1
|
Molavi-Arabshahi M, Rashidinia J, Yousefi M. A novel hybrid method with convergence analysis for approximation of HTLV-I dynamics model. Sci Rep 2024; 14:25678. [PMID: 39465268 PMCID: PMC11514222 DOI: 10.1038/s41598-024-76110-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 10/10/2024] [Indexed: 10/29/2024] Open
Abstract
This paper presents a novel numerical approach for approximating the solution of the model describing the infection of C D 4 + T -cells by the human T-cell lymphotropic virus I (HTLV-I).The proposed method utilizes the operational matrix along with spectral method to convert the fractional model into a system of nonlinear algebraic equations. The Levenberg-Marquardt algorithm efficiently solves these equations. The study includes theoretical convergence analysis and error bounds to establish the validity of the proposed method. Through several test problems, we demonstrate the effectiveness and accuracy of the approach. We compare its performance and reliability to other existing methods in the literature. The results indicate that the proposed method is a reliable and efficient approach for solving the model.
Collapse
Affiliation(s)
- Mahboubeh Molavi-Arabshahi
- School of Mathematics and Computer Science, Iran University of Science and Technology, Narmak, Tehran, 16844, Iran.
| | - Jalil Rashidinia
- School of Mathematics and Computer Science, Iran University of Science and Technology, Narmak, Tehran, 16844, Iran
| | - Mahnaz Yousefi
- School of Mathematics and Computer Science, Iran University of Science and Technology, Narmak, Tehran, 16844, Iran
| |
Collapse
|
2
|
Mahdifar M, Boostani R, Taylor GP, Rezaee SA, Rafatpanah H. Comprehensive Insight into the Functional Roles of NK and NKT Cells in HTLV-1-Associated Diseases and Asymptomatic Carriers. Mol Neurobiol 2024; 61:7877-7889. [PMID: 38436833 DOI: 10.1007/s12035-024-03999-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 01/29/2024] [Indexed: 03/05/2024]
Abstract
Human T cell leukemia virus type 1 (HTLV-1) is the first human oncogenic retrovirus to be discovered and causes two major diseases: a progressive neuro-inflammatory disease, termed HTLV-1 associated myelopathy/tropical spastic paraparesis (HAM/TSP), and an aggressive malignancy of T lymphocytes known as adult T cell leukemia (ATL). Innate and acquired immune responses play pivotal roles in controlling the status of HTLV-1-infected cells and such, the outcome of HTLV-1 infection. Natural killer cells (NKCs) are the effector cells of the innate immune system and are involved in controlling viral infections and several types of cancers. The ability of NKCs to trigger cytotoxicity to provide surveillance against viruses and cancer depends on the balance between the inhibitory and activating signals. In this review, we will discuss NKC function and the alterations in the frequency of these cells in HTLV-1 infection.
Collapse
Affiliation(s)
- Maryam Mahdifar
- Immunology Research Center, Inflammation and Inflammatory Diseases Division, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Reza Boostani
- Department of Neurology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Graham P Taylor
- Section of Infectious Diseases, Department of Medicine, Imperial College London, London, UK
| | - Seyed Abdolrahim Rezaee
- Immunology Research Center, Inflammation and Inflammatory Diseases Division, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Houshang Rafatpanah
- Immunology Research Center, Inflammation and Inflammatory Diseases Division, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
3
|
Obr M, Percipalle M, Chernikova D, Yang H, Thader A, Pinke G, Porley D, Mansky LM, Dick RA, Schur FKM. Distinct stabilization of the human T cell leukemia virus type 1 immature Gag lattice. Nat Struct Mol Biol 2024:10.1038/s41594-024-01390-8. [PMID: 39242978 DOI: 10.1038/s41594-024-01390-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 08/14/2024] [Indexed: 09/09/2024]
Abstract
Human T cell leukemia virus type 1 (HTLV-1) immature particles differ in morphology from other retroviruses, suggesting a distinct way of assembly. Here we report the results of cryo-electron tomography studies of HTLV-1 virus-like particles assembled in vitro, as well as derived from cells. This work shows that HTLV-1 uses a distinct mechanism of Gag-Gag interactions to form the immature viral lattice. Analysis of high-resolution structural information from immature capsid (CA) tubular arrays reveals that the primary stabilizing component in HTLV-1 is the N-terminal domain of CA. Mutagenesis analysis supports this observation. This distinguishes HTLV-1 from other retroviruses, in which the stabilization is provided primarily by the C-terminal domain of CA. These results provide structural details of the quaternary arrangement of Gag for an immature deltaretrovirus and this helps explain why HTLV-1 particles are morphologically distinct.
Collapse
Affiliation(s)
- Martin Obr
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
- Material and Structural Analysis Division, Thermo Fisher Scientific, Achtseweg Noord, Eindhoven, Netherlands
| | - Mathias Percipalle
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | - Darya Chernikova
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | - Huixin Yang
- Institute for Molecular Virology, University of Minnesota, Minneapolis, MN, USA
| | - Andreas Thader
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | - Gergely Pinke
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | - Dario Porley
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | - Louis M Mansky
- Institute for Molecular Virology, University of Minnesota, Minneapolis, MN, USA
| | - Robert A Dick
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
- Department of Pediatrics, Laboratory of Biochemical Pharmacology, Center for ViroScience and Cure, Emory University School of Medicine, Atlanta, GA, USA
| | - Florian K M Schur
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria.
| |
Collapse
|
4
|
Letafati A, Bahavar A, Norouzi M, Rasouli A, Hedayatyaghoubi M, Molaverdi G, Mozhgani SH, Siami Z. Effects of HTLV-1 on leukocyte trafficking and migration in ACs compared to healthy individuals. BMC Res Notes 2024; 17:222. [PMID: 39127702 DOI: 10.1186/s13104-024-06887-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024] Open
Abstract
Human T-lymphotropic virus type 1 (HTLV-1) is a RNA virus belonging to Retroviridae family and is associated with the development of various diseases, including adult T-cell leukemia/lymphoma (ATLL) and HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). Aside from HAM/TSP, HTLV-1 has been implicated in the development of several disorders that mimic auto-inflammation. T-cell migration is important topic in the context of HTLV-1 associated diseases progression. The primary objective of this case-control study was to assess the relationship between increased mRNA expression in virus migration following HTLV-1 infection. PBMCs from 20 asymptomatic patients and 20 healthy subjects were analyzed using real-time PCR to measure mRNA expression of LFA1, MLCK, RAC1, RAPL, ROCK1, VAV1 and CXCR4. Also, mRNA expression of Tax and HBZ were evaluated. Mean expression of Tax and HBZ in ACs (asymptomatic carriers) was 0.7218 and 0.6517 respectively. The results revealed a noteworthy upregulation of these genes involved in T-cell migration among ACs patients in comparison to healthy individuals. Considering the pivotal role of gene expression alterations associated with the progression into two major diseases (ATLL or HAM/TSP), analyzing the expression of these genes in the ACs group can offer probable potential diagnostic markers and aid in monitoring the condition of ACs.
Collapse
Affiliation(s)
- Arash Letafati
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Research Center for Clinical Virology, Tehran University of Medical Science, Tehran, Iran
| | - Atefeh Bahavar
- Department of Microbiology, School of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Mehdi Norouzi
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Research Center for Clinical Virology, Tehran University of Medical Science, Tehran, Iran
| | - Aziz Rasouli
- Department of Emergency Medicine, School of Medicine, Ziaeian Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Mojtaba Hedayatyaghoubi
- Department of Infectious Diseases, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Ghazale Molaverdi
- Student Research Committee, Alborz University of Medical Sciences, Karaj, Iran
| | - Sayed-Hamidreza Mozhgani
- Non-Communicable Disease Research Center, Alborz University of Medical Sciences, Karaj, Iran.
- Department of Microbiology and Virology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran.
| | - Zeinab Siami
- Department of Infectious Diseases, School of Medicine, Ziaeian Hospital, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Daian E Silva DSO, Cox LJ, Rocha AS, Lopes-Ribeiro Á, Souza JPC, Franco GM, Prado JLC, Pereira-Santos TA, Martins ML, Coelho-Dos-Reis JGA, Gomes-de-Pinho TM, Da Fonseca FG, Barbosa-Stancioli EF. Preclinical assessment of an anti-HTLV-1 heterologous DNA/MVA vaccine protocol expressing a multiepitope HBZ protein. Virol J 2023; 20:304. [PMID: 38115107 PMCID: PMC10731796 DOI: 10.1186/s12985-023-02264-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 12/07/2023] [Indexed: 12/21/2023] Open
Abstract
BACKGROUND Human T-lymphotropic virus 1 (HTLV-1) is associated with the development of several pathologies and chronic infection in humans. The inefficiency of the available treatments and the challenge in developing a protective vaccine highlight the need to produce effective immunotherapeutic tools. The HTLV-1 basic leucine zipper (bZIP) factor (HBZ) plays an important role in the HTLV-1 persistence, conferring a survival advantage to infected cells by reducing the HTLV-1 proteins expression, allowing infected cells to evade immune surveillance, and enhancing cell proliferation leading to increased proviral load. METHODS We have generated a recombinant Modified Virus Vaccinia Ankara (MVA-HBZ) and a plasmid DNA (pcDNA3.1(+)-HBZ) expressing a multiepitope protein based on peptides of HBZ to study the immunogenic potential of this viral-derived protein in BALB/c mice model. Mice were immunized in a prime-boost heterologous protocol and their splenocytes (T CD4+ and T CD8+) were immunophenotyped by flow cytometry and the humoral response was evaluated by ELISA using HBZ protein produced in prokaryotic vector as antigen. RESULTS T CD4+ and T CD8+ lymphocytes cells stimulated by HBZ-peptides (HBZ42-50 and HBZ157-176) showed polyfunctional double positive responses for TNF-α/IFN-γ, and TNF-α/IL-2. Moreover, T CD8+ cells presented a tendency in the activation of effector memory cells producing granzyme B (CD44+High/CD62L-Low), and the activation of Cytotoxic T Lymphocytes (CTLs) and cytotoxic responses in immunized mice were inferred through the production of granzyme B by effector memory T cells and the expression of CD107a by CD8+ T cells. The overall data is consistent with a directive and effector recall response, which may be able to operate actively in the elimination of HTLV-1-infected cells and, consequently, in the reduction of the proviral load. Sera from immunized mice, differently from those of control animals, showed IgG-anti-HBZ production by ELISA. CONCLUSIONS Our results highlight the potential of the HBZ multiepitope protein expressed from plasmid DNA and a poxviral vector as candidates for therapeutic vaccine.
Collapse
Affiliation(s)
- D S O Daian E Silva
- Laboratório de Virologia Básica e Aplicada, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Campus Pampulha, Belo Horizonte, MG, CEP 31270-901, Brazil
- GIPH - Grupo Interdisciplinar de Pesquisas em HTLV, Interdisciplinary HTLV Research Group, Belo Horizonte, Brazil
| | - L J Cox
- Laboratório de Virologia Básica e Aplicada, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Campus Pampulha, Belo Horizonte, MG, CEP 31270-901, Brazil
- GIPH - Grupo Interdisciplinar de Pesquisas em HTLV, Interdisciplinary HTLV Research Group, Belo Horizonte, Brazil
| | - A S Rocha
- Laboratório de Virologia Básica e Aplicada, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Campus Pampulha, Belo Horizonte, MG, CEP 31270-901, Brazil
- GIPH - Grupo Interdisciplinar de Pesquisas em HTLV, Interdisciplinary HTLV Research Group, Belo Horizonte, Brazil
| | - Á Lopes-Ribeiro
- Laboratório de Virologia Básica e Aplicada, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Campus Pampulha, Belo Horizonte, MG, CEP 31270-901, Brazil
| | - J P C Souza
- Centro de Tecnologia de Vacinas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, 31270-901, Brazil
| | - G M Franco
- Laboratório de Virologia Básica e Aplicada, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Campus Pampulha, Belo Horizonte, MG, CEP 31270-901, Brazil
- GIPH - Grupo Interdisciplinar de Pesquisas em HTLV, Interdisciplinary HTLV Research Group, Belo Horizonte, Brazil
| | - J L C Prado
- Laboratório de Virologia Básica e Aplicada, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Campus Pampulha, Belo Horizonte, MG, CEP 31270-901, Brazil
| | - T A Pereira-Santos
- Laboratório de Virologia Básica e Aplicada, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Campus Pampulha, Belo Horizonte, MG, CEP 31270-901, Brazil
- GIPH - Grupo Interdisciplinar de Pesquisas em HTLV, Interdisciplinary HTLV Research Group, Belo Horizonte, Brazil
| | - M L Martins
- GIPH - Grupo Interdisciplinar de Pesquisas em HTLV, Interdisciplinary HTLV Research Group, Belo Horizonte, Brazil
- Gerência de Desenvolvimento Técnico Científico, Fundação Centro de Hematologia e Hemoterapia do Estado de Minas Gerais - Hemominas, Belo Horizonte, Brazil
| | - J G A Coelho-Dos-Reis
- Laboratório de Virologia Básica e Aplicada, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Campus Pampulha, Belo Horizonte, MG, CEP 31270-901, Brazil
- GIPH - Grupo Interdisciplinar de Pesquisas em HTLV, Interdisciplinary HTLV Research Group, Belo Horizonte, Brazil
| | - T M Gomes-de-Pinho
- Centro de Tecnologia de Vacinas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, 31270-901, Brazil
| | - F G Da Fonseca
- Laboratório de Virologia Básica e Aplicada, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Campus Pampulha, Belo Horizonte, MG, CEP 31270-901, Brazil
- Centro de Tecnologia de Vacinas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, 31270-901, Brazil
| | - E F Barbosa-Stancioli
- Laboratório de Virologia Básica e Aplicada, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Campus Pampulha, Belo Horizonte, MG, CEP 31270-901, Brazil.
- GIPH - Grupo Interdisciplinar de Pesquisas em HTLV, Interdisciplinary HTLV Research Group, Belo Horizonte, Brazil.
| |
Collapse
|
6
|
de Sena Rodrigues Júnior R, Antonia Nunes Gomes J, Alberto da Silva Dias G, Fujihara S, Toshimitsu Yoshikawa G, Vilela Lopes Koyama R, Catarina Medeiros Sousa R, Antonio Simões Quaresma J, Thais Fuzii H. T helper type 9 cell response and its role in the neurological clinic of patients with Human T-lymphotropic virus 1. Immunobiology 2023; 228:152740. [PMID: 37657359 DOI: 10.1016/j.imbio.2023.152740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 08/22/2023] [Accepted: 08/24/2023] [Indexed: 09/03/2023]
Abstract
Human T-lymphotropic virus 1 (HTLV-1) affects 5-10 million individuals worldwide. Most of those infected with this virus remain asymptomatic; however, 0.25%-4% of individuals develop HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP), while 2%-4% develop adult T-cell leukemia/lymphoma (ATLL). Understanding the immune response inherent in this infection is extremely important. The role of T helper type 1 (Th1) and Th2 cells in HTLV-1 infection is well known; however, exploring the different subtypes of immune responses is also necessary. The role of Th9 cells in HTLV-1 infection and the mechanisms involved in their interference in the pathophysiological process of HAM/TSP is poorly understood. This study aimed to evaluate the expression profiles of PU.1, interferon regulatory factor 4 (IRF-4), and cytokine interleukin-9 (IL-9) during the induction of peripheral immune response and their role in the HTLV-1-infected patients' neurological symptoms. This analytical cross-sectional study was carried out at the Laboratory of Clinical and Epidemiology of Endemic Diseases and the Laboratory of Immunopathology, both from the Tropical Medicine Center at the Federal University of Pará. Assessment of neurological parameters was performed (gait, Expanded Kurtzke Disability State Scale (EDSS) score, upper and lower limb reflexes, Hoffman's sign, Babinski reflex, and clonus reflex). For Th9 cell analysis, peripheral blood samples were collected from HTLV-1-infected patients; then, the lymphomononuclear cells were separated followed by the isolation of messenger ribonucleic acid (mRNA). Complementary deoxyribonucleic acid (cDNA) synthesis each sample was carried out. The gene expression levels of PU.1, IRF-4, and IL-9 as well as those of constitutive genes (glyceraldehyde 3-phosphate dehydrogenase (GAPDH) and β-actin) were quantified by real-time polymerase chain reaction (qPCR). This study included 81 HTLV-1-infected patients, of whom 47 were asymptomatic, 13 were mono/oligosymptomatic (MOS), and 21 developed HAM/TSP. IL-9 was the least expressed gene among the three studied groups. The MOS group showed the lowest expression levels of PU.1, IRF-4, and IL-9. HAM/TSP patients showed lower IL-9 protein quantification. Negative correlations were found between IL and 9 and EDSS in MOS patients and between PU.1, EDSS, IRF-4, and EDSS in the HAM/TSP group. An association was found between IL and 9 and Babinski reflex in the HAM/TSP group, suggesting that this gene was more highly expressed in patients who did not have this pathological sign. Th9 cells may interfere with the neurological progression of HAM/TSP and act as a protective factor.
Collapse
Affiliation(s)
| | | | | | - Satomi Fujihara
- Institute of Health Sciences, Federal University of Pará, Brazil
| | | | | | | | - Juarez Antonio Simões Quaresma
- Immunopathology Laboratory of Tropical Medicine Center. Federal University of Pará, Brazil; Center of Biological and Health Sciences, Pará State University, Brazil
| | - Hellen Thais Fuzii
- Immunopathology Laboratory of Tropical Medicine Center. Federal University of Pará, Brazil.
| |
Collapse
|
7
|
Nakamura-Hoshi M, Nomura T, Nishizawa M, Hau TTT, Yamamoto H, Okazaki M, Ishii H, Yonemitsu K, Suzaki Y, Ami Y, Matano T. HTLV-1 Proliferation after CD8 + Cell Depletion by Monoclonal Anti-CD8 Antibody Administration in Latently HTLV-1-Infected Cynomolgus Macaques. Microbiol Spectr 2023; 11:e0151823. [PMID: 37367230 PMCID: PMC10434050 DOI: 10.1128/spectrum.01518-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 06/08/2023] [Indexed: 06/28/2023] Open
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) induces chronic asymptomatic latent infection with a substantial proviral load but without significant viral replication in vivo. Cumulative studies have indicated involvement of CD8-positive (CD8+) cells, including virus-specific CD8+ T cells in the control of HTLV-1 replication. However, whether HTLV-1 expression from latently infected cells in vivo occurs in the absence of CD8+ cells remains unclear. Here, we examined the impact of CD8+ cell depletion by monoclonal anti-CD8 antibody administration on proviral load in HTLV-1-infected cynomolgus macaques. Five cynomolgus macaques were infected with HTLV-1 by inoculation with HTLV-1-producing cells. Administration of monoclonal anti-CD8 antibody in the chronic phase resulted in complete depletion of peripheral CD8+ T cells for approximately 2 months. All five macaques showed an increase in proviral load following CD8+ cell depletion, which peaked just before the reappearance of peripheral CD8+ T cells. Tax-specific CD8+ T-cell responses were detected in these recovered CD8+ T cells. Importantly, anti-HTLV-1 antibodies also increased after CD8+ cell depletion, indicating HTLV-1 antigen expression. These results provide evidence indicating that HTLV-1 can proliferate from the latent phase in the absence of CD8+ cells and suggest that CD8+ cells are responsible for the control of HTLV-1 replication. IMPORTANCE HTLV-1 can cause serious diseases such as adult T-cell leukemia (ATL) in humans after chronic asymptomatic latent infection with substantial proviral load. Proviruses are detectable in peripheral lymphocytes in HTLV-1 carriers, and the association of a higher proviral load with a higher risk of disease progression has been observed. However, neither substantial viral structural protein expression nor viral replication was detectable in vivo. Cumulative studies have indicated involvement of CD8+ cells, including virus-specific CD8+ T cells in the control of HTLV-1 replication. In the present study, we showed that CD8+ cell depletion by monoclonal anti-CD8 antibody administration results in HTLV-1 expression and an increase in proviral load in HTLV-1-infected cynomolgus macaques. Our results indicate that HTLV-1 can proliferate in the absence of CD8+ cells, suggesting that CD8+ cells are responsible for the control of HTLV-1 replication. This study provides insights into the mechanism of virus-host immune interaction in latent HTLV-1 infection.
Collapse
Affiliation(s)
| | - Takushi Nomura
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Masako Nishizawa
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Trang Thi Thu Hau
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Hiroyuki Yamamoto
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Midori Okazaki
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Hiroshi Ishii
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Kenzo Yonemitsu
- Management Department of Biosafety, Laboratory Animal, and Pathogen Bank, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yuriko Suzaki
- Management Department of Biosafety, Laboratory Animal, and Pathogen Bank, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yasushi Ami
- Management Department of Biosafety, Laboratory Animal, and Pathogen Bank, National Institute of Infectious Diseases, Tokyo, Japan
| | - Tetsuro Matano
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
- Institute of Medical Science, University of Tokyo, Tokyo, Japan
| |
Collapse
|
8
|
Obr M, Percipalle M, Chernikova D, Yang H, Thader A, Pinke G, Porley D, Mansky LM, Dick RA, Schur FKM. Unconventional stabilization of the human T-cell leukemia virus type 1 immature Gag lattice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.24.548988. [PMID: 37546793 PMCID: PMC10402013 DOI: 10.1101/2023.07.24.548988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) has an atypical immature particle morphology compared to other retroviruses. This indicates that these particles are formed in a way that is unique. Here we report the results of cryo-electron tomography (cryo-ET) studies of HTLV-1 virus-like particles (VLPs) assembled in vitro, as well as derived from cells. This work shows that HTLV-1 employs an unconventional mechanism of Gag-Gag interactions to form the immature viral lattice. Analysis of high-resolution structural information from immature CA tubular arrays reveals that the primary stabilizing component in HTLV-1 is CA-NTD. Mutagenesis and biophysical analysis support this observation. This distinguishes HTLV-1 from other retroviruses, in which the stabilization is provided primarily by the CA-CTD. These results are the first to provide structural details of the quaternary arrangement of Gag for an immature deltaretrovirus, and this helps explain why HTLV-1 particles are morphologically distinct.
Collapse
Affiliation(s)
- Martin Obr
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | - Mathias Percipalle
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | - Darya Chernikova
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | - Huixin Yang
- Institute for Molecular Virology, University of Minnesota, Minneapolis, MN, USA
| | - Andreas Thader
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | - Gergely Pinke
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | - Dario Porley
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | - Louis M Mansky
- Institute for Molecular Virology, University of Minnesota, Minneapolis, MN, USA
| | - Robert A Dick
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Florian KM Schur
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| |
Collapse
|
9
|
Yaslianifard S, Movahedi M, Yaslianifard S, Mozhgani SH. The mirror like expression of genes involved in the FOXO signaling pathway could be effective in the pathogenesis of human lymphotropic virus type 1 (HTLV-1) through disruption of the downstream pathways. BMC Res Notes 2023; 16:147. [PMID: 37461070 DOI: 10.1186/s13104-023-06423-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 07/04/2023] [Indexed: 07/20/2023] Open
Abstract
OBJECTIVES Human lymphotropic virus type 1 (HTLV-1) is the cause of two major diseases, ATLL and HAM/TSP in a percentage of carriers. Despite progress in understanding the pathogenesis of these two diseases, the exact pathogenesis mechanism is still not well understood. High-throughput technologies have revolutionized medical research. This study aims to investigate the mechanism of pathogenesis of these two diseases using the results of high-throughput analysis of microarray datasets. RESULTS A total of 100 differentially expressed genes were found between ATLL and HAM/TSP. After constructing protein-protein network and further analyzing, proteins including ATM, CD8, CXCR4, PIK3R1 and CD2 were found as the hub ones between ATLL and HAM/TSP. Finding the modules of the subnetwork revealed the enrichment of two common pathways including FOXO signaling pathway and Cell cycle with two common genes including ATM and CDKN2D. Unlike ATLL, ATM gene had higher expressions in HAM/TSP patients. The expression of CDKN2D was increased in ATLL patients. The results of this study could be helpful for understanding the pathogenic mechanism of these two diseases in the same signaling pathways.
Collapse
Affiliation(s)
- Sahar Yaslianifard
- Department of Biochemistry, Faculty of Biological Sciences, NorthTehran Branch, Islamic Azad University, Tehran, Iran
| | - Monireh Movahedi
- Department of Biochemistry, Faculty of Biological Sciences, NorthTehran Branch, Islamic Azad University, Tehran, Iran
| | - Somayeh Yaslianifard
- Department of Microbiology and Virology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
- Dietary Supplements and Probiotic Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Sayed-Hamidreza Mozhgani
- Department of Microbiology and Virology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran.
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran.
| |
Collapse
|
10
|
Seighali N, Shafiee A, Rafiee MA, Aminzade D, Mozhgani SH. Human T-cell lymphotropic virus type 1 (HTLV-1) proposed vaccines: a systematic review of preclinical and clinical studies. BMC Infect Dis 2023; 23:320. [PMID: 37170214 PMCID: PMC10173209 DOI: 10.1186/s12879-023-08289-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 04/27/2023] [Indexed: 05/13/2023] Open
Abstract
BACKGROUND Numerous vaccination research experiments have been conducted on non-primate hosts to prevent or control HTLV-1 infection. Therefore, reviewing recent advancements for status assessment and strategic planning of future preventative actions to reduce HTLV-1 infection and its consequences would be essential. METHODS MEDLINE, Scopus, Web of Science, and Clinicaltrials.gov were searched from each database's inception through March 27, 2022. All original articles focusing on developing an HTLV-1 vaccine candidate were included. RESULTS A total of 47 studies were included. They used a variety of approaches to develop the HTLV-1 vaccine, including DNA-based, dendritic-cell-based, peptide/protein-based, and recombinant vaccinia virus approaches. The majority of the research that was included utilized Tax, Glycoprotein (GP), GAG, POL, REX, and HBZ as their main peptides in order to develop the vaccine. The immunization used in dendritic cell-based investigations, which were more recently published, was accomplished by an activated CD-8 T-cell response. Although there hasn't been much attention lately on this form of the vaccine, the initial attempts to develop an HTLV-1 immunization depended on recombinant vaccinia virus, and the majority of results seem positive and effective for this type of vaccine. Few studies were conducted on humans. Most of the studies were experimental studies using animal models. Adenovirus, Cytomegalovirus (CMV), vaccinia, baculovirus, hepatitis B, measles, and pox were the most commonly used vectors. CONCLUSIONS This systematic review reported recent progression in the development of HTLV-1 vaccines to identify candidates with the most promising preventive and therapeutic effects.
Collapse
Affiliation(s)
- Niloofar Seighali
- Student Research Committee, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Arman Shafiee
- Student Research Committee, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Mohammad Ali Rafiee
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Dlnya Aminzade
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sayed-Hamidreza Mozhgani
- Department of Microbiology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran.
- Non-Communicable Disease Research Center, Alborz University of Medical Sciences, Karaj, Iran.
| |
Collapse
|
11
|
An update on genetic aberrations in T-cell neoplasms. Pathology 2023; 55:287-301. [PMID: 36801152 DOI: 10.1016/j.pathol.2022.12.350] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 12/17/2022] [Accepted: 12/26/2022] [Indexed: 01/20/2023]
Abstract
T-cell neoplasms are a highly heterogeneous group of leukaemias and lymphomas that represent 10-15% of all lymphoid neoplasms. Traditionally, our understanding of T-cell leukaemias and lymphomas has lagged behind that of B-cell neoplasms, in part due to their rarity. However, recent advances in our understanding of T-cell differentiation, based on gene expression and mutation profiling and other high throughput methods, have better elucidated the pathogenetic mechanisms of T-cell leukaemias and lymphomas. In this review, we provide an overview of many of the molecular abnormalities that occur in various types of T-cell leukaemia and lymphoma. Much of this knowledge has been used to refine diagnostic criteria that has been included in the fifth edition of the World Health Organization. This knowledge is also being used to improve prognostication and identify novel therapeutic targets, and we expect this progress will continue, eventually resulting in improved outcomes for patients with T-cell leukaemias and lymphomas.
Collapse
|
12
|
Selective APC-targeting of a novel Fc-fusion multi-immunodominant recombinant protein ( tTax- tEnv:mFcγ2a) for HTLV-1 vaccine development. Life Sci 2022; 308:120920. [PMID: 36044973 DOI: 10.1016/j.lfs.2022.120920] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 11/22/2022]
Abstract
AIMS HTLV-1 causes two life-threatening diseases: adult T-cell leukaemia/lymphoma and HTLV-1-associated myelopathy/tropical spastic paraparesis. Due to the lack of proper treatment, an effective HTLV-1 vaccine is urgently needed. MAIN METHODS DNA sequences of 11-19 and 178-186 amino acids of HTLV-1-Tax and SP2 and P21 were fused to the mouse-Fcγ2a, or His-tag called tTax-tEnv:mFcγ2a and tTax-tEnv:His, respectively. These constructs were produced in Pichia pastoris, and their immunogenicity and protective properties were assessed in a mouse challenging model with an HTLV-1-MT2 cell line. KEY FINDINGS The immunogenicity assessments showed significant increase in IFN-γ production in animals receiving tTax-tEnv:mFcγ2a (1537.2 ± 292.83 pg/mL) compared to tTax-tEnv:His (120.28 ± 23.9, p = 0.02). IL-12 production also increased in group receiving tTax-tEnv:mFcγ2a than tTax-tEnv:His group, (23 ± 2.6 vs 1.5 ± 0.6, p = 0.01), respectively. The IFN-γ and IL-12 levels in the Fc-immunised group were negatively correlated with PVL (R = -0.82, p < 0.04) and (R = -0.87, p = 0.05), respectively. While, IL-4 was increased by tTax-tEnv:His (21.16 ± 1.76 pg/mL) compared to tTax-tEnv:mFcγ2a (13.7 ± 1.49, p = 0.019) with a negative significant correlation to PVL (R = -0.95, p = 0.001). SIGNIFICANCE The mouse challenging assay with tTax-tEnv:mFcγ2a showed 50 % complete protection and a 50 % low level of HTLV-1-PVL compared to the positive control receiving HTLV-1-MT2 (p = 0.001). Challenging experiments for the His-tag protein showed the same outcome (p = 0.002) but by different mechanisms. The Fc-fusion construct induced more robust Th1, and His-tag protein shifted more to Th2 immune responses. Therefore, inducing both T helper responses, but a Th1/Th2 balance in favour of Th1 might be necessary for appropriate protection against HTLV-1 infection, spreading via cell-to-cell contact manner.
Collapse
|
13
|
Ratner L. Epigenetic Regulation of Human T-Cell Leukemia Virus Gene Expression. Microorganisms 2021; 10:84. [PMID: 35056532 PMCID: PMC8781281 DOI: 10.3390/microorganisms10010084] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/08/2021] [Accepted: 07/13/2021] [Indexed: 11/17/2022] Open
Abstract
Viral and cellular gene expression are regulated by epigenetic alterations, including DNA methylation, histone modifications, nucleosome positioning, and chromatin looping. Human T-cell leukemia virus type 1 (HTLV-1) is a pathogenic retrovirus associated with inflammatory disorders and T-cell lymphoproliferative malignancy. The transforming activity of HTLV-1 is driven by the viral oncoprotein Tax, which acts as a transcriptional activator of the cAMP response element-binding protein (CREB) and nuclear factor kappa B (NFκB) pathways. The epigenetic effects of Tax and the induction of lymphoproliferative malignancy include alterations in DNA methylation and histone modifications. In addition, alterations in nucleosome positioning and DNA looping also occur in HTLV-1-induced malignant cells. A mechanistic definition of these effects will pave the way to new therapies for HTLV-1-associated disorders.
Collapse
Affiliation(s)
- Lee Ratner
- Department of Medicine, Division of Molecular Oncology, Washington University School of Medicine, Box 8069, 660 S Euclid Ave, St. Louis, MO 63110, USA
| |
Collapse
|
14
|
Kazemi M, Kouhpeikar H, Delbari Z, Khodadadi F, Gerayli S, Iranshahi M, Mosavat A, Behnam Rassouli F, Rafatpanah H. Combination of auraptene and arsenic trioxide induces apoptosis and cellular accumulation in the subG1 phase in adult T-cell leukemia cells. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2021; 24:1643-1649. [PMID: 35432798 PMCID: PMC8976908 DOI: 10.22038/ijbms.2021.58633.13025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 11/07/2021] [Indexed: 11/21/2022]
Abstract
Objectives Despite advances in the treatment of adult T-cell leukemia/lymphoma (ATLL), the survival rate of this malignancy remains significantly low. Auraptene (AUR) is a natural coumarin with broad-spectrum anticancer activities. To introduce a more effective therapeutic strategy for ATLL, we investigated the combinatorial effects of AUR and arsenic trioxide (ATO) on MT-2 cells. Materials and Methods The cells were treated with different concentrations of AUR for 24, 48, and 72 hr, and viability was measured by alamarBlue assay. Then, the combination of AUR (20 μg/ml) and ATO (3 μg/ml) was administrated and the cell cycle was analyzed by PI staining followed by flow cytometry analysis. In addition, the expression of NF-κB (REL-A), CD44, c-MYC, and BMI-1 was evaluated via qPCR. Results Assessment of cell viability revealed increased toxicity of AUR and ATO when used in combination. Our findings were confirmed by accumulation of cells in the sub G1 phase of the cell cycle and significant down-regulation of NF-κB (REL-A), CD44, c-MYC, and BMI-1. Conclusion Obtained findings suggest that combinatorial use of AUR and ATO could be considered for designing novel chemotherapy regimens for ATLL.
Collapse
Affiliation(s)
- Mohaddeseh Kazemi
- Immunology Research Center, Inflammation and inflammatory Diseases Division, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamideh Kouhpeikar
- Department of Hematology and Blood Bank, Tabas School of Nursing, Birjand University of Medical Sciences, Birjand, Iran
| | - Zahra Delbari
- Immunology Research Center, Inflammation and inflammatory Diseases Division, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Faeze Khodadadi
- Department of Pharmacognosy and Biotechnology, Biotechnology Research Center, Faculty of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sina Gerayli
- Immunology Research Center, Inflammation and inflammatory Diseases Division, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehrdad Iranshahi
- Department of Pharmacognosy and Biotechnology, Biotechnology Research Center, Faculty of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Arman Mosavat
- Blood Borne Infections Research Center, Academic Center for Education, Culture, and Research (ACECR), Razavi Khorasan, Mashhad, Iran
| | - Fatemeh Behnam Rassouli
- Novel Diagnostics and Therapeutics Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Houshang Rafatpanah
- Immunology Research Center, Inflammation and inflammatory Diseases Division, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
15
|
Pourrezaei S, Shadabi S, Gheidishahran M, Rahimiforoushani A, Akhbari M, Tavakoli M, Safavi M, Madihi M, Norouzi M. Molecular epidemiology and phylogenetic analysis of human T-lymphotropic virus type 1 in the tax gene and it association with adult t-cell leukemia/lymphoma disorders. IRANIAN JOURNAL OF MICROBIOLOGY 2021; 13:509-517. [PMID: 34557280 PMCID: PMC8421578 DOI: 10.18502/ijm.v13i4.6976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Background and Objectives: Human T-lymphotropic virus type-1 (HTLV-1) belongs to retrovirus family that causes the neurological disorder HTLV-1 adult T-cell leukemia/lymphoma (ATLL). Since 1980, seven subtypes of the virus have been recognized. HTLV-1 is prevalent and endemic in some regions, such as Africa, Japan, South America and Iran as the endemic regions of the HTLV-1 in the Middle East. To study HTLV-1 subtypes and routes of virus spread in Iran, phylogenetic and phylodynamic analyses were performed and for as much as no previous phylogenetic studies were conducted in Tehran, we do this survey. To this purpose, the Tax region of HTLV-1 was used. Materials and Methods: In this study 100 samples were collected from blood donors in Tehran. All samples were screened for anti-HTLV-I antibodies by ELISA. Then, genomic DNA was extracted from all positive samples (10 people), and for confirmation of infection, ordinary PCR was performed for both the HBZ and LTR regions. Moreover, the Tax region was amplified and purified PCR products were sequenced and analyzed, and finally, a phylogenetic tree was constructed using Mega X software. Results: Phylogenetic analysis confirmed that isolates from Iran, Japan, Brazil, and Africa are located within the extensive “transcontinental” subgroup A clade of HTLV-1 Cosmopolitan subtype a. The Japanese sequences are the closest to the Iranian sequences and have the most genetic similarity with them. Conclusion: Through phylogenetic and phylodynamic analyses HTLV-1 strain in Tehran were characterized in Iran. The appearance of HTLV-1 in Iran was probably happened by the ancient Silk Road which linked China to Antioch.
Collapse
Affiliation(s)
- Samira Pourrezaei
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Shahrzad Shadabi
- Department of Virology, School of Medical Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Maryam Gheidishahran
- Department of Medical Hematology and Blood Transfusion, School of Allied Medical Science, Iran University of Medical Sciences, Tehran, Iran
| | - Abbas Rahimiforoushani
- Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Masoume Akhbari
- Department of Molecular Medicine, School of Medical Science, Karaj University of Medical Sciences, Karaj, Iran
| | - Mahnaz Tavakoli
- Department of Medical Microbiology, School of Medical Science, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahshid Safavi
- Department of Medical Microbiology, School of Medical Science, Karaj University of Medical Sciences, Iran
| | - Mobina Madihi
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Norouzi
- Department of Virology, School of Public Health and Institute of Health Research, Tehran University of Medical Sciences, Tehran, Iran.,Research Center for Clinical Virology, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
16
|
Ito S, Iwanaga M, Nosaka K, Imaizumi Y, Ishitsuka K, Amano M, Utsunomiya A, Tokura Y, Watanabe T, Uchimaru K, Tsukasaki K. Epidemiology of adult T-cell leukemia-lymphoma in Japan: An updated analysis, 2012-2013. Cancer Sci 2021; 112:4346-4354. [PMID: 34355480 PMCID: PMC8486190 DOI: 10.1111/cas.15097] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 07/23/2021] [Accepted: 08/01/2021] [Indexed: 01/08/2023] Open
Abstract
Adult T‐cell leukemia‐lymphoma (ATL) is a T‐cell malignancy that is endemic to Japan. In this latest nationwide study of ATL, we collected the data from 4 nationwide registries of patients diagnosed in 2012‐2013; the Hematology Blood Disease, the Skin Cancer Society, the Hospital‐Based Cancer Registries, and information from the hospitals that participated in the Japanese nationwide survey of ATL in 2010‐2011. In the present study, 2614 patients with ATL were diagnosed based on the registries, and 117 departments registered 1042 patients. Among these patients, 984 were eligible for analysis. The median age at diagnosis was 69 y. A larger proportion of patients with ATL older than 70 y was diagnosed with the lymphoma subtype, and more than half of the patients with ATL in the metropolitan areas were born in the human T‐cell leukemia virus type I (HTLV‐1)‐endemic areas of Kyushu/Okinawa, which are almost identical to the findings in our 2010‐2011 study. Additionally, we identified that patients with ATL migrated from the endemic areas for HTLV‐1 to the non‐endemic metropolitan areas. The present study was able to reduce the burden of searching each hospital and to update the clinico‐epidemiological characteristics of a large number of patients with ATL in Japan, suggesting the usefulness and feasibility of the novel data collection method. The establishment of a more sophisticated database management system for ATL is necessary for future continuous surveys.
Collapse
Affiliation(s)
- Shigeki Ito
- Hematology & Oncology, Department of Internal Medicine, Iwate Medical University School of Medicine, Iwate, Japan
| | - Masako Iwanaga
- Department of Clinical Epidemiology, Nagasaki University School of Medicine, Nagasaki, Japan
| | - Kisato Nosaka
- Department of Hematology, Kumamoto University School of Medicine, Kumamoto, Japan
| | | | - Kenji Ishitsuka
- Department of Hematology and Rheumatology, Kagoshima University Hospital, Kagoshima, Japan
| | - Masahiro Amano
- Department of Dermatology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Atae Utsunomiya
- Department of Hematology, Imamura General Hospital, Kagoshima, Japan
| | - Yoshiki Tokura
- Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Toshiki Watanabe
- Department of Practical Management of Medical Information, St. Marianna University School of Medicine, Kanagawa, Japan
| | - Kaoru Uchimaru
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Kunihiro Tsukasaki
- Department of Hematology, International Medical Center, Saitama Medical University, Saitama, Japan
| | | |
Collapse
|
17
|
How I treat adult T-cell leukemia/lymphoma. Blood 2021; 137:459-470. [PMID: 33075812 DOI: 10.1182/blood.2019004045] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 09/26/2020] [Indexed: 12/16/2022] Open
Abstract
Adult T-cell leukemia/lymphoma (ATL) is a highly aggressive T-cell malignancy that arises in a proportion of individuals who are long-term carriers of human T-lymphotropic virus type 1. The median survival of aggressive subtypes is 8 to 10 months; with chemotherapy-based approaches, overall survival has remained largely unchanged in the ∼35 years since ATL was first described. Through the use of 4 representative case studies, we highlight advances in the biological understanding of ATL and the use of novel therapies such as mogamulizumab, as well as how they are best applied to different subtypes of ATL. We discuss the implementation of molecular methods that may guide diagnosis or treatment, although we accept that these are not universally available. In particular, we acknowledge discrepancies in treatment between different countries, reflecting current drug licensing and the difficulties in making treatment decisions in a rare disease, with limited high-quality clinical trial data.
Collapse
|
18
|
Schnell AP, Kohrt S, Thoma-Kress AK. Latency Reversing Agents: Kick and Kill of HTLV-1? Int J Mol Sci 2021; 22:ijms22115545. [PMID: 34073995 PMCID: PMC8197370 DOI: 10.3390/ijms22115545] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 05/19/2021] [Accepted: 05/20/2021] [Indexed: 12/14/2022] Open
Abstract
Human T-cell leukemia virus type 1 (HTLV-1), the cause of adult T-cell leukemia/lymphoma (ATLL), is a retrovirus, which integrates into the host genome and persistently infects CD4+ T-cells. Virus propagation is stimulated by (1) clonal expansion of infected cells and (2) de novo infection. Viral gene expression is induced by the transactivator protein Tax, which recruits host factors like positive transcription elongation factor b (P-TEFb) to the viral promoter. Since HTLV-1 gene expression is repressed in vivo by viral, cellular, and epigenetic mechanisms in late phases of infection, HTLV-1 avoids an efficient CD8+ cytotoxic T-cell (CTL) response directed against the immunodominant viral Tax antigen. Hence, therapeutic strategies using latency reversing agents (LRAs) sought to transiently activate viral gene expression and antigen presentation of Tax to enhance CTL responses towards HTLV-1, and thus, to expose the latent HTLV-1 reservoir to immune destruction. Here, we review strategies that aimed at enhancing Tax expression and Tax-specific CTL responses to interfere with HTLV-1 latency. Further, we provide an overview of LRAs including (1) histone deacetylase inhibitors (HDACi) and (2) activators of P-TEFb, that have mainly been studied in context of human immunodeficiency virus (HIV), but which may also be powerful in the context of HTLV-1.
Collapse
|
19
|
Aghajanian S, Teymoori-Rad M, Molaverdi G, Mozhgani SH. Immunopathogenesis and Cellular Interactions in Human T-Cell Leukemia Virus Type 1 Associated Myelopathy/Tropical Spastic Paraparesis. Front Microbiol 2020; 11:614940. [PMID: 33414779 PMCID: PMC7783048 DOI: 10.3389/fmicb.2020.614940] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 11/17/2020] [Indexed: 01/15/2023] Open
Abstract
HTLV-1-Associated Myelopathy/Tropical Spastic Paraparesis (HAM/TSP) is a neuropathological disorder in 1–3% of individuals infected with Human T-lymphotropic virus 1 (HTLV-1). This condition is characterized by progressive spastic lower limb weakness and paralysis, lower back pain, bladder incontinence, and mild sensory disturbances resembling spinal forms of multiple sclerosis. This disease also causes chronic disability and is therefore associated with high health burden in areas where HTLV-1 infection is endemic. Despite various efforts in understanding the virus and discovery of novel diagnostic markers, and cellular and viral interactions, HAM/TSP management is still unsatisfactory and mainly focused on symptomatic alleviation, and it hasn’t been explained why only a minority of the virus carriers develop HAM/TSP. This comprehensive review focuses on host and viral factors in association with immunopathology of the disease in hope of providing new insights for drug therapies or other forms of intervention.
Collapse
Affiliation(s)
- Sepehr Aghajanian
- Student Research Committee, Alborz University of Medical Sciences, Karaj, Iran
| | - Majid Teymoori-Rad
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Ghazale Molaverdi
- Student Research Committee, Alborz University of Medical Sciences, Karaj, Iran
| | - Sayed-Hamidreza Mozhgani
- Non-communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran.,Department of Microbiology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| |
Collapse
|
20
|
Ghazvini K, Youssefi M, Keikha M. Expression changes of cytotoxicity and apoptosis genes in HTLV-1-associated myelopathy/tropical spastic paraparesis patients from the perspective of system virology. Access Microbiol 2020; 2:acmi000088. [PMID: 32974568 PMCID: PMC7470310 DOI: 10.1099/acmi.0.000088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 11/21/2019] [Indexed: 02/05/2023] Open
Abstract
Although human T-cell lymphotropic virus type-1 (HTLV-1) was the first retrovirus among human pathogens to be identified, insufficient information on the pathogenesis of HTLV-1 infection means that no precise mechanism has yet been provided for HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). Based on previous studies, it was found that apoptosis and inflammation stimulation were among the most important mechanisms underlying HAM/TSP. The present study provides an in-silico analysis of the microarray data related to HAM/TSP patients. Expression changes of the genes responsible for cytotoxicity and apoptosis processes of HAM/TSP patients and asymptomatic carriers were investigated. Expression of the genes involved in cytotoxicity and apoptosis in HAM/TSP patients was decreased; hence, a model was proposed indicating that the spread of immune responses in HAM/TSP may be due to expression of HTLV-1 virulence factors and the resistance of HTLV-1-infected cells to apoptosis.
Collapse
Affiliation(s)
- Kiarash Ghazvini
- Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Microbiology and Virology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Masoud Youssefi
- Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Microbiology and Virology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Masoud Keikha
- Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Microbiology and Virology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
21
|
|
22
|
Keikha M, Ghazvini K, Eslami M, Yousefi B, Casseb J, Yousefi M, Karbalaei M. Molecular targeting of PD-1 signaling pathway as a novel therapeutic approach in HTLV-1 infection. Microb Pathog 2020; 144:104198. [PMID: 32283259 DOI: 10.1016/j.micpath.2020.104198] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 04/03/2020] [Accepted: 04/07/2020] [Indexed: 02/08/2023]
Abstract
HTLV-1, the first human oncogenic retrovirus, is a type C retrovirus that belongs to the Deltaretrovirus genus. The HTLV-1 genome has 8.5 kbp length, and consists of major genes such as gag, pol, pro, env, and pX region. This retrovirus is considered as one of the most deadly infectious agent for peripheral-blood mononuclear cells (PBMC). The infection of HTLV-1 can lead to dangerous complications, such as infective dermatitis (ID), uveitis, arthritis, lymphadenitis, arthropathies, Sjögren's Syndrome (SS), and particularly HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP) or Adult T-Cell Leukemia Lymphoma (ATLL). At the moment, Zidovudine (AZT) plus IFN-α is the only treatment available for HTLV-1 infections. Based on scientific studies, alongside the therapeutic regimens, intrinsic mechanisms also play a determinant role in reducing the signs of disease. Programmed cell death-1 (PD-1) signaling pathway, one of the most important checkpoints, has recently received interest, such as the development of a novel generation of anti-tumors. In the present study, we discuss the role of PD-1 signaling pathway in HTLV-1 infection as well as its application as a novel approach for treatment of HTLV-1 infections.
Collapse
Affiliation(s)
- Masoud Keikha
- Antimicrobial Resistance Research Center, Bu-Ali Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Microbiology and Virology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Kiarash Ghazvini
- Antimicrobial Resistance Research Center, Bu-Ali Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Microbiology and Virology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Eslami
- Cancer Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Bahman Yousefi
- Department of Immunology, Semnan University of Medical Sciences, Semnan, Iran
| | - Jorge Casseb
- Institute of Tropical Medicine of São Paulo/Laboratory of Dermatology and Immunodeficiencies, Department of Dermatology, University of São Paulo Medical School, São Paulo, SP, 01246-100, Brazil
| | - Masoud Yousefi
- Antimicrobial Resistance Research Center, Bu-Ali Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Microbiology and Virology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Mohsen Karbalaei
- Department of Microbiology and Virology, School of Medicine, Jiroft University of Medical Sciences, Jiroft, Iran.
| |
Collapse
|
23
|
A sobering "check" on immune checkpoint inhibitors. Blood 2019; 134:1366-1367. [PMID: 31698427 DOI: 10.1182/blood.2019002897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
24
|
Qi K, Jiang D, Hayat T, Alsaedi A. The stationary distribution and extinction of a double thresholds HTLV-I infection model with nonlinear CTL immune response disturbed by white noise. INT J BIOMATH 2019. [DOI: 10.1142/s179352451950058x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
This paper investigates the stochastic HTLV-I infection model with CTL immune response, and the corresponding deterministic model has two basic reproduction numbers. We consider the nonlinear CTL immune response for the interaction between the virus and the CTL immune cells. Firstly, for the theoretical needs of system dynamical behavior, we prove that the stochastic model solution is positive and global. In addition, we obtain the existence of ergodic stationary distribution by stochastic Lyapunov functions. Meanwhile, sufficient condition for the extinction of the stochastic system is acquired. Reasonably, the dynamical behavior of deterministic model is included in our result of stochastic model when the white noise disappears.
Collapse
Affiliation(s)
- Kai Qi
- College of Science, China University of Petroleum (East China), Qingdao 266580, P. R. China
| | - Daqing Jiang
- College of Science, China University of Petroleum (East China), Qingdao 266580, P. R. China
- Key Laboratory of Unconventional Oil and Gas Development, China University of Petroleum (East China), Ministry of Education, Qingdao 266580, P. R. China
- Nonlinear Analysis and Applied Mathematics (NAAM)-Research Group, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Tasawar Hayat
- Nonlinear Analysis and Applied Mathematics (NAAM)-Research Group, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Mathematics, Quaid-i-Azam University 45320, Islamabad 44000, Pakistan
| | - Ahmed Alsaedi
- Department of Mathematics, Quaid-i-Azam University 45320, Islamabad 44000, Pakistan
| |
Collapse
|
25
|
Cáceres CJ, Angulo J, Lowy F, Contreras N, Walters B, Olivares E, Allouche D, Merviel A, Pino K, Sargueil B, Thompson SR, López-Lastra M. Non-canonical translation initiation of the spliced mRNA encoding the human T-cell leukemia virus type 1 basic leucine zipper protein. Nucleic Acids Res 2019; 46:11030-11047. [PMID: 30215750 PMCID: PMC6237760 DOI: 10.1093/nar/gky802] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 08/28/2018] [Indexed: 02/06/2023] Open
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) is the etiological agent of adult T-cell leukemia (ATL). The HTLV-1 basic leucine zipper protein (HBZ) is expressed in all cases of ATL and is directly associated with virus pathogenicity. The two isoforms of the HBZ protein are synthesized from antisense messenger RNAs (mRNAs) that are either spliced (sHBZ) or unspliced (usHBZ) versions of the HBZ transcript. The sHBZ and usHBZ mRNAs have entirely different 5′untranslated regions (5′UTR) and are differentially expressed in cells, with the sHBZ protein being more abundant. Here, we show that differential expression of the HBZ isoforms is regulated at the translational level. Translation initiation of the usHBZ mRNA relies on a cap-dependent mechanism, while the sHBZ mRNA uses internal initiation. Based on the structural data for the sHBZ 5′UTR generated by SHAPE in combination with 5′ and 3′ deletion mutants, the minimal region harboring IRES activity was mapped to the 5′end of the sHBZ mRNA. In addition, the sHBZ IRES recruited the 40S ribosomal subunit upstream of the initiation codon, and IRES activity was found to be dependent on the ribosomal protein eS25 and eIF5A.
Collapse
Affiliation(s)
- C Joaquín Cáceres
- Departamento de Enfermedades Infecciosas e Inmunología Pediátrica, Laboratorio de Virología Molecular, Instituto Milenio de Inmunología e Inmunoterapia, Centro de Investigaciones Médicas, Escuela de Medicina, Pontificia Universidad Católica de Chile, Marcoleta 391, Santiago, Chile
| | - Jenniffer Angulo
- Departamento de Enfermedades Infecciosas e Inmunología Pediátrica, Laboratorio de Virología Molecular, Instituto Milenio de Inmunología e Inmunoterapia, Centro de Investigaciones Médicas, Escuela de Medicina, Pontificia Universidad Católica de Chile, Marcoleta 391, Santiago, Chile
| | - Fernando Lowy
- Departamento de Enfermedades Infecciosas e Inmunología Pediátrica, Laboratorio de Virología Molecular, Instituto Milenio de Inmunología e Inmunoterapia, Centro de Investigaciones Médicas, Escuela de Medicina, Pontificia Universidad Católica de Chile, Marcoleta 391, Santiago, Chile
| | - Nataly Contreras
- Departamento de Enfermedades Infecciosas e Inmunología Pediátrica, Laboratorio de Virología Molecular, Instituto Milenio de Inmunología e Inmunoterapia, Centro de Investigaciones Médicas, Escuela de Medicina, Pontificia Universidad Católica de Chile, Marcoleta 391, Santiago, Chile
| | - Beth Walters
- Department of Microbiology, University of Alabama at Birmingham, Birmingham AL 35294, USA
| | - Eduardo Olivares
- Departamento de Enfermedades Infecciosas e Inmunología Pediátrica, Laboratorio de Virología Molecular, Instituto Milenio de Inmunología e Inmunoterapia, Centro de Investigaciones Médicas, Escuela de Medicina, Pontificia Universidad Católica de Chile, Marcoleta 391, Santiago, Chile
| | - Delphine Allouche
- CNRS UMR 8015, Laboratoire de cristallographie et RMN Biologique, Université Paris Descartes, 4 avenue de l'Observatoire, 75270 Paris Cedex 06, France
| | - Anne Merviel
- CNRS UMR 8015, Laboratoire de cristallographie et RMN Biologique, Université Paris Descartes, 4 avenue de l'Observatoire, 75270 Paris Cedex 06, France
| | - Karla Pino
- Departamento de Enfermedades Infecciosas e Inmunología Pediátrica, Laboratorio de Virología Molecular, Instituto Milenio de Inmunología e Inmunoterapia, Centro de Investigaciones Médicas, Escuela de Medicina, Pontificia Universidad Católica de Chile, Marcoleta 391, Santiago, Chile
| | - Bruno Sargueil
- CNRS UMR 8015, Laboratoire de cristallographie et RMN Biologique, Université Paris Descartes, 4 avenue de l'Observatoire, 75270 Paris Cedex 06, France
| | - Sunnie R Thompson
- Department of Microbiology, University of Alabama at Birmingham, Birmingham AL 35294, USA
| | - Marcelo López-Lastra
- Departamento de Enfermedades Infecciosas e Inmunología Pediátrica, Laboratorio de Virología Molecular, Instituto Milenio de Inmunología e Inmunoterapia, Centro de Investigaciones Médicas, Escuela de Medicina, Pontificia Universidad Católica de Chile, Marcoleta 391, Santiago, Chile
| |
Collapse
|
26
|
Yun SG, Kim SW, Sohn JY, Cho Y. Evaluation of Elecsys HTLV-I/II assay in comparison with ARCHITECT rHTLV-I/II assay with Korean samples. J Clin Lab Anal 2019; 33:e22909. [PMID: 31059152 PMCID: PMC6642323 DOI: 10.1002/jcla.22909] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 04/05/2019] [Accepted: 04/13/2019] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND The seroprevalence rate of human T-lymphotropic virus I and II (HTLV-I/II) in Korean blood donors has been known as 0.004%, and HTLV-I/II Ab screening test has been performed since 2008 in Korea. Korea Ministry of Food and Drug Safety (MFDS) approved two chemiluminescent microparticle immunoassays (CMIA) for testing HTLV-I/II antibody, ABBOTT PRISM HTLV-I/HTLV-II and ARCHITECT rHTLV-I/II. A multicenter performance evaluation study in Europe and Japan was carried out with the new electrochemiluminescence immunoassay (ECLIA) for HTLV-I/II antibody detection, Elecsys HTLV-I/II assay which launched in 2017, but not in Korea. We aimed to evaluate the clinical performance of Elecsys HTLV-I/II assay in comparison with ARCHITECT rHTLV-I/II for the detection of HTLV-I/II antibody with Korean samples. METHODS For sensitivity evaluation, 100 HTLV-I/II-positive Korean standards from Korean Red Cross and two HTLV-II-positive samples that were purchased from Seracure were used. For the specificity, 500 potential donor specimens from Korea University Hospital healthcare center were used. All the samples were simultaneously analyzed by the two HTLV-I/II assays, Elecsys HTLV-I/II assay and ARCHITECT rHTLV-I/II assay. RESULTS Elecsys HTLV-I/II assay and ARCHITECT rHTLV-I/II assay showed a complete agrement. Elecsys HTLV-I/II assay showed 100% sensitivity (95% CI: 96.38-100.0) and specificity (95% CI: 99.26-100.0). CONCLUSIONS Elecsys HTLV-I/II assay is as reliable as ARCHITECT rTHLV-I/II assay, and can be used as a screening test for HTLV-I/II in Korea.
Collapse
Affiliation(s)
- Seung Gyu Yun
- Department of Laboratory Medicine, Korea University Hospital, Seoul, Korea
| | - Sang-Wook Kim
- Department of Laboratory Medicine, Korea University Hospital, Seoul, Korea
| | - Ji Yeon Sohn
- Department of laboratory medicine, Eone Laboratories, Incheon, Korea
| | - Yunjung Cho
- Department of Laboratory Medicine, Korea University Hospital, Seoul, Korea
| |
Collapse
|
27
|
Yaghouti N, Boostani R, Mohamamdi A, Poursina Z, Rezaee SA, Vakili V, Valizadeh N, Shams A, Rafatpanah H. Role of Receptors for Advanced Glycation End Products and High-Mobility Group Box 1 in the Outcome of Human T Cell Lymphotropic Type 1 Infection. Viral Immunol 2018; 32:89-94. [PMID: 30585773 DOI: 10.1089/vim.2018.0048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Human T cell lymphotropic type 1 (HTLV-1)-associated myelopathy/tropical spastic paraparesis (HAM/TSP) is a chronic viral neuroinflammatory disease, which leads to damage of the central nervous system. Inflammatory responses and mediators are both involved in the pathogenesis of the disease and in determining its outcome. High-Mobility Group Box 1 (HMGB1) is a chromatin-associated nuclear protein acting as a signaling molecule in cells after binding to its receptors. Receptor for advanced glycation end products (RAGE) is a transmembrane multiligand receptor that binds to HMGB1. HMGB1-RAGE signaling has an important role in inflammatory and infectious diseases. Inhibition of HMGB1 activity reduces the inflammation in immune-associated diseases. In the present study, we examined the gene expressions and plasma levels of HMGB1 and its receptor RAGE in HAM/TSP patients, HTLV-1-infected asymptomatic carriers (ACs), and healthy controls. Peripheral blood mononuclear cells were collected from all the groups and complementary DNA (cDNA) was synthesized. HMGB-1 messenger RNA (mRNA) expression was quantified by real-time polymerase chain reaction (PCR) TaqMan method, and plasma levels of HMGB1 and soluble RAGE (sRAGE) were measured by enzyme-linked immunosorbent assay (ELISA). The mRNA expression of HMGB1 was the same among the groups (p > 0.05). No significant difference in the plasma levels of HMGB1 was observed between the groups (p > 0.05). The plasma levels of sRAGE were higher in ACs than HAM/TSP patients, and a significant difference was observed between the two groups (p < 0.001). Our results showed that sRAGE could play a potential role in the control of inflammatory response in HTLV-1 carriers through the inhibition of HMGB1 signaling and potentially could be used as an indicator for evaluation of HAM/TSP developing in HTLV-1-infected individuals.
Collapse
Affiliation(s)
- Nafise Yaghouti
- 1 Department of Immunology, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran
| | - Reza Boostani
- 2 Department of Neurology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Asadollah Mohamamdi
- 3 Immunology Research Centre, Inflammation and Inflammatory Diseases Division, Department of Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zohreh Poursina
- 3 Immunology Research Centre, Inflammation and Inflammatory Diseases Division, Department of Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Abdolrahim Rezaee
- 3 Immunology Research Centre, Inflammation and Inflammatory Diseases Division, Department of Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Veda Vakili
- 4 Department of Community Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Narges Valizadeh
- 3 Immunology Research Centre, Inflammation and Inflammatory Diseases Division, Department of Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Shams
- 1 Department of Immunology, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran
| | - Houshang Rafatpanah
- 3 Immunology Research Centre, Inflammation and Inflammatory Diseases Division, Department of Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
28
|
Boelen L, Debebe B, Silveira M, Salam A, Makinde J, Roberts CH, Wang ECY, Frater J, Gilmour J, Twigger K, Ladell K, Miners KL, Jayaraman J, Traherne JA, Price DA, Qi Y, Martin MP, Macallan DC, Thio CL, Astemborski J, Kirk G, Donfield SM, Buchbinder S, Khakoo SI, Goedert JJ, Trowsdale J, Carrington M, Kollnberger S, Asquith B. Inhibitory killer cell immunoglobulin-like receptors strengthen CD8 + T cell-mediated control of HIV-1, HCV, and HTLV-1. Sci Immunol 2018; 3:eaao2892. [PMID: 30413420 PMCID: PMC6277004 DOI: 10.1126/sciimmunol.aao2892] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 06/06/2018] [Accepted: 10/09/2018] [Indexed: 01/05/2023]
Abstract
Killer cell immunoglobulin-like receptors (KIRs) are expressed predominantly on natural killer cells, where they play a key role in the regulation of innate immune responses. Recent studies show that inhibitory KIRs can also affect adaptive T cell-mediated immunity. In mice and in human T cells in vitro, inhibitory KIR ligation enhanced CD8+ T cell survival. To investigate the clinical relevance of these observations, we conducted an extensive immunogenetic analysis of multiple independent cohorts of HIV-1-, hepatitis C virus (HCV)-, and human T cell leukemia virus type 1 (HTLV-1)-infected individuals in conjunction with in vitro assays of T cell survival, analysis of ex vivo KIR expression, and mathematical modeling of host-virus dynamics. Our data suggest that functional engagement of inhibitory KIRs enhances the CD8+ T cell response against HIV-1, HCV, and HTLV-1 and is a significant determinant of clinical outcome in all three viral infections.
Collapse
Affiliation(s)
- Lies Boelen
- Department of Medicine, Imperial College London, London, UK
| | - Bisrat Debebe
- Department of Medicine, Imperial College London, London, UK
| | - Marcos Silveira
- Department of Medicine, Imperial College London, London, UK
- Faculty of Engineering, São Paulo State University-UNESP, São Paulo, Brazil
| | - Arafa Salam
- Institute for Infection and Immunity, St. George's, University of London, London, UK
| | - Julia Makinde
- International AIDS Vaccine Initiative Human Immunology Laboratory, London, UK
| | - Chrissy H Roberts
- Clinical Research Department, London School of Hygiene and Tropical Medicine, London, UK
| | - Eddie C Y Wang
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
| | - John Frater
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Oxford NIHR Biomedical Research Centre, Oxford, UK
| | - Jill Gilmour
- International AIDS Vaccine Initiative Human Immunology Laboratory, London, UK
| | - Katie Twigger
- Department of Medicine, Imperial College London, London, UK
| | - Kristin Ladell
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
| | - Kelly L Miners
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
| | - Jyothi Jayaraman
- Immunology Division, Department of Pathology, University of Cambridge, Cambridge, UK
| | - James A Traherne
- Immunology Division, Department of Pathology, University of Cambridge, Cambridge, UK
| | - David A Price
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
| | - Ying Qi
- Cancer and Inflammation Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Maureen P Martin
- Cancer and Inflammation Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Derek C Macallan
- Institute for Infection and Immunity, St. George's, University of London, London, UK
| | | | | | | | | | - Susan Buchbinder
- San Francisco Department of Public Health, San Francisco, CA, USA
| | - Salim I Khakoo
- Faculty of Medicine, University of Southampton, Southampton, UK
| | - James J Goedert
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - John Trowsdale
- Immunology Division, Department of Pathology, University of Cambridge, Cambridge, UK
| | - Mary Carrington
- Cancer and Inflammation Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, USA
- Ragon Institute of MGH, MIT and Harvard, Boston, MA, USA
| | - Simon Kollnberger
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
| | - Becca Asquith
- Department of Medicine, Imperial College London, London, UK.
| |
Collapse
|
29
|
Mulherkar R, Karabudak A, Ginwala R, Huang X, Rowan A, Philip R, Murphy EL, Clements D, Ndhlovu LC, Khan ZK, Jain P. In vivo and in vitro immunogenicity of novel MHC class I presented epitopes to confer protective immunity against chronic HTLV-1 infection. Vaccine 2018; 36:5046-5057. [PMID: 30005946 PMCID: PMC6091894 DOI: 10.1016/j.vaccine.2018.07.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 06/29/2018] [Accepted: 07/01/2018] [Indexed: 12/21/2022]
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) has infected as many as 10 million people worldwide. While 90% are asymptomatic, 5% develop severe diseases including adult T-cell leukemia/lymphoka (ATLL) and HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). No vaccine against HTLV-1 exists, and screening programs are not universal. However, patients with chronic HTLV-1 infection have high frequencies of HTLV-1-activated CD8+ T cells, and the two main HLA alleles (A2, A24) are present in 88% of infected individuals. We thus utilized an immunoproteomics approach to characterize MHC-I restricted epitopes presented by HLA-A2+, A24+ MT-2 and SLB-1 cell lines. Unlike traditional motif prediction algorithms, this approach identifies epitopes associated with cytotoxic T-cell responses in their naturally processed forms, minimizing differences in antigen processing and protein expression levels. Out of nine identified peptides, we confirmed six novel MHC-I restricted epitopes that were capable of binding HLA-A2 and HLA-A24 alleles and used in vitro and in vivo methods to generate CD8+ T cells specific for each of these peptides. MagPix MILLIPLEX data showed that in vitro generated epitope-specific CD8+ T cells secreted IFN-ɣ, granzyme B, MIP-1α, TNF-α, perforin and IL-10 when cultured in the presence of MT-2 cell line. Degranulation assay confirmed cytotoxic response through surface expression of CD107 on CD8+ T cells when cultured with MT-2 cells. A CD8+ T-cell killing assay indicated significant antiviral activity of CD8+ T cells specific against all identified peptides. In vivo generated CD8+ T cells similarly demonstrated immunogenicity on ELISpot, CD107 degranulation assay, and MagPix MILLIPLEX analysis. These epitopes are thus candidates for a therapeutic peptide-based vaccine against HTLV-1, and our results provide preclinical data for the advancement of such a vaccine.
Collapse
Affiliation(s)
- Ria Mulherkar
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Aykan Karabudak
- Immunotope, Inc., Pennsylvania Institute for Biotechnology, Doylestown, PA, USA
| | - Rashida Ginwala
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Xiaofang Huang
- Immunotope, Inc., Pennsylvania Institute for Biotechnology, Doylestown, PA, USA
| | - Aileen Rowan
- Department of Medicine, Imperial College, London, UK
| | - Ramila Philip
- Immunotope, Inc., Pennsylvania Institute for Biotechnology, Doylestown, PA, USA
| | - Edward L. Murphy
- Department of Medicine and Department of Laboratory Medicine, University of California at San Francisco
- Blood Systems Research Institute San Francisco, CA, USA
| | - Danielle Clements
- Department of Tropical Medicine, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, USA
| | - Lishomwa C. Ndhlovu
- Department of Tropical Medicine, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, USA
| | - Zafar K. Khan
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Pooja Jain
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, USA
| |
Collapse
|
30
|
Vázquez-Ulloa E, Lizano M, Sjöqvist M, Olmedo-Nieva L, Contreras-Paredes A. Deregulation of the Notch pathway as a common road in viral carcinogenesis. Rev Med Virol 2018; 28:e1988. [PMID: 29956408 DOI: 10.1002/rmv.1988] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 03/27/2018] [Accepted: 05/23/2018] [Indexed: 12/15/2022]
Abstract
The Notch pathway is a conserved signaling pathway and a form of direct cell-cell communication related to many biological processes during development and adulthood. Deregulation of the Notch pathway is involved in many diseases, including cancer. Almost 20% of all cancer cases have an infectious etiology, with viruses responsible for at least 1.5 million new cancer cases per year. Seven groups of viruses have been classified as oncogenic: hepatitis B and C viruses (HBV and HCV respectively), Epstein-Barr virus (EBV), Kaposi sarcoma-associated herpesvirus (KSHV), human T lymphotropic virus (HTLV-1), human papillomavirus (HPV), and Merkel cell polyomavirus (MCPyV). These viruses share the ability to manipulate a variety of cell pathways that are critical in proliferation and differentiation, leading to malignant transformation. Viral proteins interact directly or indirectly with different members of the Notch pathway, altering their normal function. This review focuses exclusively on the direct interactions of viral oncoproteins with Notch elements, providing a deeper understanding of the dual behavior of the Notch pathway as activator or suppressor of neoplasia in virus-related cancers.
Collapse
Affiliation(s)
- Elenaé Vázquez-Ulloa
- Programa de Maestría y Doctorado en Ciencias Bioquímicas, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City, Mexico.,Tecnológico Nacional de México, Instituto Tecnológico de Gustavo A. Madero, Mexico City, Mexico
| | - Marcela Lizano
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Marika Sjöqvist
- Faculty of Science and Engineering, Biosciences, Åbo Akademi University, Turku, Finland
| | - Leslie Olmedo-Nieva
- Programa de Maestría y Doctorado en Ciencias Bioquímicas, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Adriana Contreras-Paredes
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
31
|
Yang B, Song D, Liu Y, Cui Y, Lu G, Di W, Xing H, Ma L, Guo Z, Guan Y, Wang H, Wang J. IFI16 regulates HTLV-1 replication through promoting HTLV-1 RTI-induced innate immune responses. FEBS Lett 2018; 592:1693-1704. [PMID: 29710427 DOI: 10.1002/1873-3468.13077] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 04/05/2018] [Accepted: 04/22/2018] [Indexed: 01/19/2023]
Abstract
Interferon (IFN)-inducible protein 16 (IFI16) regulates human immunodeficiency virus replication by inducing innate immune responses as a DNA sensor. Human T-lymphotropic virus type 1 (HTLV-1), a delta retrovirus family member, has been linked to multiple diseases. Here, we report that IFI16 expression is induced by HTLV-1 infection or HTLV-1 reverse transcription intermediate (RTI) ssDNA90 transfection. IFI16 overexpression decreases HTLV-1 protein expression, whereas IFI16 knockdown increases it. Furthermore, the knockdown of IFI16 is followed by impaired innate immune responses upon HTLV-1 infection. In addition, IFI16 forms a complex with ssDNA90 and enhances ssDNA90-triggered innate immune responses. Collectively, our data suggest a critical role for IFI16 during HTLV-1 infection by interacting with HTLV-1 RTI ssDNA90 and restricting HTLV-1 replication.
Collapse
Affiliation(s)
- Bo Yang
- Henan Key Laboratory of Immunology and Targeted Therapy, Xinxiang Medical University, China.,Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, China.,Xinxiang Assegai Medical Laboratory Institute, China
| | - Di Song
- Henan Key Laboratory of Immunology and Targeted Therapy, Xinxiang Medical University, China.,Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, China.,Xinxiang Assegai Medical Laboratory Institute, China
| | - Yue Liu
- Henan Key Laboratory of Immunology and Targeted Therapy, Xinxiang Medical University, China
| | - Yuhan Cui
- Henan Key Laboratory of Immunology and Targeted Therapy, Xinxiang Medical University, China
| | - Guangjian Lu
- The First Affiliated Hospital of Xinxiang Medical University, China
| | - Wenyu Di
- The First Affiliated Hospital of Xinxiang Medical University, China
| | - Hongxia Xing
- The First Affiliated Hospital of Xinxiang Medical University, China
| | - Lingling Ma
- Henan Key Laboratory of Immunology and Targeted Therapy, Xinxiang Medical University, China
| | - Zhixiang Guo
- Henan Key Laboratory of Immunology and Targeted Therapy, Xinxiang Medical University, China
| | - Yuhe Guan
- Henan Key Laboratory of Immunology and Targeted Therapy, Xinxiang Medical University, China
| | - Hui Wang
- Henan Key Laboratory of Immunology and Targeted Therapy, Xinxiang Medical University, China
| | - Jie Wang
- Henan Key Laboratory of Immunology and Targeted Therapy, Xinxiang Medical University, China.,Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, China.,Xinxiang Assegai Medical Laboratory Institute, China
| |
Collapse
|
32
|
Low genetic diversity of the Human T-cell Lymphotropic Virus (HTLV-1) in an endemic area of the Brazilian Amazon basin. PLoS One 2018; 13:e0194184. [PMID: 29558516 PMCID: PMC5860735 DOI: 10.1371/journal.pone.0194184] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Accepted: 02/26/2018] [Indexed: 11/19/2022] Open
Abstract
The Human T-cell Lymphotropic Virus (HTLV-1) is a Deltaretrovírus that was first isolated in the 1970s, and associated with Adult T-cell Leucemia-Lymphoma (ATLL), and subsequently to Tropical Spastic Paraparesis-Myelopathy (TSP/HAM). The genetic diversity of the virus varies among geographic regions, although its mutation rate is very low (approximately 1% per thousand years) in comparison with other viruses. The present study determined the genetic diversity of HTLV-1 in the metropolitan region of Belém, in northern Brazil. Blood samples were obtained from patients at the UFPA Tropical Medicine Nucleus between January 2010 and December 2013. The DNA was extracted and the PX region of the HTLV was amplified using nested PCR. The positive samples were then digested using the Taq1 enzyme for the identification and differentiation of the HTLV-1 and HTLV-2. The 5'LTR region of the positive HTLV-1 samples were amplified by nested PCR, and then sequenced genetically. The phylogenetic analysis of the samples was based on the maximum likelihood method and the evolutionary profile was analyzed by the Bayesian approach. Overall, 78 samples tested positive for HTLV-1, and 44 were analyzed here. The aA (cosmopolitan-transcontinental) subtype was recorded in all the samples. The following evolutionary rates were recorded for the different subtypes-a: 2.10-3, b: 2.69. 10-2, c: 6.23. 10-2, d: 3.08. 10-2, e: 6. 10-2, f: 1.78. 10-3, g: 2.2. 10-2 mutations per site per year. The positive HTLV-1 samples tested in the present study were characterized by their low genetic diversity and high degree of stability.
Collapse
|
33
|
SHTLV-I/II seroprevalence in blood donors of Hospital Pablo Tobón Uribe Blood Bank during the period 2014-2015. BIOMEDICA 2018; 38:37-41. [DOI: 10.7705/biomedica.v38i0.3417] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 11/29/2016] [Indexed: 11/21/2022]
Abstract
Introducción. El virus linfotrópico humano de células T (HTLV) es un retrovirus del cual se conocen varios tipos, entre ellos el HTLV-I y el HTLV-II, los cuales son de importancia clínica por ser los causantes de diferentes enfermedades, como la leucemia y el linfoma de células T del adulto, la paraparesia espástica tropical y la mielopatía asociada al HTLV.Objetivo. Obtener la prevalencia de las reacciones presuntiva y confirmatoria de los virus HTLV-I y HTLV-II en los donantes del Banco de Sangre del Hospital Pablo Tobón Uribe de Medellín, entre el 2014 y el 2015.Materiales y métodos. La información se obtuvo de la base de datos del Banco de Sangre del Hospital Pablo Tobón Uribe. Se analizaron la edad, el sexo y el lugar de procedencia y de residencia de los donantes, así como la reacción en la prueba de tamización (ELISA) y en la prueba confirmatoria (inmunoblot). Resultados. La población de donantes estudiados incluyó a 6.275 hombres y 8.148 mujeres, para un total de 14.423 donantes reclutados entre el 1° de marzo de 2014 y el 30 de junio de 2015. De ellos, 25 resultaron positivos para HTLV-I o HTLV-II en la prueba de tamización (ELISA). En la prueba confirmatoria (inmunoblot), nueve (36 %) pacientes fueron positivos para el HTLV-I o HTLV-II , y de ellos ocho (32 %) lo fueron para el HTLV-I y uno (4 %) para el HTLV-II; la seroprevalencia global fue de 0,06 % (IC95% 0,10-0,25). Conclusiones. Los hallazgos del estudio concordaron con los de estudios similares en áreas no endémicas del país y con los de los estudios consultados a nivel internacional.
Collapse
|
34
|
Mozhgani SH, Zarei-Ghobadi M, Teymoori-Rad M, Mokhtari-Azad T, Mirzaie M, Sheikhi M, Jazayeri SM, Shahbahrami R, Ghourchian H, Jafari M, Rezaee SA, Norouzi M. Human T-lymphotropic virus 1 (HTLV-1) pathogenesis: A systems virology study. J Cell Biochem 2018; 119:3968-3979. [PMID: 29227540 DOI: 10.1002/jcb.26546] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 12/01/2017] [Indexed: 12/31/2022]
Abstract
The main mechanisms of interaction between Human T-lymphotropic virus type 1 (HTLV-1) and its hosts in the manifestation of the related disease including HTLV-1 associated myelopathy/tropical spastic paraparesis (HAM/TSP) and Adult T-cell leukemia/lymphoma (ATLL) are yet to be determined. It is pivotal to find out the changes in the genes expression toward an asymptomatic or symptomatic states. To this end, the systems virology analysis was performed. Firstly, the differentially expressed genes (DEGs) were taken pairwise among the four sample sets of Normal, Asymptomatic Carriers (ACs), ATLL, and HAM/TSP. Afterwards, the protein-protein interaction networks were reconstructed utilizing the hub genes. In conclusion, the pathways of cells proliferation and transformation were identified in the ACs state. In addition to immune pathways in ATLL, the inflammation and cancer pathways were discened in both diseases of ATLL and HAM/TSP. The outcomes can specify the genes involved in the pathogenesis and help to design the drugs in the future.
Collapse
Affiliation(s)
- Sayed-Hamidreza Mozhgani
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.,Research Center for Clinical Virology, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohadeseh Zarei-Ghobadi
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.,Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Majid Teymoori-Rad
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Talat Mokhtari-Azad
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Mirzaie
- Department of Applied Mathematics, Faculty of Mathematical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mohsen Sheikhi
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed-Mohammad Jazayeri
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.,Research Center for Clinical Virology, Tehran University of Medical Sciences, Tehran, Iran
| | - Ramin Shahbahrami
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Mohieddin Jafari
- Drug Design and Bioinformatics Unit, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Seyed-Abdolrahim Rezaee
- Immunology Research Center, Inflammation and Inflammatory Diseases Division, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehdi Norouzi
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.,Research Center for Clinical Virology, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
35
|
Abstract
Adult T-cell lymphoma/leukemia (ATL) is a rare T-cell lymphoproliferative neoplasm caused by human T-lymphotrophic virus 1. In its more common, aggressive forms, ATL carries one of the poorest prognoses of the non-Hodgkin lymphomas. The disease has clinical subtypes (ie, acute, lymphoma, chronic, and smoldering forms) defined by the presenting features, and therefore, the clinical course can vary. For the smoldering and lower-risk chronic forms, combinations involving antiviral therapies have shown some success. However, in many patients, the more indolent forms will evolve into the more aggressive subtypes. In the more aggressive acute, lymphoma, and higher-risk chronic forms, the literature supports initial treatment with combination chemotherapy followed by allogeneic transplantation as a potentially curative approach. Recently, mogamulizumab and lenalidomide have shown promise in the treatment of ATL. With better understanding of the molecular drivers of this disease, we hope that the therapeutic landscape will continue to expand.
Collapse
Affiliation(s)
- Neha Mehta-Shah
- Washington University, St Louis, MO; and Memorial Sloan Kettering Cancer Center, New York, NY
| | - Lee Ratner
- Washington University, St Louis, MO; and Memorial Sloan Kettering Cancer Center, New York, NY
| | - Steven M Horwitz
- Washington University, St Louis, MO; and Memorial Sloan Kettering Cancer Center, New York, NY
| |
Collapse
|
36
|
Cook L, Melamed A, Yaguchi H, Bangham CR. The impact of HTLV-1 on the cellular genome. Curr Opin Virol 2017; 26:125-131. [PMID: 28822906 DOI: 10.1016/j.coviro.2017.07.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 06/12/2017] [Accepted: 07/18/2017] [Indexed: 10/19/2022]
Abstract
Human T-lymphotropic virus type-1 (HTLV-1) is the causative agent of adult T-cell leukaemia/lymphoma (ATL), an aggressive CD4+ T-cell malignancy. The mechanisms of leukaemogenesis in ATL are incompletely understood. Insertional mutagenesis has not previously been thought to contribute to the pathogenesis of ATL. However, the recent discovery that HTLV-1 binds the key chromatin architectural protein CTCF raises the hypothesis that HTLV-1 deregulates host gene expression by causing abnormal chromatin looping, bringing the strong HTLV-1 promoter-enhancer near to host genes that lie up to 2Mb from the integrated provirus. Here we review current opinion on the mechanisms of oncogenesis in ATL, with particular emphasis on the local and distant impact of HTLV-1 on the structure and expression of the host genome.
Collapse
Affiliation(s)
- Lucy Cook
- Section of Virology, Imperial College London, Norfolk Place, London W2 1PG, United Kingdom; National Centre for Human Retrovirology, Imperial College Healthcare NHS Trust, London, United Kingdom; Department of Haematology, Imperial College Healthcare NHS Trust, United Kingdom
| | - Anat Melamed
- Section of Virology, Imperial College London, Norfolk Place, London W2 1PG, United Kingdom
| | - Hiroko Yaguchi
- Section of Virology, Imperial College London, Norfolk Place, London W2 1PG, United Kingdom
| | - Charles Rm Bangham
- Section of Virology, Imperial College London, Norfolk Place, London W2 1PG, United Kingdom.
| |
Collapse
|
37
|
Lythgoe KA, Gardner A, Pybus OG, Grove J. Short-Sighted Virus Evolution and a Germline Hypothesis for Chronic Viral Infections. Trends Microbiol 2017; 25:336-348. [PMID: 28377208 PMCID: PMC5405858 DOI: 10.1016/j.tim.2017.03.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 03/03/2017] [Accepted: 03/03/2017] [Indexed: 12/24/2022]
Abstract
With extremely short generation times and high mutability, many viruses can rapidly evolve and adapt to changing environments. This ability is generally beneficial to viruses as it allows them to evade host immune responses, evolve new behaviours, and exploit ecological niches. However, natural selection typically generates adaptation in response to the immediate selection pressures that a virus experiences in its current host. Consequently, we argue that some viruses, particularly those characterised by long durations of infection and ongoing replication, may be susceptible to short-sighted evolution, whereby a virus' adaptation to its current host will be detrimental to its onward transmission within the host population. Here we outline the concept of short-sighted viral evolution and provide examples of how it may negatively impact viral transmission among hosts. We also propose that viruses that are vulnerable to short-sighted evolution may exhibit strategies that minimise its effects. We speculate on the various mechanisms by which this may be achieved, including viral life history strategies that result in low rates of within-host evolution, or the establishment of a 'germline' lineage of viruses that avoids short-sighted evolution. These concepts provide a new perspective on the way in which some viruses have been able to establish and maintain global pandemics.
Collapse
Affiliation(s)
| | - Andy Gardner
- School of Biology, University of St Andrews, St Andrews, KY16 9TH, UK
| | - Oliver G Pybus
- Department of Zoology, University of Oxford, Oxford, OX1 3PS, UK
| | - Joe Grove
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, London, WC1E 6BT, UK
| |
Collapse
|
38
|
Retroviruses and Retroviral Infections. Infect Dis (Lond) 2017. [DOI: 10.1016/b978-0-7020-6285-8.00174-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
39
|
Meinke G, Bohm A, Hauber J, Pisabarro MT, Buchholz F. Cre Recombinase and Other Tyrosine Recombinases. Chem Rev 2016; 116:12785-12820. [PMID: 27163859 DOI: 10.1021/acs.chemrev.6b00077] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Tyrosine-type site-specific recombinases (T-SSRs) have opened new avenues for the predictable modification of genomes as they enable precise genome editing in heterologous hosts. These enzymes are ubiquitous in eubacteria, prevalent in archaea and temperate phages, present in certain yeast strains, but barely found in higher eukaryotes. As tools they find increasing use for the generation and systematic modification of genomes in a plethora of organisms. If applied in host organisms, they enable precise DNA cleavage and ligation without the gain or loss of nucleotides. Criteria directing the choice of the most appropriate T-SSR system for genetic engineering include that, whenever possible, the recombinase should act independent of cofactors and that the target sequences should be long enough to be unique in a given genome. This review is focused on recent advancements in our mechanistic understanding of simple T-SSRs and their application in developmental and synthetic biology, as well as in biomedical research.
Collapse
Affiliation(s)
- Gretchen Meinke
- Department of Developmental, Molecular & Chemical Biology, Tufts University School of Medicine , Boston, Massachusetts 02111, United States
| | - Andrew Bohm
- Department of Developmental, Molecular & Chemical Biology, Tufts University School of Medicine , Boston, Massachusetts 02111, United States
| | - Joachim Hauber
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology , 20251 Hamburg, Germany
| | | | - Frank Buchholz
- Medical Systems Biology, UCC, Medical Faculty Carl Gustav Carus TU Dresden , 01307 Dresden, Germany
| |
Collapse
|
40
|
Characterization of novel Bovine Leukemia Virus (BLV) antisense transcripts by deep sequencing reveals constitutive expression in tumors and transcriptional interaction with viral microRNAs. Retrovirology 2016; 13:33. [PMID: 27141823 PMCID: PMC4855707 DOI: 10.1186/s12977-016-0267-8] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 04/28/2016] [Indexed: 11/10/2022] Open
Abstract
Background Bovine Leukemia Virus (BLV) is a deltaretrovirus closely related to the Human T cell leukemia virus-1 (HTLV-1). Cattle are the natural host of BLV where it integrates into B-cells, producing a lifelong infection. Most infected animals remain asymptomatic but following a protracted latency period about 5 % develop an aggressive leukemia/lymphoma, mirroring the disease trajectory of HTLV-1. The mechanisms by which these viruses provoke cellular transformation remain opaque. In both viruses little or no transcription is observed from the 5′LTR in tumors, however the proviruses are not transcriptionally silent. In the case of BLV a cluster of RNA polymerase III transcribed microRNAs are highly expressed, while the HTLV-1 antisense transcript HBZ is consistently found in all tumors examined. Results Here, using RNA-seq, we demonstrate that the BLV provirus also constitutively expresses antisense transcripts in all leukemic and asymptomatic samples examined. The first transcript (AS1) can be alternately polyadenylated, generating a transcript of ~600 bp (AS1-S) and a less abundant transcript of ~2200 bp (AS1-L). Alternative splicing creates a second transcript of ~400 bp (AS2). The coding potential of AS1-S/L is ambiguous, with a small open reading frame of 264 bp, however the transcripts are primarily retained in the nucleus, hinting at a lncRNA-like role. The AS1-L transcript overlaps the BLV microRNAs and using high throughput sequencing of RNA-ligase-mediated (RLM) 5′RACE, we show that the RNA-induced silencing complex (RISC) cleaves AS1-L. Furthermore, experiments using altered BLV proviruses with the microRNAs either deleted or inverted point to additional transcriptional interference between the two viral RNA species. Conclusions The identification of novel viral antisense transcripts shows the BLV provirus to be far from silent in tumors. Furthermore, the consistent expression of these transcripts in both leukemic and nonmalignant clones points to a vital role in the life cycle of the virus and its tumorigenic potential. Additionally, the cleavage of the AS1-L transcript by the BLV encoded microRNAs and the transcriptional interference between the two viral RNA species suggest a shared role in the regulation of BLV. Electronic supplementary material The online version of this article (doi:10.1186/s12977-016-0267-8) contains supplementary material, which is available to authorized users.
Collapse
|
41
|
Chaves DG, Sales CC, de Cássia Gonçalves P, da Silva-Malta MCF, Romanelli LC, Ribas JG, de Freitas Carneiro-Proietti AB, Martins ML. Plasmatic proinflammatory chemokines levels are tricky markers to monitoring HTLV-1 carriers. J Med Virol 2016; 88:1438-47. [DOI: 10.1002/jmv.24481] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/21/2016] [Indexed: 12/14/2022]
Affiliation(s)
- Daniel Gonçalves Chaves
- Research Service; Minas Gerais State Blood Center (Fundação Hemominas); Belo Horizonte Brazil
| | - Camila Campos Sales
- Pharmacy College; Federal University of Minas Gerais (UFMG); Belo Horizonte Brazil
| | | | | | - Luiz Cláudio Romanelli
- Research Service; Minas Gerais State Blood Center (Fundação Hemominas); Belo Horizonte Brazil
- GIPH (Interdisciplinary HTLV Research Group); Belo Horizonte Minas Gerais Brazil
| | - João Gabriel Ribas
- GIPH (Interdisciplinary HTLV Research Group); Belo Horizonte Minas Gerais Brazil
| | - Anna Bárbara de Freitas Carneiro-Proietti
- Research Service; Minas Gerais State Blood Center (Fundação Hemominas); Belo Horizonte Brazil
- GIPH (Interdisciplinary HTLV Research Group); Belo Horizonte Minas Gerais Brazil
| | - Marina Lobato Martins
- Research Service; Minas Gerais State Blood Center (Fundação Hemominas); Belo Horizonte Brazil
- GIPH (Interdisciplinary HTLV Research Group); Belo Horizonte Minas Gerais Brazil
| |
Collapse
|
42
|
Assone T, Paiva A, Fonseca LAM, Casseb J. Genetic Markers of the Host in Persons Living with HTLV-1, HIV and HCV Infections. Viruses 2016; 8:v8020038. [PMID: 26848682 PMCID: PMC4776193 DOI: 10.3390/v8020038] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 01/11/2016] [Accepted: 01/15/2016] [Indexed: 12/21/2022] Open
Abstract
Human T-cell leukemia virus type 1 (HTLV-1), hepatitis C virus (HCV) and human immunodeficiency virus type 1 (HIV-1) are prevalent worldwide, and share similar means of transmission. These infections may influence each other in evolution and outcome, including cancer or immunodeficiency. Many studies have reported the influence of genetic markers on the host immune response against different persistent viral infections, such as HTLV-1 infection, pointing to the importance of the individual genetic background on their outcomes. However, despite recent advances on the knowledge of the pathogenesis of HTLV-1 infection, gaps in the understanding of the role of the individual genetic background on the progress to disease clinically manifested still remain. In this scenario, much less is known regarding the influence of genetic factors in the context of dual or triple infections or their influence on the underlying mechanisms that lead to outcomes that differ from those observed in monoinfection. This review describes the main factors involved in the virus–host balance, especially for some particular human leukocyte antigen (HLA) haplotypes, and other important genetic markers in the development of HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP) and other persistent viruses, such as HIV and HCV.
Collapse
Affiliation(s)
- Tatiane Assone
- Laboratory of Dermatology and Immune deficiencies, Department of Dermatology, University of São Paulo Medical School, LIM56, Av. Dr. Eneas de Carvalho Aguiar 500, 3rd Floor, Building II, São Paulo, SP, Brazil.
- Institute of Tropical Medicine of São Paulo, São Paulo, Brazil.
| | - Arthur Paiva
- Institute of Tropical Medicine of São Paulo, São Paulo, Brazil.
| | - Luiz Augusto M Fonseca
- Department of Preventive Medicine, University of São Paulo Medical School, São Paulo, Brazil.
| | - Jorge Casseb
- Laboratory of Dermatology and Immune deficiencies, Department of Dermatology, University of São Paulo Medical School, LIM56, Av. Dr. Eneas de Carvalho Aguiar 500, 3rd Floor, Building II, São Paulo, SP, Brazil.
- Institute of Tropical Medicine of São Paulo, São Paulo, Brazil.
| |
Collapse
|
43
|
Forsdyke DR. Self/Not-Self? Evol Bioinform Online 2016. [DOI: 10.1007/978-3-319-28755-3_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
44
|
Quintremil S, Alberti C, Rivera M, Medina F, Puente J, Cartier L, Ramírez E, Tanaka Y, Valenzuela MA. Tax and Semaphorin 4D Released from Lymphocytes Infected with Human Lymphotropic Virus Type 1 and Their Effect on Neurite Growth. AIDS Res Hum Retroviruses 2016; 32:68-79. [PMID: 26389656 DOI: 10.1089/aid.2015.0008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Human lymphotropic virus type 1 (HTLV-1) is a retrovirus causing HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP), a neurodegenerative central nervous system (CNS) axonopathy. This virus mainly infects CD4(+) T lymphocytes without evidence of neuronal infection. Viral Tax, secreted from infected lymphocytes infiltrated in the CNS, is proposed to alter intracellular pathways related to axonal cytoskeleton dynamics, producing neurological damage. Previous reports showed a higher proteolytic release of soluble Semaphorin 4D (sSEMA-4D) from CD4(+) T cells infected with HTLV-1. Soluble SEMA-4D binds to its receptor Plexin-B1, activating axonal growth collapse pathways in the CNS. In the current study, an increase was found in both SEMA-4D in CD4(+) T cells and sSEMA-4D released to the culture medium of peripheral blood mononuclear cells (PBMCs) from HAM/TSP patients compared to asymptomatic carriers and healthy donors. After a 16-h culture, infected PBMCs showed significantly higher levels of CRMP-2 phosphorylated at Ser(522). The effect was blocked either with anti-Tax or anti-SEMA-4D antibodies. The interaction of Tax and sSEMA-4D was found in secreted medium of PBMCs in patients, which might be associated with a leading role of Tax with the SEMA-4D-Plexin-B1 signaling pathway. In infected PBMCs, the migratory response after transwell assay showed that sSEMA-4D responding cells were CD4(+)Tax(+) T cells with a high CRMP-2 pSer(522) content. In the present study, the participation of Tax-sSEMA-4D in the reduction in neurite growth in PC12 cells produced by MT2 (HTLV-1-infected cell line) culture medium was observed. These results lead to the participation of plexins in the reported effects of infected lymphocytes on neuronal cells.
Collapse
Affiliation(s)
- Sebastián Quintremil
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Carolina Alberti
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Matías Rivera
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Fernando Medina
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Javier Puente
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Luis Cartier
- Departamento de Ciencias Neurológicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Eugenio Ramírez
- Programa de Virología, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Departamento de Virología, Instituto de Salud Pública de Chile, Santiago, Chile
| | - Yuetsu Tanaka
- Department of Immunology, Graduate School and Faculty of Medicine, University of the Ryukyus, Ryukyus, Japan
| | - M. Antonieta Valenzuela
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| |
Collapse
|
45
|
Waggoner SN, Reighard SD, Gyurova IE, Cranert SA, Mahl SE, Karmele EP, McNally JP, Moran MT, Brooks TR, Yaqoob F, Rydyznski CE. Roles of natural killer cells in antiviral immunity. Curr Opin Virol 2015; 16:15-23. [PMID: 26590692 PMCID: PMC4821726 DOI: 10.1016/j.coviro.2015.10.008] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 10/20/2015] [Accepted: 10/24/2015] [Indexed: 01/01/2023]
Abstract
NK cells can kill virus-infected cells and protect against severe infections. Long-lived memory NK cells may develop after vaccination or infection. NK cells are potent regulatory of antiviral T and B cell responses. The role of NK cells in human infection is complex and context-dependent.
Natural killer (NK) cells are important in immune defense against virus infections. This is predominantly considered a function of rapid, innate NK-cell killing of virus-infected cells. However, NK cells also prime other immune cells through the release of interferon gamma (IFN-γ) and other cytokines. Additionally, NK cells share features with long-lived adaptive immune cells and can impact disease pathogenesis through the inhibition of adaptive immune responses by virus-specific T and B cells. The relative contributions of these diverse and conflicting functions of NK cells in humans are poorly defined and likely context-dependent, thereby complicating the development of therapeutic interventions. Here we focus on the contributions of NK cells to disease in diverse virus infections germane to human health.
Collapse
Affiliation(s)
- Stephen N Waggoner
- Center for Autoimmune Genomics and Etiology (CAGE), Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States; Immunology Graduate Program, University of Cincinnati, Cincinnati, OH, United States; Medical Scientist Training Program, University of Cincinnati, Cincinnati, OH, United States; Pathobiology and Molecular Medicine Graduate Program, University of Cincinnati, Cincinnati, OH, United States.
| | - Seth D Reighard
- Center for Autoimmune Genomics and Etiology (CAGE), Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States; Immunology Graduate Program, University of Cincinnati, Cincinnati, OH, United States; Medical Scientist Training Program, University of Cincinnati, Cincinnati, OH, United States
| | - Ivayla E Gyurova
- Center for Autoimmune Genomics and Etiology (CAGE), Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States; Pathobiology and Molecular Medicine Graduate Program, University of Cincinnati, Cincinnati, OH, United States
| | - Stacey A Cranert
- Center for Autoimmune Genomics and Etiology (CAGE), Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Sarah E Mahl
- Center for Autoimmune Genomics and Etiology (CAGE), Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Erik P Karmele
- Center for Autoimmune Genomics and Etiology (CAGE), Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Jonathan P McNally
- Center for Autoimmune Genomics and Etiology (CAGE), Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Michael T Moran
- Center for Autoimmune Genomics and Etiology (CAGE), Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States; Immunology Graduate Program, University of Cincinnati, Cincinnati, OH, United States
| | - Taylor R Brooks
- Center for Autoimmune Genomics and Etiology (CAGE), Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Fazeela Yaqoob
- Center for Autoimmune Genomics and Etiology (CAGE), Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States; Immunology Graduate Program, University of Cincinnati, Cincinnati, OH, United States
| | - Carolyn E Rydyznski
- Center for Autoimmune Genomics and Etiology (CAGE), Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States; Immunology Graduate Program, University of Cincinnati, Cincinnati, OH, United States
| |
Collapse
|
46
|
Why individuals with HIV or diabetes do not disclose their medical history to the dentist: a qualitative analysis. Br Dent J 2015; 215:E10. [PMID: 24072324 DOI: 10.1038/sj.bdj.2013.881] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/03/2013] [Indexed: 11/08/2022]
Abstract
INTRODUCTION Evidence shows that some individuals with HIV or diabetes do not report their medical history to the dentist. Disclosure is important because these individuals can be at greater risk of oral disease. AIMS AND OBJECTIVES The aim of this study is to provide greater understanding of why some individuals do not disclose HIV or diabetes to the dentist.Methods In-depth interviews were conducted with 20 participants (10 HIV & 10 diabetes) based around the participant's diagnosis and disclosure history. Data were analysed using framework analysis. RESULTS While a lack of disclosure can be found among those with a diagnosis of HIV and diabetes, it appears that the reasons behind disclosure, or lack thereof, are different for each. The reasons are based around: differences in age, understanding of diagnosis, experience of stigma, past disclosure behaviour, trust in dentists and experience of healthcare. Few individuals had discussed the effects of their diagnosis with their dentist or were advised on the importance of seeing a dentist. DISCUSSION Individuals with chronic illness should be advised why it is important for the dentist to know their medical history and should be made to feel comfortable to disclose.
Collapse
|
47
|
HTLV-1 ORF-I Encoded Proteins and the Regulation of Host Immune Response: Viral Induced Dysregulation of Intracellular Signaling. J Immunol Res 2015; 2015:498054. [PMID: 26557721 PMCID: PMC4628651 DOI: 10.1155/2015/498054] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 08/22/2015] [Accepted: 08/31/2015] [Indexed: 01/02/2023] Open
Abstract
The human T-cell lymphotropic virus type 1 (HTLV-1) is a retrovirus associated with both proliferative and inflammatory disorders. This virus causes a persistent infection, mainly in CD4+ T lymphocyte. The ability to persist in the host is associated with the virus capacity to evade the immune response and to induce infected T-cell proliferation, once the HTLV-1 maintains the infection mainly by clonal expansion of infected cells. There are several evidences that ORF-I encoded proteins, such as p12 and p8, play an important role in this context. The present study will review the molecular mechanisms that HTLV-1 ORF-I encoded proteins have to induce dysregulation of intracellular signaling, in order to escape from immune response and to increase the infected T-cell proliferation rate. The work will also address the impact of ORF-I mutations on the human
host and perspectives in this study field.
Collapse
|
48
|
Bangham CRM, Ratner L. How does HTLV-1 cause adult T-cell leukaemia/lymphoma (ATL)? Curr Opin Virol 2015; 14:93-100. [PMID: 26414684 PMCID: PMC4772697 DOI: 10.1016/j.coviro.2015.09.004] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 09/09/2015] [Accepted: 09/09/2015] [Indexed: 11/21/2022]
Abstract
A typical person infected with the retrovirus human T-lymphotropic virus type 1 (HTLV-1) carries tens of thousands of clones of HTLV-1-infected T lymphocytes, each clone distinguished by a unique integration site of the provirus in the host genome. However, only 5% of infected people develop the malignant disease adult T cell leukaemia/lymphoma, usually more than 50 years after becoming infected. We review the host and viral factors that cause this aggressive disease.
Collapse
Affiliation(s)
- Charles R M Bangham
- Section of Virology, Department of Medicine, Imperial College, London W2 1PG, UK.
| | - Lee Ratner
- Medical Oncology Section, Hematology-Oncology Faculty, Washington University School of Medicine, St Louis, WA, USA
| |
Collapse
|
49
|
Louboutin JP. Human T-lymphotropic virus type 1-associated myelopathy/tropical spastic paraparesis: Clinical presentation and pathophysiology. World J Neurol 2015; 5:68-73. [DOI: 10.5316/wjn.v5.i3.68] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Revised: 03/30/2015] [Accepted: 07/08/2015] [Indexed: 02/06/2023] Open
Abstract
Human T-cell lymphotropic virus type 1 (HTLV-1)-associated myelopathy/tropical spastic paraparesis (HAM/TSP) is a slowly progressive neurodegenerative disorder in which lesions of the central nervous system cause progressive weakness, stiffness, and a lower limb spastic paraparesis. In some cases, polymyositis, inclusion body myositis, or amyotrophic lateral sclerosis-like syndromes are associated with HTLV-1. TSP was first described in Jamaica in 1888 and known as Jamaican peripheral neuritis before TSP was related to HTLV-1 virus, the first retrovirus being identified, and the disease is since named HAM/TSP. There is no established treatment program for HAM/TSP. Prevention is difficult in low-income patients (i.e., HTLV-1 infected breast feeding mothers in rural areas, sex workers). Thus, there is a need for new therapeutic avenues. Therapeutic approaches must be based on a better understanding, not only of clinical and clinicopathological data, but also of the pathophysiology of the affection. Consequently, a better understanding of existing or newly developed animal models of HAM/TSP is a prerequisite step in the development of new treatments.
Collapse
|
50
|
Marano G, Vaglio S, Pupella S, Facco G, Catalano L, Piccinini V, Liumbruno GM, Grazzini G. Human T-lymphotropic virus and transfusion safety: does one size fit all? Transfusion 2015; 56:249-60. [PMID: 26388300 DOI: 10.1111/trf.13329] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Revised: 07/28/2015] [Accepted: 08/02/2015] [Indexed: 12/17/2022]
Abstract
Human T-cell leukemia viruses (HTLV-1 and HTLV-2) are associated with a variety of human diseases, including some severe ones. Transfusion transmission of HTLV through cellular blood components is undeniable. HTLV screening of blood donations became mandatory in different countries to improve the safety of blood supplies. In Japan and Europe, most HTLV-infected donors are HTLV-1 positive, whereas in the United States a higher prevalence of HTLV-2 is reported. Many industrialized countries have also introduced universal leukoreduction of blood components, and pathogen inactivation technologies might be another effective preventive strategy, especially if and when generalized to all blood cellular products. Considering all measures available to minimize HTLV blood transmission, the question is what would be the most suitable and cost-effective strategy to ensure a high level of blood safety regarding these viruses, considering that there is no solution that can be deemed optimal for all countries.
Collapse
Affiliation(s)
| | - Stefania Vaglio
- Italian National Blood Centre, National Institute of Health.,Department of Clinical and Molecular Medicine, "Sapienza" University of Rome, Rome, Italy
| | | | - Giuseppina Facco
- Italian National Blood Centre, National Institute of Health.,Immunohaemathology and Transfusion Medicine Unit, Azienda Ospedaliera Città Della Salute e Della Scienza, Turin, Italy
| | | | | | | | | |
Collapse
|