1
|
Koch B, Filzmayer M, Patyna S, Wetzstein N, Lampe S, Schmid T, Geiger H, Baer PC, Dolnik O. Transcriptomics of Marburg virus-infected primary proximal tubular cells reveals negative correlation of immune response and energy metabolism. Virus Res 2024; 342:199337. [PMID: 38346476 PMCID: PMC10875301 DOI: 10.1016/j.virusres.2024.199337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/08/2024] [Accepted: 02/09/2024] [Indexed: 02/16/2024]
Abstract
Marburg virus, a member of the Filoviridae, is the causative agent of Marburg virus disease (MVD), a hemorrhagic fever with a case fatality rate of up to 90 %. Acute kidney injury is common in MVD and is associated with increased mortality, but its pathogenesis in MVD remains poorly understood. Interestingly, autopsies show the presence of viral proteins in different parts of the nephron, particularly in proximal tubular cells (PTC). These findings suggest a potential role for the virus in the development of MVD-related kidney injury. To shed light on this effect, we infected primary human PTC with Lake Victoria Marburg virus and conducted transcriptomic analysis at multiple time points. Unexpectedly, infection did not induce marked cytopathic effects in primary tubular cells at 20 and 40 h post infection. However, gene expression analysis revealed robust renal viral replication and dysregulation of genes essential for different cellular functions. The gene sets mainly downregulated in PTC were associated with the targets of the transcription factors MYC and E2F, DNA repair, the G2M checkpoint, as well as oxidative phosphorylation. Importantly, the downregulated factors comprise PGC-1α, a well-known factor in acute and chronic kidney injury. By contrast, the most highly upregulated gene sets were those related to the inflammatory response and cholesterol homeostasis. In conclusion, Marburg virus infects and replicates in human primary PTC and induces downregulation of processes known to be relevant for acute kidney injury as well as a strong inflammatory response.
Collapse
Affiliation(s)
- Benjamin Koch
- Goethe University Frankfurt, University Hospital, Department of Internal Medicine 4, Nephrology, Theodor-Stern-Kai 7, Frankfurt am Main 60596, Germany.
| | - Maximilian Filzmayer
- Goethe University Frankfurt, University Hospital, Department of Urology, Frankfurt am Main 60596, Germany
| | - Sammy Patyna
- Goethe University Frankfurt, University Hospital, Department of Internal Medicine 4, Nephrology, Theodor-Stern-Kai 7, Frankfurt am Main 60596, Germany
| | - Nils Wetzstein
- Goethe University Frankfurt, University Hospital, Department of Internal Medicine, Infectious Diseases, Frankfurt am Main 60596, Germany
| | - Sebastian Lampe
- Goethe University Frankfurt, University Hospital, Faculty of Medicine, Institute for Biochemistry I, Frankfurt am Main 60596, Germany
| | - Tobias Schmid
- Goethe University Frankfurt, University Hospital, Faculty of Medicine, Institute for Biochemistry I, Frankfurt am Main 60596, Germany
| | - Helmut Geiger
- Goethe University Frankfurt, University Hospital, Department of Internal Medicine 4, Nephrology, Theodor-Stern-Kai 7, Frankfurt am Main 60596, Germany
| | - Patrick C Baer
- Goethe University Frankfurt, University Hospital, Department of Internal Medicine 4, Nephrology, Theodor-Stern-Kai 7, Frankfurt am Main 60596, Germany
| | - Olga Dolnik
- Philipps University Marburg, Institute of Virology, Hans-Meerwein-Str. 2, Marburg 35043, Germany.
| |
Collapse
|
2
|
Perera DR, Ranadeva ND, Sirisena K, Wijesinghe KJ. Roles of NS1 Protein in Flavivirus Pathogenesis. ACS Infect Dis 2024; 10:20-56. [PMID: 38110348 DOI: 10.1021/acsinfecdis.3c00566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
Flaviviruses such as dengue, Zika, and West Nile viruses are highly concerning pathogens that pose significant risks to public health. The NS1 protein is conserved among flaviviruses and is synthesized as a part of the flavivirus polyprotein. It plays a critical role in viral replication, disease progression, and immune evasion. Post-translational modifications influence NS1's stability, secretion, antigenicity, and interactions with host factors. NS1 protein forms extensive interactions with host cellular proteins allowing it to affect vital processes such as RNA processing, gene expression regulation, and cellular homeostasis, which in turn influence viral replication, disease pathogenesis, and immune responses. NS1 acts as an immune evasion factor by delaying complement-dependent lysis of infected cells and contributes to disease pathogenesis by inducing endothelial cell damage and vascular leakage and triggering autoimmune responses. Anti-NS1 antibodies have been shown to cross-react with host endothelial cells and platelets, causing autoimmune destruction that is hypothesized to contribute to disease pathogenesis. However, in contrast, immunization of animal models with the NS1 protein confers protection against lethal challenges from flaviviruses such as dengue and Zika viruses. Understanding the multifaceted roles of NS1 in flavivirus pathogenesis is crucial for effective disease management and control. Therefore, further research into NS1 biology, including its host protein interactions and additional roles in disease pathology, is imperative for the development of strategies and therapeutics to combat flavivirus infections successfully. This Review provides an in-depth exploration of the current available knowledge on the multifaceted roles of the NS1 protein in the pathogenesis of flaviviruses.
Collapse
Affiliation(s)
- Dayangi R Perera
- Department of Chemistry, Faculty of Science, University of Colombo, Sri Lanka 00300
| | - Nadeeka D Ranadeva
- Department of Biomedical Science, Faculty of Health Sciences, KIU Campus Sri Lanka 10120
| | - Kavish Sirisena
- Department of Chemistry, Faculty of Science, University of Colombo, Sri Lanka 00300
- Section of Genetics, Institute for Research and Development in Health and Social Care, Sri Lanka 10120
| | | |
Collapse
|
3
|
Deng S, Tian X, Belshaw R, Zhou J, Zhang S, Yang Y, Huang C, Chen W, Qiu H, Choo SW. An RNA-Seq analysis of coronavirus in the skin of the Pangolin. Sci Rep 2024; 14:910. [PMID: 38195813 PMCID: PMC10776870 DOI: 10.1038/s41598-024-51261-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 01/02/2024] [Indexed: 01/11/2024] Open
Abstract
Protection of the Critically Endangered East Asian Pangolin species is hampered by the vulnerability of captive individuals to infection. Studies have previously shown the pangolin to have a unique pseudogenisation of many immunity genes (including IFNE, IFIH1, cGAS, STING, TLR5, and TLR11), and we suspected that these losses could account for this vulnerability. Here we used RNA-Seq data to show the effect of these gene losses on the transcriptional response to a viral skin infection in a deceased pangolin. This virus is very closely related to the one causing the current COVID-19 pandemic in the human population (SARS-CoV2), and we found the most upregulated pathway was the same one previously identified in the lungs of SARS-CoV2-infected humans. As predicted, we found that the pathways downstream of the lost genes were not upregulated. For example, the pseudogenised interferon epsilon (IFNE) is known to be particularly important in epithelial immunity, and we show that interferon-related responses were not upregulated in the infected pangolin skin. We suggest that the pangolin's innate gene pseudogenisation is indeed likely to be responsible for the animal's vulnerability to infection.
Collapse
Affiliation(s)
- Siwei Deng
- Department of Biology, College of Science, Mathematics and Technology, Wenzhou-Kean University, 88 Daxue Road, Ouhai, Wenzhou, Zhejiang, 325060, China
| | - Xuechen Tian
- Department of Biology, College of Science, Mathematics and Technology, Wenzhou-Kean University, 88 Daxue Road, Ouhai, Wenzhou, Zhejiang, 325060, China
- Zhejiang Bioinformatics International Science and Technology Cooperation Centre, Wenzhou-Kean University, 88 Daxue Road, Ouhai, Wenzhou, Zhejiang, 325060, China
- Wenzhou Municipal Key Laboratory for Applied Biomedical and Biopharmaceutical Informatics, 88 Daxue Road, Ouhai, Wenzhou, Zhejiang, 325060, China
| | - Robert Belshaw
- Department of Biology, College of Science, Mathematics and Technology, Wenzhou-Kean University, 88 Daxue Road, Ouhai, Wenzhou, Zhejiang, 325060, China
| | - Jinfeng Zhou
- China Biodiversity Conservation and Green Development Foundation (CBCGDF), Empark International Apartment, No. 69, Banding Road, Haidian District, Beijing, China
| | - Siyuan Zhang
- China Biodiversity Conservation and Green Development Foundation (CBCGDF), Empark International Apartment, No. 69, Banding Road, Haidian District, Beijing, China
| | - Yixin Yang
- Department of Biology, College of Science, Mathematics and Technology, Wenzhou-Kean University, 88 Daxue Road, Ouhai, Wenzhou, Zhejiang, 325060, China
- Zhejiang Bioinformatics International Science and Technology Cooperation Centre, Wenzhou-Kean University, 88 Daxue Road, Ouhai, Wenzhou, Zhejiang, 325060, China
- Wenzhou Municipal Key Laboratory for Applied Biomedical and Biopharmaceutical Informatics, 88 Daxue Road, Ouhai, Wenzhou, Zhejiang, 325060, China
- Dorothy and George Hennings College of Science, Mathematics and Technology, Kean University, 1000 Morris Ave, Union, NJ, 07083, USA
| | - Chang Huang
- Department of Biology, College of Science, Mathematics and Technology, Wenzhou-Kean University, 88 Daxue Road, Ouhai, Wenzhou, Zhejiang, 325060, China
| | - Weikang Chen
- Department of Biology, College of Science, Mathematics and Technology, Wenzhou-Kean University, 88 Daxue Road, Ouhai, Wenzhou, Zhejiang, 325060, China
| | - Hailu Qiu
- Department of Biology, College of Science, Mathematics and Technology, Wenzhou-Kean University, 88 Daxue Road, Ouhai, Wenzhou, Zhejiang, 325060, China
| | - Siew Woh Choo
- Department of Biology, College of Science, Mathematics and Technology, Wenzhou-Kean University, 88 Daxue Road, Ouhai, Wenzhou, Zhejiang, 325060, China.
- Zhejiang Bioinformatics International Science and Technology Cooperation Centre, Wenzhou-Kean University, 88 Daxue Road, Ouhai, Wenzhou, Zhejiang, 325060, China.
- Wenzhou Municipal Key Laboratory for Applied Biomedical and Biopharmaceutical Informatics, 88 Daxue Road, Ouhai, Wenzhou, Zhejiang, 325060, China.
- Dorothy and George Hennings College of Science, Mathematics and Technology, Kean University, 1000 Morris Ave, Union, NJ, 07083, USA.
| |
Collapse
|
4
|
Das D, Mallick B, Sinha S, Ganguli S, Samanta D, Banerjee R, Roy D. Unearthing the inhibitory potential of phytochemicals from Lawsonia inermis L. and some drugs against dengue virus protein NS1: an in silico approach. J Biomol Struct Dyn 2023:1-18. [PMID: 38157248 DOI: 10.1080/07391102.2023.2298730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 12/18/2023] [Indexed: 01/03/2024]
Abstract
Dengue has received the status of an epidemic and endemic disease, with countless number of infections every year. Due to the unreliability of vaccines and non-specificity of drugs, it becomes necessary to find plant-based alternatives, with less harmful side effects. Lawsonia inermis L., is the sole source of dye, Mehendi. The rich repertoire of phytochemicals makes it useful, medicinally. The main objectives of the study are to explore the anti-dengue properties of the phytochemicals from Lawsonia inermis, and to shortlist potential candidates in curing the disease. Phytochemicals from the plant, and a set of drugs were screened and docked against NS1 protein, a less explored drug target, needed for maintenance of virus life cycle. Ligand screening and docking analysis concluded gallic acid, and chlorogenic acid to be good candidates, exhibiting high binding affinity and extensive interactions with the protein. From among the shortlisted drugs, only Vibegron showed effective binding affinity with NS1 protein with zero violations to the Lipinski's Rule of 5. Molecular dynamic simulations, executed for a time period of 100 nanoseconds, reveal the performance of a ligand within a solvated system. Chlorogenic and gallic acid, formed more stable and compact complexes with protein, with stable energy parameters and strong binding affinity. This was further validated with snapshots taken every 50 nanoseconds, showing no change in binding site between the ligand and protein, within the stipulated time frame. It was interesting to see that, a phenol (chlorogenic acid), served as a better drug candidate, against the NS1 protein.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Debapriya Das
- Post Graduate Department of Botany, Lady Brabourne College, Kolkata, India
| | - Bidisha Mallick
- Post Graduate Department of Botany, Lady Brabourne College, Kolkata, India
| | - Suchita Sinha
- Post Graduate Department of Botany, Lady Brabourne College, Kolkata, India
| | - Sayak Ganguli
- Post Graduate Department of Biotechnology, St. Xaviers' College (Autonomous), Kolkata, India
| | - Dipu Samanta
- Department of Botany, Dr. Kanailal Bhattacharyya College, Howrah, India
| | - Rajat Banerjee
- Dr. BC Chandra Guha Centre for Genetic Engineering and Biotechnology, University of Calcutta, Kolkata, India
| | - Debleena Roy
- Post Graduate Department of Botany, Lady Brabourne College, Kolkata, India
| |
Collapse
|
5
|
Farooq QUA, Aiman S, Ali Y, Shaukat Z, Ali Y, Khan A, Samad A, Wadood A, Li C. A comprehensive protein interaction map and druggability investigation prioritized dengue virus NS1 protein as promising therapeutic candidate. PLoS One 2023; 18:e0287905. [PMID: 37498862 PMCID: PMC10374080 DOI: 10.1371/journal.pone.0287905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 06/15/2023] [Indexed: 07/29/2023] Open
Abstract
Dengue Virus (DENV) is a serious threat to human life worldwide and is one of the most dangerous vector-borne diseases, causing thousands of deaths annually. We constructed a comprehensive PPI map of DENV with its host Homo sapiens and performed various bioinformatics analyses. We found 1195 interactions between 858 human and 10 DENV proteins. Pathway enrichment analysis was performed on the two sets of gene products, and the top 5 human proteins with the maximum number of interactions with dengue viral proteins revealed noticeable results. The non-structural protein NS1 in DENV had the maximum number of interactions with the host protein, followed by NS5 and NS3. Among the human proteins, HBA1 and UBE2I were associated with 7 viral proteins, and 3 human proteins (CSNK2A1, RRP12, and HSP90AB1) were found to interact with 6 viral proteins. Pharmacophore-based virtual screening of millions of compounds in the public databases was performed to identify potential DENV-NS1 inhibitors. The lead compounds were selected based on RMSD values, docking scores, and strong binding affinities. The top ten hit compounds were subjected to ADME profiling which identified compounds C2 (MolPort-044-180-163) and C6 (MolPort-001-742-737) as lead inhibitors against DENV-NS1. Molecular dynamics trajectory analysis and intermolecular interactions between NS1 and the ligands displayed the molecular stability of the complexes in the cellular environment. The in-silico approaches used in this study could pave the way for the development of potential specie-specific drugs and help in eliminating deadly viral infections. Therefore, experimental and clinical assays are required to validate the results of this study.
Collapse
Affiliation(s)
- Qurrat Ul Ain Farooq
- Faculty of Environmental and Life Sciences, Beijing University of Technology, Beijing, China
| | - Sara Aiman
- Faculty of Environmental and Life Sciences, Beijing University of Technology, Beijing, China
| | - Yasir Ali
- National Center for Bioinformatics, Quaid-i-Azam University, Islamabad, Pakistan
| | - Zeeshan Shaukat
- Faculty of Information Technology, Beijing University of Technology, Beijing, China
| | - Yasir Ali
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Asifullah Khan
- Department of Biochemistry, Abdul Wali Khan University, Mardan, Pakistan
| | - Abdus Samad
- Department of Biochemistry, Abdul Wali Khan University, Mardan, Pakistan
| | - Abdul Wadood
- Department of Biochemistry, Abdul Wali Khan University, Mardan, Pakistan
| | - Chunhua Li
- Faculty of Environmental and Life Sciences, Beijing University of Technology, Beijing, China
| |
Collapse
|
6
|
Maurya R, Shamim U, Mishra P, Swaminathan A, Raina A, Tarai B, Budhiraja S, Pandey R. Intertwined Dysregulation of Ribosomal Proteins and Immune Response Delineates SARS-CoV-2 Vaccination Breakthroughs. Microbiol Spectr 2023; 11:e0429222. [PMID: 37022180 PMCID: PMC10269832 DOI: 10.1128/spectrum.04292-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 03/14/2023] [Indexed: 04/07/2023] Open
Abstract
Globally, COVID-19 vaccines have emerged as a boon, especially during the severe pandemic phases to control the spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections, saving millions of lives. However, mixed responses to vaccination with breakthrough challenges provided a rationale to explore the immune responses generated postvaccination, which plausibly alter the subsequent course of infection. In this regard, we comprehensively profiled the nasopharyngeal transcriptomic signature of double-dose-vaccinated individuals with breakthrough infections in comparison to unvaccinated infected persons. The vaccinated individuals demonstrated a gross downregulation of ribosomal proteins along with immune response genes and transcription/translational machinery that methodically modulated the entire innate immune landscape toward immune tolerance, a feature of innate immune memory. This coordinated response was orchestrated through 17 transcription factors captured as differentially expressed in the vaccination breakthroughs, including epigenetic modulators of CHD1 and LMNB1 and several immune response effectors, with ELF1 emerging as one of the important transcriptional regulators of the antiviral innate immune response. Deconvolution algorithm using bulk gene expression data revealed decreased T-cell populations with higher expression of memory B cells in the vaccination breakthroughs. Thus, vaccination might synergize the innate immune response with humoral and T-cell correlates of protection to more rapidly clear SARS-CoV-2 infections and reduce symptoms within a shorter span of time. An important feature invariably noted after secondary vaccination is downregulation of ribosomal proteins, which might plausibly be an important factor arising from epigenetic reprogramming leading to innate immune tolerance. IMPORTANCE The development of multiple vaccines against SARS-CoV-2 infection is an unprecedented milestone achieved globally. Immunization of the mass population is a rigorous process for getting the pandemic under control, yet continuous challenges are being faced, one of them being breakthrough infections. This is the first study wherein the vaccination breakthrough cases of COVD-19 relative to unvaccinated infected individuals have been explored. In the context of vaccination, how do innate and adaptive immune responses correspond to SARS-CoV-2 infection? How do these responses culminate in a milder observable phenotype with shorter hospital stay in vaccination breakthrough cases compared with the unvaccinated? We identified a subdued transcriptional landscape in vaccination breakthroughs with decreased expression of a large set of immune and ribosomal proteins genes. We propose a module of innate immune memory, i.e., immune tolerance, which plausibly helps to explain the observed mild phenotype and fast recovery in vaccination breakthroughs.
Collapse
Affiliation(s)
- Ranjeet Maurya
- Division of Immunology and Infectious Disease Biology, INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Uzma Shamim
- Division of Immunology and Infectious Disease Biology, INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India
| | - Pallavi Mishra
- Division of Immunology and Infectious Disease Biology, INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India
| | - Aparna Swaminathan
- Division of Immunology and Infectious Disease Biology, INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India
| | - Aakarshan Raina
- Division of Immunology and Infectious Disease Biology, INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India
| | | | | | - Rajesh Pandey
- Division of Immunology and Infectious Disease Biology, INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
7
|
Miller SC, MacDonald CC, Kellogg MK, Karamysheva ZN, Karamyshev AL. Specialized Ribosomes in Health and Disease. Int J Mol Sci 2023; 24:ijms24076334. [PMID: 37047306 PMCID: PMC10093926 DOI: 10.3390/ijms24076334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/21/2023] [Accepted: 03/23/2023] [Indexed: 03/30/2023] Open
Abstract
Ribosomal heterogeneity exists within cells and between different cell types, at specific developmental stages, and occurs in response to environmental stimuli. Mounting evidence supports the existence of specialized ribosomes, or specific changes to the ribosome that regulate the translation of a specific group of transcripts. These alterations have been shown to affect the affinity of ribosomes for certain mRNAs or change the cotranslational folding of nascent polypeptides at the exit tunnel. The identification of specialized ribosomes requires evidence of the incorporation of different ribosomal proteins or of modifications to rRNA and/or protein that lead(s) to physiologically relevant changes in translation. In this review, we summarize ribosomal heterogeneity and specialization in mammals and discuss their relevance to several human diseases.
Collapse
Affiliation(s)
- Sarah C. Miller
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Clinton C. MacDonald
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Morgana K. Kellogg
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | | | - Andrey L. Karamyshev
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Correspondence: ; Tel.: +1-806-743-4102
| |
Collapse
|
8
|
Dong HJ, Wang J, Zhang XZ, Li CC, Liu JF, Wang XJ. Proteomic screening identifies RPLp2 as a specific regulator for the translation of coronavirus. Int J Biol Macromol 2023; 230:123191. [PMID: 36632964 PMCID: PMC9827737 DOI: 10.1016/j.ijbiomac.2023.123191] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 01/11/2023]
Abstract
Viral mRNA of coronavirus translates in an eIF4E-dependent manner, and the phosphorylation of eIF4E can modulate this process, but the role of p-eIF4E in coronavirus infection is not yet entirely evident. p-eIF4E favors the translation of selected mRNAs, specifically the mRNAs that encode proteins associated with cell proliferation, inflammation, the extracellular matrix, and tumor formation and metastasis. In the present work, two rounds of TMT relative quantitative proteomics were used to screen 77 cellular factors that are upregulated upon infection by coronavirus PEDV and are potentially susceptible to a high level of p-eIF4E. PEDV infection increased the translation level of ribosomal protein lateral stalk subunit RPLp2 (but not subunit RPLp0/1) in a p-eIF4E-dependent manner. The bicistronic dual-reporter assay and polysome profile showed that RPLp2 is essential for translating the viral mRNA of PEDV. RNA binding protein and immunoprecipitation assay showed that RPLp2 interacted with PEDV 5'UTR via association with eIF4E. Moreover, the cap pull-down assay showed that the viral nucleocapsid protein is recruited in m7GTP-precipitated complexes with the assistance of RPLp2. The heterogeneous ribosomes, which are different in composition, regulate the selective translation of specific mRNAs. Our study proves that viral mRNA and protein utilize translation factors and heterogeneous ribosomes for preferential translation initiation. This previously uncharacterized process may be involved in the selective translation of coronavirus.
Collapse
Affiliation(s)
- Hui-Jun Dong
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Jing Wang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Xiu-Zhong Zhang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Cui-Cui Li
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Jian-Feng Liu
- College of Animal Science and Technol, China Agricultural University, Beijing 100193, China.
| | - Xiao-Jia Wang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
9
|
Zhu Q, Su M, Wei S, Shi D, Li L, Wang J, Sun H, Wang M, Li C, Guo D, Sun D. Up-regulated 60S ribosomal protein L18 in PEDV N protein-induced S-phase arrested host cells promotes viral replication. Virus Res 2022; 321:198916. [PMID: 36084747 PMCID: PMC9446558 DOI: 10.1016/j.virusres.2022.198916] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/04/2022] [Accepted: 09/05/2022] [Indexed: 12/24/2022]
Abstract
Coronavirus subverts the host cell cycle to create a favorable cellular environment that enhances viral replication in host cells. Previous studies have revealed that nucleocapsid (N) protein of the coronavirus porcine epidemic diarrhea virus (PEDV) interacts with p53 to induce cell cycle arrest in S-phase and promotes viral replication. However, the mechanism by which viral replication is increased in the PEDV N protein-induced S-phase arrested cells remains unknown. In the current study, the protein expression profiles of PEDV N protein-induced S-phase arrested Vero E6 cells and thymidine-induced S-phase arrested Vero E6 cells were characterized by tandem mass tag-labeled quantitative proteomic technology. The effect of differentially expressed proteins (DEPs) on PEDV replication was investigated. The results indicated that a total of 5709 proteins, including 20,560 peptides, were identified, of which 58 and 26 DEPs were identified in the PEDV N group and thymidine group, respectively (P < 0.05; ratio ≥ 1.2 or ≤ 0.8). The unique DEPs identified in the PEDV N group were mainly involved in DNA replication, transcription, and protein synthesis, of which 60S ribosomal protein L18 (RPL18) exhibited significantly up-regulated expression in the PEDV N protein-induced S-phase arrested Vero E6/IPEC-J2 cells and PEDV-infected IPEC-J2 cells (P < 0.05). Further studies revealed that the RPL18 protein could significantly enhance PEDV replication (P < 0.05). Our findings reveal a mechanism regarding increased viral replication when the PEDV N protein-induced host cells are in S-phase arrest. These data also provide evidence that PEDV maintains its own replication by utilizing protein synthesis-associated ribosomal proteins.
Collapse
Affiliation(s)
- Qinghe Zhu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing 163319, China
| | - Mingjun Su
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing 163319, China,Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics and Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology and College of Veterinary Medicine of Zhejiang A&F University, 666 Wusu Street, Lin'an District, Hangzhou, Zhejiang 311300, China
| | - Shan Wei
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing 163319, China
| | - Da Shi
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Lu Li
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing 163319, China
| | - Jun Wang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing 163319, China
| | - Haibo Sun
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing 163319, China
| | - Meijiao Wang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing 163319, China
| | - Chunqiu Li
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing 163319, China
| | - Donghua Guo
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing 163319, China
| | - Dongbo Sun
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing 163319, China,Corresponding author
| |
Collapse
|
10
|
Kumar S, Verma A, Yadav P, Dubey SK, Azhar EI, Maitra SS, Dwivedi VD. Molecular pathogenesis of Japanese encephalitis and possible therapeutic strategies. Arch Virol 2022; 167:1739-1762. [PMID: 35654913 PMCID: PMC9162114 DOI: 10.1007/s00705-022-05481-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 03/10/2022] [Indexed: 12/26/2022]
Abstract
Japanese encephalitis virus (JEV), a single-stranded, enveloped RNA virus, is a health concern across Asian countries, associated with severe neurological disorders, especially in children. Primarily, pigs, bats, and birds are the natural hosts for JEV, but humans are infected incidentally. JEV requires a few host proteins for its entry and replication inside the mammalian host cell. The endoplasmic reticulum (ER) plays a significant role in JEV genome replication and assembly. During this process, the ER undergoes stress due to its remodelling and accumulation of viral particles and unfolded proteins, leading to an unfolded protein response (UPR). Here, we review the overall strategy used by JEV to infect the host cell and various cytopathic effects caused by JEV infection. We also highlight the role of JEV structural proteins (SPs) and non-structural proteins (NSPs) at various stages of the JEV life cycle that are involved in up- and downregulation of different host proteins and are potentially relevant for developing efficient therapeutic drugs.
Collapse
Affiliation(s)
- Sanjay Kumar
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067 India
- Center for Bioinformatics, Computational and Systems Biology, Pathfinder Research and Training Foundation, Greater Noida, India
| | - Akanksha Verma
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067 India
| | - Pardeep Yadav
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, Uttar Pradesh 201310 India
- Center for Bioinformatics, Computational and Systems Biology, Pathfinder Research and Training Foundation, Greater Noida, India
| | | | - Esam Ibraheem Azhar
- Special Infectious Agents Unit-BSL3, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, 21589 Saudi Arabia
| | - S. S. Maitra
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067 India
| | - Vivek Dhar Dwivedi
- Center for Bioinformatics, Computational and Systems Biology, Pathfinder Research and Training Foundation, Greater Noida, India
| |
Collapse
|
11
|
Li N, Yu K, Dong M, Wang J, Yang F, Zhu H, Yu J, Yang J, Xie W, Mitra B, Mao R, Wu F, Guo H, Zhang J. Intrahepatic transcriptomics reveals gene signatures in chronic hepatitis B patients responded to interferon therapy. Emerg Microbes Infect 2022; 11:1876-1889. [PMID: 35815389 PMCID: PMC9336496 DOI: 10.1080/22221751.2022.2100831] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Chronic hepatitis B virus (HBV) infection remains a substantial public health burden worldwide. Alpha-interferon (IFNα) is one of the two currently approved therapies for chronic hepatitis B (CHB), to explore the mechanisms underlying IFNα treatment response, we investigated baseline and 24-week on-treatment intrahepatic gene expression profiles in 21 CHB patients by mRNA-seq. The data analyses demonstrated that PegIFNα treatment significantly induced antiviral responses. Responders who achieved HBV DNA loss and HBeAg or HBsAg seroconversion displayed higher fold change and larger number of up-regulated interferon-stimulated genes (ISGs). Interestingly, lower expression levels of certain ISGs were observed in responders in their baseline biopsy samples. In HBeAg+ patients, non-responders had relative higher baseline HBeAg levels than responders. More importantly, HBeAg− patients showed higher HBsAg loss rate than HBeAg+ patients. Although a greater fold change of ISGs was observed in HBeAg− patients than HBeAg+ patients, upregulation of ISGs in HBeAg+ responders exceeded HBeAg− responders. Notably, PegIFNα treatment increased monocyte and mast cell infiltration, but decreased CD8 T cell and M1 macrophage infiltration in both responders and non-responders, while B cell infiltration was increased only in responders. Moreover, co-expression analysis identified ribosomal proteins as critical players in antiviral response. The data also indicate that IFNα may influence the production of viral antigens associated with endoplasmic reticulum. Collectively, the intrahepatic transcriptome analyses in this study enriched our understanding of IFN-mediated antiviral effects in CHB patients and provided novel insights into the development of potential strategies to improve IFNα therapy.
Collapse
Affiliation(s)
- Ning Li
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Shanghai Institute of Infectious Diseases and Biosecurity, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China.,Key Laboratory of Medical Molecular Virology (MOE/MOH), Shanghai Medical College, Fudan University, Shanghai, China
| | - Kangkang Yu
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Shanghai Institute of Infectious Diseases and Biosecurity, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China.,Key Laboratory of Medical Molecular Virology (MOE/MOH), Shanghai Medical College, Fudan University, Shanghai, China
| | - Minhui Dong
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Shanghai Institute of Infectious Diseases and Biosecurity, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China.,Key Laboratory of Medical Molecular Virology (MOE/MOH), Shanghai Medical College, Fudan University, Shanghai, China
| | - Jinyu Wang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Shanghai Institute of Infectious Diseases and Biosecurity, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China.,Key Laboratory of Medical Molecular Virology (MOE/MOH), Shanghai Medical College, Fudan University, Shanghai, China
| | - Feifei Yang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Shanghai Institute of Infectious Diseases and Biosecurity, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China.,Key Laboratory of Medical Molecular Virology (MOE/MOH), Shanghai Medical College, Fudan University, Shanghai, China
| | - Haoxiang Zhu
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Shanghai Institute of Infectious Diseases and Biosecurity, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China.,Key Laboratory of Medical Molecular Virology (MOE/MOH), Shanghai Medical College, Fudan University, Shanghai, China
| | - Jie Yu
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Shanghai Institute of Infectious Diseases and Biosecurity, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China.,Key Laboratory of Medical Molecular Virology (MOE/MOH), Shanghai Medical College, Fudan University, Shanghai, China
| | - Jingshu Yang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Shanghai Institute of Infectious Diseases and Biosecurity, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China.,Key Laboratory of Medical Molecular Virology (MOE/MOH), Shanghai Medical College, Fudan University, Shanghai, China
| | - Wentao Xie
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Shanghai Institute of Infectious Diseases and Biosecurity, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China.,Key Laboratory of Medical Molecular Virology (MOE/MOH), Shanghai Medical College, Fudan University, Shanghai, China
| | - Bidisha Mitra
- Cancer Virology Program, UPMC Hillman Cancer Center, Department of Microbiology and Molecular Genetics, University of Pittsburgh, United States
| | - Richeng Mao
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Shanghai Institute of Infectious Diseases and Biosecurity, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China.,Key Laboratory of Medical Molecular Virology (MOE/MOH), Shanghai Medical College, Fudan University, Shanghai, China
| | - Feizhen Wu
- Key Laboratory of Epigenetics, Institutes of Biomedical Science, Fudan University, China
| | - Haitao Guo
- Cancer Virology Program, UPMC Hillman Cancer Center, Department of Microbiology and Molecular Genetics, University of Pittsburgh, United States
| | - Jiming Zhang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Shanghai Institute of Infectious Diseases and Biosecurity, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China.,Key Laboratory of Medical Molecular Virology (MOE/MOH), Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
12
|
Wu W, Wang C, Xia C, Liu S, Mei Q. MicroRNA let-7 Suppresses Influenza A Virus Infection by Targeting RPS16 and Enhancing Type I Interferon Response. Front Cell Infect Microbiol 2022; 12:904775. [PMID: 35873150 PMCID: PMC9301362 DOI: 10.3389/fcimb.2022.904775] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 06/13/2022] [Indexed: 11/23/2022] Open
Abstract
Given the frequent emergence of drug-resistant influenza virus strains and new highly pathogenic influenza virus strains, there is an urgent need to identify new antiviral drugs and targets. We found that influenza A virus (IAV) infection caused a significant decrease of microRNA let-7 expression in host cells; that overexpression of let-7 increased interferon expression and effectively inhibit IAV infection; and that let-7 targets the 3’-untranslated region (UTR) of the ribosomal protein 16 (RPS16) gene, decreasing its expression. Knocking down the expression of RPS16 increased the expression of type I interferon and inhibited viral replication. The present study uncovered the regulatory effect of let-7b and let-7f on influenza A infection, which is a potential biomarker of IAV infection. In addition, let-7 may be a promising therapeutic agent against influenza A.
Collapse
Affiliation(s)
- Wenjiao Wu
- Department of Pharmacy, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Chao Wang
- Department of Pharmacy, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Changliang Xia
- Department of Pharmacy, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Shuwen Liu
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
- *Correspondence: Qinghua Mei, ; Shuwen Liu,
| | - Qinghua Mei
- Department of Pharmacy, Guangdong Second Provincial General Hospital, Guangzhou, China
- *Correspondence: Qinghua Mei, ; Shuwen Liu,
| |
Collapse
|
13
|
Singh K, Martinez MG, Lin J, Gregory J, Nguyen TU, Abdelaal R, Kang K, Brennand K, Grünweller A, Ouyang Z, Phatnani H, Kielian M, Wendel HG. Transcriptional and Translational Dynamics of Zika and Dengue Virus Infection. Viruses 2022; 14:1418. [PMID: 35891396 PMCID: PMC9316442 DOI: 10.3390/v14071418] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 06/18/2022] [Indexed: 11/16/2022] Open
Abstract
Zika virus (ZIKV) and dengue virus (DENV) are members of the Flaviviridae family of RNA viruses and cause severe disease in humans. ZIKV and DENV share over 90% of their genome sequences, however, the clinical features of Zika and dengue infections are very different reflecting tropism and cellular effects. Here, we used simultaneous RNA sequencing and ribosome footprinting to define the transcriptional and translational dynamics of ZIKV and DENV infection in human neuronal progenitor cells (hNPCs). The gene expression data showed induction of aminoacyl tRNA synthetases (ARS) and the translation activating PIM1 kinase, indicating an increase in RNA translation capacity. The data also reveal activation of different cell stress responses, with ZIKV triggering a BACH1/2 redox program, and DENV activating the ATF/CHOP endoplasmic reticulum (ER) stress program. The RNA translation data highlight activation of polyamine metabolism through changes in key enzymes and their regulators. This pathway is needed for eIF5A hypusination and has been implicated in viral translation and replication. Concerning the viral RNA genomes, ribosome occupancy readily identified highly translated open reading frames and a novel upstream ORF (uORF) in the DENV genome. Together, our data highlight both the cellular stress response and the activation of RNA translation and polyamine metabolism during DENV and ZIKV infection.
Collapse
Affiliation(s)
- Kamini Singh
- Cancer Biology and Genetics Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA;
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Albert Einstein Cancer, Center, Bronx, NY 10461, USA;
| | - Maria Guadalupe Martinez
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (M.G.M.); (R.A.); (M.K.)
- Global Innovation, Boehringer Ingelheim Animal Health, 69800 Saint-Priest, France
| | - Jianan Lin
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032 and Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA;
| | - James Gregory
- Department of Neurology, Vagelos College of Physicians & Surgeons of Columbia University, New York, NY 10032, USA; (J.G.); (K.K.); (H.P.)
- Center for Genomics of Neurodegenerative Disease, New York Genome Center, New York, NY 10013, USA
| | - Trang Uyen Nguyen
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Albert Einstein Cancer, Center, Bronx, NY 10461, USA;
| | - Rawan Abdelaal
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (M.G.M.); (R.A.); (M.K.)
| | - Kristy Kang
- Department of Neurology, Vagelos College of Physicians & Surgeons of Columbia University, New York, NY 10032, USA; (J.G.); (K.K.); (H.P.)
- Center for Genomics of Neurodegenerative Disease, New York Genome Center, New York, NY 10013, USA
| | - Kristen Brennand
- Division of Molecular Psychiatry, Departments of Psychiatry and Genetics, Yale School of Medicine, New Haven, CT 06510, USA;
| | - Arnold Grünweller
- Institute of Pharmaceutical Chemistry, Philipps University Marburg, 35032 Marburg, Germany;
| | - Zhengqing Ouyang
- Department of Biostatistics and Epidemiology, School of Public Health and Health Sciences, University of Massachusetts, Amherst, MA 01003, USA;
| | - Hemali Phatnani
- Department of Neurology, Vagelos College of Physicians & Surgeons of Columbia University, New York, NY 10032, USA; (J.G.); (K.K.); (H.P.)
- Center for Genomics of Neurodegenerative Disease, New York Genome Center, New York, NY 10013, USA
| | - Margaret Kielian
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (M.G.M.); (R.A.); (M.K.)
| | - Hans-Guido Wendel
- Cancer Biology and Genetics Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA;
| |
Collapse
|
14
|
The Dengue Virus Nonstructural Protein 1 (NS1) Interacts with the Putative Epigenetic Regulator DIDO1 to Promote Flavivirus Replication in Mosquito Cells. J Virol 2022; 96:e0070422. [PMID: 35652656 DOI: 10.1128/jvi.00704-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Dengue virus (DENV) NS1 is a multifunctional protein essential for viral replication. To gain insights into NS1 functions in mosquito cells, the protein interactome of DENV NS1 in C6/36 cells was investigated using a proximity biotinylation system and mass spectrometry. A total of 817 mosquito targets were identified as protein-protein interacting with DENV NS1. Approximately 14% of them coincide with interactomes previously obtained in vertebrate cells, including the oligosaccharide transferase complex, the chaperonin containing TCP-1, vesicle localization, and ribosomal proteins. Notably, other protein pathways not previously reported in vertebrate cells, such as epigenetic regulation and RNA silencing, were also found in the NS1 interactome in mosquito cells. Due to the novel and strong interactions observed for NS1 and the epigenetic regulator DIDO1 (Death-Inducer Obliterator 1), the role of DIDO1 in viral replication was further explored. Interactions between NS1 and DIDO1 were corroborated in infected mosquito cells, by colocalization and proximity ligation assays. Silencing DIDO1 expression results in a significant reduction in DENV and ZIKV replication and progeny production. Comparison of transcription analysis of mock or DENV infected cells silenced for DIDO1 revealed variations in multiple gene expression pathways, including pathways associated with DENV infection such as RNA surveillance, IMD, and Toll. These results suggest that DIDO1 is a host factor involved in the negative modulation of the antiviral response necessary for flavivirus replication in mosquito cells. Our findings uncover novel mechanisms of NS1 to promote DENV and ZIKV replication, and add to the understanding of NS1 as a multifunctional protein. IMPORTANCE Dengue is the most important mosquito-borne viral disease to humans. Dengue virus NS1 is a multifunctional protein essential for replication and modulation of innate immunity. To gain insights into NS1 functions, the protein interactome of dengue virus NS1 in Aedes albopictus cells was investigated using a proximity biotinylation system and mass spectrometry. Several protein pathways, not previously observed in vertebrate cells, such as transcription and epigenetic regulation, were found as part of the NS1 interactome in mosquito cells. Among those, DIDO1 was found to be a necessary host factor for dengue and Zika virus replication in mosquito cells. Transcription analysis of infected mosquito cells silenced for DIDO1 revealed alterations of the IMD and Toll pathways, part of the antiviral response in mosquitoes. The results suggest that DIDO1 is a host factor involved in modulation of the antiviral response and necessary for flavivirus replication.
Collapse
|
15
|
Wong JM, Adams LE, Durbin AP, Muñoz-Jordán JL, Poehling KA, Sánchez-González LM, Volkman HR, Paz-Bailey G. Dengue: A Growing Problem With New Interventions. Pediatrics 2022; 149:187012. [PMID: 35543085 DOI: 10.1542/peds.2021-055522] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/11/2022] [Indexed: 12/12/2022] Open
Abstract
Dengue is the disease caused by 1 of 4 distinct, but closely related dengue viruses (DENV-1-4) that are transmitted by Aedes spp. mosquito vectors. It is the most common arboviral disease worldwide, with the greatest burden in tropical and sub-tropical regions. In the absence of effective prevention and control measures, dengue is projected to increase in both disease burden and geographic range. Given its increasing importance as an etiology of fever in the returning traveler or the possibility of local transmission in regions in the United States with competent vectors, as well as the risk for large outbreaks in endemic US territories and associated states, clinicians should understand its clinical presentation and be familiar with appropriate testing, triage, and management of patients with dengue. Control and prevention efforts reached a milestone in June 2021 when the Advisory Committee on Immunization Practices (ACIP) recommended Dengvaxia for routine use in children aged 9 to 16 years living in endemic areas with laboratory confirmation of previous dengue virus infection. Dengvaxia is the first vaccine against dengue to be recommended for use in the United States and one of the first to require laboratory testing of potential recipients to be eligible for vaccination. In this review, we outline dengue pathogenesis, epidemiology, and key clinical features for front-line clinicians evaluating patients presenting with dengue. We also provide a summary of Dengvaxia efficacy, safety, and considerations for use as well as an overview of other potential new tools to control and prevent the growing threat of dengue .
Collapse
Affiliation(s)
- Joshua M Wong
- Epidemic Intelligence Service, Center for Surveillance, Epidemiology, and Laboratory Services, Centers for Disease Control and Prevention, Atlanta, Georgia.,Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, San Juan, Puerto Rico
| | - Laura E Adams
- Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, San Juan, Puerto Rico
| | - Anna P Durbin
- Center for Immunization Research, Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Jorge L Muñoz-Jordán
- Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, San Juan, Puerto Rico
| | | | - Liliana M Sánchez-González
- Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, San Juan, Puerto Rico
| | - Hannah R Volkman
- Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, San Juan, Puerto Rico
| | - Gabriela Paz-Bailey
- Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, San Juan, Puerto Rico
| |
Collapse
|
16
|
Zhang L, Lin J, Weng M, Wen Y, Zhang Y, Deng W. RPLP1, an NS4B-interacting protein, enhances production of CSFV through promoting translation of viral genome. Virulence 2022; 13:370-386. [PMID: 35129423 PMCID: PMC8824197 DOI: 10.1080/21505594.2022.2033500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Classical swine fever virus (CSFV), the etiological agent of classical swine fever (CSF), causes serious financial losses to the pig industry. Using yeast two-hybrid screening, we have previously identified ribosomal protein RPLP1 as a potential binding partner of CSFV NS4B. In this study, the interaction between host RPLP1 and CSFV NS4B was further characterized by co-immunoprecipitation (co-IP), glutathione S-transferase (GST) pulldown, and confocal microscopy. In addition, lentivirus-mediated shRNA knockdown of RPLP1 drastically attenuated CSFV growth, while stable overexpression of RPLP1 markedly enhanced CSFV production. Moreover, cellular RPLP1 expression was found to be significantly up-regulated along with CSFV infection. Dual-luciferase reporter assay showed that depletion of RPLP1 had no effects on the activity of CSFV internal ribosome entry site (IRES). In the first life cycle of CSFV, further studies revealed that RPLP1 depletion did not influence the intracellular viral RNA abundance but diminished the intracellular and extracellular progeny virus titers as well as the viral E2 protein expression, which indicates that RPLP1 is crucial for CSFV genome translation. In summary, this study demonstrated that RPLP1 interacts with CSFV NS4B and enhances virus production via promoting translation of viral genome.
Collapse
Affiliation(s)
- Longxiang Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Jihui Lin
- School of Nursing, Southwest Medical University, Luzhou, Sichuan, China
| | - Maoyang Weng
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Ying Wen
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Yanming Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Wen Deng
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
17
|
Kleinwort KJH, Degroote RL, Hirmer S, Korbonits L, Lorenz L, Scholz AM, Hauck SM, Deeg CA. Bovine Peripheral Blood Derived Lymphocyte Proteome and Secretome Show Divergent Reaction of Bovine Immune Phenotypes after Stimulation with Pokeweed Mitogen. Proteomes 2022; 10:proteomes10010007. [PMID: 35225986 PMCID: PMC8883952 DOI: 10.3390/proteomes10010007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/23/2022] [Accepted: 01/25/2022] [Indexed: 12/15/2022] Open
Abstract
We recently identified a deviant bovine immune phenotype characterized by hyperproliferation of lymphocytes after polyclonal stimulation. This phenotype was first discovered in dams that responded to PregSure BVD vaccination by producing pathological antibodies, triggering the fatal disease “bovine neonatal pancytopenia” in calves. The aim of the study was to gain deeper insights into molecular processes occurring in lymphocytes of immune phenotypes and the effect on their secretome after immune stimulation. Two discovery proteomic experiments were performed with unstimulated and Pokeweed Mitogen (PWM) stimulated lymphocytes, using label-free LC-MS/MS. In lymphocytes, 2447 proteins were quantified, and 1204 proteins were quantified in the secretome. Quantitative proteome analysis of immune deviant and control samples after PWM stimulation revealed clear differences. The increase in abundance of IL17A, IL17F, IL8, CCL5, LRRC59, and CLIC4 was higher in controls through mitogenic stimulation. In contrast, the abundance of IFNγ, IL2, IL2RA, CD83, and CD200 increased significantly more in immune deviant lymphocytes. Additional pathway enrichment analysis of differentially secreted proteins also yielded fundamental differences between the immune phenotypes. Our study provides a comprehensive dataset, which gives novel insights into proteome changes of lymphocytes from different bovine immune phenotypes. These differences point to the development of diverse immune responses of bovine immune phenotypes after immune stimulation.
Collapse
Affiliation(s)
- Kristina J. H. Kleinwort
- Department of Veterinary Sciences, LMU Munich, D-82152 Planegg, Germany; (K.J.H.K.); (R.L.D.); (S.H.); (L.K.); (L.L.)
| | - Roxane L. Degroote
- Department of Veterinary Sciences, LMU Munich, D-82152 Planegg, Germany; (K.J.H.K.); (R.L.D.); (S.H.); (L.K.); (L.L.)
| | - Sieglinde Hirmer
- Department of Veterinary Sciences, LMU Munich, D-82152 Planegg, Germany; (K.J.H.K.); (R.L.D.); (S.H.); (L.K.); (L.L.)
| | - Lucia Korbonits
- Department of Veterinary Sciences, LMU Munich, D-82152 Planegg, Germany; (K.J.H.K.); (R.L.D.); (S.H.); (L.K.); (L.L.)
| | - Lea Lorenz
- Department of Veterinary Sciences, LMU Munich, D-82152 Planegg, Germany; (K.J.H.K.); (R.L.D.); (S.H.); (L.K.); (L.L.)
| | - Armin M. Scholz
- Livestock Center of the Faculty of Veterinary Medicine, LMU Munich, D-85764 Oberschleißheim, Germany;
| | - Stefanie M. Hauck
- Research Unit Protein Science, Helmholtz Center Munich, German Research Center for Environmental Health, D-80939 Munich, Germany;
| | - Cornelia A. Deeg
- Department of Veterinary Sciences, LMU Munich, D-82152 Planegg, Germany; (K.J.H.K.); (R.L.D.); (S.H.); (L.K.); (L.L.)
- Correspondence:
| |
Collapse
|
18
|
Burgess HM, Vink EI, Mohr I. Minding the message: tactics controlling RNA decay, modification, and translation in virus-infected cells. Genes Dev 2022; 36:108-132. [PMID: 35193946 PMCID: PMC8887129 DOI: 10.1101/gad.349276.121] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
With their categorical requirement for host ribosomes to translate mRNA, viruses provide a wealth of genetically tractable models to investigate how gene expression is remodeled post-transcriptionally by infection-triggered biological stress. By co-opting and subverting cellular pathways that control mRNA decay, modification, and translation, the global landscape of post-transcriptional processes is swiftly reshaped by virus-encoded factors. Concurrent host cell-intrinsic countermeasures likewise conscript post-transcriptional strategies to mobilize critical innate immune defenses. Here we review strategies and mechanisms that control mRNA decay, modification, and translation in animal virus-infected cells. Besides settling infection outcomes, post-transcriptional gene regulation in virus-infected cells epitomizes fundamental physiological stress responses in health and disease.
Collapse
Affiliation(s)
- Hannah M Burgess
- Department of Microbial Sciences, School of Biosciences and Medicine, University of Surrey, Guildford GU2 7XH, United Kingdom
| | - Elizabeth I Vink
- Department of Microbiology, New York University School of Medicine, New York, New York 10016, USA
| | - Ian Mohr
- Department of Microbiology, New York University School of Medicine, New York, New York 10016, USA
- Laura and Isaac Perlmutter Cancer Institute, New York University School of Medicine, New York, New York 10016, USA
| |
Collapse
|
19
|
Preventing translational inhibition from ribosomal protein insufficiency by a herpes simplex virus-encoded ribosome-associated protein. Proc Natl Acad Sci U S A 2021; 118:2025546118. [PMID: 34725147 DOI: 10.1073/pnas.2025546118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/30/2021] [Indexed: 12/14/2022] Open
Abstract
In addition to being required for protein synthesis, ribosomes and ribosomal proteins (RPs) also regulate messenger RNA translation in uninfected and virus-infected cells. By individually depleting 85 RPs using RNA interference, we found that overall protein synthesis in uninfected primary fibroblasts was more sensitive to RP depletion than those infected with herpes simplex virus-1 (HSV-1). Although representative RP depletion (uL3, uS4, uL5) inhibited protein synthesis in cells infected with two different DNA viruses (human cytomegalovirus, vaccinia virus), HSV-1-infected cell protein synthesis unexpectedly endured and required a single virus-encoded gene product, VP22. During individual RP insufficiency, VP22-expressing HSV-1 replicated better than a VP22-deficient variant. Furthermore, VP22 promotes polysome accumulation in virus-infected cells when uL3 or ribosome availability is limiting and cosediments with initiating and elongating ribosomes in infected and uninfected cells. This identifies VP22 as a virus-encoded, ribosome-associated protein that compensates for RP insufficiency to support viral protein synthesis and replication. Moreover, it reveals an unanticipated class of virus-encoded, ribosome-associated effectors that reduce the dependence of protein synthesis upon host RPs and broadly support translation during physiological stress such as infection.
Collapse
|
20
|
Zheng K, Cai Y, Lei Y, Liu Y, Sun Z, Wang Y, Xu X, Zhang Z. Proteomic characteristics of beryllium sulfate-induced differentially expressed proteins in rats. Toxicol Res (Camb) 2021; 10:962-974. [PMID: 34733481 DOI: 10.1093/toxres/tfab051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/06/2021] [Accepted: 05/10/2021] [Indexed: 11/12/2022] Open
Abstract
Sprague Dawley rats were exposed to beryllium sulfate (BeSO4), and proteomic and bioinformatic techniques were applied to screen for differentially expressed proteins in their lung tissue and serum. A total of 12 coexpression modules were constructed for 18 samples with 2333 proteins. Four modules were found to have significant differences in the regulation of protein coexpression modules in the serum following exposure to BeSO4. A further three modules had significant differences in the regulation of protein coexpression modules in the lung tissues. Five modules with good correlation were obtained by calculating the gene significance and module membership values, whereas these module Hub proteins included: Hspbp1, Rps15a, Srsf2, Hadhb, Elmo3, Armt1, Rpl18, Afap1L1, Eif3d, Eif3c, and Rps3. The five proteins correlating highest with the Hub proteins in the lung tissue and serum samples were obtained using string analysis. KEGG and GO enrichment analyses showed that these proteins are mainly involved in ribosome formation, apoptosis, cell cycle regulation, and tumor necrosis factor regulation. By analyzing the biological functions of these proteins, proteins that can be used as biomarkers, such as Akt1, Prpf19, Cct2, and Rpl18, are finally obtained.
Collapse
Affiliation(s)
- Kai Zheng
- School of public health, University of South China, Hengyang, Hunan 421001, China
| | - Ying Cai
- School of public health, University of South China, Hengyang, Hunan 421001, China
| | - Yuandi Lei
- School of public health, University of South China, Hengyang, Hunan 421001, China
| | - Yanping Liu
- School of public health, University of South China, Hengyang, Hunan 421001, China
| | - Zhanbing Sun
- School of public health, University of South China, Hengyang, Hunan 421001, China
| | - Ye Wang
- School of public health, University of South China, Hengyang, Hunan 421001, China
| | - Xinyun Xu
- Institute of Environment and Health, Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong 518055, China
| | - Zhaohui Zhang
- School of public health, University of South China, Hengyang, Hunan 421001, China
| |
Collapse
|
21
|
N130, N175 and N207 are N-linked glycosylation sites of duck Tembusu virus NS1 that are important for viral multiplication, viremia and virulence in ducklings. Vet Microbiol 2021; 261:109215. [PMID: 34455356 DOI: 10.1016/j.vetmic.2021.109215] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 08/22/2021] [Indexed: 02/04/2023]
Abstract
Duck Tembusu virus (DTMUV) is an emerging mosquito-borne flavivirus that has caused acute egg-drop syndrome in egg-laying ducks. DTMUV nonstructural protein 1 (NS1) contains three potential predicted N-linked glycosylation sites at residues 130, 175 and 207. In this study, we found that mutations at these sites affect the molecular weight of recombinant NS1, as assessed by western blot assays; however, the mutations do not affect their subcellular localization in the cytoplasm, as assessed by colocalization assays. Four recombinant viruses substituting the asparagine (N) residues at N130, N175, N207 or N130/N175/N207 of NS1 with alanine (A) residues were generated using rDTMUV-i, an infectious cDNA clone of the DTMUV CQW1 strain. Deglycosylation assays of the mutant virus NS1 were performed using endoglycosidases Endo H or PNGase F treatment in both mammalian and avian cells. The NS1-WT, NS1-N130A, NS1-N175A and NS1-N207A showed a shift in migration to 37 kDa after digestion with both endoglycosidases, which further confirmed that N130, N175 and N207 were the glycosylation sites of DTMUV NS1. Compared to the parental rDTMUV, the single mutants impaired viral multiplication in vitro, while the nonglycosylated virus rDTMUV-NS1-N130A/N175A/N207A showed a 5-fold to 178-fold decrease in viral titers and smaller plaque sizes. Notably, all mutant viruses were still highly virulent to duck embryos, but the embryos inoculated with rDTMUV-NS1-N130A/N175A/N207A started to die on the fourth day, which exhibited a prolonged time to death compared to that of rDTMUV. Moreover, rDTMUV-NS1-N130A/N175A/N207A was attenuated in vivo, showing no mortality and producing significantly lower viral titers in heart, spleen, kidney, brain and thymus as well as 2-fold to 3-fold lower viremia at 3 and 5 days post infection. Overall, our results indicated that N130, N175 and N207 are N-linked glycosylation sites of DTMUV NS1, which play crucial roles in viral multiplication, viremia and virulence in vitro and in vivo.
Collapse
|
22
|
Chen TY, Lee Y, Wang X, Mathias D, Caragata EP, Smartt CT. Profiling Transcriptional Response of Dengue-2 Virus Infection in Midgut Tissue of Aedes aegypti. FRONTIERS IN TROPICAL DISEASES 2021. [DOI: 10.3389/fitd.2021.708817] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Understanding the mosquito antiviral response could reveal target pathways or genes of interest that could form the basis of new disease control applications. However, there is a paucity of data in the current literature in understanding antiviral response during the replication period. To illuminate the gene expression patterns in the replication stage, we collected gene expression data at 2.5 days after Dengue-2 virus (DENV-2) infection. We sequenced the whole transcriptome of the midgut tissue and compared gene expression levels between the control and virus-infected group. We identified 31 differentially expressed genes. Based on their function, we identified that those genes fell into two major functional categories - (1) nucleic acid/protein process and (2) immunity/oxidative stress response. Our study has identified candidate genes that can be followed up for gene overexpression/inhibition experiments to examine if the perturbed gene interaction may impact the mosquito’s immune response against DENV. This is an important step to understanding how mosquitoes eliminate the virus and provides an important foundation for further research in developing novel dengue control strategies.
Collapse
|
23
|
Dechtawewat T, Roytrakul S, Yingchutrakul Y, Charoenlappanit S, Siridechadilok B, Limjindaporn T, Mangkang A, Prommool T, Puttikhunt C, Songprakhon P, Kongmanas K, Kaewjew N, Avirutnan P, Yenchitsomanus PT, Malasit P, Noisakran S. Potential Phosphorylation of Viral Nonstructural Protein 1 in Dengue Virus Infection. Viruses 2021; 13:v13071393. [PMID: 34372598 PMCID: PMC8310366 DOI: 10.3390/v13071393] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/12/2021] [Accepted: 07/14/2021] [Indexed: 12/27/2022] Open
Abstract
Dengue virus (DENV) infection causes a spectrum of dengue diseases that have unclear underlying mechanisms. Nonstructural protein 1 (NS1) is a multifunctional protein of DENV that is involved in DENV infection and dengue pathogenesis. This study investigated the potential post-translational modification of DENV NS1 by phosphorylation following DENV infection. Using liquid chromatography-tandem mass spectrometry (LC-MS/MS), 24 potential phosphorylation sites were identified in both cell-associated and extracellular NS1 proteins from three different cell lines infected with DENV. Cell-free kinase assays also demonstrated kinase activity in purified preparations of DENV NS1 proteins. Further studies were conducted to determine the roles of specific phosphorylation sites on NS1 proteins by site-directed mutagenesis with alanine substitution. The T27A and Y32A mutations had a deleterious effect on DENV infectivity. The T29A, T230A, and S233A mutations significantly decreased the production of infectious DENV but did not affect relative levels of intracellular DENV NS1 expression or NS1 secretion. Only the T230A mutation led to a significant reduction of detectable DENV NS1 dimers in virus-infected cells; however, none of the mutations interfered with DENV NS1 oligomeric formation. These findings highlight the importance of DENV NS1 phosphorylation that may pave the way for future target-specific antiviral drug design.
Collapse
Affiliation(s)
- Thanyaporn Dechtawewat
- Division of Molecular Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; (T.D.); (P.S.); (P.-t.Y.)
| | - Sittiruk Roytrakul
- Functional Proteomics Technology Laboratory, Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Bangkok 12120, Thailand; (S.R.); (Y.Y.); (S.C.)
| | - Yodying Yingchutrakul
- Functional Proteomics Technology Laboratory, Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Bangkok 12120, Thailand; (S.R.); (Y.Y.); (S.C.)
| | - Sawanya Charoenlappanit
- Functional Proteomics Technology Laboratory, Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Bangkok 12120, Thailand; (S.R.); (Y.Y.); (S.C.)
| | - Bunpote Siridechadilok
- Molecular Biology of Dengue and Flaviviruses Research Team, Medical Molecular Biotechnology Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Bangkok 10700, Thailand; (B.S.); (A.M.); (T.P.); (C.P.); (P.M.)
- Division of Dengue Hemorrhagic Fever Research, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; (K.K.); (N.K.); (P.A.)
| | - Thawornchai Limjindaporn
- Department of Anatomy, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand;
| | - Arunothai Mangkang
- Molecular Biology of Dengue and Flaviviruses Research Team, Medical Molecular Biotechnology Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Bangkok 10700, Thailand; (B.S.); (A.M.); (T.P.); (C.P.); (P.M.)
- Division of Dengue Hemorrhagic Fever Research, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; (K.K.); (N.K.); (P.A.)
| | - Tanapan Prommool
- Molecular Biology of Dengue and Flaviviruses Research Team, Medical Molecular Biotechnology Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Bangkok 10700, Thailand; (B.S.); (A.M.); (T.P.); (C.P.); (P.M.)
- Division of Dengue Hemorrhagic Fever Research, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; (K.K.); (N.K.); (P.A.)
- Siriraj Center of Research Excellence in Dengue and Emerging Pathogens, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Chunya Puttikhunt
- Molecular Biology of Dengue and Flaviviruses Research Team, Medical Molecular Biotechnology Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Bangkok 10700, Thailand; (B.S.); (A.M.); (T.P.); (C.P.); (P.M.)
- Division of Dengue Hemorrhagic Fever Research, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; (K.K.); (N.K.); (P.A.)
- Siriraj Center of Research Excellence in Dengue and Emerging Pathogens, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Pucharee Songprakhon
- Division of Molecular Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; (T.D.); (P.S.); (P.-t.Y.)
| | - Kessiri Kongmanas
- Division of Dengue Hemorrhagic Fever Research, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; (K.K.); (N.K.); (P.A.)
- Siriraj Center of Research Excellence in Dengue and Emerging Pathogens, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Nuttapong Kaewjew
- Division of Dengue Hemorrhagic Fever Research, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; (K.K.); (N.K.); (P.A.)
- Siriraj Center of Research Excellence in Dengue and Emerging Pathogens, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Panisadee Avirutnan
- Division of Dengue Hemorrhagic Fever Research, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; (K.K.); (N.K.); (P.A.)
- Siriraj Center of Research Excellence in Dengue and Emerging Pathogens, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Pa-thai Yenchitsomanus
- Division of Molecular Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; (T.D.); (P.S.); (P.-t.Y.)
| | - Prida Malasit
- Molecular Biology of Dengue and Flaviviruses Research Team, Medical Molecular Biotechnology Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Bangkok 10700, Thailand; (B.S.); (A.M.); (T.P.); (C.P.); (P.M.)
- Division of Dengue Hemorrhagic Fever Research, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; (K.K.); (N.K.); (P.A.)
- Siriraj Center of Research Excellence in Dengue and Emerging Pathogens, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Sansanee Noisakran
- Molecular Biology of Dengue and Flaviviruses Research Team, Medical Molecular Biotechnology Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Bangkok 10700, Thailand; (B.S.); (A.M.); (T.P.); (C.P.); (P.M.)
- Division of Dengue Hemorrhagic Fever Research, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; (K.K.); (N.K.); (P.A.)
- Siriraj Center of Research Excellence in Dengue and Emerging Pathogens, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
- Correspondence: or ; Tel.: +66-2-419-6666
| |
Collapse
|
24
|
Hagerty JR, Kim HC, Jolly ER. Multiomic analysis of Schistosoma mansoni reveals unique expression profiles in cercarial heads and tails. Commun Biol 2021; 4:860. [PMID: 34253841 PMCID: PMC8275615 DOI: 10.1038/s42003-021-02366-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 06/15/2021] [Indexed: 02/06/2023] Open
Abstract
Schistosomes require both molluscan and mammalian hosts for development. The larval cercaria exits the snail host and swims to identify and invade the mammalian host. The cercaria has two macrostructures, the head and the tail. The head invades the host, where it matures into an adult worm. The tail is lost after host invasion. Translation in the cercaria differs in each macrostructure, with higher levels of translation in the cercarial tail and little to no translational activity in the cercarial head. We compared the transcriptome and proteome of the cercarial head and tail and observed stark differences between the two macrostructures. We identified unique and differentially expressed transcripts and proteins, including ribosomal components expressed in higher levels in tails than in heads, which may explain the differences in translation levels between heads and tails. We also characterized the weak correlation between transcription and translation in infectious cercarial heads and tails.
Collapse
Affiliation(s)
- James R Hagerty
- Case Western Reserve University, Department of Biology, Cleveland, OH, USA
| | - Hyung Chul Kim
- Case Western Reserve University, Department of Biology, Cleveland, OH, USA
| | - Emmitt R Jolly
- Case Western Reserve University, Department of Biology, Cleveland, OH, USA.
- Case Western Reserve University, Center for Global Health and Disease, Cleveland, OH, USA.
| |
Collapse
|
25
|
Komov L, Melamed Kadosh D, Barnea E, Admon A. The Effect of Interferons on Presentation of Defective Ribosomal Products as HLA Peptides. Mol Cell Proteomics 2021; 20:100105. [PMID: 34087483 PMCID: PMC8724922 DOI: 10.1016/j.mcpro.2021.100105] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 05/15/2021] [Accepted: 05/21/2021] [Indexed: 02/06/2023] Open
Abstract
A subset of class I major histocompatibility complex (MHC)-bound peptides is produced from immature proteins that are rapidly degraded after synthesis. These defective ribosomal products (DRiPs) have been implicated in early alert of the immune system about impending infections. Interferons are important cytokines, produced in response to viral infection, that modulate cellular metabolism and gene expression patterns, increase the presentation of MHC molecules, and induce rapid degradation of proteins and cell-surface presentation of their derived MHC peptides, thereby contributing to the battle against pathogen infections. This study evaluated the role of interferons in the induction of rapid degradation of DRiPs to modulate the repertoire of DRiP-derived MHC peptides. Cultured human breast cancer cells were treated with interferons, and the rates of synthesis and degradation of cellular protein and their degradation products were determined by LC-MS/MS analysis, following the rates of incorporation of heavy stable isotope–labeled amino acids (dynamic stable isotope labeling by amino acids in cell culture, dynamic SILAC) at several time points after the interferon application. Large numbers of MHC peptides that incorporated the heavy amino acids faster than their source proteins indicated that DRiP peptides were abundant in the MHC peptidome; interferon treatment increased by about twofold their relative proportions in the peptidome. Such typical DRiP-derived MHC peptides were from the surplus subunits of the proteasome and ribosome, which are degraded because of the transition to immunoproteasomes and a new composition of ribosomes incorporating protein subunits that are induced by the interferon. We conclude that degradation of surplus subunits induced by the interferon is a major source for DRiP–MHC peptides, a phenomenon relevant to coping with viral infections, where a rapid presentation of MHC peptides derived from excess viral proteins may help alert the immune system about the impending infection. Degradation products of surplus subunits are often presented as HLA peptides. Interferons increase degradation and presentation of such defective products. Dynamic SILAC facilitates identification of such HLA peptides. This cellular pathway provides alert to the immune system about viral infections.
Collapse
Affiliation(s)
- Liran Komov
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | | | - Eilon Barnea
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Arie Admon
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel.
| |
Collapse
|
26
|
Guan J, Han S, Wu J, Zhang Y, Bai M, Abdullah SW, Sun S, Guo H. Ribosomal Protein L13 Participates in Innate Immune Response Induced by Foot-and-Mouth Disease Virus. Front Immunol 2021; 12:616402. [PMID: 34093518 PMCID: PMC8173215 DOI: 10.3389/fimmu.2021.616402] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 04/26/2021] [Indexed: 01/22/2023] Open
Abstract
In addition to ribosomal protein synthesis and protein translation, ribosomal proteins also participate in tumorigenesis and tumor progression, immune responses, and viral replication. Here, we show that ribosomal protein L13 (RPL13) participates in the antiviral immune response induced by foot-and-mouth disease virus (FMDV), inhibiting FMDV replication. The overexpression of RPL13 promoted the induction and activation of the promoters of the nuclear factor-κB (NF-κB) and interferon-β (IFN-β) genes, and the expression and protein secretion of the antiviral factor IFN-β and proinflammatory cytokine interleukin-6 (IL-6). The knockdown of RPL13 had the opposite effects. We also found that the FMDV 3Cpro protease interacts with RPL13, and that its activity reduces the expression of RPL13, thus antagonizing the RPL13-mediated antiviral activity. This study extends our knowledge of the extraribosomal functions of ribosomal proteins and provides new scientific information on cellular antiviral defenses and virus-antagonizing mechanisms.
Collapse
Affiliation(s)
- Junyong Guan
- State Key Laboratory of Veterinary Etiological Biology, Office International des Epizootie (OIE)/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Shichong Han
- State Key Laboratory of Veterinary Etiological Biology, Office International des Epizootie (OIE)/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Jin'en Wu
- State Key Laboratory of Veterinary Etiological Biology, Office International des Epizootie (OIE)/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Yun Zhang
- State Key Laboratory of Veterinary Etiological Biology, Office International des Epizootie (OIE)/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Manyuan Bai
- State Key Laboratory of Veterinary Etiological Biology, Office International des Epizootie (OIE)/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Sahibzada Waheed Abdullah
- State Key Laboratory of Veterinary Etiological Biology, Office International des Epizootie (OIE)/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Shiqi Sun
- State Key Laboratory of Veterinary Etiological Biology, Office International des Epizootie (OIE)/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Huichen Guo
- State Key Laboratory of Veterinary Etiological Biology, Office International des Epizootie (OIE)/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.,School of Animal Science, Yangtze University, Jingzhou, China
| |
Collapse
|
27
|
Girardi E, Pfeffer S, Baumert TF, Majzoub K. Roadblocks and fast tracks: How RNA binding proteins affect the viral RNA journey in the cell. Semin Cell Dev Biol 2021; 111:86-100. [PMID: 32847707 PMCID: PMC7443355 DOI: 10.1016/j.semcdb.2020.08.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 08/14/2020] [Accepted: 08/14/2020] [Indexed: 12/12/2022]
Abstract
As obligate intracellular parasites with limited coding capacity, RNA viruses rely on host cells to complete their multiplication cycle. Viral RNAs (vRNAs) are central to infection. They carry all the necessary information for a virus to synthesize its proteins, replicate and spread and could also play essential non-coding roles. Regardless of its origin or tropism, vRNA has by definition evolved in the presence of host RNA Binding Proteins (RBPs), which resulted in intricate and complicated interactions with these factors. While on one hand some host RBPs recognize vRNA as non-self and mobilize host antiviral defenses, vRNA must also co-opt other host RBPs to promote viral infection. Focusing on pathogenic RNA viruses, we will review important scenarios of RBP-vRNA interactions during which host RBPs recognize, modify or degrade vRNAs. We will then focus on how vRNA hijacks the largest ribonucleoprotein complex (RNP) in the cell, the ribosome, to selectively promote the synthesis of its proteins. We will finally reflect on how novel technologies are helping in deepening our understanding of vRNA-host RBPs interactions, which can be ultimately leveraged to combat everlasting viral threats.
Collapse
Affiliation(s)
- Erika Girardi
- Architecture et Réactivité de l'ARN, Université de Strasbourg, Institut de Biologie Moléculaire et Cellulaire du CNRS, Strasbourg, France
| | - Sebastien Pfeffer
- Architecture et Réactivité de l'ARN, Université de Strasbourg, Institut de Biologie Moléculaire et Cellulaire du CNRS, Strasbourg, France
| | - Thomas F Baumert
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Université de Strasbourg, 67000, Strasbourg, France; Pole Hépatodigestif, Institut Hopitalo-universitaire, Hopitaux Universitaires de Strasbourg, 67000 Strasbourg, France
| | - Karim Majzoub
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Université de Strasbourg, 67000, Strasbourg, France.
| |
Collapse
|
28
|
Campos RK, Wijeratne HRS, Shah P, Garcia-Blanco MA, Bradrick SS. Ribosomal stalk proteins RPLP1 and RPLP2 promote biogenesis of flaviviral and cellular multi-pass transmembrane proteins. Nucleic Acids Res 2020; 48:9872-9885. [PMID: 32890404 PMCID: PMC7515724 DOI: 10.1093/nar/gkaa717] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 07/05/2020] [Accepted: 08/31/2020] [Indexed: 12/14/2022] Open
Abstract
The ribosomal stalk proteins, RPLP1 and RPLP2 (RPLP1/2), which form the ancient ribosomal stalk, were discovered decades ago but their functions remain mysterious. We had previously shown that RPLP1/2 are exquisitely required for replication of dengue virus (DENV) and other mosquito-borne flaviviruses. Here, we show that RPLP1/2 function to relieve ribosome pausing within the DENV envelope coding sequence, leading to enhanced protein stability. We evaluated viral and cellular translation in RPLP1/2-depleted cells using ribosome profiling and found that ribosomes pause in the sequence coding for the N-terminus of the envelope protein, immediately downstream of sequences encoding two adjacent transmembrane domains (TMDs). We also find that RPLP1/2 depletion impacts a ribosome density for a small subset of cellular mRNAs. Importantly, the polarity of ribosomes on mRNAs encoding multiple TMDs was disproportionately affected by RPLP1/2 knockdown, implying a role for RPLP1/2 in multi-pass transmembrane protein biogenesis. These analyses of viral and host RNAs converge to implicate RPLP1/2 as functionally important for ribosomes to elongate through ORFs encoding multiple TMDs. We suggest that the effect of RPLP1/2 at TMD associated pauses is mediated by improving the efficiency of co-translational folding and subsequent protein stability.
Collapse
Affiliation(s)
- Rafael K Campos
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA.,Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, USA
| | | | - Premal Shah
- Department of Genetics, Rutgers University, NJ, USA
| | - Mariano A Garcia-Blanco
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA.,Programme of Emerging Infectious Diseases, Duke-NUS Medical School, Singapore
| | - Shelton S Bradrick
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|
29
|
Dong HJ, Zhang R, Kuang Y, Wang XJ. Selective regulation in ribosome biogenesis and protein production for efficient viral translation. Arch Microbiol 2020; 203:1021-1032. [PMID: 33124672 PMCID: PMC7594972 DOI: 10.1007/s00203-020-02094-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/18/2020] [Accepted: 10/13/2020] [Indexed: 11/25/2022]
Abstract
As intracellular parasites, viruses depend heavily on host cell structures and their functions to complete their life cycle and produce new viral particles. Viruses utilize or modulate cellular translational machinery to achieve efficient replication; the role of ribosome biogenesis and protein synthesis in viral replication particularly highlights the importance of the ribosome quantity and/or quality in controlling viral protein synthesis. Recently reported studies have demonstrated that ribosome biogenesis factors (RBFs) and ribosomal proteins (RPs) act as multifaceted regulators in selective translation of viral transcripts. Here we summarize the recent literature on RBFs and RPs and their association with subcellular redistribution, post-translational modification, enzyme catalysis, and direct interaction with viral proteins. The advances described in this literature establish a rationale for targeting ribosome production and function in the design of the next generation of antiviral agents.
Collapse
Affiliation(s)
- Hui-Jun Dong
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Rui Zhang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China.
| | - Yu Kuang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China.
| | - Xiao-Jia Wang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
30
|
Guo H, Zhu J, Miao Q, Qi R, Tang A, Liu C, Yang H, Yuan L, Liu G. RPS5 interacts with the rabbit hemorrhagic disease virus 3' extremities region and plays a role in virus replication. Vet Microbiol 2020; 249:108858. [PMID: 32980631 DOI: 10.1016/j.vetmic.2020.108858] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 09/15/2020] [Indexed: 11/15/2022]
Abstract
Rabbit hemorrhagic disease virus (RHDV), a member of Caliciviridae family, causes a highly contagious disease in rabbits. The RHDV replication mechanism is poorly understood due to the lack of a suitable culture system in vitro. This study identified RHDV 5' and 3' extremities (Ex) RNA binding proteins from the rabbit kidney cell line RK-13 based on a pull-down assay by applying a tRNA scaffold streptavidin aptamer. Using mass spectrometry (MS), several host proteins were discovered which interact with RHDV 5' and 3' Ex RNA. The ribosomal protein S5 (RPS5) was shown to interact with RHDV 3' Ex RNA directly by RNA-pulldown and confocal microscopy. To further investigate the role of RPS5 in RHDV replication, small interfering RNAs for RPS5 and RPS5 eukaryotic expression plasmids were used to change the expression level of RPS5 in RK-13 cells and the results showed that the RHDV replication and translation levels were positively correlated with the expression level of RPS5. It was also verified that RPS5 promoted RHDV replication by constructing RPS5 stable overexpression cell lines and RPS5 knockdown cell lines. In summary, it has been identified that RPS5 interacted with the RHDV 3' Ex RNA region and played a role in virus replication. These results will help to understand the mechanism of RHDV replication.
Collapse
Affiliation(s)
- Hongyuan Guo
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Innovation Team of Small animal Infectious Disease, Shanghai, 200241, PR China
| | - Jie Zhu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Innovation Team of Small animal Infectious Disease, Shanghai, 200241, PR China
| | - Qiuhong Miao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Innovation Team of Small animal Infectious Disease, Shanghai, 200241, PR China; Laboratory of Virology, Wageningen University and Research, Wageningen, 6708 PB, the Netherlands
| | - Ruibin Qi
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Innovation Team of Small animal Infectious Disease, Shanghai, 200241, PR China
| | - Aoxing Tang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Innovation Team of Small animal Infectious Disease, Shanghai, 200241, PR China
| | - Chuncao Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Innovation Team of Small animal Infectious Disease, Shanghai, 200241, PR China
| | - Hongzao Yang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Innovation Team of Small animal Infectious Disease, Shanghai, 200241, PR China; College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 700731, PR China
| | - Ligang Yuan
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 700731, PR China
| | - Guangqing Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Innovation Team of Small animal Infectious Disease, Shanghai, 200241, PR China.
| |
Collapse
|
31
|
Peptides targeting dengue viral nonstructural protein 1 inhibit dengue virus production. Sci Rep 2020; 10:12933. [PMID: 32737386 PMCID: PMC7395749 DOI: 10.1038/s41598-020-69515-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 07/13/2020] [Indexed: 12/12/2022] Open
Abstract
Viruses manipulate the life cycle in host cells via the use of viral properties and host machineries. Development of antiviral peptides against dengue virus (DENV) infection has previously been concentrated on blocking the actions of viral structural proteins and enzymes in virus entry and viral RNA processing in host cells. In this study, we proposed DENV NS1, which is a multifunctional non-structural protein indispensable for virus production, as a new target for inhibition of DENV infection by specific peptides. We performed biopanning assays using a phage-displayed peptide library and identified 11 different sequences of 12-mer peptides binding to DENV NS1. In silico analyses of peptide-protein interactions revealed 4 peptides most likely to bind to DENV NS1 at specific positions and their association was analysed by surface plasmon resonance. Treatment of Huh7 cells with these 4 peptides conjugated with N-terminal fluorescent tag and C-terminal cell penetrating tag at varying time-of-addition post-DENV infection could inhibit the production of DENV-2 in a time- and dose-dependent manner. The inhibitory effects of the peptides were also observed in other virus serotypes (DENV-1 and DENV-4), but not in DENV-3. These findings indicate the potential application of peptides targeting DENV NS1 as antiviral agents against DENV infection.
Collapse
|
32
|
Li M, Ramage H, Cherry S. Deciphering flavivirus-host interactions using quantitative proteomics. Curr Opin Immunol 2020; 66:90-97. [PMID: 32682290 DOI: 10.1016/j.coi.2020.06.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 05/13/2020] [Accepted: 06/16/2020] [Indexed: 01/09/2023]
Abstract
Flaviviruses are a group of important emerging and re-emerging human pathogens that cause worldwide epidemics with thousands of deaths annually. Flaviviruses are small, enveloped, positive-sense, single-stranded RNA viruses that are obligate intracellular pathogens, relying heavily on host cell machinery for productive replication. Proteomic approaches have become an increasingly powerful tool to investigate the mechanisms by which viruses interact with host proteins and manipulate cellular processes to promote infection. Here, we review recent advances in employing quantitative proteomics techniques to improve our understanding of the complex interplay between flaviviruses and host cells. We describe new findings on our understanding of how flaviviruses impact protein-protein interactions, protein-RNA interactions, protein abundance, and post-translational modifications to modulate viral infection.
Collapse
Affiliation(s)
- Minghua Li
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Holly Ramage
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Sara Cherry
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
33
|
Miller CM, Selvam S, Fuchs G. Fatal attraction: The roles of ribosomal proteins in the viral life cycle. WILEY INTERDISCIPLINARY REVIEWS-RNA 2020; 12:e1613. [PMID: 32657002 DOI: 10.1002/wrna.1613] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 05/20/2020] [Accepted: 05/26/2020] [Indexed: 12/30/2022]
Abstract
Upon viral infection of a host cell, each virus starts a program to generate many progeny viruses. Although viruses interact with the host cell in numerous ways, one critical step in the virus life cycle is the expression of viral proteins, which are synthesized by the host ribosomes in conjunction with host translation factors. Here we review different mechanisms viruses have evolved to effectively seize host cell ribosomes, the roles of specific ribosomal proteins and their posttranslational modifications on viral RNA translation, or the cellular response to infection. We further highlight ribosomal proteins with extra-ribosomal function during viral infection and put the knowledge of ribosomal proteins during viral infection into the larger context of ribosome-related diseases, known as ribosomopathies. This article is categorized under: Translation > Translation Mechanisms Translation > Translation Regulation.
Collapse
Affiliation(s)
- Clare M Miller
- Department of Biological Sciences, University at Albany, Albany, New York, USA
| | - Sangeetha Selvam
- Department of Biological Sciences, University at Albany, Albany, New York, USA
| | - Gabriele Fuchs
- Department of Biological Sciences, University at Albany, Albany, New York, USA.,The RNA Institute, University at Albany, Albany, New York, USA
| |
Collapse
|
34
|
Girl P, Bestehorn-Willmann M, Zange S, Borde JP, Dobler G, von Buttlar H. Tick-Borne Encephalitis Virus Nonstructural Protein 1 IgG Enzyme-Linked Immunosorbent Assay for Differentiating Infection versus Vaccination Antibody Responses. J Clin Microbiol 2020; 58:e01783-19. [PMID: 31969423 PMCID: PMC7098735 DOI: 10.1128/jcm.01783-19] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 01/10/2020] [Indexed: 12/30/2022] Open
Abstract
Tick-borne encephalitis virus (TBEV) is an important central nervous system (CNS) infection in Europe and Asia. It is a flavivirus in the tick-borne group. Effective vaccines against TBE are available in the affected countries. However, diagnosing TBE is challenging due to cross-reactive antibodies between different viruses of the genus Flavivirus, family Flaviviridae. Differentiation between infection-induced and vaccine-induced antibodies can be difficult and in many cases impossible, due to the increasing vaccination rate against TBEV. We present a new approach to detect antibodies against the TBEV nonstructural protein 1 (NS1) as a diagnostic marker, which is exclusively indicative for virus replication in natural infection, on the basis of an enzyme-linked immunosorbent assay (ELISA). A total of 188 anonymous serum samples from the National Consultant Laboratory for TBEV were included in our study. The assay was validated according to the European Laboratory Norm DIN EN ISO 15189 for diagnostic use. The ELISA for the detection of TBEV NS1 specific IgG class antibodies has demonstrated a sensitivity of >94% and a specificity of >93% in broadly cross-reacting sera from patients with vaccinations against flaviviral diseases and single or multiple flavivirus infections, respectively. The detection of anti-NS1 antibodies is feasible and facilitates reliable differentiation between different flavivirus infections, TBEV infection, and TBE vaccination.
Collapse
Affiliation(s)
- P Girl
- Bundeswehr Institute of Microbiology, German National Consultant Laboratory for TBEV, Munich, Germany
| | | | - S Zange
- Bundeswehr Institute of Microbiology, German National Consultant Laboratory for TBEV, Munich, Germany
| | - J P Borde
- Division of Infectious Diseases, Department of Medicine II, University of Freiburg Medical Center and Faculty of Medicine, Freiburg, Germany
- Praxis Dr. J. Borde/Gesundheitszentrum Oberkirch, Oberkirch, Germany
| | - G Dobler
- Bundeswehr Institute of Microbiology, German National Consultant Laboratory for TBEV, Munich, Germany
| | - H von Buttlar
- Bundeswehr Institute of Microbiology, German National Consultant Laboratory for TBEV, Munich, Germany
| |
Collapse
|
35
|
Faheem M, Barbosa Lima JC, Jamal SB, Silva PA, Barbosa JARG. An insight into dengue virus proteins as potential drug/vaccine targets. Future Virol 2019. [DOI: 10.2217/fvl-2019-0107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Dengue virus (DENV) is an arbovirus that belongs to family flaviviridae. Its genome is composed of a single stranded RNA molecule that encodes a single polyprotein. The polyprotein is processed by viral and cellular proteases to generate ten viral proteins. There are four antigenically distinct serotypes of DENV (DENV1, DENV2, DENV3 and DENV4), which are genetically related. Although protein variability is a major problem in dengue treatment, the functional and structural studies of individual proteins are equally important in treatment development. The data accumulated on dengue proteins are significant to provide detailed understanding of viral infection, replication, host-immune evasion and pathogenesis. In this review, we summarized the detailed current knowledge about DENV proteins.
Collapse
Affiliation(s)
- Muhammad Faheem
- Laboratory of Biophysics, Department of Cellular Biology, University of Brasilia, Brasilia-DF 70910-900, Brazil
- Post-graduate program of Genomics Sciences & Biotechnology, Catholic University of Brasilia, Brasília-DF 70790-160, Brazil
| | - Jônatas Cunha Barbosa Lima
- Laboratory of Biophysics, Department of Cellular Biology, University of Brasilia, Brasilia-DF 70910-900, Brazil
| | - Syed Babar Jamal
- Department of Biological Sciences, National University of Medical Sciences, The Mall road, Rawalpindi, Punjab 46000, Pakistan
| | - Paula Andreia Silva
- Post-graduate program of Genomics Sciences & Biotechnology, Catholic University of Brasilia, Brasília-DF 70790-160, Brazil
| | - João Alexandre Ribeiro Gonçalves Barbosa
- Laboratory of Biophysics, Department of Cellular Biology, University of Brasilia, Brasilia-DF 70910-900, Brazil
- Post-graduate program of Genomics Sciences & Biotechnology, Catholic University of Brasilia, Brasília-DF 70790-160, Brazil
| |
Collapse
|
36
|
Campos RK, Garcia-Blanco MA, Bradrick SS. Roles of Pro-viral Host Factors in Mosquito-Borne Flavivirus Infections. Curr Top Microbiol Immunol 2019; 419:43-67. [PMID: 28688087 DOI: 10.1007/82_2017_26] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Identification and analysis of viral host factors is a growing area of research which aims to understand the how viruses molecularly interface with the host cell. Investigations into flavivirus-host interactions has led to new discoveries in viral and cell biology, and will potentially bolster strategies to control the important diseases caused by these pathogens. Here, we address the current knowledge of prominent host factors required for the flavivirus life-cycle and mechanisms by which they promote infection.
Collapse
Affiliation(s)
- Rafael K Campos
- Department of Molecular Genetics and Microbiology, Center for RNA Biology, Duke University, Durham, NC, USA.,Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Mariano A Garcia-Blanco
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA. .,Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore.
| | - Shelton S Bradrick
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA.
| |
Collapse
|
37
|
Li S. Regulation of Ribosomal Proteins on Viral Infection. Cells 2019; 8:E508. [PMID: 31137833 PMCID: PMC6562653 DOI: 10.3390/cells8050508] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 05/17/2019] [Accepted: 05/21/2019] [Indexed: 12/20/2022] Open
Abstract
Ribosomal proteins (RPs), in conjunction with rRNA, are major components of ribosomes involved in the cellular process of protein biosynthesis, known as "translation". The viruses, as the small infectious pathogens with limited genomes, must recruit a variety of host factors to survive and propagate, including RPs. At present, more and more information is available on the functional relationship between RPs and virus infection. This review focuses on advancements in my own understanding of critical roles of RPs in the life cycle of viruses. Various RPs interact with viral mRNA and proteins to participate in viral protein biosynthesis and regulate the replication and infection of virus in host cells. Most interactions are essential for viral translation and replication, which promote viral infection and accumulation, whereas the minority represents the defense signaling of host cells by activating immune pathway against virus. RPs provide a new platform for antiviral therapy development, however, at present, antiviral therapeutics with RPs involving in virus infection as targets is limited, and exploring antiviral strategy based on RPs will be the guides for further study.
Collapse
Affiliation(s)
- Shuo Li
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China.
| |
Collapse
|
38
|
Płaszczyca A, Scaturro P, Neufeldt CJ, Cortese M, Cerikan B, Ferla S, Brancale A, Pichlmair A, Bartenschlager R. A novel interaction between dengue virus nonstructural protein 1 and the NS4A-2K-4B precursor is required for viral RNA replication but not for formation of the membranous replication organelle. PLoS Pathog 2019; 15:e1007736. [PMID: 31071189 PMCID: PMC6508626 DOI: 10.1371/journal.ppat.1007736] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 03/27/2019] [Indexed: 12/17/2022] Open
Abstract
Dengue virus (DENV) has emerged as major human pathogen. Despite the serious socio-economic impact of DENV-associated diseases, antiviral therapy is missing. DENV replicates in the cytoplasm of infected cells and induces a membranous replication organelle, formed by invaginations of the endoplasmic reticulum membrane and designated vesicle packets (VPs). Nonstructural protein 1 (NS1) of DENV is a multifunctional protein. It is secreted from cells to counteract antiviral immune responses, but also critically contributes to the severe clinical manifestations of dengue. In addition, NS1 is indispensable for viral RNA replication, but the underlying molecular mechanism remains elusive. In this study, we employed a combination of genetic, biochemical and imaging approaches to dissect the determinants in NS1 contributing to its various functions in the viral replication cycle. Several important observations were made. First, we identified a cluster of amino acid residues in the exposed region of the β-ladder domain of NS1 that are essential for NS1 secretion. Second, we revealed a novel interaction of NS1 with the NS4A-2K-4B cleavage intermediate, but not with mature NS4A or NS4B. This interaction is required for RNA replication, with two residues within the connector region of the NS1 “Wing” domain being crucial for binding of the NS4A-2K-4B precursor. By using a polyprotein expression system allowing the formation of VPs in the absence of viral RNA replication, we show that the NS1 –NS4A-2K-4B interaction is not required for VP formation, arguing that the association between these two proteins plays a more direct role in the RNA amplification process. Third, through analysis of polyproteins containing deletions in NS1, and employing a trans-complementation assay, we show that both cis and trans acting elements within NS1 contribute to VP formation, with the capability of NS1 mutants to form VPs correlating with their capability to support RNA replication. In conclusion, these results reveal a direct role of NS1 in VP formation that is independent from RNA replication, and argue for a critical function of a previously unrecognized NS4A-2K-NS4B precursor specifically interacting with NS1 and promoting viral RNA replication. Dengue virus (DENV) is one of the most prevalent mosquito-transmitted human pathogens. The only licensed vaccine has limited efficacy and an antiviral therapy is not available. The multifunctional non-structural protein 1 (NS1) of DENV is secreted from infected cells, counteracts antiviral immune response and contributes to the pathogenesis of DENV infection. In addition, NS1 is essential for the viral replication cycle but the underlying mechanism is unknown. Here we determined the viral interactome of NS1 and identified a novel interaction of NS1 with the NS4A-2K-4B cleavage intermediate, but not with NS4A and NS4B. This interaction is required for RNA replication. Additionally, we identified a domain in NS1 important for efficient secretion of this protein. Finally, we demonstrate that NS1 is required for the biogenesis of the membranous DENV replication organelle. This function does not require RNA replication and is independent from NS1 interaction with NS4A-2K-4B. Our results provide new insights into the role of NS1 in DENV RNA replication and establish a genetic map of residues in NS1 required for the diverse functions of this protein. These results should aid in the design of antiviral strategies targeting NS1, with the aim to suppress viral replication as well as severe disease manifestations.
Collapse
Affiliation(s)
- Anna Płaszczyca
- Department of Infectious Diseases, Molecular Virology, University of Heidelberg, Heidelberg, Germany
| | - Pietro Scaturro
- Max-Planck Institute of Biochemistry, Innate Immunity Laboratory, Martinsried, Germany
- School of Medicine, Institute of Virology, Technical University of Munich, Munich, Germany
| | - Christopher John Neufeldt
- Department of Infectious Diseases, Molecular Virology, University of Heidelberg, Heidelberg, Germany
| | - Mirko Cortese
- Department of Infectious Diseases, Molecular Virology, University of Heidelberg, Heidelberg, Germany
| | - Berati Cerikan
- Department of Infectious Diseases, Molecular Virology, University of Heidelberg, Heidelberg, Germany
| | - Salvatore Ferla
- School of Pharmacy & Pharmaceutical Sciences, Cardiff University, Cardiff, United Kingdom
| | - Andrea Brancale
- School of Pharmacy & Pharmaceutical Sciences, Cardiff University, Cardiff, United Kingdom
| | - Andreas Pichlmair
- Max-Planck Institute of Biochemistry, Innate Immunity Laboratory, Martinsried, Germany
- School of Medicine, Institute of Virology, Technical University of Munich, Munich, Germany
- German Center for Infection Research (DZIF), Munich Partner Site, Munich, Germany
| | - Ralf Bartenschlager
- Department of Infectious Diseases, Molecular Virology, University of Heidelberg, Heidelberg, Germany
- German Center for Infection Research (DZIF), Heidelberg Partner Site, Heidelberg, Germany
- * E-mail:
| |
Collapse
|
39
|
Chico V, Salvador-Mira ME, Nombela I, Puente-Marin S, Ciordia S, Mena MC, Perez L, Coll J, Guzman F, Encinar JA, Mercado L, Ortega-Villaizan MDM. IFIT5 Participates in the Antiviral Mechanisms of Rainbow Trout Red Blood Cells. Front Immunol 2019; 10:613. [PMID: 31040842 PMCID: PMC6476978 DOI: 10.3389/fimmu.2019.00613] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 03/07/2019] [Indexed: 12/14/2022] Open
Abstract
Viral hemorrhagic septicemia virus (VHSV) infection appears to be halted in rainbow trout nucleated red blood cells (RBCs). Diverse mechanisms are thought to be related to the antiviral immune response of rainbow trout RBCs to VHSV. However, the specific rainbow trout RBC proteins that interact directly with VHSV are still unknown. In an attempt to identify VHSV-RBC protein interactions, we characterized the immunoprecipitated (IP) proteome of RBCs exposed to VHSV using an antibody against the N protein of VHSV. The IP proteomic characterization identified 31 proteins by mass spectrometry analysis. Among them, we identified interferon-induced protein with tetratricopeptide repeats 5 (IFIT5), a protein belonging to a family of proteins that are induced after the production of type I interferon. Importantly, IFIT5 has been implicated in the antiviral immune response. We confirmed the participation of IFIT5 in the rainbow trout RBC antiviral response by examining the expression profile of IFIT5 in RBCs after VHSV exposure at transcriptional and protein levels. We detected a correlation between the highest IFIT5 expression levels and the decline in VHSV replication at 6 h post-exposure. In addition, silencing ifit5 resulted in a significant increase in VHSV replication in RBCs. Moreover, an increase in VHSV replication was observed in RBCs when the IFIT5 RNA-binding pocket cavity was modulated by using a natural compound from the SuperNatural II database. We performed a proximity ligation assay and detected a significant increase in positive cells among VHSV-exposed RBCs compared to unexposed RBCs, indicating protein-protein colocalization between IFIT5 and the glycoprotein G of VHSV. In summary, these results suggest a possible role of IFIT5 in the antiviral response of RBCs against VHSV.
Collapse
Affiliation(s)
- Veronica Chico
- Departamento de Bioquímica y Biología Molecular, Instituto de Biología Molecular y Celular (IBMC), Universidad Miguel Hernández (UMH), Elche, Spain.,Departamento de Bioquímica y Biología Molecular, Instituto de Investigación, Desarrollo e Innovación en Biotecnologîa Sanitaria de Elche (IDiBE), Universidad Miguel Hernández (UMH), Elche, Spain
| | - Maria Elizabhet Salvador-Mira
- Departamento de Bioquímica y Biología Molecular, Instituto de Biología Molecular y Celular (IBMC), Universidad Miguel Hernández (UMH), Elche, Spain.,Departamento de Bioquímica y Biología Molecular, Instituto de Investigación, Desarrollo e Innovación en Biotecnologîa Sanitaria de Elche (IDiBE), Universidad Miguel Hernández (UMH), Elche, Spain
| | - Ivan Nombela
- Departamento de Bioquímica y Biología Molecular, Instituto de Biología Molecular y Celular (IBMC), Universidad Miguel Hernández (UMH), Elche, Spain.,Departamento de Bioquímica y Biología Molecular, Instituto de Investigación, Desarrollo e Innovación en Biotecnologîa Sanitaria de Elche (IDiBE), Universidad Miguel Hernández (UMH), Elche, Spain
| | - Sara Puente-Marin
- Departamento de Bioquímica y Biología Molecular, Instituto de Biología Molecular y Celular (IBMC), Universidad Miguel Hernández (UMH), Elche, Spain.,Departamento de Bioquímica y Biología Molecular, Instituto de Investigación, Desarrollo e Innovación en Biotecnologîa Sanitaria de Elche (IDiBE), Universidad Miguel Hernández (UMH), Elche, Spain
| | - Sergio Ciordia
- Unidad de Proteómica, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - María Carmen Mena
- Unidad de Proteómica, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Luis Perez
- Departamento de Bioquímica y Biología Molecular, Instituto de Biología Molecular y Celular (IBMC), Universidad Miguel Hernández (UMH), Elche, Spain.,Departamento de Bioquímica y Biología Molecular, Instituto de Investigación, Desarrollo e Innovación en Biotecnologîa Sanitaria de Elche (IDiBE), Universidad Miguel Hernández (UMH), Elche, Spain
| | - Julio Coll
- Departamento de Biotecnología, Instituto Nacional de Investigaciones y Tecnologías Agrarias y Alimentarias (INIA), Madrid, Spain
| | - Fanny Guzman
- Grupo de Marcadores Inmunológicos, Laboratorio de Genética e Inmunología Molecular, Instituto de Biología, Pontificia Universidad Católica de Valparaíso (PUCV), Valparaíso, Chile
| | - Jose Antonio Encinar
- Departamento de Bioquímica y Biología Molecular, Instituto de Biología Molecular y Celular (IBMC), Universidad Miguel Hernández (UMH), Elche, Spain.,Departamento de Bioquímica y Biología Molecular, Instituto de Investigación, Desarrollo e Innovación en Biotecnologîa Sanitaria de Elche (IDiBE), Universidad Miguel Hernández (UMH), Elche, Spain
| | - Luis Mercado
- Grupo de Marcadores Inmunológicos, Laboratorio de Genética e Inmunología Molecular, Instituto de Biología, Pontificia Universidad Católica de Valparaíso (PUCV), Valparaíso, Chile
| | - Maria Del Mar Ortega-Villaizan
- Departamento de Bioquímica y Biología Molecular, Instituto de Biología Molecular y Celular (IBMC), Universidad Miguel Hernández (UMH), Elche, Spain.,Departamento de Bioquímica y Biología Molecular, Instituto de Investigación, Desarrollo e Innovación en Biotecnologîa Sanitaria de Elche (IDiBE), Universidad Miguel Hernández (UMH), Elche, Spain
| |
Collapse
|
40
|
Stern-Ginossar N, Thompson SR, Mathews MB, Mohr I. Translational Control in Virus-Infected Cells. Cold Spring Harb Perspect Biol 2019; 11:a033001. [PMID: 29891561 PMCID: PMC6396331 DOI: 10.1101/cshperspect.a033001] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
As obligate intracellular parasites, virus reproduction requires host cell functions. Despite variations in genome size and configuration, nucleic acid composition, and their repertoire of encoded functions, all viruses remain unconditionally dependent on the protein synthesis machinery resident within their cellular hosts to translate viral messenger RNAs (mRNAs). A complex signaling network responsive to physiological stress, including infection, regulates host translation factors and ribosome availability. Furthermore, access to the translation apparatus is patrolled by powerful host immune defenses programmed to restrict viral invaders. Here, we review the tactics and mechanisms used by viruses to appropriate control over host ribosomes, subvert host defenses, and dominate the infected cell translational landscape. These not only define aspects of infection biology paramount for virus reproduction, but continue to drive fundamental discoveries into how cellular protein synthesis is controlled in health and disease.
Collapse
Affiliation(s)
- Noam Stern-Ginossar
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Sunnie R Thompson
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Michael B Mathews
- Department of Medicine, Rutgers New Jersey Medical School, Newark, New Jersey 07103
| | - Ian Mohr
- Department of Microbiology, New York University School of Medicine, New York, New York 10016
| |
Collapse
|
41
|
Petrova E, Gracias S, Beauclair G, Tangy F, Jouvenet N. Uncovering Flavivirus Host Dependency Factors through a Genome-Wide Gain-of-Function Screen. Viruses 2019; 11:v11010068. [PMID: 30650657 PMCID: PMC6356745 DOI: 10.3390/v11010068] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 01/11/2019] [Accepted: 01/12/2019] [Indexed: 01/14/2023] Open
Abstract
Flaviviruses, such as dengue (DENV), West Nile (WNV), yellow fever (YFV) and Zika (ZIKV) viruses, are mosquito-borne pathogens that present a major risk to global public health. To identify host factors that promote flavivirus replication, we performed a genome-wide gain-of-function cDNA screen for human genes that enhance the replication of flavivirus reporter particles in human cells. The screen recovered seventeen potential host proteins that promote viral replication, including the previously known dolichyl-diphosphooligosaccharide--protein glycosyltransferase non-catalytic subunit (DDOST). Using silencing approaches, we validated the role of four candidates in YFV and WNV replication: ribosomal protein L19 (RPL19), ribosomal protein S3 (RPS3), DDOST and importin 9 (IPO9). Applying a panel of virological, biochemical and microscopic methods, we validated further the role of RPL19 and DDOST as host factors required for optimal replication of YFV, WNV and ZIKV. The genome-wide gain-of-function screen is thus a valid approach to advance our understanding of flavivirus replication.
Collapse
Affiliation(s)
- Evgeniya Petrova
- Viral Genomics and Vaccination Unit, UMR3569 CNRS, Virology department, Institut Pasteur, 75015 Paris, France.
| | - Ségolène Gracias
- Viral Genomics and Vaccination Unit, UMR3569 CNRS, Virology department, Institut Pasteur, 75015 Paris, France.
| | - Guillaume Beauclair
- Viral Genomics and Vaccination Unit, UMR3569 CNRS, Virology department, Institut Pasteur, 75015 Paris, France.
| | - Frédéric Tangy
- Viral Genomics and Vaccination Unit, UMR3569 CNRS, Virology department, Institut Pasteur, 75015 Paris, France.
| | - Nolwenn Jouvenet
- Viral Genomics and Vaccination Unit, UMR3569 CNRS, Virology department, Institut Pasteur, 75015 Paris, France.
| |
Collapse
|
42
|
Zakaria MK, Carletti T, Marcello A. Cellular Targets for the Treatment of Flavivirus Infections. Front Cell Infect Microbiol 2018; 8:398. [PMID: 30483483 PMCID: PMC6240593 DOI: 10.3389/fcimb.2018.00398] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 10/23/2018] [Indexed: 12/31/2022] Open
Abstract
Classical antiviral therapy targets viral functions, mostly viral enzymes or receptors. Successful examples include precursor herpesvirus drugs, antiretroviral drugs that target reverse transcriptase and protease, influenza virus directed compounds as well as more recent direct antiviral agents (DAA) applied in the treatment of hepatitis C virus (HCV). However, from early times, the possibility of targeting the host cell to contain the infection has frequently re-emerged as an alternative and complementary antiviral strategy. Advantages of this approach include an increased threshold to the emergence of resistance and the possibility to target multiple viruses. Major pitfalls are related to important cellular side effects and cytotoxicity. In this mini-review, the concept of host directed antiviral therapy will be discussed with a focus on the most recent advances in the field of Flaviviruses, a family of important human pathogens for which we do not have antivirals available in the clinics.
Collapse
Affiliation(s)
- Mohammad Khalid Zakaria
- Laboratory of Molecular Virology, International Center for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Tea Carletti
- Laboratory of Molecular Virology, International Center for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Alessandro Marcello
- Laboratory of Molecular Virology, International Center for Genetic Engineering and Biotechnology, Trieste, Italy
| |
Collapse
|
43
|
Infection with flaviviruses requires BCLXL for cell survival. PLoS Pathog 2018; 14:e1007299. [PMID: 30261081 PMCID: PMC6177207 DOI: 10.1371/journal.ppat.1007299] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 10/09/2018] [Accepted: 08/27/2018] [Indexed: 12/12/2022] Open
Abstract
BCL2 family proteins including pro-survival proteins, BH3-only proteins and BAX/BAK proteins control mitochondria-mediated apoptosis to maintain cell homeostasis via the removal of damaged cells and pathogen-infected cells. In this study, we examined the roles of BCL2 proteins in the induction of apoptosis in cells upon infection with flaviviruses, such as Japanese encephalitis virus, Dengue virus and Zika virus. We showed that survival of the infected cells depends on BCLXL, a pro-survival BCL2 protein due to suppression of the expression of another pro-survival protein, MCL1. Treatment with BCLXL inhibitors, as well as deficient BCLXL gene expression, induced BAX/BAK-dependent apoptosis upon infection with flaviviruses. Flavivirus infection attenuates cellular protein synthesis, which confers reduction of short-half-life proteins like MCL1. Inhibition of BCLXL increased phagocytosis of virus-infected cells by macrophages, thereby suppressing viral dissemination and chemokine production. Furthermore, we examined the roles of BCLXL in the death of JEV-infected cells during in vivo infection. Haploinsufficiency of the BCLXL gene, as well as administration of BH3 mimetic compounds, increased survival rate after challenge of JEV infection and suppressed inflammation. These results suggest that BCLXL plays a crucial role in the survival of cells infected with flaviviruses, and that BCLXL may provide a novel antiviral target to suppress propagation of the family of Flaviviridae viruses. The genus Flavivirus including Japanese encephalitis virus, Dengue virus, and Zika virus all of which are mosquito-borne human pathogen and cause serious diseases in humans. Therefore, the development of effective vaccines and antivirals against several flaviviruses is still needed. BCL2 family proteins control mitochondria-mediated apoptosis to maintain cell homeostasis via the removal of damaged cells and pathogen-infected cells, deregulation of which leads to severe diseases including cancer and autoimmune diseases. Here, we showed that BCLXL is a critical cell survival factor during infection with flaviviruses, and that inhibition of BCLXL by treatment with BH3 mimetics restricts the production of infectious particles and the expression of chemokines in vitro and in vivo. Inhibition of BCLXL induces apoptosis in cells infected with flaviviruses and these cells are quickly removed by engulfment of phagocytes, which leads to inhibition of virus dissemination without any inflammatory reaction. Based on these data, BCLXL would appear to be a suitable target for the development of novel antivirals against a broad range of flavivirus infections.
Collapse
|
44
|
Tripathi NK, Shrivastava A. Recent Developments in Recombinant Protein-Based Dengue Vaccines. Front Immunol 2018; 9:1919. [PMID: 30190720 PMCID: PMC6115509 DOI: 10.3389/fimmu.2018.01919] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Accepted: 08/03/2018] [Indexed: 12/11/2022] Open
Abstract
Recombinant proteins are gaining enormous importance these days due to their wide application as biopharmaceutical products and proven safety record. Various recombinant proteins of therapeutic and prophylactic importance have been successfully produced in microbial and higher expression host systems. Since there is no specific antiviral therapy available against dengue, the prevention by vaccination is the mainstay in reducing the disease burden. Therefore, efficacious vaccines are needed to control the spread of dengue worldwide. Dengue is an emerging viral disease caused by any of dengue virus 1-4 serotypes that affects the human population around the globe. Dengue virus is a single stranded RNA virus encoding three structural proteins (capsid protein, pre-membrane protein, and envelope protein) and seven non-structural proteins (NS1, NS2a, NS2b, NS3, NS4a, NS4b, NS5). As the only licensed dengue vaccine (Dengvaxia) is unable to confer balanced protection against all the serotypes, therefore various approaches for development of dengue vaccines including tetravalent live attenuated, inactivated, plasmid DNA, virus-vectored, virus-like particles, and recombinant subunit vaccines are being explored. These candidates are at different stages of vaccine development and have their own merits and demerits. The promising subunit vaccines are mainly based on envelope or its domain and non-structural proteins of dengue virus. These proteins have been produced in different hosts and are being investigated for development of a successful dengue vaccine. Novel immunogens have been designed employing various strategies like protein engineering and fusion of antigen with various immunostimulatory motif to work as self-adjuvant. Moreover, recombinant proteins can be formulated with novel adjuvants to enhance the immunogenicity and thus conferring better protection to the vaccinees. With the advent of newer and safer host systems, these recombinant proteins can be produced in a cost effective manner at large scale for vaccine studies. In this review, we summarize recent developments in recombinant protein based dengue vaccines that could lead to a good number of efficacious vaccine candidates for future human use and ultimately alternative dengue vaccine candidates.
Collapse
Affiliation(s)
- Nagesh K. Tripathi
- Bioprocess Scale Up Facility, Defence Research and Development Establishment, Gwalior, India
| | - Ambuj Shrivastava
- Division of Virology, Defence Research and Development Establishment, Gwalior, India
| |
Collapse
|
45
|
Qadir A, Riaz M, Saeed M, Shahzad-Ul-Hussan S. Potential targets for therapeutic intervention and structure based vaccine design against Zika virus. Eur J Med Chem 2018; 156:444-460. [PMID: 30015077 DOI: 10.1016/j.ejmech.2018.07.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 06/28/2018] [Accepted: 07/06/2018] [Indexed: 01/01/2023]
Abstract
Continuously increasing number of reports of Zika virus (ZIKV) infections and associated severe clinical manifestations, including autoimmune abnormalities and neurological disorders such as neonatal microcephaly and Guillain-Barré syndrome have created alarming situation in various countries. To date, no specific antiviral therapy or vaccine is available against ZIKV. This review provides a comprehensive insight into the potential therapeutic targets and describes viral epitopes of broadly neutralizing antibodies (bNAbs) in vaccine design perspective. Interactions between ZIKV envelope glycoprotein E and cellular receptors mediate the viral fusion and entry to the target cell. Blocking these interactions by targeting cellular receptors or viral structural proteins mediating these interactions or viral surface glycans can inhibit viral entry to the cell. Similarly, different non-structural proteins of ZIKV and un-translated regions (UTRs) of its RNA play essential roles in viral replication cycle and potentiate for therapeutic interventions. Structure based vaccine design requires identity and structural description of the epitopes of bNAbs. We have described different conserved bNAb epitopes present in the ZIKV envelope as potential targets for structure based vaccine design. This review also highlights successes, unanswered questions and future perspectives in relation to therapeutic and vaccine development against ZIKV.
Collapse
Affiliation(s)
- Amina Qadir
- Department of Biology, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore, 54792, Pakistan
| | - Muhammad Riaz
- Department of Chemistry, University of Azad Jammu & Kashmir, Muzaffarabad, Pakistan
| | - Muhammad Saeed
- Department of Chemistry and Chemical Engineering, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore, 54792, Pakistan.
| | - Syed Shahzad-Ul-Hussan
- Department of Biology, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore, 54792, Pakistan.
| |
Collapse
|
46
|
Characterization of the interactome of the porcine reproductive and respiratory syndrome virus glycoprotein-5. Arch Virol 2018; 163:1595-1605. [PMID: 29497848 DOI: 10.1007/s00705-018-3787-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 01/24/2018] [Indexed: 10/17/2022]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is one of the most important pathogens in the swine industry, causing reproductive failure in sows and respiratory disorders in piglets. Glycosylated protein 5 (GP5) is a major envelope protein of the virus. It is essential for virus particle assembly and involved in viral pathogenesis. In the present study, we identified the host cellular proteins that interact with GP5 by performing immunoprecipitation in MARC-145 cells infected by a recombinant PRRSV containing a FLAG-tag insertion in GP5. In total, 122 cellular proteins were identified by LC-MS/MS. Gene Ontology and KEGG databases were used to map these proteins to different cellular processes, locations and functions. Interestingly, 10.24% of identified cellular proteins were involved in the process of translation. Follow up experiments demonstrated that expression of GP5 in transfected cells led to inhibition of translation of reporter genes. Interaction between GP5 and ATP synthase subunit alpha (ATP5A) was further confirmed by co-immunoprecipitation suggesting a possible role of GP5 in regulation of ATP production in cells. These data contribute to a better understanding of GP5's role in viral pathogenesis and virus-host interactions.
Collapse
|
47
|
Li S, Li X, Zhou Y. Ribosomal protein L18 is an essential factor that promote rice stripe virus accumulation in small brown planthopper. Virus Res 2018; 247:15-20. [DOI: 10.1016/j.virusres.2018.01.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 01/13/2018] [Accepted: 01/22/2018] [Indexed: 01/10/2023]
|
48
|
Fernández-Ponce C, Durán-Ruiz MC, Narbona-Sánchez I, Muñoz-Miranda JP, Arbulo-Echevarria MM, Serna-Sanz A, Baumann C, Litrán R, Aguado E, Bloch W, García-Cozar F. Ultrastructural Localization and Molecular Associations of HCV Capsid Protein in Jurkat T Cells. Front Microbiol 2018; 8:2595. [PMID: 29354102 PMCID: PMC5758585 DOI: 10.3389/fmicb.2017.02595] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 12/12/2017] [Indexed: 12/24/2022] Open
Abstract
Hepatitis C virus core protein is a highly basic viral protein that multimerizes with itself to form the viral capsid. When expressed in CD4+ T lymphocytes, it can induce modifications in several essential cellular and biological networks. To shed light on the mechanisms underlying the alterations caused by the viral protein, we have analyzed HCV-core subcellular localization and its associations with host proteins in Jurkat T cells. In order to investigate the intracellular localization of Hepatitis C virus core protein, we have used a lentiviral system to transduce Jurkat T cells and subsequently localize the protein using immunoelectron microscopy techniques. We found that in Jurkat T cells, Hepatitis C virus core protein mostly localizes in the nucleus and specifically in the nucleolus. In addition, we performed pull-down assays combined with Mass Spectrometry Analysis, to identify proteins that associate with Hepatitis C virus core in Jurkat T cells. We found proteins such as NOLC1, PP1γ, ILF3, and C1QBP implicated in localization and/or traffic to the nucleolus. HCV-core associated proteins are implicated in RNA processing and RNA virus infection as well as in functions previously shown to be altered in Hepatitis C virus core expressing CD4+ T cells, such as cell cycle delay, decreased proliferation, and induction of a regulatory phenotype. Thus, in the current work, we show the ultrastructural localization of Hepatitis C virus core and the first profile of HCV core associated proteins in T cells, and we discuss the functions and interconnections of these proteins in molecular networks where relevant biological modifications have been described upon the expression of Hepatitis C virus core protein. Thereby, the current work constitutes a necessary step toward understanding the mechanisms underlying HCV core mediated alterations that had been described in relevant biological processes in CD4+ T cells.
Collapse
Affiliation(s)
- Cecilia Fernández-Ponce
- Department of Biomedicine, Biotechnology and Public Health, University of Cadiz and Institute of Biomedical Research Cádiz (INIBICA), Cadiz, Spain
| | - Maria C Durán-Ruiz
- Department of Biomedicine, Biotechnology and Public Health, University of Cadiz and Institute of Biomedical Research Cádiz (INIBICA), Cadiz, Spain
| | - Isaac Narbona-Sánchez
- Department of Biomedicine, Biotechnology and Public Health, University of Cadiz and Institute of Biomedical Research Cádiz (INIBICA), Cadiz, Spain
| | - Juan P Muñoz-Miranda
- Department of Biomedicine, Biotechnology and Public Health, University of Cadiz and Institute of Biomedical Research Cádiz (INIBICA), Cadiz, Spain
| | - Mikel M Arbulo-Echevarria
- Department of Biomedicine, Biotechnology and Public Health, University of Cadiz and Institute of Biomedical Research Cádiz (INIBICA), Cadiz, Spain
| | | | | | - Rocío Litrán
- Department of Condensed Matter Physics, University of Cádiz, Puerto Real, Spain
| | - Enrique Aguado
- Department of Biomedicine, Biotechnology and Public Health, University of Cadiz and Institute of Biomedical Research Cádiz (INIBICA), Cadiz, Spain
| | - Wilhelm Bloch
- Department of Molecular and Cellular Sport Medicine, Institute of Cardiovascular Research and Sport Medicine, German Sport University Cologne, Cologne, Germany
| | - Francisco García-Cozar
- Department of Biomedicine, Biotechnology and Public Health, University of Cadiz and Institute of Biomedical Research Cádiz (INIBICA), Cadiz, Spain
| |
Collapse
|
49
|
QTL analysis of cocoon shell weight identifies BmRPL18 associated with silk protein synthesis in silkworm by pooling sequencing. Sci Rep 2017; 7:17985. [PMID: 29269837 PMCID: PMC5740181 DOI: 10.1038/s41598-017-18277-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 12/07/2017] [Indexed: 01/17/2023] Open
Abstract
Mechanisms that regulate silk protein synthesis provide the basis for silkworm variety breeding and silk gland bioreactor optimization. Here, using the pooling sequencing-based methodology, we deciphered the genetic basis for the varied silk production in different silkworm strains. We identified 8 SNPs, with 6 on chromosome 11 and 1 each on chromosomes 22 and 23, that were linked with silk production. After conducting an association analysis between gene expression pattern, silk gland development and cocoon shell weight (CSW), BMGN011620 was found to be regulating silk production. BMGN011620 encodes the 60S ribosomal protein, L18, which is an indispensable component of the 60S ribosomal subunit; therefore we named it BmRPL18. Moreover, the clustering of linked SNPs on chromosome 11 and the analysis of differentially expressed genes reported in previous Omics studies indicated that the genes regulating silk protein synthesis may exhibit a clustering distribution in the silkworm genome. These results collectively advance our understanding of the regulation of silk production, including the role of ribosomal proteins and the clustered distribution of genes involved in silk protein synthesis.
Collapse
|
50
|
Wang B, Duan X, Fu M, Liu Y, Wang Y, Li X, Cao H, Zheng SJ. The association of ribosomal protein L18 (RPL18) with infectious bursal disease virus viral protein VP3 enhances viral replication. Virus Res 2017; 245:69-79. [PMID: 29273342 DOI: 10.1016/j.virusres.2017.12.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 12/14/2017] [Accepted: 12/18/2017] [Indexed: 11/26/2022]
Abstract
Infectious bursal disease (IBD) is an acute, highly contagious, and immunosuppressive avian disease caused by IBD virus (IBDV). IBDV VP3 is a multifunctional protein playing a key role in virus assembly and pathogenesis. To investigate the role of VP3 in pathogenesis, we transfected DF-1 cells with pRK5-FLAG-vp3 and found that VP3 enhanced type I interferon expression and suppressed IBDV replication. Furthermore we found that VP3 interacted with chicken Ribosomal Protein L18 (chRPL18) in host cells and knockdown of chRPL18 by RNAi significantly promoted Type I interferon expression and inhibited IBDV replication. Moreover, our data show that chicken double-stranded RNA-activated protein kinase (chPKR) interacted with both VP3 and chRPL18. Thus chRPL18 in association with VP3 and chPKR affects viral replication.
Collapse
Affiliation(s)
- Bin Wang
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, China; Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, China Agricultural University, Beijing 100193, China; College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Xueyan Duan
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, China; Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, China Agricultural University, Beijing 100193, China; College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Mengjiao Fu
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, China; Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, China Agricultural University, Beijing 100193, China; College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Yanan Liu
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, China; Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, China Agricultural University, Beijing 100193, China; College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Yongqiang Wang
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, China; Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, China Agricultural University, Beijing 100193, China; College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Xiaoqi Li
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, China; Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, China Agricultural University, Beijing 100193, China; College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Hong Cao
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, China; Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, China Agricultural University, Beijing 100193, China; College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Shijun J Zheng
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, China; Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, China Agricultural University, Beijing 100193, China; College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| |
Collapse
|