1
|
Arora R, Malla WA, Tyagi A, Saxena S, Mahajan S, Sajjanar B, Gandham R, Tiwari AK. Transcriptome profiling of Canine Parvovirus 2 Nonstructural gene 1(CPV2.NS1) transfected 4T1 mice mammary tumor cells to elucidate its oncolytic effects. Int J Biol Macromol 2024; 281:136620. [PMID: 39419151 DOI: 10.1016/j.ijbiomac.2024.136620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 10/14/2024] [Accepted: 10/14/2024] [Indexed: 10/19/2024]
Abstract
Oncolytic viral gene therapy is a directed approach to target cancer cells without affecting healthy cells of the body. Canine parvovirus (CPV2) is an oncolytic virus that precisely targets and destroys neoplastic cells by causing DNA damage, mitochondrial damage, and apoptosis. Non-structural gene 1 (NS1) of CPV, concerned with viral DNA replication is a key mediator of cytotoxicity of CPV and can specifically cause tumor cell lysis. In the present study, by using the transcriptomics approach, we tried to identify molecular pathways and key genes involved in CPV2.NS1 mediated 4T1 mice mammary tumor cell death. We identified necroptosis and mitochondrial damage-mediated apoptosis as major cell death pathways leading to CPV2.NS1 transfected 4T1 cancer cell death. Various DEGs identified in our study play an important role in pathways like the PI3K/AKT pathway, diverse metabolic pathways, MAPK signaling pathway, and FGF signaling pathway, whichare mostly dysregulated in cancerous conditions. Histone variant H2A.X genes, Capn2, and Mapk10/JNK are predicted as key genes that play a role in causing endoplasmic reticulum stress and mitochondrial damage, thereby leading to necroptosis and apoptosis. This study is a preliminary work done to identify key genes and molecular pathways involved in CPV2.NS1 mediated 4T1 cancer cells death which need to be further validated to establish this viral gene as a potent oncolytic agent.
Collapse
Affiliation(s)
- Richa Arora
- Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute, Izatnagar, India; Department of Veterinary Biochemistry, College of Veterinary and Animal Sciences, Kishanganj, BASU, Patna, India
| | - Waseem Akram Malla
- Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute, Izatnagar, India
| | - Arpit Tyagi
- GB Pant University of Agriculture and Technology, Pantnagar, India
| | - Shikha Saxena
- Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute, Izatnagar, India
| | - Sonalika Mahajan
- Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute, Izatnagar, India
| | - Basavaraj Sajjanar
- Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute, Izatnagar, India
| | - Ravikumar Gandham
- Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute, Izatnagar, India
| | | |
Collapse
|
2
|
Kalafati E, Drakopoulou E, Anagnou NP, Pappa KI. Developing Oncolytic Viruses for the Treatment of Cervical Cancer. Cells 2023; 12:1838. [PMID: 37508503 PMCID: PMC10377776 DOI: 10.3390/cells12141838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/09/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
Cervical cancer represents one of the most important malignancies among women worldwide. Current therapeutic approaches for cervical cancer are reported not only to be inadequate for metastatic cervical cancer, but are also considered as cytotoxic for several patients leading to serious side effects, which can have negative implications on the quality of life of women. Therefore, there is an urgent need for the development of innovative and effective treatment options. Oncolytic viruses can eventually become effective biological agents, since they preferentially infect and kill cancer cells, while leaving the normal tissue unaffected. Moreover, they are also able to leverage the host immune system response to limit tumor growth. This review aims to systematically describe and discuss the different types of oncolytic viruses generated for targeting cervical cancer cells, as well as the outcome of the combination of virotherapy with conventional therapies. Although many preclinical studies have evaluated the therapeutic efficacy of oncolytic viruses in cervical cancer, the number of clinical trials so far is limited, while their oncolytic properties are currently being tested in clinical trials for the treatment of other malignancies.
Collapse
Affiliation(s)
- Eleni Kalafati
- Laboratory of Cell and Gene Therapy, Centre of Basic Research, Biomedical Research Foundation of the Academy of Athens (BRFAA), 11527 Athens, Greece
| | - Ekati Drakopoulou
- Laboratory of Cell and Gene Therapy, Centre of Basic Research, Biomedical Research Foundation of the Academy of Athens (BRFAA), 11527 Athens, Greece
| | - Nicholas P Anagnou
- Laboratory of Cell and Gene Therapy, Centre of Basic Research, Biomedical Research Foundation of the Academy of Athens (BRFAA), 11527 Athens, Greece
| | - Kalliopi I Pappa
- Laboratory of Cell and Gene Therapy, Centre of Basic Research, Biomedical Research Foundation of the Academy of Athens (BRFAA), 11527 Athens, Greece
- First Department of Obstetrics and Gynecology, University of Athens School of Medicine, 11528 Athens, Greece
| |
Collapse
|
3
|
Fu P, He D, Cheng X, Niu X, Wang C, Fu Y, Li K, Zhu H, Lu W, Wang J, Chu B. Prevalence and Characteristics of Canine Parvovirus Type 2 in Henan Province, China. Microbiol Spectr 2022; 10:e0185622. [PMID: 36377944 PMCID: PMC9769957 DOI: 10.1128/spectrum.01856-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 09/09/2022] [Indexed: 11/16/2022] Open
Abstract
To investigate the epidemic profile and genetic diversity of canine parvovirus type 2 (CPV-2), a total of 111 clinical samples collected from dogs suspected of CPV-2 infection in 10 cities of Henan province of China during 2020 to 2021 were screened by PCR. The results showed a CPV-2-positive rate of 88.29% (98/111). Nearly full-length genomes of 98 CPV-2 strains were sequenced and analyzed. CPV-2c strains (91.84%, 90/98) were significantly higher than that of new CPV-2a strains (8.16%, 8/98) in Henan province without detecting other CPV genotypes, indicating that CPV-2c has become the dominant genotype in Henan province. A phylogenetic analysis of NS1 and VP2 amino acids grouped the strains in this study with Asian strains, which clustered into an identical branch. Based on the CPV-2 VP2 sequences in this study and available in the NCBI database, the adaptation analyses showed that 17 positive selection sites and 10 parallel evolution sites were identified in the VP2 protein of CPV-2, of which three sites (sites 5, 370, and 426) were both under positive selection pressure and parallel evolution. Interestingly, two amino acid mutations (A5G and Q370R) were also observed in the VP2 proteins of 82 CPV-2c strains in this study, which differed from the earlier CPV-2c strain (GU380303) in China. In addition, a unique mutation (I447M) was observed in the VP2 protein of five CPV-2c strains, which was first reported in China. This study provides powerful insight to further our understanding of the epidemic status and evolution of CPV-2 in China. IMPORTANCE CPV-2 was the original virus strain identified in dogs, which cause an acute and lethal disease in dogs. Subsequently, the original CPV-2 was replaced throughout the world by novel antigenic variants (e.g., CPV-2a, CPV-2b, new CPV-2a, new CPV-2b, and CPV-2c). Currently, the epidemiological characteristics of CPV-2 in Henan province of China is still unclear. In our study, a total of 98 nearly full-length genomes of CPV-2 strains were obtained to explore prevalence and genetic evolution of CPV-2 in Henan Province. Moreover, the epidemiological and genetic evolution of CPV-2 in China since its discovery was also investigated. The results of this study will provide valuable information regarding the evolution of CPV-2 strains in China.
Collapse
Affiliation(s)
- Pengfei Fu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan Province, China
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Zhengzhou, Henan Province, China
- Key Laboratory of Animal Growth and Development, The Education Department of Henan Province, Zhengzhou, Henan Province, China
| | - Dongchang He
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Xuan Cheng
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan Province, China
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Zhengzhou, Henan Province, China
- Key Laboratory of Animal Growth and Development, The Education Department of Henan Province, Zhengzhou, Henan Province, China
| | - Xinrui Niu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan Province, China
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Zhengzhou, Henan Province, China
- Key Laboratory of Animal Growth and Development, The Education Department of Henan Province, Zhengzhou, Henan Province, China
| | - Congrong Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan Province, China
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Zhengzhou, Henan Province, China
- Key Laboratory of Animal Growth and Development, The Education Department of Henan Province, Zhengzhou, Henan Province, China
| | - Yiqian Fu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan Province, China
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Zhengzhou, Henan Province, China
- Key Laboratory of Animal Growth and Development, The Education Department of Henan Province, Zhengzhou, Henan Province, China
| | - Kun Li
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Heshui Zhu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan Province, China
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Zhengzhou, Henan Province, China
- Key Laboratory of Animal Growth and Development, The Education Department of Henan Province, Zhengzhou, Henan Province, China
| | - Weifei Lu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan Province, China
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Zhengzhou, Henan Province, China
- Key Laboratory of Animal Growth and Development, The Education Department of Henan Province, Zhengzhou, Henan Province, China
| | - Jiang Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan Province, China
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Zhengzhou, Henan Province, China
- Key Laboratory of Animal Growth and Development, The Education Department of Henan Province, Zhengzhou, Henan Province, China
| | - Beibei Chu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan Province, China
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Zhengzhou, Henan Province, China
- Key Laboratory of Animal Growth and Development, The Education Department of Henan Province, Zhengzhou, Henan Province, China
- International Joint Research Center of National Animal Immunology, Henan Agricultural University, Zhengzhou, Henan Province, China
| |
Collapse
|
4
|
Mattola S, Salokas K, Aho V, Mäntylä E, Salminen S, Hakanen S, Niskanen EA, Svirskaite J, Ihalainen TO, Airenne KJ, Kaikkonen-Määttä M, Parrish CR, Varjosalo M, Vihinen-Ranta M. Parvovirus nonstructural protein 2 interacts with chromatin-regulating cellular proteins. PLoS Pathog 2022; 18:e1010353. [PMID: 35395063 PMCID: PMC9020740 DOI: 10.1371/journal.ppat.1010353] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 04/20/2022] [Accepted: 03/15/2022] [Indexed: 11/28/2022] Open
Abstract
Autonomous parvoviruses encode at least two nonstructural proteins, NS1 and NS2. While NS1 is linked to important nuclear processes required for viral replication, much less is known about the role of NS2. Specifically, the function of canine parvovirus (CPV) NS2 has remained undefined. Here we have used proximity-dependent biotin identification (BioID) to screen for nuclear proteins that associate with CPV NS2. Many of these associations were seen both in noninfected and infected cells, however, the major type of interacting proteins shifted from nuclear envelope proteins to chromatin-associated proteins in infected cells. BioID interactions revealed a potential role for NS2 in DNA remodeling and damage response. Studies of mutant viral genomes with truncated forms of the NS2 protein suggested a change in host chromatin accessibility. Moreover, further studies with NS2 mutants indicated that NS2 performs functions that affect the quantity and distribution of proteins linked to DNA damage response. Notably, mutation in the splice donor site of the NS2 led to a preferred formation of small viral replication center foci instead of the large coalescent centers seen in wild-type infection. Collectively, our results provide insights into potential roles of CPV NS2 in controlling chromatin remodeling and DNA damage response during parvoviral replication. Parvoviruses are small, nonenveloped DNA viruses, that besides being noteworthy pathogens in many animal species, including humans, are also being developed as vectors for gene and cancer therapy. Canine parvovirus is an autonomously replicating parvovirus that encodes two nonstructural proteins, NS1 and NS2. NS1 is required for viral DNA replication and packaging, as well as gene expression. However, very little is known about the function of NS2. Our studies indicate that NS2 serves a previously undefined important function in chromatin modification and DNA damage responses. Therefore, it appears that although both NS1 and NS2 are needed for a productive infection they play very different roles in the process.
Collapse
Affiliation(s)
- Salla Mattola
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyvaskyla, Jyvaskyla, Finland
| | - Kari Salokas
- Institute of Biotechnology and Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
| | - Vesa Aho
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyvaskyla, Jyvaskyla, Finland
| | - Elina Mäntylä
- BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Sami Salminen
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyvaskyla, Jyvaskyla, Finland
| | - Satu Hakanen
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyvaskyla, Jyvaskyla, Finland
| | - Einari A. Niskanen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Julija Svirskaite
- Institute of Biotechnology and Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
| | - Teemu O. Ihalainen
- BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Kari J. Airenne
- Kuopio Center for Gene and Cell Therapy (KCT), Kuopio, Finland
| | | | - Colin R. Parrish
- Baker Institute for Animal Health, Department of Microbiology and Immunology, College of Veterinary Medicine, University of Cornell, Ithaca, New York, United States of America
| | - Markku Varjosalo
- Institute of Biotechnology and Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
| | - Maija Vihinen-Ranta
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyvaskyla, Jyvaskyla, Finland
- * E-mail:
| |
Collapse
|
5
|
Arora R, Malla WA, Tyagi A, Mahajan S, Sajjanar B, Tiwari AK. Canine Parvovirus and Its Non-Structural Gene 1 as Oncolytic Agents: Mechanism of Action and Induction of Anti-Tumor Immune Response. Front Oncol 2021; 11:648873. [PMID: 34012915 PMCID: PMC8127782 DOI: 10.3389/fonc.2021.648873] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 03/30/2021] [Indexed: 12/15/2022] Open
Abstract
The exploration into the strategies for the prevention and treatment of cancer is far from complete. Apart from humans, cancer has gained considerable importance in animals because of increased awareness towards animal health and welfare. Current cancer treatment regimens are less specific towards tumor cells and end up harming normal healthy cells. Thus, a highly specific therapeutic strategy with minimal side effects is the need of the hour. Oncolytic viral gene therapy is one such specific approach to target cancer cells without affecting the normal cells of the body. Canine parvovirus (CPV) is an oncolytic virus that specifically targets and kills cancer cells by causing DNA damage, caspase activation, and mitochondrial damage. Non-structural gene 1 (NS1) of CPV, involved in viral DNA replication is a key mediator of cytotoxicity of CPV and can selectively cause tumor cell lysis. In this review, we discuss the oncolytic properties of Canine Parvovirus (CPV or CPV2), the structure of the NS1 protein, the mechanism of oncolytic action as well as role in inducing an antitumor immune response in different tumor models.
Collapse
Affiliation(s)
- Richa Arora
- Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute, Izatnagar, India
| | - Waseem Akram Malla
- Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute, Izatnagar, India
| | - Arpit Tyagi
- GB Pant University of Agriculture and Technology, Pantnagar, India
| | - Sonalika Mahajan
- Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute, Izatnagar, India
| | - Basavaraj Sajjanar
- Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute, Izatnagar, India
| | - Ashok Kumar Tiwari
- Division of Biological Standardisation, ICAR-Indian Veterinary Research Institute, Izatnagar, India.,ICAR - Central Avian Research Institute, Izatnagar, India
| |
Collapse
|
6
|
Hao X, He Y, Wang C, Xiao W, Liu R, Xiao X, Zhou P, Li S. The increasing prevalence of CPV-2c in domestic dogs in China. PeerJ 2020; 8:e9869. [PMID: 33062416 PMCID: PMC7531355 DOI: 10.7717/peerj.9869] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 08/13/2020] [Indexed: 01/24/2023] Open
Abstract
Background Canine parvovirus type 2 (CPV-2), a serious pathogen, leads to high morbidity and mortality in dogs and several wild carnivore species. Although it is a DNA virus, it evolves particularly rapidly, with a genomic substitution rate of approximately 10−4 substitutions/site/year, close to that of some RNA viruses. Tracing the prevalence of CPV-2 in dogs is significant. Methods In this study, an aetiological survey was carried out from 2016 to 2019 in Guangdong Province, China, involving Guangzhou, Shenzhen and Dongguan. Furthermore, to systematically analyse the prevalence of CPV-2 in China, the VP2 gene sequences of all Chinese isolates were downloaded from the NCBI nucleotide database in December 2019, and changes in CPV-2 variants were examined. Results A total of 55.7% (34/61) of samples were CPV-2 positive by PCR detection and virus isolation. In addition to different variants circulating in dogs, coinfection with multiple variants was identified, as was coinfection with other canine enteric pathogens in some cases. Two previously reported amino acid sites, A5G and Q370R of CPV-2c mutants, reported in variants in China were assessed, and several CPV-2 isolates with P13S and K582N mutations were detected in this study. Finally, we speculate on the prevalence of different CPV-2 variants in China. According to the VP2 gene sequence obtained from the NCBI nucleotide database, the proportion of different variants in China has changed, and CPV-2c appears to be growing rapidly. In conclusion, this aetiology survey suggests that CPV-2 continues to be common in China and that the prevalence of CPV-2c is increasing.
Collapse
Affiliation(s)
- Xiangqi Hao
- Key Laboratory of Comprehensive Prevention and Control for Severe Clinical Animal Diseases of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province, China.,Guangdong Engineering and Technological Research Center for Pets, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province, China
| | - Yuwei He
- Key Laboratory of Comprehensive Prevention and Control for Severe Clinical Animal Diseases of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province, China.,Guangdong Engineering and Technological Research Center for Pets, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province, China
| | - Chuhan Wang
- Key Laboratory of Comprehensive Prevention and Control for Severe Clinical Animal Diseases of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province, China
| | - Weiqi Xiao
- Key Laboratory of Comprehensive Prevention and Control for Severe Clinical Animal Diseases of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province, China.,Guangdong Engineering and Technological Research Center for Pets, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province, China
| | - Ruohan Liu
- Key Laboratory of Comprehensive Prevention and Control for Severe Clinical Animal Diseases of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province, China.,Guangdong Engineering and Technological Research Center for Pets, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province, China
| | - Xiangyu Xiao
- Key Laboratory of Comprehensive Prevention and Control for Severe Clinical Animal Diseases of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province, China.,Guangdong Engineering and Technological Research Center for Pets, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province, China
| | - Pei Zhou
- Key Laboratory of Comprehensive Prevention and Control for Severe Clinical Animal Diseases of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China.,Guangdong Engineering and Technological Research Center for Pets, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province, China
| | - Shoujun Li
- Key Laboratory of Comprehensive Prevention and Control for Severe Clinical Animal Diseases of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China.,Guangdong Engineering and Technological Research Center for Pets, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province, China
| |
Collapse
|
7
|
Wang X, Zhang J, Huo S, Zhang Y, Wu F, Cui D, Yu H, Zhong F. Development of a monoclonal antibody against canine parvovirus NS1 protein and investigation of NS1 dynamics and localization in CPV-infected cells. Protein Expr Purif 2020; 174:105682. [PMID: 32502709 DOI: 10.1016/j.pep.2020.105682] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 05/20/2020] [Accepted: 05/29/2020] [Indexed: 02/06/2023]
Abstract
Canine parvovirus (CPV) non-structural protein-1 (NS1) plays crucial roles in CPV replication and transcription, as well as pathogenic effects to the host. However, the mechanism was not fully understood. Lack of NS1 antibody is one of the restricting factors for NS1 function investigation. To prepare NS1 monoclonal antibody (mAb), the NS1 epitope (AA461 ~ AA650) gene was amplified by PCR, and inserted into pGEX-4T-1vector to construct the prokaryotic expression vector of GST-tag-fused NS1 epitope gene. The NS1 fusion protein was expressed in E. coli, and purified with GSH-magnetic beads, and then used to immunize BALB/c mice. The mouse splenic lymphocytes were isolated and fused with myeloma cells (SP 2/0) to generate hybridoma cells. After several rounds of screening by ELISA, a hybridoma cell clone (1B8) stably expressing NS1 mAb was developed. A large amount of NS1 mAb was prepared from mouse ascites fluid. The isotype of NS1 mAb was identified as IgG1, which can specifically bind NS1 protein in either CPV-infected cells or NS1 vector-transfected cells, indicating the NS1 mAb is effective in detecting NS1 protein. Meanwhile, we used the NS1 mAb to investigate NS1 dynamic changes by qRT-PCR and location by confocal imaging in CPV-infected host cells and showed that NS1 began to appear in the cells at 12 h after CPV infection and reached the highest level at 42 h, NS1 protein was mainly located in nucleus of the cells. This study provided a necessary condition for further investigation on molecular mechanism of NS1 function and pathogenicity.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal, Murine-Derived/chemistry
- Antibodies, Monoclonal, Murine-Derived/immunology
- Antibodies, Viral/chemistry
- Antibodies, Viral/immunology
- Cell Line
- Epitopes/chemistry
- Epitopes/genetics
- Epitopes/immunology
- Epitopes/metabolism
- Female
- Mice
- Mice, Inbred BALB C
- Parvoviridae Infections/immunology
- Parvoviridae Infections/metabolism
- Parvovirus, Canine/chemistry
- Parvovirus, Canine/genetics
- Parvovirus, Canine/immunology
- Parvovirus, Canine/metabolism
- Recombinant Proteins/chemistry
- Recombinant Proteins/genetics
- Recombinant Proteins/immunology
- Viral Nonstructural Proteins/chemistry
- Viral Nonstructural Proteins/genetics
- Viral Nonstructural Proteins/immunology
- Viral Nonstructural Proteins/metabolism
Collapse
Affiliation(s)
- Xing Wang
- Laboratory of Molecular Virology and Immunology, College of Veterinary Medicine, Hebei Agricultural University, Hebei Veterinary Biotechnology Innovation Center, Baoding, 071000, China; Rinpu (Baoding) Biological Pharmaceutical Co., LTD, Baoding, 071004, China
| | - Jianlou Zhang
- Laboratory of Molecular Virology and Immunology, College of Veterinary Medicine, Hebei Agricultural University, Hebei Veterinary Biotechnology Innovation Center, Baoding, 071000, China
| | - Shanshan Huo
- Laboratory of Molecular Virology and Immunology, College of Veterinary Medicine, Hebei Agricultural University, Hebei Veterinary Biotechnology Innovation Center, Baoding, 071000, China; College of Animal Science and Technology, Hebei Agricultural University, Baoding, 071000, China
| | - Yonghong Zhang
- Laboratory of Molecular Virology and Immunology, College of Veterinary Medicine, Hebei Agricultural University, Hebei Veterinary Biotechnology Innovation Center, Baoding, 071000, China
| | - Fengyang Wu
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, 071000, China
| | - Dan Cui
- Laboratory of Molecular Virology and Immunology, College of Veterinary Medicine, Hebei Agricultural University, Hebei Veterinary Biotechnology Innovation Center, Baoding, 071000, China
| | - Hongwei Yu
- Rinpu (Baoding) Biological Pharmaceutical Co., LTD, Baoding, 071004, China.
| | - Fei Zhong
- Laboratory of Molecular Virology and Immunology, College of Veterinary Medicine, Hebei Agricultural University, Hebei Veterinary Biotechnology Innovation Center, Baoding, 071000, China; College of Animal Science and Technology, Hebei Agricultural University, Baoding, 071000, China.
| |
Collapse
|
8
|
Viral Nonstructural Protein 1 Induces Mitochondrion-Mediated Apoptosis in Mink Enteritis Virus Infection. J Virol 2019; 93:JVI.01249-19. [PMID: 31484746 DOI: 10.1128/jvi.01249-19] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 08/26/2019] [Indexed: 12/24/2022] Open
Abstract
Mink enteritis virus (MEV), an autonomous parvovirus, causes acute hemorrhagic enteritis in minks. The molecular pathogenesis of MEV infection has not been fully understood. In this study, we observed significantly increased apoptosis in the esophagus, small intestine, mesenteric lymph nodes, and kidney in minks experimentally infected with strain MEVB. In vitro infection of feline F81 cells with MEVB decreased cell viability and induced cell cycle arrest at G1 phase and apoptosis. By screening MEV nonstructural proteins (NS1 and NS2) and structural proteins (VP1 and VP2), we demonstrated that the MEV NS1 induced apoptosis in both F81 and human embryonic kidney 293T (HEK293T) cells, similar to that induced during MEV infection in minks. We found that the NS1 protein-induced apoptosis in HEK293T cells was mediated not by the death receptor but by the mitochondrial pathway, as demonstrated by mitochondrial depolarization, opening of mitochondrial transition pore, release of cytochrome c, and activation of caspase-9 and -3. Moreover, in NS1-transfected cells, we observed an increase of Bax expression and its translocation to the mitochondria, as well as an increased ratio of the Bax/Bcl-2, reactive oxygen species (ROS) production, and activated p38 mitogen-activated protein kinase (MAPK) and p53. Taken together, our results demonstrated that MEV induces apoptosis through activation of p38 MAPK and the p53-mediated mitochondrial apoptotic pathway induced by NS1 protein, which sheds light on the molecular pathogenesis of MEV infection.IMPORTANCE MEV causes fatal hemorrhagic enteritis in minks. Apoptosis is a cellular mechanism that effectively sacrifices virus-infected cells to maintain homeostasis between the virus and host. In this study, we demonstrated that MEV induces apoptosis both in vivo and in vitro Mechanistically, the viral large nonstructural protein NS1 activates p38 MAPK, which leads p53 phosphorylation to mediate the mitochondrial apoptotic pathway but not the death receptor-mediated apoptotic pathway. This is the first report to uncover the mechanism underlying MEV-induced apoptosis.
Collapse
|
9
|
Hassan SK, Mousa AM, El-Sammad NM, Abdel-Halim AH, Khalil WK, Elsayed EA, Anwar N, Linscheid MW, Moustafa ES, Hashim AN, Nawwar M. Antitumor activity of Cuphea ignea extract against benzo(a)pyrene-induced lung tumorigenesis in Swiss Albino mice. Toxicol Rep 2019; 6:1071-1085. [PMID: 31660294 PMCID: PMC6807375 DOI: 10.1016/j.toxrep.2019.10.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 10/03/2019] [Accepted: 10/04/2019] [Indexed: 12/24/2022] Open
Abstract
Lung cancer has one of the highest mortality rates among various types of cancer and is the most frequent cancer in the world. The incidence of lung cancer is increasing rapidly, in parallel with an increased incidence of smoking. Effective chemoprevention may be an alternative strategy to control the incidence of lung cancer. Thus, the objective of current work was to ascertain the possible preventive and therapeutic efficacies of Cuphea ignea extract in a mouse model of lung tumorigenesis and its cytotoxicity toward the A549 human lung cancer cell line. Lung tumorigenesis was induced by the oral administration of benzo(a)pyrene (50 mg/kg b.w.) twice per week to Swiss albino mice for 4 weeks. Benzo(a)pyrene-treated mice were orally administered C. ignea (300 mg/kg body weight, 5 days/week) for 2 weeks before or 9 weeks after the first benzo(a)pyrene dose, for a total of 21 weeks. At the end of the administration period, various parameters were measured in the serum and lung tissues. The results revealed that the oral administration of benzo(a)pyrene resulted in increases in relative lung weight, serum levels of tumor markers (ADA, AHH, and LDH), and the inflammatory marker NF-κB, and a decreased total antioxidant capacity compared with the control. In addition, decreased levels of enzymatic and non-enzymatic antioxidants, with a concomitant increase in lipid peroxidation, metalloproteinases (MMP-2 and MMP-12), and the angiogenic marker VEGF were detected in lung tissues. Moreover, benzo(a)pyrene administration induced the upregulation of PKCα, COX-2, and Bcl-2 expression, with the downregulation of BAX and caspase-3 expression. C. ignea treatment alleviated all alterations in these parameters, which was further confirmed by the histopathological analysis of lung tissues. The findings of the current work provide the first verification of the preventive and therapeutic potentials of C. ignea extract against benzo(a)pyrene-induced lung tumorigenesis in mice.
Collapse
Affiliation(s)
- Sherien K. Hassan
- Department of Biochemistry, National Research Centre, Dokki, Cairo, Egypt
| | - Amria M. Mousa
- Department of Biochemistry, National Research Centre, Dokki, Cairo, Egypt
| | | | | | - Wagdy K.B. Khalil
- Department of Cell Biology, National Research Centre, Dokki, Cairo, Egypt
| | - Elsayed A. Elsayed
- Bioproducts Research Chair, Zoology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
- Department of Chemistry of Natural and Microbial Products, National Research Centre, Dokki, Cairo, Egypt
- Corresponding author at: Bioproducts Research Chair, Zoology Department, Faculty of Science, King Saud University, 11451 Riyadh, Saudi Arabia.
| | - Nayera Anwar
- Department of Pathology, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Michael W. Linscheid
- Laboratory of Applied Analytical and Environmental Chemistry, Humboldt-University, Berlin, Germany
| | - Eman S. Moustafa
- October University of Modern Sciences and Arts, 6th October City, Egypt
| | - Amani N. Hashim
- Department of Phytochemistry and Plant Systematics, National Research Centre, Cairo, Egypt
| | - Mahmoud Nawwar
- Department of Phytochemistry and Plant Systematics, National Research Centre, Cairo, Egypt
| |
Collapse
|
10
|
Porcine Parvovirus Infection Causes Pig Placenta Tissue Damage Involving Nonstructural Protein 1 (NS1)-Induced Intrinsic ROS/Mitochondria-Mediated Apoptosis. Viruses 2019; 11:v11040389. [PMID: 31027293 PMCID: PMC6520726 DOI: 10.3390/v11040389] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 04/21/2019] [Accepted: 04/23/2019] [Indexed: 12/16/2022] Open
Abstract
Porcine parvovirus (PPV) is an important pathogen causing reproductive failure in pigs. PPV-induced cell apoptosis has been recently identified as being involved in PPV-induced placental tissue damages resulting in reproductive failure. However, the molecular mechanism was not fully elucidated. Here we demonstrate that PPV nonstructural protein 1 (NS1) can induce host cell apoptosis and death, thereby indicating the NS1 may play a crucial role in PPV-induced placental tissue damages and reproductive failure. We have found that NS1-induced apoptosis was significantly inhibited by caspase 9 inhibitor, but not caspase 8 inhibitor, and transfection of NS1 gene into PK-15 cells significantly inhibited mitochondria-associated antiapoptotic molecules Bcl-2 and Mcl-1 expressions and enhanced proapoptotic molecules Bax, P21, and P53 expressions, suggesting that NS1-induced apoptosis is mainly through the mitochondria-mediated intrinsic apoptosis pathway. We also found that both PPV infection and NS1 vector transfection could cause host DNA damage resulting in cell cycle arrest at the G1 and G2 phases, trigger mitochondrial ROS accumulation resulting in mitochondria damage, and therefore, induce the host cell apoptosis. This study provides a molecular basis for elucidating PPV-induced cell apoptosis and reproductive failure.
Collapse
|
11
|
Aksoy E, Azkur AK. Schmallenberg virus induces apoptosis in Vero cell line via extrinsic and intrinsic pathways in a time and dose dependent manner. J Vet Med Sci 2018; 81:204-212. [PMID: 30541984 PMCID: PMC6395206 DOI: 10.1292/jvms.18-0582] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Schmallenberg virus (SBV), discovered in 2011 in Germany, is associated with clinical manifestations of fever, diarrhea, reduced milk yield, abortions and congenital malformations in ruminants. Despite many studies performed for SBV, there is no detailed research on in vitro apoptotic effect of SBV. This study is aimed to determine apoptosis pathways and role of pro-apoptotic and anti-apoptotic molecules in Vero cells infected with SBV. The study results showed that SBV induced apoptosis via both extrinsic and intrinsic pathways by activating both caspase-8 and caspase-9, respectively. Expression analyses of pro-apoptotic (Bax, Bak and Puma) and anti-apoptotic (Bcl-2 and Bcl-XL) genes revealed that SBV-induced apoptosis causes upregulation of pro-apoptotic genes, dominantly via Puma gene, whereas Bcl-2 and Bcl-XL genes were downregulated. In conclusion, this is the first detailed report about SBV induced apoptosis in the Vero cells via both extrinsic and intrinsic cascades and apoptosis induction is seem to be regulated by Puma.
Collapse
Affiliation(s)
- Emel Aksoy
- Department of Virology, Faculty of Veterinary Medicine, Kirikkale University, 71450 Yahsihan, Kirikkale, Turkey
| | - Ahmet Kursat Azkur
- Department of Virology, Faculty of Veterinary Medicine, Kirikkale University, 71450 Yahsihan, Kirikkale, Turkey
| |
Collapse
|
12
|
The 5' Untranslated Region of the Capsid Protein 2 Gene of Mink Enteritis Virus Is Essential for Its Expression. J Virol 2018; 92:JVI.00787-18. [PMID: 29976664 DOI: 10.1128/jvi.00787-18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 06/14/2018] [Indexed: 12/15/2022] Open
Abstract
Mink enteritis virus (MEV), as a parvovirus, is among the smallest of the animal DNA viruses. The limited genome leads to multifunctional sequences and complex gene expression regulation. Here, we show that the expression of viral capsid protein 2 (VP2) of MEV requires its 5' untranslated regions (5' UTR) which promote VP2 gene expression at both transcriptional and translational levels. The expression of VP2 was inhibited in several common eukaryotic expression vectors. Our data showed that the 5' UTR of VP2 enhanced capsid gene transcription but not increased stability or promotes nucleocytoplasmic export of VP2 mRNA. Analysis of the functions of 5' UTR fragments showed that the proximal region (nucleotides [nt] 1 to 270; that is, positions +1 to +270 relative to the transcription initiation site, nt 2048 to 2317 of MEV-L) of 5' UTR of VP2 was necessary for VP2 transcription and also promoted the activity of P38 promoter. Unexpectedly, further analysis showed that deletion of the distal region (nt 271 to 653) of the 5' UTR of VP2 almost completely abolished VP2 translation in the presence of P38, whereas the transcription was still induced significantly. Furthermore, using a luciferase reporter bicistronic system, we identified that the 5' UTR had an internal ribosome entry site-like function which could be enhanced by NS1 via the site at nt 382 to 447. Mutation of the 5' UTR in the MEV full-length clones further showed that the 5' UTR was required for VP2 gene expression. Together, our data reveal an undiscovered function of 5' UTR of MEV VP2 in regulating viral gene expression.IMPORTANCE MEV, a parvovirus, causes acute enteritis in mink. In the present report, we describe an untranslated sequence-dependent mechanism by which MEV regulates capsid gene expression. Our results highlight the roles of untranslated sequences in regulating the transcriptional activity of P38 promoter and translation of capsid genes. These data also reveal the possibility of an unusual translation mechanism in capsid protein expression and the multiple functions of nonstructural protein. A better understanding of the gene expression regulation mechanism of this virus will help in the design of new vaccines and targets for antiviral agents against MEV.
Collapse
|
13
|
Mira F, Dowgier G, Purpari G, Vicari D, Di Bella S, Macaluso G, Gucciardi F, Randazzo V, Decaro N, Guercio A. Molecular typing of a novel canine parvovirus type 2a mutant circulating in Italy. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2018; 61:67-73. [PMID: 29548803 PMCID: PMC7185394 DOI: 10.1016/j.meegid.2018.03.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 03/08/2018] [Accepted: 03/11/2018] [Indexed: 01/20/2023]
Abstract
Canine parvovirus (CPV) is the etiological agent of a severe viral disease of dogs. After its emergence in late 1970s, the CPV original type (CPV-2) was rapidly and totally replaced by three antigenic variants named CPV-2a, CPV-2b and CPV-2c. CPV has an evolutionary rate nearest to those of RNA viruses, with consequences on disease diagnosis and epidemiology. This paper reports the molecular characterization of eight CPV-2a strains collected from dogs in Italy in 2016-2017. Genetic analysis was conducted on a CPV genomic region encompassing both open reading frames (ORFs) encoding for nonstructural (NS1-NS2) and structural proteins (VP1-VP2). Sequence analysis indicates new and unreported sequence changes, mainly affecting the VP2 gene, which included the mutation Tyr324Leu. This study represents the first evidence of a new CPV-2a mutant (VP2 324Leu) and illustrates the importance of a continuous molecular survey in order to obtain more information on effective spread of new CPV mutants.
Collapse
Affiliation(s)
- Francesco Mira
- Istituto Zooprofilattico Sperimentale della Sicilia, Via Gino Marinuzzi 3, 90129 Palermo, Italy.
| | - Giulia Dowgier
- Department of Veterinary Medicine, University of Bari, Strada provinciale per Casamassima Km 3, 70010 Valenzano, Bari, Italy
| | - Giuseppa Purpari
- Istituto Zooprofilattico Sperimentale della Sicilia, Via Gino Marinuzzi 3, 90129 Palermo, Italy
| | - Domenico Vicari
- Istituto Zooprofilattico Sperimentale della Sicilia, Via Gino Marinuzzi 3, 90129 Palermo, Italy
| | - Santina Di Bella
- Istituto Zooprofilattico Sperimentale della Sicilia, Via Gino Marinuzzi 3, 90129 Palermo, Italy
| | - Giusi Macaluso
- Istituto Zooprofilattico Sperimentale della Sicilia, Via Gino Marinuzzi 3, 90129 Palermo, Italy
| | - Francesca Gucciardi
- Istituto Zooprofilattico Sperimentale della Sicilia, Via Gino Marinuzzi 3, 90129 Palermo, Italy
| | - Vincenzo Randazzo
- Istituto Zooprofilattico Sperimentale della Sicilia, Via Gino Marinuzzi 3, 90129 Palermo, Italy
| | - Nicola Decaro
- Department of Veterinary Medicine, University of Bari, Strada provinciale per Casamassima Km 3, 70010 Valenzano, Bari, Italy
| | - Annalisa Guercio
- Istituto Zooprofilattico Sperimentale della Sicilia, Via Gino Marinuzzi 3, 90129 Palermo, Italy
| |
Collapse
|
14
|
Li G, Ji S, Zhai X, Zhang Y, Liu J, Zhu M, Zhou J, Su S. Evolutionary and genetic analysis of the VP2 gene of canine parvovirus. BMC Genomics 2017; 18:534. [PMID: 28716118 PMCID: PMC5512735 DOI: 10.1186/s12864-017-3935-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 07/09/2017] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Canine parvovirus (CPV) type 2 emerged in 1978 in the USA and quickly spread among dog populations all over the world with high morbidity. Although CPV is a DNA virus, its genomic substitution rate is similar to some RNA viruses. Therefore, it is important to trace the evolution of CPV to monitor the appearance of mutations that might affect vaccine effectiveness. RESULTS Our analysis shows that the VP2 genes of CPV isolated from 1979 to 2016 are divided into six groups: GI, GII, GIII, GIV, GV, and GVI. Amino acid mutation analysis revealed several undiscovered important mutation sites: F267Y, Y324I, and T440A. Of note, the evolutionary rate of the CPV VP2 gene from Asia and Europe decreased. Codon usage analysis showed that the VP2 gene of CPV exhibits high bias with an ENC ranging from 34.93 to 36.7. Furthermore, we demonstrate that natural selection plays a major role compared to mutation pressure driving CPV evolution. CONCLUSIONS There are few studies on the codon usage of CPV. Here, we comprehensively studied the genetic evolution, codon usage pattern, and evolutionary characterization of the VP2 gene of CPV. The novel findings revealing the evolutionary process of CPV will greatly serve future CPV research.
Collapse
Affiliation(s)
- Gairu Li
- Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology and College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Senlin Ji
- Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology and College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Xiaofeng Zhai
- Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology and College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Yuxiang Zhang
- Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology and College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Jie Liu
- Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology and College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Mengyan Zhu
- Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology and College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Jiyong Zhou
- Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology and College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Shuo Su
- Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology and College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.
| |
Collapse
|
15
|
Zhou P, Zeng W, Zhang X, Li S. The genetic evolution of canine parvovirus - A new perspective. PLoS One 2017; 12:e0175035. [PMID: 28362831 PMCID: PMC5376324 DOI: 10.1371/journal.pone.0175035] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 03/20/2017] [Indexed: 02/03/2023] Open
Abstract
To trace the evolution process of CPV-2, all of the VP2 gene sequences of CPV-2 and FPV (from 1978 to 2015) from GenBank were analyzed in this study. Then, several new ideas regarding CPV-2 evolution were presented. First, the VP2 amino acid 555 and 375 positions of CPV-2 were first ruled out as a universal mutation site in CPV-2a and amino acid 101 position of FPV feature I or T instead of only I in existing rule. Second, the recently confusing nomenclature of CPV-2 variants was substituted with a optional nomenclature that would serve future CPV-2 research. Third, After check the global distribution of variants, CPV-2a is the predominant variant in Asia and CPV-2c is the predominant variant in Europe and Latin America. Fourth, a series of CPV-2-like strains were identified and deduced to evolve from modified live vaccine strains. Finally, three single VP2 mutation (F267Y, Y324I, and T440A) strains were caught concern. Furthermore, these three new VP2 mutation strains may be responsible for vaccine failure, and the strains with VP2 440A may become the novel CPV sub-variant. In conclusion, a summary of all VP2 sequences provides a new perspective regarding CPV-2 evolution and the correlative biological studies needs to be further performed.
Collapse
Affiliation(s)
- Pei Zhou
- College of Veterinary Medicine, South China Agricultural University, Tianhe District, Guangzhou, Guangdong Province, People’s Republic of China
- Key Laboratory of Comprehensive Prevention and Control for Severe Clinical Animal Diseases of Guangdong Province, Guangzhou, Guangdong Province, People’s Republic of China
- Guangdong Engineering and Technological Research Center for Pets, Guangzhou, Guangdong Province, People’s Republic of China
| | - Weijie Zeng
- College of Veterinary Medicine, South China Agricultural University, Tianhe District, Guangzhou, Guangdong Province, People’s Republic of China
- Key Laboratory of Comprehensive Prevention and Control for Severe Clinical Animal Diseases of Guangdong Province, Guangzhou, Guangdong Province, People’s Republic of China
- Guangdong Engineering and Technological Research Center for Pets, Guangzhou, Guangdong Province, People’s Republic of China
| | - Xin Zhang
- College of Veterinary Medicine, South China Agricultural University, Tianhe District, Guangzhou, Guangdong Province, People’s Republic of China
- Key Laboratory of Comprehensive Prevention and Control for Severe Clinical Animal Diseases of Guangdong Province, Guangzhou, Guangdong Province, People’s Republic of China
- Guangdong Engineering and Technological Research Center for Pets, Guangzhou, Guangdong Province, People’s Republic of China
| | - Shoujun Li
- College of Veterinary Medicine, South China Agricultural University, Tianhe District, Guangzhou, Guangdong Province, People’s Republic of China
- Key Laboratory of Comprehensive Prevention and Control for Severe Clinical Animal Diseases of Guangdong Province, Guangzhou, Guangdong Province, People’s Republic of China
- Guangdong Engineering and Technological Research Center for Pets, Guangzhou, Guangdong Province, People’s Republic of China
- * E-mail:
| |
Collapse
|
16
|
Mao Y, Su J, Wang J, Zhang X, Hou Q, Bian D, Liu W. Roles of three amino acids of capsid proteins in mink enteritis parvovirus replication. Virus Res 2016; 222:24-28. [PMID: 27212684 DOI: 10.1016/j.virusres.2016.05.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 05/15/2016] [Accepted: 05/18/2016] [Indexed: 10/21/2022]
Abstract
Virulent mink enteritis parvovirus (MEV) strain MEV-LHV replicated to higher titers in feline F81 cells than attenuated strain MEV-L. Phylogenetic and sequence analyses of the VP2 gene of MEV-LHV, MEV-L and other strains in GenBank revealed two evolutionary branches separating virulent and attenuated strains. Three residues, 101, 232 and 411, differed between virulent and attenuated strains but were conserved within the two branches. Site-directed mutagenesis of the VP2 gene of infectious plasmids of attenuated strain MEV-L respectively replacing residues 101 Ile and 411 Ala with Thr and Glu of virulent strains (MEV-L I101T and MEV-L A411E) increased replication efficiency but still to lower levels than MEV-LHV. However, viruses with mutation of residue 232 (MEV-L I232V and MEV-L I101T/I232V/A411E) decreased viral transcription and replication levels. The three VP2 residues 101, 232 and 411, located on or near the capsid surface, played different roles in the infection processes of MEV.
Collapse
Affiliation(s)
- Yaping Mao
- State Key Laboratory of Agrobiotechnology, Department of Biochemistry and Molecular Biology, College of Biological Sciences, China Agricultural University, Beijing 100193, PR China
| | - Jun Su
- State Key Laboratory of Agrobiotechnology, Department of Biochemistry and Molecular Biology, College of Biological Sciences, China Agricultural University, Beijing 100193, PR China
| | - Jigui Wang
- State Key Laboratory of Agrobiotechnology, Department of Biochemistry and Molecular Biology, College of Biological Sciences, China Agricultural University, Beijing 100193, PR China
| | - Xiaomei Zhang
- State Key Laboratory of Agrobiotechnology, Department of Biochemistry and Molecular Biology, College of Biological Sciences, China Agricultural University, Beijing 100193, PR China
| | - Qiang Hou
- State Key Laboratory of Agrobiotechnology, Department of Biochemistry and Molecular Biology, College of Biological Sciences, China Agricultural University, Beijing 100193, PR China
| | - Dawei Bian
- State Key Laboratory of Agrobiotechnology, Department of Biochemistry and Molecular Biology, College of Biological Sciences, China Agricultural University, Beijing 100193, PR China
| | - Weiquan Liu
- State Key Laboratory of Agrobiotechnology, Department of Biochemistry and Molecular Biology, College of Biological Sciences, China Agricultural University, Beijing 100193, PR China.
| |
Collapse
|
17
|
Gupta SK, Tiwari AK, Gandham RK, Sahoo AP. Combined administration of the apoptin gene and poly (I:C) induces potent anti-tumor immune response and inhibits growth of mouse mammary tumors. Int Immunopharmacol 2016; 35:163-173. [PMID: 27064544 DOI: 10.1016/j.intimp.2016.03.034] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 03/25/2016] [Accepted: 03/28/2016] [Indexed: 12/13/2022]
Abstract
BACKGROUND Many viral proteins exhibit selective cytotoxicity for tumor cells without affecting the normal diploid cells. The apoptin protein of chicken infectious anemia virus is one of such proteins, which has been shown to kill tumor cells specifically. However, an effective cancer treatment strategy also requires assistance from the immune system. Recently, poly (I:C) has been shown to be an effective cancer vaccine adjuvant. AIM In this study, we assessed the anti-tumor potential of apoptin gene transfer alone and in combination with poly (I:C) in a 4T1 mouse mammary tumor model. METHODS 4T1 cells were used to induce mammary tumor in Balb/c mice. Mice bearing tumors were divided into 6 groups, and each group received six intratumoral injections during a period of one month. After the last immunization, the animals were sacrificed, and peripheral blood, spleen, lungs, liver, heart, kidney and tumor tissues were collected for immunological, molecular and pathological analysis. RESULTS We report that intratumoral administration of apoptin plasmid along with poly (I:C) not only significantly inhibited the growth of mammary tumor, but also induced a potent anti-tumor immune response as indicated by the increase in blood CD4+, CD8+ cells and infiltration of immune cells in the tumor tissue. Further, blood serum analysis of the cytokines revealed increased secretion of Th1 cytokines (IFN-γ and IL-2). CONCLUSIONS The results of our study demonstrate that the inclusion of poly (I:C) significantly enhanced the anti-tumor activity of apoptin mainly by inducing a potent anti-tumor immune response. Therefore, we report the use of apoptin and poly (I:C) combination as a novel and powerful strategy for cancer immunotherapy.
Collapse
Affiliation(s)
- Shishir Kumar Gupta
- Molecular Biology Laboratory, Division of Veterinary Biotechnology, Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122 UP, India.
| | - Ashok K Tiwari
- Molecular Biology Laboratory, Division of Veterinary Biotechnology, Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122 UP, India.
| | - Ravi Kumar Gandham
- Molecular Biology Laboratory, Division of Veterinary Biotechnology, Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122 UP, India
| | - A P Sahoo
- Molecular Biology Laboratory, Division of Veterinary Biotechnology, Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122 UP, India
| |
Collapse
|
18
|
Garigliany M, Gilliaux G, Jolly S, Casanova T, Bayrou C, Gommeren K, Fett T, Mauroy A, Lévy E, Cassart D, Peeters D, Poncelet L, Desmecht D. Feline panleukopenia virus in cerebral neurons of young and adult cats. BMC Vet Res 2016; 12:28. [PMID: 26895627 PMCID: PMC4759964 DOI: 10.1186/s12917-016-0657-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 02/15/2016] [Indexed: 12/16/2022] Open
Abstract
Background Perinatal infections with feline panleukopenia virus (FPV) have long been known to be associated with cerebellar hypoplasia in kittens due to productive infection of dividing neuroblasts. FPV, like other parvoviruses, requires dividing cells to replicate which explains the usual tropism of the virus for the digestive tract, lymphoid tissues and bone marrow in older animals. Results In this study, the necropsy and histopathological analyses of a series of 28 cats which died from parvovirus infection in 2013 were performed. Infections were confirmed by real time PCR and immunohistochemistry in several organs. Strikingly, while none of these cats showed cerebellar atrophy or cerebellar positive immunostaining, some of them, including one adult, showed a bright positive immunostaining for viral antigens in cerebral neurons (diencephalon). Furthermore, infected neurons were negative by immunostaining for p27Kip1, a cell cycle regulatory protein, while neighboring, uninfected, neurons were positive, suggesting a possible re-entry of infected neurons into the mitotic cycle. Next-Generation Sequencing and PCR analyses showed that the virus infecting cat brains was FPV and presented a unique substitution in NS1 protein sequence. Given the role played by this protein in the control of cell cycle and apoptosis in other parvoviral species, it is tempting to hypothesize that a cause-to-effect between this NS1 mutation and the capacity of this FPV strain to infect neurons in adult cats might exist. Conclusions This study provides the first evidence of infection of cerebral neurons by feline panleukopenia virus in cats, including an adult. A possible re-entry into the cell cycle by infected neurons has been observed. A mutation in the NS1 protein sequence of the FPV strain involved could be related to its unusual cellular tropism. Further research is needed to clarify this point.
Collapse
Affiliation(s)
- Mutien Garigliany
- Department of Morphology and Pathology, University of Liège, Liège, Belgium.
| | - Gautier Gilliaux
- Department of Morphology and Pathology, University of Liège, Liège, Belgium.
| | - Sandra Jolly
- Department of Morphology and Pathology, University of Liège, Liège, Belgium.
| | - Tomas Casanova
- Department of Morphology and Pathology, University of Liège, Liège, Belgium.
| | - Calixte Bayrou
- Department of Morphology and Pathology, University of Liège, Liège, Belgium.
| | - Kris Gommeren
- Department of Clinical Sciences, University of Liège, Liège, Belgium.
| | - Thomas Fett
- Department of Infectious and Parasitic Diseases, Centre for Fundamental and Applied Research for Animals & Health, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium.
| | - Axel Mauroy
- Department of Infectious and Parasitic Diseases, Centre for Fundamental and Applied Research for Animals & Health, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium.
| | - Etienne Lévy
- Department of Morphology and Pathology, University of Liège, Liège, Belgium.
| | - Dominique Cassart
- Department of Morphology and Pathology, University of Liège, Liège, Belgium.
| | - Dominique Peeters
- Department of Clinical Sciences, University of Liège, Liège, Belgium.
| | - Luc Poncelet
- Laboratory of Anatomy, Biomechanics and Organogenesis, Faculty of Medicine, Free University of Brussels, Brussels, Belgium.
| | - Daniel Desmecht
- Department of Morphology and Pathology, University of Liège, Liège, Belgium.
| |
Collapse
|
19
|
Zhao X, Xiang H, Bai X, Fei N, Huang Y, Song X, Zhang H, Zhang L, Tong D. Porcine parvovirus infection activates mitochondria-mediated apoptotic signaling pathway by inducing ROS accumulation. Virol J 2016; 13:26. [PMID: 26880103 PMCID: PMC4755023 DOI: 10.1186/s12985-016-0480-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 02/01/2016] [Indexed: 01/06/2023] Open
Abstract
Background Porcine parvovirus (PPV) infection primarily causes reproductive failure of pregnant swine and results in host cell death. Boars, as an important disseminator, shed PPV to sows via semen. PPV infects and numerously replicates in boar testicle, which results in damage of swine testicle in vivo. Reactive oxygen species (ROS), a mediator of cell apoptosis, play a crucial role in the mitochondria apoptotic pathway. However, whether PPV infection induces ST cells apoptosis and ROS accumulation is still unclear. Methods To determine the effects of PPV infection on the apoptosis, we detected morphological changes, DNA ladder, activities of caspases, and expression of PARP in PPV-infected ST cells. Moreover, aiming to investigate the effect of PPV infection on the mitochondrial apoptotic pathway and ROS accumulation, we detected the Δψm, apoptosis-related genes, and ROS. To investigate the role of ROS in the process of PPV-induced apoptosis, the ST cells were infected with PPV and treated with the ROS antioxidants. The ROS level was measured using Reactive Oxygen Species Assay Kit and the Δψm, expression level of Bcl-2, translocation of Bax, and redistribution of mitochondria cytochrome c were tested. Results In this study, we demonstrated that PPV infection could induce apoptosis that was characterized by morphological changes, DNA fragmentation and activation of caspases. Moreover, PPV infection suppressed Bcl-2 expression, enhanced Bax expression and translocation to mitochondria, decreased the mitochondrial transmembrane potential, and triggered the release of cytochrome c, which caused the subsequent activation of caspase-9 and caspase-3 and initiation of apoptosis. However, during the process of PPV-induced apoptosis, the protein levels of Fas and FasL were not affected. Further studies showed that PPV infection caused ROS accumulation. Inhibition of ROS could reduce mitochondrial transmembrane potential and could significantly block ST cells apoptosis via suppressing Bax translocation, cytochrome c and caspase-3 activation. Conclusions All these results suggest that PPV-induced ROS accumulation mediates apoptosis in ST cells, which provided theoretical basis for the molecular pathogenesis of PPV infection.
Collapse
Affiliation(s)
- Xiaomin Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China.
| | - Hailing Xiang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China.
| | - Xiaoyuan Bai
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China.
| | - Naijiao Fei
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China.
| | - Yong Huang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China.
| | - Xiangjun Song
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China.
| | - Hongling Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China.
| | - Liang Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China.
| | - Dewen Tong
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China.
| |
Collapse
|
20
|
Canine parvovirus NS1 protein exhibits anti-tumor activity in a mouse mammary tumor model. Virus Res 2016; 213:289-298. [DOI: 10.1016/j.virusres.2015.12.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Revised: 12/20/2015] [Accepted: 12/21/2015] [Indexed: 01/20/2023]
|
21
|
Wang H, Jin H, Li Q, Zhao G, Cheng N, Feng N, Zheng X, Wang J, Zhao Y, Li L, Cao Z, Yan F, Wang L, Wang T, Gao Y, Yang S, Xia X. Isolation and sequence analysis of the complete NS1 and VP2 genes of canine parvovirus from domestic dogs in 2013 and 2014 in China. Arch Virol 2015; 161:385-93. [PMID: 26573526 DOI: 10.1007/s00705-015-2620-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 09/16/2015] [Indexed: 02/07/2023]
Abstract
Canine parvovirus (CPV) can cause severe disease in animals and continuously generates new variant and recombinant strains in dogs that have a strong impact on sanitation. It is therefore necessary to investigate epidemic CPV strains to improve our understanding of CPV transmission and epidemic behavior. However, most studies have focused on the analysis of VP2, and therefore, information about recombination and relationships between strains is still lacking. Here, 14 strains of CPV were isolated from domestic dogs suspected of hosting CPV between 2013 and 2014 in China. The complete NS1 and VP2 genes were sequenced and analyzed. The results suggest that the new CPV-2a and new CPV-2b types are the prevalent strains in China. In addition to a few mutations (residues 19, 544, 545, 572 and 583 of NS1 and residues 267, 370, 377 and 440 of VP2) that were preserved during transmission, new mutations (residues 60, 630 of NS1, and residues 21, 310 of VP2) were found in the isolated strains. A phylogenetic tree based on VP2 sequences illustrated that the new CPV-2a and new CPV-2b strains from China form single clusters that are distinct from lineages from other countries. Moreover, recombination between the new CPV-2a and new CPV-2b types was also identified in the isolated strains. Due to differences in selection pressures or recombination, there were a small number of inconsistencies between the phylogenetic trees for VP2 and NS1, which indicated that phylogenetic relationships based on VP2 might not be representative of those based on NS1. The data indicated that mutations and recombination are constantly occurring along with the spread of CPV in China.
Collapse
Affiliation(s)
- Hualei Wang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, 130122, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, 225000, China
| | - Hongli Jin
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, 130122, China.,Changchun SR Biological Technology Co., LTD, Changchun, 130012, China
| | - Qian Li
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, 130122, China
| | - Guoxing Zhao
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, 130122, China.,College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Nan Cheng
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, 130122, China
| | - Na Feng
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, 130122, China
| | - Xuexing Zheng
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, 130122, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, 225000, China
| | - Jianzhong Wang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, 130122, China.,College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Yongkun Zhao
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, 130122, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, 225000, China
| | - Ling Li
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, 130122, China.,College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Zengguo Cao
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, 130122, China
| | - Feihu Yan
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, 130122, China
| | - Lina Wang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, 130122, China
| | - Tiecheng Wang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, 130122, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, 225000, China
| | - Yuwei Gao
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, 130122, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, 225000, China
| | - Songtao Yang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, 130122, China. .,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, 225000, China.
| | - Xianzhu Xia
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, 130122, China. .,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, 225000, China.
| |
Collapse
|
22
|
Gupta SK, Sahoo AP, Rosh N, Gandham RK, Saxena L, Singh AK, Harish DR, Tiwari AK. Canine parvovirus NS1 induced apoptosis involves mitochondria, accumulation of reactive oxygen species and activation of caspases. Virus Res 2015; 213:46-61. [PMID: 26555166 DOI: 10.1016/j.virusres.2015.10.019] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 10/08/2015] [Accepted: 10/14/2015] [Indexed: 12/27/2022]
Abstract
The non-structural protein (NS1) of parvoviruses plays an important role in viral replication and is thought to be responsible for inducing cell death. However, the detailed mechanism and the pathways involved in canine parvovirus type 2 NS1 (CPV2.NS1) induced apoptosis are not yet known. In the present study, we report that expression of CPV2.NS1 in HeLa cells arrests cells in G1 phase of the cell cycle and the apoptosis is mitochondria mediated as indicated by mitochondrial depolarization, release of cytochrome-c and activation of caspase 9. Treatment of cells with caspase 9 inhibitor Z-LEHD-FMK reduced the induction of apoptosis significantly. We also report that expression of CPV2.NS1 causes accumulation of reactive oxygen species (ROS) and treatment with an antioxidant reduces the ROS levels and the extent of apoptosis. Our results provide an insight into the mechanism of CPV2.NS1 induced apoptosis, which might prove valuable in developing NS1 protein as an oncolytic agent.
Collapse
Affiliation(s)
- Shishir Kumar Gupta
- Molecular Biology Laboratory, Division of Veterinary Biotechnology, Indian Veterinary Research Institute, Izatnagar-243122, India.
| | - Aditya Prasad Sahoo
- Molecular Biology Laboratory, Division of Veterinary Biotechnology, Indian Veterinary Research Institute, Izatnagar-243122, India
| | - Nighil Rosh
- Molecular Biology Laboratory, Division of Veterinary Biotechnology, Indian Veterinary Research Institute, Izatnagar-243122, India
| | - Ravi Kumar Gandham
- Molecular Biology Laboratory, Division of Veterinary Biotechnology, Indian Veterinary Research Institute, Izatnagar-243122, India
| | - Lovleen Saxena
- Molecular Biology Laboratory, Division of Veterinary Biotechnology, Indian Veterinary Research Institute, Izatnagar-243122, India
| | - Arvind Kumar Singh
- Molecular Biology Laboratory, Division of Veterinary Biotechnology, Indian Veterinary Research Institute, Izatnagar-243122, India
| | - D R Harish
- Molecular Biology Laboratory, Division of Veterinary Biotechnology, Indian Veterinary Research Institute, Izatnagar-243122, India
| | - Ashok Kumar Tiwari
- Molecular Biology Laboratory, Division of Veterinary Biotechnology, Indian Veterinary Research Institute, Izatnagar-243122, India.
| |
Collapse
|
23
|
Rajmani RS, Gandham RK, Gupta SK, Sahoo AP, Singh PK, Kumar R, Saxena S, Chaturvedi U, Tiwari AK. HN Protein of Newcastle Disease Virus Induces Apoptosis Through SAPK/JNK Pathway. Appl Biochem Biotechnol 2015; 177:940-56. [DOI: 10.1007/s12010-015-1788-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Accepted: 07/27/2015] [Indexed: 02/06/2023]
|
24
|
Singh PK, Tiwari AK, Rajmani RS, Kumar GR, Chaturvedi U, Saxena L, Saxena S, Doley J, Sahoo AP, Santra L, Saxena M, Kumar S, Sharma B. Apoptin as a potential viral gene oncotherapeutic agent. Appl Biochem Biotechnol 2015; 176:196-212. [PMID: 25809990 DOI: 10.1007/s12010-015-1567-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Accepted: 03/12/2015] [Indexed: 11/26/2022]
Abstract
The use of viruses for treatment of cancer overcomes the bottlenecks of chemotherapy and radiotherapy. Several viruses and their proteins have been evaluated for oncolytic effect. The VP3 protein (apoptin) of chicken anemia virus is one such protein with an inherent ability to lyse cancer and transformed cells while leaving normal cells unharmed. In the present study, the apoptosis inducing potential of VP3 protein of CAV was evaluated in human cervical cancer cell line (HeLa). It was found that in VP3-induced apoptosis, caspase-dependent intrinsic pathway plays an important role with the cleavage of poly (ADP-ribose) polymerase (PARP) and there was no evidence of involvement of death receptor-mediated extrinsic pathway. The results of this study provide intuitive information and strengthen the candidacy of apoptin as a viral oncotherapeutic agent.
Collapse
Affiliation(s)
- Prafull Kumar Singh
- Division of Veterinary Biotechnology, Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, India
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Gupta SK, Gandham RK, Sahoo AP, Tiwari AK. Viral genes as oncolytic agents for cancer therapy. Cell Mol Life Sci 2015; 72:1073-94. [PMID: 25408521 PMCID: PMC11113997 DOI: 10.1007/s00018-014-1782-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2014] [Revised: 10/29/2014] [Accepted: 11/13/2014] [Indexed: 12/20/2022]
Abstract
Many viruses have the ability to modulate the apoptosis, and to accomplish it; viruses encode proteins which specifically interact with the cellular signaling pathways. While some viruses encode proteins, which inhibit the apoptosis or death of the infected cells, there are viruses whose encoded proteins can kill the infected cells by multiple mechanisms, including apoptosis. A particular class of these viruses has specific gene(s) in their genomes which, upon ectopic expression, can kill the tumor cells selectively without affecting the normal cells. These genes and their encoded products have demonstrated great potential to be developed as novel anticancer therapeutic agents which can specifically target and kill the cancer cells leaving the normal cells unharmed. In this review, we will discuss about the viral genes having specific cancer cell killing properties, what is known about their functioning, signaling pathways and their therapeutic applications as anticancer agents.
Collapse
Affiliation(s)
- Shishir Kumar Gupta
- Molecular Biology Lab, Division of Veterinary Biotechnology, Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122 UP India
| | - Ravi Kumar Gandham
- Molecular Biology Lab, Division of Veterinary Biotechnology, Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122 UP India
| | - A. P. Sahoo
- Molecular Biology Lab, Division of Veterinary Biotechnology, Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122 UP India
| | - A. K. Tiwari
- Molecular Biology Lab, Division of Veterinary Biotechnology, Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122 UP India
| |
Collapse
|
26
|
Rajmani RS, Singh PK, Ravi Kumar G, Saxena S, Singh LV, Kumar R, Sahoo AP, Gupta SK, Chaturvedi U, Tiwari AK. In-vitroCharacterization and Evaluation of Apoptotic Potential of Bicistronic Plasmid Encoding HN Gene of Newcastle Disease Virus and Human TNF-α. Anim Biotechnol 2014; 26:112-9. [DOI: 10.1080/10495398.2014.933741] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
27
|
Nair P, Malhotra A, Dhawan DK. Curcumin and quercetin trigger apoptosis during benzo(a)pyrene-induced lung carcinogenesis. Mol Cell Biochem 2014; 400:51-6. [PMID: 25359171 DOI: 10.1007/s11010-014-2261-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 10/17/2014] [Indexed: 10/24/2022]
|
28
|
Non-Structural protein 1 (NS1) gene of Canine Parvovirus-2 regresses chemically induced skin tumors in Wistar rats. Res Vet Sci 2014; 97:292-6. [PMID: 25135490 DOI: 10.1016/j.rvsc.2014.07.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 06/23/2014] [Accepted: 07/31/2014] [Indexed: 01/03/2023]
Abstract
The Non-Structural protein 1 of Canine Parvovirus-2 (CPV2.NS1) plays a major role in viral cytotoxicity and pathogenicity. CPV2.NS1 has been proven to cause apoptosis in HeLa cells in vitro in our laboratory. Here we report that CPV2.NS1 has no toxic side effects on healthy cells but regresses skin tumors in Wistar rats. Histopathological examination of tumor tissue from CPV2.NS1 treated group revealed infiltration of mononuclear and polymorphonuclear cells with increased extra cellular matrix, indicating signs of regression. Tumor regression was also evidenced by significant decrease in mitotic index, AgNOR count and PCNA index, and increase in TUNEL positive apoptotic cells in CPV2.NS1 treated group. Further, CPV2.NS1 induced anti-tumor immune response through significant increase in CD8(+) and NK cell population in CPV2.NS1 treated group. These findings suggest that CPV2.NS1 can be a possible therapeutic candidate as an alternative to chemotherapy for the treatment of cancer.
Collapse
|
29
|
Singh LV, Saxena S, Gupta S, Gupta SK, Ravi Kumar G, Desai GS, Sahoo AP, Harish DR, Tiwari AK. Evaluation and comparison of the constitutive expression levels of Toll-like receptors 2, 3 and 7 in the peripheral blood mononuclear cells of Tharparkar and crossbred cattle. Vet World 2014. [DOI: 10.14202/vetworld.2014.209-212] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
30
|
Nykky J, Vuento M, Gilbert L. Role of mitochondria in parvovirus pathology. PLoS One 2014; 9:e86124. [PMID: 24465910 PMCID: PMC3897641 DOI: 10.1371/journal.pone.0086124] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Accepted: 12/09/2013] [Indexed: 01/06/2023] Open
Abstract
Proper functioning of the mitochondria is crucial for the survival of the cell. Viruses are able to interfere with mitochondrial functions as they infect the host cell. Parvoviruses are known to induce apoptosis in infected cells, but the role of the mitochondria in parvovirus induced cytopathy is only partially known. Here we demonstrate with confocal and electron microscopy that canine parvovirus (CPV) associated with the mitochondrial outer membrane from the onset of infection. During viral entry a transient depolarization of the mitochondrial transmembrane potential and increase in ROS level was detected. Subsequently, mitochondrial homeostasis was normalized shortly, as detected by repolarization of the mitochondrial membrane and decrease of ROS. Indeed, activation of cell survival signalling through ERK1/2 cascade was observed early in CPV infected cells. At 12 hours post infection, concurrent with the expression of viral non-structural protein 1, damage to the mitochondrial structure and depolarization of its membrane were apparent. Results of this study provide additional insight of parvovirus pathology and also more general information of virus-mitochondria association.
Collapse
Affiliation(s)
- Jonna Nykky
- Department of Biological and Environmental Science, and Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| | - Matti Vuento
- Department of Biological and Environmental Science, and Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| | - Leona Gilbert
- Department of Biological and Environmental Science, and Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
- * E-mail:
| |
Collapse
|
31
|
Doley J, Singh LV, Kumar GR, Sahoo AP, Saxena L, Chaturvedi U, Saxena S, Kumar R, Singh PK, Rajmani RS, Santra L, Palia SK, Tiwari S, Harish DR, Kumar A, Desai GS, Gupta S, Gupta SK, Tiwari AK. Canine parvovirus type 2a (CPV-2a)-induced apoptosis in MDCK involves both extrinsic and intrinsic pathways. Appl Biochem Biotechnol 2013; 172:497-508. [PMID: 24092455 DOI: 10.1007/s12010-013-0538-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Accepted: 09/15/2013] [Indexed: 11/27/2022]
Abstract
The canine parvovirus type 2 (CPV-2) causes an acute disease in dogs. It has been found to induce cell cycle arrest and DNA damage leading to cellular lysis. In this paper, we evaluated the apoptotic potential of the "new CPV-2a" in MDCK cells and elucidated the mechanism of the induction of apoptosis. The exposure of MDCK cells to the virus was found to trigger apoptotic response. Apoptosis was confirmed by phosphatidylserine translocation, DNA fragmentation assays, and cell cycle analysis. Activation of caspases-3, -8, -9, and -12 and decrease in mitochondrial potential in CPV-2a-infected MDCK cells suggested that the CPV-2a-induced apoptosis is caspase dependent involving extrinsic, intrinsic, and endoplasmic reticulum pathways. Increase in p53 and Bax/Bcl2 ratio was also observed in CPV-2a-infected cells.
Collapse
Affiliation(s)
- Juwar Doley
- Molecular Biology Lab, Division of Veterinary Biotechnology, Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243122, India
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|