized mice, EBV/HIV dual-infected B cells could be detected, but were susceptible to CD8+ T-cell-mediated immune control.
Collapse
Affiliation(s)
- Donal McHugh
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Renier Myburgh
- Department of Medical Oncology and Hematology, University and University Hospital of Zürich, Zürich, Switzerland
| | - Nicole Caduff
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Michael Spohn
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Yik Lim Kok
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital of Zürich, Zürich, Switzerland.,Institute of Medical Virology, University of Zürich, Zürich, Switzerland
| | - Christian W Keller
- Neuroinflammation, Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Anita Murer
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Bithi Chatterjee
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Julia Rühl
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Christine Engelmann
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Obinna Chijioke
- Cellular Immunotherapy, Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland.,Institute of Pathology and Medical Genetics, University Hospital of Basel, Basel, Switzerland
| | - Isaak Quast
- Neuroinflammation, Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Mohaned Shilaih
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital of Zürich, Zürich, Switzerland
| | - Victoria P Strouvelle
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital of Zürich, Zürich, Switzerland.,Institute of Medical Virology, University of Zürich, Zürich, Switzerland
| | - Kathrin Neumann
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital of Zürich, Zürich, Switzerland
| | - Thomas Menter
- Institute of Pathology and Medical Genetics, University Hospital of Basel, Basel, Switzerland
| | - Stephan Dirnhofer
- Institute of Pathology and Medical Genetics, University Hospital of Basel, Basel, Switzerland
| | - Janice Kp Lam
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, Queen Mary Hospital, The University of Hong Kong, Pokfulam, Hong Kong
| | - Kwai F Hui
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, Queen Mary Hospital, The University of Hong Kong, Pokfulam, Hong Kong
| | - Simon Bredl
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital of Zürich, Zürich, Switzerland
| | - Erika Schlaepfer
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital of Zürich, Zürich, Switzerland
| | - Silvia Sorce
- Institute of Neuropathology, University Hospital of Zurich, Zurich, Switzerland
| | - Andrea Zbinden
- Institute of Medical Virology, University of Zürich, Zürich, Switzerland
| | - Riccarda Capaul
- Institute of Medical Virology, University of Zürich, Zürich, Switzerland
| | - Jan D Lünemann
- Neuroinflammation, Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Adriano Aguzzi
- Institute of Neuropathology, University Hospital of Zurich, Zurich, Switzerland
| | - Alan Ks Chiang
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, Queen Mary Hospital, The University of Hong Kong, Pokfulam, Hong Kong
| | - Werner Kempf
- Kempf und Pfaltz Histologische Diagnostik AG, Zürich, Switzerland
| | - Alexandra Trkola
- Institute of Medical Virology, University of Zürich, Zürich, Switzerland
| | - Karin J Metzner
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital of Zürich, Zürich, Switzerland.,Institute of Medical Virology, University of Zürich, Zürich, Switzerland
| | - Markus G Manz
- Department of Medical Oncology and Hematology, University and University Hospital of Zürich, Zürich, Switzerland
| | - Adam Grundhoff
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Roberto F Speck
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital of Zürich, Zürich, Switzerland
| | - Christian Münz
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| |
Collapse
|
14
|
Orlandi C, Canovari B, Bozzano F, Marras F, Pasquini Z, Barchiesi F, De Maria A, Magnani M, Casabianca A. A comparative analysis of unintegrated HIV-1 DNA measurement as a potential biomarker of the cellular reservoir in the blood of patients controlling and non-controlling viral replication. J Transl Med 2020; 18:204. [PMID: 32429953 PMCID: PMC7236182 DOI: 10.1186/s12967-020-02368-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 05/07/2020] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND The persistence of HIV-1 in reservoir cells is one of the major obstacles to eradicating the virus in infected individuals receiving combination antiretroviral therapy (ART). HIV-1 persists in infected cells as a stable integrated genome and more labile unintegrated DNA (uDNA), which includes linear, 1-LTR and 2-LTR circular DNA. 2-LTR circle DNA, although less abundant, is considered a surrogate marker of recent infection events and is currently used instead of the other unintegrated species as a diagnostic tool. This pilot study aimed to investigate how to best achieve the measurement of uDNA. METHODS A comparative analysis of two qPCR-based methods (U-assay and 2-LTR assay) was performed on the blood of 12 ART-naïve, 14 viremic and 29 aviremic On-ART patients and 20 untreated spontaneous controllers (HIC), sampled at a single time point. RESULTS The U-assay, which quantified all unintegrated DNA species, showed greater sensitivity than the 2-LTR assay (up to 75%, p < 0.0001), especially in viremic subjects, in whom other forms, in addition to 2-LTR circles, may also accumulate due to active viral replication. Indeed, in aviremic On-ART samples, the U-assay unexpectedly measured uDNA in a higher proportion of samples (76%, 22/29) than the 2-LTR assay (41%, 12/29), (p = 0.0164). A trend towards lower uDNA levels was observed in aviremic vs viremic On-ART patients, reaching significance when we combined aviremic On-ART and HIC (controllers) vs Off-ART and viremic On-ART subjects (non-controllers) (p = 0.0003), whereas 2-LTR circle levels remained constant (p ≥ 0.2174). These data were supported by the high correlation found between uDNA and total DNA (r = 0.69, p < 0.001). CONCLUSIONS The great advantage of the U-assay is that, unlike the 2-LTR assay, it allows the accurate evaluation of the totality of uDNA that can still be measured even during successful ART when plasma viremia is below the cut-off of common clinical tests (< 50 copies/mL) and 2-LTR circles are more likely to be under the quantification limit. UDNA measurement in blood cells may be used as a biomarker to reveal a so far hidden or underestimated viral reservoir. The potential clinical relevance of uDNA quantification may lead to improvements in diagnostic methods to support clinical strategies.
Collapse
Affiliation(s)
- Chiara Orlandi
- Department of Biomolecular Sciences, University of Urbino "Carlo Bo", Urbino, Italy
| | - Benedetta Canovari
- Malattie Infettive, Azienda Ospedaliera Ospedali Riuniti Marche Nord, Pesaro, Italy
| | | | - Francesco Marras
- Division of Infectious Diseases, Ospedale Policlinico S. Martino IRCCS, Genoa, Italy
| | - Zeno Pasquini
- Malattie Infettive, Azienda Ospedaliera Ospedali Riuniti Marche Nord, Pesaro, Italy
- Dipartimento di Scienze Biomediche e Sanità Pubblica, Università Politecnica delle Marche, Ancona, Italy
| | - Francesco Barchiesi
- Malattie Infettive, Azienda Ospedaliera Ospedali Riuniti Marche Nord, Pesaro, Italy
- Dipartimento di Scienze Biomediche e Sanità Pubblica, Università Politecnica delle Marche, Ancona, Italy
| | - Andrea De Maria
- Division of Infectious Diseases, Ospedale Policlinico S. Martino IRCCS, Genoa, Italy
- Department of Health Sciences, DISSAL, University of Genova, Genoa, Italy
| | - Mauro Magnani
- Department of Biomolecular Sciences, University of Urbino "Carlo Bo", Urbino, Italy
| | - Anna Casabianca
- Department of Biomolecular Sciences, University of Urbino "Carlo Bo", Urbino, Italy.
| |
Collapse
|
15
|
Thomas J, Ruggiero A, Paxton WA, Pollakis G. Measuring the Success of HIV-1 Cure Strategies. Front Cell Infect Microbiol 2020; 10:134. [PMID: 32318356 PMCID: PMC7154081 DOI: 10.3389/fcimb.2020.00134] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 03/13/2020] [Indexed: 01/10/2023] Open
Abstract
HIV-1 eradication strategies aim to achieve viral remission in the absence of antiretroviral therapy (ART). The development of an HIV-1 cure remains challenging due to the latent reservoir (LR): long-lived CD4 T cells that harbor transcriptionally silent HIV-1 provirus. The LR is stable despite years of suppressive ART and is the source of rebound viremia following therapy interruption. Cure strategies such as "shock and kill" aim to eliminate or reduce the LR by reversing latency, exposing the infected cells to clearance via the immune response or the viral cytopathic effect. Alternative strategies include therapeutic vaccination, which aims to prime the immune response to facilitate control of the virus in the absence of ART. Despite promising advances, these strategies have been unable to significantly reduce the LR or increase the time to viral rebound but have provided invaluable insight in the field of HIV-1 eradication. The development and assessment of an HIV-1 cure requires robust assays that can measure the LR with sufficient sensitivity to detect changes that may occur following treatment. The viral outgrowth assay (VOA) is considered the gold standard method for LR quantification due to its ability to distinguish intact and defective provirus. However, the VOA is time consuming and resource intensive, therefore several alternative assays have been developed to bridge the gap between practicality and accuracy. Whilst a cure for HIV-1 infection remains elusive, recent advances in our understanding of the LR and methods for its eradication have offered renewed hope regarding achieving ART free viral remission.
Collapse
Affiliation(s)
- Jordan Thomas
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
| | - Alessandra Ruggiero
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom.,Immune and Infectious Disease Division, Academic Department of Pediatrics (DPUO), Bambino Gesù Children's Hospital, Rome, Italy
| | - William A Paxton
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
| | - Georgios Pollakis
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
16
|
Arca-Suarez J, Corrales-Cuevas M, Pascual-Pérez S, Trujillo-Soto T, Fernández-Gutiérrez Del Álamo C, Cuesta-Sancho S, Rodríguez-Iglesias M, Girón-González JA. HIV antibodies level as a marker of HIV persistence: the role of hepatitis C virus coinfection. Eur J Clin Microbiol Infect Dis 2020; 39:1503-1512. [PMID: 32232689 DOI: 10.1007/s10096-020-03875-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Accepted: 03/23/2020] [Indexed: 12/24/2022]
Abstract
Human immunodeficiency virus (HIV) antibodies have been proposed as a measure of the size of the HIV reservoir. The aim of our study is to quantify the anti-HIV antibodies level in a cohort of people living with HIV (PLWH), stratified based on the presence of continuous undetectable HIV viral load and the co-existence of hepatitis C virus infection. A sample of 229 HIV-monoinfected (n = 114) or HIV/HCV-coinfected [either with resolved HCV infection (n = 75) or active HCV coinfection (n = 40)] patients, followed up a median of 34 (IQR 20-44) months, was studied. Anti-HIV index was obtained as the 1:800 dilution of HIV antibodies. CD4+ T cell count, time with undetectable HIV viral load, annual increase of CD4+ T cell count, anti-HCV therapy, and diagnosis of cirrhosis were analyzed. Patients with a continued suppressed HIV viral load had significant lower anti-HIV index compared with those with virologic failure during the follow-up. Significant higher CD4+ T cell increase was observed in those with a lower anti-HIV index. HIV-monoinfected patients showed an anti-HIV index significantly lower than patients with HCV coinfection. Resolved HCV infection after interferon-based therapy, but not with direct acting antivirals, was associated with a lower anti-HIV index. HIV/HCV-coinfected patients showed higher HIV antibodies level when compared with HIV-monoinfected individuals. A decrease in anti-HIV index in HIV/HCV-coinfected patients was detected when a sustained virological HCV response was obtained after interferon-based therapy, in possible relation with the direct or indirect effect of interferon on PLWH CD4 T cells.
Collapse
Affiliation(s)
- Jorge Arca-Suarez
- Servicio de Microbiología, Hospital Universitario Puerta del Mar, Facultad de Medicina, Universidad de Cádiz, Instituto para la Investigación e Innovación en Ciencias Biomédicas de Cádiz (INiBICA), Cádiz, Spain
| | - Manuel Corrales-Cuevas
- Servicio de Medicina Interna, Unidad de Enfermedades Infecciosas, Hospital Universitario Puerta del Mar, Facultad de Medicina, Universidad de Cádiz, Instituto para la Investigación e Innovación en Ciencias Biomédicas de Cádiz (INiBICA), Cádiz, Spain
| | - Susana Pascual-Pérez
- Servicio de Medicina Interna, Unidad de Enfermedades Infecciosas, Hospital Universitario Puerta del Mar, Facultad de Medicina, Universidad de Cádiz, Instituto para la Investigación e Innovación en Ciencias Biomédicas de Cádiz (INiBICA), Cádiz, Spain
| | - Teresa Trujillo-Soto
- Servicio de Microbiología, Hospital Universitario Puerta del Mar, Facultad de Medicina, Universidad de Cádiz, Instituto para la Investigación e Innovación en Ciencias Biomédicas de Cádiz (INiBICA), Cádiz, Spain
| | - Clotilde Fernández-Gutiérrez Del Álamo
- Servicio de Microbiología, Hospital Universitario Puerta del Mar, Facultad de Medicina, Universidad de Cádiz, Instituto para la Investigación e Innovación en Ciencias Biomédicas de Cádiz (INiBICA), Cádiz, Spain
| | - Sara Cuesta-Sancho
- Servicio de Medicina Interna, Unidad de Enfermedades Infecciosas, Hospital Universitario Puerta del Mar, Facultad de Medicina, Universidad de Cádiz, Instituto para la Investigación e Innovación en Ciencias Biomédicas de Cádiz (INiBICA), Cádiz, Spain
| | - Manuel Rodríguez-Iglesias
- Servicio de Microbiología, Hospital Universitario Puerta del Mar, Facultad de Medicina, Universidad de Cádiz, Instituto para la Investigación e Innovación en Ciencias Biomédicas de Cádiz (INiBICA), Cádiz, Spain
| | - José-Antonio Girón-González
- Servicio de Medicina Interna, Unidad de Enfermedades Infecciosas, Hospital Universitario Puerta del Mar, Facultad de Medicina, Universidad de Cádiz, Instituto para la Investigación e Innovación en Ciencias Biomédicas de Cádiz (INiBICA), Cádiz, Spain.
| |
Collapse
|
17
|
Real F, Capron C, Sennepin A, Arrigucci R, Zhu A, Sannier G, Zheng J, Xu L, Massé JM, Greffe S, Cazabat M, Donoso M, Delobel P, Izopet J, Eugenin E, Gennaro ML, Rouveix E, Cramer Bordé E, Bomsel M. Platelets from HIV-infected individuals on antiretroviral drug therapy with poor CD4+ T cell recovery can harbor replication-competent HIV despite viral suppression. Sci Transl Med 2020; 12:12/535/eaat6263. [DOI: 10.1126/scitranslmed.aat6263] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 07/23/2019] [Accepted: 10/01/2019] [Indexed: 12/24/2022]
Abstract
In addition to hemostasis, human platelets have several immune functions and interact with infectious pathogens including HIV in vitro. Here, we report that platelets from HIV-infected individuals on combined antiretroviral drug therapy (ART) with low blood CD4+ T cell counts (<350 cells/μl) contained replication-competent HIV despite viral suppression. In vitro, human platelets harboring HIV propagated the virus to macrophages, a process that could be prevented with the biologic abciximab, an anti–integrin αIIb/β3 Fab. Furthermore, in our cohort, 88% of HIV-infected individuals on ART with viral suppression and with platelets containing HIV were poor immunological responders with CD4+ T cell counts remaining below <350 cells/μl for more than one year. Our study suggests that platelets may be transient carriers of HIV and may provide an alternative pathway for HIV dissemination in HIV-infected individuals on ART with viral suppression and poor CD4+ T cell recovery.
Collapse
Affiliation(s)
- Fernando Real
- Mucosal Entry of HIV and Mucosal Immunity, Institut Cochin, Université de Paris, Paris, France
- INSERM U1016, Paris, France
- CNRS UMR8104, Paris, France
| | | | - Alexis Sennepin
- Mucosal Entry of HIV and Mucosal Immunity, Institut Cochin, Université de Paris, Paris, France
- INSERM U1016, Paris, France
- CNRS UMR8104, Paris, France
| | - Riccardo Arrigucci
- Public Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, USA
| | - Aiwei Zhu
- Mucosal Entry of HIV and Mucosal Immunity, Institut Cochin, Université de Paris, Paris, France
- INSERM U1016, Paris, France
- CNRS UMR8104, Paris, France
| | - Gérémy Sannier
- Mucosal Entry of HIV and Mucosal Immunity, Institut Cochin, Université de Paris, Paris, France
- INSERM U1016, Paris, France
- CNRS UMR8104, Paris, France
| | - Jonathan Zheng
- Mucosal Entry of HIV and Mucosal Immunity, Institut Cochin, Université de Paris, Paris, France
- INSERM U1016, Paris, France
- CNRS UMR8104, Paris, France
| | - Lin Xu
- Mucosal Entry of HIV and Mucosal Immunity, Institut Cochin, Université de Paris, Paris, France
- INSERM U1016, Paris, France
- CNRS UMR8104, Paris, France
| | - Jean-Marc Massé
- INSERM U1016, Paris, France
- CNRS UMR8104, Paris, France
- Electron Microscopy Platform, Institut Cochin, Université de Paris, Paris, France
| | - Ségolène Greffe
- Department of Internal Medicine, Hôpital Ambroise Paré, Boulogne, France
| | - Michelle Cazabat
- CHU de Toulouse, Hôpital Purpan, Laboratoire de Virologie, Toulouse, France
| | - Maribel Donoso
- Department of Neuroscience, Cell Biology, and Anatomy, University of Texas Medical Branch (UTMB), Galveston, TX, USA
| | - Pierre Delobel
- INSERM U1043, Toulouse, France
- Université Toulouse III Paul-Sabatier, Faculté de Médecine Toulouse-Purpan, Toulouse, France
- CHU de Toulouse, Hôpital Purpan, Service des Maladies Infectieuses et Tropicales, Toulouse, France
| | - Jacques Izopet
- CHU de Toulouse, Hôpital Purpan, Laboratoire de Virologie, Toulouse, France
- INSERM U1043, Toulouse, France
- Université Toulouse III Paul-Sabatier, Faculté de Médecine Toulouse-Purpan, Toulouse, France
| | - Eliseo Eugenin
- Department of Neuroscience, Cell Biology, and Anatomy, University of Texas Medical Branch (UTMB), Galveston, TX, USA
| | - Maria Laura Gennaro
- Public Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, USA
| | - Elisabeth Rouveix
- Department of Internal Medicine, Hôpital Ambroise Paré, Boulogne, France
| | - Elisabeth Cramer Bordé
- Mucosal Entry of HIV and Mucosal Immunity, Institut Cochin, Université de Paris, Paris, France
- INSERM U1016, Paris, France
- Hôpital Ambroise Paré, Boulogne-Billancourt, France
| | - Morgane Bomsel
- Mucosal Entry of HIV and Mucosal Immunity, Institut Cochin, Université de Paris, Paris, France
- INSERM U1016, Paris, France
- CNRS UMR8104, Paris, France
| |
Collapse
|
18
|
Infrequent HIV Infection of Circulating Monocytes during Antiretroviral Therapy. J Virol 2019; 94:JVI.01174-19. [PMID: 31597764 DOI: 10.1128/jvi.01174-19] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 09/27/2019] [Indexed: 12/18/2022] Open
Abstract
Whereas human immunodeficiency virus (HIV) persists in tissue macrophages during antiretroviral therapy (ART), the role of circulating monocytes as HIV reservoirs remains controversial. Three magnetic bead selection methods and flow cytometry cell sorting were compared for their capacity to yield pure CD14+ monocyte populations. Cell sorting by flow cytometry provided the purest population of monocytes (median CD4+ T-cell contamination, 0.06%), and the levels of CD4+ T-cell contamination were positively correlated with the levels of integrated HIV DNA in the monocyte populations. Using cell sorting by flow cytometry, we assessed longitudinally the infection of monocytes and other cell subsets in a cohort of 29 Thai HIV-infected individuals. Low levels of HIV DNA were detected in a minority of monocyte fractions obtained before and after 1 year of ART (27% and 33%, respectively), whereas HIV DNA was readily detected in CD4+ T cells from all samples. Additional samples (2 to 5 years of ART) were obtained from 5 individuals in whom monocyte infection was previously detected. Whereas CD4+ T cells were infected at high levels at all time points, monocyte infection was inconsistent and absent in at least one longitudinal sample from 4/5 individuals. Our results indicate that infection of monocytes is infrequent and highlight the importance of using flow cytometry cell sorting to minimize contamination by CD4+ T cells.IMPORTANCE The role of circulating monocytes as persistent HIV reservoirs during ART is still controversial. Several studies have reported persistent infection of monocytes in virally suppressed individuals; however, others failed to detect HIV in this subset. These discrepancies are likely explained by the diversity of the methods used to isolate monocytes and to detect HIV infection. In this study, we show that only flow cytometry cell sorting yields a highly pure population of monocytes largely devoid of CD4 contaminants. Using this approach in a longitudinal cohort of HIV-infected individuals before and during ART, we demonstrate that HIV is rarely found in monocytes from untreated and treated HIV-infected individuals. This study highlights the importance of using methods that yield highly pure populations of cells as flow cytometry cell sorting to minimize and control for CD4+ T-cell contamination.
Collapse
|
19
|
Abstract
Many bacterial species contain dynamin-like proteins (DLPs). However, so far the functional mechanisms of bacterial DLPs are poorly understood. DynA in Bacillus subtilis is a 2-headed DLP, mediating nucleotide-independent membrane tethering in vitro and contributing to the innate immunity of bacteria against membrane stress and phage infection. Here, we employed content mixing and lipid mixing assays in reconstituted systems to study if DynA induces membrane full fusion, characterize its subunits in membrane fusion, and further test the possibility that GTP hydrolysis of DynA may act on the fusion-through-hemifusion pathway. Our results based on fluorescence resonance energy transfer indicated that DynA could induce aqueous content mixing even in the absence of GTP. Moreover, DynA-induced membrane fusion in vitro is a thermo-promoted slow process, and it has phospholipid and membrane curvature preferences. The D1 part of DynA is crucial for membrane binding and fusion, whereas D2 subunit plays a role in facilitating membrane fusion. Surprisingly, digestion of DynA mediated an instant rise of content exchange, supporting the assumption that disassembly of DynA is a driving force for fusion-through-hemifusion. DynA is a rare example of a membrane fusion catalyst that lacks a transmembrane domain and hence sets this system apart from well-characterized fusion systems such as the soluble N-ethyl maleimide sensitive factor attachment protein receptor complexes.-Guo, L., Bramkamp, M. Bacterial dynamin-like protein DynA mediates lipid and content mixing.
Collapse
Affiliation(s)
- Lijun Guo
- Ludwig-Maximilians-Universität München, Fakultät Biologie, Planegg-Martinsried, Germany
| | - Marc Bramkamp
- Ludwig-Maximilians-Universität München, Fakultät Biologie, Planegg-Martinsried, Germany
| |
Collapse
|
20
|
Quantitation of Integrated HIV Provirus by Pulsed-Field Gel Electrophoresis and Droplet Digital PCR. J Clin Microbiol 2018; 56:JCM.01158-18. [PMID: 30232127 DOI: 10.1128/jcm.01158-18] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 09/12/2018] [Indexed: 12/19/2022] Open
Abstract
We utilized pulsed-field gel electrophoresis (PFGE) to purify high-molecular-weight DNA from HIV-infected cells. This purification, in combination with our previously described droplet digital PCR (ddPCR) assay, was used to develop a method to quantify proviral integrated HIV DNA free of lower-molecular-weight species of HIV DNA. Episomal 2-long-terminal-repeat (2-LTR) circles were completely cleared from HIV DNA samples. Technical replicates of the complete assay, starting with the same specimens, resulted in no statistical differences in quantification of integrated HIV gag sequences in cellular DNA from cells from HIV-infected subjects after prolonged treatment with antiretroviral therapy (ART). The PFGE ddPCR assay was compared to the Alu-gag quantitative PCR (qPCR) assay, the most widely used assay to measure proviral integrated HIV DNA. Spearman's rho nonparametric correlation determined PFGE ddPCR results to be positively correlated with Alu-gag qPCR results (r = 0.7052; P = 0.0273). In summary, PFGE ddPCR is a sensitive, reproducible, and robust method to measure proviral integrated HIV DNA and is theoretically more accurate than previously described assays, because it is a direct measure of integrated HIV DNA.
Collapse
|
21
|
Arizala JAC, Takahashi M, Burnett JC, Ouellet DL, Li H, Rossi JJ. Nucleolar Localization of HIV-1 Rev Is Required, Yet Insufficient for Production of Infectious Viral Particles. AIDS Res Hum Retroviruses 2018; 34:961-981. [PMID: 29804468 PMCID: PMC6238656 DOI: 10.1089/aid.2017.0306] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Combination antiretroviral therapy fails in complete suppression of HIV-1 due to drug resistance and persistent latency. Novel therapeutic intervention requires knowledge of intracellular pathways responsible for viral replication, specifically those untargeted by antiretroviral drugs. An understudied phenomenon is the nucleolar localization of Rev phosphoprotein, which completes nucleocytoplasmic transport of unspliced/partially spliced HIV mRNA through multimerization with intronic cis-acting targets-the Rev-response element (RRE). Rev contains a nucleolar localization signal (NoLS) comprising the COOH terminus of the arginine-rich motif for accumulation within nucleoli-speculated as the interaction ground for Rev with cellular proteins mediating mRNA-independent nuclear export and splicing. Functionality of Rev nucleolar access during HIV-1 production and infection was investigated in the context of deletion and single-point mutations within Rev-NoLS. Mutations induced upon Rev-NoLS are hypothesized to inactivate the HIV-1 infectious cycle. HIV-1HXB2 replication ceased with Rev mutations lacking nucleolar access due to loss or replacement of multiple arginine residues. Rev mutations missing single arginine residues remained strictly nucleolar in pattern and participated in proviral production, however, with reduced efficiency. Viral RNA packaging also decreased in efficiency after expression of nucleolar-localizing mutations. These results were observed during propagation of variant HIV-1NL4-3 containing nucleolar-localizing mutations within the viral backbone (M4, M5, and M6). Lentiviral particles produced with Rev single-point mutations were transducible at extremely low frequency. Similarly, HIV-1NL4-3 Rev-NoLS variants lost infectivity, unlike virulent WT (wild type) HIV-1NL4-3. HIV-1NL4-3 variants were capable of CD4+ host entry and reverse transcription as WT HIV-1NL4-3, but lacked ability to complete a full infectious cycle. We currently reveal that viral integration is deregulated in the presence of Rev-NoLS mutations.
Collapse
Affiliation(s)
- Jerlisa Ann C. Arizala
- Department of Molecular and Cellular Biology, Beckman Research Institute at the City of Hope, Duarte, California
- Irell & Manella Graduate School of Biological Sciences, Duarte, California
| | - Mayumi Takahashi
- Department of Molecular and Cellular Biology, Beckman Research Institute at the City of Hope, Duarte, California
- Irell & Manella Graduate School of Biological Sciences, Duarte, California
| | - John C. Burnett
- Department of Molecular and Cellular Biology, Beckman Research Institute at the City of Hope, Duarte, California
| | - Dominique L. Ouellet
- Department of Molecular and Cellular Biology, Beckman Research Institute at the City of Hope, Duarte, California
| | - Haitang Li
- Department of Molecular and Cellular Biology, Beckman Research Institute at the City of Hope, Duarte, California
| | - John J. Rossi
- Department of Molecular and Cellular Biology, Beckman Research Institute at the City of Hope, Duarte, California
- Irell & Manella Graduate School of Biological Sciences, Duarte, California
| |
Collapse
|
22
|
Wang Z, Wang W, Cui YC, Pan Q, Zhu W, Gendron P, Guo F, Cen S, Witcher M, Liang C. HIV-1 Employs Multiple Mechanisms To Resist Cas9/Single Guide RNA Targeting the Viral Primer Binding Site. J Virol 2018; 92:e01135-18. [PMID: 30068653 PMCID: PMC6158435 DOI: 10.1128/jvi.01135-18] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 07/26/2018] [Indexed: 12/23/2022] Open
Abstract
The clustered regularly interspaced short palindromic repeat (CRISPR)-CRISPR-associated protein 9 (Cas9) gene-editing technology has been used to inactivate viral DNA as a new strategy to eliminate chronic viral infections, including HIV-1. This utility of CRISPR-Cas9 is challenged by the high heterogeneity of HIV-1 sequences, which requires the design of the single guide RNA (sgRNA; utilized by the CRISPR-Cas9 system to recognize the target DNA) to match a specific HIV-1 strain in an HIV patient. One solution to this challenge is to target the viral primer binding site (PBS), which HIV-1 copies from cellular tRNA3 Lys in each round of reverse transcription and is thus conserved in almost all HIV-1 strains. In this study, we demonstrate that PBS-targeting sgRNA directs Cas9 to cleave the PBS DNA, which evokes deletions or insertions (indels) and strongly diminishes the production of infectious HIV-1. While HIV-1 escapes from PBS-targeting Cas9/sgRNA, unique resistance mechanisms are observed that are dependent on whether the plus or the minus strand of the PBS DNA is bound by sgRNA. Characterization of these viral escape mechanisms will inform future engineering of Cas9 variants that can more potently and persistently inhibit HIV-1 infection.IMPORTANCE The results of this study demonstrate that the gene-editing complex Cas9/sgRNA can be programmed to target and cleave HIV-1 PBS DNA, and thus, inhibit HIV-1 infection. Given that almost all HIV-1 strains have the same PBS, which is copied from the cellular tRNA3 Lys during reverse transcription, PBS-targeting sgRNA can be used to inactivate HIV-1 DNA of different strains. We also discovered that HIV-1 uses different mechanisms to resist Cas9/sgRNAs, depending on whether they target the plus or the minus strand of PBS DNA. These findings allow us to predict that a Cas9 variant that uses the CCA sequence as the protospacer adjacent motif (PAM) should more strongly and persistently suppress HIV-1 replication. Together, these data have identified the PBS as the target DNA of Cas9/sgRNA and have predicted how to improve Cas9/sgRNA to achieve more efficient and sustainable suppression of HIV-1 infection, therefore improving the capacity of Cas9/sgRNA in curing HIV-1 infection.
Collapse
Affiliation(s)
- Zhen Wang
- Lady Davis Institute, Jewish General Hospital, Montreal, Canada
- Department of Medicine, McGill University, Montreal, Canada
| | - Wenzhou Wang
- Lady Davis Institute, Jewish General Hospital, Montreal, Canada
- Department of Microbiology & Immunology, McGill University, Montreal, Canada
| | - Ya Cheng Cui
- Department of Medicine, McGill University, Montreal, Canada
| | - Qinghua Pan
- Lady Davis Institute, Jewish General Hospital, Montreal, Canada
| | - Weijun Zhu
- Institute of Pathogen Biology, Chinese Academy of Medical Science, Beijing, China
| | - Patrick Gendron
- Institute for Research in Immunology and Cancer, University of Montreal, Montreal, Canada
| | - Fei Guo
- Institute of Pathogen Biology, Chinese Academy of Medical Science, Beijing, China
| | - Shan Cen
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science, Beijing, China
| | - Michael Witcher
- Lady Davis Institute, Jewish General Hospital, Montreal, Canada
- Department of Oncology, McGill University, Montreal, Canada
| | - Chen Liang
- Lady Davis Institute, Jewish General Hospital, Montreal, Canada
- Department of Medicine, McGill University, Montreal, Canada
- Department of Microbiology & Immunology, McGill University, Montreal, Canada
| |
Collapse
|
23
|
Effect of Short-Term Antiretroviral Therapy Interruption on Levels of Integrated HIV DNA. J Virol 2018; 92:JVI.00285-18. [PMID: 29593048 DOI: 10.1128/jvi.00285-18] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 03/23/2018] [Indexed: 12/28/2022] Open
Abstract
Analytic treatment interruption (ATI) studies are required to evaluate strategies aimed at achieving ART-free HIV remission, but the impact of ATI on the viral reservoir remains unclear. We validated a DNA size selection-based assay for measuring levels of integrated HIV DNA and applied it to assess the effects of short-term ATI on the HIV reservoir. Samples from participants from four AIDS Clinical Trials Group ATI studies were assayed for integrated HIV DNA levels. Cryopreserved peripheral blood mononuclear cells (PBMCs) were obtained for 12 participants with available samples pre-ATI and approximately 6 months after ART resumption. Four participants also had samples available during the ATI. The median duration of ATI was 12 weeks. Validation of the HIV integrated DNA size-exclusion (HIDE) assay was performed using samples spiked with unintegrated HIV DNA, HIV-infected cell lines, and participant PBMCs. The HIDE assay eliminated 99% of unintegrated HIV DNA species and strongly correlated with the established Alu-gag assay. For the majority of individuals, integrated DNA levels increased during ATI and subsequently declined upon ART resumption. There was no significant difference in the levels of integrated HIV DNA between the pre- and post-ATI time points, with a median ratio of post- to pre-ATI HIV DNA levels of 0.95. Using a new integrated HIV DNA assay, we found minimal change in the levels of integrated HIV DNA in participants who underwent an ATI, followed by 6 months of ART. This suggests that short-term ATI can be conducted without a significant impact on the levels of integrated proviral DNA in the peripheral blood.IMPORTANCE Interventions aimed at achieving sustained antiretroviral therapy (ART)-free HIV remission require treatment interruption trials to assess their efficacy. However, these trials are accompanied by safety concerns related to the expansion of the viral reservoir. We validated an assay that uses an automated DNA size-selection platform for quantifying levels of integrated HIV DNA and is less sample- and labor-intensive than current assays. Using stored samples from AIDS Clinical Trials Group studies, we found that short-term ART discontinuation had minimal impact on integrated HIV DNA levels after ART resumption, providing reassurance about the reservoir effects of short-term treatment interruption trials.
Collapse
|
24
|
Pinzone MR, O’Doherty U. Measuring integrated HIV DNA ex vivo and in vitro provides insights about how reservoirs are formed and maintained. Retrovirology 2018; 15:22. [PMID: 29452580 PMCID: PMC5816390 DOI: 10.1186/s12977-018-0396-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 01/19/2018] [Indexed: 11/29/2022] Open
Abstract
The identification of the most appropriate marker to measure reservoir size has been a great challenge for the HIV field. Quantitative viral outgrowth assay (QVOA), the reference standard to quantify the amount of replication-competent virus, has several limitations, as it is laborious, expensive, and unable to robustly reactivate every single integrated provirus. PCR-based assays have been developed as an easier, cheaper and less error-prone alternative to QVOA, but also have limitations. Historically, measuring integrated HIV DNA has provided insights about how reservoirs are formed and maintained. In the 1990s, measuring integrated HIV DNA was instrumental in understanding that a subset of resting CD4 T cells containing integrated HIV DNA were the major source of replication-competent virus. Follow-up studies have further characterized the phenotype of these cells containing integrated HIV DNA, as well as shown the correlation between the integration levels and clinical parameters, such as duration of infection, CD4 count and viral load. Integrated HIV DNA correlates with total HIV measures and with QVOA. The integration assay has several limitations. First, it largely overestimates the reservoir size, as both defective and replication-competent proviruses are detected. Since defective proviruses are the majority in patients on ART, it follows that the number of proviruses capable of reactivating and releasing new virions is significantly smaller than the number of integrated proviruses. Second, in patients on ART clonal expansion could theoretically lead to the preferential amplification of proviruses close to an Alu sequence though longitudinal studies have not captured this effect. Proviral sequencing combined with integration measures is probably the best estimate of reservoir size, but it is expensive, time-consuming and requires considerable bioinformatics expertise. All these reasons limit its use on a large scale. Herein, we review the utility of measuring HIV integration and suggest combining it with sequencing and total HIV measurements can provide insights that underlie reservoir maintenance.
Collapse
Affiliation(s)
- Marilia Rita Pinzone
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA USA
| | - Una O’Doherty
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA USA
| |
Collapse
|
25
|
Asahchop EL, Meziane O, Mamik MK, Chan WF, Branton WG, Resch L, Gill MJ, Haddad E, Guimond JV, Wainberg MA, Baker GB, Cohen EA, Power C. Reduced antiretroviral drug efficacy and concentration in HIV-infected microglia contributes to viral persistence in brain. Retrovirology 2017; 14:47. [PMID: 29037245 PMCID: PMC5644262 DOI: 10.1186/s12977-017-0370-5] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 10/01/2017] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND In patients with HIV/AIDS receiving antiretroviral therapy (ART), HIV-1 persistence in brain tissue is a vital and unanswered question. HIV-1 infects and replicates in resident microglia and trafficking macrophages within the brain although the impact of individual ART drugs on viral infection within these brain myeloid cells is unknown. Herein, the effects of contemporary ART drugs were investigated using in vitro and in vivo models of HIV-1 brain infection. RESULTS The EC50 values for specific ART drugs in HIV-infected human microglia were significantly higher compared to bone marrow-derived macrophages and peripheral blood mononuclear cells. Intracellular ART drug concentrations in microglia were significantly lower than in human lymphocytes. In vivo brain concentrations of ART drugs in mice were 10 to 100-fold less in brain tissues compared with plasma and liver levels. In brain tissues from untreated HIV-infected BLT mice, HIV-encoded RNA, DNA and p24 were present in human leukocytes while ART eradicated viral RNA and DNA in both brain and plasma. Interruption of ART resulted in detectable viral RNA and DNA and increased human CD68 expression in brains of HIV-infected BLT mice. In aviremic HIV/AIDS patients receiving effective ART, brain tissues that were collected within hours of last ART dosing showed HIV-encoded RNA and DNA with associated neuroinflammatory responses. CONCLUSIONS ART drugs show variable concentrations and efficacies in brain myeloid cells and tissues in drug-specific manner. Despite low drug concentrations in brain, experimental ART suppressed HIV-1 infection in brain although HIV/AIDS patients receiving effective ART had detectable HIV-1 in brain. These findings suggest that viral suppression in brain is feasible but new approaches to enhancing ART efficacy and concentrations in brain are required for sustained HIV-1 eradication from brain.
Collapse
Affiliation(s)
- Eugene L Asahchop
- Department of Medicine (Neurology), University of Alberta, Edmonton, AB, Canada
| | | | - Manmeet K Mamik
- Department of Medicine (Neurology), University of Alberta, Edmonton, AB, Canada
| | - Wing F Chan
- Department of Medicine (Neurology), University of Alberta, Edmonton, AB, Canada
| | - William G Branton
- Department of Medicine (Neurology), University of Alberta, Edmonton, AB, Canada
| | - Lothar Resch
- Department of Pathology, University of Calgary, Calgary, AB, Canada
| | - M John Gill
- Department of Medicine, University of Calgary, Calgary, AB, Canada
| | - Elie Haddad
- CHU Sainte-Justine, Montréal, Canada.,Department of Pediatrics, Université de Montréal, Montréal, Canada
| | - Jean V Guimond
- CIUSSS du Centre-Sud-de-l'ile-Montréal, CLSC des Faubourgs, Montréal, QC, Canada
| | - Mark A Wainberg
- McGill University AIDS Centre, Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, QC, Canada
| | - Glen B Baker
- Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
| | - Eric A Cohen
- Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montréal, Canada.,Montreal Clinical Research Institute, Montréal, Canada
| | - Christopher Power
- Department of Medicine (Neurology), University of Alberta, Edmonton, AB, Canada. .,Department of Psychiatry, University of Alberta, Edmonton, AB, Canada. .,Department of Medicine, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
26
|
Quantification of the Latent HIV-1 Reservoir Using Ultra Deep Sequencing and Primer ID in a Viral Outgrowth Assay. J Acquir Immune Defic Syndr 2017; 74:221-228. [PMID: 27683060 DOI: 10.1097/qai.0000000000001187] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND In this study, we measured the latent HIV-1 reservoir harboring replication-competent HIV-1 in resting CD4 T cells in participants on highly active antiretroviral therapy, quantitating the frequency of latent infection through the use of a Primer ID-based Ultra Deep Sequencing Assay (UDSA), in comparison to the readout of the quantitative viral outgrowth assay (QVOA). METHODS Viral RNA derived from culture wells of QVOA that scored as HIV-1 p24 capsid antigen positive were tagged with a specific barcode during cDNA synthesis, and the sequences within the V1-V3 region of the HIV-1 env gene were analyzed for diversity using the Primer ID-based paired-end MiSeq platform. We analyzed samples from a total of 19 participants, 2 initially treated with highly active antiretroviral therapy in acute infection and 17 treated during chronic infection. Phylogenetic trees were generated with all viral lineages detected from culture wells derived from each participant to determine the number of distinct viral lineages growing out in each well, thus capturing another level of information beyond the well being positive for viral antigen. The infectious units per million (IUPM) cell values estimated using a maximum likelihood approach, based on the number of distinct viral lineages detected (VOA-UDSA), were compared with those obtained from QVOA measured using limiting dilution. RESULTS IUPM estimates determined by VOA-UDSA ranged from 0.14 to 3.66 and strongly correlated with the IUPM estimates determined by QVOA (r = 0.94; P < 0.0001). CONCLUSIONS VOA-UDSA may be an alternative readout for that currently used for QVOA.
Collapse
|
27
|
Schlatzer D, Haqqani AA, Li X, Dobrowolski C, Chance MR, Tilton JC. A Targeted Mass Spectrometry Assay for Detection of HIV Gag Protein Following Induction of Latent Viral Reservoirs. Anal Chem 2017; 89:5325-5332. [PMID: 28467046 DOI: 10.1021/acs.analchem.6b05070] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
During early infection, HIV-1 establishes a reservoir of latently infected cells that persist during antiretroviral therapy. These reservoirs are considered the primary obstacle to eradicating HIV-1 from patients, and multiple strategies are being investigated to eliminate latently infected cells. Measuring the reservoir size using an affordable and scalable assay is critical as these approaches move into clinical trials: the current "gold-standard" viral outgrowth assay is costly, labor-intensive, and requires large numbers of cells. Here, we assessed whether selective reaction monitoring-mass spectrometry (SRM-MS) is sufficiently sensitive to detect latent HIV reservoirs following reactivation of virus. The Gag structural proteins were the most abundant viral proteins in purified virus and infected cells, and tractable peptides for monitoring Gag levels were identified. We then optimized a Gag immunoprecipitation procedure that permitted sampling of more than 107 CD4+ T cells, a requirement for detecting exceedingly rare latently infected cells. Gag peptides were detectable in both cell lysates and supernatants in CD4+ T cells infected in vitro at frequencies as low as ∼1 in 106 cells and in cells from HIV-infected patients on suppressive antiretroviral therapy with undetectable viral loads. To our knowledge, this represents the first detection of reactivated latent HIV reservoirs from patients without signal amplification. Together, these results indicate that SRM-MS is a viable method for measuring latent HIV-1 reservoirs in patient samples with distinct advantages over current assays.
Collapse
Affiliation(s)
- Daniela Schlatzer
- Center for Proteomics and Bioinformatics, Department of Nutrition, ‡Department of Molecular Biology and Microbiology, School of Medicine, Case Western Reserve University , Cleveland, Ohio 44106, United States
| | - Aiman A Haqqani
- Center for Proteomics and Bioinformatics, Department of Nutrition, ‡Department of Molecular Biology and Microbiology, School of Medicine, Case Western Reserve University , Cleveland, Ohio 44106, United States
| | - Xiaolin Li
- Center for Proteomics and Bioinformatics, Department of Nutrition, ‡Department of Molecular Biology and Microbiology, School of Medicine, Case Western Reserve University , Cleveland, Ohio 44106, United States
| | - Curtis Dobrowolski
- Center for Proteomics and Bioinformatics, Department of Nutrition, ‡Department of Molecular Biology and Microbiology, School of Medicine, Case Western Reserve University , Cleveland, Ohio 44106, United States
| | - Mark R Chance
- Center for Proteomics and Bioinformatics, Department of Nutrition, ‡Department of Molecular Biology and Microbiology, School of Medicine, Case Western Reserve University , Cleveland, Ohio 44106, United States
| | - John C Tilton
- Center for Proteomics and Bioinformatics, Department of Nutrition, ‡Department of Molecular Biology and Microbiology, School of Medicine, Case Western Reserve University , Cleveland, Ohio 44106, United States
| |
Collapse
|
28
|
Total HIV-1 DNA, a Marker of Viral Reservoir Dynamics with Clinical Implications. Clin Microbiol Rev 2017; 29:859-80. [PMID: 27559075 DOI: 10.1128/cmr.00015-16] [Citation(s) in RCA: 154] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
HIV-1 DNA persists in infected cells despite combined antiretroviral therapy (cART), forming viral reservoirs. Recent trials of strategies targeting latent HIV reservoirs have rekindled hopes of curing HIV infection, and reliable markers are thus needed to evaluate viral reservoirs. Total HIV DNA quantification is simple, standardized, sensitive, and reproducible. Total HIV DNA load influences the course of the infection and is therefore clinically relevant. In particular, it is predictive of progression to AIDS and death, independently of HIV RNA load and the CD4 cell count. Baseline total HIV DNA load is predictive of the response to cART. It declines during cART but remains quantifiable, at a level that reflects both the history of infection (HIV RNA zenith, CD4 cell count nadir) and treatment efficacy (residual viremia, cumulative viremia, immune restoration, immune cell activation). Total HIV DNA load in blood is also predictive of the presence and severity of some HIV-1-associated end-organ disorders. It can be useful to guide individual treatment, notably, therapeutic de-escalation. Although it does not distinguish between replication-competent and -defective latent viruses, the total HIV DNA load in blood, tissues, and cells provides insights into HIV pathogenesis, probably because all viral forms participate in host cell activation and HIV pathogenesis. Total HIV DNA is thus a biomarker of HIV reservoirs, which can be defined as all infected cells and tissues containing all forms of HIV persistence that participate in pathogenesis. This participation may occur through the production of new virions, creating new cycles of infection and disseminating infected cells; maintenance or amplification of reservoirs by homeostatic cell proliferation; and viral transcription and synthesis of viral proteins without new virion production. These proteins can induce immune activation, thus participating in the vicious circle of HIV pathogenesis.
Collapse
|
29
|
Ruggiero A, Malatinkova E, Rutsaert S, Paxton WA, Vandekerckhove L, De Spiegelaere W. Utility of integrated HIV-1 DNA quantification in cure studies. Future Virol 2017. [DOI: 10.2217/fvl-2016-0130] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Numerous HIV-1 curative strategies have been proposed to eradicate the virus reservoir pool that remains integrated within target cells, despite successful antiretroviral therapy. To test the impact of such interventions on this reservoir, a universal marker of persistence is needed. Quantifying integrated HIV-1 DNA load has been proposed as a strong virological marker. In this paper, we provide a detailed description of the most commonly used assays to quantify integrated HIV-1 DNA and applications in relevant clinical studies produced over the last 20 years with a major focus on the recent literature. We discuss the potential for using this marker of virological persistence and the technical limitations that need to be addressed.
Collapse
Affiliation(s)
- Alessandra Ruggiero
- Department of Clinical Infection, Microbiology & Immunology (CIMI), Institute of Infection & Global Health, University of Liverpool, Liverpool, UK
| | - Eva Malatinkova
- HIV Cure Research Center, Department of Internal Medicine, Faculty of Medicine & Health Sciences, Ghent University, Belgium
| | - Sofie Rutsaert
- HIV Cure Research Center, Department of Internal Medicine, Faculty of Medicine & Health Sciences, Ghent University, Belgium
| | - William A Paxton
- Department of Clinical Infection, Microbiology & Immunology (CIMI), Institute of Infection & Global Health, University of Liverpool, Liverpool, UK
| | - Linos Vandekerckhove
- HIV Cure Research Center, Department of Internal Medicine, Faculty of Medicine & Health Sciences, Ghent University, Belgium
| | - Ward De Spiegelaere
- Department of Morphology, Faculty of Veterinary Sciences, Ghent University, Belgium
| |
Collapse
|
30
|
Romani B, Allahbakhshi E. Underlying mechanisms of HIV-1 latency. Virus Genes 2017; 53:329-339. [PMID: 28258391 DOI: 10.1007/s11262-017-1443-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Accepted: 02/27/2017] [Indexed: 02/07/2023]
Abstract
Similarly to other retroviruses, HIV-1 integrates its genome into the cellular chromosome. Expression of viral genes from the integrated viral DNA could then be regulated by the host genome. If the infected cell suppresses viral gene expression, the virus will undergo latency. The latently infected cells cannot be detected or cleared by the immune system since they do not express viral antigens. These cells remain undetected for several years, even under antiretroviral treatments. The silenced HIV-1 DNA could be reactivated under certain conditions. Despite the efficient use of antiretroviral drugs, HIV-1 latently infected cells remain the major obstacles to a permanent cure. In this review, we discuss the cellular and molecular mechanisms through which HIV-1 establishes latency.
Collapse
Affiliation(s)
- Bizhan Romani
- Cellular and Molecular Research Center (CMRC), Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences (AJUMS), 61357-15794, Ahvaz, Iran.,Department of Biology, Faculty of Science, University of Isfahan, 81746-73441, Isfahan, Iran
| | - Elham Allahbakhshi
- Cellular and Molecular Research Center (CMRC), Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences (AJUMS), 61357-15794, Ahvaz, Iran.
| |
Collapse
|
31
|
Siliciano JD, Siliciano RF. Assays to Measure Latency, Reservoirs, and Reactivation. Curr Top Microbiol Immunol 2017; 417:23-41. [PMID: 29071475 DOI: 10.1007/82_2017_75] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
HIV-1 persists even in patients who are successfully treated with combination antiretroviral therapy. The major barrier to cure is a small pool of latently infected resting CD4+ T cells carrying an integrated copy of the viral genome that is not expressed while the cells remain in a resting state. Targeting this latent reservoir is a major focus of HIV-1 cure research, and the development of a rapid and scalable assay for the reservoir is a rate-limiting step in the search for a cure. The most commonly used assays are standard PCR assays targeting conserved regions of the HIV-1 genome. However, because the vast majority of HIV-1 proviruses are defective, such assays may not accurately capture changes in the minor subset of proviruses that are replication-competent and that pose a barrier to cure. On the other hand, the viral outgrowth assay that was used to initially define the latent reservoir may underestimate reservoir size because not all replication-competent proviruses are induced by a single round of T cell activation in this assay. Therefore, this assay is best regarded as a definitive minimal estimate of reservoir size. The best approach may be to measure all of the proviruses with the potential to cause viral rebound. A variety of novel assays have recently been described. Ultimately, the assay that best predicts time to viral rebound will be the most useful to the cure effort.
Collapse
Affiliation(s)
- Janet D Siliciano
- Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Robert F Siliciano
- Johns Hopkins University School of Medicine, Howard Hughes Medical Institute, Baltimore, MD, 21205, USA.
| |
Collapse
|
32
|
Abstract
HIV is a devastating worldwide epidemic that has had substantial social and economic impacts throughout the globe. Due to the presence of a small pool of latently infected cells that persists during antiretroviral therapy (ART), HIV is not curable. Because of the high cost of ART and the lack of reliable accessibility across the globe, life-long ART is unfortunately not a feasible solution for the epidemic. Therefore, new strategies need to be developed and implemented to address HIV-1 infection. Several approaches toward this end are currently under investigation (Ebina et al. in Sci Rep 3:2510, 2013; Archin et al. in Nature 487:482–5, 2012; Elliott et al. in PLoS Pathog 10:e1004473, 2014; Rasmussen et al. in Lancet HIV 1:e13–e21, 2014; Tebas et al. in N Engl J Med 370:901–10, 2014; Archin et al. in Nat Rev Microbiol 12:750–64, 2014; Barton et al. in PLoS One 9:e102684, 2014; Sogaard et al. in PLoS Pathog 11:e1005142, 2015). Initial studies have proven promising, but have highlighted the need for sensitive and accurate assays to detect changes in very low concentrations of virus to allow confident interpretation of the success of curative approaches. This review will focus on assays that are currently available and the advantages and limitations of each.
Collapse
Affiliation(s)
- Kirston M. Barton
- Westmead Millennium Institute/University of Sydney, 176 Hawkesbury Road, Westmead, NSW 2145 Australia
| | - Sarah E. Palmer
- Westmead Millennium Institute/University of Sydney, 176 Hawkesbury Road, Westmead, NSW 2145 Australia
| |
Collapse
|
33
|
Esposito F, Carli I, Del Vecchio C, Xu L, Corona A, Grandi N, Piano D, Maccioni E, Distinto S, Parolin C, Tramontano E. Sennoside A, derived from the traditional chinese medicine plant Rheum L., is a new dual HIV-1 inhibitor effective on HIV-1 replication. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2016; 23:1383-1391. [PMID: 27765358 DOI: 10.1016/j.phymed.2016.08.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 07/19/2016] [Accepted: 08/09/2016] [Indexed: 06/06/2023]
Abstract
BACKGROUND Despite the availability of effective antiretroviral therapies, drugs for HIV-1 treatment with new mode of action are still needed. An innovative approach is aimed to identify dual HIV-1 inhibitors, small molecules that can inhibit two viral functions at the same time. Rhubarb, originated from Rheum palmatum L. and Rheum officinale Baill., is one of the earliest and most commonly used medicinal plants in Traditional Chinese Medicine (TCM) practice. We wanted to explore TCM for the identification of new chemical scaffolds with dual action abilities against HIV-1. METHODS R. palmatum L. and R. officinale Baill. extracts along with their main single isolated constituents anthraquinone derivatives were tested on both HIV-1 Reverse Transcriptase (RT)-associated DNA Polymerase (RDDP) and Ribonuclease H (RNase H) activities in biochemical assays. Active compounds were then assayed for their effects on HIV-1 mutated RTs, integrase (IN) and viral replication. RESULTS Both R. palmatum L. and R. officinale Baill. extracts inhibited the HIV-1 RT-associated RNase H activity. Among the isolated constituents, Sennoside A and B were effective on both RDDP and RNase H RT-associated functions in biochemical assays. Sennoside A was less potent when tested on K103N, Y181C, Y188L, N474A and Q475A mutated RTs, suggesting the involvement of two RT binding sites for its antiviral activity. Sennoside A affected also HIV-1 IN activity in vitro and HIV-1 replication in cell-based assays. Viral DNA production and time of addition studies showed that Sennoside A targets the HIV-1 reverse transcription process. CONCLUSION Sennoside A is a new scaffold for the development of HIV-1 dual RT inhibitors.
Collapse
Affiliation(s)
- Francesca Esposito
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella di Monserrato SS554, 09042, Monserrato, Cagliari, Italy
| | - Ilaria Carli
- Department of Molecular Medicine, University of Padova, via Gabelli 63, 35121 Padova, Italy
| | - Claudia Del Vecchio
- Department of Molecular Medicine, University of Padova, via Gabelli 63, 35121 Padova, Italy
| | - Lijia Xu
- Institute of Medicinal Plant Development (IMPLAD), 151 Malianwa North Road Haidian District, 100193 Beijing, China
| | - Angela Corona
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella di Monserrato SS554, 09042, Monserrato, Cagliari, Italy
| | - Nicole Grandi
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella di Monserrato SS554, 09042, Monserrato, Cagliari, Italy
| | - Dario Piano
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella di Monserrato SS554, 09042, Monserrato, Cagliari, Italy
| | - Elias Maccioni
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella di Monserrato SS554, 09042, Monserrato, Cagliari, Italy
| | - Simona Distinto
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella di Monserrato SS554, 09042, Monserrato, Cagliari, Italy
| | - Cristina Parolin
- Department of Molecular Medicine, University of Padova, via Gabelli 63, 35121 Padova, Italy.
| | - Enzo Tramontano
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella di Monserrato SS554, 09042, Monserrato, Cagliari, Italy; Genetics and Biomedical Research institute, National Research Council (CNR), Cittadella di Monserrato SS554, 09042, Monserrato, Cagliari, Italy.
| |
Collapse
|
34
|
Mavigner M, Lee ST, Habib J, Robinson C, Silvestri G, O’Doherty U, Chahroudi A. Quantifying integrated SIV-DNA by repetitive-sampling Alu-gag PCR. J Virus Erad 2016; 2:219-226. [PMID: 27781104 PMCID: PMC5075349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
OBJECTIVES Although antiretroviral therapy (ART) effectively suppresses HIV-1 replication, it does not eradicate the virus and ART interruption consistently results in rebound of viraemia, demonstrating the persistence of a long-lived viral reservoir. Several approaches aimed at reducing virus persistence are being developed, and accurate measurements of the latent reservoir (LR) are necessary to assess the effectiveness of anti-latency interventions. We sought to measure the LR in SIV/SHIV-infected rhesus macaques (RMs) by quantifying integrated SIV-DNA. METHODS We optimised a repetitive sampling Alu-gag PCR to quantify integrated SIV-DNA ex vivo in ART-naïve and ART-experienced SIV/SHIV-infected RMs. RESULTS In ART-naïve RMs, we found the median level of integrated SIV-DNA to be 1660 copies and 866 copies per million PBMC during untreated acute and chronic SHIV infection, respectively. Integrated and total SIV-DNA levels were positively correlated with one another. In ART-treated RMs, integrated SIV-DNA was readily detected in lymph nodes and spleen and levels of total (3319 copies/million cells) and integrated (3160 copies/million cells) SIV-DNA were similar after a median of 404 days of ART. In peripheral blood CD4+ T cells from ART-treated RMs, levels of total (3319 copies/million cells) and integrated (2742 copies/million cells) SIV-DNA were not significantly different and were positively correlated. CONCLUSIONS The assay described here is validated and can be used in interventional studies testing HIV/SIV cure strategies in RMs. Measurement of integrated SIV-DNA in ART-treated RMs, along with other reservoir analyses, gives an estimate of the size of the LR.
Collapse
Affiliation(s)
- Maud Mavigner
- Yerkes National Primate Research Center,
Emory University,
Atlanta,
GA,
USA,Department of Pediatrics,
Emory University School of Medicine,
Atlanta,
GA,
USA
| | - S Thera Lee
- Yerkes National Primate Research Center,
Emory University,
Atlanta,
GA,
USA,Department of Pediatrics,
Emory University School of Medicine,
Atlanta,
GA,
USA
| | - Jakob Habib
- Department of Pediatrics,
Emory University School of Medicine,
Atlanta,
GA,
USA
| | - Cameron Robinson
- Yerkes National Primate Research Center,
Emory University,
Atlanta,
GA,
USA
| | - Guido Silvestri
- Yerkes National Primate Research Center,
Emory University,
Atlanta,
GA,
USA
| | - Una O’Doherty
- Department of Pathology and Laboratory Medicine,
University of Pennsylvania,
Philadelphia,
PA,
USA
| | - Ann Chahroudi
- Yerkes National Primate Research Center,
Emory University,
Atlanta,
GA,
USA,Department of Pediatrics,
Emory University School of Medicine,
Atlanta,
GA,
USA,Corresponding author: Ann Chahroudi,
E472, HSRB, 1760 Haygood Drive,
Atlanta,
GA30322,
USA
| |
Collapse
|
35
|
Mavigner M, Lee ST, Habib J, Robinson C, Silvestri G, O’Doherty U, Chahroudi A. Quantifying integrated SIV-DNA by repetitive-sampling Alu-gag PCR. J Virus Erad 2016. [DOI: 10.1016/s2055-6640(20)30870-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
36
|
SUN2 Overexpression Deforms Nuclear Shape and Inhibits HIV. J Virol 2016; 90:4199-4214. [PMID: 26865710 DOI: 10.1128/jvi.03202-15] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 02/03/2016] [Indexed: 12/25/2022] Open
Abstract
UNLABELLED In a previous screen of putative interferon-stimulated genes, SUN2 was shown to inhibit HIV-1 infection in an uncharacterized manner. SUN2 is an inner nuclear membrane protein belonging to the linker of nucleoskeleton and cytoskeleton complex. We have analyzed here the role of SUN2 in HIV infection. We report that in contrast to what was initially thought, SUN2 is not induced by type I interferon, and that SUN2 silencing does not modulate HIV infection. However, SUN2 overexpression in cell lines and in primary monocyte-derived dendritic cells inhibits the replication of HIV but not murine leukemia virus or chikungunya virus. We identified HIV-1 and HIV-2 strains that are unaffected by SUN2, suggesting that the effect is specific to particular viral components or cofactors. Intriguingly, SUN2 overexpression induces a multilobular flower-like nuclear shape that does not impact cell viability and is similar to that of cells isolated from patients with HTLV-I-associated adult T-cell leukemia or with progeria. Nuclear shape changes and HIV inhibition both mapped to the nucleoplasmic domain of SUN2 that interacts with the nuclear lamina. This block to HIV replication occurs between reverse transcription and nuclear entry, and passaging experiments selected for a single-amino-acid change in capsid (CA) that leads to resistance to overexpressed SUN2. Furthermore, using chemical inhibition or silencing of cyclophilin A (CypA), as well as CA mutant viruses, we implicated CypA in the SUN2-imposed block to HIV infection. Our results demonstrate that SUN2 overexpression perturbs both nuclear shape and early events of HIV infection. IMPORTANCE Cells encode proteins that interfere with viral replication, a number of which have been identified in overexpression screens. SUN2 is a nuclear membrane protein that was shown to inhibit HIV infection in such a screen, but how it blocked HIV infection was not known. We show that SUN2 overexpression blocks the infection of certain strains of HIV before nuclear entry. Mutation of the viral capsid protein yielded SUN2-resistant HIV. Additionally, the inhibition of HIV infection by SUN2 involves cyclophilin A, a protein that binds the HIV capsid and directs subsequent steps of infection. We also found that SUN2 overexpression substantially changes the shape of the cell's nucleus, resulting in many flower-like nuclei. Both HIV inhibition and deformation of nuclear shape required the domain of SUN2 that interacts with the nuclear lamina. Our results demonstrate that SUN2 interferes with HIV infection and highlight novel links between nuclear shape and viral infection.
Collapse
|
37
|
Malatinkova E, De Spiegelaere W, Bonczkowski P, Kiselinova M, Vervisch K, Trypsteen W, Johnson M, Verhofstede C, de Looze D, Murray C, Kinloch-de Loes S, Vandekerckhove L. Impact of a decade of successful antiretroviral therapy initiated at HIV-1 seroconversion on blood and rectal reservoirs. eLife 2015; 4:e09115. [PMID: 26439007 PMCID: PMC4657623 DOI: 10.7554/elife.09115] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 10/01/2015] [Indexed: 12/14/2022] Open
Abstract
Persistent reservoirs remain the major obstacles to achieve an HIV-1 cure. Prolonged early antiretroviral therapy (ART) may reduce the extent of reservoirs and allow for virological control after ART discontinuation. We compared HIV-1 reservoirs in a cross-sectional study using polymerase chain reaction-based techniques in blood and tissue of early-treated seroconverters, late-treated patients, ART-naïve seroconverters, and long-term non-progressors (LTNPs) who have spontaneous virological control without treatment. A decade of early ART reduced the total and integrated HIV-1 DNA levels compared with later treatment initiation, but not reaching the low levels found in LTNPs. Total HIV-1 DNA in rectal biopsies did not differ between cohorts. Importantly, lower viral transcription (HIV-1 unspliced RNA) and enhanced immune preservation (CD4/CD8), reminiscent of LTNPs, were found in early compared to late-treated patients. This suggests that early treatment is associated with some immunovirological features of LTNPs that may improve the outcome of future interventions aimed at a functional cure. DOI:http://dx.doi.org/10.7554/eLife.09115.001 Many people with HIV infections are able to live relatively normal lives thanks to major advances in drug therapies. A cure, however, remains elusive. One reason for this is that the virus can hide in certain types of human cells, where it is protected from the immune system and the effects of “antiretroviral” drugs. This creates reservoirs of virus particles in the body that can quickly multiply and spread if treatment stops. Some people who become infected with HIV are able to contain the virus without the help of drug treatments. These individuals – known as long-term non-progressors – do not become ill and only have low numbers of HIV particles in reservoirs. People who receive treatment early in the course of an HIV infection also have fewer viruses in reservoirs and are less likely to develop severe illness. Therefore, it might be possible to develop a “functional” cure that may not completely eliminate the virus from the body, but would prevent illness and allow the individuals to eventually stop taking antiretroviral drugs. Now, Malatinkova, De Spiegelaere et al. studied samples from 84 patients with HIV-1 to find how much effect an early start to treatment has on the amount of the virus in reservoirs. People who started treatment soon after infection had lower levels of HIV-1 in their blood than people who started treatment later (even after 10 years of treatment). However, patients that started treatment early had higher levels of HIV-1 in the blood than the patients who were long-term non-progressors. All the patients had similar levels of HIV-1 in tissue samples taken from the rectum, regardless of when they started treatment. The experiments suggest that HIV-1 reservoirs form very soon after infection. Malatinkova, De Spiegelaere et al. found that in addition to reducing reservoirs of HIV-1, an early start to drug treatment reduced the ability of the virus to make copies of its genetic code. People who started treatment earlier also had healthier immune cells. Together, the experiments support the benefits of starting drug treatments as soon as possible after a person is infected with HIV-1. It is important to further characterize thoroughly the viral reservoir in patients with limited HIV-1 reservoirs and to look for other immune factors involved in virus control, in the search for a functional cure of HIV. DOI:http://dx.doi.org/10.7554/eLife.09115.002
Collapse
Affiliation(s)
- Eva Malatinkova
- HIV Translational Research Unit, Department of Internal Medicine, Faculty of Medicine and Health Sciences, Ghent University and Ghent University Hospital, Ghent, Belgium
| | - Ward De Spiegelaere
- HIV Translational Research Unit, Department of Internal Medicine, Faculty of Medicine and Health Sciences, Ghent University and Ghent University Hospital, Ghent, Belgium
| | - Pawel Bonczkowski
- HIV Translational Research Unit, Department of Internal Medicine, Faculty of Medicine and Health Sciences, Ghent University and Ghent University Hospital, Ghent, Belgium
| | - Maja Kiselinova
- HIV Translational Research Unit, Department of Internal Medicine, Faculty of Medicine and Health Sciences, Ghent University and Ghent University Hospital, Ghent, Belgium
| | - Karen Vervisch
- HIV Translational Research Unit, Department of Internal Medicine, Faculty of Medicine and Health Sciences, Ghent University and Ghent University Hospital, Ghent, Belgium
| | - Wim Trypsteen
- HIV Translational Research Unit, Department of Internal Medicine, Faculty of Medicine and Health Sciences, Ghent University and Ghent University Hospital, Ghent, Belgium
| | - Margaret Johnson
- Division of Infection and Immunity, Royal Free Hospital, London, United Kingdom
| | - Chris Verhofstede
- AIDS Reference Laboratory, Department of Clinical Chemistry, Microbiology and Immunology, Ghent University, Ghent, Belgium
| | - Danny de Looze
- Department of Gastroenterology, Ghent University Hospital, Ghent, Belgium
| | - Charles Murray
- Department of Gastroenterology, Royal Free Hospital, London, United Kingdom
| | | | - Linos Vandekerckhove
- HIV Translational Research Unit, Department of Internal Medicine, Faculty of Medicine and Health Sciences, Ghent University and Ghent University Hospital, Ghent, Belgium
| |
Collapse
|
38
|
Janocko L, Althouse AD, Brand RM, Cranston RD, McGowan I. The Molecular Characterization of Intestinal Explant HIV Infection Using Polymerase Chain Reaction-Based Techniques. AIDS Res Hum Retroviruses 2015; 31:981-91. [PMID: 26214703 PMCID: PMC4576939 DOI: 10.1089/aid.2015.0165] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The ex vivo mucosal explant model is frequently used to test the efficacy of microbicides that have the potential for preventing HIV-1 transmission. The conventional assessment of product efficacy has been the extent of HIV-1 p24 suppression in supernatant fluids sampled up to day 14 after HIV-1 challenge ex vivo. The purpose of this study was to determine if measurement of HIV-1 nucleic acids by real-time PCR and HIV-1 integration by Alu-gag PCR provides advantages with regard to monitoring HIV-1 infection in explants. Rectal biopsies from HIV-1-negative individuals were challenged with 1 × 10(5) virions/ml of HIV-1BaL or HIV-1CH077 ex vivo. HIV-1 RNA and HIV-1 p24 in supernatant fluids and HIV-1 nucleic acids and integrated provirus in individual biopsies were measured at days 1-14 after infection. HIV-1 RNA and proviral DNA were measured by quantitative real-time PCR (qRT-PCR) while integrated virus was detected by Alu-gag PCR. Real-time PCR assays detecting HIV-1 DNA and RNA performed similarly provided that the infecting virus sequences were a good match with the sequences of the assay primers and probes. Increased HIV-1 nucleic acid levels and DNA integration were measurable on days 11 and 14 after infection. The magnitude of explant infection was similar after challenge with HIV-1BaL and HIV-1CH077, although the trajectory of infection was delayed in the HIV-1CH077-infected biopsies. In the majority of experiments, qRT-PCR did not appreciably shorten the time necessary to detect evidence of HIV-1 infection.
Collapse
Affiliation(s)
- Laura Janocko
- Magee-Womens Research Institute, Pittsburgh, Pennsylvania
| | - Andrew D. Althouse
- Magee-Womens Research Institute, Pittsburgh, Pennsylvania
- University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Rhonda M. Brand
- Magee-Womens Research Institute, Pittsburgh, Pennsylvania
- University of Pittsburgh, Pittsburgh, Pennsylvania
| | | | - Ian McGowan
- Magee-Womens Research Institute, Pittsburgh, Pennsylvania
- University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
39
|
Procopio FA, Fromentin R, Kulpa DA, Brehm JH, Bebin AG, Strain MC, Richman DD, O'Doherty U, Palmer S, Hecht FM, Hoh R, Barnard RJO, Miller MD, Hazuda DJ, Deeks SG, Sékaly RP, Chomont N. A Novel Assay to Measure the Magnitude of the Inducible Viral Reservoir in HIV-infected Individuals. EBioMedicine 2015; 2:874-83. [PMID: 26425694 PMCID: PMC4563128 DOI: 10.1016/j.ebiom.2015.06.019] [Citation(s) in RCA: 225] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 06/23/2015] [Accepted: 06/23/2015] [Indexed: 12/19/2022] Open
Abstract
Background Quantifying latently infected cells is critical to evaluate the efficacy of therapeutic strategies aimed at reducing the size of the long-lived viral reservoir, but the low frequency of these cells makes this very challenging. Methods We developed TILDA (Tat/rev Induced Limiting Dilution Assay) to measure the frequency of cells with inducible multiply-spliced HIV RNA, as these transcripts are usually absent in latently infected cells but induced upon viral reactivation. TILDA requires less than a million cells, does not require RNA extraction and can be completed in two days. Findings In suppressed individuals on ART, we found the median frequency of latently infected CD4 + T cells as estimated by TILDA to be 24 cells/million, which was 48 times more than the frequency measured by the quantitative viral outgrowth assay, and 6–27 times less than the frequencies of cells harbouring viral DNA measured by PCR-based assays. TILDA measurements strongly correlated with most HIV DNA assays. The size of the latent reservoir measured by TILDA was lower in subjects who initiated ART during the early compared to late stage of infection (p = 0.011). In untreated HIV disease, the frequency of CD4 + cells carrying latent but inducible HIV largely exceeded the frequency of actively producing cells, demonstrating that the majority of infected cells are transcriptionally silent even in the absence of ART. Interpretations Our results suggest that TILDA is a reproducible and sensitive approach to measure the frequency of productively and latently infected cells in clinical settings. We demonstrate that the latent reservoir represents a substantial fraction of all infected cells prior to ART initiation. Research in context In this manuscript, we describe the development of a novel assay that measures the magnitude of the latent HIV reservoir, the main barrier to HIV eradication. This novel assay, termed TILDA for Tat/rev Induced Limiting Dilution Assay, requires only 10 ml of blood, does not necessitate extraction of viral nucleic acids, is highly reproducible, covers a wide dynamic range of reservoir sizes and can be completed in two days. As such, TILDA may represent an alternative to existing assays used to evaluate the efficacy of therapeutic strategies aimed at reducing the size of the latent HIV reservoir. We developed TILDA (Tat/rev Induced Limiting Dilution Assay) to measure the frequency of cells with inducible multiply-spliced HIV RNA in HIV-infected individuals on suppressive ART. Our results suggest that TILDA is a reproducible and sensitive approach to measure the frequency of productively and latently infected cells in clinical settings. Using TILDA, We demonstrate that the latent reservoir represents a substantial fraction of all infected cells prior to ART initiation.
Collapse
Affiliation(s)
| | - Rémi Fromentin
- Vaccine and Gene Therapy Institute Florida, Port St. Lucie, FL, USA
| | - Deanna A Kulpa
- Vaccine and Gene Therapy Institute Florida, Port St. Lucie, FL, USA
| | - Jessica H Brehm
- Vaccine and Gene Therapy Institute Florida, Port St. Lucie, FL, USA
| | | | - Matthew C Strain
- University of California San Diego, La Jolla, California and Veterans Affairs San Diego Healthcare System, San Diego, CA, USA
| | - Douglas D Richman
- University of California San Diego, La Jolla, California and Veterans Affairs San Diego Healthcare System, San Diego, CA, USA
| | - Una O'Doherty
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sarah Palmer
- Centre for Virus Research, Westmead Millennium Institute, Westmead, Australia ; Sydney Medical School, University of Sydney, Sydney, Australia
| | - Frederick M Hecht
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Rebecca Hoh
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | | | - Michael D Miller
- Infectious Disease, Merck Research Laboratories, West Point, PA, USA
| | - Daria J Hazuda
- Infectious Disease, Merck Research Laboratories, West Point, PA, USA
| | - Steven G Deeks
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | | | - Nicolas Chomont
- Vaccine and Gene Therapy Institute Florida, Port St. Lucie, FL, USA
| |
Collapse
|
40
|
Blankson JN, Siliciano JD, Siliciano RF. Finding a cure for human immunodeficiency virus-1 infection. Infect Dis Clin North Am 2014; 28:633-50. [PMID: 25277513 PMCID: PMC4253590 DOI: 10.1016/j.idc.2014.08.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Remarkable advances have been made in the treatment of human immunodeficiency virus (HIV)-1 infection, but in the entire history of the epidemic, only 1 patient has been cured. Herein we review the fundamental mechanisms that render HIV-1 infection difficult to cure and then discuss recent clinical and experimental situations in which some form of cure has been achieved. Finally, we consider approaches that are currently being taken to develop a general cure for HIV-1 infection.
Collapse
Affiliation(s)
- Joel N Blankson
- Department of Medicine, Johns Hopkins University School of Medicine, 733, North Broadway, Baltimore, MD 21205, USA
| | - Janet D Siliciano
- Department of Medicine, Johns Hopkins University School of Medicine, 733, North Broadway, Baltimore, MD 21205, USA
| | - Robert F Siliciano
- Department of Medicine, Johns Hopkins University School of Medicine, 733, North Broadway, Baltimore, MD 21205, USA; Howard Hughes Medical Institute, 733, North Broadway, Baltimore, MD 21205, USA.
| |
Collapse
|
41
|
Progressive contraction of the latent HIV reservoir around a core of less-differentiated CD4⁺ memory T Cells. Nat Commun 2014; 5:5407. [PMID: 25382623 PMCID: PMC4241984 DOI: 10.1038/ncomms6407] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 09/29/2014] [Indexed: 12/26/2022] Open
Abstract
In patients who are receiving prolonged antiretroviral treatment (ART), HIV can persist within a small pool of long-lived resting memory CD4+ T cells infected with integrated latent virus. This latent reservoir involves distinct memory subsets. Here we provide results that suggest a progressive reduction of the size of the blood latent reservoir around a core of less-differentiated memory subsets (central memory and stem cell-like memory (TSCM) CD4+ T cells). This process appears to be driven by the differences in initial sizes and decay rates between latently infected memory subsets. Our results also suggest an extreme stability of the TSCM sub-reservoir, the size of which is directly related to cumulative plasma virus exposure before the onset of ART, stressing the importance of early initiation of effective ART. The presence of these intrinsic dynamics within the latent reservoir may have implications for the design of optimal HIV therapeutic purging strategies. HIV can persist in CD4+ T cells of patients receiving long-term antiretroviral therapy. Here the authors show the presence of intrinsic dynamics that progressively contract the latent HIV reservoir around a core of less-differentiated CD4 T-cell memory subsets.
Collapse
|
42
|
Casabianca A, Orlandi C, Canovari B, Scotti M, Acetoso M, Valentini M, Petrelli E, Magnani M. A real time PCR platform for the simultaneous quantification of total and extrachromosomal HIV DNA forms in blood of HIV-1 infected patients. PLoS One 2014; 9:e111919. [PMID: 25364909 PMCID: PMC4218859 DOI: 10.1371/journal.pone.0111919] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 10/01/2014] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND The quantitative measurement of various HIV-1 DNA forms including total, unintegrated and integrated provirus play an increasingly important role in HIV-1 infection monitoring and treatment-related research. We report the development and validation of a SYBR Green real time PCR (TotUFsys platform) for the simultaneous quantification of total and extrachromosomal HIV-1 DNA forms in patients. This innovative technique makes it possible to obtain both measurements in a single PCR run starting from frozen blood employing the same primers and standard curve. Moreover, due to identical amplification efficiency, it allows indirect estimation of integrated level. To specifically detect 2-LTR a qPCR method was also developed. METHODOLOGY/FINDINGS Primers used for total HIV-1 DNA quantification spanning a highly conserved region were selected and found to detect all HIV-1 clades of group M and the unintegrated forms of the same. A total of 195 samples from HIV-1 patients in a wide range of clinical conditions were analyzed with a 100% success rate, even in patients with suppressed plasma viremia, regardless of CD4+ or therapy. No significant correlation was observed between the two current prognostic markers, CD4+ and plasma viremia, while a moderate or high inverse correlation was found between CD4+ and total HIV DNA, with strong values for unintegrated HIV DNA. CONCLUSIONS/SIGNIFICANCE Taken together, the results support the use of HIV DNA as another tool, in addition to traditional assays, which can be used to estimate the state of viral infection, the risk of disease progression and to monitor the effects of ART. The TotUFsys platform allowed us to obtain a final result, expressed as the total and unintegrated HIV DNA copy number per microgram of DNA or 10(4) CD4+, for 12 patients within two working days.
Collapse
Affiliation(s)
- Anna Casabianca
- Department of Biomolecular Sciences, University of Urbino “Carlo Bo”, Urbino (PU), Italy
- * E-mail:
| | - Chiara Orlandi
- Department of Biomolecular Sciences, University of Urbino “Carlo Bo”, Urbino (PU), Italy
| | - Benedetta Canovari
- Azienda Ospedaliera Ospedali Riuniti Marche Nord - Presidio Ospedaliero San Salvatore, Pesaro (PU), Italy
| | - Maddalena Scotti
- Department of Biomolecular Sciences, University of Urbino “Carlo Bo”, Urbino (PU), Italy
| | - Marcello Acetoso
- Azienda Ospedaliera Ospedali Riuniti Marche Nord - Presidio Ospedaliero San Salvatore, Pesaro (PU), Italy
| | - Massimo Valentini
- Azienda Ospedaliera Ospedali Riuniti Marche Nord - Presidio Ospedaliero San Salvatore, Pesaro (PU), Italy
| | - Enzo Petrelli
- Azienda Ospedaliera Ospedali Riuniti Marche Nord - Presidio Ospedaliero San Salvatore, Pesaro (PU), Italy
| | - Mauro Magnani
- Department of Biomolecular Sciences, University of Urbino “Carlo Bo”, Urbino (PU), Italy
| |
Collapse
|
43
|
Cockerham LR, Siliciano JD, Sinclair E, O'Doherty U, Palmer S, Yukl SA, Strain MC, Chomont N, Hecht FM, Siliciano RF, Richman DD, Deeks SG. CD4+ and CD8+ T cell activation are associated with HIV DNA in resting CD4+ T cells. PLoS One 2014; 9:e110731. [PMID: 25340755 PMCID: PMC4207702 DOI: 10.1371/journal.pone.0110731] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 09/14/2014] [Indexed: 12/21/2022] Open
Abstract
The association between the host immune environment and the size of the HIV reservoir during effective antiretroviral therapy is not clear. Progress has also been limited by the lack of a well-accepted assay for quantifying HIV during therapy. We examined the association between multiple measurements of HIV and T cell activation (as defined by markers including CD38, HLA-DR, CCR5 and PD-1) in 30 antiretroviral-treated HIV-infected adults. We found a consistent association between the frequency of CD4+ and CD8+ T cells expressing HLA-DR and the frequency of resting CD4+ T cells containing HIV DNA. This study highlights the need to further examine this relationship and to better characterize the biology of markers commonly used in HIV studies. These results may also have implications for reactivation strategies.
Collapse
Affiliation(s)
- Leslie R. Cockerham
- HIV/AIDS Division, San Francisco General Hospital, University of California San Francisco, San Francisco, California, United States of America
- * E-mail:
| | - Janet D. Siliciano
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Elizabeth Sinclair
- Division of Experimental Medicine, University of California San Francisco, San Francisco, California, United States of America
| | - Una O'Doherty
- University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Sarah Palmer
- Westmead Millennium Institute for Medical Research, Westmead, Australia
- University of Sydney, Sydney, Australia
- Karolinska Institutet, Stockholm, Sweden
| | - Steven A. Yukl
- San Francisco VA Medical Center, San Francisco, California, United States of America
| | - Matt C. Strain
- Veterans Affairs San Diego Healthcare System, San Diego, California, United States of America
| | - Nicolas Chomont
- Vaccine and Gene Therapy Institute Florida, Port St. Lucie, Florida, United States of America
| | - Frederick M. Hecht
- HIV/AIDS Division, San Francisco General Hospital, University of California San Francisco, San Francisco, California, United States of America
| | - Robert F. Siliciano
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Howard Hughes Medical Institute, Baltimore, Maryland, United States of America
| | - Douglas D. Richman
- Veterans Affairs San Diego Healthcare System, San Diego, California, United States of America
- University of California San Diego, La Jolla, California, United States of America
| | - Steven G. Deeks
- HIV/AIDS Division, San Francisco General Hospital, University of California San Francisco, San Francisco, California, United States of America
| |
Collapse
|
44
|
Alidjinou EK, Bocket L, Hober D. Quantification of viral DNA during HIV-1 infection: A review of relevant clinical uses and laboratory methods. ACTA ACUST UNITED AC 2014; 63:53-9. [PMID: 25201144 DOI: 10.1016/j.patbio.2014.07.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 07/15/2014] [Indexed: 01/25/2023]
Abstract
Effective antiretroviral therapy usually leads to undetectable HIV-1 RNA in the plasma. However, the virus persists in some cells of infected patients as various DNA forms, both integrated and unintegrated. This reservoir represents the greatest challenge to the complete cure of HIV-1 infection and its characteristics highly impact the course of the disease. The quantification of HIV-1 DNA in blood samples constitutes currently the most practical approach to measure this residual infection. Real-time quantitative PCR (qPCR) is the most common method used for HIV-DNA quantification and many strategies have been developed to measure the different forms of HIV-1 DNA. In the literature, several "in-house" PCR methods have been used and there is a need for standardization to have comparable results. In addition, qPCR is limited for the precise quantification of low levels by background noise. Among new assays in development, digital PCR was shown to allow an accurate quantification of HIV-1 DNA. Total HIV-1 DNA is most commonly measured in clinical routine. The absolute quantification of proviruses and unintegrated forms is more often used for research purposes.
Collapse
Affiliation(s)
- E K Alidjinou
- Laboratoire de virologie EA3610, faculté de médecine, institut Hippocrate, université Lille 2, CHRU Lille, 152, rue du Dr-Yersin, 59120 Loos-lez-Lille, France
| | - L Bocket
- Laboratoire de virologie EA3610, faculté de médecine, institut Hippocrate, université Lille 2, CHRU Lille, 152, rue du Dr-Yersin, 59120 Loos-lez-Lille, France
| | - D Hober
- Laboratoire de virologie EA3610, faculté de médecine, institut Hippocrate, université Lille 2, CHRU Lille, 152, rue du Dr-Yersin, 59120 Loos-lez-Lille, France.
| |
Collapse
|
45
|
Cross-clade ultrasensitive PCR-based assays to measure HIV persistence in large-cohort studies. J Virol 2014; 88:12385-96. [PMID: 25122785 DOI: 10.1128/jvi.00609-14] [Citation(s) in RCA: 189] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
UNLABELLED A small pool of infected cells persists in HIV-infected individuals receiving antiretroviral therapy (ART). Here, we developed ultrasensitive assays to precisely measure the frequency of cells harboring total HIV DNA, integrated HIV DNA, and two long terminal repeat (2-LTR) circles. These assays are performed on cell lysates, which circumvents the labor-intensive step of DNA extraction, and rely on the coquantification of each HIV molecular form together with CD3 gene sequences to precisely measure cell input. Using primary isolates from HIV subtypes A, B, C, D, and CRF01_A/E, we demonstrate that these assays can efficiently quantify low target copy numbers from diverse HIV subtypes. We further used these assays to measure total HIV DNA, integrated HIV DNA, and 2-LTR circles in CD4(+) T cells from HIV-infected subjects infected with subtype B. All samples obtained from ART-naive subjects were positive for the three HIV molecular forms (n = 15). Total HIV DNA, integrated HIV DNA, and 2-LTR circles were detected in, respectively, 100%, 94%, and 77% of the samples from individuals in which HIV was suppressed by ART. Higher levels of total HIV DNA and 2-LTR circles were detected in untreated subjects than individuals on ART (P = 0.0003 and P = 0.0004, respectively), while the frequency of CD4(+) T cells harboring integrated HIV DNA did not differ between the two groups. These results demonstrate that these novel assays have the ability to quantify very low levels of HIV DNA of multiple HIV subtypes without the need for nucleic acid extraction, making them well suited for the monitoring of viral persistence in large populations of HIV-infected individuals. IMPORTANCE Since the discovery of viral reservoirs in HIV-infected subjects receiving suppressive ART, measuring the degree of viral persistence has been one of the greatest challenges in the field of HIV research. Here, we report the development and validation of ultrasensitive assays to measure HIV persistence in HIV-infected individuals from multiple geographical regions. These assays are relatively inexpensive, do not require DNA extraction, and can be completed in a single day. Therefore, they are perfectly adapted to monitor HIV persistence in large cohorts of HIV-infected individuals and, given their sensitivity, can be used to monitor the efficacy of therapeutic strategies aimed at interfering with HIV persistence after prolonged ART.
Collapse
|
46
|
Siliciano JD, Siliciano RF. Recent developments in the search for a cure for HIV-1 infection: targeting the latent reservoir for HIV-1. J Allergy Clin Immunol 2014; 134:12-9. [PMID: 25117799 DOI: 10.1016/j.jaci.2014.05.026] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 05/19/2014] [Accepted: 05/19/2014] [Indexed: 02/07/2023]
Abstract
HIV-1 infection can now be readily controlled with combination antiretroviral therapy. However, the virus persists indefinitely in a stable latent reservoir in resting CD4(+) T cells. This reservoir generally prevents cure of the infection with combination antiretroviral therapy alone. However, several recent cases of potential HIV-1 cure have generated renewed optimism. Here we review these cases and consider new developments in our understanding of the latent reservoir. In addition, we consider clinical aspects of curative strategies to provide a more realistic picture of what a generally applicable cure for HIV-1 infection is likely to entail.
Collapse
Affiliation(s)
- Janet D Siliciano
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Md
| | - Robert F Siliciano
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Md; Howard Hughes Medical Institute, Baltimore, Md.
| |
Collapse
|
47
|
Mesplède T, Osman N, Wares M, Quashie PK, Hassounah S, Anstett K, Han Y, Singhroy DN, Wainberg MA. Addition of E138K to R263K in HIV integrase increases resistance to dolutegravir, but fails to restore activity of the HIV integrase enzyme and viral replication capacity. J Antimicrob Chemother 2014; 69:2733-40. [PMID: 24917583 DOI: 10.1093/jac/dku199] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The results of several clinical trials suggest that the integrase inhibitor dolutegravir may be less prone than other drugs to the emergence of HIV drug resistance mutations in treatment-naive patients. We have shown that the R263K mutation commonly emerged during tissue culture selection studies with dolutegravir and conferred low levels of resistance to this drug while simultaneously diminishing both HIV replication capacity and integrase enzymatic activity. E138K has been identified as a secondary mutation for dolutegravir in selection studies and has also been observed as a secondary mutation in the clinic for the integrase inhibitors raltegravir and elvitegravir. METHODS We used biochemical cell-free strand-transfer assays and tissue culture assays to characterize the effects of the E138K/R263K combination of mutations on resistance to dolutegravir, integrase enzyme activity and HIV-1 replication capacity. RESULTS We show here that the addition of the E138K substitution to R263K increased the resistance of HIV-1 to dolutegravir but failed to restore viral replication capacity, integrase strand-transfer activity and integration within cellular DNA. We also show that the addition of E138K to R263K did not increase the resistance to raltegravir or elvitegravir. The addition of the E138K substitution to R263K was also less detrimental to integrase strand-transfer activity and integration than a different secondary mutation at position H51Y that had also been selected in culture. CONCLUSIONS The E138K substitution failed to restore the defect in viral replication capacity that is associated with R263K, confirming previous selection studies that failed to identify compensatory mutation(s) for the latter primary mutation. This study suggests that the R263K resistance pathway may represent an evolutionary dead end for HIV in treatment-naive individuals who are treated with dolutegravir and will need to be confirmed by the long-term use of dolutegravir in the clinic.
Collapse
Affiliation(s)
- Thibault Mesplède
- McGill University AIDS Centre, Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Québec, Canada
| | - Nathan Osman
- McGill University AIDS Centre, Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Québec, Canada Department of Microbiology and Immunology, Faculty of Medicine, McGill University, Montréal, Québec, Canada
| | - Melissa Wares
- McGill University AIDS Centre, Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Québec, Canada Department of Microbiology and Immunology, Faculty of Medicine, McGill University, Montréal, Québec, Canada
| | - Peter K Quashie
- McGill University AIDS Centre, Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Québec, Canada Division of Experimental Medicine, Faculty of Medicine, McGill University, Montréal, Québec, Canada
| | - Said Hassounah
- McGill University AIDS Centre, Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Québec, Canada Division of Experimental Medicine, Faculty of Medicine, McGill University, Montréal, Québec, Canada
| | - Kaitlin Anstett
- McGill University AIDS Centre, Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Québec, Canada Department of Microbiology and Immunology, Faculty of Medicine, McGill University, Montréal, Québec, Canada
| | - Yingshan Han
- McGill University AIDS Centre, Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Québec, Canada
| | - Diane N Singhroy
- McGill University AIDS Centre, Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Québec, Canada Department of Microbiology and Immunology, Faculty of Medicine, McGill University, Montréal, Québec, Canada
| | - Mark A Wainberg
- McGill University AIDS Centre, Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Québec, Canada Department of Microbiology and Immunology, Faculty of Medicine, McGill University, Montréal, Québec, Canada Division of Experimental Medicine, Faculty of Medicine, McGill University, Montréal, Québec, Canada
| |
Collapse
|
48
|
De Spiegelaere W, Malatinkova E, Lynch L, Van Nieuwerburgh F, Messiaen P, O'Doherty U, Vandekerckhove L. Quantification of integrated HIV DNA by repetitive-sampling Alu-HIV PCR on the basis of poisson statistics. Clin Chem 2014; 60:886-95. [PMID: 24664400 DOI: 10.1373/clinchem.2013.219378] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Quantification of integrated proviral HIV DNA by repetitive-sampling Alu-HIV PCR is a candidate virological tool to monitor the HIV reservoir in patients. However, the experimental procedures and data analysis of the assay are complex and hinder its widespread use. Here, we provide an improved and simplified data analysis method by adopting binomial and Poisson statistics. METHODS A modified analysis method on the basis of Poisson statistics was used to analyze the binomial data of positive and negative reactions from a 42-replicate Alu-HIV PCR by use of dilutions of an integration standard and on samples of 57 HIV-infected patients. Results were compared with the quantitative output of the previously described Alu-HIV PCR method. RESULTS Poisson-based quantification of the Alu-HIV PCR was linearly correlated with the standard dilution series, indicating that absolute quantification with the Poisson method is a valid alternative for data analysis of repetitive-sampling Alu-HIV PCR data. Quantitative outputs of patient samples assessed by the Poisson method correlated with the previously described Alu-HIV PCR analysis, indicating that this method is a valid alternative for quantifying integrated HIV DNA. CONCLUSIONS Poisson-based analysis of the Alu-HIV PCR data enables absolute quantification without the need of a standard dilution curve. Implementation of the CI estimation permits improved qualitative analysis of the data and provides a statistical basis for the required minimal number of technical replicates.
Collapse
Affiliation(s)
| | - Eva Malatinkova
- HIV Translational Research Unit, Department of Internal Medicine, and
| | - Lindsay Lynch
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA
| | - Filip Van Nieuwerburgh
- Laboratory of Pharmaceutical Biotechnology, Department of Pharmaceutics, Ghent University, Ghent, Belgium
| | - Peter Messiaen
- HIV Translational Research Unit, Department of Internal Medicine, and
| | - Una O'Doherty
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA
| | | |
Collapse
|
49
|
Liu Z, Pan Q, Ding S, Qian J, Xu F, Zhou J, Cen S, Guo F, Liang C. The Interferon-Inducible MxB Protein Inhibits HIV-1 Infection. Cell Host Microbe 2013; 14:398-410. [DOI: 10.1016/j.chom.2013.08.015] [Citation(s) in RCA: 221] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Revised: 08/14/2013] [Accepted: 08/29/2013] [Indexed: 12/21/2022]
|
50
|
Abstract
PURPOSE OF REVIEW Measurements of HIV burden have relied upon quantification of viral nucleic acids by real-time PCR (qPCR). To develop and test strategies for eradication, new methods are needed to better characterize residual cellular reservoirs in patients on suppressive antiretroviral therapy (ART). This review summarizes recent advances that may lead to clinically useful tests with improved sensitivity, reproducibility and throughput. RECENT FINDINGS HIV DNA remains the most sensitive measure of residual infection, but its low levels are difficult to differentiate from assay noise by qPCR. Digital PCR has begun to improve the precision of existing real-time assays, but there remains a need to distinguish replication-competent proviruses. Rapid technological progress in single-cell analysis is beginning to offer new approaches, notably CyTOF and microengraving, which could provide vastly more information about the composition of the latent reservoir. SUMMARY To investigate and assess therapies directed towards eradication, improved assays that simultaneously offer high sensitivity, precision and information content will be needed.
Collapse
|