1
|
Fiers J, Cay AB, Maes D, Tignon M. A Comprehensive Review on Porcine Reproductive and Respiratory Syndrome Virus with Emphasis on Immunity. Vaccines (Basel) 2024; 12:942. [PMID: 39204065 PMCID: PMC11359659 DOI: 10.3390/vaccines12080942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/05/2024] [Accepted: 08/20/2024] [Indexed: 09/03/2024] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is one of the most important pathogens in pig production worldwide and responsible for enormous production and economic losses. PRRSV infection in gestating gilts and sows induces important reproductive failure. Additionally, respiratory distress is observed in infected piglets and fattening pigs, resulting in growth retardation and increased mortality. Importantly, PRRSV infection interferes with immunity in the respiratory tract, making PRRSV-infected pigs more susceptible to opportunistic secondary pathogens. Despite the availability of commercial PRRSV vaccines for more than three decades, control of the disease remains a frustrating and challenging task. This paper provides a comprehensive overview of PRRSV, covering its history, economic and scientific importance, and description of the viral structure and genetic diversity. It explores the virus's pathogenesis, including cell tropism, viral entry, replication, stages of infection and epidemiology. It reviews the porcine innate and adaptative immune responses to comprehend the modulation mechanisms employed by PRRS for immune evasion.
Collapse
Affiliation(s)
- Jorian Fiers
- Unit Viral Re-Emerging, Enzootic and Bee Diseases, Department Infectious Diseases in Animals, Sciensano, Groeselenbergstraat 99, 1180 Ukkel, Belgium
- Unit of Porcine Health Management, Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium;
| | - Ann Brigitte Cay
- Unit Viral Re-Emerging, Enzootic and Bee Diseases, Department Infectious Diseases in Animals, Sciensano, Groeselenbergstraat 99, 1180 Ukkel, Belgium
| | - Dominiek Maes
- Unit of Porcine Health Management, Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium;
| | - Marylène Tignon
- Unit Viral Re-Emerging, Enzootic and Bee Diseases, Department Infectious Diseases in Animals, Sciensano, Groeselenbergstraat 99, 1180 Ukkel, Belgium
| |
Collapse
|
2
|
Davis SK, Jia F, Wright QG, Islam MT, Bean A, Layton D, Williams DT, Lynch SE. Defining correlates of protection for mammalian livestock vaccines against high-priority viral diseases. Front Immunol 2024; 15:1397780. [PMID: 39100679 PMCID: PMC11294087 DOI: 10.3389/fimmu.2024.1397780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 06/28/2024] [Indexed: 08/06/2024] Open
Abstract
Enhancing livestock biosecurity is critical to safeguard the livelihoods of farmers, global and local economies, and food security. Vaccination is fundamental to the control and prevention of exotic and endemic high-priority infectious livestock diseases. Successful implementation of vaccination in a biosecurity plan is underpinned by a strong understanding of correlates of protection-those elements of the immune response that can reliably predict the level of protection from viral challenge. While correlates of protection have been successfully characterized for many human viral vaccines, for many high-priority livestock viral diseases, including African swine fever and foot and mouth disease, they remain largely uncharacterized. Current literature provides insights into potential correlates of protection that should be assessed during vaccine development for these high-priority mammalian livestock viral diseases. Establishment of correlates of protection for biosecurity purposes enables immune surveillance, rationale for vaccine development, and successful implementation of livestock vaccines as part of a biosecurity strategy.
Collapse
Affiliation(s)
- Samantha K. Davis
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Australian Centre for Disease Preparedness, Geelong, VIC, Australia
| | | | | | | | | | | | | | | |
Collapse
|
3
|
de Brito RCF, Holtham K, Roser J, Saunders JE, Wezel Y, Henderson S, Mauch T, Sanz-Bernardo B, Frossard JP, Bernard M, Lean FZX, Nunez A, Gubbins S, Suárez NM, Davison AJ, Francis MJ, Huether M, Benchaoui H, Salt J, Fowler VL, Jarvis MA, Graham SP. An attenuated herpesvirus vectored vaccine candidate induces T-cell responses against highly conserved porcine reproductive and respiratory syndrome virus M and NSP5 proteins that are unable to control infection. Front Immunol 2023; 14:1201973. [PMID: 37600784 PMCID: PMC10436000 DOI: 10.3389/fimmu.2023.1201973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 07/14/2023] [Indexed: 08/22/2023] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) remains a leading cause of economic loss in pig farming worldwide. Existing commercial vaccines, all based on modified live or inactivated PRRSV, fail to provide effective immunity against the highly diverse circulating strains of both PRRSV-1 and PRRSV-2. Therefore, there is an urgent need to develop more effective and broadly active PRRSV vaccines. In the absence of neutralizing antibodies, T cells are thought to play a central role in controlling PRRSV infection. Herpesvirus-based vectors are novel vaccine platforms capable of inducing high levels of T cells against encoded heterologous antigens. Therefore, the aim of this study was to assess the immunogenicity and efficacy of an attenuated herpesvirus-based vector (bovine herpesvirus-4; BoHV-4) expressing a fusion protein comprising two well-characterized PRRSV-1 T-cell antigens (M and NSP5). Prime-boost immunization of pigs with BoHV-4 expressing the M and NSP5 fusion protein (vector designated BoHV-4-M-NSP5) induced strong IFN-γ responses, as assessed by ELISpot assays of peripheral blood mononuclear cells (PBMC) stimulated with a pool of peptides representing PRRSV-1 M and NSP5. The responses were closely mirrored by spontaneous IFN-γ release from unstimulated cells, albeit at lower levels. A lower frequency of M and NSP5 specific IFN-γ responding cells was induced following a single dose of BoHV-4-M-NSP5 vector. Restimulation using M and NSP5 peptides from PRRSV-2 demonstrated a high level of cross-reactivity. Vaccination with BoHV-4-M-NSP5 did not affect viral loads in either the blood or lungs following challenge with the two heterologous PRRSV-1 strains. However, the BoHV-4-M-NSP5 prime-boost vaccination showed a marked trend toward reduced lung pathology following PRRSV-1 challenge. The limited effect of T cells on PRRSV-1 viral load was further examined by analyzing local and circulating T-cell responses using intracellular cytokine staining and proliferation assays. The results from this study suggest that vaccine-primed T-cell responses may have helped in the control of PRRSV-1 associated tissue damage, but had a minimal, if any, effect on controlling PRRSV-1 viral loads. Together, these results indicate that future efforts to develop effective PRRSV vaccines should focus on achieving a balanced T-cell and antibody response.
Collapse
Affiliation(s)
| | | | | | - Jack E. Saunders
- The Pirbright Institute, Woking, United Kingdom
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| | - Yvonne Wezel
- The Vaccine Group Ltd., Plymouth, United Kingdom
| | | | - Thekla Mauch
- The Vaccine Group Ltd., Plymouth, United Kingdom
| | | | | | - Matthieu Bernard
- Pathology and Animal Sciences Department, Animal and Plant Health Agency, Addlestone, United Kingdom
| | - Fabian Z. X. Lean
- Pathology and Animal Sciences Department, Animal and Plant Health Agency, Addlestone, United Kingdom
| | - Alejandro Nunez
- Pathology and Animal Sciences Department, Animal and Plant Health Agency, Addlestone, United Kingdom
| | | | - Nicolás M. Suárez
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Andrew J. Davison
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | | | | | | | - Jeremy Salt
- The Vaccine Group Ltd., Plymouth, United Kingdom
| | | | - Michael A. Jarvis
- The Vaccine Group Ltd., Plymouth, United Kingdom
- School of Biomedical Sciences, University of Plymouth, Plymouth, United Kingdom
| | | |
Collapse
|
4
|
Chrun T, Maze EA, Roper KJ, Vatzia E, Paudyal B, McNee A, Martini V, Manjegowda T, Freimanis G, Silesian A, Polo N, Clark B, Besell E, Booth G, Carr BV, Edmans M, Nunez A, Koonpaew S, Wanasen N, Graham SP, Tchilian E. Simultaneous co-infection with swine influenza A and porcine reproductive and respiratory syndrome viruses potentiates adaptive immune responses. Front Immunol 2023; 14:1192604. [PMID: 37287962 PMCID: PMC10242126 DOI: 10.3389/fimmu.2023.1192604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 05/09/2023] [Indexed: 06/09/2023] Open
Abstract
Porcine respiratory disease is multifactorial and most commonly involves pathogen co-infections. Major contributors include swine influenza A (swIAV) and porcine reproductive and respiratory syndrome (PRRSV) viruses. Experimental co-infection studies with these two viruses have shown that clinical outcomes can be exacerbated, but how innate and adaptive immune responses contribute to pathogenesis and pathogen control has not been thoroughly evaluated. We investigated immune responses following experimental simultaneous co-infection of pigs with swIAV H3N2 and PRRSV-2. Our results indicated that clinical disease was not significantly exacerbated, and swIAV H3N2 viral load was reduced in the lung of the co-infected animals. PRRSV-2/swIAV H3N2 co-infection did not impair the development of virus-specific adaptive immune responses. swIAV H3N2-specific IgG serum titers and PRRSV-2-specific CD8β+ T-cell responses in blood were enhanced. Higher proportions of polyfunctional CD8β+ T-cell subset in both blood and lung washes were found in PRRSV-2/swIAV H3N2 co-infected animals compared to the single-infected groups. Our findings provide evidence that systemic and local host immune responses are not negatively affected by simultaneous swIAV H3N2/PRRSV-2 co-infection, raising questions as to the mechanisms involved in disease modulation.
Collapse
Affiliation(s)
| | | | | | | | | | - Adam McNee
- The Pirbright Institute, Woking, United Kingdom
| | | | | | | | | | - Noemi Polo
- The Pirbright Institute, Woking, United Kingdom
| | - Becky Clark
- The Pirbright Institute, Woking, United Kingdom
| | | | | | | | | | - Alejandro Nunez
- Pathology and Animal Sciences, Animal and Plant Health Agency, Addlestone, United Kingdom
| | - Surapong Koonpaew
- Virology and Cell Technology Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathumthani, Thailand
| | - Nanchaya Wanasen
- Virology and Cell Technology Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathumthani, Thailand
| | | | | |
Collapse
|
5
|
Chen XX, Qiao S, Li R, Wang J, Li X, Zhang G. Evasion strategies of porcine reproductive and respiratory syndrome virus. Front Microbiol 2023; 14:1140449. [PMID: 37007469 PMCID: PMC10063791 DOI: 10.3389/fmicb.2023.1140449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 03/06/2023] [Indexed: 03/19/2023] Open
Abstract
During the co-evolution of viruses and their hosts, viruses have developed various strategies for overcoming host immunological defenses so that they can proliferate efficiently. Porcine reproductive and respiratory syndrome virus (PRRSV), a significant virus to the swine industry across the world, typically establishes prolonged infection via diverse and complicated mechanisms, which is one of the biggest obstacles for controlling the associated disease, porcine reproductive and respiratory syndrome (PRRS). In this review, we summarize the latest research on how PRRSV circumvents host antiviral responses from both the innate and adaptive immune systems and how this virus utilizes other evasion mechanisms, such as the manipulation of host apoptosis and microRNA. A thorough understanding of the exact mechanisms of PRRSV immune evasion will help with the development of novel antiviral strategies against PRRSV.
Collapse
Affiliation(s)
- Xin-Xin Chen
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, China
| | - Songlin Qiao
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, China
| | - Rui Li
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, China
| | - Jing Wang
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, China
| | - Xuewu Li
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, China
| | - Gaiping Zhang
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China
| |
Collapse
|
6
|
Kick AR, Grete AF, Crisci E, Almond GW, Käser T. Testable Candidate Immune Correlates of Protection for Porcine Reproductive and Respiratory Syndrome Virus Vaccination. Vaccines (Basel) 2023; 11:vaccines11030594. [PMID: 36992179 DOI: 10.3390/vaccines11030594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/26/2023] [Accepted: 02/26/2023] [Indexed: 03/08/2023] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is an on-going problem for the worldwide pig industry. Commercial and experimental vaccinations often demonstrate reduced pathology and improved growth performance; however, specific immune correlates of protection (CoP) for PRRSV vaccination have not been quantified or even definitively postulated: proposing CoP for evaluation during vaccination and challenge studies will benefit our collective efforts towards achieving protective immunity. Applying the breadth of work on human diseases and CoP to PRRSV research, we advocate four hypotheses for peer review and evaluation as appropriate testable CoP: (i) effective class-switching to systemic IgG and mucosal IgA neutralizing antibodies is required for protective immunity; (ii) vaccination should induce virus-specific peripheral blood CD4+ T-cell proliferation and IFN-γ production with central memory and effector memory phenotypes; cytotoxic T-lymphocytes (CTL) proliferation and IFN-γ production with a CCR7- phenotype that should migrate to the lung; (iii) nursery, finishing, and adult pigs will have different CoP; (iv) neutralizing antibodies provide protection and are rather strain specific; T cells confer disease prevention/reduction and possess greater heterologous recognition. We believe proposing these four CoP for PRRSV can direct future vaccine design and improve vaccine candidate evaluation.
Collapse
Affiliation(s)
- Andrew R Kick
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA
- Department of Chemistry & Life Science, United States Military Academy, West Point, NY 10996, USA
| | - Alicyn F Grete
- Department of Chemistry & Life Science, United States Military Academy, West Point, NY 10996, USA
| | - Elisa Crisci
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA
| | - Glen W Almond
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA
| | - Tobias Käser
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA
- Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| |
Collapse
|
7
|
Fragoso-Saavedra M, Ramírez-Estudillo C, Peláez-González DL, Ramos-Flores JO, Torres-Franco G, Núñez-Muñoz L, Marcelino-Pérez G, Segura-Covarrubias MG, González-González R, Ruiz-Medrano R, Xoconostle-Cázares B, Gayosso-Vázquez A, Reyes-Maya S, Ramírez-Andoney V, Alonso-Morales RA, Vega-López MA. Combined Subcutaneous-Intranasal Immunization With Epitope-Based Antigens Elicits Binding and Neutralizing Antibody Responses in Serum and Mucosae Against PRRSV-2 and SARS-CoV-2. Front Immunol 2022; 13:848054. [PMID: 35432364 PMCID: PMC9008747 DOI: 10.3389/fimmu.2022.848054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 03/08/2022] [Indexed: 11/23/2022] Open
Abstract
New vaccine design approaches, platforms, and immunization strategies might foster antiviral mucosal effector and memory responses to reduce asymptomatic infection and transmission in vaccinated individuals. Here, we investigated a combined parenteral and mucosal immunization scheme to induce local and serum antibody responses, employing the epitope-based antigens 3BT and NG19m. These antigens target the important emerging and re-emerging viruses PRRSV-2 and SARS-CoV-2, respectively. We assessed two versions of the 3BT protein, which contains conserved epitopes from the GP5 envelope protein of PRRSV-2: soluble and expressed by the recombinant baculovirus BacDual-3BT. On the other hand, NG19m, comprising the receptor-binding motif of the S protein of SARS-CoV-2, was evaluated as a soluble recombinant protein only. Vietnamese mini-pigs were immunized employing different inoculation routes: subcutaneous, intranasal, or a combination of both (s.c.-i.n.). Animals produced antigen-binding and neut1ralizing antibodies in serum and mucosal fluids, with varying patterns of concentration and activity, depending on the antigen and the immunization schedule. Soluble 3BT was a potent immunogen to elicit binding and neutralizing antibodies in serum, nasal mucus, and vaginal swabs. The vectored immunogen BacDual-3BT induced binding antibodies in serum and mucosae, but PRRSV-2 neutralizing activity was found in nasal mucus exclusively when administered intranasally. NG19m promoted serum and mucosal binding antibodies, which showed differing neutralizing activity. Only serum samples from subcutaneously immunized animals inhibited RBD-ACE2 interaction, while mini-pigs inoculated intranasally or via the combined s.c.-i.n. scheme produced subtle neutralizing humoral responses in the upper and lower respiratory mucosae. Our results show that intranasal immunization, alone or combined with subcutaneous delivery of epitope-based antigens, generates local and systemic binding and neutralizing antibodies. Further investigation is needed to evaluate the capability of the induced responses to prevent infection and reduce transmission.
Collapse
Affiliation(s)
- Mario Fragoso-Saavedra
- Laboratorio de Inmunobiología de las Mucosas, Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Carmen Ramírez-Estudillo
- Laboratorio de Inmunobiología de las Mucosas, Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Diana L. Peláez-González
- Unidad de Producción y Experimentación de Animales de Laboratorio, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Jorge O. Ramos-Flores
- Unidad de Producción y Experimentación de Animales de Laboratorio, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Gustavo Torres-Franco
- Unidad de Producción y Experimentación de Animales de Laboratorio, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Leandro Núñez-Muñoz
- Laboratorio de Biología Molecular de Plantas, Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Gabriel Marcelino-Pérez
- Laboratorio de Biología Molecular de Plantas, Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - María G. Segura-Covarrubias
- Laboratorio de Biología Molecular de Plantas, Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Rogelio González-González
- Laboratorio de Biología Molecular de Plantas, Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Roberto Ruiz-Medrano
- Laboratorio de Biología Molecular de Plantas, Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Beatriz Xoconostle-Cázares
- Laboratorio de Biología Molecular de Plantas, Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Amanda Gayosso-Vázquez
- Laboratorio de Genética Molecular, Departamento de Genética y Bioestadística, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Silvia Reyes-Maya
- Laboratorio de Genética Molecular, Departamento de Genética y Bioestadística, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Vianey Ramírez-Andoney
- Laboratorio de Genética Molecular, Departamento de Genética y Bioestadística, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Rogelio A. Alonso-Morales
- Laboratorio de Genética Molecular, Departamento de Genética y Bioestadística, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Marco A. Vega-López
- Laboratorio de Inmunobiología de las Mucosas, Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, Mexico
| |
Collapse
|
8
|
Schäfer A, Franzoni G, Netherton CL, Hartmann L, Blome S, Blohm U. Adaptive Cellular Immunity against African Swine Fever Virus Infections. Pathogens 2022; 11:pathogens11020274. [PMID: 35215216 PMCID: PMC8878497 DOI: 10.3390/pathogens11020274] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/14/2022] [Accepted: 02/17/2022] [Indexed: 11/16/2022] Open
Abstract
African swine fever virus (ASFV) remains a threat to global pig populations. Infections with ASFV lead to a hemorrhagic disease with up to 100% lethality in Eurasian domestic and wild pigs. Although myeloid cells are the main target cells for ASFV, T cell responses are impacted by the infection as well. The complex responses remain not well understood, and, consequently, there is no commercially available vaccine. Here, we review the current knowledge about the induction of antiviral T cell responses by cells of the myeloid lineage, as well as T cell responses in infected animals, recent efforts in vaccine research, and T cell epitopes present in ASFV.
Collapse
Affiliation(s)
- Alexander Schäfer
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, 17493 Greifswald-Insel Riems, Germany; (A.S.); (L.H.); (S.B.)
| | - Giulia Franzoni
- Department of Animal Health, Istituto Zooprofilattico Sperimentale della Sardegna, 07100 Sassari, Italy;
| | | | - Luise Hartmann
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, 17493 Greifswald-Insel Riems, Germany; (A.S.); (L.H.); (S.B.)
| | - Sandra Blome
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, 17493 Greifswald-Insel Riems, Germany; (A.S.); (L.H.); (S.B.)
| | - Ulrike Blohm
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, 17493 Greifswald-Insel Riems, Germany; (A.S.); (L.H.); (S.B.)
- Correspondence: ; Tel.: +49-38351-7-1543; +49-38351-7-1236
| |
Collapse
|
9
|
Ruedas-Torres I, Gómez-Laguna J, Sánchez-Carvajal JM, Larenas-Muñoz F, Barranco I, Pallarés FJ, Carrasco L, Rodríguez-Gómez IM. Activation of T-bet, FOXP3, and EOMES in Target Organs From Piglets Infected With the Virulent PRRSV-1 Lena Strain. Front Immunol 2021; 12:773146. [PMID: 34956200 PMCID: PMC8697429 DOI: 10.3389/fimmu.2021.773146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 11/08/2021] [Indexed: 01/13/2023] Open
Abstract
Transcription factors (TFs) modulate genes involved in cell-type-specific proliferative and migratory properties, metabolic features, and effector functions. Porcine reproductive and respiratory syndrome virus (PRRSV) is one of the most important pathogen agents in the porcine industry; however, TFs have been poorly studied during the course of this disease. Therefore, we aimed to evaluate the expressions of the TFs T-bet, GATA3, FOXP3, and Eomesodermin (EOMES) in target organs (the lung, tracheobronchial lymph node, and thymus) and those of different effector cytokines (IFNG, TNFA, and IL10) and the Fas ligand (FASL) during the early phase of infection with PRRSV-1 strains of different virulence. Target organs from mock-, virulent Lena-, and low virulent 3249-infected animals humanely euthanized at 1, 3, 6, 8, and 13 days post-infection (dpi) were collected to analyze the PRRSV viral load, histopathological lesions, and relative quantification through reverse transcription quantitative PCR (RT-qPCR) of the TFs and cytokines. Animals belonging to both infected groups, but mainly those infected with the virulent Lena strain, showed upregulation of the TFs T-bet, EOMES, and FOXP3, together with an increase of the cytokine IFN-γ in target organs at the end of the study (approximately 2 weeks post-infection). These results are suggestive of a stronger polarization to Th1 cells and regulatory T cells (Tregs), but also CD4+ cytotoxic T lymphocytes (CTLs), effector CD8+ T cells, and γδT cells in virulent PRRSV-1-infected animals; however, their biological functionality should be the object of further studies.
Collapse
|
10
|
Major Vault Protein Inhibits Porcine Reproductive and Respiratory Syndrome Virus Infection in CRL2843 CD163 Cell Lines and Primary Porcine Alveolar Macrophages. Viruses 2021; 13:v13112267. [PMID: 34835073 PMCID: PMC8618244 DOI: 10.3390/v13112267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/02/2021] [Accepted: 11/09/2021] [Indexed: 11/16/2022] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS), a significant viral infectious disease that commonly occurs among farmed pigs, leads to considerable economic losses to the swine industry worldwide. Major vault protein (MVP) is a host factor that induces type Ⅰ interferon (IFN) production. In this study, we evaluated the effect of MVP on PRRSV infection in CRL2843CD163 cell lines and porcine alveolar macrophages (PAMs). Our results showed that MVP expression was downregulated by PRRSV infection. Adenoviral overexpression of MVP inhibited PRRSV replication, whereas the siRNA knockdown of MVP promoted PRRSV replication. In addition, MVP knockdown has an adverse effect on the inhibitive role of MVP overexpression on PRRSV replication. Moreover, MVP could induce the expression of type Ⅰ IFNs and IFN-stimulated gene 15 (ISG15) in PRRSV-infected PAMs. Based on these results, MVP may be a potential molecular target of drugs for the effective prevention and treatment of PRRSV infection.
Collapse
|
11
|
Gerner W, Mair KH, Schmidt S. Local and Systemic T Cell Immunity in Fighting Pig Viral and Bacterial Infections. Annu Rev Anim Biosci 2021; 10:349-372. [PMID: 34724393 DOI: 10.1146/annurev-animal-013120-044226] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
T cells are an essential component of the adaptive immune system. Over the last 15 years, a constantly growing toolbox with which to study T cell biology in pigs has allowed detailed investigations on these cells in various viral and bacterial infections. This review provides an overview on porcine CD4, CD8, and γδ T cells and the current knowledge on the differentiation of these cells following antigen encounter. Where available, the responses of these cells to viral infections like porcine reproductive and respiratory syndrome virus, classical swine fever virus, swine influenza A virus, and African swine fever virus are outlined. In addition, knowledge on the porcine T cell response to bacterial infections like Actinobacillus pleuropneumoniae and Salmonella Typhimurium is reviewed. For CD4 T cells, the response to the outlined infections is reflected toward the Th1/Th2/Th17/Tfh/Treg paradigm for functional differentiation. Expected final online publication date for the Annual Review of Animal Biosciences, Volume 10 is February 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Wilhelm Gerner
- The Pirbright Institute, Pirbright, Woking, United Kingdom; ,
| | - Kerstin H Mair
- Christian Doppler Laboratory for Optimized Prediction of Vaccination Success in Pigs, Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria; .,Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine Vienna, Austria
| | - Selma Schmidt
- The Pirbright Institute, Pirbright, Woking, United Kingdom; ,
| |
Collapse
|
12
|
Lee SI, Jeong CG, Ul Salam Mattoo S, Nazki S, Prasad Aganja R, Kim SC, Khatun A, Oh Y, Noh SH, Lee SM, Kim WI. Protective immunity induced by concurrent intradermal injection of porcine circovirus type 2 and Mycoplasma hyopneumoniae inactivated vaccines in pigs. Vaccine 2021; 39:6691-6699. [PMID: 34538524 DOI: 10.1016/j.vaccine.2021.07.043] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 05/25/2021] [Accepted: 07/16/2021] [Indexed: 11/15/2022]
Abstract
Vaccines against porcine circovirus type 2 (PCV2) and Mycoplasma hyopneumoniae (Mhp) are routinely used by intramuscular injection. However, since intramuscular vaccination causes stress and increases the risk of cross-contamination among pigs, research on intradermal vaccination is currently being actively conducted. This study was designed to evaluate the efficacy of intradermally administered inactivated vaccines against PCV2 and Mhp in pigs. Three-week-old specific pathogen-free pigs were divided into three groups (5 pigs per group). Pigs in the two groups were intradermally vaccinated with the PCV2 or Mhp vaccine using a needle-free injector. Pigs in the third group were kept as nonvaccinated controls. At 21 days post-vaccination, pigs in one of these vaccinated groups and the nonvaccinated group were intranasally challenged with PCV2b and Mhp, while the other vaccinated group pigs were maintained as vaccine controls. Vaccine efficacy was evaluated by observing weight gain, pathogen load, pathological changes, and humoral or cellular immune responses. As a result, vaccinated pigs revealed significantly higher body weight gain, with lower clinical scores. Vaccinated pigs also showed higher antibody responses but lower PCV2b or Mhp loads in sera, nasal swabs, or lungs than nonvaccinated pigs. Intriguingly, vaccinated pigs upregulated cytotoxic T cells (CTLs), helper T type 1 cells (Th1 cells), and helper T type 17 cells (Th17 cells) after immunization and showed significantly higher levels of CTLs, Th1 and Th17 cells at 14 days post-challenge than nonvaccinated and challenged pigs. This study demonstrated that protective immune responses against PCV2 and Mhp could be efficiently induced in pigs using a relatively small volume of intradermal vaccines, probably due to effective antigen delivery to antigen-presenting cells in the dermis.
Collapse
Affiliation(s)
- Sim-In Lee
- College of Veterinary Medicine, Jeonbuk National University, Iksan, Republic of Korea.
| | - Chang-Gi Jeong
- College of Veterinary Medicine, Jeonbuk National University, Iksan, Republic of Korea.
| | | | - Salik Nazki
- College of Veterinary Medicine, Jeonbuk National University, Iksan, Republic of Korea; The Pirbright Institute, Ash Road, Pirbright-GU24 0NF, Woking, United Kingdom.
| | - Ram Prasad Aganja
- Division of Biotechnology, Jeonbuk National University, Iksan, Republic of Korea.
| | - Seung-Chai Kim
- College of Veterinary Medicine, Jeonbuk National University, Iksan, Republic of Korea.
| | - Amina Khatun
- College of Veterinary Medicine, Jeonbuk National University, Iksan, Republic of Korea; Department of Pathology, Faculty of Animal Science and Veterinary Medicine, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka 1207, Bangladesh.
| | - Yeonsu Oh
- Department of Veterinary Pathology, College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon 24341, Republic of Korea.
| | - Sang-Hyun Noh
- MSD Animal Health Korea Ltd., Seoul 04637, Republic of Korea.
| | - Sang-Myeong Lee
- Division of Biotechnology, Jeonbuk National University, Iksan, Republic of Korea.
| | - Won-Il Kim
- College of Veterinary Medicine, Jeonbuk National University, Iksan, Republic of Korea.
| |
Collapse
|
13
|
Fan X, Zhang Y, Ouyang R, Luo B, Li L, He W, Liu M, Jiang N, Yang F, Wang L, Zhou B. Cysticercus cellulosae Regulates T-Cell Responses and Interacts With the Host Immune System by Excreting and Secreting Antigens. Front Cell Infect Microbiol 2021; 11:728222. [PMID: 34540719 PMCID: PMC8447960 DOI: 10.3389/fcimb.2021.728222] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 08/06/2021] [Indexed: 11/26/2022] Open
Abstract
Cysticercus cellulosae (C. cellulosae) excretes and secretes antigens during the parasitic process to regulate the host immune response; however, resulting immune response and cytokine production in the host during infection still remains unclear. We used C. cellulosae crude antigens (CAs) as controls to explore the effect of excretory secretory antigens (ESAs) on T-cell immune responses in piglets. C. cellulosae ESAs induced imbalanced CD4+/CD8+ T-cell proportions, increased the CD4+Foxp3+ and CD8+Foxp3+ T-cell frequencies, and induced lymphocytes to produce interleukin-10, which was mainly attributed to CD4+ and CD4-CD8- T cells. The ESAs also induced Th2-type immune responses. The results showed that the ability of C. cellulosae to escape the host immune attacks and establish a persistent infection may be related to host immune response regulation by the ESAs.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Biying Zhou
- Department of Parasitology, School of Basic Medical Sciences, Zunyi Medical University, Zunyi, China
| |
Collapse
|
14
|
Hernández J, Li Y, Mateu E. Swine Dendritic Cell Response to Porcine Reproductive and Respiratory Syndrome Virus: An Update. Front Immunol 2021; 12:712109. [PMID: 34394113 PMCID: PMC8355811 DOI: 10.3389/fimmu.2021.712109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 07/07/2021] [Indexed: 11/17/2022] Open
Abstract
Dendritic cells (DCs) are the most potent antigen-presenting cells, unique to initiate and coordinate the adaptive immune response. In pigs, conventional DCs (cDCs), plasmacytoid DCs (pDCs), and monocyte-derived DCs (moDCs) have been described in blood and tissues. Different pathogens, such as viruses, could infect these cells, and in some cases, compromise their response. The understanding of the interaction between DCs and viruses is critical to comprehend viral immunopathological responses. Porcine reproductive and respiratory syndrome virus (PRRSV) is the most important respiratory pathogen in the global pig population. Different reports support the notion that PRRSV modulates pig immune response in addition to their genetic and antigenic variability. The interaction of PRRSV with DCs is a mostly unexplored area with conflicting results and lots of uncertainties. Among the scarce certainties, cDCs and pDCs are refractory to PRRSV infection in contrast to moDCs. Additionally, response of DCs to PRRSV can be different depending on the type of DCs and maybe is related to the virulence of the viral isolate. The precise impact of this virus-DC interaction upon the development of the specific immune response is not fully elucidated. The present review briefly summarizes and discusses the previous studies on the interaction of in vitro derived bone marrow (bm)- and moDCs, and in vivo isolated cDCs, pDCs, and moDCs with PRRSV1 and 2.
Collapse
Affiliation(s)
- Jesús Hernández
- Laboratorio de Inmunología, Centro de Investigación en Alimentación y Desarrollo, Hermosillo, Mexico
| | - Yanli Li
- Departament de Sanitat i Anatomia Animals, Facultat de Veterinària, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Enric Mateu
- Departament de Sanitat i Anatomia Animals, Facultat de Veterinària, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain.,IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Cerdanyola del Vallès, Spain
| |
Collapse
|
15
|
Gajęcka M, Brzuzan P, Otrocka-Domagała I, Zielonka Ł, Lisieska-Żołnierczyk S, Gajęcki MT. The Effect of 42-Day Exposure to a Low Deoxynivalenol Dose on the Immunohistochemical Expression of Intestinal ERs and the Activation of CYP1A1 and GSTP1 Genes in the Large Intestine of Pre-pubertal Gilts. Front Vet Sci 2021; 8:644549. [PMID: 34350223 PMCID: PMC8326516 DOI: 10.3389/fvets.2021.644549] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 05/28/2021] [Indexed: 01/17/2023] Open
Abstract
Deoxynivalenol (DON) is a mycotoxin that contaminates various plant materials. Exposure to DON can disrupt hormonal homeostasis, decrease body weight gains and modulate the immune system in pigs. It can also cause diarrhea, vomiting, leukocytosis, hemorrhaging or even death. Prolonged exposure to low doses of DON can have serious health implications in mammals. This is the first in vivo study to show that per os administration of low DON doses probably contributes to specific dysfunctions in steroidogenesis processes by inducing the immunohistochemical expression of estrogen receptors alpha (ERα) in the entire gastrointestinal tract in strongly stained cells (3 points) and estrogen receptors beta (ERβ), but only in both investigated segments of the duodenum in pre-pubertal gilts. Therefore, the aim of this study was to determine whether a NOAEL dose of DON (12 μg DON/kg BW) administered per os over a period of 42 days induces changes in the immunohistochemical expression of ER in different intestinal segments and the transcriptional activation of CYP1A1 and GSTP1 genes in the large intestine of pre-pubertal gilts. This is the first report to demonstrate the expression of ER, in particular ERβ, with the associated consequences. The expression of ER was accompanied by considerable variations in the activation of CYP1A1 and GSTP1 genes, but it supported the maintenance of a stable consensus between the degree of mycotoxin exposure and the detoxifying effect in pre-pubertal gilts.
Collapse
Affiliation(s)
- Magdalena Gajęcka
- Department of Veterinary Prevention and Feed Hygiene, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Paweł Brzuzan
- Department of Environmental Biotechnology, Faculty of Environmental Sciences and Fisheries, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Iwona Otrocka-Domagała
- Department of Pathological Anatomy, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Łukasz Zielonka
- Department of Veterinary Prevention and Feed Hygiene, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Sylwia Lisieska-Żołnierczyk
- Independent Public Health Care Center of the Ministry of the Interior and Administration and the Warmia and Mazury Oncology Center in Olsztyn, Olsztyn, Poland
| | - Maciej T Gajęcki
- Department of Veterinary Prevention and Feed Hygiene, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| |
Collapse
|
16
|
Barroso-Arévalo S, Barasona JA, Cadenas-Fernández E, Sánchez-Vizcaíno JM. The Role of Interleukine-10 and Interferon-γ as Potential Markers of the Evolution of African Swine Fever Virus Infection in Wild Boar. Pathogens 2021; 10:pathogens10060757. [PMID: 34203976 PMCID: PMC8232672 DOI: 10.3390/pathogens10060757] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/03/2021] [Accepted: 06/11/2021] [Indexed: 12/24/2022] Open
Abstract
African swine fever virus (ASFv) is one of the most challenging pathogens to affect both domestic and wild pigs. The disease has now spread to Europe and Asia, causing great damage to the pig industry. Although no commercial vaccine with which to control the disease is, as yet, available, some potential vaccine candidates have shown good results in terms of protection. However, little is known about the host immune mechanisms underlying that protection, especially in wild boar, which is the main reservoir of the disease in Europe. Here, we study the role played by two cytokines (IL-10 and IFN-γ) in wild boar orally inoculated with the attenuated vaccine candidate Lv17/WB/Rie1 and challenged with a virulent ASFv genotype II isolate. A group of naïve wild boar challenged with the latter isolate was also established as a control group. Our results showed that both cytokines play a key role in protecting the host against the challenge virus. While high levels of IL-10 in serum may trigger an immune system malfunctioning in challenged animals, the provision of stable levels of this cytokine over time may help to control the disease. This, together with high and timely induction of IFN-γ by the vaccine candidate, could help protect animals from fatal outcomes. Further studies should be conducted in order to support these preliminary results and confirm the role of these two cytokines as potential markers of the evolution of ASFV infection.
Collapse
Affiliation(s)
- Sandra Barroso-Arévalo
- VISAVET Health Surveillance Center, Complutense University of Madrid, 28040 Madrid, Spain; (J.A.B.); (E.C.-F.); (J.M.S.-V.)
- Department of Animal Health, Faculty of Veterinary, Complutense University of Madrid, 28040 Madrid, Spain
- Correspondence:
| | - Jose A. Barasona
- VISAVET Health Surveillance Center, Complutense University of Madrid, 28040 Madrid, Spain; (J.A.B.); (E.C.-F.); (J.M.S.-V.)
- Department of Animal Health, Faculty of Veterinary, Complutense University of Madrid, 28040 Madrid, Spain
| | - Estefanía Cadenas-Fernández
- VISAVET Health Surveillance Center, Complutense University of Madrid, 28040 Madrid, Spain; (J.A.B.); (E.C.-F.); (J.M.S.-V.)
- Department of Animal Health, Faculty of Veterinary, Complutense University of Madrid, 28040 Madrid, Spain
| | - Jose M. Sánchez-Vizcaíno
- VISAVET Health Surveillance Center, Complutense University of Madrid, 28040 Madrid, Spain; (J.A.B.); (E.C.-F.); (J.M.S.-V.)
- Department of Animal Health, Faculty of Veterinary, Complutense University of Madrid, 28040 Madrid, Spain
| |
Collapse
|
17
|
Gajęcka M, Mróz M, Brzuzan P, Onyszek E, Zielonka Ł, Lipczyńska-Ilczuk K, Przybyłowicz KE, Babuchowski A, Gajęcki MT. Correlations between Low Doses of Zearalenone, Its Carryover Factor and Estrogen Receptor Expression in Different Segments of the Intestines in Pre-Pubertal Gilts-A Study Protocol. Toxins (Basel) 2021; 13:toxins13060379. [PMID: 34073248 PMCID: PMC8227742 DOI: 10.3390/toxins13060379] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/14/2021] [Accepted: 05/25/2021] [Indexed: 11/24/2022] Open
Abstract
Plant materials can be contaminated with Fusarium mycotoxins and their derivatives, whose toxic effects on humans and animals may remain subclinical. Zearalenone (ZEN), a low-molecular-weight compound, is produced by molds in crop plants as a secondary metabolite. The objective of this study will be to analyze the in vivo correlations between very low monotonic doses of ZEN (5, 10, and 15 μg ZEN/kg body weight—BW for 42 days) and the carryover of this mycotoxin and its selected metabolites from the intestinal contents to the intestinal walls, the mRNA expression of estrogen receptor alfa (ERα) and estrogen receptor beta (ERβ) genes, and the mRNA expression of genes modulating selected colon enzymes (CYP1A1 and GSTP1) in the intestinal mucosa of pre-pubertal gilts. An in vivo experiment will be performed on 60 clinically healthy animals with initial BW of 14.5 ± 2 kg. The gilts will be randomly divided into a control group (group C, n = 15) and three experimental groups (group ZEN5, group ZEN10, and group ZEN15; n = 15). Group ZEN5 will be administered per os 5 μg ZEN/kg BW (MABEL), group ZEN10—10 μg ZEN/kg BW (NOAEL), and group ZEN15—15 µg ZEN/kg BW (low LOAEL). In each group, five animals will be euthanized on analytical dates 1 (exposure day 7), 2 (exposure day 21), and 3 (exposure day 42). Samples for in vitro analyses will be collected from an intestinal segment resected from the following regions: the third (horizontal) part of the duodenum, jejunum, ileum, cecum, ascending colon, transverse colon, and descending colon. The experimental material will be collected under special conditions, and it will be transported to specialist laboratories where samples will be obtained for further analyses.
Collapse
Affiliation(s)
- Magdalena Gajęcka
- Department of Veterinary Prevention and Feed Hygiene, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13, 10-718 Olsztyn, Poland; (M.M.); (Ł.Z.); (M.T.G.)
- Correspondence:
| | - Magdalena Mróz
- Department of Veterinary Prevention and Feed Hygiene, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13, 10-718 Olsztyn, Poland; (M.M.); (Ł.Z.); (M.T.G.)
| | - Paweł Brzuzan
- Department of Environmental Biotechnology, Faculty of Environmental Sciences and Fisheries, University of Warmia and Mazury in Olsztyn, Słoneczna 45G, 10-719 Olsztyn, Poland;
| | - Ewa Onyszek
- Dairy Industry Innovation Institute Ltd., Kormoranów 1, 11-700 Mrągowo, Poland; (E.O.); (A.B.)
| | - Łukasz Zielonka
- Department of Veterinary Prevention and Feed Hygiene, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13, 10-718 Olsztyn, Poland; (M.M.); (Ł.Z.); (M.T.G.)
| | - Karolina Lipczyńska-Ilczuk
- Department of Epizootiology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13/01, 10-718 Olsztyn, Poland;
| | - Katarzyna E. Przybyłowicz
- Department of Human Nutrition, Faculty of Food Sciences, University of Warmia and Mazury in Olsztyn, Słoneczna 45F, 10-719 Olsztyn, Poland;
| | - Andrzej Babuchowski
- Dairy Industry Innovation Institute Ltd., Kormoranów 1, 11-700 Mrągowo, Poland; (E.O.); (A.B.)
| | - Maciej T. Gajęcki
- Department of Veterinary Prevention and Feed Hygiene, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13, 10-718 Olsztyn, Poland; (M.M.); (Ł.Z.); (M.T.G.)
| |
Collapse
|
18
|
Porcine Reproductive and Respiratory Syndrome Virus: Immune Escape and Application of Reverse Genetics in Attenuated Live Vaccine Development. Vaccines (Basel) 2021; 9:vaccines9050480. [PMID: 34068505 PMCID: PMC8150910 DOI: 10.3390/vaccines9050480] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 04/08/2021] [Accepted: 04/11/2021] [Indexed: 01/16/2023] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV), an RNA virus widely prevalent in pigs, results in significant economic losses worldwide. PRRSV can escape from the host immune response in several processes. Vaccines, including modified live vaccines and inactivated vaccines, are the best available countermeasures against PRRSV infection. However, challenges still exist as the vaccines are not able to induce broad protection. The reason lies in several facts, mainly the variability of PRRSV and the complexity of the interaction between PRRSV and host immune responses, and overcoming these obstacles will require more exploration. Many novel strategies have been proposed to construct more effective vaccines against this evolving and smart virus. In this review, we will describe the mechanisms of how PRRSV induces weak and delayed immune responses, the current vaccines of PRRSV, and the strategies to develop modified live vaccines using reverse genetics systems.
Collapse
|
19
|
Cho MK, Park JG, Iwata H, Kim EY. 2,3,7,8-Tetrachlorodibenzo-p-dioxin prompted differentiation to CD4 +CD8 -CD25 + and CD4 +CD8 +CD25 + Tregs and altered expression of immune-related genes in the thymus of chicken embryos. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 211:111947. [PMID: 33503546 DOI: 10.1016/j.ecoenv.2021.111947] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 01/10/2021] [Accepted: 01/14/2021] [Indexed: 06/12/2023]
Abstract
The chicken (Gallus gallus), which has three aryl hydrocarbon receptor (AHR) isoforms (ckAHR1, ckAHR2, and ckAHR1β) and two AHR nuclear translocator (ARNT) isoforms (ckARNT1 and ckARNT2), is highly sensitive to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and can serve as an avian model to gain an understanding of the mechanism underlying dioxin toxicity. To elucidate the mechanism of TCDD-induced immunotoxicity in avian species, we treated chicken embryos in ovo with graded concentrations of TCDD (1.5, 2.5, 3.0, 3.3, 3.5, and 4.0 μM). Initially, we measured mRNA expression levels of ckAHR and ckARNT isoforms and analyzed the T cell populations and transcriptome in the thymuses of TCDD-treated chicken embryos. Quantitative polymerase chain reaction analysis revealed that mRNA expressions of ckAHR1 and ckARNT2 were dominant in the thymus. Severe weight loss and thymus atrophy were observed in the TCDD-treated embryos. Immunophenotyping analyses demonstrated significant increases in CD4+CD8-CD25+ and CD4+CD8+CD25+ regulatory T cells (Tregs) populations following TCDD exposure, suggesting that TCDD suppresses T cell-mediated immune responses in chicken embryos. In addition, thymic transcriptome analyses intimated that alteration of the signaling pathways related to erb-b2 receptor tyrosine kinase 4 (ERBB4) and wnt family member 5A (WNT5A), and bone morphogenetic protein (BMP) may be associated with the TCDD-induced thymus atrophy. We also observed significantly altered expression levels of genes including interleukine 13 receptor subunit alpha 2 (IL13RA2), transforming growth factor beta 1 (TGFβ1), collagen type III alpha 1 chain (COL3A1), and collagen type IX alpha 3 chain (COL9A3), implying immunosuppression, fibrosis development, and collagen deposition. Collectively, these findings suggest that TCDD exposure activates the ckAHR1-ckARNT2 signaling pathway and suppresses immune responses through the prompted differentiation to CD4+CD8-CD25+ and CD4+CD8+CD25+ Tregs and altered expressions of immune-related genes in the thymus of chicken embryos.
Collapse
Affiliation(s)
- Min-Kyung Cho
- Department of Biology, Kyung Hee University, Hoegi-Dong, Dongdaemun-Gu, Seoul 130-701, Republic of Korea
| | - Jae-Gon Park
- Department of Life and Nanopharmaceutical Science, Kyung Hee University, Hoegi-Dong, Dongdaemun-Gu, Seoul 130-701, Republic of Korea
| | - Hisato Iwata
- Center for Marine Environmental Studies (CMES), Ehime University, Matsuyama 790-8577, Japan
| | - Eun-Young Kim
- Department of Biology, Kyung Hee University, Hoegi-Dong, Dongdaemun-Gu, Seoul 130-701, Republic of Korea; Department of Life and Nanopharmaceutical Science, Kyung Hee University, Hoegi-Dong, Dongdaemun-Gu, Seoul 130-701, Republic of Korea.
| |
Collapse
|
20
|
Absence of Long-Term Protection in Domestic Pigs Immunized with Attenuated African Swine Fever Virus Isolate OURT88/3 or BeninΔMGF Correlates with Increased Levels of Regulatory T Cells and Interleukin-10. J Virol 2020; 94:JVI.00350-20. [PMID: 32376618 PMCID: PMC7343209 DOI: 10.1128/jvi.00350-20] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 04/25/2020] [Indexed: 02/06/2023] Open
Abstract
Following short immunization protocols, naturally attenuated African swine fever virus (ASFV) isolate OURT88/3 and deletion mutant BeninΔMGF have previously been shown to induce high percentages of protection in domestic pigs against challenge with virulent virus. The results obtained in the present study show that a single intramuscular immunization of domestic pigs with OURT88/3 or BeninΔMGF followed by a challenge with the virulent Benin 97/1 isolate at day 130 postimmunization did not trigger the mechanisms necessary to generate immunological memory able to induce long-term protection against disease. All pigs developed acute forms of acute swine fever (ASF). Gamma interferon-producing cells peaked at day 24 postimmunization, declining thereafter. Surprisingly, the levels of regulatory T cells (Tregs) and interleukin-10 (IL-10) were elevated at the end of the experiment, suggesting that regulatory components of the immune system may inhibit effective protection.IMPORTANCE The duration of immunity for any vaccine candidate is crucial. In the case of African swine fever virus vaccine candidates, this issue has received little attention. Attenuated viruses have proven protective following short immunization protocols in which pigs were challenged a few weeks after the first immunization. Here, the duration of immunity and the immune responses induced over a duration of 130 days were studied during prechallenge and after challenge of pigs immunized with the naturally attenuated isolate OURT88/3 and an attenuated gene-deleted isolate, BeninΔMGF. After a single intramuscular immunization of domestic pigs with the OURT88/3 isolate or BeninΔMGF virus, animals were not protected against challenge with the virulent Benin 97/1 ASFV genotype I isolate at day 130 postimmunization. The levels of regulatory T cells and IL-10 were elevated at the end of the experiment, suggesting that regulatory components of the immune system may inhibit effective protection.
Collapse
|
21
|
Nazki S, Khatun A, Jeong CG, Mattoo SUS, Gu S, Lee SI, Kim SC, Park JH, Yang MS, Kim B, Park CK, Lee SM, Kim WI. Evaluation of local and systemic immune responses in pigs experimentally challenged with porcine reproductive and respiratory syndrome virus. Vet Res 2020; 51:66. [PMID: 32404209 PMCID: PMC7222343 DOI: 10.1186/s13567-020-00789-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Accepted: 03/26/2020] [Indexed: 12/13/2022] Open
Abstract
The host-associated defence system responsible for the clearance of porcine reproductive and respiratory syndrome virus (PRRSV) from infected pigs is currently poorly understood. To better understand the dynamics of host–pathogen interactions, seventy-five of 100 pigs infected with PRRSV-JA142 and 25 control pigs were euthanized at 3, 10, 21, 28 and 35 days post-challenge (dpc). Blood, lung, bronchoalveolar lavage (BAL) and bronchial lymph node (BLN) samples were collected to evaluate the cellular immune responses. The humoral responses were evaluated by measuring the levels of anti-PRRSV IgG and serum virus-neutralizing (SVN) antibodies. Consequently, the highest viral loads in the sera and lungs of the infected pigs were detected between 3 and 10 dpc, and these resulted in moderate to mild interstitial pneumonia, which resolved accompanied by the clearance of most of the virus by 28 dpc. At peak viremia, the frequencies of alveolar macrophages in infected pigs were significantly decreased, whereas the monocyte-derived DC/macrophage and conventional DC frequencies were increased, and these effects coincided with the early induction of local T-cell responses and the presence of proinflammatory cytokines/chemokines in the lungs, BAL, and BLN as early as 10 dpc. Conversely, the systemic T-cell responses measured in the peripheral blood mononuclear cells were delayed and significantly induced only after the peak viremic stage between 3 and 10 dpc. Taken together, our results suggest that activation of immune responses in the lung could be the key elements for restraining PRRSV through the early induction of T-cell responses at the sites of virus replication.
Collapse
Affiliation(s)
- Salik Nazki
- College of Veterinary Medicine, Jeonbuk National University, Iksan, South Korea
| | - Amina Khatun
- College of Veterinary Medicine, Jeonbuk National University, Iksan, South Korea.,Department of Pathology, Faculty of Animal Science and Veterinary Medicine, Sher-e-Bangla Agricultural University, Dhaka, 1207, Bangladesh
| | - Chang-Gi Jeong
- College of Veterinary Medicine, Jeonbuk National University, Iksan, South Korea
| | - Sameer Ul Salam Mattoo
- Division of Biotechnology, Advanced Institute of Environment and Bioscience, College of Environmental & Biosource Science, Jeonbuk National University, Iksan, South Korea
| | - Suna Gu
- Division of Biotechnology, Advanced Institute of Environment and Bioscience, College of Environmental & Biosource Science, Jeonbuk National University, Iksan, South Korea
| | - Sim-In Lee
- College of Veterinary Medicine, Jeonbuk National University, Iksan, South Korea
| | - Seung-Chai Kim
- College of Veterinary Medicine, Jeonbuk National University, Iksan, South Korea
| | - Ji-Hyo Park
- College of Veterinary Medicine, Jeonbuk National University, Iksan, South Korea
| | - Myoun-Sik Yang
- College of Veterinary Medicine, Jeonbuk National University, Iksan, South Korea
| | - Bumseok Kim
- College of Veterinary Medicine, Jeonbuk National University, Iksan, South Korea
| | - Choi-Kyu Park
- College of Veterinary Medicine, Kyungpook National University, Daegu, South Korea
| | - Sang-Myeong Lee
- Division of Biotechnology, Advanced Institute of Environment and Bioscience, College of Environmental & Biosource Science, Jeonbuk National University, Iksan, South Korea.
| | - Won-Il Kim
- College of Veterinary Medicine, Jeonbuk National University, Iksan, South Korea.
| |
Collapse
|
22
|
Ruansit W, Charerntantanakul W. Oral supplementation of quercetin in PRRSV-1 modified-live virus vaccinated pigs in response to HP-PRRSV-2 challenge. Vaccine 2020; 38:3570-3581. [PMID: 32184034 DOI: 10.1016/j.vaccine.2020.03.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 03/04/2020] [Accepted: 03/06/2020] [Indexed: 12/12/2022]
Abstract
This study evaluated the immunomodulatory effect of quercetin on improving cross protection of porcine reproductive and respiratory syndrome virus-1 (PRRSV-1) modified-live virus (MLV) vaccine against highly pathogenic (HP)-PRRSV-2 challenge. Ex vivo experiments demonstrated that quercetin significantly enhanced type I interferon-regulated genes (IRGs) and type I and II interferon (IFN), and significantly decreased pro- and anti-inflammatory cytokine expressions in HP-PRRSV-inoculated monocyte-derived macrophages. In vivo experiments divided pigs (4-week-old; n = 24) into four groups of six pigs. Group 1 and group 2 were immunized with PRRSV-1 MLV vaccine at 0 dpv (day post vaccination). Group 2 also received oral administration of quercetin at 0-49 dpv. Group 3 was injected with PRRSV-1 MLV vaccine solvent at 0 dpv. Group 4 served as strict control. Group 1-3 were challenged intranasally with HP-PRRSV at 28 dpv and immune and clinical parameters were monitored weekly until 49 dpv. Group 1 demonstrated significantly reduced HP-PRRSV viremia, rectal temperature and clinical scores, and significantly improved average daily weight gain (ADWG), compared to group 3. Group 2 demonstrated significantly increased IFN regulatory factor 3, stimulator of IFN genes, IFNα, and significantly decreased transforming growth factor beta (TGFβ) mRNA expressions, compared to group 1. The animals demonstrated significantly reduced HP-PRRSV viremia, but did not demonstrate any further improved PRRSV-specific antibody responses, rectal temperature, clinical scores, and ADWG as compared to group 1. Our findings suggest that quercetin up-regulates IRGs, IFNα, and down-regulates TGFβ mRNA expressions which may contribute to further reducing number of viremic pigs and HP-PRRSV viremia which were conferred by PRRSV-1 MLV vaccine. Our findings also suggest that quercetin may serve as an effective oral immunomodulator for improving cell-mediated immune defense to HP-PRRSV.
Collapse
Affiliation(s)
- Wilawan Ruansit
- Program of Biotechnology, Faculty of Science, Maejo University, Chiang Mai 50290, Thailand
| | | |
Collapse
|
23
|
The T-Cell Response to Type 2 Porcine Reproductive and Respiratory Syndrome Virus (PRRSV). Viruses 2019; 11:v11090796. [PMID: 31470568 PMCID: PMC6784018 DOI: 10.3390/v11090796] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 08/23/2019] [Accepted: 08/28/2019] [Indexed: 12/11/2022] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) continues to cause severe reproductive and respiratory pathologies resulting in immense monetary and welfare costs for the swine industry. The vaccines against PRRSV are available; but they struggle with providing protection against the plethora of heterologous PRRSV strains. To improve PRRSV vaccine development, the aim of this study was to provide an in-depth analysis of the crucial heterologous T-cell response to type-2 PRRSV. Following PRRSV modified live virus (MLV) vaccination or infection using one high- or one low-pathogenic PRRSV-strain, this nine-week study evaluated the T-cell response to different PRRSV strains. Our results demonstrate an important role for T cells in this homo- and heterologous response. Specifically, the T-helper cells were the main responders during viremia. Their peak response at 28 dpi correlated with a reduction in viremia, and their homing receptor expression indicated the additional importance for the anti-PRRSV response in the lymphatic and lung tissue. The cytotoxic T lymphocyte (CTL) response was the strongest at the site of infection—the lung and bronchoalveolar lavage. The TCR-γδ T cells were the main responders post viremia and PRRSV induced their expression of the lymph node homing the chemokine receptor, CCR7: This indicates a crucial role for TCR-γδ T cells in the anti-PRRSV response in the lymphatic system.
Collapse
|
24
|
Cieplińska K, Gajęcka M, Dąbrowski M, Rykaczewska A, Lisieska-Żołnierczyk S, Bulińska M, Zielonka Ł, Gajęcki MT. Time-Dependent Changes in the Intestinal Microbiome of Gilts Exposed to Low Zearalenone Doses. Toxins (Basel) 2019; 11:E296. [PMID: 31137638 PMCID: PMC6563319 DOI: 10.3390/toxins11050296] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 05/20/2019] [Accepted: 05/22/2019] [Indexed: 12/14/2022] Open
Abstract
Zearalenone is a frequent contaminant of cereals and their by-products in regions with a temperate climate. This toxic molecule is produced naturally by Fusarium fungi in crops. The aim of this study was to determine the influence of low zearalenone doses (LOAEL, NOAEL and MABEL) on the intestinal microbiome of gilts on different days of exposure (days 7, 21 and 42). Intestinal contents were sampled from the duodenal cap, the third part of the duodenum, jejunum, caecum and the descending colon. The experiment was performed on 60 clinically healthy gilts with average BW of 14.5 ± 2 kg, divided into three experimental groups and a control group. Group ZEN5 animals were orally administered ZEN at 5 μg /kg BW, group ZEN10-10 μg ZEN/kg BW and group ZEN15-15 µg ZEN/kg BW. Five gilts from every group were euthanized on analytical dates 1, 2 and 3. Differences in the log values of microbial counts, mainly Escherichia coli and Enterococcus faecalis, were observed between the proximal and distal segments of the intestinal tract on different analytical dates as well as in the entire intestinal tract. Zearalenone affected the colony counts of intestinal microbiota rather than microbiome diversity, and its effect was greatest in groups ZEN10 and ZEN15. Microbial colony counts were similar in groups ZEN5 and C. In the analysed mycobiome, ZEN exerted a stimulatory effect on the log values of yeast and mould counts in all intestinal segments, in particular in the colon, and the greatest increase was noted on the first analytical date.
Collapse
Affiliation(s)
- Katarzyna Cieplińska
- Microbiology Laboratory, Non-Public Health Care Centre, Limanowskiego 31A, 10-342 Olsztyn, Poland.
| | - Magdalena Gajęcka
- Department of Veterinary Prevention and Feed Hygiene, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13, 10-718 Olsztyn, Poland.
| | - Michał Dąbrowski
- Department of Veterinary Prevention and Feed Hygiene, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13, 10-718 Olsztyn, Poland.
| | - Anna Rykaczewska
- Department of Veterinary Prevention and Feed Hygiene, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13, 10-718 Olsztyn, Poland.
| | - Sylwia Lisieska-Żołnierczyk
- Independent Public Health Care Centre of the Ministry of the Interior and Administration, and the Warmia and Mazury Oncology Centre in Olsztyn, Wojska Polskiego 37, 10-228 Olsztyn, Poland.
| | - Maria Bulińska
- Department of Discrete Mathematics and Theoretical Computer Science, Faculty of Mathematics and Computer Science, University of Warmia and Mazury in Olsztyn, Słoneczna 34, 10-710 Olsztyn, Poland.
| | - Łukasz Zielonka
- Department of Veterinary Prevention and Feed Hygiene, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13, 10-718 Olsztyn, Poland.
| | - Maciej T Gajęcki
- Department of Veterinary Prevention and Feed Hygiene, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13, 10-718 Olsztyn, Poland.
| |
Collapse
|
25
|
Evaluation of a Recombinant Mouse X Pig Chimeric Anti-Porcine DEC205 Antibody Fused with Structural and Nonstructural Peptides of PRRS Virus. Vaccines (Basel) 2019; 7:vaccines7020043. [PMID: 31126125 PMCID: PMC6631554 DOI: 10.3390/vaccines7020043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 05/21/2019] [Indexed: 02/06/2023] Open
Abstract
Activation of the immune system using antigen targeting to the dendritic cell receptor DEC205 presents great potential in the field of vaccination. The objective of this work was to evaluate the immunogenicity and protectiveness of a recombinant mouse x pig chimeric antibody fused with peptides of structural and nonstructural proteins of porcine respiratory and reproductive syndrome virus (PRRSV) directed to DEC205+ cells. Priming and booster immunizations were performed three weeks apart and administered intradermally in the neck area. All pigs were challenged with PRRSV two weeks after the booster immunization. Immunogenicity was evaluated by assessing the presence of antibodies anti-PRRSV, the response of IFN-γ-producing CD4+ cells, and the proliferation of cells. Protection was determined by assessing the viral load in the blood, lungs, and tonsils using qRT-PCR. The results showed that the vaccine exhibited immunogenicity but conferred limited protection. The vaccine group had a lower viral load in the tonsils and a significantly higher production of antibodies anti-PRRSV than the control group (p < 0.05); the vaccine group also produced more CD4+IFN-γ+ cells in response to peptides from the M and Nsp2 proteins. In conclusion, this antigenized recombinant mouse x pig chimeric antibody had immunogenic properties that could be enhanced to improve the level of protection and vaccine efficiency.
Collapse
|
26
|
Nedumpun T, Techakriengkrai N, Thanawongnuwech R, Suradhat S. Negative Immunomodulatory Effects of Type 2 Porcine Reproductive and Respiratory Syndrome Virus-Induced Interleukin-1 Receptor Antagonist on Porcine Innate and Adaptive Immune Functions. Front Immunol 2019; 10:579. [PMID: 30972072 PMCID: PMC6443931 DOI: 10.3389/fimmu.2019.00579] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 03/04/2019] [Indexed: 12/22/2022] Open
Abstract
Impaired innate and adaptive immune responses are evidenced throughout the course of PRRSV infection. We previously reported that interleukin-1 receptor antagonist (IL-1Ra) was involved in PRRSV-induced immunosuppression during an early phase of infection. However, the exact mechanism associated with PRRSV-induced IL-1Ra immunomodulation remains unknown. To explore the immunomodulatory properties of PRRSV-induced IL-1Ra on porcine immune functions, monocyte-derived dendritic cells (MoDC) and leukocytes were cultured with type 2 PRRSV, and the immunological role of IL-1Ra was assessed by addition of anti-porcine IL-1Ra Ab. The results demonstrated that PRRSV-induced IL-1Ra reduced phagocytosis, surface expression of MHC II (SLA-DR) and CD86, as well as downregulation of IFNA and IL1 gene expression in the MoDC culture system. Interestingly, IL-1Ra secreted by the PRRSV-infected MoDC also inhibited T lymphocyte differentiation and proliferation, but not IFN-γ production. Although PRRSV-induced IL-1Ra was not directly linked to IL-10 production, it contributed to the differentiation of regulatory T lymphocytes (Treg) within the culture system. Taken together, our results demonstrated that PRRSV-induced IL-1Ra downregulates innate immune functions, T lymphocyte differentiation and proliferation, and influences collectively with IL-10 in the Treg induction. The immunomodulatory roles of IL-1Ra elucidated in this study increase our understanding of the immunobiology of PRRSV.
Collapse
Affiliation(s)
- Teerawut Nedumpun
- Interdisciplinary Program in Medical Microbiology, Graduate School, Chulalongkorn University, Bangkok, Thailand
| | - Navapon Techakriengkrai
- Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand.,Center of Excellence in Emerging Infectious Diseases in Animals, Chulalongkorn University (CU-EIDAs), Bangkok, Thailand
| | - Roongroje Thanawongnuwech
- Center of Excellence in Emerging Infectious Diseases in Animals, Chulalongkorn University (CU-EIDAs), Bangkok, Thailand.,Department of Veterinary Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Sanipa Suradhat
- Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand.,Center of Excellence in Emerging Infectious Diseases in Animals, Chulalongkorn University (CU-EIDAs), Bangkok, Thailand
| |
Collapse
|
27
|
Shabir N, Khatun A, Nazki S, Gu S, Lee SM, Hur TY, Yang MS, Kim B, Kim WI. In vitro immune responses of porcine alveolar macrophages reflect host immune responses against porcine reproductive and respiratory syndrome viruses. BMC Vet Res 2018; 14:380. [PMID: 30509265 PMCID: PMC6278023 DOI: 10.1186/s12917-018-1675-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 10/29/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Currently, an in vitro immunogenicity screening system for the immunological assessment of potential porcine reproductive and respiratory syndrome virus (PRRSV) vaccine candidates is highly desired. Thus, in the present study, two genetically divergent PRRSVs were characterized in vitro and in vivo to identify an in vitro system and immunological markers that predict the host immune response. Porcine alveolar macrophages (PAMs) and peripheral blood mononuclear cells (PBMCs) collected from PRRSV-negative pigs were used for in vitro immunological evaluation, and the response of these cells to VR2332c or JA142c were compared with those elicited in pigs challenged with the same viruses. RESULTS Compared with VR2332c or mock infection, JA142c induced increased levels of type I interferons and pro-inflammatory cytokines (TNF-α, IL-1α/β, IL-6, IL-8, and IL-12) in PAMs, and these elevated levels were comparable to the cytokine induction observed in PRRSV-challenged pigs. Furthermore, significantly greater numbers of activated CD4+ T cells, type I helper T cells, cytotoxic T cells and total IFN-γ+ cells were observed in JA142c-challenged pigs than in VR2332c- or mock-challenged pigs. CONCLUSIONS Based on these results, the innate immune response patterns (particularly IFN-α, TNF-α and IL-12) to specific PRRSV strains in PAMs might reflect those elicited by the same viruses in pigs.
Collapse
Affiliation(s)
- Nadeem Shabir
- College of Veterinary Medicine, Chonbuk National University, 79 Gobong-ro, Iksan, Jeonbuk, Korea.,Division of Animal Biotechnology, Faculty of Veterinary Sciences and Animal Husbandry, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, India
| | - Amina Khatun
- College of Veterinary Medicine, Chonbuk National University, 79 Gobong-ro, Iksan, Jeonbuk, Korea
| | - Salik Nazki
- College of Veterinary Medicine, Chonbuk National University, 79 Gobong-ro, Iksan, Jeonbuk, Korea
| | - Suna Gu
- College of Environmental & Biosource Science, Division of Biotechnology, Chonbuk National University, Iksan, South Korea
| | - Sang-Myoung Lee
- College of Environmental & Biosource Science, Division of Biotechnology, Chonbuk National University, Iksan, South Korea
| | - Tai-Young Hur
- Dairy Science Division, National Institute of Animal Science, Rural Development Administration, Cheonan, 31000, South Korea
| | - Myoun-Sik Yang
- College of Veterinary Medicine, Chonbuk National University, 79 Gobong-ro, Iksan, Jeonbuk, Korea
| | - Bumseok Kim
- College of Veterinary Medicine, Chonbuk National University, 79 Gobong-ro, Iksan, Jeonbuk, Korea
| | - Won-Il Kim
- College of Veterinary Medicine, Chonbuk National University, 79 Gobong-ro, Iksan, Jeonbuk, Korea.
| |
Collapse
|
28
|
Charerntantanakul W, Pongjaroenkit S. Co-administration of saponin quil A and PRRSV-1 modified-live virus vaccine up-regulates gene expression of type I interferon-regulated gene, type I and II interferon, and inflammatory cytokines and reduces viremia in response to PRRSV-2 challenge. Vet Immunol Immunopathol 2018; 205:24-34. [PMID: 30458999 DOI: 10.1016/j.vetimm.2018.10.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 09/19/2018] [Accepted: 10/17/2018] [Indexed: 01/08/2023]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is a devastating virus which suppresses the expression of type I and II interferons (IFNs) as well as several pro-inflammatory cytokines. Our previous study reported that saponin quil A had a potential to up-regulate the expression of type I IFN-regulated genes and type I and II IFNs in porcine peripheral blood mononuclear cells (PBMC) inoculated with PRRSV. The present study evaluated the immunostimulatory effect of quil A on potentiating cross protective immunity of PRRSV-1 modified-live virus (MLV) vaccine against PRRSV-2 challenge. Twenty-four 4-week-old PRRSV-seronegative pigs were divided into four groups of six pigs. Group 1 and group 2 pigs were vaccinated with PRRSV-1 MLV vaccine at 0 dpv (day post vaccination), and additionally group 2 pigs were injected intramuscularly with quil A at -1, 0, 1 dpv. Group 3 pigs were injected with PRRSV-1 MLV vaccine solvent at 0 dpv and served as challenge control, while group 4 pigs served as strict control. Group 1-3 pigs were challenged intranasally with PRRSV-2 at 28 dpv and immune and clinical parameters were observed from 0 until 49 dpv. Group 1 pigs showed significantly reduced PRRSV viremia, number of viremic pigs, and clinical scores, and significantly improved average daily weight gain (ADWG), compared to group 3 pigs. Group 2 pigs showed significantly increased mRNA expressions of interferon regulatory factor 3, 2'-5'-oligoadenylatesynthetase 1, osteopontin, IFNα, IFNβ, IFNγ, interleukin-2 (IL-2), IL-13 and tumor necrosis factor alpha, compared to group 1 pigs. The animals demonstrated significantly reduced PRRSV viremia and number of viremic pigs, but did not demonstrate any further improved PRRSV-specific antibody levels, neutralizing antibody titers, rectal temperature, clinical scores, and ADWG as compared to group 1 pigs. Our findings suggest that quil A up-regulates type I IFN-regulated gene, type I and II IFNs, and inflammatory cytokine expressions which may contribute to further reducing PRRSV viremia and number of viremic pigs which were conferred by PRRSV-1 MLV vaccine. Our findings also suggest that quil A may serve as an effective immunostimulator for potentiating cell-mediated immune defense to PRRSV.
Collapse
Affiliation(s)
- Wasin Charerntantanakul
- Program of Biotechnology, Faculty of Science, Maejo University, Chiang Mai, 50290, Thailand.
| | | |
Collapse
|
29
|
Cieplińska K, Gajęcka M, Nowak A, Dąbrowski M, Zielonka Ł, Gajęcki MT. The Genotoxicity of Caecal Water in Gilts Exposed to Low Doses of Zearalenone. Toxins (Basel) 2018; 10:E350. [PMID: 30200392 PMCID: PMC6162682 DOI: 10.3390/toxins10090350] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 08/22/2018] [Accepted: 08/28/2018] [Indexed: 12/30/2022] Open
Abstract
Zearalenone is a toxic low-molecular-weight molecule that is naturally produced by moulds on crops as a secondary metabolite. The aim of this study was to determine the genotoxicity of caecal water collected successively from the caecal contents of gilts exposed to low doses (LOAEL, NOAEL, and MABEL) of zearalenone. The experiment was performed on 60 clinically healthy gilts with average BW of 14.5 ± 2 kg, divided into three experimental groups and a control group. Group ZEN5 were orally administered ZEN at 5 μg/kg BW, group ZEN10-10 μg ZEN/kg BW and group ZEN15-15 µg ZEN/kg BW. Five gilts from every group were euthanized on analytical dates 1, 2, and 3. Caecal water samples for in vitro analysis were collected from the ileocaecal region. The genotoxicity of caecal water was noted, particularly after date 1 in groups ZEN10 and ZEN15 with a decreasing trend. Electrophoresis revealed the presence of numerous comets without tails in groups C and ZEN5 and fewer comets with clearly expressed tails in groups ZEN10 and ZEN15. The distribution of LLC-PK1 cells ranged from 15% to 20% in groups C and ZEN5, and from 30% to 60% in groups ZEN10 and ZEN15. The analysis of caecal water genotoxicity during exposure to very low doses of ZEN revealed the presence of a counter response and a compensatory effect in gilts.
Collapse
Affiliation(s)
- Katarzyna Cieplińska
- Microbiology Laboratory, Non-Public Health Care Centre, ul. Limanowskiego 31A, 10-342 Olsztyn, Poland.
| | - Magdalena Gajęcka
- Department of Veterinary Prevention and Feed Hygiene, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13, 10-718 Olsztyn, Poland.
| | - Adriana Nowak
- Institute of Fermentation Technology and Microbiology, Lodz University of Technology, 90-924 Lodz, Poland.
| | - Michał Dąbrowski
- Department of Veterinary Prevention and Feed Hygiene, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13, 10-718 Olsztyn, Poland.
| | - Łukasz Zielonka
- Department of Veterinary Prevention and Feed Hygiene, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13, 10-718 Olsztyn, Poland.
| | - Maciej T Gajęcki
- Department of Veterinary Prevention and Feed Hygiene, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13, 10-718 Olsztyn, Poland.
| |
Collapse
|
30
|
Ferrari L, Canelli E, De Angelis E, Catella A, Ferrarini G, Ogno G, Bonati L, Nardini R, Borghetti P, Martelli P. A highly pathogenic porcine reproductive and respiratory syndrome virus type 1 (PRRSV-1) strongly modulates cellular innate and adaptive immune subsets upon experimental infection. Vet Microbiol 2018. [DOI: 10.1016/j.vetmic.2018.02.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
31
|
Nedumpun T, Sirisereewan C, Thanmuan C, Techapongtada P, Puntarotairung R, Naraprasertkul S, Thanawongnuwech R, Suradhat S. Induction of porcine reproductive and respiratory syndrome virus (PRRSV)-specific regulatory T lymphocytes (Treg) in the lungs and tracheobronchial lymph nodes of PRRSV-infected pigs. Vet Microbiol 2018. [PMID: 29519507 DOI: 10.1016/j.vetmic.2018.01.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Regulatory T lymphocytes (Treg) residing within the tissues, are known to possess immunosuppressive properties which contribute to immunomodulation within the organs. PRRSV infection usually weakens lung defense mechanisms, leading to porcine respiratory disease complex (PRDC). Induction of circulatory Treg is one of the reported mechanisms involved in PRRSV-induced immunomodulation. However, whether PRRSV can induce tissue-infiltrating Treg in the lungs and lymph nodes is still unclear. To investigate the effect of PRRSV on induction of porcine Treg in the tissues, we isolated mononuclear cells from the lungs and tracheobronchial lymph nodes, and identified the existence of Treg by flow cytometry. The results demonstrated that PRRSV could induce Treg proliferation in the cultured mononuclear cells derived from lungs and tracheobronchial lymph nodes, regardless of the pig's PRRSV infective status. Furthermore, PRRSV-infected pigs exhibited higher numbers of total tissue-infiltrating Treg and PRRSV-specific Treg in the lungs and tracheobronchial lymph nodes than the PRRSV-negative pigs. To determine if the lung Treg could produce an inhibitory cytokine, the numbers of IL-10-producing Treg were determined. Significantly higher numbers of IL-10-producing Treg in the lungs of PRRSV-infected pigs were observed. Altogether, our findings indicate the potent effect of PRRSV on induction of Treg in the lungs and tracheobronchial lymph nodes of the infected pigs. The findings expand our understanding in PRRSV immunopathogenesis within the target organs.
Collapse
Affiliation(s)
- Teerawut Nedumpun
- Interdisciplinary Program in Medical Microbiology, Graduate School, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand
| | - Chaitawat Sirisereewan
- Graduate Program in Veterinary Pathobiology, Faculty of Veterinary Science, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand
| | - Chanoknun Thanmuan
- Faculty of Veterinary Science, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand
| | - Pong Techapongtada
- Faculty of Veterinary Science, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand
| | | | - Sarun Naraprasertkul
- Faculty of Veterinary Science, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand
| | - Roongroje Thanawongnuwech
- Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand; Center of Excellence in Emerging Infectious Diseases in Animals, Chulalongkorn University (CU-EIDAs), Pathumwan, Bangkok 10330, Thailand
| | - Sanipa Suradhat
- Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand; Center of Excellence in Emerging Infectious Diseases in Animals, Chulalongkorn University (CU-EIDAs), Pathumwan, Bangkok 10330, Thailand.
| |
Collapse
|
32
|
Charerntantanakul W, Fabros D. Saponin Quil A up-regulates type I interferon-regulated gene and type I and II interferon expressions which are suppressed by porcine reproductive and respiratory syndrome virus. Vet Immunol Immunopathol 2017; 195:76-83. [PMID: 29249322 DOI: 10.1016/j.vetimm.2017.11.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 10/27/2017] [Accepted: 11/28/2017] [Indexed: 01/25/2023]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) suppresses innate immune response following infection of myeloid antigen-presenting cells. Poor innate immune response results in weak and delayed PRRSV-specific adaptive immunity, and facilitates PRRSV replication, pathogenesis, and persistent infection. Numerous efforts have been made to enhance the effective innate and adaptive immune defenses to PRRSV, however, only a few attempts have so far elicited satisfactory results. The present study aims to evaluate in vitro the potential of saponin quil A to enhance the expression of type I interferon (IFN)-regulated gene, type I and II IFNs, and pro-inflammatory cytokines in PRRSV-inoculated peripheral blood mononuclear cells (PBMC). Naïve PBMC from four PRRSV-seronegative pigs were inoculated with PRRSV and subsequently stimulated with quil A in the absence or presence of either polyinosinic:polycytidylic acid (poly IC) or lipopolysaccharide (LPS). The mRNA expression levels of myxovirus resistance 1 (Mx1), interferon regulatory factor 3 (IRF3), IRF7, 2'-5'-oligoadenylatesynthetase 1 (OAS1), stimulator of interferon genes (STING), osteopontin (OPN), IFNα, IFNβ, IFNγ, interleukin-2 (IL-2), IL-10, IL-13, tumor necrosis factor alpha (TNFα), and transforming growth factor beta (TGFβ) were evaluated by real-time PCR. Compared with uninoculated PBMC, PRRSV significantly suppressed expression of all immune parameters except IL-2, IL-10, IL-13, and TGFβ. When compared with PRRSV-inoculated PBMC, stimulation with quil A significantly enhanced Mx1, IRF3, IRF7, OAS1, STING, IFNβ, and IFNγ mRNA expressions, and significantly reduced TGFβ mRNA expression. Our findings thus suggest that quil A has a potential to up-regulate the expression of type I IFN-regulated gene and type I and II IFNs which are suppressed by PRRSV. Therefore, it may serve as an effective immunostimulator for potentiating the innate immune defense to PRRSV.
Collapse
Affiliation(s)
| | - Dante Fabros
- Program of Biotechnology, Faculty of Science, Maejo University, Chiang Mai 50290, Thailand
| |
Collapse
|
33
|
Equine Arteritis Virus Has Specific Tropism for Stromal Cells and CD8 + T and CD21 + B Lymphocytes but Not for Glandular Epithelium at the Primary Site of Persistent Infection in the Stallion Reproductive Tract. J Virol 2017; 91:JVI.00418-17. [PMID: 28424285 DOI: 10.1128/jvi.00418-17] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 04/11/2017] [Indexed: 11/20/2022] Open
Abstract
Equine arteritis virus (EAV) has a global impact on the equine industry as the causative agent of equine viral arteritis (EVA), a respiratory, systemic, and reproductive disease of equids. A distinctive feature of EAV infection is that it establishes long-term persistent infection in 10 to 70% of infected stallions (carriers). In these stallions, EAV is detectable only in the reproductive tract, and viral persistence occurs despite the presence of high serum neutralizing antibody titers. Carrier stallions constitute the natural reservoir of the virus as they continuously shed EAV in their semen. Although the accessory sex glands have been implicated as the primary sites of EAV persistence, the viral host cell tropism and whether viral replication in carrier stallions occurs in the presence or absence of host inflammatory responses remain unknown. In this study, dual immunohistochemical and immunofluorescence techniques were employed to unequivocally demonstrate that the ampulla is the main EAV tissue reservoir rather than immunologically privileged tissues (i.e., testes). Furthermore, we demonstrate that EAV has specific tropism for stromal cells (fibrocytes and possibly tissue macrophages) and CD8+ T and CD21+ B lymphocytes but not glandular epithelium. Persistent EAV infection is associated with moderate, multifocal lymphoplasmacytic ampullitis comprising clusters of B (CD21+) lymphocytes and significant infiltration of T (CD3+, CD4+, CD8+, and CD25+) lymphocytes, tissue macrophages, and dendritic cells (Iba-1+ and CD83+), with a small number of tissue macrophages expressing CD163 and CD204 scavenger receptors. This study suggests that EAV employs complex immune evasion mechanisms that warrant further investigation.IMPORTANCE The major challenge for the worldwide control of EAV is that this virus has the distinctive ability to establish persistent infection in the stallion's reproductive tract as a mechanism to ensure its maintenance in equid populations. Therefore, the precise identification of tissue and cellular tropism of EAV is critical for understanding the molecular basis of viral persistence and for development of improved prophylactic or treatment strategies. This study significantly enhances our understanding of the EAV carrier state in stallions by unequivocally identifying the ampullae as the primary sites of viral persistence, combined with the fact that persistence involves continuous viral replication in fibrocytes (possibly including tissue macrophages) and T and B lymphocytes in the presence of detectable inflammatory responses, suggesting the involvement of complex viral mechanisms of immune evasion. Therefore, EAV persistence provides a powerful new natural animal model to study RNA virus persistence in the male reproductive tract.
Collapse
|
34
|
The viral innate immune antagonism and an alternative vaccine design for PRRS virus. Vet Microbiol 2017; 209:75-89. [PMID: 28341332 PMCID: PMC7111430 DOI: 10.1016/j.vetmic.2017.03.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 03/10/2017] [Accepted: 03/13/2017] [Indexed: 02/06/2023]
Abstract
PRRS virus has evolved to suppress the antiviral innate immunity during infection. Type I interferons are potent antiviral cytokines and function to stimulate the adaptive immune responses. Six viral proteins have been identified as interferon antagonists and characterized for their molecular actions. Interferon antagonism-negative viruses are attenuated and have been proven induce protective immunity. Interferon suppression-negative PRRS virus may serve as an alternative vaccine for PRRS.
Porcine reproductive and respiratory syndrome (PRRS) remains one of the most economically significant diseases in the swine industry worldwide. The current vaccines are less satisfactory to confer protections from heterologous infections and long-term persistence, and the need for better vaccines are urgent. The immunological hallmarks in PRRSV-infected pigs include the unusually poor production of type I interferons (IFNs-α/β) and the aberrant and delayed adaptive immune responses, indicating that PRRSV has the ability to suppress both innate and adaptive immune responses in the host. Type I IFNs are the potent antiviral cytokines and recent studies reveal their pleiotropic functions in the priming of expansion and maturation of adaptive immunity. Thus, IFN antagonism-negative PRRSV is hypothesized to be attenuated and to build effective and broad- spectrum innate and adaptive immune responses in pigs. Such vaccines are promising alternatives to traditional vaccines for PRRSV.
Collapse
|
35
|
PBMC transcriptome profiles identifies potential candidate genes and functional networks controlling the innate and the adaptive immune response to PRRSV vaccine in Pietrain pig. PLoS One 2017; 12:e0171828. [PMID: 28278192 PMCID: PMC5344314 DOI: 10.1371/journal.pone.0171828] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 01/26/2017] [Indexed: 12/13/2022] Open
Abstract
The porcine reproductive and respiratory syndrome (PRRS) is a devastating viral disease affecting swine production, health and welfare throughout the world. A synergistic action of the innate and the adaptive immune system of the host is essential for mounting a durable protective immunity through vaccination. Therefore, the current study aimed to investigate the transcriptome profiles of peripheral blood mononuclear cells (PBMCs) to characterize the innate and the adaptive immune response to PRRS Virus (PRRSV) vaccination in Pietrain pigs. The Affymetrix gene chip porcine gene 1.0 ST array was used for the transcriptome profiling of PBMCs collected at immediately before (D0), at one (D1) and 28 days (D28) post PRRSV vaccination with three biological replications. With FDR <0.05 and log2 fold change ±1.5 as cutoff criteria, 295 and 115 transcripts were found to be differentially expressed in PBMCs during the stage of innate and adaptive response, respectively. The microarray expression results were technically validated by qRT-PCR. The gene ontology terms such as viral life cycle, regulation of lymphocyte activation, cytokine activity and inflammatory response were enriched during the innate immunity; cytolysis, T cell mediated cytotoxicity, immunoglobulin production were enriched during adaptive immunity to PRRSV vaccination. Significant enrichment of cytokine-cytokine receptor interaction, signaling by interleukins, signaling by the B cell receptor (BCR), viral mRNA translation, IFN-gamma pathway and AP-1 transcription factor network pathways were indicating the involvement of altered genes in the antiviral defense. Network analysis revealed that four network modules were functionally involved with the transcriptional network of innate immunity, and five modules were linked to adaptive immunity in PBMCs. The innate immune transcriptional network was found to be regulated by LCK, STAT3, ATP5B, UBB and RSP17. While TGFß1, IL7R, RAD21, SP1 and GZMB are likely to be predictive for the adaptive immune transcriptional response to PRRSV vaccine in PBMCs. Results of the current immunogenomics study advances our understanding of PRRS in term of host-vaccine interaction, and thereby contribute to design a rationale for disease control strategy.
Collapse
|
36
|
Han J, Zhou L, Ge X, Guo X, Yang H. Pathogenesis and control of the Chinese highly pathogenic porcine reproductive and respiratory syndrome virus. Vet Microbiol 2017; 209:30-47. [PMID: 28292547 DOI: 10.1016/j.vetmic.2017.02.020] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 02/22/2017] [Accepted: 02/27/2017] [Indexed: 12/24/2022]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) has remained a major threat to the worldwide swine industry ever since its first discovery in the early 1990s. Under the selective pressures in the field, this positive-stranded RNA virus undergoes rapid genetic evolution that eventually leads to emergence in 2006 of the devastating Chinese highly pathogenic PRRSV (HP-PRRSV). The atypical nature of HP-PRRSV has caused colossal economic losses to the swine producers in China and the surrounding countries. In this review, we summarize the recent advances in our understanding of the pathogenesis, evolution and ongoing field practices on the control of this troubling virus in China.
Collapse
Affiliation(s)
- Jun Han
- Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, PR China
| | - Lei Zhou
- Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, PR China
| | - Xinna Ge
- Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, PR China
| | - Xin Guo
- Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, PR China
| | - Hanchun Yang
- Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, PR China.
| |
Collapse
|
37
|
Canine peripheral blood CD4 + CD8 + double-positive T cell subpopulations exhibit distinct T cell phenotypes and effector functions. Vet Immunol Immunopathol 2017; 185:48-56. [DOI: 10.1016/j.vetimm.2017.01.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 01/19/2017] [Accepted: 01/23/2017] [Indexed: 12/12/2022]
|
38
|
Nedumpun T, Wongyanin P, Sirisereewan C, Ritprajak P, Palaga T, Thanawongnuwech R, Suradhat S. Interleukin-1 receptor antagonist: an early immunomodulatory cytokine induced by porcine reproductive and respiratory syndrome virus. J Gen Virol 2017; 98:77-88. [PMID: 27902420 DOI: 10.1099/jgv.0.000665] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) infection poorly induces pro-inflammatory cytokines (IL-1, IL-6 and TNF-α) and type I IFN production during the early phase of infection. Our microarray analysis indicated strong upregulation of the IL1RA gene in type 2 PRRSV -infected monocyte-derived dendritic cells. Interleukin-1 receptor antagonist (IL-1Ra) is an early inhibitory cytokine that suppresses pro-inflammatory cytokines and T-lymphocyte responses. To investigate the induction of IL-1Ra by PRRSV, monocyte-derived dendritic cells were cultured with type 2 PRRSV or other swine viruses. PRRSV increased both IL1RA gene expression and IL-1Ra protein production in the culture. The enhanced production of IL-1Ra was further confirmed in PRRSV-cultured PBMC and PRRSV-exposed pigs by flow cytometry. Myeloid cell population appeared to be the major IL-1Ra producer both in vitro and in vivo. In contrast to the type 2 PRRSV, the highly pathogenic (HP)- PRRSV did not upregulate IL1RA gene expression in vitro. To determine the kinetics of PRRSV-induced IL1RA gene expression in relation to other pro-inflammatory cytokine genes, PRRSV-negative pigs were vaccinated with a commercially available type 2 modified-live PRRS vaccine or intranasally inoculated with HP-PRRSV. In modified-live PRRS vaccine pigs, upregulation of IL1RA, but not IL1B and IFNA, gene expression was observed from 2 days post- vaccination. Consistent with the in vitro findings, upregulation of IL1RA gene expression was not observed in the HP-PRRSV-infected pigs throughout the experiment. This study identified IL-1Ra as an early immunomodulatory mediator that could be involved in the immunopathogenesis of PRRSV infections.
Collapse
Affiliation(s)
- Teerawut Nedumpun
- Interdisciplinary Program of Medical Microbiology, Graduate School, Chulalongkorn University, Bangkok, Thailand
| | - Piya Wongyanin
- Department of Medical Technology, Faculty of Science and Technology, Bansomdejchaopraya Rajabhat University, Bangkok, Thailand
| | - Chaitawat Sirisereewan
- Graduate Program in Veterinary Pathobiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Patcharee Ritprajak
- Department of Microbiology, RU in Oral Microbiology and Immunology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Tanapat Palaga
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Roongroje Thanawongnuwech
- Center of Excellence in Emerging Infectious Diseases in Animals, Chulalongkorn University (CU-EIDAs), Bangkok, Thailand.,Department of Veterinary Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Sanipa Suradhat
- Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand.,Center of Excellence in Emerging Infectious Diseases in Animals, Chulalongkorn University (CU-EIDAs), Bangkok, Thailand
| |
Collapse
|
39
|
Diseases Primarily Affecting the Reproductive System. Vet Med (Auckl) 2017. [PMCID: PMC7150237 DOI: 10.1016/b978-0-7020-5246-0.00018-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
40
|
Gajęcka M, Zielonka Ł, Gajęcki M. Activity of Zearalenone in the Porcine Intestinal Tract. Molecules 2016; 22:E18. [PMID: 28029134 PMCID: PMC6155780 DOI: 10.3390/molecules22010018] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Revised: 12/21/2016] [Accepted: 12/21/2016] [Indexed: 12/16/2022] Open
Abstract
This study demonstrates that low doses (somewhat above the No Observed Adverse Effect Level, NOAEL) of the mycoestrogen zearalenone (ZEN) and its metabolites display multispecificity towards various biological targets in gilts. The observed responses in gilts were surprising. The presence of ZEN and zearalenols (ZELs) did not evoke a response in the porcine gastrointestinal tract, which was attributed to dietary tolerance. Lymphocyte proliferation was intensified in jejunal mesenteric lymph nodes, and lymphocyte counts increased in the jejunal epithelium with time of exposure. In the distal digestive tract, fecal bacterial counts decreased, the activity of fecal bacterial enzymes and lactic acid bacteria increased, and cecal water was characterized by higher genotoxicity. The accompanying hyperestrogenism led to changes in mRNA activity of selected enzymes (cytochrome P450, hydroxysteroid dehydrogenases, nitric oxide synthases) and receptors (estrogen and progesterone receptors), and it stimulated post-translational modifications which play an important role in non-genomic mechanisms of signal transmission. Hyperestrogenism influences the regulation of the host's steroid hormones (estron, estradiol and progesteron), it affects the virulence of bacterial genes encoding bacterial hydroxysteroid dehydrogenases (HSDs), and it participates in detoxification processes by slowing down intestinal activity, provoking energy deficits and promoting antiporter activity at the level of enterocytes. In most cases, hyperestrogenism fulfils all of the above roles. The results of this study indicate that low doses of ZEN alleviate inflammatory processes in the digestive system, in particular in the proximal and distal intestinal tract, and increase body weight gains in gilts.
Collapse
Affiliation(s)
- Magdalena Gajęcka
- Department of Veterinary Prevention and Feed Hygiene, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13/29, 10-718 Olsztyn, Poland.
- Department of Epizootiology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13/01, 10-718 Olsztyn, Poland.
| | - Łukasz Zielonka
- Department of Veterinary Prevention and Feed Hygiene, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13/29, 10-718 Olsztyn, Poland.
| | - Maciej Gajęcki
- Department of Veterinary Prevention and Feed Hygiene, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13/29, 10-718 Olsztyn, Poland.
| |
Collapse
|
41
|
Overend CC, Cui J, Grubman MJ, Garmendia AE. The activation of the IFNβ induction/signaling pathway in porcine alveolar macrophages by porcine reproductive and respiratory syndrome virus is variable. Vet Res Commun 2016; 41:15-22. [PMID: 27896670 DOI: 10.1007/s11259-016-9665-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 11/08/2016] [Indexed: 11/30/2022]
Abstract
BACKGROUND It has been recognized that the expression of type I interferon (IFNα/β) may be suppressed during infection with porcine reproductive, respiratory syndrome virus (PRRSV). This causes profound negative effects on both the innate and adaptive immunity of the host resulting in persistence of infection. OBJECTIVE Test the effects of PRRSV infection of porcine alveolar macrophages (PAMs), the main target cell, on the expression of interferon beta (IFNβ) and downstream signaling events. METHODS In order to examine those effects, PAMs harvested from lungs of healthy PRRSV-free animals were infected with virulent, attenuated, infectious clone-derived chimeric viruses, or field PRRS virus strains. Culture supernatants from the infected PAMs were tested for IFNβ protein expression by means of indirect ELISA and for bioactivity by a vesicular stomatitis virus plaque reduction assay. The expression of the Mx protein was assayed to ascertain signaling events. RESULTS These experiments demonstrated that PRRSV does induce variably, the expression of bioactive IFNβ protein in the natural host cell. To further elucidate the effects of PRRSV infection on IFNβ signaling, Mx-1 an interferon stimulated gene (ISG), was also tested for expression. Interestingly, Mx-1 expression by infected PAMs generally correlated with IFNβ production. CONCLUSION The results of this study demonstrate that the induction of IFNβ and signaling in PAMs after PRRSV infection is variable.
Collapse
Affiliation(s)
- Christopher C Overend
- Department of Pathobiology and Veterinary Science, University of Connecticut, 61 North Eagleville Rd, Storrs, CT, 06269, USA.,Department of Biomedical Sciences and Pathobiology Virginia-Maryland Regional College of Veterinary Medicine, Virginia Polytechnic Institute and State University, 1981 Kraft Drive, Blacksburg, VA, 24061-0913, USA
| | - Junru Cui
- Department of Pathobiology and Veterinary Science, University of Connecticut, 61 North Eagleville Rd, Storrs, CT, 06269, USA
| | | | - Antonio E Garmendia
- Department of Pathobiology and Veterinary Science, University of Connecticut, 61 North Eagleville Rd, Storrs, CT, 06269, USA.
| |
Collapse
|
42
|
Gajęcka M, Tarasiuk M, Zielonka Ł, Dąbrowski M, Nicpoń J, Baranowski M, Gajęcki MT. Changes in the metabolic profile and body weight of pre-pubertal gilts during prolonged monotonic exposure to low doses of zearalenone and deoxynivalenol. Toxicon 2016; 125:32-43. [PMID: 27840141 DOI: 10.1016/j.toxicon.2016.11.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 10/31/2016] [Accepted: 11/08/2016] [Indexed: 01/16/2023]
Abstract
The aim of this study was to determine whether exposure to low doses of ZEN + DON induces changes in serum biochemical and hematological parameters in pre-pubertal gilts. In the evaluated groups, minor but statistically significant changes were noted in selected serum biochemical parameters, including glucose, total cholesterol, ALT, AST, AP, total bilirubin, Pin, Fe, K and Cl, and in hematological parameters, including WBC, eosinophils, basophils, monocytes, Ht, Hb, MCHC, HDW and PLT. A statistical analysis of the results revealed significant differences between groups in the values of WBC, eosinophils, basophils, Hb, Ht, PLT, glucose, ALT, AP, total bilirubin, Fe and K. Change trends were noted mainly in weeks II and V-VI. An analysis of the metabolic profile of pre-pubertal gilts exposed to ZEN + DON indicates that homeostasis and biotransformation of ZEN + DON can be toned down at the expense of the animals' energy reserves. Body weight gains were lower in group E, and BW gains were not observed in weeks II and VI. The activity levels of gilts decreased in the first weeks of exposure (I and II), but the drop was minimized by a compensatory effect, or in the last two weeks of exposure due to nutrient deficiency or insufficient supply of protein and energy with feed and feed additives, which decreased BW gains. Low doses of mycotoxins induce completely different changes in the metabolic test than higher doses. The above can probably be attributed to: (i) a negative compensatory effect, (ii) initiation of adaptive mechanisms and stimulation of the immune system, probably due to the allergizing properties of mycotoxins, (iii) excessive loss of energy and protein due to more effective feed utilization, or (iv) involvement in detoxification processes which leads to fatigue. Depending on the body's energy stores, the above processes tend to tone down the biotransformation of low doses of the examined mycotoxins but in the present study, the BW of gilts did not increase under exposure to a combination of ZEN + DON.
Collapse
Affiliation(s)
- Magdalena Gajęcka
- Department of Epizootiology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13/01, 10-718 Olsztyn, Poland; Department of Veterinary Prevention and Feed Hygiene, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13/29, 10-718 Olsztyn, Poland.
| | - Michał Tarasiuk
- Boehringer Ingelheim Sp. z o.o., Wolska 5, 02-675 Warsaw, Poland.
| | - Łukasz Zielonka
- Department of Veterinary Prevention and Feed Hygiene, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13/29, 10-718 Olsztyn, Poland.
| | - Michał Dąbrowski
- Department of Veterinary Prevention and Feed Hygiene, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13/29, 10-718 Olsztyn, Poland.
| | - Jakub Nicpoń
- Department and Clinic of Veterinary Surgery, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, 50-366 Wrocław, Poland.
| | - Mirosław Baranowski
- Department of Veterinary Prevention and Feed Hygiene, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13/29, 10-718 Olsztyn, Poland.
| | - Maciej Tadeusz Gajęcki
- Department of Veterinary Prevention and Feed Hygiene, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13/29, 10-718 Olsztyn, Poland.
| |
Collapse
|
43
|
Li Z, He Y, Xu X, Leng X, Li S, Wen Y, Wang F, Xia M, Cheng S, Wu H. Pathological and immunological characteristics of piglets infected experimentally with a HP-PRRSV TJ strain. BMC Vet Res 2016; 12:230. [PMID: 27733150 PMCID: PMC5062860 DOI: 10.1186/s12917-016-0854-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 10/04/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Porcine reproductive and respiratory syndrome (PRRS) remains a major threat to swine industry all over the world. The aim of this study was to investigate the mechanism of pathogenesis and immune responses caused by a highly pathogenic porcine reproductive and respiratory syndrome virus (HP-PRRSV). RESULTS All piglets experimentally infected with a HP-PRRSV TJ strain virus developed typical clinical signs of PRRS. The percentages of CD3+, CD4+, and CD8+ lymphocytes significantly decreased in the infected group as compared to the uninfected control animals (p < 0.01). Total WBC dropped in the infected animals during the experiment. The level of ELISA antibody against PRRSV increased in 7-10 days after infection and then started to decline. Pathological observations demonstrated various degree lesions, bleeding and necrosis in the lungs of the infected piglets. CONCLUSIONS These results clearly indicated that HP-PRRSV TJ strain infection would activate host humoral immune response at the early period post infection and cause severe pathological damages on lungs and inhibit cellular immune response after infection.
Collapse
Affiliation(s)
- Zhenguang Li
- Sinovet (Beijing) Biotechnology Co., Ltd., Kaituo Road 5, Haidian District, Beijing, 100085, China.,State Key Laboratory of Special Economic Animal Molecular Biology, Institute of Special Economic Animal and Plant Sciences, Chinese Academy of Agricultural Sciences,, Juye Street 4899, Changchun, Jilin, 130122, China
| | - Yanliang He
- Sinovet (Beijing) Biotechnology Co., Ltd., Kaituo Road 5, Haidian District, Beijing, 100085, China
| | - Xiaoqin Xu
- Jiangyan Animal Health Inspection Institute, Jiangguan Road 251, Taizhou, Jiangsu, 225529, China
| | - Xue Leng
- State Key Laboratory of Special Economic Animal Molecular Biology, Institute of Special Economic Animal and Plant Sciences, Chinese Academy of Agricultural Sciences,, Juye Street 4899, Changchun, Jilin, 130122, China
| | - Shufen Li
- Sinovet (Beijing) Biotechnology Co., Ltd., Kaituo Road 5, Haidian District, Beijing, 100085, China
| | - Yongjun Wen
- State Key Laboratory of Special Economic Animal Molecular Biology, Institute of Special Economic Animal and Plant Sciences, Chinese Academy of Agricultural Sciences,, Juye Street 4899, Changchun, Jilin, 130122, China
| | - Fengxue Wang
- State Key Laboratory of Special Economic Animal Molecular Biology, Institute of Special Economic Animal and Plant Sciences, Chinese Academy of Agricultural Sciences,, Juye Street 4899, Changchun, Jilin, 130122, China
| | - Mingqi Xia
- Sinovet (Beijing) Biotechnology Co., Ltd., Kaituo Road 5, Haidian District, Beijing, 100085, China
| | - Shipeng Cheng
- State Key Laboratory of Special Economic Animal Molecular Biology, Institute of Special Economic Animal and Plant Sciences, Chinese Academy of Agricultural Sciences,, Juye Street 4899, Changchun, Jilin, 130122, China
| | - Hua Wu
- Sinovet (Beijing) Biotechnology Co., Ltd., Kaituo Road 5, Haidian District, Beijing, 100085, China. .,State Key Laboratory of Special Economic Animal Molecular Biology, Institute of Special Economic Animal and Plant Sciences, Chinese Academy of Agricultural Sciences,, Juye Street 4899, Changchun, Jilin, 130122, China.
| |
Collapse
|
44
|
Wilson AD, Hicks C. Both tumour cells and infiltrating T-cells in equine sarcoids express FOXP3 associated with an immune-supressed cytokine microenvironment. Vet Res 2016; 47:55. [PMID: 27160146 PMCID: PMC4862206 DOI: 10.1186/s13567-016-0339-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 04/18/2016] [Indexed: 11/25/2022] Open
Abstract
Bovine papillomavirus (BPV) infections of equine species have a central role in the aetiology of equine sarcoids; a common benign skin tumour of horses, zebras and donkeys. Within the lesions, all of the early papillomavirus genes are expressed and promote the excessive replication of fibroblasts which characterise these tumours. Equine sarcoids differ from BPV induced fibro-papillomas of cattle (the natural host of BPV), in that they do not produce high amounts of virus particles, do not usually regress spontaneously and do not sero-convert to BPV; features which suggest that affected horses lack an effective anti-viral immune response to BPV. Equine sarcoids contain large numbers of CD4+ CD8+ dual positive T-cells which uniformly express FOXP3, the key transcription factor of regulatory T-cells, and FOXP3 is also expressed within the BPV infected fibroblasts. Compared to healthy skin, sarcoids showed increased mRNA transcription for FOXP3 and the regulatory cytokine TGFβ. Transcription of IL17, which has been shown to have a regulatory function in human papillomavirus-associated tumours, was also elevated in equine sarcoids compared to spleen. In contrast, the levels of mRNA transcripts for effector T cell cytokines IL2, IL4 and interferon-gamma (IFNγ) were not elevated in sarcoids compared to healthy skin or spleen. Similarly neither interferon-alpha (IFNα), interferon-beta (IFNβ) nor IL12 family members were elevated in sarcoids compared to normal skin. We suggest that the regulatory cytokine micro-environment within sarcoids enables the persistence of the lesions by preventing an effective anti-viral immune response.
Collapse
Affiliation(s)
- A Douglas Wilson
- School of Veterinary Sciences, University of Bristol, Langford, Bristol, BS40 5DU, UK.
| | - Chelsea Hicks
- School of Veterinary Sciences, University of Bristol, Langford, Bristol, BS40 5DU, UK
| |
Collapse
|
45
|
Gajęcka M, Sławuta P, Nicpoń J, Kołacz R, Kiełbowicz Z, Zielonka Ł, Dąbrowski M, Szweda W, Gajęcki M, Nicpoń J. Zearalenone and its metabolites in the tissues of female wild boars exposed per os to mycotoxins. Toxicon 2016; 114:1-12. [DOI: 10.1016/j.toxicon.2016.02.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 01/26/2016] [Accepted: 02/11/2016] [Indexed: 02/01/2023]
|
46
|
Canelli E, Borghetti P, Ferrari L, De Angelis E, Ferrarini G, Catella A, Ogno G, Martelli P. Immune response to PCV2 vaccination in PRRSV viraemic piglets. Vet Rec 2016; 178:193. [PMID: 26829964 DOI: 10.1136/vr.103637] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/09/2016] [Indexed: 12/19/2022]
Affiliation(s)
- E Canelli
- Department of Veterinary Science, University of Parma, via del Taglio, 10, Parma 43126, Italy
| | - P Borghetti
- Department of Veterinary Science, University of Parma, via del Taglio, 10, Parma 43126, Italy
| | - L Ferrari
- Department of Veterinary Science, University of Parma, via del Taglio, 10, Parma 43126, Italy
| | - E De Angelis
- Department of Veterinary Science, University of Parma, via del Taglio, 10, Parma 43126, Italy
| | - G Ferrarini
- Department of Veterinary Science, University of Parma, via del Taglio, 10, Parma 43126, Italy
| | - A Catella
- Department of Veterinary Science, University of Parma, via del Taglio, 10, Parma 43126, Italy
| | - G Ogno
- Department of Veterinary Science, University of Parma, via del Taglio, 10, Parma 43126, Italy
| | - P Martelli
- Department of Veterinary Science, University of Parma, via del Taglio, 10, Parma 43126, Italy
| |
Collapse
|
47
|
Transdermal delivery of plasmid encoding truncated nucleocapsid protein enhanced PRRSV-specific immune responses. Vaccine 2015; 34:609-615. [PMID: 26724543 DOI: 10.1016/j.vaccine.2015.12.043] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 12/11/2015] [Accepted: 12/16/2015] [Indexed: 01/02/2023]
Abstract
BACKGROUND Porcine Reproductive and Respiratory Syndrome virus (PRRSV) induces several immunomodulatory mechanisms that resulted in delayed and ineffective anti-viral immune responses. Recently, it has been shown that intradermal immunization of plasmid encoding truncated nucleocapsid protein (pORF7t) could reduce PRRSV-induced immunomodulatory activities and enhances anti-PRRSV immunity in vaccinated pigs. However, intradermal immunization may not be practical for farm setting. Currently, there are several transdermal delivery systems available in the market, although they were not originally designed for plasmid delivery. OBJECTIVES To investigate the potential use of a transdermal delivery system for delivering of pORF7t and its immunological outcomes. METHOD The immunomodulatory effects induced by transdermal delivery of pORF7t were compared with intradermal immunization in an experimental pig model. In addition, immunomodulatory effects of the DNA vaccine were determined in the fattening pigs kept in a PRRSV-positive farm environment, and in the experimental pigs receiving heterologous prime-boost, pORF7t-modified live vaccine (MLV) immunization. RESULT The patterns of PRRSV-specific cellular responses induced by transdermal and intradermal immunizations of pORF7t were similar. Interestingly, the pigs transdermally immunized with pORF7t exhibited higher number of PRRSV-specific CD8(+)IFN-γ(+) cells. Pigs immunized with pORF7t and kept at PRRSV-positive environment exhibited enhanced PRRSV-specific IFN-γ(+) production, reduced numbers of regulatory T lymphocytes (Tregs) and lower lung scores at the end of the finishing period. In the heterologous prime-boost experiment, priming with pORF7t prior to MLV vaccination resulted in significantly higher numbers of CD3(+)IFN-γ(+) subpopulations, lower numbers of PRRSV-specific CD3(+)IL-10(+) cells and Tregs, and rapid antibody responses in immunized pigs. CONCLUSION Transdermal immunization with pORF7t reduced PRRRSV-induced immunomodulatory effects and enhanced long-term PRRSV-specific cellular responses in vaccinated pigs. Furthermore, heterologous DNA-MLV prime-boost immunization significantly improved the quality of PRRSV-specific cellular and humoral immunity. The information could benefit the future development of PRRSV management and control strategies.
Collapse
|
48
|
Lunney JK, Fang Y, Ladinig A, Chen N, Li Y, Rowland B, Renukaradhya GJ. Porcine Reproductive and Respiratory Syndrome Virus (PRRSV): Pathogenesis and Interaction with the Immune System. Annu Rev Anim Biosci 2015; 4:129-54. [PMID: 26646630 DOI: 10.1146/annurev-animal-022114-111025] [Citation(s) in RCA: 461] [Impact Index Per Article: 51.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
This review addresses important issues of porcine reproductive and respiratory syndrome virus (PRRSV) infection, immunity, pathogenesis, and control. Worldwide, PRRS is the most economically important infectious disease of pigs. We highlight the latest information on viral genome structure, pathogenic mechanisms, and host immunity, with a special focus on immune factors that modulate PRRSV infections during the acute and chronic/persistent disease phases. We address genetic control of host resistance and probe effects of PRRSV infection on reproductive traits. A major goal is to identify cellular/viral targets and pathways for designing more effective vaccines and therapeutics. Based on progress in viral reverse genetics, host transcriptomics and genomics, and vaccinology and adjuvant technologies, we have identified new areas for PRRS control and prevention. Finally, we highlight the gaps in our knowledge base and the need for advanced molecular and immune tools to stimulate PRRS research and field applications.
Collapse
Affiliation(s)
- Joan K Lunney
- Animal Parasitic Diseases Laboratory, BARC ARS USDA, Beltsville, Maryland 20705;
| | - Ying Fang
- College of Veterinary Medicine, Kansas State University, Manhattan, Kansas 66506-5600; , ,
| | - Andrea Ladinig
- University of Veterinary Medicine, Vienna 1210, Austria;
| | - Nanhua Chen
- College of Veterinary Medicine, Kansas State University, Manhattan, Kansas 66506-5600; , , .,College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China;
| | - Yanhua Li
- College of Veterinary Medicine, Kansas State University, Manhattan, Kansas 66506-5600; , ,
| | - Bob Rowland
- College of Veterinary Medicine, Kansas State University, Manhattan, Kansas 66506-5600; , ,
| | | |
Collapse
|
49
|
Ferrarini G, Borghetti P, De Angelis E, Ferrari L, Canelli E, Catella A, Di Lecce R, Martelli P. Immunoregulatory signal FoxP3, cytokine gene expression and IFN-γ cell responsiveness upon porcine reproductive and respiratory syndrome virus (PRRSV) natural infection. Res Vet Sci 2015; 103:96-102. [PMID: 26679802 DOI: 10.1016/j.rvsc.2015.09.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 09/18/2015] [Accepted: 09/23/2015] [Indexed: 10/23/2022]
Abstract
The study aims at evaluating gene expression of pro-inflammatory (IL-1β, IL-8, TNF-α), pro-immune (IFN-γ), anti-inflammatory (IL-10) cytokines and of the immunoregulatory signal FoxP3 in association with PRRSV-specific IFN-γ secreting cell (SC) responsiveness upon PRRSV natural infection. Forty PRRSV-negative pigs were assigned to two groups: 20 pigs were vaccinated at 3 weeks of age (weaning) against PRRSV (V-PRRSV) with a modified live virus vaccine (MLV) and 20 pigs were kept non-vaccinated (NV) as controls. Blood samples were collected at 3 (vaccination), 6, 8, 10, 12, 14, and 16 weeks of age. Natural infection occurred from 8 weeks of age onward in both groups and viremia lasted 8 weeks. In the early phase of infection, pro-inflammatory cytokines (IL-1β, IL-8, TNF-α) showed a delayed increase concomitant with the peak of viremia in both groups. In both groups, IL-10 peaked at 12 weeks in association with the increase of pro-inflammatory cytokines. Conversely, in vaccinated pigs (V-PRRSV), IFN-γ showed higher gene expression during the early phase of infection and a more intense secreting cell (SC) response in the late phase. Differently, gene expression of the transcription factor FoxP3, expressed by T regulatory lymphocytes (Tregs), increased significantly in controls only and was associated with the rise of the viral load. Moreover, FoxP3 levels remained significantly higher during the late phase of infection and paralleled with lower levels of IFN-γ SC detected by ELISPOT. The expression/production of immunoregulatory signals involved in Treg activation could be a promising marker to study the immunobiology of PRRSV infection.
Collapse
Affiliation(s)
- Giulia Ferrarini
- Department of Veterinary Sciences, University of Parma, Via del Taglio, 10, 43126 Parma, Italy.
| | - Paolo Borghetti
- Department of Veterinary Sciences, University of Parma, Via del Taglio, 10, 43126 Parma, Italy.
| | - Elena De Angelis
- Department of Veterinary Sciences, University of Parma, Via del Taglio, 10, 43126 Parma, Italy.
| | - Luca Ferrari
- Department of Veterinary Sciences, University of Parma, Via del Taglio, 10, 43126 Parma, Italy.
| | - Elena Canelli
- Department of Veterinary Sciences, University of Parma, Via del Taglio, 10, 43126 Parma, Italy.
| | - Alessia Catella
- Department of Veterinary Sciences, University of Parma, Via del Taglio, 10, 43126 Parma, Italy.
| | - Rosanna Di Lecce
- Department of Veterinary Sciences, University of Parma, Via del Taglio, 10, 43126 Parma, Italy.
| | - Paolo Martelli
- Department of Veterinary Sciences, University of Parma, Via del Taglio, 10, 43126 Parma, Italy.
| |
Collapse
|
50
|
Fan B, Liu X, Bai J, Li Y, Zhang Q, Jiang P. The 15N and 46R Residues of Highly Pathogenic Porcine Reproductive and Respiratory Syndrome Virus Nucleocapsid Protein Enhance Regulatory T Lymphocytes Proliferation. PLoS One 2015; 10:e0138772. [PMID: 26397116 PMCID: PMC4580451 DOI: 10.1371/journal.pone.0138772] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 08/09/2015] [Indexed: 12/14/2022] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) negatively modulates host immune responses, resulting in persistent infection and immunosuppression. PRRSV infection increases the number of PRRSV-specific regulatory T lymphocytes (Tregs) in infected pigs. However, the target antigens for Tregs proliferation in PRRSV infection have not been fully understood. In this study, we demonstrated that the highly pathogenic PRRSV (HP-PRRSV) induced more CD4+CD25+Foxp3+ Tregs than classical PRRSV (C-PRRSV) strain. Of the recombinant GP5, M and N proteins of HP-PRRSV expressed in baculovirus expression systems, only N protein induced Tregs proliferation. The Tregs assays showed that three amino-acid regions, 15–21, 42–48 and 88–94, in N protein played an important role in induction of Tregs proliferation with synthetic peptides covering the whole length of N protein. By using reverse genetic methods, it was firstly found that the 15N and 46R residues in PRRSV N protein were critical for induction of Tregs proliferation. The phenotype of induced Tregs closely resembled that of transforming-growth-factor-β-secreting T helper 3 Tregs in swine. These data should be useful for understanding the mechanism of immunity to PRRSV and development of infection control strategies in the future.
Collapse
Affiliation(s)
- Baochao Fan
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xing Liu
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Juan Bai
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yufeng Li
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qiaoya Zhang
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ping Jiang
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
- * E-mail:
| |
Collapse
|