1
|
Newby ML, Allen JD, Crispin M. Influence of glycosylation on the immunogenicity and antigenicity of viral immunogens. Biotechnol Adv 2024; 70:108283. [PMID: 37972669 PMCID: PMC10867814 DOI: 10.1016/j.biotechadv.2023.108283] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 10/04/2023] [Accepted: 11/09/2023] [Indexed: 11/19/2023]
Abstract
A key aspect of successful viral vaccine design is the elicitation of neutralizing antibodies targeting viral attachment and fusion glycoproteins that embellish viral particles. This observation has catalyzed the development of numerous viral glycoprotein mimetics as vaccines. Glycans can dominate the surface of viral glycoproteins and as such, the viral glycome can influence the antigenicity and immunogenicity of a candidate vaccine. In one extreme, glycans can form an integral part of epitopes targeted by neutralizing antibodies and are therefore considered to be an important feature of key immunogens within an immunization regimen. In the other extreme, the existence of peptide and bacterially expressed protein vaccines shows that viral glycosylation can be dispensable in some cases. However, native-like glycosylation can indicate native-like protein folding and the presence of conformational epitopes. Furthermore, going beyond native glycan mimicry, in either occupancy of glycosylation sites or the glycan processing state, may offer opportunities for enhancing the immunogenicity and associated protection elicited by an immunogen. Here, we review key determinants of viral glycosylation and how recombinant immunogens can recapitulate these signatures across a range of enveloped viruses, including HIV-1, Ebola virus, SARS-CoV-2, Influenza and Lassa virus. The emerging understanding of immunogen glycosylation and its control will help guide the development of future vaccines in both recombinant protein- and nucleic acid-based vaccine technologies.
Collapse
Affiliation(s)
- Maddy L Newby
- School of Biological Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Joel D Allen
- School of Biological Sciences, University of Southampton, Southampton, SO17 1BJ, UK.
| | - Max Crispin
- School of Biological Sciences, University of Southampton, Southampton, SO17 1BJ, UK.
| |
Collapse
|
2
|
Banerjee S, Hemmat MA, Shubham S, Gosai A, Devarakonda S, Jiang N, Geekiyanage C, Dillard JA, Maury W, Shrotriya P, Lamm MH, Nilsen-Hamilton M. Structurally Different Yet Functionally Similar: Aptamers Specific for the Ebola Virus Soluble Glycoprotein and GP1,2 and Their Application in Electrochemical Sensing. Int J Mol Sci 2023; 24:4627. [PMID: 36902059 PMCID: PMC10003157 DOI: 10.3390/ijms24054627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 03/04/2023] Open
Abstract
The Ebola virus glycoprotein (GP) gene templates several mRNAs that produce either the virion-associated transmembrane protein or one of two secreted glycoproteins. Soluble glycoprotein (sGP) is the predominant product. GP1 and sGP share an amino terminal sequence of 295 amino acids but differ in quaternary structure, with GP1 being a heterohexamer with GP2 and sGP a homodimer. Two structurally different DNA aptamers were selected against sGP that also bound GP1,2. These DNA aptamers were compared with a 2'FY-RNA aptamer for their interactions with the Ebola GP gene products. The three aptamers have almost identical binding isotherms for sGP and GP1,2 in solution and on the virion. They demonstrated high affinity and selectivity for sGP and GP1,2. Furthermore, one aptamer, used as a sensing element in an electrochemical format, detected GP1,2 on pseudotyped virions and sGP with high sensitivity in the presence of serum, including from an Ebola-virus-infected monkey. Our results suggest that the aptamers interact with sGP across the interface between the monomers, which is different from the sites on the protein bound by most antibodies. The remarkable similarity in functional features of three structurally distinct aptamers suggests that aptamers, like antibodies, have preferred binding sites on proteins.
Collapse
Affiliation(s)
- Soma Banerjee
- Ames Laboratory, U.S. Department of Energy, Ames, IA 50011, USA
| | - Mahsa Askary Hemmat
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, USA
| | - Shambhavi Shubham
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, USA
| | - Agnivo Gosai
- Department of Mechanical Engineering, Iowa State University, Ames, IA 50011, USA
| | | | - Nianyu Jiang
- Department of Mechanical Engineering, Iowa State University, Ames, IA 50011, USA
| | | | - Jacob A. Dillard
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA 50011, USA
| | - Wendy Maury
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA 50011, USA
| | - Pranav Shrotriya
- Department of Mechanical Engineering, Iowa State University, Ames, IA 50011, USA
| | - Monica H. Lamm
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011, USA
| | - Marit Nilsen-Hamilton
- Ames Laboratory, U.S. Department of Energy, Ames, IA 50011, USA
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, USA
- Aptalogic Inc., Ames, IA 50014, USA
| |
Collapse
|
3
|
Seymour E, Ünlü MS, Connor JH. A high-throughput single-particle imaging platform for antibody characterization and a novel competition assay for therapeutic antibodies. Sci Rep 2023; 13:306. [PMID: 36609657 PMCID: PMC9821353 DOI: 10.1038/s41598-022-27281-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 12/29/2022] [Indexed: 01/07/2023] Open
Abstract
Monoclonal antibodies (mAbs) play an important role in diagnostics and therapy of infectious diseases. Here we utilize a single-particle interferometric reflectance imaging sensor (SP-IRIS) for screening 30 mAbs against Ebola, Sudan, and Lassa viruses (EBOV, SUDV, and LASV) to find out the ideal capture antibodies for whole virus detection using recombinant vesicular stomatitis virus (rVSV) models expressing surface glycoproteins (GPs) of EBOV, SUDV, and LASV. We also make use of the binding properties on SP-IRIS to develop a model for mapping the antibody epitopes on the GP structure. mAbs that bind to mucin-like domain or glycan cap of the EBOV surface GP show the highest signal on SP-IRIS, followed by mAbs that target the GP1-GP2 interface at the base domain. These antibodies were shown to be highly efficacious against EBOV infection in non-human primates in previous studies. For LASV detection, 8.9F antibody showed the best performance on SP-IRIS. This antibody binds to a unique region on the surface GP compared to other 15 mAbs tested. In addition, we demonstrate a novel antibody competition assay using SP-IRIS and rVSV-EBOV models to reveal the competition between mAbs in three successful therapeutic mAb cocktails against EBOV infection. We provide an explanation as to why ZMapp cocktail has higher efficacy compared to the other two cocktails by showing that three mAbs in this cocktail (13C6, 2G4, 4G7) do not compete with each other for binding to EBOV GP. In fact, the binding of 13C6 enhances the binding of 2G4 and 4G7 antibodies. Our results establish SP-IRIS as a versatile tool that can provide high-throughput screening of mAbs, multiplexed and sensitive detection of viruses, and evaluation of therapeutic antibody cocktails.
Collapse
Affiliation(s)
- Elif Seymour
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, M5G 1X5, Canada
| | - M Selim Ünlü
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA
- Department of Electrical and Computer Engineering, Boston University, Boston, MA, 02215, USA
| | - John H Connor
- Department of Microbiology, Boston University School of Medicine, Boston, MA, 02118, USA.
| |
Collapse
|
4
|
Rudge TL, Machesky NJ, Sankovich KA, Lemmon EE, Badorrek CS, Overman R, Niemuth NA, Anderson MS. Assays for the Evaluation of the Immune Response to Marburg and Ebola Sudan Vaccination-Filovirus Animal Nonclinical Group Anti-Marburg Virus Glycoprotein Immunoglobulin G Enzyme-Linked Immunosorbent Assay and a Pseudovirion Neutralization Assay. Vaccines (Basel) 2022; 10:1211. [PMID: 36016099 PMCID: PMC9413256 DOI: 10.3390/vaccines10081211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/16/2022] [Accepted: 07/21/2022] [Indexed: 11/30/2022] Open
Abstract
Since the discovery of the Marburg virus (MARV) in 1967 and Ebola virus (EBOV) in 1976, there have been over 40 reported outbreaks of filovirus disease with case fatality rates greater than 50%. This underscores the need for efficacious vaccines against these highly pathogenic filoviruses. Due to the sporadic and unpredictable nature of filovirus outbreaks, such a vaccine would likely need to be vetted through the U.S. Food and Drug Administration (FDA), following the Animal Rule or similar European Medicines Agency (EMA) regulatory pathway. Under the FDA Animal Rule, vaccine-induced immune responses correlating with survival of non-human primates (NHPs), or another well-characterized animal model, following lethal challenge, will need to be bridged for human immune response distributions in clinical trials. A correlate of protection has not yet been identified for the filovirus disease, but antibodies, specifically anti-glycoprotein (GP) antibodies, are believed to be critical in providing protection against the filovirus disease following vaccination and are thus a strong candidate for a correlate of protection. Thus, species-neutral methods capable of the detection and bridging of these antibody immune responses, such as methods to quantify anti-GP immunoglobulin G (IgG)-binding antibodies and neutralizing antibodies, are needed. Reported here is the development and qualification of two Filovirus Animal Nonclinical Group (FANG) anti-GP IgG Enzyme-Linked Immunosorbent Assays (ELISAs) to quantify anti-MARV and anti-Sudan virus (SUDV) IgG antibodies in human and NHP serum samples, as well as the development of pseudovirion neutralization assays (PsVNAs) to quantify MARV- and SUDV-neutralizing antibodies in human and NHP serum samples.
Collapse
Affiliation(s)
- Thomas L. Rudge
- Battelle, West Jefferson, OH 43162, USA; (N.J.M.); (K.A.S.); (E.E.L.); (N.A.N.); (M.S.A.)
| | - Nicholas J. Machesky
- Battelle, West Jefferson, OH 43162, USA; (N.J.M.); (K.A.S.); (E.E.L.); (N.A.N.); (M.S.A.)
| | - Karen A. Sankovich
- Battelle, West Jefferson, OH 43162, USA; (N.J.M.); (K.A.S.); (E.E.L.); (N.A.N.); (M.S.A.)
| | - Erin E. Lemmon
- Battelle, West Jefferson, OH 43162, USA; (N.J.M.); (K.A.S.); (E.E.L.); (N.A.N.); (M.S.A.)
| | - Christopher S. Badorrek
- Contract Support for the U.S. Department of Defense (DOD) Joint Program Executive Office for Chemical, Biological, Radiological, and Nuclear Defense (JPEO-CBRND) Joint Project Manager for Chemical, Biological, Radiological, and Nuclear Medical (JPM CBRN Medical), Fort Detrick, MD 21702, USA;
| | - Rachel Overman
- U.S. Department of Defense (DOD) Joint Program Executive Office for Chemical, Biological, Radiological, and Nuclear Defense (JPEO-CBRND) Joint Project Manager for Chemical, Biological, Radiological, and Nuclear Medical (JPM CBRN Medical), Fort Detrick, MD 21702, USA;
| | - Nancy A. Niemuth
- Battelle, West Jefferson, OH 43162, USA; (N.J.M.); (K.A.S.); (E.E.L.); (N.A.N.); (M.S.A.)
| | - Michael S. Anderson
- Battelle, West Jefferson, OH 43162, USA; (N.J.M.); (K.A.S.); (E.E.L.); (N.A.N.); (M.S.A.)
| |
Collapse
|
5
|
Murin CD, Gilchuk P, Crowe JE, Ward AB. Structural Biology Illuminates Molecular Determinants of Broad Ebolavirus Neutralization by Human Antibodies for Pan-Ebolavirus Therapeutic Development. Front Immunol 2022; 12:808047. [PMID: 35082794 PMCID: PMC8784787 DOI: 10.3389/fimmu.2021.808047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 12/06/2021] [Indexed: 01/13/2023] Open
Abstract
Monoclonal antibodies (mAbs) have proven effective for the treatment of ebolavirus infection in humans, with two mAb-based drugs Inmazeb™ and Ebanga™ receiving FDA approval in 2020. While these drugs represent a major advance in the field of filoviral therapeutics, they are composed of antibodies with single-species specificity for Zaire ebolavirus. The Ebolavirus genus includes five additional species, two of which, Bundibugyo ebolavirus and Sudan ebolavirus, have caused severe disease and significant outbreaks in the past. There are several recently identified broadly neutralizing ebolavirus antibodies, including some in the clinical development pipeline, that have demonstrated broad protection in preclinical studies. In this review, we describe how structural biology has illuminated the molecular basis of broad ebolavirus neutralization, including details of common antigenic sites of vulnerability on the glycoprotein surface. We begin with a discussion outlining the history of monoclonal antibody therapeutics for ebolaviruses, with an emphasis on how structural biology has contributed to these efforts. Next, we highlight key structural studies that have advanced our understanding of ebolavirus glycoprotein structures and mechanisms of antibody-mediated neutralization. Finally, we offer examples of how structural biology has contributed to advances in anti-viral medicines and discuss what opportunities the future holds, including rationally designed next-generation therapeutics with increased potency, breadth, and specificity against ebolaviruses.
Collapse
MESH Headings
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/therapeutic use
- Antibodies, Monoclonal, Humanized/immunology
- Antibodies, Monoclonal, Humanized/therapeutic use
- Antibodies, Neutralizing/immunology
- Antibodies, Viral/immunology
- Antiviral Agents/immunology
- Antiviral Agents/therapeutic use
- Drug Combinations
- Ebolavirus/drug effects
- Ebolavirus/immunology
- Ebolavirus/physiology
- Epitopes/chemistry
- Epitopes/immunology
- Glycoproteins/chemistry
- Glycoproteins/immunology
- Hemorrhagic Fever, Ebola/drug therapy
- Hemorrhagic Fever, Ebola/immunology
- Hemorrhagic Fever, Ebola/virology
- Humans
- Models, Molecular
- Protein Domains/immunology
- Viral Proteins/chemistry
- Viral Proteins/immunology
Collapse
Affiliation(s)
- Charles D. Murin
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, United States
| | - Pavlo Gilchuk
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, United States
| | - James E. Crowe
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, United States
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Andrew B. Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, United States
| |
Collapse
|
6
|
Hargreaves A, Brady C, Mellors J, Tipton T, Carroll MW, Longet S. Filovirus Neutralising Antibodies: Mechanisms of Action and Therapeutic Application. Pathogens 2021; 10:pathogens10091201. [PMID: 34578233 PMCID: PMC8468515 DOI: 10.3390/pathogens10091201] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/10/2021] [Accepted: 09/12/2021] [Indexed: 12/02/2022] Open
Abstract
Filoviruses, especially Ebola virus, cause sporadic outbreaks of viral haemorrhagic fever with very high case fatality rates in Africa. The 2013–2016 Ebola epidemic in West Africa provided large survivor cohorts spurring a large number of human studies which showed that specific neutralising antibodies played a key role in protection following a natural Ebola virus infection, as part of the overall humoral response and in conjunction with the cellular adaptive response. This review will discuss the studies in survivors and animal models which described protective neutralising antibody response. Their mechanisms of action will be detailed. Furthermore, the importance of neutralising antibodies in antibody-based therapeutics and in vaccine-induced responses will be explained, as well as the strategies to avoid immune escape from neutralising antibodies. Understanding the neutralising antibody response in the context of filoviruses is crucial to furthering our understanding of virus structure and function, in addition to improving current vaccines & antibody-based therapeutics.
Collapse
Affiliation(s)
- Alexander Hargreaves
- Nuffield Department of Medicine, Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK; (A.H.); (C.B.); (J.M.); (T.T.); (M.W.C.)
- Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK
| | - Caolann Brady
- Nuffield Department of Medicine, Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK; (A.H.); (C.B.); (J.M.); (T.T.); (M.W.C.)
| | - Jack Mellors
- Nuffield Department of Medicine, Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK; (A.H.); (C.B.); (J.M.); (T.T.); (M.W.C.)
- National Infection Service, Public Health England, Porton Down, Salisbury SP4 0JG, UK
- Department of Infection Biology, Institute of Infection and Global Health, University of Liverpool, Liverpool L69 7ZX, UK
| | - Tom Tipton
- Nuffield Department of Medicine, Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK; (A.H.); (C.B.); (J.M.); (T.T.); (M.W.C.)
| | - Miles W. Carroll
- Nuffield Department of Medicine, Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK; (A.H.); (C.B.); (J.M.); (T.T.); (M.W.C.)
- National Infection Service, Public Health England, Porton Down, Salisbury SP4 0JG, UK
| | - Stephanie Longet
- Nuffield Department of Medicine, Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK; (A.H.); (C.B.); (J.M.); (T.T.); (M.W.C.)
- Correspondence: ; Tel.: +44-18-6561-7892
| |
Collapse
|
7
|
The Methanolic Extract of Perilla frutescens Robustly Restricts Ebola Virus Glycoprotein-Mediated Entry. Viruses 2021; 13:v13091793. [PMID: 34578374 PMCID: PMC8473196 DOI: 10.3390/v13091793] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/25/2021] [Accepted: 09/04/2021] [Indexed: 11/17/2022] Open
Abstract
Ebola virus (EBOV), one of the most infectious human viruses and a leading cause of viral hemorrhagic fever, imposes a potential public health threat with several recent outbreaks. Despite the difficulties associated with working with this pathogen in biosafety level-4 containment, a protective vaccine and antiviral therapeutic were recently approved. However, the high mortality rate of EBOV infection underscores the necessity to continuously identify novel antiviral strategies to help expand the scope of prophylaxis/therapeutic management against future outbreaks. This includes identifying antiviral agents that target EBOV entry, which could improve the management of EBOV infection. Herein, using EBOV glycoprotein (GP)-pseudotyped particles, we screened a panel of natural medicinal extracts, and identified the methanolic extract of Perilla frutescens (PFME) as a robust inhibitor of EBOV entry. We show that PFME dose-dependently impeded EBOV GP-mediated infection at non-cytotoxic concentrations, and exerted the most significant antiviral activity when both the extract and the pseudoparticles are concurrently present on the host cells. Specifically, we demonstrate that PFME could block viral attachment and neutralize the cell-free viral particles. Our results, therefore, identified PFME as a potent inhibitor of EBOV entry, which merits further evaluation for development as a therapeutic strategy against EBOV infection.
Collapse
|
8
|
Zhao Y. Substrate Protection in Controlled Enzymatic Transformation of Peptides and Proteins. Chembiochem 2021; 22:2680-2687. [PMID: 34058051 PMCID: PMC8453913 DOI: 10.1002/cbic.202100217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 05/28/2021] [Indexed: 11/07/2022]
Abstract
Proteins are involved in practically every single biological process. The many enzymes involved in their synthesis, cleavage, and posttranslational modification (PTM) carry out highly specific tasks with no usage of protecting groups. Yet, the chemists' strategy of protection/deprotection potentially can be highly useful, for example, when a specific biochemical reaction catalyzed by a broad-specificity enzyme needs to be inhibited, during infection of cells by enveloped viruses, in the invasion and spread of cancer cells, and upon mechanistic investigation of signal-transduction pathways. Doing so requires highly specific binding of peptide substrates in aqueous solution with biologically competitive affinities. Recent development of peptide-imprinted cross-linked micelles allows such protection and affords previously impossible ways of manipulating peptides and proteins in enzymatic transformations.
Collapse
Affiliation(s)
- Yan Zhao
- Department of ChemistryIowa State UniversityAmesIA 50011–3111USA
| |
Collapse
|
9
|
Densumite J, Phanthong S, Seesuay W, Sookrung N, Chaisri U, Chaicumpa W. Engineered Human Monoclonal scFv to Receptor Binding Domain of Ebolavirus. Vaccines (Basel) 2021; 9:vaccines9050457. [PMID: 34064480 PMCID: PMC8147973 DOI: 10.3390/vaccines9050457] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 04/28/2021] [Accepted: 04/30/2021] [Indexed: 01/29/2023] Open
Abstract
(1) Background: Ebolavirus (EBOV) poses as a significant threat for human health by frequently causing epidemics of the highly contagious Ebola virus disease (EVD). EBOV glycoprotein (GP), as a sole surface glycoprotein, needs to be cleaved in endosomes to fully expose a receptor-binding domain (RBD) containing a receptor-binding site (RBS) for receptor binding and genome entry into cytoplasm for replication. RBDs are highly conserved among EBOV species, so they are an attractive target for broadly effective anti-EBOV drug development. (2) Methods: Phage display technology was used as a tool to isolate human single-chain antibodies (HuscFv) that bind to recombinant RBDs from a human scFv (HuscFv) phage display library. The RBD-bound HuscFvs were fused with cell-penetrating peptide (CPP), and cell-penetrating antibodies (transbodies) were made, produced from the phage-infected E. coli clones and characterized. (3) Results: Among the HuscFvs obtained from phage-infected E. coli clones, HuscFvs of three clones, HuscFv4, HuscFv11, and HuscFv14, the non-cell-penetrable or cell-penetrable HuscFv4 effectively neutralized cellular entry of EBOV-like particles (VLPs). While all HuscFvs were found to bind cleaved GP (GPcl), their presumptive binding sites were markedly different, as determined by molecular docking. (4) Conclusions: The HuscFv4 could be a promising therapeutic agent against EBOV infection.
Collapse
Affiliation(s)
- Jaslan Densumite
- Graduate Program in Immunology, Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; (J.D.); (S.P.); (W.S.)
- Center of Research Excellence on Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Siratcha Phanthong
- Graduate Program in Immunology, Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; (J.D.); (S.P.); (W.S.)
- Center of Research Excellence on Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Watee Seesuay
- Graduate Program in Immunology, Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; (J.D.); (S.P.); (W.S.)
- Center of Research Excellence on Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Nitat Sookrung
- Biomedical Research Incubation Unit, Department of Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand;
| | - Urai Chaisri
- Department of Tropical Pathology, Faculty of Topical Medicine, Mahidol University, Bangkok 10400, Thailand;
| | - Wanpen Chaicumpa
- Center of Research Excellence on Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
- Correspondence: ; Tel.: +662-419-2936; Fax: +662-419-6470
| |
Collapse
|
10
|
Misasi J, Sullivan NJ. Immunotherapeutic strategies to target vulnerabilities in the Ebolavirus glycoprotein. Immunity 2021; 54:412-436. [PMID: 33691133 DOI: 10.1016/j.immuni.2021.01.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 01/15/2021] [Accepted: 01/20/2021] [Indexed: 12/18/2022]
Abstract
The 2014 Ebola virus disease (EVD) outbreak in West Africa and the subsequent outbreaks of 2018-2020 in Equator and North Kivu provinces of the Democratic Republic of the Congo illustrate the public health challenges of emerging and reemerging viruses. EVD has a high case fatality rate with a rapidly progressing syndrome of fever, rash, vomiting, diarrhea, and bleeding diathesis. Recently, two monoclonal-antibody-based therapies received United States Food and Drug Administration (FDA) approval, and there are several other passive immunotherapies that hold promise as therapeutics against other species of Ebolavirus. Here, we review concepts needed to understand mechanisms of action, present an expanded schema to define additional sites of vulnerability on the viral glycoprotein, and review current antibody-based therapeutics. The concepts described are used to gain insights into the key characteristics that represent functional targets for immunotherapies against Zaire Ebolavirus and other emerging viruses within the Ebolavirus genus.
Collapse
Affiliation(s)
- John Misasi
- National Institutes of Health, National Institute of Allergy and Infectious Diseases, Vaccine Research Center, 40 Convent Drive, Bethesda, MD 20892, USA
| | - Nancy J Sullivan
- National Institutes of Health, National Institute of Allergy and Infectious Diseases, Vaccine Research Center, 40 Convent Drive, Bethesda, MD 20892, USA.
| |
Collapse
|
11
|
Fries L, Cho I, Krähling V, Fehling SK, Strecker T, Becker S, Hooper JW, Kwilas SA, Agrawal S, Wen J, Lewis M, Fix A, Thomas N, Flyer D, Smith G, Glenn G. Randomized, Blinded, Dose-Ranging Trial of an Ebola Virus Glycoprotein Nanoparticle Vaccine With Matrix-M Adjuvant in Healthy Adults. J Infect Dis 2021; 222:572-582. [PMID: 31603201 DOI: 10.1093/infdis/jiz518] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 10/07/2019] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Ebola virus (EBOV) epidemics pose a major public health risk. There currently is no licensed human vaccine against EBOV. The safety and immunogenicity of a recombinant EBOV glycoprotein (GP) nanoparticle vaccine formulated with or without Matrix-M adjuvant were evaluated to support vaccine development. METHODS A phase 1, placebo-controlled, dose-escalation trial was conducted in 230 healthy adults to evaluate 4 EBOV GP antigen doses as single- or 2-dose regimens with or without adjuvant. Safety and immunogenicity were assessed through 1-year postdosing. RESULTS All EBOV GP vaccine formulations were well tolerated. Receipt of 2 doses of EBOV GP with adjuvant showed a rapid increase in anti-EBOV GP immunoglobulin G titers with peak titers observed on Day 35 representing 498- to 754-fold increases from baseline; no evidence of an antigen dose response was observed. Serum EBOV-neutralizing and binding antibodies using wild-type Zaire EBOV (ZEBOV) or pseudovirion assays were 3- to 9-fold higher among recipients of 2-dose EBOV GP with adjuvant, compared with placebo on Day 35, which persisted through 1 year. CONCLUSIONS Ebola virus GP vaccine with Matrix-M adjuvant is well tolerated and elicits a robust and persistent immune response. These data suggest that further development of this candidate vaccine for prevention of EBOV disease is warranted.
Collapse
Affiliation(s)
| | - Iksung Cho
- Novavax, Inc., Gaithersburg, Maryland, USA
| | - Verena Krähling
- Institute of Virology, Philipps University of Marburg, Marburg, Germany.,German Center for Infection Research (DZIF), Partner Site Gießen-Marburg-Langen, Marburg, Germany
| | - Sarah K Fehling
- Institute of Virology, Philipps University of Marburg, Marburg, Germany
| | - Thomas Strecker
- Institute of Virology, Philipps University of Marburg, Marburg, Germany
| | - Stephan Becker
- Institute of Virology, Philipps University of Marburg, Marburg, Germany.,German Center for Infection Research (DZIF), Partner Site Gießen-Marburg-Langen, Marburg, Germany
| | - Jay W Hooper
- US Army Medical Research Institute of Infectious Diseases, Ft. Detrick, Maryland, USA
| | - Steven A Kwilas
- US Army Medical Research Institute of Infectious Diseases, Ft. Detrick, Maryland, USA
| | | | - Judy Wen
- Novavax, Inc., Gaithersburg, Maryland, USA
| | | | - Amy Fix
- Novavax, Inc., Gaithersburg, Maryland, USA
| | | | | | - Gale Smith
- Novavax, Inc., Gaithersburg, Maryland, USA
| | | |
Collapse
|
12
|
Niemuth NA, Rudge TL, Sankovich KA, Anderson MS, Skomrock ND, Badorrek CS, Sabourin CL. Method feasibility for cross-species testing, qualification, and validation of the Filovirus Animal Nonclinical Group anti-Ebola virus glycoprotein immunoglobulin G enzyme-linked immunosorbent assay for non-human primate serum samples. PLoS One 2020; 15:e0241016. [PMID: 33119638 PMCID: PMC7595334 DOI: 10.1371/journal.pone.0241016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 10/06/2020] [Indexed: 12/12/2022] Open
Abstract
An anti-Zaire Ebola virus (EBOV) glycoprotein (GP) immunoglobulin G (IgG) enzyme linked immunosorbent assay (ELISA) was developed to quantify the serum levels of anti-EBOV IgG in human and non-human primate (NHP) serum following vaccination and/or exposure to EBOV. This method was validated for testing human serum samples as previously reported. However, for direct immunobridging comparability between humans and NHPs, additional testing was warranted. First, method feasibility experiments were performed to assess cross-species reactivity and parallelism between human and NHP serum samples. During these preliminary assessments, the goat anti-human IgG secondary antibody conjugate used in the previous human validation was found to be favorably cross-reactive with NHP samples when tested at the same concentrations previously used in the validated assay for human sample testing. Further, NHP serum samples diluted in parallel with human serum when tested side-by-side in the ELISA. A subsequent NHP matrix qualification and partial validation in the anti-GP IgG ELISA were performed based on ICH and FDA guidance, to characterize assay performance for NHP test samples and supplement the previous validation for human sample testing. Based on our assessments, the anti-EBOV GP IgG ELISA method is considered suitable for the intended use of testing with both human and NHP serum samples in the same assay for immunobridging purposes.
Collapse
Affiliation(s)
- Nancy A. Niemuth
- Battelle Biomedical Research Center, West Jefferson, Ohio, United States of America
- * E-mail:
| | - Thomas L. Rudge
- Battelle Biomedical Research Center, West Jefferson, Ohio, United States of America
| | - Karen A. Sankovich
- Battelle Biomedical Research Center, West Jefferson, Ohio, United States of America
| | - Michael S. Anderson
- Battelle Biomedical Research Center, West Jefferson, Ohio, United States of America
| | - Nicholas D. Skomrock
- Battelle Biomedical Research Center, West Jefferson, Ohio, United States of America
| | - Christopher S. Badorrek
- Contract Support for the U.S. Department of Defense (DOD) Joint Program Executive Office for Chemical, Biological, Radiological, and Nuclear Defense (JPEO-CBRND) Joint Project Manager for Chemical, Biological, Radiological, and Nuclear Medical (JPM CBRN Medical), Fort Detrick, Maryland, United States of America
| | - Carol L. Sabourin
- Battelle Biomedical Research Center, West Jefferson, Ohio, United States of America
| |
Collapse
|
13
|
A Virion-Based Assay for Glycoprotein Thermostability Reveals Key Determinants of Filovirus Entry and Its Inhibition. J Virol 2020; 94:JVI.00336-20. [PMID: 32611759 DOI: 10.1128/jvi.00336-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 06/26/2020] [Indexed: 11/20/2022] Open
Abstract
Ebola virus (EBOV) entry into cells is mediated by its spike glycoprotein (GP). Following attachment and internalization, virions traffic to late endosomes where GP is cleaved by host cysteine proteases. Cleaved GP then binds its cellular receptor, Niemann-Pick C1. In response to an unknown cellular trigger, GP undergoes conformational rearrangements that drive fusion of viral and endosomal membranes. The temperature-dependent stability (thermostability) of the prefusion conformers of class I viral fusion glycoproteins, including those of filovirus GPs, has provided insights into their propensity to undergo fusion-related rearrangements. However, previously described assays have relied on soluble glycoprotein ectodomains. Here, we developed a simple enzyme-linked immunosorbent assay (ELISA)-based assay that uses the temperature-dependent loss of conformational epitopes to measure thermostability of GP embedded in viral membranes. The base and glycan cap subdomains of all filovirus GPs tested suffered a concerted loss of prefusion conformation at elevated temperatures but did so at different temperature ranges, indicating virus-specific differences in thermostability. Despite these differences, all of these GPs displayed reduced thermostability upon cleavage to GP conformers (GPCL). Surprisingly, acid pH enhanced, rather than decreased, GP thermostability, suggesting it could enhance viral survival in hostile endo/lysosomal compartments. Finally, we confirmed and extended previous findings that some small-molecule inhibitors of filovirus entry destabilize EBOV GP and uncovered evidence that the most potent inhibitors act through multiple mechanisms. We establish the epitope-loss ELISA as a useful tool for studies of filovirus entry, engineering of GP variants with enhanced stability for use in vaccine development, and discovery of new stability-modulating antivirals.IMPORTANCE The development of Ebola virus countermeasures is challenged by our limited understanding of cell entry, especially at the step of membrane fusion. The surface-exposed viral protein, GP, mediates membrane fusion and undergoes major structural rearrangements during this process. The stability of GP at elevated temperatures (thermostability) can provide insights into its capacity to undergo these rearrangements. Here, we describe a new assay that uses GP-specific antibodies to measure GP thermostability under a variety of conditions relevant to viral entry. We show that proteolytic cleavage and acid pH have significant effects on GP thermostability that shed light on their respective roles in viral entry. We also show that the assay can be used to study how small-molecule entry inhibitors affect GP stability. This work provides a simple and readily accessible assay to engineer stabilized GP variants for antiviral vaccines and to discover and improve drugs that act by modulating GP stability.
Collapse
|
14
|
Pseudotyping of VSV with Ebola virus glycoprotein is superior to HIV-1 for the assessment of neutralising antibodies. Sci Rep 2020; 10:14289. [PMID: 32868837 PMCID: PMC7459353 DOI: 10.1038/s41598-020-71225-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 07/31/2020] [Indexed: 11/17/2022] Open
Abstract
Ebola virus (EBOV) is an enveloped, single-stranded RNA virus that can cause Ebola virus disease (EVD). It is thought that EVD survivors are protected against subsequent infection with EBOV and that neutralising antibodies to the viral surface glycoprotein (GP) are potential correlates of protection. Serological studies are vital to assess neutralising antibodies targeted to EBOV GP; however, handling of EBOV is limited to containment level 4 laboratories. Pseudotyped viruses can be used as alternatives to live viruses, which require high levels of bio-containment, in serological and viral entry assays. However, neutralisation capacity can differ among pseudotyped virus platforms. We evaluated the suitability of EBOV GP pseudotyped human immunodeficiency virus type 1 (HIV-1) and vesicular stomatitis virus (VSV) to measure the neutralising ability of plasma from EVD survivors, when compared to results from a live EBOV neutralisation assay. The sensitivity, specificity and correlation with live EBOV neutralisation were greater for the VSV-based pseudotyped virus system, which is particularly important when evaluating EBOV vaccine responses and immuno-therapeutics. Therefore, the EBOV GP pseudotyped VSV neutralisation assay reported here could be used to provide a better understanding of the putative correlates of protection against EBOV.
Collapse
|
15
|
Rijal P, Elias SC, Machado SR, Xiao J, Schimanski L, O'Dowd V, Baker T, Barry E, Mendelsohn SC, Cherry CJ, Jin J, Labbé GM, Donnellan FR, Rampling T, Dowall S, Rayner E, Findlay-Wilson S, Carroll M, Guo J, Xu XN, Huang KYA, Takada A, Burgess G, McMillan D, Popplewell A, Lightwood DJ, Draper SJ, Townsend AR. Therapeutic Monoclonal Antibodies for Ebola Virus Infection Derived from Vaccinated Humans. Cell Rep 2020; 27:172-186.e7. [PMID: 30943399 DOI: 10.1016/j.celrep.2019.03.020] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 12/10/2018] [Accepted: 03/05/2019] [Indexed: 12/17/2022] Open
Abstract
We describe therapeutic monoclonal antibodies isolated from human volunteers vaccinated with recombinant adenovirus expressing Ebola virus glycoprotein (EBOV GP) and boosted with modified vaccinia virus Ankara. Among 82 antibodies isolated from peripheral blood B cells, almost half neutralized GP pseudotyped influenza virus. The antibody response was diverse in gene usage and epitope recognition. Although close to germline in sequence, neutralizing antibodies with binding affinities in the nano- to pico-molar range, similar to "affinity matured" antibodies from convalescent donors, were found. They recognized the mucin-like domain, glycan cap, receptor binding region, and the base of the glycoprotein. A cross-reactive cocktail of four antibodies, targeting the latter three non-overlapping epitopes, given on day 3 of EBOV infection, completely protected guinea pigs. This study highlights the value of experimental vaccine trials as a rich source of therapeutic human monoclonal antibodies.
Collapse
Affiliation(s)
- Pramila Rijal
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK.
| | - Sean C Elias
- Jenner Institute, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, UK
| | - Samara Rosendo Machado
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Julie Xiao
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Lisa Schimanski
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK
| | | | | | | | - Simon C Mendelsohn
- Jenner Institute, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, UK
| | - Catherine J Cherry
- Jenner Institute, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, UK
| | - Jing Jin
- Jenner Institute, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, UK
| | - Geneviève M Labbé
- Jenner Institute, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, UK
| | - Francesca R Donnellan
- Jenner Institute, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, UK
| | - Tommy Rampling
- Jenner Institute, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, UK
| | | | - Emma Rayner
- Public Health England, Porton Down, Wiltshire, UK
| | | | | | - Jia Guo
- Centre for Immunology and Vaccinology, Chelsea & Westminster Hospital, Faculty of Medicine, Imperial College, London, UK
| | - Xiao-Ning Xu
- Centre for Immunology and Vaccinology, Chelsea & Westminster Hospital, Faculty of Medicine, Imperial College, London, UK
| | - Kuan-Ying A Huang
- Division of Paediatric Infectious Diseases, Department of Paediatrics, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Ayato Takada
- Division of Global Epidemiology, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | | | | | | | | | - Simon J Draper
- Jenner Institute, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, UK
| | - Alain R Townsend
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK.
| |
Collapse
|
16
|
Durham ND, Howard AR, Govindan R, Senjobe F, Fels JM, Diehl WE, Luban J, Chandran K, Munro JB. Real-Time Analysis of Individual Ebola Virus Glycoproteins Reveals Pre-Fusion, Entry-Relevant Conformational Dynamics. Viruses 2020; 12:v12010103. [PMID: 31952255 PMCID: PMC7019799 DOI: 10.3390/v12010103] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/09/2020] [Accepted: 01/10/2020] [Indexed: 12/21/2022] Open
Abstract
The Ebola virus (EBOV) envelope glycoprotein (GP) mediates the fusion of the virion membrane with the membrane of susceptible target cells during infection. While proteolytic cleavage of GP by endosomal cathepsins and binding of the cellular receptor Niemann-Pick C1 protein (NPC1) are essential steps for virus entry, the detailed mechanisms by which these events promote membrane fusion remain unknown. Here, we applied single-molecule Förster resonance energy transfer (smFRET) imaging to investigate the structural dynamics of the EBOV GP trimeric ectodomain, and the functional transmembrane protein on the surface of pseudovirions. We show that in both contexts, pre-fusion GP is dynamic and samples multiple conformations. Removal of the glycan cap and NPC1 binding shift the conformational equilibrium, suggesting stabilization of conformations relevant to viral fusion. Furthermore, several neutralizing antibodies enrich alternative conformational states. This suggests that these antibodies neutralize EBOV by restricting access to GP conformations relevant to fusion. This work demonstrates previously unobserved dynamics of pre-fusion EBOV GP and presents a platform with heightened sensitivity to conformational changes for the study of GP function and antibody-mediated neutralization.
Collapse
Affiliation(s)
- Natasha D. Durham
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA 01605, USA;
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine and Sackler School of Graduate Biomedical Sciences, Boston, MA 02111, USA; (A.R.H.); (F.S.)
- Correspondence: (N.D.D.); (J.B.M.)
| | - Angela R. Howard
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine and Sackler School of Graduate Biomedical Sciences, Boston, MA 02111, USA; (A.R.H.); (F.S.)
| | - Ramesh Govindan
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA 01605, USA;
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine and Sackler School of Graduate Biomedical Sciences, Boston, MA 02111, USA; (A.R.H.); (F.S.)
| | - Fernando Senjobe
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine and Sackler School of Graduate Biomedical Sciences, Boston, MA 02111, USA; (A.R.H.); (F.S.)
| | - J. Maximilian Fels
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (J.M.F.); (K.C.)
| | - William E. Diehl
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA; (W.E.D.); (J.L.)
| | - Jeremy Luban
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA; (W.E.D.); (J.L.)
| | - Kartik Chandran
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (J.M.F.); (K.C.)
| | - James B. Munro
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA 01605, USA;
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine and Sackler School of Graduate Biomedical Sciences, Boston, MA 02111, USA; (A.R.H.); (F.S.)
- Correspondence: (N.D.D.); (J.B.M.)
| |
Collapse
|
17
|
Meyer M, Yoshida A, Ramanathan P, Saphire EO, Collins PL, Crowe JE, Samal S, Bukreyev A. Antibody Repertoires to the Same Ebola Vaccine Antigen Are Differentially Affected by Vaccine Vectors. Cell Rep 2019; 24:1816-1829. [PMID: 30110638 PMCID: PMC6145141 DOI: 10.1016/j.celrep.2018.07.044] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 05/14/2018] [Accepted: 07/12/2018] [Indexed: 12/18/2022] Open
Abstract
Comparative immune response profiling is important for selecting next-generation vaccines. We comprehensively evaluated the antibody responses from a panel of nine respiratory vaccines against Ebola virus (EBOV) derived from human and avian paramyxoviruses expressing EBOV glycoprotein (GP). Most vaccines were protective in guinea pigs but yielded antibody repertoires that differed in proportion targeting key antigenic regions, avidity, neutralizing antibody specificities, and linear epitope preferences. Competition studies with monoclonal antibodies from human survivors revealed that some epitopes in GP targeted for neutralization were vector dependent, while EBOV-neutralizing titers correlated with the response magnitude toward the receptor-binding domain and GP1/GP2 interface epitopes. While an immunogen determines the breadth of antibody response, distinct vaccine vectors can induce qualitatively different responses, affecting protective efficacy. These data suggest that immune correlates of vaccine protection cannot be generalized for all vaccines against the same pathogen, even if they use the exact same immunogen.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/biosynthesis
- Antibodies, Monoclonal/blood
- Antibodies, Neutralizing/biosynthesis
- Antibodies, Neutralizing/blood
- Antibodies, Viral/biosynthesis
- Antibodies, Viral/blood
- Antibody Affinity
- Antibody Specificity
- Antigens, Viral/chemistry
- Antigens, Viral/genetics
- Antigens, Viral/immunology
- Ebola Vaccines/administration & dosage
- Ebola Vaccines/biosynthesis
- Ebola Vaccines/genetics
- Ebolavirus/drug effects
- Ebolavirus/genetics
- Ebolavirus/immunology
- Ebolavirus/pathogenicity
- Epitopes/chemistry
- Epitopes/genetics
- Epitopes/immunology
- Female
- Gene Expression
- Guinea Pigs
- Hemorrhagic Fever, Ebola/immunology
- Hemorrhagic Fever, Ebola/mortality
- Hemorrhagic Fever, Ebola/prevention & control
- Hemorrhagic Fever, Ebola/virology
- Humans
- Immune Sera/chemistry
- Protein Binding
- Receptors, IgG/genetics
- Receptors, IgG/immunology
- Survival Analysis
- Vaccination
- Viral Envelope Proteins/genetics
- Viral Envelope Proteins/immunology
Collapse
Affiliation(s)
- Michelle Meyer
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA; Galveston National Laboratory, Galveston, TX 77555, USA
| | - Asuka Yoshida
- Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, MD 20742, USA
| | - Palaniappan Ramanathan
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA; Galveston National Laboratory, Galveston, TX 77555, USA
| | - Erica Ollmann Saphire
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA; The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Peter L Collins
- RNA Virology Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - James E Crowe
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pediatrics (Infectious Diseases), Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Siba Samal
- Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, MD 20742, USA
| | - Alexander Bukreyev
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA; Galveston National Laboratory, Galveston, TX 77555, USA; Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA.
| |
Collapse
|
18
|
Fan Y, Stronsky SM, Xu Y, Steffens JT, van Tongeren SA, Erwin A, Cooper CL, Moon JJ. Multilamellar Vaccine Particle Elicits Potent Immune Activation with Protein Antigens and Protects Mice against Ebola Virus Infection. ACS NANO 2019; 13:11087-11096. [PMID: 31497947 PMCID: PMC6834342 DOI: 10.1021/acsnano.9b03660] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Recent outbreaks of emerging infectious diseases, such as Ebola virus disease (EVD), highlight the urgent need to develop effective countermeasures, including prophylactic vaccines. Subunit proteins derived from pathogens provide a safe source of antigens for vaccination, but they are often limited by their low immunogenicity. We have developed a multilamellar vaccine particle (MVP) system composed of lipid-hyaluronic acid multi-cross-linked hybrid nanoparticles for vaccination with protein antigens and demonstrate their efficacy against Ebola virus (EBOV) exposure. MVPs efficiently accumulated in dendritic cells and promote antigen processing. Mice immunized with MVPs elicited robust and long-lasting antigen-specific CD8+ and CD4+ T cell immune responses as well as humoral immunity. A single-dose vaccination with MVPs delivering EBOV glycoprotein achieved an 80% protection rate against lethal EBOV infection. These results suggest that MVPs offer a promising platform for improving recombinant protein-based vaccine approaches.
Collapse
Affiliation(s)
- Yuchen Fan
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, Michigan 48109, United States
- Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Sabrina M. Stronsky
- Molecular and Translational Sciences, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Maryland 21702, United States
- Joint Program Executive Office - Chemical, Biological, Radiological, and Nuclear Defense (JPEO–CBRND), Fort Detrick, Maryland 21702, United States
| | - Yao Xu
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, Michigan 48109, United States
- Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Jesse T. Steffens
- Molecular and Translational Sciences, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Maryland 21702, United States
| | - Sean A. van Tongeren
- Molecular and Translational Sciences, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Maryland 21702, United States
| | - Amanda Erwin
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Christopher L. Cooper
- Molecular and Translational Sciences, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Maryland 21702, United States
- Corresponding Authors:.,
| | - James J. Moon
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, Michigan 48109, United States
- Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
- Corresponding Authors:.,
| |
Collapse
|
19
|
Luczkowiak J, Lasala F, Mora-Rillo M, Arribas JR, Delgado R. Broad Neutralizing Activity Against Ebolaviruses Lacking the Mucin-Like Domain in Convalescent Plasma Specimens From Patients With Ebola Virus Disease. J Infect Dis 2019; 218:S574-S581. [PMID: 29939289 PMCID: PMC6249609 DOI: 10.1093/infdis/jiy302] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Background In Ebola virus (EBOV) infection, the specific neutralizing activity of convalescent plasma against other members of the Ebolavirus genus has not been extensively analyzed. Methods We measured the neutralizing activity in plasma from 3 survivors of the recent outbreak due to the Makona variant of EBOV and tested its neutralizing potency against other variants of EBOV (ie, Mayinga and Kikwit) and against Sudan virus (SUDV), Bundibugyo virus (BDBV), and Reston virus (RESTV), using a glycoprotein (GP)-pseudotyped lentiviral system both with full-length GP and in vitro-cleaved GP (GPCL). Results Convalescent plasma specimens from survivors of EBOV infection showed low neutralizing activity against full-length GPs of SUDV, BDBV, RESTV, and EBOV variants Mayinga and Kikwit. However, broad and potent neutralizing activity was observed against the GPCL forms of SUDV, BDBV, and RESTV. Discussion Removal of the mucin-like domain and glycan cap from the GP of members of the Ebolavirus genus presumably exposes conserved epitopes in or in the vicinity of the receptor binding site and internal fusion loop that are readily amenable to neutralization. These types of broad neutralizing antibodies could be induced by using immunogens mimicking GPCL.
Collapse
Affiliation(s)
- Joanna Luczkowiak
- Department of Microbiology, Instituto de Investigación Hospital 12 de Octubre, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Fatima Lasala
- Department of Microbiology, Instituto de Investigación Hospital 12 de Octubre, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Marta Mora-Rillo
- Infectious Diseases Unit, Department of Internal Medicine, Instituto de Investigación Hospital La Paz, Madrid, Spain
| | - Jose R Arribas
- Infectious Diseases Unit, Department of Internal Medicine, Instituto de Investigación Hospital La Paz, Madrid, Spain
| | - Rafael Delgado
- Department of Microbiology, Instituto de Investigación Hospital 12 de Octubre, Hospital Universitario 12 de Octubre, Madrid, Spain
- Correspondence: R. Delgado, Department of Microbiology, Instituto de Investigación Hospital 12 de Octubre, Hospital Universitario 12 de Octubre, Avenida de Córdoba sn, Madrid 28041, Spain ()
| |
Collapse
|
20
|
Differential requirements for FcγR engagement by protective antibodies against Ebola virus. Proc Natl Acad Sci U S A 2019; 116:20054-20062. [PMID: 31484758 DOI: 10.1073/pnas.1911842116] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Ebola virus (EBOV) continues to pose significant threats to global public health, requiring ongoing development of multiple strategies for disease control. To date, numerous monoclonal antibodies (mAbs) that target the EBOV glycoprotein (GP) have demonstrated potent protective activity in animal disease models and are thus promising candidates for the control of EBOV. However, recent work in a variety of virus diseases has highlighted the importance of coupling Fab neutralization with Fc effector activity for effective antibody-mediated protection. To determine the contribution of Fc effector activity to the protective function of mAbs to EBOV GP, we selected anti-GP mAbs targeting representative, protective epitopes and characterized their Fc receptor (FcγR) dependence in vivo in FcγR humanized mouse challenge models of EBOV disease. In contrast to previous studies, we find that anti-GP mAbs exhibited differential requirements for FcγR engagement in mediating their protective activity independent of their distance from the viral membrane. Anti-GP mAbs targeting membrane proximal epitopes or the GP mucin domain do not rely on Fc-FcγR interactions to confer activity, whereas antibodies against the GP chalice bowl and the fusion loop require FcγR engagement for optimal in vivo antiviral activity. This complexity of antibody-mediated protection from EBOV disease highlights the structural constraints of FcγR binding for specific viral epitopes and has important implications for the development of mAb-based immunotherapeutics with optimal potency and efficacy.
Collapse
|
21
|
Development, qualification, and validation of the Filovirus Animal Nonclinical Group anti-Ebola virus glycoprotein immunoglobulin G enzyme-linked immunosorbent assay for human serum samples. PLoS One 2019; 14:e0215457. [PMID: 30998735 PMCID: PMC6472792 DOI: 10.1371/journal.pone.0215457] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 04/03/2019] [Indexed: 12/26/2022] Open
Abstract
The need for an efficacious vaccine against highly pathogenic filoviruses was reinforced by the recent and devastating 2014–2016 outbreak of Ebola virus (EBOV) disease in Guinea, Sierra Leone, and Liberia that resulted in more than 10,000 casualties. Such a vaccine would need to be vetted through a U.S. Food and Drug Administration (FDA) traditional, accelerated, or Animal Rule or similar European Medicines Agency (EMA) regulatory pathway. Under the FDA Animal Rule, vaccine-induced immune responses correlating with survival of non-human primates (NHPs), or another well-characterized animal model, following lethal EBOV challenge will need to be bridged to human immune response distributions in clinical trials. When possible, species-neutral methods are ideal for detection and bridging of these immune responses, such as methods to quantify anti-EBOV glycoprotein (GP) immunoglobulin G (IgG) antibodies. Further, any method that will be used to support advanced clinical and non-clinical trials will most likely require formal validation to assess suitability prior to use. Reported here is the development, qualification, and validation of a Filovirus Animal Nonclinical Group anti-EBOV GP IgG Enzyme-Linked Immunosorbent Assay (FANG anti-EBOV GP IgG ELISA) for testing human serum samples.
Collapse
|
22
|
King LB, Milligan JC, West BR, Schendel SL, Ollmann Saphire E. Achieving cross-reactivity with pan-ebolavirus antibodies. Curr Opin Virol 2019; 34:140-148. [PMID: 30884329 DOI: 10.1016/j.coviro.2019.01.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 01/24/2019] [Indexed: 11/25/2022]
Abstract
Filoviruses are the causative agents of highly lethal outbreaks in sub-Saharan Africa. Although an experimental vaccine and several therapeutics are being deployed in the Democratic Republic of Congo to combat the ongoing Ebola virus outbreak, these therapies are specific for only one filovirus species. There is currently significant interest in developing broadly reactive monoclonal antibodies (mAbs) with utility against the variety of ebolaviruses that may emerge. Thus far, the primary target of these mAbs has been the viral spike glycoprotein (GP). Here we present an overview of GP-targeted antibodies that exhibit broad reactivity and the structural characteristics that could confer this cross-reactivity. We also discuss how these structural features could be leveraged to design vaccine antigens that elicit cross-reactive antibodies.
Collapse
Affiliation(s)
- Liam B King
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Jacob C Milligan
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Brandyn R West
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Sharon L Schendel
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Erica Ollmann Saphire
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA; Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
23
|
Keshwara R, Hagen KR, Abreu-Mota T, Papaneri AB, Liu D, Wirblich C, Johnson RF, Schnell MJ. A Recombinant Rabies Virus Expressing the Marburg Virus Glycoprotein Is Dependent upon Antibody-Mediated Cellular Cytotoxicity for Protection against Marburg Virus Disease in a Murine Model. J Virol 2019; 93:e01865-18. [PMID: 30567978 PMCID: PMC6401435 DOI: 10.1128/jvi.01865-18] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 12/10/2018] [Indexed: 12/14/2022] Open
Abstract
Marburg virus (MARV) is a filovirus related to Ebola virus (EBOV) associated with human hemorrhagic disease. Outbreaks are sporadic and severe, with a reported case mortality rate of upward of 88%. There is currently no antiviral or vaccine available. Given the sporadic nature of outbreaks, vaccines provide the best approach for long-term control of MARV in regions of endemicity. We have developed an inactivated rabies virus-vectored MARV vaccine (FILORAB3) to protect against Marburg virus disease. Immunogenicity studies in our labs have shown that a Th1-biased seroconversion to both rabies virus and MARV glycoproteins (GPs) is beneficial for protection in a preclinical murine model. As such, we adjuvanted FILORAB3 with glucopyranosyl lipid adjuvant (GLA), a Toll-like receptor 4 agonist, in a squalene-in-water emulsion. Across two different BALB/c mouse challenge models, we achieved 92% protection against murine-adapted Marburg virus (ma-MARV). Although our vaccine elicited strong MARV GP antibodies, it did not strongly induce neutralizing antibodies. Through both in vitro and in vivo approaches, we elucidated a critical role for NK cell-dependent antibody-mediated cellular cytotoxicity (ADCC) in vaccine-induced protection. Overall, these findings demonstrate that FILORAB3 is a promising vaccine candidate for Marburg virus disease.IMPORTANCE Marburg virus (MARV) is a virus similar to Ebola virus and also causes a hemorrhagic disease which is highly lethal. In contrast to EBOV, only a few vaccines have been developed against MARV, and researchers do not understand what kind of immune responses are required to protect from MARV. Here we show that antibodies directed against MARV after application of our vaccine protect in an animal system but fail to neutralize the virus in a widely used virus neutralization assay against MARV. This newly discovered activity needs to be considered more when analyzing MARV vaccines or infections.
Collapse
Affiliation(s)
- Rohan Keshwara
- Department of Microbiology and Immunology, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Katie R Hagen
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Maryland, USA
| | - Tiago Abreu-Mota
- Department of Microbiology and Immunology, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania, USA
- Life and Health Sciences Research Institute (ICVS) School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's, PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Amy B Papaneri
- Emerging Viral Pathogens Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - David Liu
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Maryland, USA
| | - Christoph Wirblich
- Department of Microbiology and Immunology, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Reed F Johnson
- Emerging Viral Pathogens Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Matthias J Schnell
- Department of Microbiology and Immunology, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania, USA
- Jefferson Vaccine Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
24
|
Bazzill JD, Stronsky SM, Kalinyak LC, Ochyl LJ, Steffens JT, van Tongeren SA, Cooper CL, Moon JJ. Vaccine nanoparticles displaying recombinant Ebola virus glycoprotein for induction of potent antibody and polyfunctional T cell responses. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2018; 18:414-425. [PMID: 30471480 DOI: 10.1016/j.nano.2018.11.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 10/12/2018] [Accepted: 11/12/2018] [Indexed: 01/31/2023]
Abstract
The recent outbreaks of Ebolavirus (EBOV) in West Africa underscore the urgent need to develop an effective EBOV vaccine. Here, we report the development of synthetic nanoparticles as a safe and highly immunogenic platform for vaccination against EBOV. We show that a large recombinant EBOV antigen (rGP) can be incorporated in a configurational manner into lipid-based nanoparticles, termed interbilayer-crosslinked multilamellar vesicles (ICMVs). The epitopes and quaternary structure of rGP were properly maintained on the surfaces of ICMVs formed either with or without nickel nitrilotriacetic acid (NTA)-functionalized lipids. When administered in mice, rGP-ICMVs without NTA-lipids efficiently generated germinal center B cells and polyfunctional T cells while eliciting robust neutralizing antibody responses. This study suggests the potential of vaccine nanoparticles as a delivery platform for configurational, multivalent display of large subunit antigens and induction of neutralizing antibody and T cell responses.
Collapse
Affiliation(s)
- Joseph D Bazzill
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - Sabrina M Stronsky
- Molecular and Translational Sciences, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, MD, USA
| | - Laura C Kalinyak
- Molecular and Translational Sciences, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, MD, USA
| | - Lukasz J Ochyl
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - Jesse T Steffens
- Molecular and Translational Sciences, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, MD, USA
| | - Sean A van Tongeren
- Molecular and Translational Sciences, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, MD, USA
| | - Christopher L Cooper
- Molecular and Translational Sciences, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, MD, USA.
| | - James J Moon
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
25
|
Vaughan K, Xu X, Peters B, Sette A. Investigation of Outbreak-Specific Nonsynonymous Mutations on Ebolavirus GP in the Context of Known Immune Reactivity. J Immunol Res 2018; 2018:1846207. [PMID: 30581874 PMCID: PMC6276448 DOI: 10.1155/2018/1846207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 10/01/2018] [Accepted: 10/22/2018] [Indexed: 11/17/2022] Open
Abstract
The global response to the most recent EBOV outbreak has led to increased generation and availability of data, which can be globally analyzed to increase our understanding of immune responses to EBOV. We analyzed the published antibody epitope data to identify regions immunogenic for humans on the main GP antigenic target and determine sequence variance/nonsynonymous mutations between historical isolates and variants from the 2013-2016 outbreak. Approximately half of the GP sequence has been reported as targeted by antibody responses. Our results show an enrichment of nonsynonymous mutations (NSMs) within epitopic regions on GP (70%, p = 0.0133). Mapping NSMs to human epitope reactivity may be useful for future therapeutic and prophylaxis development as well as for our general understanding of immunity against EBOV.
Collapse
Affiliation(s)
- Kerrie Vaughan
- La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA
| | - Xiaojun Xu
- La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA
| | - Bjoern Peters
- La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA
- University of California San Diego, Department of Medicine, La Jolla, CA 92093, USA
| | - Alessandro Sette
- La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA
- University of California San Diego, Department of Medicine, La Jolla, CA 92093, USA
| |
Collapse
|
26
|
Saphire EO, Schendel SL, Gunn BM, Milligan JC, Alter G. Antibody-mediated protection against Ebola virus. Nat Immunol 2018; 19:1169-1178. [PMID: 30333617 DOI: 10.1038/s41590-018-0233-9] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 09/04/2018] [Indexed: 01/30/2023]
Abstract
Recent Ebola virus disease epidemics have highlighted the need for effective vaccines and therapeutics to prevent future outbreaks. Antibodies are clearly critical for control of this deadly disease; however, the specific mechanisms of action of protective antibodies have yet to be defined. In this Perspective we discuss the antibody features that correlate with in vivo protection during infection with Ebola virus, based on the results of a systematic and comprehensive study of antibodies directed against this virus. Although neutralization activity mediated by the Fab domains of the antibody is strongly correlated with protection, recruitment of immune effector functions by the Fc domain has also emerged as a complementary, and sometimes alternative, route to protection. For a subset of antibodies, Fc-mediated clearance and killing of infected cells seems to be the main driver of protection after exposure and mirrors observations in vaccination studies. Continued analysis of antibodies that achieve protection partially or wholly through Fc-mediated functions, the precise functions required, the intersection with specificity and the importance of these functions in different animal models is needed to identify and begin to capitalize on Fc-mediated protection in vaccines and therapeutics alike.
Collapse
Affiliation(s)
- Erica Ollmann Saphire
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA. .,Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA, USA.
| | - Sharon L Schendel
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Bronwyn M Gunn
- The Ragon Institute of MIT, MGH and Harvard, Cambridge, MA, USA
| | - Jacob C Milligan
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Galit Alter
- The Ragon Institute of MIT, MGH and Harvard, Cambridge, MA, USA.
| |
Collapse
|
27
|
Fanunza E, Frau A, Corona A, Tramontano E. Antiviral Agents Against Ebola Virus Infection: Repositioning Old Drugs and Finding Novel Small Molecules. ANNUAL REPORTS IN MEDICINAL CHEMISTRY 2018; 51:135-173. [PMID: 32287476 PMCID: PMC7112331 DOI: 10.1016/bs.armc.2018.08.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Ebola virus (EBOV) causes a deadly hemorrhagic syndrome in humans with mortality rate up to 90%. First reported in Zaire in 1976, EBOV outbreaks showed a fluctuating trend during time and fora long period it was considered a tragic disease confined to the isolated regions of the African continent where the EBOV fear was perpetuated among the poor communities. The extreme severity of the recent 2014-16 EBOV outbreak in terms of fatality rate and rapid spread out of Africa led to the understanding that EBOV is a global health risk and highlights the necessity to find countermeasures against it. In the recent years, several small molecules have been shown to display in vitro and in vivo efficacy against EBOV and some of them have advanced into clinical trials. In addition, also existing drugs have been tested for their anti-EBOV activity and were shown to be promising candidates. However, despite the constant effort addressed to identify anti-EBOV therapeutics, no approved drugs are available against EBOV yet. In this chapter, we describe the main EBOV life cycle steps, providing a detailed picture of the druggable viral and host targets that have been explored so far by different technologies. We then summarize the small molecules, nucleic acid oligomers, and antibody-based therapies reported to have an effect either in in silico, or in biochemical and cell-based assays or in animal models and clinical trials, listing them according to their demonstrated or putative mechanism of action.
Collapse
Affiliation(s)
- Elisa Fanunza
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| | - Aldo Frau
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| | - Angela Corona
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| | - Enzo Tramontano
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
- Genetics and Biomedical Research Institute, National Research Council, Monserrato, Italy
| |
Collapse
|
28
|
Saphire EO, Schendel SL, Fusco ML, Gangavarapu K, Gunn BM, Wec AZ, Halfmann PJ, Brannan JM, Herbert AS, Qiu X, Wagh K, He S, Giorgi EE, Theiler J, Pommert KBJ, Krause TB, Turner HL, Murin CD, Pallesen J, Davidson E, Ahmed R, Aman MJ, Bukreyev A, Burton DR, Crowe JE, Davis CW, Georgiou G, Krammer F, Kyratsous CA, Lai JR, Nykiforuk C, Pauly MH, Rijal P, Takada A, Townsend AR, Volchkov V, Walker LM, Wang CI, Zeitlin L, Doranz BJ, Ward AB, Korber B, Kobinger GP, Andersen KG, Kawaoka Y, Alter G, Chandran K, Dye JM. Systematic Analysis of Monoclonal Antibodies against Ebola Virus GP Defines Features that Contribute to Protection. Cell 2018; 174:938-952.e13. [PMID: 30096313 PMCID: PMC6102396 DOI: 10.1016/j.cell.2018.07.033] [Citation(s) in RCA: 154] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 05/22/2018] [Accepted: 07/24/2018] [Indexed: 12/24/2022]
Abstract
Antibodies are promising post-exposure therapies against emerging viruses, but which antibody features and in vitro assays best forecast protection are unclear. Our international consortium systematically evaluated antibodies against Ebola virus (EBOV) using multidisciplinary assays. For each antibody, we evaluated epitopes recognized on the viral surface glycoprotein (GP) and secreted glycoprotein (sGP), readouts of multiple neutralization assays, fraction of virions left un-neutralized, glycan structures, phagocytic and natural killer cell functions elicited, and in vivo protection in a mouse challenge model. Neutralization and induction of multiple immune effector functions (IEFs) correlated most strongly with protection. Neutralization predominantly occurred via epitopes maintained on endosomally cleaved GP, whereas maximal IEF mapped to epitopes farthest from the viral membrane. Unexpectedly, sGP cross-reactivity did not significantly influence in vivo protection. This comprehensive dataset provides a rubric to evaluate novel antibodies and vaccine responses and a roadmap for therapeutic development for EBOV and related viruses.
Collapse
Affiliation(s)
- Erica Ollmann Saphire
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | - Sharon L Schendel
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Marnie L Fusco
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Karthik Gangavarapu
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | - Anna Z Wec
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Peter J Halfmann
- Division of Pathobiological Sciences, University of Wisconsin, Madison, WI 53706, USA
| | - Jennifer M Brannan
- Division of Virology, United States Army Research Institute for Infectious Diseases, Ft. Detrick, MD 21702, USA
| | - Andrew S Herbert
- Division of Virology, United States Army Research Institute for Infectious Diseases, Ft. Detrick, MD 21702, USA
| | - Xiangguo Qiu
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg R3E 3R2, Canada
| | - Kshitij Wagh
- Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Shihua He
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg R3E 3R2, Canada
| | - Elena E Giorgi
- Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - James Theiler
- Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Kathleen B J Pommert
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Tyler B Krause
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Hannah L Turner
- Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Charles D Murin
- Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Jesper Pallesen
- Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | - Rafi Ahmed
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - M Javad Aman
- Integrated BioTherapeutics, Rockville, MD 20850, USA
| | - Alexander Bukreyev
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Dennis R Burton
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - James E Crowe
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Carl W Davis
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - George Georgiou
- Department of Chemical Engineering, University of Texas at Austin, Austin, TX 78712, USA
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | | | - Jonathan R Lai
- Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Cory Nykiforuk
- Emergent BioSolutions, Winnipeg, Manitoba, R3T 5Y3, Canada
| | | | - Pramila Rijal
- Human Immunology Unit, University of Oxford, Oxford OX3 9DS, UK
| | - Ayato Takada
- Research Center for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan
| | | | | | | | - Cheng-I Wang
- Singapore Immunology Network, Agency for Science, Technology and Research (A(∗)STAR), Biopolis 138648, Singapore
| | | | | | - Andrew B Ward
- Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Bette Korber
- Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Gary P Kobinger
- Département de Microbiologie-Infectiologie et d'Immunologie, Médecine, Université Laval Quebec, G1V 046 Canada.
| | - Kristian G Andersen
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | - Yoshihiro Kawaoka
- Division of Pathobiological Sciences, University of Wisconsin, Madison, WI 53706, USA.
| | | | - Kartik Chandran
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | - John M Dye
- Division of Virology, United States Army Research Institute for Infectious Diseases, Ft. Detrick, MD 21702, USA.
| |
Collapse
|
29
|
The structural basis for filovirus neutralization by monoclonal antibodies. Curr Opin Immunol 2018; 53:196-202. [PMID: 29940415 DOI: 10.1016/j.coi.2018.05.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Revised: 04/30/2018] [Accepted: 05/02/2018] [Indexed: 12/21/2022]
Abstract
Filoviruses, including ebolaviruses and marburgviruses, are the causative agents of highly lethal disease outbreaks. The 2013-2016 Ebola virus outbreak was responsible for >28000 infections and >11000 deaths. Although there are currently no licensed vaccines or therapeutics for any filovirus-induced disease, monoclonal antibodies (mAbs) are among the most promising options for therapeutic development. Hundreds of mAbs have been isolated from human survivors of filovirus infections that target the viral spike glycoprotein (GP). The binding, neutralization, and cross-reactivity of many of these mAbs has been determined. Several mAbs have been characterized structurally, and this information has been crucial for strategizing therapeutic and vaccine design. Here we present an overview of the structural features of the neutralizing/protective epitopes on filovirus glycoproteins.
Collapse
|
30
|
Khan FN, Qazi S, Tanveer K, Raza K. A review on the antagonist Ebola: A prophylactic approach. Biomed Pharmacother 2017; 96:1513-1526. [PMID: 29208326 PMCID: PMC7126370 DOI: 10.1016/j.biopha.2017.11.103] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 11/17/2017] [Accepted: 11/17/2017] [Indexed: 11/20/2022] Open
Abstract
Ebola virus (EBOV), a member of Filoviridae virus family under the genus Ebolavirus, has emerged as a dangerous and potential threat to human health globally. It causes a severe and deadly hemorrhagic fever in humans and other mammals, called Ebola Virus Disease (EVD). In recent outbreaks of EVD, there has been loss of large numbers of individual’s life. Therefore, EBOV has attracted researchers and increased interests in developing new models for virus evolution, and therapies. The EBOV interacts with the immune system of the host which led to understand how the virus functions and effects immune system behaviour. This article presents an exhaustive review on Ebola research which includes EVD illness, symptoms, transmission patterns, patho-physiology conditions, development of antiviral agents and vaccines, resilient health system, dynamics and mathematical model of EBOV, challenges and prospects for future studies.
Collapse
Affiliation(s)
- Fatima Nazish Khan
- Computational Intelligence and Bioinformatics Lab, Department of Computer Science, Jamia Millia Islamia, New Delhi, 110025, India
| | - Sahar Qazi
- Computational Intelligence and Bioinformatics Lab, Department of Computer Science, Jamia Millia Islamia, New Delhi, 110025, India
| | - Khushnuma Tanveer
- Computational Intelligence and Bioinformatics Lab, Department of Computer Science, Jamia Millia Islamia, New Delhi, 110025, India
| | - Khalid Raza
- Computational Intelligence and Bioinformatics Lab, Department of Computer Science, Jamia Millia Islamia, New Delhi, 110025, India.
| |
Collapse
|
31
|
Ripoll DR, Mitchell DAJ, Dupuy LC, Wallqvist A, Schmaljohn C, Chaudhury S. Combinatorial peptide-based epitope mapping from Ebola virus DNA vaccines and infections reveals residue-level determinants of antibody binding. Hum Vaccin Immunother 2017; 13:2953-2966. [PMID: 28922082 PMCID: PMC5718834 DOI: 10.1080/21645515.2017.1360454] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Ebola virus (EBOV) infection is highly lethal and results in severe febrile bleeding disorders that affect humans and non-human primates. One of the therapeutic approaches for treating EBOV infection focus largely on cocktails of monoclonal antibodies (mAbs) that bind to specific regions of the EBOV glycoprotein (GP) and neutralize the virus. Recent structural studies using cryo-electron microscopy have identified key epitopes for several EBOV mAbs. While such information has yielded deep insights into antibody binding, limitations on resolution of these structures often preclude a residue-level analysis of EBOV epitopes. In this study, we performed combinatorial peptide-based epitope mapping of EBOV GP against a broad panel of mAbs and polyclonal sera derived from several animal species vaccinated with EBOV DNA and replicon vaccines and/or exposed to EBOV infection to identify residue-level determinants of antibody binding. The peptide-based epitope mapping obtained from a wide range of serum and mAb samples, combined with available cryo-EM structure reconstructions revealed fine details of antibody-virus interactions, allowing for a more precise and comprehensive mapping of antibody epitopes on EBOV GP. We show how these residue-level epitope definitions can be used to characterize antigenic variation across different filoviruses, and provide a theoretical basis for predicting immunity and cross-neutralization in potential future outbreaks.
Collapse
Affiliation(s)
- Daniel R Ripoll
- a Biotechnology HPC Software Applications Institute , Telemedicine and Advanced Technology Research Center, US Army Medical Research and Materiel Command, Fort Detrick , MD , USA
| | - Daniel A J Mitchell
- b US Army Medical Research Institute of Infectious Diseases, Fort Detrick , MD , USA
| | - Lesley C Dupuy
- b US Army Medical Research Institute of Infectious Diseases, Fort Detrick , MD , USA
| | - Anders Wallqvist
- a Biotechnology HPC Software Applications Institute , Telemedicine and Advanced Technology Research Center, US Army Medical Research and Materiel Command, Fort Detrick , MD , USA
| | - Connie Schmaljohn
- b US Army Medical Research Institute of Infectious Diseases, Fort Detrick , MD , USA
| | - Sidhartha Chaudhury
- a Biotechnology HPC Software Applications Institute , Telemedicine and Advanced Technology Research Center, US Army Medical Research and Materiel Command, Fort Detrick , MD , USA
| |
Collapse
|
32
|
Hofmann D, Zak SE, Nyakatura EK, Mittler E, Bakken RR, Chandran K, Dye JM, Lai JR. Mechanistic and Fc requirements for inhibition of Sudan virus entry and in vivo protection by a synthetic antibody. Immunol Lett 2017; 190:289-295. [PMID: 28890093 DOI: 10.1016/j.imlet.2017.09.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 08/28/2017] [Accepted: 09/05/2017] [Indexed: 11/18/2022]
Abstract
The Sudan virus (SUDV), an ebolavirus, causes severe hemorrhagic fever with human case fatality rates of ∼50%. Previous work from our lab demonstrated the synthetic antibody F4 potently inhibits viral entry and protects against lethal virus challenge in mice [Chen et al., ACS Chem. Biol., 2014, 9, 2263-2273]. Here, we explore mechanistic requirements as well as contribution of the Fc region and function on neutralization and in vivo protection. Live cell imaging demonstrates that the antibody colocalizes with vesicular stomatitis virus particles containing the Sudan virus glycoprotein (VSV-GPSUDV) and that the antibody is rapidly degraded within cellular endosomes. A viral escape mutant contained substitutions on the N-heptad repeat (NHR) segment of GP2, the fusion subunit. Truncation studies indicated that the size of the Fc impacts virus neutralization potential. Finally, we examined the protective efficacy of Fc-null mutants in mice, and found that Fc function was not required for high levels of protection. Altogether, these results indicate that neutralization of SUDV GP-mediated cell entry likely involves blockade of viral membrane fusion within endosomes, and that inhibition of viral entry is the likely mechanism of in vivo protection.
Collapse
Affiliation(s)
- Daniel Hofmann
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY 10461, USA
| | - Samantha E Zak
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, 1425 Porter Street, Fort Detrick, MD 21702, USA
| | - Elisabeth K Nyakatura
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY 10461, USA
| | - Eva Mittler
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY 10461, USA
| | - Russell R Bakken
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, 1425 Porter Street, Fort Detrick, MD 21702, USA
| | - Kartik Chandran
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY 10461, USA
| | - John M Dye
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, 1425 Porter Street, Fort Detrick, MD 21702, USA
| | - Jonathan R Lai
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY 10461, USA.
| |
Collapse
|
33
|
Tomaras GD, Plotkin SA. Complex immune correlates of protection in HIV-1 vaccine efficacy trials. Immunol Rev 2017; 275:245-261. [PMID: 28133811 DOI: 10.1111/imr.12514] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Development of an efficacious HIV-1 vaccine is a major priority for improving human health worldwide. Vaccine-mediated protection against human pathogens can be achieved through elicitation of protective innate, humoral, and cellular responses. Identification of specific immune responses responsible for pathogen protection enables vaccine development and provides insights into host defenses against pathogens and the immunological mechanisms that most effectively fight infection. Defining immunological correlates of transmission risk in preclinical and clinical HIV-1 vaccine trials has moved the HIV-1 vaccine development field forward and directed new candidate vaccine development. Immune correlate studies are providing novel hypotheses about immunological mechanisms that may be responsible for preventing HIV-1 acquisition. Recent results from HIV-1 immune correlates work has demonstrated that there are multiple types of immune responses that together, comprise an immune correlate-thus implicating polyfunctional immune control of HIV-1 transmission. An in depth understanding of these complex immunological mechanisms of protection against HIV-1 will accelerate the development of an efficacious HIV-1 vaccine.
Collapse
Affiliation(s)
- Georgia D Tomaras
- Departments of Surgery, Immunology, Molecular Genetics and Microbiology, Duke Human Vaccine Institute, Durham, NC, USA
| | - Stanley A Plotkin
- Vaxconsult, Doylestown, PA, USA.,University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
34
|
Antibodies from a Human Survivor Define Sites of Vulnerability for Broad Protection against Ebolaviruses. Cell 2017; 169:878-890.e15. [PMID: 28525755 DOI: 10.1016/j.cell.2017.04.037] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 03/16/2017] [Accepted: 04/26/2017] [Indexed: 12/19/2022]
Abstract
Experimental monoclonal antibody (mAb) therapies have shown promise for treatment of lethal Ebola virus (EBOV) infections, but their species-specific recognition of the viral glycoprotein (GP) has limited their use against other divergent ebolaviruses associated with human disease. Here, we mined the human immune response to natural EBOV infection and identified mAbs with exceptionally potent pan-ebolavirus neutralizing activity and protective efficacy against three virulent ebolaviruses. These mAbs recognize an inter-protomer epitope in the GP fusion loop, a critical and conserved element of the viral membrane fusion machinery, and neutralize viral entry by targeting a proteolytically primed, fusion-competent GP intermediate (GPCL) generated in host cell endosomes. Only a few somatic hypermutations are required for broad antiviral activity, and germline-approximating variants display enhanced GPCL recognition, suggesting that such antibodies could be elicited more efficiently with suitably optimized GP immunogens. Our findings inform the development of both broadly effective immunotherapeutics and vaccines against filoviruses.
Collapse
|
35
|
González-González E, Alvarez MM, Márquez-Ipiña AR, Santiago GTD, Rodríguez-Martínez LM, Annabi N, Khademhosseini A. Anti-Ebola therapies based on monoclonal antibodies: current state and challenges ahead. Crit Rev Biotechnol 2017; 37:53-68. [PMID: 26611830 PMCID: PMC5568563 DOI: 10.3109/07388551.2015.1114465] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The 2014 Ebola outbreak, the largest recorded, took us largely unprepared, with no available vaccine or specific treatment. In this context, the World Health Organization declared that the humanitarian use of experimental therapies against Ebola Virus (EBOV) is ethical. In particular, an experimental treatment consisting of a cocktail of three monoclonal antibodies (mAbs) produced in tobacco plants and specifically directed to the EBOV glycoprotein (GP) was tested in humans, apparently with good results. Several mAbs with high affinity to the GP have been described. This review discusses our current knowledge on this topic. Particular emphasis is devoted to those mAbs that have been assayed in animal models or humans as possible therapies against Ebola. Engineering aspects and challenges for the production of anti-Ebola mAbs are also briefly discussed; current platforms for the design and production of full-length mAbs are cumbersome and costly.
Collapse
Affiliation(s)
- E González-González
- Centro de Biotecnología-FEMSA, Tecnológico de Monterrey at Monterrey, Ave. Eugenio Garza Sada 2501 Sur Col. Tecnológico, CP 64849, Monterrey, Nuevo León, México
| | - MM Alvarez
- Centro de Biotecnología-FEMSA, Tecnológico de Monterrey at Monterrey, Ave. Eugenio Garza Sada 2501 Sur Col. Tecnológico, CP 64849, Monterrey, Nuevo León, México
- Biomaterials Innovation Research Center, Division of Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston 02139, MA, USA
- Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge 02139, MA, USA
| | - AR Márquez-Ipiña
- Centro de Biotecnología-FEMSA, Tecnológico de Monterrey at Monterrey, Ave. Eugenio Garza Sada 2501 Sur Col. Tecnológico, CP 64849, Monterrey, Nuevo León, México
| | - G Trujillo-de Santiago
- Centro de Biotecnología-FEMSA, Tecnológico de Monterrey at Monterrey, Ave. Eugenio Garza Sada 2501 Sur Col. Tecnológico, CP 64849, Monterrey, Nuevo León, México
- Biomaterials Innovation Research Center, Division of Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston 02139, MA, USA
- Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge 02139, MA, USA
| | - LM Rodríguez-Martínez
- Centro de Biotecnología-FEMSA, Tecnológico de Monterrey at Monterrey, Ave. Eugenio Garza Sada 2501 Sur Col. Tecnológico, CP 64849, Monterrey, Nuevo León, México
| | - N Annabi
- Biomaterials Innovation Research Center, Division of Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston 02139, MA, USA
- Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge 02139, MA, USA
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115
| | - A Khademhosseini
- Biomaterials Innovation Research Center, Division of Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston 02139, MA, USA
- Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge 02139, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston 02115, MA, USA
- Department of Physics, King Abdulaziz University, Jeddah 21569, Saudi Arabia
| |
Collapse
|
36
|
Trad MA, Naughton W, Yeung A, Mazlin L, O'sullivan M, Gilroy N, Fisher DA, Stuart RL. Ebola virus disease: An update on current prevention and management strategies. J Clin Virol 2016; 86:5-13. [PMID: 27893999 DOI: 10.1016/j.jcv.2016.11.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Revised: 10/06/2016] [Accepted: 11/08/2016] [Indexed: 11/28/2022]
Abstract
Ebola virus disease (EVD) is characterised by systemic viral replication, immuno-suppression, abnormal inflammatory responses, large volume fluid and electrolyte losses, and high mortality in under-resourced settings. There are various therapeutic strategies targeting EVD including vaccines utilizing different antigen delivery methods, antibody-based therapies and antiviral drugs. These therapies remain experimental, but received attention following their use particularly in cases treated outside West Africa during the 2014-15 outbreak, in which 20 (80%) out of 25 patients survived. Emerging data from current trials look promising and are undergoing further study, however optimised supportive care remains the key to reducing mortality from EVD.
Collapse
Affiliation(s)
- M A Trad
- Department of Infectious Diseases, Wollongong Hospital, Wollongong, NSW, Australia; Graduate School of Medicine, University of Wollongong, Wollongong, Australia; Medecins Sans Frontieres, Paris, France.
| | - W Naughton
- Department of Infectious Diseases, Monash Health, Clayton, Victoria, Australia
| | - A Yeung
- Department of Infectious Diseases, Monash Health, Clayton, Victoria, Australia
| | - L Mazlin
- Medecins Sans Frontieres, Brussels, Belgium
| | - M O'sullivan
- Centre for Infectious Diseases and Microbiology, Pathology West, Westmead Hospital, NSW, Australia; Marie Bashir Institute for Infectious Diseases and Biosecurity, University of Sydney, NSW, Australia
| | - N Gilroy
- Centre for Infectious Diseases and Microbiology, Pathology West, Westmead Hospital, NSW, Australia
| | - D A Fisher
- Division of Infectious Diseases, University Medicine Cluster, National University Hospital, Singapore; Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - R L Stuart
- Department of Infectious Diseases, Monash Health, Clayton, Victoria, Australia; Department of Medicine, Monash University, Victoria, Australia
| |
Collapse
|
37
|
Zhang Q, Gui M, Niu X, He S, Wang R, Feng Y, Kroeker A, Zuo Y, Wang H, Wang Y, Li J, Li C, Shi Y, Shi X, Gao GF, Xiang Y, Qiu X, Chen L, Zhang L. Potent neutralizing monoclonal antibodies against Ebola virus infection. Sci Rep 2016; 6:25856. [PMID: 27181584 PMCID: PMC4867612 DOI: 10.1038/srep25856] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 04/18/2016] [Indexed: 01/11/2023] Open
Abstract
Ebola virus infections cause a deadly hemorrhagic disease for which no vaccines or therapeutics has received regulatory approval. Here we show isolation of three (Q206, Q314 and Q411) neutralizing monoclonal antibodies (mAbs) against the surface glycoprotein (GP) of Ebola virus identified in West Africa in 2014 through sequential immunization of Chinese rhesus macaques and antigen-specific single B cell sorting. These mAbs demonstrated potent neutralizing activities against both pseudo and live Ebola virus independent of complement. Biochemical, single particle EM, and mutagenesis analysis suggested Q206 and Q411 recognized novel epitopes in the head while Q314 targeted the glycan cap in the GP1 subunit. Q206 and Q411 appeared to influence GP binding to its receptor NPC1. Treatment with these mAbs provided partial but significant protection against disease in a mouse model of Ebola virus infection. These novel mAbs could serve as promising candidates for prophylactic and therapeutic interventions against Ebola virus infection.
Collapse
Affiliation(s)
- Qi Zhang
- Comprehensive AIDS Research Center, and Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Miao Gui
- Beijing Advanced Innovation Center for Structure Biology, and Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Xuefeng Niu
- State Key Laboratory of Respiratory Disease, First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510230, China
| | - Shihua He
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, R3E 3R2 Canada.,Department of Medical Microbiology, University of Manitoba, Winnipeg, Manitoba, R3E 0J9 Canada
| | - Ruoke Wang
- Comprehensive AIDS Research Center, and Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Yupeng Feng
- Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Andrea Kroeker
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, R3E 3R2 Canada.,Department of Medical Microbiology, University of Manitoba, Winnipeg, Manitoba, R3E 0J9 Canada
| | - Yanan Zuo
- Comprehensive AIDS Research Center, and Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Hua Wang
- Comprehensive AIDS Research Center, and Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Ying Wang
- Comprehensive AIDS Research Center, and Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Jiade Li
- Comprehensive AIDS Research Center, and Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Chufang Li
- State Key Laboratory of Respiratory Disease, First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510230, China
| | - Yi Shi
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology and Research Network of Immunity and Health, and Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China
| | - Xuanling Shi
- Comprehensive AIDS Research Center, and Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Medicine, Tsinghua University, Beijing 100084, China
| | - George F Gao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology and Research Network of Immunity and Health, and Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China
| | - Ye Xiang
- Beijing Advanced Innovation Center for Structure Biology, and Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Xiangguo Qiu
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, R3E 3R2 Canada.,Department of Medical Microbiology, University of Manitoba, Winnipeg, Manitoba, R3E 0J9 Canada
| | - Ling Chen
- State Key Laboratory of Respiratory Disease, First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510230, China.,Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Linqi Zhang
- Comprehensive AIDS Research Center, and Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Medicine, Tsinghua University, Beijing 100084, China
| |
Collapse
|
38
|
Grant-Klein RJ, Altamura LA, Badger CV, Bounds CE, Van Deusen NM, Kwilas SA, Vu HA, Warfield KL, Hooper JW, Hannaman D, Dupuy LC, Schmaljohn CS. Codon-optimized filovirus DNA vaccines delivered by intramuscular electroporation protect cynomolgus macaques from lethal Ebola and Marburg virus challenges. Hum Vaccin Immunother 2016; 11:1991-2004. [PMID: 25996997 DOI: 10.1080/21645515.2015.1039757] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Cynomolgus macaques were vaccinated by intramuscular electroporation with DNA plasmids expressing codon-optimized glycoprotein (GP) genes of Ebola virus (EBOV) or Marburg virus (MARV) or a combination of codon-optimized GP DNA vaccines for EBOV, MARV, Sudan virus and Ravn virus. When measured by ELISA, the individual vaccines elicited slightly higher IgG responses to EBOV or MARV than did the combination vaccines. No significant differences in immune responses of macaques given the individual or combination vaccines were measured by pseudovirion neutralization or IFN-γ ELISpot assays. Both the MARV and mixed vaccines were able to protect macaques from lethal MARV challenge (5/6 vs. 6/6). In contrast, a greater proportion of macaques vaccinated with the EBOV vaccine survived lethal EBOV challenge in comparison to those that received the mixed vaccine (5/6 vs. 1/6). EBOV challenge survivors had significantly higher pre-challenge neutralizing antibody titers than those that succumbed.
Collapse
Affiliation(s)
- Rebecca J Grant-Klein
- a United States Army Medical Research Institute of Infectious Diseases ; Fort Detrick , MD USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Chimeric Filoviruses for Identification and Characterization of Monoclonal Antibodies. J Virol 2016; 90:3890-3901. [PMID: 26819310 DOI: 10.1128/jvi.00101-16] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 01/22/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Recent experiments suggest that some glycoprotein (GP)-specific monoclonal antibodies (MAbs) can protect experimental animals against the filovirus Ebola virus (EBOV). There is a need for isolation of MAbs capable of neutralizing multiple filoviruses. Antibody neutralization assays for filoviruses frequently use surrogate systems such as the rhabdovirus vesicular stomatitis Indiana virus (VSV), lentiviruses or gammaretroviruses with their envelope proteins replaced with EBOV GP or pseudotyped with EBOV GP. It is optimal for both screening and in-depth characterization of newly identified neutralizing MAbs to generate recombinant filoviruses that express a reporter fluorescent protein in order to more easily monitor and quantify the infection. Our study showed that unlike neutralization-sensitive chimeric VSV, authentic filoviruses are highly resistant to neutralization by MAbs. We used reverse genetics techniques to replace EBOV GP with its counterpart from the heterologous filoviruses Bundibugyo virus (BDBV), Sudan virus, and even Marburg virus and Lloviu virus, which belong to the heterologous genera in the filovirus family. This work resulted in generation of multiple chimeric filoviruses, demonstrating the ability of filoviruses to tolerate swapping of the envelope protein. The sensitivity of chimeric filoviruses to neutralizing MAbs was similar to that of authentic biologically derived filoviruses with the same GP. Moreover, disabling the expression of the secreted GP (sGP) resulted in an increased susceptibility of an engineered virus to the BDBV52 MAb isolated from a BDBV survivor, suggesting a role for sGP in evasion of antibody neutralization in the context of a human filovirus infection. IMPORTANCE The study demonstrated that chimeric rhabdoviruses in which G protein is replaced with filovirus GP, widely used as surrogate targets for characterization of filovirus neutralizing antibodies, do not accurately predict the ability of antibodies to neutralize authentic filoviruses, which appeared to be resistant to neutralization. However, a recombinant EBOV expressing a fluorescent protein tolerated swapping of GP with counterparts from heterologous filoviruses, allowing high-throughput screening of B cell lines to isolate MAbs of any filovirus specificity. Human MAb BDBV52, which was isolated from a survivor of BDBV infection, was capable of partially neutralizing a chimeric EBOV carrying BDBV GP in which expression of sGP was disabled. In contrast, the parental virus expressing sGP was resistant to the MAb. Thus, the ability of filoviruses to tolerate swapping of GP can be used for identification of neutralizing MAbs specific to any filovirus and for the characterization of MAb specificity and mechanism of action.
Collapse
|
40
|
Misasi J, Gilman MSA, Kanekiyo M, Gui M, Cagigi A, Mulangu S, Corti D, Ledgerwood JE, Lanzavecchia A, Cunningham J, Muyembe-Tamfun JJ, Baxa U, Graham BS, Xiang Y, Sullivan NJ, McLellan JS. Structural and molecular basis for Ebola virus neutralization by protective human antibodies. Science 2016; 351:1343-6. [PMID: 26917592 PMCID: PMC5241105 DOI: 10.1126/science.aad6117] [Citation(s) in RCA: 156] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2015] [Accepted: 02/17/2016] [Indexed: 12/18/2022]
Abstract
Ebola virus causes hemorrhagic fever with a high case fatality rate for which there is no approved therapy. Two human monoclonal antibodies, mAb100 and mAb114, in combination, protect nonhuman primates against all signs of Ebola virus disease, including viremia. Here, we demonstrate that mAb100 recognizes the base of the Ebola virus glycoprotein (GP) trimer, occludes access to the cathepsin-cleavage loop, and prevents the proteolytic cleavage of GP that is required for virus entry. We show that mAb114 interacts with the glycan cap and inner chalice of GP, remains associated after proteolytic removal of the glycan cap, and inhibits binding of cleaved GP to its receptor. These results define the basis of neutralization for two protective antibodies and may facilitate development of therapies and vaccines.
Collapse
Affiliation(s)
- John Misasi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA. Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA. Division of Infectious Diseases, Boston Children's Hospital, Boston, MA 02215, USA
| | - Morgan S A Gilman
- Department of Biochemistry, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Masaru Kanekiyo
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Miao Gui
- Centre for Infectious Diseases Research, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing Advanced Innovation Center for Structural Biology, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084 China
| | - Alberto Cagigi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sabue Mulangu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Davide Corti
- Institute for Research in Biomedicine, Università della Svizzera Italiana, CH-6500 Bellinzona, Switzerland
| | - Julie E Ledgerwood
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Antonio Lanzavecchia
- Institute for Research in Biomedicine, Università della Svizzera Italiana, CH-6500 Bellinzona, Switzerland. Institute of Microbiology, ETH Zurich, CH-8093 Zurich, Switzerland
| | - James Cunningham
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Jean Jacques Muyembe-Tamfun
- National Institute for Biomedical Research, National Laboratory of Public Health, Kinshasa B.P. 1197, Democratic Republic of the Congo
| | - Ulrich Baxa
- Electron Microscopy Laboratory, Cancer Research Technology Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Barney S Graham
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ye Xiang
- Centre for Infectious Diseases Research, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing Advanced Innovation Center for Structural Biology, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084 China.
| | - Nancy J Sullivan
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Jason S McLellan
- Department of Biochemistry, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| |
Collapse
|
41
|
Asati A, Kachurina O, Karol A, Dhir V, Nguyen M, Parkhill R, Kouiavskaia D, Chumakov K, Warren W, Kachurin A. Fluorescence Adherence Inhibition Assay: A Novel Functional Assessment of Blocking Virus Attachment by Vaccine-Induced Antibodies. PLoS One 2016; 11:e0144261. [PMID: 26863313 PMCID: PMC4749260 DOI: 10.1371/journal.pone.0144261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 11/16/2015] [Indexed: 11/18/2022] Open
Abstract
Neutralizing antibodies induced by vaccination or natural infection play a critically important role in protection against the viral diseases. In general, neutralization of the viral infection occurs via two major pathways: pre- and post-attachment modes, the first being the most important for such infections as influenza and polio, the latter being significant for filoviruses. Neutralizing capacity of antibodies is typically evaluated by virus neutralization assays that assess reduction of viral infectivity to the target cells in the presence of functional antibodies. Plaque reduction neutralization test, microneutralization and immunofluorescent assays are often used as gold standard virus neutralization assays. However, these methods are associated with several important prerequisites such as use of live virus requiring safety precautions, tedious evaluation procedure and long assessment time. Hence, there is a need for a robust, inexpensive high throughput functional assay that can be performed rapidly using inactivated virus, without extensive safety precautions. Herein, we report a novel high throughput Fluorescence Adherence Inhibition assay (fADI) using inactivated virus labeled with fluorescent secondary antibodies virus and Vero cells or erythrocytes as targets. It requires only few hours to assess pre-attachment neutralizing capacity of donor sera. fADI assay was tested successfully on donors immunized with polio, yellow fever and influenza vaccines. To further simplify and improve the throughput of the assay, we have developed a mathematical approach for calculating the 50% titers from a single sample dilution, without the need to analyze multi-point titration curves. Assessment of pre- and post-vaccination human sera from subjects immunized with IPOL®, YF-VAX® and 2013-2014 Fluzone® vaccines demonstrated high efficiency of the assay. The results correlated very well with microneutralization assay performed independently by the FDA Center of Biologics Evaluation and Research, with plaque reduction neutralization test performed by Focus Diagnostics, and with hemaglutination inhibition assay performed in-house at Sanofi Pasteur. Taken together, fADI assay appears to be a useful high throughput functional immunoassay for assessment of antibody-related neutralization of the viral infections for which pre-attachment neutralization pathway is predominant, such as polio, influenza, yellow fever and dengue.
Collapse
Affiliation(s)
- Atul Asati
- Sanofi Pasteur VaxDesign Campus, 2501 Discovery Dr. Suite 3000, Orlando, Florida 32826, United States of America
| | - Olga Kachurina
- Sanofi Pasteur VaxDesign Campus, 2501 Discovery Dr. Suite 3000, Orlando, Florida 32826, United States of America
| | - Alex Karol
- Sanofi Pasteur VaxDesign Campus, 2501 Discovery Dr. Suite 3000, Orlando, Florida 32826, United States of America
| | - Vipra Dhir
- Sanofi Pasteur VaxDesign Campus, 2501 Discovery Dr. Suite 3000, Orlando, Florida 32826, United States of America
| | - Michael Nguyen
- Sanofi Pasteur VaxDesign Campus, 2501 Discovery Dr. Suite 3000, Orlando, Florida 32826, United States of America
| | - Robert Parkhill
- Sanofi Pasteur VaxDesign Campus, 2501 Discovery Dr. Suite 3000, Orlando, Florida 32826, United States of America
| | - Diana Kouiavskaia
- U. S. Food and Drug Administration, Center for Biologics Evaluation and Research, 10903 New Hampshire Avenue, Silver Spring, MD 20993, United States of America
| | - Konstantin Chumakov
- U. S. Food and Drug Administration, Center for Biologics Evaluation and Research, 10903 New Hampshire Avenue, Silver Spring, MD 20993, United States of America
| | - William Warren
- Sanofi Pasteur VaxDesign Campus, 2501 Discovery Dr. Suite 3000, Orlando, Florida 32826, United States of America
| | - Anatoly Kachurin
- Sanofi Pasteur VaxDesign Campus, 2501 Discovery Dr. Suite 3000, Orlando, Florida 32826, United States of America
| |
Collapse
|
42
|
Geisen C, Kann G, Strecker T, Wolf T, Schüttfort G, van Kraaij M, MacLennan S, Rummler S, Weinigel C, Eickmann M, Fehling SK, Krähling V, Seidl C, Seifried E, Schmidt M, Schäfer R. Pathogen-reduced Ebola virus convalescent plasma: first steps towards standardization of manufacturing and quality control including assessment of Ebola-specific neutralizing antibodies. Vox Sang 2016; 110:329-35. [PMID: 26766162 DOI: 10.1111/vox.12376] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2015] [Revised: 12/08/2015] [Accepted: 12/09/2015] [Indexed: 01/16/2023]
Abstract
BACKGROUND Ebola virus disease is a public health emergency of international concern, and enormous efforts are being made in the development of vaccines and therapies. Ebola virus convalescent plasma is a promising anti-infective treatment of Ebola virus disease. Therefore, we developed and implemented a pathogen-reduced Ebola virus convalescent plasma concept in accordance with national, European and global regulatory framework. MATERIALS AND METHODS Ebola virus convalescent plasma manufacture and distribution was managed by a collection centre, two medical centres and an expert group from the European Blood Alliance. Ebola virus convalescent plasma was collected twice with an interval of 61 days from a donor recovering from Ebola virus disease in Germany. After pathogen reduction, the plasma was analysed for Ebola virus-specific immunoglobulin G (IgG) antibodies and its Ebola virus neutralizing activity. RESULTS Convalescent plasma could be collected without adverse events. Anti-Ebola virus IgG titres and Ebola-specific neutralizing antibodies in convalescent plasma were only slightly reduced after pathogen reduction treatment with S59 amotosalen/UVA. A patient in Italy with Ebola virus disease was treated with convalescent plasma without apparent adverse effects. DISCUSSION As proof of principle, we describe a concept and practical implementation of pathogen-reduced Ebola virus convalescent plasma manufacture, quality control and its clinical application to an Ebola virus disease patient.
Collapse
Affiliation(s)
- C Geisen
- Institute for Transfusion Medicine and Immunohaematology, German Red Cross Blood Donor Service Baden-Württemberg-Hessen gGmbH, Goethe University Hospital, Frankfurt am Main, Germany
| | - G Kann
- Department of Infectious Diseases, Goethe University Hospital, Frankfurt am Main, Germany
| | - T Strecker
- Institute of Virology, Philipps University Marburg, Marburg, Germany
| | - T Wolf
- Department of Infectious Diseases, Goethe University Hospital, Frankfurt am Main, Germany
| | - G Schüttfort
- Department of Infectious Diseases, Goethe University Hospital, Frankfurt am Main, Germany
| | | | | | - S Rummler
- Institute of Transfusion Medicine, University Hospital Jena, Jena, Germany
| | - C Weinigel
- Institute of Transfusion Medicine, University Hospital Jena, Jena, Germany
| | - M Eickmann
- Institute of Virology, Philipps University Marburg, Marburg, Germany
| | - S K Fehling
- Institute of Virology, Philipps University Marburg, Marburg, Germany
| | - V Krähling
- Institute of Virology, Philipps University Marburg, Marburg, Germany
| | - C Seidl
- Institute for Transfusion Medicine and Immunohaematology, German Red Cross Blood Donor Service Baden-Württemberg-Hessen gGmbH, Goethe University Hospital, Frankfurt am Main, Germany
| | - E Seifried
- Institute for Transfusion Medicine and Immunohaematology, German Red Cross Blood Donor Service Baden-Württemberg-Hessen gGmbH, Goethe University Hospital, Frankfurt am Main, Germany
| | - M Schmidt
- Institute for Transfusion Medicine and Immunohaematology, German Red Cross Blood Donor Service Baden-Württemberg-Hessen gGmbH, Goethe University Hospital, Frankfurt am Main, Germany
| | - R Schäfer
- Institute for Transfusion Medicine and Immunohaematology, German Red Cross Blood Donor Service Baden-Württemberg-Hessen gGmbH, Goethe University Hospital, Frankfurt am Main, Germany
| |
Collapse
|
43
|
Reynard O, Volchkov VE. Characterization of a Novel Neutralizing Monoclonal Antibody Against Ebola Virus GP. J Infect Dis 2015; 212 Suppl 2:S372-8. [DOI: 10.1093/infdis/jiv303] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
44
|
Chippaux JP, Boyer LV, Alagón A. Post-exposure treatment of Ebola virus using passive immunotherapy: proposal for a new strategy. J Venom Anim Toxins Incl Trop Dis 2015; 21:3. [PMID: 25705218 PMCID: PMC4336475 DOI: 10.1186/s40409-015-0003-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 02/03/2015] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Better treatments are urgently needed for the management of Ebola virus epidemics in Equatorial Africa. METHODS We conducted a systematic review of the literature on the use of passive immunotherapy for the treatment or prevention of Ebola virus disease. We placed findings from this review into the context of passive immunotherapy currently used for venom-induced disease, and recent improvements in manufacturing of polyvalent antivenom products. RESULTS Passive immunotherapy appears to be one of the most promising specific treatments for Ebola. However, its potential has been incompletely evaluated, considering the overall experience and recent improvement of immunotherapy. Development and use of heterologous serum derivatives could protect people exposed to Ebola viruses with reasonable cost and logistics. CONCLUSION Hyperimmune equine IgG fragments and purified polyclonal whole IgG deserve further consideration as treatment for exposure to the Ebola virus.
Collapse
Affiliation(s)
- Jean-Philippe Chippaux
- />UMR 216, Mother and Child Facing Tropical Diseases, Research Institute for Development (IRD), Cotonou, Benin, and School of Pharmacy, Paris Descartes University, Sorbonne Paris Cité, Paris, France
- />Institut de Recherche pour le Développement (IRD), 08 BP 841 Cotonou, Bénin
| | - Leslie V Boyer
- />Venom Immunochemistry, Pharmacology and Emergency Response (VIPER) Institute, University of Arizona, Tucson, Arizona USA
| | - Alejandro Alagón
- />Institute of Biotechnology, National Autonomous University of Mexico (UNAM), Cuernavaca, Morelos Mexico
| |
Collapse
|
45
|
Preface. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2015; 129:xv-xix. [DOI: 10.1016/s1877-1173(14)00043-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
46
|
Li H, Ying T, Yu F, Lu L, Jiang S. Development of therapeutics for treatment of Ebola virus infection. Microbes Infect 2014; 17:109-17. [PMID: 25498866 DOI: 10.1016/j.micinf.2014.11.012] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Revised: 11/25/2014] [Accepted: 11/28/2014] [Indexed: 11/27/2022]
Abstract
Ebola virus infection can cause Ebola virus disease (EVD). Patients usually show severe symptoms, and the fatality rate can reach up to 90%. No licensed medicine is available. In this review, development of therapeutics for treatment of Ebola virus infection and EVD will be discussed.
Collapse
Affiliation(s)
- Haoyang Li
- Key Lab of Medical Molecular Virology of MOE/MOH, Shanghai Medical College, Fudan University, 130 Dong An Rd., Xuhui District, Shanghai 200032, China
| | - Tianlei Ying
- Key Lab of Medical Molecular Virology of MOE/MOH, Shanghai Medical College, Fudan University, 130 Dong An Rd., Xuhui District, Shanghai 200032, China
| | - Fei Yu
- Key Lab of Medical Molecular Virology of MOE/MOH, Shanghai Medical College, Fudan University, 130 Dong An Rd., Xuhui District, Shanghai 200032, China
| | - Lu Lu
- Key Lab of Medical Molecular Virology of MOE/MOH, Shanghai Medical College, Fudan University, 130 Dong An Rd., Xuhui District, Shanghai 200032, China.
| | - Shibo Jiang
- Key Lab of Medical Molecular Virology of MOE/MOH, Shanghai Medical College, Fudan University, 130 Dong An Rd., Xuhui District, Shanghai 200032, China; Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY 10065, USA.
| |
Collapse
|
47
|
Lai KY, Ng WYG, Cheng FF. Human Ebola virus infection in West Africa: a review of available therapeutic agents that target different steps of the life cycle of Ebola virus. Infect Dis Poverty 2014; 3:43. [PMID: 25699183 PMCID: PMC4334593 DOI: 10.1186/2049-9957-3-43] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 11/13/2014] [Indexed: 12/21/2022] Open
Abstract
The recent outbreak of the human Zaire ebolavirus (EBOV) epidemic is spiraling out of control in West Africa. Human EBOV hemorrhagic fever has a case fatality rate of up to 90%. The EBOV is classified as a biosafety level 4 pathogen and is considered a category A agent of bioterrorism by Centers for Disease Control and Prevention, with no approved therapies and vaccines available for its treatment apart from supportive care. Although several promising therapeutic agents and vaccines against EBOV are undergoing the Phase I human trial, the current epidemic might be outpacing the speed at which drugs and vaccines can be produced. Like all viruses, the EBOV largely relies on host cell factors and physiological processes for its entry, replication, and egress. We have reviewed currently available therapeutic agents that have been shown to be effective in suppressing the proliferation of the EBOV in cell cultures or animal studies. Most of the therapeutic agents in this review are directed against non-mutable targets of the host, which is independent of viral mutation. These medications are approved by the Food and Drug Administration (FDA) for the treatment of other diseases. They are available and stockpileable for immediate use. They may also have a complementary role to those therapeutic agents under development that are directed against the mutable targets of the EBOV.
Collapse
Affiliation(s)
- Kang Yiu Lai
- />Department of Intensive Care, Queen Elizabeth Hospital, HKSAR, B6, 30 Gascoigne Rd, Kowloon, Hong Kong SAR China
| | - Wing Yiu George Ng
- />Department of Intensive Care, Queen Elizabeth Hospital, HKSAR, B6, 30 Gascoigne Rd, Kowloon, Hong Kong SAR China
| | - Fan Fanny Cheng
- />Department of Medicine, Queen Elizabeth Hospital, HKSAR, Kowloon, Hong Kong SARChina
| |
Collapse
|
48
|
Nonneutralizing functional antibodies: a new "old" paradigm for HIV vaccines. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2014; 21:1023-36. [PMID: 24920599 DOI: 10.1128/cvi.00230-14] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Animal and human data from various viral infections and vaccine studies suggest that nonneutralizing antibodies (nNAb) without neutralizing activity in vitro may play an important role in protection against viral infection in vivo. This was illustrated by the recent human immunodeficiency virus (HIV) RV144 vaccine efficacy trial, which demonstrated that HIV-specific IgG-mediated nNAb directed against the V2 loop of HIV type 1 envelope (Env) were inversely correlated with risk for HIV acquisition, while Env-specific plasma IgA-mediated antibodies were directly correlated with risk. However, tier 1 NAb in the subset of responders with a low level of plasma Env-specific IgA correlated with decreased risk. Nonhuman primate simian immunodeficiency virus (SIV) and simian-human immunodeficiency virus (SHIV) challenge studies suggest that Env-mediated antibodies are essential and sufficient for protection. A comparison of immune responses generated in human efficacy trials reveals subtle differences in the fine specificities of the antibody responses, in particular in HIV-specific IgG subclasses. The underlying mechanisms that may have contributed to protection against HIV acquisition in humans, although not fully understood, are possibly mediated by antibody-dependent cell-mediated cytotoxicity (ADCC) and/or other nonneutralizing humoral effector functions, such as antibody-mediated phagocytosis. The presence of such functional nNAb in mucosal tissues and cervico-vaginal and rectal secretions challenges the paradigm that NAb are the predominant immune response conferring protection, although this does not negate the desirability of evoking neutralizing antibodies through vaccination. Instead, NAb and nNAb should be looked upon as complementary or synergistic humoral effector functions. Several HIV vaccine clinical trials to study these antibody responses in various prime-boost modalities in the systemic and mucosal compartments are ongoing. The induction of high-frequency HIV-specific functional nNAb at high titers may represent an attractive hypothesis-testing strategy in future HIV vaccine efficacy trials.
Collapse
|
49
|
Takada A. Do therapeutic antibodies hold the key to an effective treatment for Ebola hemorrhagic fever? Immunotherapy 2013; 5:441-3. [PMID: 23638738 DOI: 10.2217/imt.13.29] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
50
|
Abstract
Ebola is a highly virulent pathogen causing severe hemorrhagic fever with a high case fatality rate in humans and non-human primates (NHPs). Although safe and effective vaccines or other medicinal agents to block Ebola infection are currently unavailable, a significant effort has been put forth to identify several promising candidates for the treatment and prevention of Ebola hemorrhagic fever. Among these, recombinant adenovirus-based vectors have been identified as potent vaccine candidates, with some affording both pre- and post-exposure protection from the virus. Recently, Investigational New Drug (IND) applications have been approved by the US Food and Drug Administration (FDA) and phase I clinical trials have been initiated for two small-molecule therapeutics: anti-sense phosphorodiamidate morpholino oligomers (PMOs: AVI-6002, AVI-6003) and lipid nanoparticle/small interfering RNA (LNP/siRNA: TKM-Ebola). These potential alternatives to vector-based vaccines require multiple doses to achieve therapeutic efficacy, which is not ideal with regard to patient compliance and outbreak scenarios. These concerns have fueled a quest for even better vaccination and treatment strategies. Here, we summarize recent advances in vaccines or post-exposure therapeutics for prevention of Ebola hemorrhagic fever. The utility of novel pharmaceutical approaches to refine and overcome barriers associated with the most promising therapeutic platforms are also discussed.
Collapse
Affiliation(s)
- Jin Huk Choi
- Division of Pharmaceutics, College of Pharmacy, The University of Texas at Austin, Austin, TX, 78712, U.S.A
| | - Maria A. Croyle
- Division of Pharmaceutics, College of Pharmacy, The University of Texas at Austin, Austin, TX, 78712, U.S.A
- Institute of Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, 78712, U.S.A
| |
Collapse
|