1
|
Allela OQB, Ghazanfari Hashemi M, Heidari SM, Kareem RA, Sameer HN, Adil M, Kalavi S. The importance of paying attention to the role of lipid-lowering drugs in controlling dengue virus infection. Virol J 2024; 21:324. [PMID: 39702248 DOI: 10.1186/s12985-024-02608-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 12/11/2024] [Indexed: 12/21/2024] Open
Abstract
The Flaviviridae family includes the dengue virus (DENV). About half of the world's population is in danger because of the estimated 390 million infections and 96 million symptomatic cases that occur each year. An effective treatment for dengue fever (DF) does not yet exist. Therefore, a better knowledge of how viral proteins and virus-targeted medicines may exert distinct functions depending on the exact cellular region addressed may aid in creating much-needed antiviral medications. Lipids facilitate the coordination of many viral replication phases, from entrance to dissemination. In addition, flaviviruses masterfully plan a significant rearrangement of the host cell's lipid metabolism to foster the growth of new viruses. Recent research has consistently shown the significance of certain lipid classes in flavivirus infections. For instance, in DENV-infected cells, overall cellular cholesterol (CHO) levels are only a little altered, and DENV replication is significantly reduced when CHO metabolism is inhibited. Moreover, statins significantly decrease DENV serotype 2 (DENV-2) titers, indicating that CHO is a prerequisite for the dengue viral cycle. Furthermore, many Proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors are now being evaluated in human research. A new pharmacological target for the management of high CHO is PCSK9. Moreover, suppression of PCSK9 has been proposed as a possible defense against DENV. Numerous studies have generally recommended the use of lipid-lowering medications to suppress the DENV. As a result, we have investigated the DENV and popular treatment techniques in this research. We have also examined how lipid metabolism, cellular lipids, and lipid receptors affect DENV replication regulation. Lastly, we have looked at how different lipid-lowering medications affect the DENV. This article also discusses the treatment method's future based on its benefits and drawbacks.
Collapse
Affiliation(s)
| | | | | | | | - Hayder Naji Sameer
- Collage of Pharmacy, National University of Science and Technology, Nasiriyah, Dhi Qar, 64001, Iraq
| | - Mohaned Adil
- Pharmacy College, Al-Farahidi University, Baghdad, Iraq
| | - Shaylan Kalavi
- Department of Clinical Pharmacy, Faculty of Pharmacy, Islamic Azad University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Visser B, Scheifler M. Insect Lipid Metabolism in the Presence of Symbiotic and Pathogenic Viruses and Bacteria. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024. [PMID: 39548000 DOI: 10.1007/5584_2024_833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
Insects, like most animals, have intimate interactions with microorganisms that can influence the insect host's lipid metabolism. In this chapter, we describe what is known so far about the role prokaryotic microorganisms play in insect lipid metabolism. We start exploring microbe-insect lipid interactions focusing on endosymbionts, and more specifically the gut microbiota that has been predominantly studied in Drosophila melanogaster. We then move on to an overview of the work done on the common and well-studied endosymbiont Wolbachia pipientis, also in interaction with other microbes. Taking a slightly different angle, we then look at the effect of human pathogens, including dengue and other viruses, on the lipids of mosquito vectors. We extend the work on human pathogens and include interactions with the endosymbiont Wolbachia that was identified as a natural tool to reduce the spread of mosquito-borne diseases. Research on lipid metabolism of plant disease vectors is up and coming and we end this chapter by highlighting current knowledge in that field.
Collapse
Affiliation(s)
- Bertanne Visser
- Evolution and Ecophysiology Group, Department of Functional and Evolutionary Entomology, University of Liège - Gembloux Agro-Bio Tech, Gembloux, Belgium
| | - Mathilde Scheifler
- Evolution and Ecophysiology Group, Department of Functional and Evolutionary Entomology, University of Liège - Gembloux Agro-Bio Tech, Gembloux, Belgium.
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France.
| |
Collapse
|
3
|
Liao YC, Yeh CC, Chueh YF, Huang MS, Wu JS, Wen YX, Chang YT, Lai YR, Chen JJ, Chang TH. Effects of the oxoaporphine alkaloid hernandonine on dengue virus. Evidence for its mechanisms of action. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 134:155986. [PMID: 39232285 DOI: 10.1016/j.phymed.2024.155986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 08/15/2024] [Accepted: 08/25/2024] [Indexed: 09/06/2024]
Abstract
BACKGROUND Dengue, caused by the dengue virus (Orthoflavivirus dengue, encompassing DENV types 1-4), is a member of the Flaviviridae family. The symptoms of dengue range from subclinical or mild manifestations to potentially fatal complications. The management of severe dengue is exceptionally challenging due to the absence of effective antiviral medications. In this context, natural products, whether in the form of pure compounds or standardized plant extracts, have emerged as a promising source for the development of novel antiviral therapeutics. Hernandonine, an oxoaporphine alkaloid found in Hernandia nymphaeifolia (C. Presl) Kubitzki. serves both as a metabolite and an inhibitor of human immunodeficiency virus type 1 (HIV-1) integrase. PURPOSE This study investigated the ability of hernandonine to inhibit DENV infection and explored its potential mechanisms. STUDY DESIGN To assess the in vitro anti-DENV activity, cells or induced pluripotent stem cell (iPSC)-derived cerebral organoids were exposed to hernandonine before or after infection with DENV. Along with hernandonine, the endocytosis modulators, genistein, wortmannin, Methyl-β-cyclodextrin (MβCD) and lovastatin, were used in the assays. METHODS The DENV infectivity and virion production in cells or cerebral organoids treated with compounds were determined. Various methods, including cell and cerebral organoids imaging, protein and gene detection were conducted to explore their antiviral mechanisms. RESULTS The results revealed notable antiviral properties of hernandonine, particularly in inhibiting DENV during the early stages of infection. Mechanistic analysis demonstrated that, akin to genistein, wortmannin, methyl-β-cyclodextrin (MβCD), and lovastatin, hernandonine exerted an influence on cholesterol-rich lipid rafts. It also restrained the pseudopodial movement ability of cells, potentially through the downregulation of cytoskeleton and endocytosis regulatory genes or protein expression. Moreover, hernandonine's virucidal activity was demonstrated. Hernandonine's inhibition of DENV infection was further validated in a disease-relevant iPSC-derived cerebral organoids model, a novel DENV-2 infection system worthy of further application. CONCLUSION This study evidenced the potential of hernandonine as a novel candidate in the fight against DENV infection.
Collapse
Affiliation(s)
- Ying-Chieh Liao
- Department and Graduate Institute of Microbiology and Immunology, National Defense Medical Center, No.161, Sec. 6, Minquan E. Rd., Neihu Dist., Taipei 114, Taiwan
| | - Chih-Ching Yeh
- Department of Pathology and Laboratory Medicine, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan; Department of Nursing, Shu-Zen Junior College of Medicine and Management, Kaohsiung 821, Taiwan
| | - Yu-Fan Chueh
- Department and Graduate Institute of Microbiology and Immunology, National Defense Medical Center, No.161, Sec. 6, Minquan E. Rd., Neihu Dist., Taipei 114, Taiwan; Molecular and Cell Biology, Taiwan International Graduate Program, Academia Sinica; and Graduate Institute of Life Sciences, National defense Medical Center, Taipei 114, Taiwan
| | - Mei-Shu Huang
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan
| | - Jhong-Syuan Wu
- Department and Graduate Institute of Microbiology and Immunology, National Defense Medical Center, No.161, Sec. 6, Minquan E. Rd., Neihu Dist., Taipei 114, Taiwan
| | - Ying-Xu Wen
- Department and Graduate Institute of Microbiology and Immunology, National Defense Medical Center, No.161, Sec. 6, Minquan E. Rd., Neihu Dist., Taipei 114, Taiwan
| | - Yu-Tzu Chang
- Department and Graduate Institute of Microbiology and Immunology, National Defense Medical Center, No.161, Sec. 6, Minquan E. Rd., Neihu Dist., Taipei 114, Taiwan
| | - Yi-Ru Lai
- Department and Graduate Institute of Microbiology and Immunology, National Defense Medical Center, No.161, Sec. 6, Minquan E. Rd., Neihu Dist., Taipei 114, Taiwan
| | - Jih-Jung Chen
- Department of Pharmacy, School of Pharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 404, Taiwan; Traditional Herbal Medicine Research Center, Taipei Medical University Hospital, Taipei 110, Taiwan.
| | - Tsung-Hsien Chang
- Department and Graduate Institute of Microbiology and Immunology, National Defense Medical Center, No.161, Sec. 6, Minquan E. Rd., Neihu Dist., Taipei 114, Taiwan.
| |
Collapse
|
4
|
Byrne AB, Bonnin FA, López EL, Polack FP, Talarico LB. C1q modulation of antibody-dependent enhancement of dengue virus infection in human myeloid cell lines is dependent on cell type and antibody specificity. Microbes Infect 2024; 26:105378. [PMID: 38880233 DOI: 10.1016/j.micinf.2024.105378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/28/2024] [Accepted: 06/10/2024] [Indexed: 06/18/2024]
Abstract
Antibody-dependent enhancement (ADE) of dengue virus (DENV) infection is one of the mechanisms contributing to increased severity during heterotypic, secondary infection. The complement protein C1q has been shown to reduce the magnitude of ADE in vitro. Therefore, we investigated the mechanisms of C1q modulation of ADE, focusing on processes of viral entry. Using a model of ADE of DENV-1 infection in human myeloid cell lines in the presence of monoclonal antibodies, 4G2 and 2H2, we found that C1q produced nearly a 40-fold reduction of ADE of DENV-1 in K562 cells, but had no effect in U937 cells. In K562 cells, C1q reduced adsorption of DENV-1/4G2 and exerted a dual inhibitory effect on adsorption and internalization of DENV-1/2H2. Distinct endocytic pathways in the presence of antibody corresponded to conditions where C1q produced a differential action. Also, C1q did not affect the intrinsic cell response mediated by FcγR in human myeloid cells. The modulation of ADE of DENV-1 by C1q is dependent on the FcγR expressed on immune cells and the specificity of the antibody comprising the immune complex. Understanding protective and pathogenic mechanisms in the humoral response to DENV infections is crucial for the successful design of antivirals and vaccines.
Collapse
Affiliation(s)
- Alana B Byrne
- Laboratorio de Investigaciones Infectológicas y Biología Molecular, Infectología, Departamento de Medicina, Hospital de Niños Dr. Ricardo Gutiérrez, Gallo 1330, Buenos Aires 1425, Argentina; Fundación INFANT, Gavilán 94, Buenos Aires 1406, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, Godoy Cruz 2290, Buenos Aires 1425, Argentina.
| | - Florencia A Bonnin
- Laboratorio de Investigaciones Infectológicas y Biología Molecular, Infectología, Departamento de Medicina, Hospital de Niños Dr. Ricardo Gutiérrez, Gallo 1330, Buenos Aires 1425, Argentina; Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Intendente Güiraldes 2160, Buenos Aires 1428, Argentina
| | - Eduardo L López
- Departamento de Medicina, Programa de Infectología Pediátrica, Hospital de Niños Dr. Ricardo Gutiérrez, Universidad de Buenos Aires, Gallo 1330, Buenos Aires 1425, Argentina
| | | | - Laura B Talarico
- Laboratorio de Investigaciones Infectológicas y Biología Molecular, Infectología, Departamento de Medicina, Hospital de Niños Dr. Ricardo Gutiérrez, Gallo 1330, Buenos Aires 1425, Argentina; Fundación INFANT, Gavilán 94, Buenos Aires 1406, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, Godoy Cruz 2290, Buenos Aires 1425, Argentina.
| |
Collapse
|
5
|
Selivanovitch E, Ostwalt A, Chao Z, Daniel S. Emerging Designs and Applications for Biomembrane Biosensors. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2024; 17:339-366. [PMID: 39018354 DOI: 10.1146/annurev-anchem-061622-042618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/19/2024]
Abstract
Nature has inspired the development of biomimetic membrane sensors in which the functionalities of biological molecules, such as proteins and lipids, are harnessed for sensing applications. This review provides an overview of the recent developments for biomembrane sensors compatible with either bulk or planar sensing applications, namely using lipid vesicles or supported lipid bilayers, respectively. We first describe the individual components required for these sensing platforms and the design principles that are considered when constructing them, and we segue into recent applications being implemented across multiple fields. Our goal for this review is to illustrate the versatility of nature's biomembrane toolbox and simultaneously highlight how biosensor platforms can be enhanced by harnessing it.
Collapse
Affiliation(s)
- Ekaterina Selivanovitch
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York, USA;
| | - Alexis Ostwalt
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York, USA;
| | - Zhongmou Chao
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York, USA;
| | - Susan Daniel
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York, USA;
| |
Collapse
|
6
|
Windah ALL, Tallei TE, AlShehail BM, Suoth EJ, Fatimawali, Alhashem YN, Halwani MA, AlShakhal MM, Aljeldah M, Alissa M, Alsuwat MA, Almanaa TN, Alshehri AA, Rabaan AA. Immunoinformatics-Driven Strategies for Advancing Epitope-Based Vaccine Design for West Nile Virus. J Pharm Sci 2024; 113:906-917. [PMID: 38042341 DOI: 10.1016/j.xphs.2023.11.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/26/2023] [Accepted: 11/27/2023] [Indexed: 12/04/2023]
Abstract
The West Nile virus (WNV) is the causative agent of West Nile disease (WND), which poses a potential risk of meningitis or encephalitis. The aim of the study was to design an epitope-based vaccine for WNV by utilizing computational analyses. The epitope-based vaccine design process encompassed WNV sequence collection, phylogenetic tree construction, and sequence alignment. Computational models identified B-cell and T-cell epitopes, followed by immunological property analysis. Epitopes were then modeled and docked with B-cell receptors, MHC I, and MHC II. Molecular dynamics simulations further explored dynamic interactions between epitopes and receptors. The findings indicated that the B-cell epitope QINHHWHKSGSSIG, along with three T-cell epitopes (FLVHREWFM for MHC I, NPFVSVATANAKVLI for MHC II, and NAYYVMTVGTKTFLV for MHC II), successfully passed the immunological evaluations. These four epitopes were further subjected to docking and molecular dynamics simulation studies. Although each demonstrated favorable affinities with their respective receptors, only NAYYVMTVGTKTFLV displayed a stable interaction with MHC II during MDS analysis, hence emerging as a potential candidate for a WNV epitope-based vaccine. This study demonstrates a comprehensive approach to epitope vaccine design, combining computational analyses, molecular modeling, and simulation techniques to identify potential vaccine candidates for WNV.
Collapse
Affiliation(s)
- Axl Laurens Lukas Windah
- Department of Chemistry, Faculty of Science and Technology, Universitas Airlangga, Surabaya 60115, East Java, Indonesia
| | - Trina Ekawati Tallei
- Department of Biology, Faculty of Mathematics and Natural Sciences, Sam Ratulangi University, Manado 95115, North Sulawesi, Indonesia.
| | - Bashayer M AlShehail
- Pharmacy Practice Department, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Elly Juliana Suoth
- Pharmacy Study Program, Faculty of Mathematics and Natural Sciences, Sam Ratulangi University, Mana-do 95115, North Sulawesi, Indonesia
| | - Fatimawali
- Pharmacy Study Program, Faculty of Mathematics and Natural Sciences, Sam Ratulangi University, Mana-do 95115, North Sulawesi, Indonesia
| | - Yousef N Alhashem
- Clinical Laboratory Science Department, Mohammed Al-Mana College for Medical Sciences, Dammam 34222, Saudi Arabia
| | - Muhammad A Halwani
- Department of Medical Microbiology, Faculty of Medicine, Al Baha University. Al Baha 4781, Saudi Arabia
| | - Mouayd M AlShakhal
- Internal Medicine Department, Qatif Central Hospital, Qatif 32654, Saudi Arabia
| | - Mohammed Aljeldah
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Hafr Al Batin, Hafr Al Batin 39831, Saudi Arabia
| | - Mohammed Alissa
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Meshari A Alsuwat
- Clinical Laboratory Sciences Department, College of Applied Medical Sciences, Taif University, Al-Taif 21974, Saudi Arabia
| | - Taghreed N Almanaa
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ahmad A Alshehri
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Najran University, Najran 61441, Saudi Arabia
| | - Ali A Rabaan
- Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran 31311, Saudi Arabia; College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; Department of Public Health and Nutrition, The University of Haripur, Haripur 22610, Pakistan
| |
Collapse
|
7
|
Loterio RK, Monson EA, Templin R, de Bruyne JT, Flores HA, Mackenzie JM, Ramm G, Helbig KJ, Simmons CP, Fraser JE. Antiviral Wolbachia strains associate with Aedes aegypti endoplasmic reticulum membranes and induce lipid droplet formation to restrict dengue virus replication. mBio 2024; 15:e0249523. [PMID: 38132636 PMCID: PMC10865983 DOI: 10.1128/mbio.02495-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 11/20/2023] [Indexed: 12/23/2023] Open
Abstract
Wolbachia are a genus of insect endosymbiotic bacteria which includes strains wMel and wAlbB that are being utilized as a biocontrol tool to reduce the incidence of Aedes aegypti-transmitted viral diseases like dengue. However, the precise mechanisms underpinning the antiviral activity of these Wolbachia strains are not well defined. Here, we generated a panel of Ae. aegypti-derived cell lines infected with antiviral strains wMel and wAlbB or the non-antiviral Wolbachia strain wPip to understand host cell morphological changes specifically induced by antiviral strains. Antiviral strains were frequently found to be entirely wrapped by the host endoplasmic reticulum (ER) membrane, while wPip bacteria clustered separately in the host cell cytoplasm. ER-derived lipid droplets (LDs) increased in volume in wMel- and wAlbB-infected cell lines and mosquito tissues compared to cells infected with wPip or Wolbachia-free controls. Inhibition of fatty acid synthase (required for triacylglycerol biosynthesis) reduced LD formation and significantly restored ER-associated dengue virus replication in cells occupied by wMel. Together, this suggests that antiviral Wolbachia strains may specifically alter the lipid composition of the ER to preclude the establishment of dengue virus (DENV) replication complexes. Defining Wolbachia's antiviral mechanisms will support the application and longevity of this effective biocontrol tool that is already being used at scale.IMPORTANCEAedes aegypti transmits a range of important human pathogenic viruses like dengue. However, infection of Ae. aegypti with the insect endosymbiotic bacterium, Wolbachia, reduces the risk of mosquito to human viral transmission. Wolbachia is being utilized at field sites across more than 13 countries to reduce the incidence of viruses like dengue, but it is not well understood how Wolbachia induces its antiviral effects. To examine this at the subcellular level, we compared how different strains of Wolbachia with varying antiviral strengths associate with and modify host cell structures. Strongly antiviral strains were found to specifically associate with the host endoplasmic reticulum and induce striking impacts on host cell lipid droplets. Inhibiting Wolbachia-induced lipid redistribution partially restored dengue virus replication demonstrating this is a contributing role for Wolbachia's antiviral activity. These findings provide new insights into how antiviral Wolbachia strains associate with and modify Ae. aegypti host cells.
Collapse
Affiliation(s)
- Robson K. Loterio
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, Australia
| | - Ebony A. Monson
- Department of Microbiology, Anatomy, Physiology and Pharmacology; School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, Australia
| | - Rachel Templin
- Ramaciotti Centre For Cryo-Electron Microscopy, Monash University, Clayton, Australia
| | | | - Heather A. Flores
- School of Biological Sciences, Monash University, Clayton, Australia
| | - Jason M. Mackenzie
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Georg Ramm
- Ramaciotti Centre For Cryo-Electron Microscopy, Monash University, Clayton, Australia
| | - Karla J. Helbig
- Department of Microbiology, Anatomy, Physiology and Pharmacology; School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, Australia
| | - Cameron P. Simmons
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, Australia
- World Mosquito Program, Monash University, Clayton, Australia
| | - Johanna E. Fraser
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, Australia
| |
Collapse
|
8
|
De Jesús-González LA, del Ángel RM, Palacios-Rápalo SN, Cordero-Rivera CD, Rodríguez-Carlos A, Trujillo-Paez JV, Farfan-Morales CN, Osuna-Ramos JF, Reyes-Ruiz JM, Rivas-Santiago B, León-Juárez M, García-Herrera AC, Ramos-Cortes AC, López-Gándara EA, Martínez-Rodríguez E. A Dual Pharmacological Strategy against COVID-19: The Therapeutic Potential of Metformin and Atorvastatin. Microorganisms 2024; 12:383. [PMID: 38399787 PMCID: PMC10893401 DOI: 10.3390/microorganisms12020383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/31/2024] [Accepted: 02/11/2024] [Indexed: 02/25/2024] Open
Abstract
Metformin (MET) and atorvastatin (ATO) are promising treatments for COVID-19. This review explores the potential of MET and ATO, commonly prescribed for diabetes and dyslipidemia, respectively, as versatile medicines against SARS-CoV-2. Due to their immunomodulatory and antiviral capabilities, as well as their cost-effectiveness and ubiquitous availability, they are highly suitable options for treating the virus. MET's effect extends beyond managing blood sugar, impacting pathways that can potentially decrease the severity and fatality rates linked with COVID-19. It can partially block mitochondrial complex I and stimulate AMPK, which indicates that it can be used more widely in managing viral infections. ATO, however, impacts cholesterol metabolism, a crucial element of the viral replicative cycle, and demonstrates anti-inflammatory characteristics that could modulate intense immune reactions in individuals with COVID-19. Retrospective investigations and clinical trials show decreased hospitalizations, severity, and mortality rates in patients receiving these medications. Nevertheless, the journey from observing something to applying it in a therapeutic setting is intricate, and the inherent diversity of the data necessitates carefully executed, forward-looking clinical trials. This review highlights the requirement for efficacious, easily obtainable, and secure COVID-19 therapeutics and identifies MET and ATO as promising treatments in this worldwide health emergency.
Collapse
Affiliation(s)
- Luis Adrián De Jesús-González
- Unidad de Investigación Biomédica de Zacatecas, Instituto Mexicano del Seguro Social, Zacatecas 98000, Mexico; (A.R.-C.); (J.V.T.-P.); (B.R.-S.); (A.C.G.-H.); (A.C.R.-C.); (E.A.L.-G.); (E.M.-R.)
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV-IPN), Mexico City 07360, Mexico; (S.N.P.-R.); (C.D.C.-R.)
| | - Rosa María del Ángel
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV-IPN), Mexico City 07360, Mexico; (S.N.P.-R.); (C.D.C.-R.)
| | - Selvin Noé Palacios-Rápalo
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV-IPN), Mexico City 07360, Mexico; (S.N.P.-R.); (C.D.C.-R.)
| | - Carlos Daniel Cordero-Rivera
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV-IPN), Mexico City 07360, Mexico; (S.N.P.-R.); (C.D.C.-R.)
| | - Adrián Rodríguez-Carlos
- Unidad de Investigación Biomédica de Zacatecas, Instituto Mexicano del Seguro Social, Zacatecas 98000, Mexico; (A.R.-C.); (J.V.T.-P.); (B.R.-S.); (A.C.G.-H.); (A.C.R.-C.); (E.A.L.-G.); (E.M.-R.)
| | - Juan Valentin Trujillo-Paez
- Unidad de Investigación Biomédica de Zacatecas, Instituto Mexicano del Seguro Social, Zacatecas 98000, Mexico; (A.R.-C.); (J.V.T.-P.); (B.R.-S.); (A.C.G.-H.); (A.C.R.-C.); (E.A.L.-G.); (E.M.-R.)
| | - Carlos Noe Farfan-Morales
- Departamento de Ciencias Naturales, Universidad Autónoma Metropolitana (UAM), Unidad Cuajimalpa, Ciudad de México 05348, Mexico;
| | | | - José Manuel Reyes-Ruiz
- División de Investigación en Salud, Unidad Médica de Alta Especialidad, Hospital de Especialidades No. 14, Centro Médico Nacional “Adolfo Ruiz Cortines”, Instituto Mexicano del Seguro Social (IMSS), Veracruz 91897, Mexico;
- Facultad de Medicina, Región Veracruz, Universidad Veracruzana (UV), Veracruz 91700, Mexico
| | - Bruno Rivas-Santiago
- Unidad de Investigación Biomédica de Zacatecas, Instituto Mexicano del Seguro Social, Zacatecas 98000, Mexico; (A.R.-C.); (J.V.T.-P.); (B.R.-S.); (A.C.G.-H.); (A.C.R.-C.); (E.A.L.-G.); (E.M.-R.)
| | - Moisés León-Juárez
- Laboratorio de Virología Perinatal y Diseño Molecular de Antígenos y Biomarcadores, Departamento de Inmunobioquímica, Instituto Nacional de Perinatología, Ciudad de México 11000, Mexico;
| | - Ana Cristina García-Herrera
- Unidad de Investigación Biomédica de Zacatecas, Instituto Mexicano del Seguro Social, Zacatecas 98000, Mexico; (A.R.-C.); (J.V.T.-P.); (B.R.-S.); (A.C.G.-H.); (A.C.R.-C.); (E.A.L.-G.); (E.M.-R.)
| | - Adriana Clara Ramos-Cortes
- Unidad de Investigación Biomédica de Zacatecas, Instituto Mexicano del Seguro Social, Zacatecas 98000, Mexico; (A.R.-C.); (J.V.T.-P.); (B.R.-S.); (A.C.G.-H.); (A.C.R.-C.); (E.A.L.-G.); (E.M.-R.)
| | - Erika Alejandra López-Gándara
- Unidad de Investigación Biomédica de Zacatecas, Instituto Mexicano del Seguro Social, Zacatecas 98000, Mexico; (A.R.-C.); (J.V.T.-P.); (B.R.-S.); (A.C.G.-H.); (A.C.R.-C.); (E.A.L.-G.); (E.M.-R.)
| | - Estefanía Martínez-Rodríguez
- Unidad de Investigación Biomédica de Zacatecas, Instituto Mexicano del Seguro Social, Zacatecas 98000, Mexico; (A.R.-C.); (J.V.T.-P.); (B.R.-S.); (A.C.G.-H.); (A.C.R.-C.); (E.A.L.-G.); (E.M.-R.)
| |
Collapse
|
9
|
Palacios-Rápalo SN, Farfan-Morales CN, Cordero-Rivera CD, De Jesús-González LA, Reyes-Ruiz JM, Meraz-Ríos MA, Del Ángel RM. An ivermectin - atorvastatin combination impairs nuclear transport inhibiting dengue infection in vitro and in vivo. iScience 2023; 26:108294. [PMID: 38034354 PMCID: PMC10682259 DOI: 10.1016/j.isci.2023.108294] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/29/2023] [Accepted: 10/18/2023] [Indexed: 12/02/2023] Open
Abstract
Dengue virus (DENV) uses cellular nuclear transport machinery to import some proteins into the nucleus. Recently, the non-structural protein 3 (NS3) of DENV was localized in the nucleus of infected cells; however, its nuclear import mechanism is still unknown. In this study, we demonstrate that Ivermectin (IVM) inhibits the nuclear localization of NS3 through the inhibition of the Importin α/β1 pathway. We also report that Atorvastatin (ATV) can modulate the nuclear transport of NS3 protease and NS5 polymerase of DENV-2. On the other hand, we found that IVM and ATV treatments reduce the alteration of nuclear pore complex (NPC) proteins, and an IVM+ATV combination reduced DENV infection both in vitro and in vivo. Hence, we conclude that ATV transport inhibition is an additional antiviral effect of this drug, suggesting a potential anti-DENV therapy in combination with IVM.
Collapse
Affiliation(s)
- Selvin Noé Palacios-Rápalo
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV-IPN), Mexico City 07360, Mexico
| | - Carlos Noe Farfan-Morales
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV-IPN), Mexico City 07360, Mexico
- Departamento de Ciencias Naturales, Universidad Autónoma Metropolitana (UAM), Unidad Cuajimalpa, Ciudad de México 05348, México
| | - Carlos Daniel Cordero-Rivera
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV-IPN), Mexico City 07360, Mexico
| | - Luis Adrián De Jesús-González
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV-IPN), Mexico City 07360, Mexico
- Unidad de Investigación Biomédica de Zacatecas, Instituto Mexicano del Seguro Social, Zacatecas, Zacatecas, México
| | - José Manuel Reyes-Ruiz
- Unidad Médica de Alta Especialidad, Hospital de Especialidades No. 14, Centro Médico Nacional “Adolfo Ruiz Cortines”, Instituto Mexicano del Seguro Social (IMSS), Veracruz 91897, México
- Facultad de Medicina, Región Veracruz, Universidad Veracruzana (UV), Veracruz 91700, México
| | - Marco Antonio Meraz-Ríos
- Department of Molecular Biomedicine, Center for Research and Advanced Studies (CINVESTAV-IPN), Mexico City 07360, Mexico
| | - Rosa María Del Ángel
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV-IPN), Mexico City 07360, Mexico
| |
Collapse
|
10
|
Wang Q, Yang S, Yang K, Li X, Dai Y, Zheng Y, Cao S, Yan Q, Huang X, Wen Y, Zhao Q, Du S, Lang Y, Zhao S, Wu R. CD4 is an important host factor for Japanese encephalitis virus entry and replication in PK-15 cells. Vet Microbiol 2023; 287:109913. [PMID: 38006719 DOI: 10.1016/j.vetmic.2023.109913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 11/07/2023] [Accepted: 11/11/2023] [Indexed: 11/27/2023]
Abstract
Japanese encephalitis virus (JEV) is a flavivirus that is spread through mosquito bites and is the leading cause of viral encephalitis in Asia. JEV can infect a variety of cell types; however, crucial receptor molecules remain unclear. The purpose of this study was to determine whether porcine CD4 protein is a receptor protein that impacts JEV entry into PK15 cells and subsequent viral replication. We confirmed the interaction between the JEV E protein and the CD4 protein through Co-IP, virus binding and internalization, antibody blocking, and overexpression and created a PK-15 cell line with CD4 gene knockdown by CRISPR/Cas9. The results show that CD4 interacts with JEV E and that CD4 knockdown cells altered virus adsorption and internalization, drastically reducing virus attachment. The level of viral transcription in CD4 antibody-blocked cells, vs. control cells, was decreased by 49.1%. Based on these results, we believe that CD4 is a receptor protein for JEVs. Furthermore, most viral receptors appear to be associated with lipid rafts, and colocalization studies demonstrate the presence of CD4 protein on lipid rafts. RT‒qPCR and WB results show that virus replication was suppressed in PK-15-CD4KD cells. The difference in viral titer between KD and WT PK-15 cells peaked at 24 h, and the viral titer in WT PK-15 cells was 5.6 × 106, whereas in PK-15-CD4KD cells, it was only 1.8 × 106, a 64% drop, demonstrating that CD4 deficiency has an effect on the process of viral replication. These findings suggest that JEV enters porcine kidney cells via lipid raft-colocalized CD4, and the proliferation process is positively correlated with CD4.
Collapse
Affiliation(s)
- Qi Wang
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural, Chengdu 611330, China
| | - Shuqing Yang
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural, Chengdu 611330, China
| | - Ke Yang
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural, Chengdu 611330, China
| | - Xinran Li
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural, Chengdu 611330, China
| | - Yu Dai
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural, Chengdu 611330, China
| | - Yi Zheng
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural, Chengdu 611330, China
| | - Sanjie Cao
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural, Chengdu 611330, China
| | - Qigui Yan
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural, Chengdu 611330, China
| | - Xiaobo Huang
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural, Chengdu 611330, China
| | - Yiping Wen
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural, Chengdu 611330, China
| | - Qin Zhao
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural, Chengdu 611330, China
| | - Senyan Du
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural, Chengdu 611330, China
| | - Yifei Lang
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural, Chengdu 611330, China
| | - Shan Zhao
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural, Chengdu 611330, China
| | - Rui Wu
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural, Chengdu 611330, China; Sichuan Science-observation Experiment Station of Veterinary Drugs and Veterinary Diagnostic Technology, Ministry of Agriculture, Chengdu 611330, China; National Animal Experiments Teaching Demonstration Center, Sichuan Agricultural University, Chengdu 611330, China.
| |
Collapse
|
11
|
Goellner S, Enkavi G, Prasad V, Denolly S, Eu S, Mizzon G, Witte L, Kulig W, Uckeley ZM, Lavacca TM, Haselmann U, Lozach PY, Brügger B, Vattulainen I, Bartenschlager R. Zika virus prM protein contains cholesterol binding motifs required for virus entry and assembly. Nat Commun 2023; 14:7344. [PMID: 37957166 PMCID: PMC10643666 DOI: 10.1038/s41467-023-42985-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023] Open
Abstract
For successful infection of host cells and virion production, enveloped viruses, including Zika virus (ZIKV), extensively rely on cellular lipids. However, how virus protein-lipid interactions contribute to the viral life cycle remains unclear. Here, we employ a chemo-proteomics approach with a bifunctional cholesterol probe and show that cholesterol is closely associated with the ZIKV structural protein prM. Bioinformatic analyses, reverse genetics alongside with photoaffinity labeling assays, and atomistic molecular dynamics simulations identified two functional cholesterol binding motifs within the prM transmembrane domain. Loss of prM-cholesterol association has a bipartite effect reducing ZIKV entry and leading to assembly defects. We propose a model in which membrane-resident M facilitates cholesterol-supported lipid exchange during endosomal entry and, together with cholesterol, creates a platform promoting virion assembly. In summary, we identify a bifunctional role of prM in the ZIKV life cycle by mediating viral entry and virus assembly in a cholesterol-dependent manner.
Collapse
Affiliation(s)
- Sarah Goellner
- Heidelberg University, Medical Faculty Heidelberg, Department of Infectious Diseases, Molecular Virology, Center for Integrative Infectious Diseases Research, Heidelberg, Germany
| | - Giray Enkavi
- Department of Physics, University of Helsinki, Helsinki, Finland
| | - Vibhu Prasad
- Heidelberg University, Medical Faculty Heidelberg, Department of Infectious Diseases, Molecular Virology, Center for Integrative Infectious Diseases Research, Heidelberg, Germany
| | - Solène Denolly
- Heidelberg University, Medical Faculty Heidelberg, Department of Infectious Diseases, Molecular Virology, Center for Integrative Infectious Diseases Research, Heidelberg, Germany
| | - Sungmin Eu
- Heidelberg University, Medical Faculty Heidelberg, Department of Infectious Diseases, Molecular Virology, Center for Integrative Infectious Diseases Research, Heidelberg, Germany
- d-fine GmbH, Frankfurt, Germany
| | - Giulia Mizzon
- Heidelberg University, Medical Faculty Heidelberg, Department of Infectious Diseases, Molecular Virology, Center for Integrative Infectious Diseases Research, Heidelberg, Germany
- German Center for Infection Research (DZIF), Heidelberg partner site, Heidelberg, Germany
| | - Leander Witte
- Heidelberg University, Medical Faculty Heidelberg, Department of Infectious Diseases, Molecular Virology, Center for Integrative Infectious Diseases Research, Heidelberg, Germany
| | - Waldemar Kulig
- Department of Physics, University of Helsinki, Helsinki, Finland
| | - Zina M Uckeley
- Heidelberg University, Medical Faculty Heidelberg, Department of Infectious Diseases, Virology, Center for Integrative Infectious Diseases Research, Heidelberg, Germany
- Department of Molecular Genetics & Microbiology, University of Florida, Florida, USA
| | - Teresa M Lavacca
- Heidelberg University, Medical Faculty Heidelberg, Department of Infectious Diseases, Molecular Virology, Center for Integrative Infectious Diseases Research, Heidelberg, Germany
| | - Uta Haselmann
- Heidelberg University, Medical Faculty Heidelberg, Department of Infectious Diseases, Molecular Virology, Center for Integrative Infectious Diseases Research, Heidelberg, Germany
| | - Pierre-Yves Lozach
- Heidelberg University, Medical Faculty Heidelberg, Department of Infectious Diseases, Virology, Center for Integrative Infectious Diseases Research, Heidelberg, Germany
- INRAE, EPHE, IVPC, University of Lyon, Lyon, France
| | - Britta Brügger
- Heidelberg University Biochemistry Center (BZH), Heidelberg, Germany
| | - Ilpo Vattulainen
- Department of Physics, University of Helsinki, Helsinki, Finland
| | - Ralf Bartenschlager
- Heidelberg University, Medical Faculty Heidelberg, Department of Infectious Diseases, Molecular Virology, Center for Integrative Infectious Diseases Research, Heidelberg, Germany.
- German Center for Infection Research (DZIF), Heidelberg partner site, Heidelberg, Germany.
- Division Virus-Associated Carcinogenesis, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
12
|
Elliott K, Caicedo PA, Haunerland NH, Lowenberger C. Profiling lipidomic changes in dengue-resistant and dengue-susceptible strains of Colombian Aedes aegypti after dengue virus challenge. PLoS Negl Trop Dis 2023; 17:e0011676. [PMID: 37847671 PMCID: PMC10581493 DOI: 10.1371/journal.pntd.0011676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 09/20/2023] [Indexed: 10/19/2023] Open
Abstract
The mosquito Aedes aegypti is the primary vector for all four serotypes of dengue viruses (DENV1-4), which infect millions across the globe each year. Traditional insecticide programs have been transiently effective at minimizing cases; however, insecticide resistance and habitat expansion have caused cases of DENV to surge over the last decade. There is an urgent need to develop novel vector control measures, but these are contingent on a detailed understanding of host-parasite interactions. Here, we have utilized lipidomics to survey the profiles of naturally DENV-resistant (Cali-MIB) or susceptible (Cali-S) populations of Ae. aegypti, isolated from Cali, Colombia, when fed on blood meals containing DENV. Control insects were fed on a DENV-free blood meal. Midguts were dissected from Cali-MIB and Cali-S females at three time points post-infectious blood meal, 18, 24 and 36h, to identify changes in the lipidome at key times associated with the entry, replication and exit of DENV from midgut cells. We used principal component analysis to visualize broad patterns in lipidomic profiles between the treatment groups, and significance analysis of microarray to determine lipids that were altered in response to viral challenge. These data can be used to identify molecules or metabolic pathways particular to the susceptible or refractory phenotypes, and possibly lead to the generation of stable, DENV-resistant strains of Ae. aegypti.
Collapse
Affiliation(s)
- Keenan Elliott
- Simon Fraser University, Department of Biological Sciences, C2D2 Research Group, Burnaby, British Columbia, Canada
| | - Paola A. Caicedo
- Universidad Icesi, Natural Science Faculty, Department of Biology, Cali, Colombia
| | - Norbert H. Haunerland
- Simon Fraser University, Department of Biological Sciences, C2D2 Research Group, Burnaby, British Columbia, Canada
| | - Carl Lowenberger
- Simon Fraser University, Department of Biological Sciences, C2D2 Research Group, Burnaby, British Columbia, Canada
| |
Collapse
|
13
|
Zeng L, Li J, Lv M, Li Z, Yao L, Gao J, Wu Q, Wang Z, Yang X, Tang G, Qu G, Jiang G. Environmental Stability and Transmissibility of Enveloped Viruses at Varied Animate and Inanimate Interfaces. ENVIRONMENT & HEALTH (WASHINGTON, D.C.) 2023; 1:15-31. [PMID: 37552709 PMCID: PMC11504606 DOI: 10.1021/envhealth.3c00005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/11/2023] [Accepted: 04/13/2023] [Indexed: 08/10/2023]
Abstract
Enveloped viruses have been the leading causative agents of viral epidemics in the past decade, including the ongoing coronavirus disease 2019 outbreak. In epidemics caused by enveloped viruses, direct contact is a common route of infection, while indirect transmissions through the environment also contribute to the spread of the disease, although their significance remains controversial. Bridging the knowledge gap regarding the influence of interfacial interactions on the persistence of enveloped viruses in the environment reveals the transmission mechanisms when the virus undergoes mutations and prevents excessive disinfection during viral epidemics. Herein, from the perspective of the driving force, partition efficiency, and viral survivability at interfaces, we summarize the viral and environmental characteristics that affect the environmental transmission of viruses. We expect to provide insights for virus detection, environmental surveillance, and disinfection to limit the spread of severe acute respiratory syndrome coronavirus 2.
Collapse
Affiliation(s)
- Li Zeng
- State
Key Laboratory of Environmental Chemistry and Ecotoxicology, Research
Center for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing 100085, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Junya Li
- College
of Sciences, Northeastern University, Shenyang 110819, China
| | - Meilin Lv
- College
of Sciences, Northeastern University, Shenyang 110819, China
| | - Zikang Li
- State
Key Laboratory of Environmental Chemistry and Ecotoxicology, Research
Center for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing 100085, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Linlin Yao
- State
Key Laboratory of Environmental Chemistry and Ecotoxicology, Research
Center for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing 100085, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Jie Gao
- State
Key Laboratory of Environmental Chemistry and Ecotoxicology, Research
Center for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing 100085, China
- School
of Environment, Hangzhou Institute for Advanced
Study, UCAS, Hangzhou 310000, China
| | - Qi Wu
- State
Key Laboratory of Environmental Chemistry and Ecotoxicology, Research
Center for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing 100085, China
- School
of Environment, Hangzhou Institute for Advanced
Study, UCAS, Hangzhou 310000, China
| | - Ziniu Wang
- State
Key Laboratory of Environmental Chemistry and Ecotoxicology, Research
Center for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing 100085, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinyue Yang
- State
Key Laboratory of Environmental Chemistry and Ecotoxicology, Research
Center for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing 100085, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Gang Tang
- State
Key Laboratory of Environmental Chemistry and Ecotoxicology, Research
Center for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing 100085, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Guangbo Qu
- State
Key Laboratory of Environmental Chemistry and Ecotoxicology, Research
Center for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing 100085, China
- School
of Environment, Hangzhou Institute for Advanced
Study, UCAS, Hangzhou 310000, China
- Institute
of Environment and Health, Jianghan University, Wuhan 430056, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Guibin Jiang
- State
Key Laboratory of Environmental Chemistry and Ecotoxicology, Research
Center for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing 100085, China
- School
of Environment, Hangzhou Institute for Advanced
Study, UCAS, Hangzhou 310000, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
14
|
Osuna-Ramos JF, Farfan-Morales CN, Cordero-Rivera CD, De Jesús-González LA, Reyes-Ruiz JM, Hurtado-Monzón AM, Palacios-Rápalo SN, Jiménez-Camacho R, Meraz-Ríos MA, Del Ángel RM. Cholesterol-Lowering Drugs as Potential Antivirals: A Repurposing Approach against Flavivirus Infections. Viruses 2023; 15:1465. [PMID: 37515153 PMCID: PMC10383882 DOI: 10.3390/v15071465] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/17/2023] [Accepted: 06/19/2023] [Indexed: 07/30/2023] Open
Abstract
Flaviviruses, including Dengue (DENV), Zika (ZIKV), and Yellow Fever (YFV) viruses, represent a significant global health burden. The development of effective antiviral therapies against these viruses is crucial to mitigate their impact. This study investigated the antiviral potential of the cholesterol-lowering drugs atorvastatin and ezetimibe in monotherapy and combination against DENV, ZIKV, and YFV. In vitro results demonstrated a dose-dependent reduction in the percentage of infected cells for both drugs. The combination of atorvastatin and ezetimibe showed a synergistic effect against DENV 2, an additive effect against DENV 4 and ZIKV, and an antagonistic effect against YFV. In AG129 mice infected with DENV 2, monotherapy with atorvastatin or ezetimibe significantly reduced clinical signs and increased survival. However, the combination of both drugs did not significantly affect survival. This study provides valuable insights into the potential of atorvastatin and ezetimibe as antiviral agents against flaviviruses and highlights the need for further investigations into their combined therapeutic effects.
Collapse
Affiliation(s)
- Juan Fidel Osuna-Ramos
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV-IPN), Mexico City 07360, Mexico
- Facultad de Medicina, Universidad Autónoma de Sinaloa, Culiacán 80019, Mexico
| | - Carlos Noe Farfan-Morales
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV-IPN), Mexico City 07360, Mexico
- Departamento de Ciencias Naturales, Universidad Autónoma Metropolitana (UAM), Unidad Cuajimalpa, Mexico City 05348, Mexico
| | - Carlos Daniel Cordero-Rivera
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV-IPN), Mexico City 07360, Mexico
| | - Luis Adrián De Jesús-González
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV-IPN), Mexico City 07360, Mexico
- Unidad de Investigación Biomédica de Zacatecas, Instituto Mexicano del Seguro Social, Zacatecas 98000, Mexico
| | - José Manuel Reyes-Ruiz
- Unidad Médica de Alta Especialidad, Hospital de Especialidades No. 14, Centro Médico Nacional "Adolfo Ruiz Cortines", Instituto Mexicano del Seguro Social (IMSS), Veracruz Norte, Veracruz 91810, Mexico
- Facultad de Medicina, Región Veracruz, Universidad Veracruzana (UV), Veracruz 91090, Mexico
| | - Arianna M Hurtado-Monzón
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV-IPN), Mexico City 07360, Mexico
| | - Selvin Noé Palacios-Rápalo
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV-IPN), Mexico City 07360, Mexico
| | - Ricardo Jiménez-Camacho
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV-IPN), Mexico City 07360, Mexico
| | - Marco Antonio Meraz-Ríos
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Mexico City 07360, Mexico
| | - Rosa María Del Ángel
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV-IPN), Mexico City 07360, Mexico
| |
Collapse
|
15
|
Zuzic L, Marzinek JK, Anand GS, Warwicker J, Bond PJ. A pH-dependent cluster of charges in a conserved cryptic pocket on flaviviral envelopes. eLife 2023; 12:82447. [PMID: 37144875 PMCID: PMC10162804 DOI: 10.7554/elife.82447] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 04/18/2023] [Indexed: 05/06/2023] Open
Abstract
Flaviviruses are enveloped viruses which include human pathogens that are predominantly transmitted by mosquitoes and ticks. Some, such as dengue virus, exhibit the phenomenon of antibody-dependent enhancement (ADE) of disease, making vaccine-based routes of fighting infections problematic. The pH-dependent conformational change of the envelope (E) protein required for fusion between the viral and endosomal membranes is an attractive point of inhibition by antivirals as it has the potential to diminish the effects of ADE. We examined six flaviviruses by employing large-scale molecular dynamics (MD) simulations of raft systems that represent a substantial portion of the flaviviral envelope. We utilised a benzene-mapping approach that led to a discovery of shared hotspots and conserved cryptic sites. A cryptic pocket previously shown to bind a detergent molecule exhibited strain-specific characteristics. An alternative conserved cryptic site at the E protein domain interfaces showed a consistent dynamic behaviour across flaviviruses and contained a conserved cluster of ionisable residues. Constant-pH simulations revealed cluster and domain-interface disruption under low pH conditions. Based on this, we propose a cluster-dependent mechanism that addresses inconsistencies in the histidine-switch hypothesis and highlights the role of cluster protonation in orchestrating the domain dissociation pivotal for the formation of the fusogenic trimer.
Collapse
Affiliation(s)
- Lorena Zuzic
- Bioinformatics Institute (A*STAR), Singapore, Singapore
- Department of Chemistry, Manchester Institute of Biotechnology, The University of Manchester, Manchester, United Kingdom
| | | | - Ganesh S Anand
- Department of Biological Sciences, 16 Science Drive 4, National University of Singapore, Singapore, Singapore
- Department of Chemistry, The Pennsylvania State University, University Park, United States
| | - Jim Warwicker
- School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Institute of Biotechnology, The University of Manchester, Manchester, United Kingdom
| | - Peter J Bond
- Bioinformatics Institute (A*STAR), Singapore, Singapore
- Department of Biological Sciences, 16 Science Drive 4, National University of Singapore, Singapore, Singapore
| |
Collapse
|
16
|
Ratnayake OC, Chotiwan N, Saavedra-Rodriguez K, Perera R. The buzz in the field: the interaction between viruses, mosquitoes, and metabolism. Front Cell Infect Microbiol 2023; 13:1128577. [PMID: 37360524 PMCID: PMC10289420 DOI: 10.3389/fcimb.2023.1128577] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 03/24/2023] [Indexed: 06/28/2023] Open
Abstract
Among many medically important pathogens, arboviruses like dengue, Zika and chikungunya cause severe health and economic burdens especially in developing countries. These viruses are primarily vectored by mosquitoes. Having surmounted geographical barriers and threat of control strategies, these vectors continue to conquer many areas of the globe exposing more than half of the world's population to these viruses. Unfortunately, no medical interventions have been capable so far to produce successful vaccines or antivirals against many of these viruses. Thus, vector control remains the fundamental strategy to prevent disease transmission. The long-established understanding regarding the replication of these viruses is that they reshape both human and mosquito host cellular membranes upon infection for their replicative benefit. This leads to or is a result of significant alterations in lipid metabolism. Metabolism involves complex chemical reactions in the body that are essential for general physiological functions and survival of an organism. Finely tuned metabolic homeostases are maintained in healthy organisms. However, a simple stimulus like a viral infection can alter this homeostatic landscape driving considerable phenotypic change. Better comprehension of these mechanisms can serve as innovative control strategies against these vectors and viruses. Here, we review the metabolic basis of fundamental mosquito biology and virus-vector interactions. The cited work provides compelling evidence that targeting metabolism can be a paradigm shift and provide potent tools for vector control as well as tools to answer many unresolved questions and gaps in the field of arbovirology.
Collapse
Affiliation(s)
- Oshani C. Ratnayake
- Center for Vector-borne Infectious Diseases, Dept. of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Nunya Chotiwan
- Center for Vector-borne Infectious Diseases, Dept. of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samut Prakan, Thailand
| | - Karla Saavedra-Rodriguez
- Center for Vector-borne Infectious Diseases, Dept. of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Rushika Perera
- Center for Vector-borne Infectious Diseases, Dept. of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States
| |
Collapse
|
17
|
Korade Z, Tallman KA, Kim HYH, Balog M, Genaro-Mattos TC, Pattnaik A, Mirnics K, Pattnaik AK, Porter NA. Dose-Response Effects of 7-Dehydrocholesterol Reductase Inhibitors on Sterol Profiles and Vesicular Stomatitis Virus Replication. ACS Pharmacol Transl Sci 2022; 5:1086-1096. [PMID: 36407960 PMCID: PMC9667548 DOI: 10.1021/acsptsci.2c00051] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Indexed: 11/29/2022]
Abstract
Cholesterol is ubiquitous in cells; it plays a critical role in membrane structure and transport as well as in intracellular trafficking processes. There are suggestions that cholesterol metabolism is linked to innate immunity with inhibitors of DHCR7, the last enzyme in the cholesterol pathway, suggested to have potential as viral therapeutics nearly a decade ago. In fact, there are a number of highly prescribed pharmaceuticals that are off-target inhibitors of DHCR7, causing increased cellular levels of 7-dehydrodesmosterol (7-DHD) and 7-dehydrocholesterol (7-DHC). We report here dose-response studies of six such inhibitors on late-stage cholesterol biosynthesis in Neuro2a cells as well as their effect on infection of vesicular stomatitis virus (VSV). Four of the test compounds are FDA-approved drugs (cariprazine, trazodone, metoprolol, and tamoxifen), one (ifenprodil) has been the object of a recent Phase 2b COVID trial, and one (AY9944) is an experimental compound that has seen extensive use as a DHCR7 inhibitor. The three FDA-approved drugs inhibit replication of a GFP-tagged VSV with efficacies that mirror their effect on DHCR7. Ifenprodil and AY9944 have complex inhibitory profiles, acting on both DHCR7 and DHCR14, while tamoxifen does not inhibit DHCR7 and is toxic to Neuro2a at concentrations where it inhibits the Δ7-Δ8 isomerase of the cholesterol pathway. VSV itself affects the sterol profile in Neuro2a cells, showing a dose-response increase of dehydrolathosterol and lathosterol, the substrates for DHCR7, with a corresponding decrease in desmosterol and cholesterol. 7-DHD and 7-DHC are orders of magnitude more vulnerable to free radical chain oxidation than other sterols as well as polyunsaturated fatty esters, and the effect of these sterols on viral infection is likely a reflection of this fact of Nature.
Collapse
Affiliation(s)
- Zeljka Korade
- Department
of Pediatrics, Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Keri A. Tallman
- Department
of Chemistry, Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Hye-Young H. Kim
- Department
of Chemistry, Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Marta Balog
- Munroe-Meyer
Institute for Genetics and Rehabilitation, University of Nebraska Medical Center, Omaha, Nebraska 68105, United States
- Department
of Medical Biology and Genetics, Faculty of Medicine, J. J. Strossmayer University of Osijek, Osijek 31000, Croatia
| | - Thiago C. Genaro-Mattos
- Munroe-Meyer
Institute for Genetics and Rehabilitation, University of Nebraska Medical Center, Omaha, Nebraska 68105, United States
| | - Aryamav Pattnaik
- Nebraska
Center for Virology and School of Veterinary Medicine and Biomedical
Sciences, University of Nebraska-Lincoln, Lincoln 68583, United States
| | - Károly Mirnics
- Munroe-Meyer
Institute for Genetics and Rehabilitation, University of Nebraska Medical Center, Omaha, Nebraska 68105, United States
| | - Asit K. Pattnaik
- Nebraska
Center for Virology and School of Veterinary Medicine and Biomedical
Sciences, University of Nebraska-Lincoln, Lincoln 68583, United States
| | - Ned A. Porter
- Department
of Chemistry, Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37235, United States
| |
Collapse
|
18
|
Mastrodomenico V, LoMascolo NJ, Cruz-Pulido YE, Cunha CR, Mounce BC. Polyamine-Linked Cholesterol Incorporation in Rift Valley Fever Virus Particles Promotes Infectivity. ACS Infect Dis 2022; 8:1439-1448. [PMID: 35786847 PMCID: PMC9549488 DOI: 10.1021/acsinfecdis.2c00071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Viruses rely on an array of cellular metabolites to replicate and form progeny virions. One set of these molecules, polyamines, are small aliphatic molecules, which are abundant in most cells, that support virus infection; however, the precise roles of polyamines in virus infection remain incompletely understood. Recent work demonstrated that polyamine metabolism supports cellular cholesterol synthesis through translation of the key transcription factor SREBP2. Here, we show that the bunyavirus Rift Valley fever virus (RVFV) relies on both cholesterol and polyamines for virus infection. Depletion of cellular cholesterol or interruption of cholesterol trafficking negatively impacts RVFV infection. Cholesterol is incorporated into RVFV virions and mediates their infectivity in a polyamine-dependent manner; we find that the virus derived from polyamine-depleted cells lacks cholesterol within the virion membrane. Conversely, we find that virion-associated cholesterol is linked to the incorporation of spermidine within the virion. Our prior work demonstrated that polyamines facilitate pH-mediated fusion and genome release, which may be a consequence of cholesterol depletion within virions. Thus, our work highlights the metabolic connection between polyamines and cholesterol synthesis to impact bunyavirus infection. These data demonstrate the connectedness between cellular metabolic pathways and reveal potential avenues of therapeutic intervention.
Collapse
Affiliation(s)
- Vincent Mastrodomenico
- Department of Microbiology and Immunology, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois 60153, United States
| | - Natalie J LoMascolo
- Department of Microbiology and Immunology, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois 60153, United States
| | - Yazmin E Cruz-Pulido
- Department of Microbiology and Immunology, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois 60153, United States
- Infectious Diseases and Immunology Research Institute, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois 60153, United States
| | - Christina R Cunha
- Department of Microbiology and Immunology, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois 60153, United States
| | - Bryan C Mounce
- Department of Microbiology and Immunology, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois 60153, United States
- Infectious Diseases and Immunology Research Institute, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois 60153, United States
| |
Collapse
|
19
|
Hydroxypropyl-beta-cyclodextrin (HP-BCD) inhibits SARS-CoV-2 replication and virus-induced inflammatory cytokines. Antiviral Res 2022; 205:105373. [PMID: 35798224 PMCID: PMC9250893 DOI: 10.1016/j.antiviral.2022.105373] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 06/24/2022] [Accepted: 06/28/2022] [Indexed: 11/22/2022]
Abstract
COVID-19 is marked by extensive damage to the respiratory system, often accompanied by systemic manifestations, due to both viral cytopathic effects and hyperinflammatory syndrome. Therefore, the development of new therapeutic strategies or drug repurposing aiming to control virus replication and inflammation are required to mitigate the impact of the disease. Hydroxypropyl-beta-cyclodextrin (HP-BCD) is a cholesterol-sequestering agent with antiviral activity that has been demonstrated against enveloped viruses in in vitro and in vivo experimental models. We also demonstrated that HP-BCD has an immunomodulatory effect, inhibiting the production of selected proinflammatory cytokines induced by microbial products. Importantly, this drug has been used in humans for decades as an excipient in drug delivery systems and as a therapeutic agent in the treatment of Niemann pick C disease. The safety profile for this compound is well established. Here, we investigated whether HP-BCD would affect SARS-CoV-2 replication and virus-induced inflammatory response, using established cell lines and primary human cells. Treating virus or cells with HP-BCD significantly inhibited SARS-CoV-2 replication with a high selective index. A broad activity against distinct SARS-CoV-2 variants was evidenced by a remarkable reduction in the release of infectious particles. The drug did not alter ACE2 surface expression, but affected cholesterol accumulation into intracellular replication complexes, lowering virus RNA and protein levels, and reducing virus-induced cytopathic effects. Virus replication was also impaired by HP-BCD in Calu-3 pulmonary cell line and human primary monocytes, in which not only the virus, but also the production of proinflammatory cytokines were significantly inhibited. Given the pathophysiology of COVID-19 disease, these data indicate that the use HP-BCD, which inhibits both SARS-CoV2 replication and production of proinflammatory cytokines, as a potential COVID-19 therapeutic warrants further investigation.
Collapse
|
20
|
Effects of Cholesterol on Lipid Vesicle Fusion Mediated by Infectious Salmon Anaemia Virus Fusion Peptides. Colloids Surf B Biointerfaces 2022; 217:112684. [DOI: 10.1016/j.colsurfb.2022.112684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 06/27/2022] [Accepted: 06/29/2022] [Indexed: 11/19/2022]
|
21
|
Anwar MN, Akhtar R, Abid M, Khan SA, Rehman ZU, Tayyub M, Malik MI, Shahzad MK, Mubeen H, Qadir MS, Hameed M, Wahaab A, Li Z, Liu K, Li B, Qiu Y, Ma Z, Wei J. The interactions of flaviviruses with cellular receptors: Implications for virus entry. Virology 2022; 568:77-85. [DOI: 10.1016/j.virol.2022.02.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 01/10/2022] [Accepted: 02/02/2022] [Indexed: 12/17/2022]
|
22
|
Ding S, Yu B, van Vuuren AJ. Statins significantly repress rotavirus replication through downregulation of cholesterol synthesis. Gut Microbes 2021; 13:1955643. [PMID: 34369301 PMCID: PMC8354672 DOI: 10.1080/19490976.2021.1955643] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Rotavirus is the most common cause of severe diarrhea among infants and young children and is responsible for more than 200,000 pediatric deaths per year. There is currently no pharmacological treatment for rotavirus infection in clinical activity. Although cholesterol synthesis has been proven to play a key role in the infections of multiple viruses, little is known about the relationship between cholesterol biosynthesis and rotavirus replication. The models of rotavirus infected two cell lines and a human small intestinal organoid were used. We investigated the effects of cholesterol biosynthesis, including inhibition, enhancement, and their combinations on rotavirus replication on these models. The knockdown of 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR) was built by small hairpin RNAs in Caco2 cells. In all these models, inhibition of cholesterol synthesis by statins or HMGCR knockdown had a significant inhibitory effect on rotavirus replication. The result was further confirmed by the other inhibitors: 6-fluoromevalonate, Zaragozic acid A and U18666A, in the cholesterol biosynthesis pathway. Conversely, enhancement of cholesterol production increased rotavirus replication, suggesting that cholesterol homeostasis is relevant for rotavirus replication. The effects of all these compounds toward rotavirus were further confirmed with a clinical rotavirus isolate. We concluded that rotavirus replication is dependent on cholesterol biosynthesis. To be specific, inhibition of cholesterol synthesis can downregulate rotavirus replication; on the contrary, rotavirus replication is upregulated. Statin treatment is potentially an effective novel clinical anti-rotavirus strategy.
Collapse
Affiliation(s)
- Shihao Ding
- Department Of Gastroenterology And Hepatology, Na-1001, Erasmus MC – University Medical Center Rotterdam, CA Rotterdam, Netherlands,Department of Endocrinology and Metabolism, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands,Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, Netherlands,CONTACT Shihao Ding Department Of Gastroenterology And Hepatology, Na-1001, Erasmus MC – University Medical Center Rotterdam, CA Rotterdam, Netherlands
| | - Bingting Yu
- Department Of Gastroenterology And Hepatology, Na-1001, Erasmus MC – University Medical Center Rotterdam, CA Rotterdam, Netherlands
| | - Anneke J. van Vuuren
- Department Of Gastroenterology And Hepatology, Na-1001, Erasmus MC – University Medical Center Rotterdam, CA Rotterdam, Netherlands
| |
Collapse
|
23
|
Vial T, Marti G, Missé D, Pompon J. Lipid Interactions Between Flaviviruses and Mosquito Vectors. Front Physiol 2021; 12:763195. [PMID: 34899388 PMCID: PMC8660100 DOI: 10.3389/fphys.2021.763195] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 09/20/2021] [Indexed: 11/18/2022] Open
Abstract
Mosquito-borne flaviviruses, such as dengue (DENV), Zika (ZIKV), yellow fever (YFV), West Nile (WNV), and Japanese encephalitis (JEV) viruses, threaten a large part of the human populations. In absence of therapeutics and effective vaccines against each flaviviruses, targeting viral metabolic requirements in mosquitoes may hold the key to new intervention strategies. Development of metabolomics in the last decade opened a new field of research: mosquito metabolomics. It is now clear that flaviviruses rely on mosquito lipids, especially phospholipids, for their cellular cycle and propagation. Here, we review the biosyntheses of, biochemical properties of and flaviviral interactions with mosquito phospholipids. Phospholipids are structural lipids with a polar headgroup and apolar acyl chains, enabling the formation of lipid bilayer that form plasma- and endomembranes. Phospholipids are mostly synthesized through the de novo pathway and remodeling cycle. Variations in headgroup and acyl chains influence phospholipid physicochemical properties and consequently the membrane behavior. Flaviviruses interact with cellular membranes at every step of their cellular cycle. Recent evidence demonstrates that flaviviruses reconfigure the phospholipidome in mosquitoes by regulating phospholipid syntheses to increase virus multiplication. Identifying the phospholipids involved and understanding how flaviviruses regulate these in mosquitoes is required to design new interventions.
Collapse
Affiliation(s)
- Thomas Vial
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore.,UMR 152 PHARMADEV-IRD, Université Paul Sabatier, Toulouse, France
| | - Guillaume Marti
- LRSV (UMR 5546), CNRS, Université de Toulouse, Toulouse, France.,MetaboHUB, National Infrastructure of Metabolomics and Fluxomics, Toulouse, France
| | - Dorothée Missé
- MIVEGEC, Université Montpellier, IRD, CNRS, Montpellier, France
| | - Julien Pompon
- MIVEGEC, Université Montpellier, IRD, CNRS, Montpellier, France
| |
Collapse
|
24
|
Glitscher M, Hildt E. Endosomal Cholesterol in Viral Infections - A Common Denominator? Front Physiol 2021; 12:750544. [PMID: 34858206 PMCID: PMC8632007 DOI: 10.3389/fphys.2021.750544] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 10/22/2021] [Indexed: 12/24/2022] Open
Abstract
Cholesterol has gained tremendous attention as an essential lipid in the life cycle of virtually all viruses. These seem to have developed manifold strategies to modulate the cholesterol metabolism to the side of lipid uptake and de novo synthesis. In turn, affecting the cholesterol homeostasis has emerged as novel broad-spectrum antiviral strategy. On the other hand, the innate immune system is similarly regulated by the lipid and stimulated by its derivatives. This certainly requires attention in the design of antiviral strategies aiming to decrease cellular cholesterol, as evidence accumulates that withdrawal of cholesterol hampers innate immunity. Secondly, there are exceptions to the rule of the abovementioned virus-induced metabolic shift toward cholesterol anabolism. It therefore is of interest to dissect underlying regulatory mechanisms, which we aimed for in this minireview. We further collected evidence for intracellular cholesterol concentrations being less important in viral life cycles as compared to the spatial distribution of the lipid. Various routes of cholesterol trafficking were found to be hijacked in viral infections with respect to organelle-endosome contact sites mediating cholesterol shuttling. Thus, re-distribution of cellular cholesterol in the context of viral infections requires more attention in ongoing research. As a final aim, a pan-antiviral treatment could be found just within the transport and re-adjustment of local cholesterol concentrations. Thus, we aimed to emphasize the importance of the regulatory roles the endosomal system fulfils herein and hope to stimulate research in this field.
Collapse
Affiliation(s)
| | - Eberhard Hildt
- Department of Virology, Paul-Ehrlich-Institute, Langen, Germany
| |
Collapse
|
25
|
Farfan-Morales CN, Cordero-Rivera CD, Reyes-Ruiz JM, Hurtado-Monzón AM, Osuna-Ramos JF, González-González AM, De Jesús-González LA, Palacios-Rápalo SN, Del Ángel RM. Anti-flavivirus Properties of Lipid-Lowering Drugs. Front Physiol 2021; 12:749770. [PMID: 34690817 PMCID: PMC8529048 DOI: 10.3389/fphys.2021.749770] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/20/2021] [Indexed: 12/11/2022] Open
Abstract
Although Flaviviruses such as dengue (DENV) and zika (ZIKV) virus are important human pathogens, an effective vaccine or antiviral treatment against them is not available. Hence, the search for new strategies to control flavivirus infections is essential. Several studies have shown that the host lipid metabolism could be an antiviral target because cholesterol and other lipids are required during the replicative cycle of different Flaviviridae family members. FDA-approved drugs with hypolipidemic effects could be an alternative for treating flavivirus infections. However, a better understanding of the regulation between host lipid metabolism and signaling pathways triggered during these infections is required. The metabolic pathways related to lipid metabolism modified during DENV and ZIKV infection are analyzed in this review. Additionally, the role of lipid-lowering drugs as safe host-targeted antivirals is discussed.
Collapse
Affiliation(s)
- Carlos Noe Farfan-Morales
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV-IPN), Mexico City, Mexico
| | - Carlos Daniel Cordero-Rivera
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV-IPN), Mexico City, Mexico
| | - José Manuel Reyes-Ruiz
- Unidad Médica de Alta Especialidad, Hospital de Especialidades No. 14, Centro Médico Nacional "Adolfo Ruiz Cortines," Instituto Mexicano del Seguro Social, Heroica Veracruz, Mexico
| | - Arianna M Hurtado-Monzón
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV-IPN), Mexico City, Mexico
| | - Juan Fidel Osuna-Ramos
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV-IPN), Mexico City, Mexico
| | - Arely M González-González
- Laboratorio de Ingeniería Tisular y Medicina Traslacional, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Luis Adrián De Jesús-González
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV-IPN), Mexico City, Mexico
| | - Selvin Noé Palacios-Rápalo
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV-IPN), Mexico City, Mexico
| | - Rosa María Del Ángel
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV-IPN), Mexico City, Mexico
| |
Collapse
|
26
|
Mahajan S, Choudhary S, Kumar P, Tomar S. Antiviral strategies targeting host factors and mechanisms obliging +ssRNA viral pathogens. Bioorg Med Chem 2021; 46:116356. [PMID: 34416512 PMCID: PMC8349405 DOI: 10.1016/j.bmc.2021.116356] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/30/2021] [Accepted: 07/31/2021] [Indexed: 12/21/2022]
Abstract
The ongoing COVID-19 pandemic, periodic recurrence of viral infections, and the emergence of challenging variants has created an urgent need of alternative therapeutic approaches to combat the spread of viral infections, failing to which may pose a greater risk to mankind in future. Resilience against antiviral drugs or fast evolutionary rate of viruses is stressing the scientific community to identify new therapeutic approaches for timely control of disease. Host metabolic pathways are exquisite reservoir of energy to viruses and contribute a diverse array of functions for successful replication and pathogenesis of virus. Targeting the host factors rather than viral enzymes to cease viral infection, has emerged as an alternative antiviral strategy. This approach offers advantage in terms of increased threshold to viral resistance and can provide broad-spectrum antiviral action against different viruses. The article here provides substantial review of literature illuminating the host factors and molecular mechanisms involved in innate/adaptive responses to viral infection, hijacking of signalling pathways by viruses and the intracellular metabolic pathways required for viral replication. Host-targeted drugs acting on the pathways usurped by viruses are also addressed in this study. Host-directed antiviral therapeutics might prove to be a rewarding approach in controlling the unprecedented spread of viral infection, however the probability of cellular side effects or cytotoxicity on host cell should not be ignored at the time of clinical investigations.
Collapse
Affiliation(s)
- Supreeti Mahajan
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Uttarakhand 247667, India
| | - Shweta Choudhary
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Uttarakhand 247667, India
| | - Pravindra Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Uttarakhand 247667, India
| | - Shailly Tomar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Uttarakhand 247667, India.
| |
Collapse
|
27
|
Correa Y, Waldie S, Thépaut M, Micciulla S, Moulin M, Fieschi F, Pichler H, Trevor Forsyth V, Haertlein M, Cárdenas M. SARS-CoV-2 spike protein removes lipids from model membranes and interferes with the capacity of high density lipoprotein to exchange lipids. J Colloid Interface Sci 2021; 602:732-739. [PMID: 34157514 PMCID: PMC8195693 DOI: 10.1016/j.jcis.2021.06.056] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 06/08/2021] [Accepted: 06/09/2021] [Indexed: 01/18/2023]
Abstract
Cholesterol has been shown to affect the extent of coronavirus binding and fusion to cellular membranes. The severity of Covid-19 infection is also known to be correlated with lipid disorders. Furthermore, the levels of both serum cholesterol and high-density lipoprotein (HDL) decrease with Covid-19 severity, with normal levels resuming once the infection has passed. Here we demonstrate that the SARS-CoV-2 spike (S) protein interferes with the function of lipoproteins, and that this is dependent on cholesterol. In particular, the ability of HDL to exchange lipids from model cellular membranes is altered when co-incubated with the spike protein. Additionally, the S protein removes lipids and cholesterol from model membranes. We propose that the S protein affects HDL function by removing lipids from it and remodelling its composition/structure.
Collapse
Affiliation(s)
- Yubexi Correa
- Biofilms - Research Center for Biointerfaces and Department of Biomedical Science, Faculty of Health and Society, Malmö University, 20506 Malmö, Sweden
| | - Sarah Waldie
- Biofilms - Research Center for Biointerfaces and Department of Biomedical Science, Faculty of Health and Society, Malmö University, 20506 Malmö, Sweden; Life Sciences Group, Institut Laue Langevin, Grenoble F-38042, France; Partnership for Structural Biology, Grenoble F-38042, France
| | - Michel Thépaut
- Univ. Grenoble Alpes, CNRS, CEA, IBS, 71 avenue des Martyrs, F-38000 Grenoble, France
| | - Samantha Micciulla
- Large Scale Structures, Institut Laue Langevin (ILL), Grenoble F-38042, France
| | - Martine Moulin
- Life Sciences Group, Institut Laue Langevin, Grenoble F-38042, France; Partnership for Structural Biology, Grenoble F-38042, France
| | - Franck Fieschi
- Partnership for Structural Biology, Grenoble F-38042, France; Univ. Grenoble Alpes, CNRS, CEA, IBS, 71 avenue des Martyrs, F-38000 Grenoble, France
| | - Harald Pichler
- Austrian Centre of Industrial Biotechnology, Petersgasse 14, 8010 Graz, Austria; Graz University of Technology, Institute of Molecular Biotechnology, NAWI Graz, BioTechMed Graz, Petersgasse 14, 8010 Graz, Austria
| | - V Trevor Forsyth
- Life Sciences Group, Institut Laue Langevin, Grenoble F-38042, France; Partnership for Structural Biology, Grenoble F-38042, France; Faculty of Natural Sciences, Keele University, Staffordshire ST5 5BG, UK.
| | - Michael Haertlein
- Life Sciences Group, Institut Laue Langevin, Grenoble F-38042, France; Partnership for Structural Biology, Grenoble F-38042, France.
| | - Marité Cárdenas
- Biofilms - Research Center for Biointerfaces and Department of Biomedical Science, Faculty of Health and Society, Malmö University, 20506 Malmö, Sweden.
| |
Collapse
|
28
|
Cyclodextrins in Antiviral Therapeutics and Vaccines. Pharmaceutics 2021; 13:pharmaceutics13030409. [PMID: 33808834 PMCID: PMC8003769 DOI: 10.3390/pharmaceutics13030409] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/13/2021] [Accepted: 03/16/2021] [Indexed: 12/17/2022] Open
Abstract
The present review describes the various roles of cyclodextrins (CDs) in vaccines against viruses and in antiviral therapeutics. The first section describes the most commonly studied application of cyclodextrins—solubilisation and stabilisation of antiviral drugs; some examples also refer to their beneficial taste-masking activity. The second part of the review describes the role of cyclodextrins in antiviral vaccine development and stabilisation, where they are employed as adjuvants and cryopreserving agents. In addition, cyclodextrin-based polymers as delivery systems for mRNA are currently under development. Lastly, the use of cyclodextrins as pharmaceutical active ingredients for the treatment of viral infections is explored. This new field of application is still taking its first steps. Nevertheless, promising results from the use of cyclodextrins as agents to treat other pathologies are encouraging. We present potential applications of the results reported in the literature and highlight the products that are already available on the market.
Collapse
|
29
|
Ahmed N, Ahmed N, Filip R, Pezacki JP. Nuclear Hormone Receptors and Host-Virus Interactions. NUCLEAR RECEPTORS 2021:315-348. [DOI: 10.1007/978-3-030-78315-0_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
30
|
Wolbachia's Deleterious Impact on Aedes aegypti Egg Development: The Potential Role of Nutritional Parasitism. INSECTS 2020; 11:insects11110735. [PMID: 33120915 PMCID: PMC7692218 DOI: 10.3390/insects11110735] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 10/18/2020] [Accepted: 10/22/2020] [Indexed: 12/18/2022]
Abstract
Simple Summary Mosquito-borne viral diseases such as dengue, Zika and chikungunya cause a significant global health burden and are currently increasing in outbreak frequency and geographical reach. Wolbachia pipientis, an endosymbiotic bacterium, offers a solution to this. When Wolbachia is introduced into the main mosquito vector of these viruses, Aedes aegypti, it alters the mosquito’s reproductive biology, as well as reducing the ability of the mosquitoes to transmit viruses. These traits can be leveraged to reduce virus transmission within a community by mass releasing Wolbachia-infected mosquitoes. However, Wolbachia has some negative effects on Aedes aegypti fitness, particularly egg longevity, and the reason behind this remains ambiguous. Insect fitness is very important for the success for Wolbachia-biocontrol strategies as they rely on the released insects being competitive with the wild mosquito population. This review summarises the fitness effects of Wolbachia on Aedes aegypti and investigates the possible contribution of Wolbachia as a nutritional parasite in lowering host fitness. It proposes the next stages of research that can be conducted to address nutritional parasitism to aid in the expansion of Wolbachia-based disease management programs worldwide. Abstract The artificial introduction of the endosymbiotic bacterium, Wolbachia pipientis, into Aedes (Ae.) aegypti mosquitoes reduces the ability of mosquitoes to transmit human pathogenic viruses and is now being developed as a biocontrol tool. Successful introgression of Wolbachia-carrying Ae. aegypti into native mosquito populations at field sites in Australia, Indonesia and Malaysia has been associated with reduced disease prevalence in the treated community. In separate field programs, Wolbachia is also being used as a mosquito population suppression tool, where the release of male only Wolbachia-infected Ae. aegypti prevents the native mosquito population from producing viable eggs, subsequently suppressing the wild population. While these technologies show great promise, they require mass rearing of mosquitoes for implementation on a scale that has not previously been done. In addition, Wolbachia induces some negative fitness effects on Ae. aegypti. While these fitness effects differ depending on the Wolbachia strain present, one of the most consistent and significant impacts is the shortened longevity and viability of eggs. This review examines the body of evidence behind Wolbachia’s negative effect on eggs, assesses nutritional parasitism as a key cause and considers how these impacts could be overcome to achieve efficient large-scale rearing of these mosquitoes.
Collapse
|
31
|
Matencio A, Caldera F, Cecone C, López-Nicolás JM, Trotta F. Cyclic Oligosaccharides as Active Drugs, an Updated Review. Pharmaceuticals (Basel) 2020; 13:E281. [PMID: 33003610 PMCID: PMC7601923 DOI: 10.3390/ph13100281] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 09/26/2020] [Accepted: 09/27/2020] [Indexed: 12/13/2022] Open
Abstract
There have been many reviews of the cyclic oligosaccharide cyclodextrin (CD) and CD-based materials used for drug delivery, but the capacity of CDs to complex different agents and their own intrinsic properties suggest they might also be considered for use as active drugs, not only as carriers. The aim of this review is to summarize the direct use of CDs as drugs, without using its complexing potential with other substances. The direct application of another oligosaccharide called cyclic nigerosyl-1,6-nigerose (CNN) is also described. The review is divided into lipid-related diseases, aggregation diseases, antiviral and antiparasitic activities, anti-anesthetic agent, function in diet, removal of organic toxins, CDs and collagen, cell differentiation, and finally, their use in contact lenses in which no drug other than CDs are involved. In the case of CNN, its application as a dietary supplement and immunological modulator is explained. Finally, a critical structure-activity explanation is provided.
Collapse
Affiliation(s)
- Adrián Matencio
- Dipartimento di Chimica, Università di Torino, via P. Giuria 7, 10125 Torino, Italy; (F.C.); (C.C.); (F.T.)
| | - Fabrizio Caldera
- Dipartimento di Chimica, Università di Torino, via P. Giuria 7, 10125 Torino, Italy; (F.C.); (C.C.); (F.T.)
| | - Claudio Cecone
- Dipartimento di Chimica, Università di Torino, via P. Giuria 7, 10125 Torino, Italy; (F.C.); (C.C.); (F.T.)
| | - José Manuel López-Nicolás
- Departamento de Bioquímica y Biología Molecular A, Unidad Docente de Biología, Facultad de Veterinaria, Regional Campus of International Excellence “Campus Mare Nostrum”, Universidad de Murcia, 30100 Espinardo, Murcia, Spain;
| | - Francesco Trotta
- Dipartimento di Chimica, Università di Torino, via P. Giuria 7, 10125 Torino, Italy; (F.C.); (C.C.); (F.T.)
| |
Collapse
|
32
|
Altinli M, Lequime S, Atyame C, Justy F, Weill M, Sicard M. Wolbachia modulates prevalence and viral load of Culex pipiens densoviruses in natural populations. Mol Ecol 2020; 29:4000-4013. [PMID: 32854141 DOI: 10.1111/mec.15609] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/25/2020] [Accepted: 08/14/2020] [Indexed: 02/06/2023]
Abstract
The inadequacy of standard mosquito control strategies calls for ecologically safe novel approaches, for example the use of biological agents such as the endosymbiotic α-proteobacteria Wolbachia or insect-specific viruses (ISVs). Understanding the ecological interactions between these "biocontrol endosymbionts" is thus a fundamental step. Wolbachia are transmitted vertically from mother to offspring and modify their hosts' phenotypes, including reproduction (e.g., cytoplasmic incompatibility) and survival (e.g., viral interference). In nature, Culex pipiens (sensu lato) mosquitoes are always found infected with genetically diverse Wolbachia called wPip that belong to five phylogenetic groups. In recent years, ISVs have also been discovered in these mosquito species, although their interactions with Wolbachia in nature are unknown. Here, we studied the interactions between a widely prevalent ISV, the Culex pipiens densovirus (CpDV, Densovirinae), and Wolbachia in northern Tunisian C. pipiens populations. We showed an influence of different Wolbachia groups on CpDV prevalence and a general positive correlation between Wolbachia and CpDV loads. By investigating the putative relationship between CpDV diversification and wPip groups in the different sites, we detected a signal linked to wPip groups in CpDV phylogeny in sites where all larvae were infected by the same wPip group. However, no such signal was detected where the wPip groups coexisted, suggesting CpDV horizontal transfer between hosts. Overall, our results provide good evidence for an ecological influence of Wolbachia on an ISV, CpDV, in natural populations and highlight the importance of integrating Wolbachia in our understanding of ISV ecology in nature.
Collapse
Affiliation(s)
- Mine Altinli
- ISEM, Université de Montpellier, CNRS, IRD, EPHE, Montpellier, France.,Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany.,German Centre for Infection research (DZIF), Partner site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| | - Sebastian Lequime
- Cluster of Microbial Ecology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Celestine Atyame
- Ile de La Réunion, Université de La Réunion, UMR PIMIT (Processus Infectieux en Milieu Insulaire Tropical) CNRS 9192, INSERM U1187, IRD 249, Sainte-Clotilde, France
| | - Fabienne Justy
- ISEM, Université de Montpellier, CNRS, IRD, EPHE, Montpellier, France
| | - Mylene Weill
- ISEM, Université de Montpellier, CNRS, IRD, EPHE, Montpellier, France
| | - Mathieu Sicard
- ISEM, Université de Montpellier, CNRS, IRD, EPHE, Montpellier, France
| |
Collapse
|
33
|
Li W, Yang L, Mao L, Liu M, Li J, Zhang W, Sun M. Cholesterol-rich lipid rafts both in cellular and viral membrane are critical for caprine parainfluenza virus type3 entry and infection in host cells. Vet Microbiol 2020; 248:108794. [PMID: 32827922 DOI: 10.1016/j.vetmic.2020.108794] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/03/2020] [Accepted: 07/08/2020] [Indexed: 10/23/2022]
Abstract
Cholesterol-rich lipid rafts have been shown to play important roles in the life cycle of various non-enveloped and enveloped viruses. Deletion of cholesterol from lipid rafts could influence different steps of viral replication cycle including entry, infection, assembly and release. Caprine parainfluenza virus type3 (CPIV3) is a newly identified member of Paramyxoviridae family. CPIV3 is highly prevalence and threatened the goat industry in China. The infection mechanism of CPIV3 is under exploring and still not fully understood, the roles of cholesterol and lipid rafts for CPIV3 infection remains unclear. In this study, we investigated the association of cholesterol and lipid rafts with CPIV3 during the different viral replication stages (binding, entry and infection) in two cells [MDBK and goat bronchial epithelial (GBE) cells]. Methyl-β- cyclodextrin (MβCD) was used to deplete cholesterol from cell and viral membranes. The results showed that MβCD treatment significantly inhibited CPIV3 entry and infection in these two cells with a dose-dependent manner, but didn't impair the binding of CPIV3. Addition of exogenous cholesterol to the cells after MβCD treatment restored the viral infection. In addition, treatment of MβCD only before virus-entry showed inhibitory effect in MDBK cells. Depletion of cholesterol from virion envelop also decreased the entry and infection of CPIV3 in the two cells. Furthermore, lipid rafts isolation test indicated that viral proteins (HN and N) co-localized with lipid rafts during infection in MDBK and GBE cells. Viral N protein co-localized with caveolin-1 (the marker of lipid rafts) in these two cells both at the entry and infection steps, as detected by con-focal laser scanning microscopy test. In conclusion, the results presented here demonstrated that cholesterol rich lipid rafts play an important role in CPIV3 life cycle. The findings give new insights on understanding of the mechanism of CPIV3 infection and provide a new anti-CPIV3 strategy.
Collapse
Affiliation(s)
- Wenliang Li
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, 210014, China; School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China.
| | - Leilei Yang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, 210014, China
| | - Li Mao
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, 210014, China
| | - Maojun Liu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, 210014, China
| | - Jizong Li
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, 210014, China
| | - Wenwen Zhang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, 210014, China
| | - Min Sun
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, 210014, China
| |
Collapse
|
34
|
Oregano Oil and Its Principal Component, Carvacrol, Inhibit HIV-1 Fusion into Target Cells. J Virol 2020; 94:JVI.00147-20. [PMID: 32461309 DOI: 10.1128/jvi.00147-20] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 05/01/2020] [Indexed: 02/07/2023] Open
Abstract
Oregano essential oil has long been known for its health-promoting benefits. Here, we report its activity against viral replication. Oregano oil was found to specifically inhibit lentiviruses, such as human and simian immunodeficiency viruses (HIV and SIV), irrespective of virus tropism, but not hepatitis C virus, adenovirus 5 (ADV5), Zika virus, and influenza (H1N1) virus. Oregano oil's most abundant components, carvacrol and its isomer, thymol, were shown to block virus-target cell fusion while not perturbing other stages of the virus life cycle. We detected changes in virus particle density, suggesting that cholesterol depletion from the HIV-1 envelope membrane reduces virus entry. Furthermore, infection was rescued by adding exogenous cholesterol. The evolution of viral resistance to carvacrol supported this mechanism of action with the identification of mutations in the viral gp41 fusion protein that counteracted cholesterol depletion. In addition, resistance to carvacrol emerged later than typically observed for other clinically used drugs, strengthening its antiviral potential. Structure-activity relationship studies revealed key motifs of carvacrol and thymol required for HIV neutralization and identified previously unknown active analogs. Carvacrol was also shown to additively cooperate with antiretroviral therapy. In sum, oregano oil and improved carvacrol and thymol analogs could be considered to supplement current HIV therapeutics.IMPORTANCE Oregano essential oil has multiple benefits in traditional medicine, cosmetics, and food industries. Carvacrol and its analog, thymol, are well-described components of oregano oil. Here, we show that these compounds inhibit HIV-target cell fusion independently of viral tropism. Our results suggest that carvacrol and thymol alter the cholesterol content of the viral membrane, blocking HIV-1 entry into the target cell. Resistance to carvacrol has selected for viruses with mutations in the viral envelope glycoprotein, gp41. This protein is known for its interaction with cholesterol present in membrane lipid rafts. Together, these results demonstrate the potential of therapies targeting the viral envelope membrane, and oregano oil is a safe supplement to antiretrovirals, potentially delaying disease progression and resistance development.
Collapse
|
35
|
Zhang L, Zhao D, Han K, Huang X, Liu Y, Liu Q, Yang J, Li S, Li Y. Tembusu virus enters BHK-21 cells through a cholesterol-dependent and clathrin-mediated endocytosis pathway. Microb Pathog 2020; 147:104242. [PMID: 32407862 DOI: 10.1016/j.micpath.2020.104242] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 04/30/2020] [Accepted: 05/01/2020] [Indexed: 01/01/2023]
Abstract
Tembusu virus (TMUV) is a newly emerging flavivirus and has caused significant economic loss to the poultry industry in China. To date, the entry of TMUV into host cells remains poorly understood. Here, the mechanism of TMUV entry into BHK-21 cells was investigated. The depletion of cellular cholesterol by methyl-β-cyclodextrin led to a significant decline in the titers and RNA levels of the infectious TMUV. This reduction was restored by supplementation of exogenous cholesterol. Membrane cholesterol depletion mainly blocked viral internalization but not attachment. However, viral infection was unaffected by genistein treatment or caveolin-1 silencing by small interfering RNA. In addition, clathrin-mediated endocytosis might be utilized in TMUV entry given that the viral infection was inhibited by knockdown of clathrin heavy chain and treatment of chlorpromazine (CPZ). Moreover, the number of internalized virus particles decreased under CPZ treatment. Dynasore inhibited TMUV entry suggesting a role for dynamin. Our results reveal that TMUV entry into BHK-21 cells is dependent on cholesterol, clathrin and dynamin but not caveolae.
Collapse
Affiliation(s)
- Lijiao Zhang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, China.
| | - Dongmin Zhao
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, China
| | - Kaikai Han
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, China
| | - Xinmei Huang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, China
| | - Yuzhuo Liu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, China
| | - Qingtao Liu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, China
| | - Jing Yang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, China
| | - Shuang Li
- Laboratory Animal Center, North China University of Science and Technology, Tangshan, China
| | - Yin Li
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, China.
| |
Collapse
|
36
|
Li M, Zhang D, Li C, Zheng Z, Fu M, Ni F, Liu Y, Du T, Wang H, Griffin GE, Zhang M, Hu Q. Characterization of Zika Virus Endocytic Pathways in Human Glioblastoma Cells. Front Microbiol 2020; 11:242. [PMID: 32210929 PMCID: PMC7069030 DOI: 10.3389/fmicb.2020.00242] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 01/31/2020] [Indexed: 12/20/2022] Open
Abstract
Zika virus (ZIKV) infections can cause microcephaly and neurological disorders. However, the early infection events of ZIKV in neural cells remain to be characterized. Here, by using a combination of pharmacological and molecular approaches and the human glioblastoma cell T98G as a model, we first observed that ZIKV infection was inhibited by chloroquine and NH4Cl, indicating a requirement of low intracellular pH. We further showed that dynamin is required as the ZIKV entry was affected by the specific inhibitor dynasore, small interfering RNA (siRNA) knockdown of dynamin, or by expressing the dominant-negative K44A mutant. Moreover, the ZIKV entry was significantly inhibited by chlorpromazine, pitstop2, or siRNA knockdown of clathrin heavy chain, indicating an involvement of clathrin-mediated endocytosis. In addition, genistein treatment, siRNA knockdown of caveolin-1, or overexpression of a dominant-negative caveolin mutant impacted the ZIKV entry, with ZIKV particles being observed to colocalize with caveolin-1, implying that caveola endocytosis can also be involved. Furthermore, we found that the endocytosis of ZIKV is dependent on membrane cholesterol, microtubules, and actin cytoskeleton. Importantly, ZIKV infection was inhibited by silencing of Rab5 and Rab7, while confocal microscopy showed that ZIKV particles localized in Rab5- and Rab7-postive endosomes. These results indicated that, after internalization, ZIKV likely moves to Rab5-positive early endosome and Rab7-positive late endosomes before delivering its RNA into the cytoplasm. Taken together, our study, for the first time, described the early infection events of ZIKV in human glioblastoma cell T98G.
Collapse
Affiliation(s)
- Mei Li
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Di Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Chuntian Li
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Zifeng Zheng
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Ming Fu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Fengfeng Ni
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yalan Liu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Tao Du
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Hanzhong Wang
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - George E Griffin
- Institute for Infection and Immunity, St George's, University of London, London, United Kingdom
| | - Mudan Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Qinxue Hu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China.,Institute for Infection and Immunity, St George's, University of London, London, United Kingdom
| |
Collapse
|
37
|
Braga SS. Cyclodextrins: Emerging Medicines of the New Millennium. Biomolecules 2019; 9:E801. [PMID: 31795222 PMCID: PMC6995511 DOI: 10.3390/biom9120801] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 11/25/2019] [Accepted: 11/26/2019] [Indexed: 12/19/2022] Open
Abstract
Cyclodextrins, since their discovery in the late 19th century, were mainly regarded as excipients. Nevertheless, developments in cyclodextrin research have shown that some of these hosts can capture and include biomolecules, highlighting fatty acids and cholesterol, which implies that they are not inert and that their action may be used in specific medicinal purposes. The present review, centered on literature reports from the year 2000 until the present day, presents a comprehensive description of the known biological activities of cyclodextrins and their implications for medicinal applications. The paper is divided into two main sections, one devoted to the properties and applications of cyclodextrins as active pharmaceutical ingredients in a variety of pathologies, from infectious ailments to cardiovascular dysfunctions and metabolic diseases. The second section is dedicated to the use of cyclodextrins in a range of biomedical technologies.
Collapse
Affiliation(s)
- Susana Santos Braga
- QOPNA & LAQV/REQUIMTE, Chemistry Department, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
38
|
Naciri M. La bactérie Wolbachia bloque l’infection des moustiques par différents pathogènes humains. Med Sci (Paris) 2019; 35:584-585. [DOI: 10.1051/medsci/2019115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
39
|
Tang Q, Liu P, Chen M, Qin Y. Virion-Associated Cholesterol Regulates the Infection of Human Parainfluenza Virus Type 3. Viruses 2019; 11:v11050438. [PMID: 31096557 PMCID: PMC6563303 DOI: 10.3390/v11050438] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 05/05/2019] [Accepted: 05/12/2019] [Indexed: 12/12/2022] Open
Abstract
The matrix (M) proteins of paramyxoviruses bind to the nucleocapsids and cytoplasmic tails of glycoproteins, thus mediating the assembly and budding of virions. We first determined the budding characterization of the HPIV3 Fusion (F) protein to investigate the assembly mechanism of human parainfluenza virus type 3 (HPIV3). Our results show that expression of the HPIV3 F protein alone is sufficient to initiate the release of virus-like particles (VLPs), and the F protein can regulate the VLP-forming ability of the M protein. Furthermore, HPIV3F-Flag, which is a recombinant HPIV3 with a Flag tag at the C-terminus of the F protein, was constructed and recovered. We found that the M, F, and hemagglutinin-neuraminidase (HN) proteins and the viral genome can accumulate in lipid rafts in HPIV3F-Flag-infected cells, and the F protein mainly exists in the form of F1 in VLPs, lipid rafts, and purified virions. Furthermore, the function of cholesterol in the viral envelope and cell membrane was assessed via the elimination of cholesterol by methyl-β-cyclodextrin (MβCD). Our results suggest that the infectivity of HPIV3 was markedly reduced, due to defective internalization ability in the absence of cholesterol. These results reveal that HPIV3 might assemble in the lipid rafts to acquire cholesterol for the envelope of HPIV3, which suggests the that disruption of the cholesterol composition of HPIV3 virions might be a useful method for the design of anti-HPIV3 therapy.
Collapse
Affiliation(s)
- Qiaopeng Tang
- State Key Laboratory of Virology and Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan 430072, China.
| | - Pengfei Liu
- State Key Laboratory of Virology and Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan 430072, China.
| | - Mingzhou Chen
- State Key Laboratory of Virology and Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan 430072, China.
| | - Yali Qin
- State Key Laboratory of Virology and Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
40
|
Marin-Palma D, Sirois CM, Urcuqui-Inchima S, Hernandez JC. Inflammatory status and severity of disease in dengue patients are associated with lipoprotein alterations. PLoS One 2019; 14:e0214245. [PMID: 30901375 PMCID: PMC6430398 DOI: 10.1371/journal.pone.0214245] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 03/09/2019] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION The triggering of severe dengue has been associated with an exacerbated inflammatory process characterized by the production of pro-inflammatory cytokines such as IL-1β/IL-18, which are the product of inflammasome activation. Furthermore, alteration in the levels of high-density (HDL) and low-density lipoproteins (LDL) has been observed; and HDL are known to have immunomodulatory properties, including the regulation of inflammasomes. While HDL would be expected to counteract hyperactivation of the inflammasome, the relationship between HDL and dengue severity, has not previously been explored. METHODOLOGY We conducted a cross-sectional study of 30 patients with dengue and 39 healthy controls matched by sex and age. Lipid profile and levels of C-reactive protein were quantified. Serum levels of IL-1β, IL-6, IL-10, IL-18, and TNF-α, were assessed by ELISA. Expression of inflammasome-related genes in PBMC was quantified by qPCR. RESULTS Dengue patients presented an alteration in the parameters of the lipid profile, with a significant decrease in HDL levels, which was more pronounced in dengue patients with warning signs. Moreover, a decrease in the expression of the inflammasome-related genes NLRP1, NLRC4, caspase-1, IL-1β and IL-18 was observed, as well as an increase in serum levels of C-reactive protein and IL-10 in dengue patients versus healthy donors. Significant positive correlations between LDL levels and the relative expression of NLRP3, NLRC4, IL-1β and IL-18, were found. CONCLUSION The results suggest that there is a relationship between the alteration of LDL and HDL with the imbalance in the inflammatory response, which could be associated with the severity of dengue.
Collapse
Affiliation(s)
- Damariz Marin-Palma
- Infettare, Facultad de Medicina, Universidad Cooperativa de Colombia, Medellin, Colombia
- Grupo Inmunovirologia, Facultad de Medicina, Universidad de Antioquia, UdeA, Medellín, Colombia
| | - Cherilyn M. Sirois
- Department of Biology & Chemistry, Springfield College, Springfield, MA, United States of America
| | - Silvio Urcuqui-Inchima
- Grupo Inmunovirologia, Facultad de Medicina, Universidad de Antioquia, UdeA, Medellín, Colombia
| | - Juan C. Hernandez
- Infettare, Facultad de Medicina, Universidad Cooperativa de Colombia, Medellin, Colombia
- * E-mail:
| |
Collapse
|
41
|
Wang H, Yuan X, Sun Y, Mao X, Meng C, Tan L, Song C, Qiu X, Ding C, Liao Y. Infectious bronchitis virus entry mainly depends on clathrin mediated endocytosis and requires classical endosomal/lysosomal system. Virology 2018; 528:118-136. [PMID: 30597347 PMCID: PMC7111473 DOI: 10.1016/j.virol.2018.12.012] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 12/17/2018] [Accepted: 12/18/2018] [Indexed: 12/27/2022]
Abstract
Although several reports suggest that the entry of infectious bronchitis virus (IBV) depends on lipid rafts and low pH, the endocytic route and intracellular trafficking are unclear. In this study, we aimed to shed greater light on early steps in IBV infection. By using chemical inhibitors, RNA interference, and dominant negative mutants, we observed that lipid rafts and low pH was indeed required for virus entry; IBV mainly utilized the clathrin mediated endocytosis (CME) for entry; GTPase dynamin 1 was involved in virus containing vesicle scission; and the penetration of IBV into cells led to active cytoskeleton rearrangement. By using R18 labeled virus, we found that virus particles moved along with the classical endosome/lysosome track. Functional inactivation of Rab5 and Rab7 significantly inhibited IBV infection. Finally, by using dual R18/DiOC labeled IBV, we observed that membrane fusion was induced after 1 h.p.i. in late endosome/lysosome. Intact lipid rafts is involved in IBV entry. Low pH in intracyplasmic vesicles is required for IBV entry. IBV penetrates cells via clathrin mediated endocytosis. IBV moves along with the classical endosome/lysosome track, finally fuses with late endosome/lysosome.
Collapse
Affiliation(s)
- Huan Wang
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Xiao Yuan
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Yingjie Sun
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Xiang Mao
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Chunchun Meng
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Lei Tan
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Cuiping Song
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Xusheng Qiu
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Chan Ding
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, PR China.
| | - Ying Liao
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China.
| |
Collapse
|
42
|
Ezetimibe inhibits dengue virus infection in Huh-7 cells by blocking the cholesterol transporter Niemann–Pick C1-like 1 receptor. Antiviral Res 2018; 160:151-164. [DOI: 10.1016/j.antiviral.2018.10.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 10/25/2018] [Accepted: 10/26/2018] [Indexed: 12/29/2022]
|
43
|
Yu S, Yin C, Song K, Li S, Zheng GL, Li LF, Wang J, Li Y, Luo Y, Sun Y, Qiu HJ. Engagement of cellular cholesterol in the life cycle of classical swine fever virus: its potential as an antiviral target. J Gen Virol 2018; 100:156-165. [PMID: 30484759 DOI: 10.1099/jgv.0.001178] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Classical swine fever virus (CSFV), the etiological agent of classical swine fever in pigs, is a member of the Pestivirus genus within the Flaviviridae family. It has been proposed that CSFV infection is significantly inhibited by methyl-β-cyclodextrin (MβCD) treatment. However, the exact engagement of cellular cholesterol in the life cycle of CSFV remains unclear. Here, we demonstrated that pretreatment of PK-15 cells with MβCD significantly decreased the cellular cholesterol level and resulted in the inhibition of CSFV infection, while replenishment of exogenous cholesterol in MβCD-treated cells recovered the cellular cholesterol level and restored the viral infection. Moreover, we found that depletion of cholesterol acted on the early stage of CSFV infection and blocked its internalization into the host cells. Furthermore, we showed that 25-hydroxycholesterol, a regulator of cellular cholesterol biosynthesis, exhibited a potent anti-CSFV activity by reducing cellular cholesterol level. Taken together, our findings highlight the engagement of cholesterol in the life cycle of CSFV and its potential use as an antiviral target.
Collapse
Affiliation(s)
- Shaoxiong Yu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, PR China
| | - Caixia Yin
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, PR China
| | - Kun Song
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, PR China
| | - Su Li
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, PR China
| | - Guang-Lai Zheng
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, PR China
| | - Lian-Feng Li
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, PR China
| | - Jinghan Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, PR China
| | - Yongfeng Li
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, PR China
| | - Yuzi Luo
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, PR China
| | - Yuan Sun
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, PR China
| | - Hua-Ji Qiu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, PR China
| |
Collapse
|
44
|
Growth and adaptation of Zika virus in mammalian and mosquito cells. PLoS Negl Trop Dis 2018; 12:e0006880. [PMID: 30418969 PMCID: PMC6258428 DOI: 10.1371/journal.pntd.0006880] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 11/26/2018] [Accepted: 09/28/2018] [Indexed: 01/02/2023] Open
Abstract
The recent emergence of Zika virus (ZIKV) in the Americas coincident with increased caseloads of microcephalic infants and Guillain-Barre syndrome has prompted a flurry of research on ZIKV. Much of the research is difficult to compare or repeat because individual laboratories use different virus isolates, growth conditions, and quantitative assays. Here we obtained three readily available contemporary ZIKV isolates and the prototype Ugandan isolate. We generated stocks of each on Vero mammalian cells (ZIKVmam) and C6/36 mosquito cells (ZIKVmos), determined titers by different assays side-by-side, compared growth characteristics using one-step and multi-step growth curves on Vero and C6/36 cells, and examined plaque phenotype. ZIKV titers consistently peaked earlier on Vero cells than on C6/36 cells. Contemporary ZIKV isolates reached peak titer most quickly in a multi-step growth curve when the amplifying cell line was the same as the titering cell line (e.g., ZIKVmam titered on Vero cells). Growth of ZIKVmam on mosquito cells was particularly delayed. These data suggest that the ability to infect and/or replicate in insect cells is limited after growth in mammalian cells. In addition, ZIKVmos typically had smaller, more homogenous plaques than ZIKVmam in a standard plaque assay. We hypothesized that the plaque size difference represented early adaptation to growth in mammalian cells. We plaque purified representative-sized plaques from ZIKVmos and ZIKVmam. ZIKVmos isolates maintained the initial phenotype while plaques from ZIKVmam isolates became larger with passaging. Our results underscore the importance of the cells used to produce viral stocks and the potential for adaptation with minimal cell passages. In addition, these studies provide a foundation to compare current and emerging ZIKV isolates in vitro and in vivo.
Collapse
|
45
|
Osuna-Ramos JF, Reyes-Ruiz JM, Del Ángel RM. The Role of Host Cholesterol During Flavivirus Infection. Front Cell Infect Microbiol 2018; 8:388. [PMID: 30450339 PMCID: PMC6224431 DOI: 10.3389/fcimb.2018.00388] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 10/15/2018] [Indexed: 12/11/2022] Open
Abstract
In recent years the emergence and resurgence of arboviruses have generated a global health alert. Among arboviruses, Dengue (DENV), Zika (ZIKV), Yellow Fever (YFV), and West Nile (WNV) virus, belong to the genus Flavivirus, cause high viremia and occasionally fatal clinical disease in humans. Given the genetic austerity of the virus, they depend on cellular factors and organelles to complete its replication. One of the cellular components required for flavivirus infection is cholesterol. Cholesterol is an abundant lipid in biomembranes of eukaryotes cells and is necessary to maintain the cellular homeostasis. Recently, it has been reported, that cholesterol is fundamental during flavivirus infection in both mammal and insect vector models. During infection with DENV, ZIKV, YFV, and WNV the modulation of levels of host-cholesterol facilitates viral entry, replicative complexes formation, assembly, egress, and control of the interferon type I response. This modulation involves changes in cholesterol uptake with the concomitant regulation of cholesterol receptors as well as changes in cholesterol synthesis related to important modifications in cellular metabolism pathways. In view of the flavivirus dependence of cholesterol and the lack of an effective anti-flaviviral treatment, this cellular lipid has been proposed as a therapeutic target to treat infection using FDA-approved cholesterol-lowering drugs. This review aims to address the dependence of cholesterol by flaviviruses as well as the basis for anti flaviviral therapy using drugs which target is cholesterol synthesis or uptake.
Collapse
Affiliation(s)
- Juan Fidel Osuna-Ramos
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV-IPN), Ciudad de Mexico, Mexico
| | - José Manuel Reyes-Ruiz
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV-IPN), Ciudad de Mexico, Mexico
| | - Rosa Maria Del Ángel
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV-IPN), Ciudad de Mexico, Mexico
| |
Collapse
|
46
|
Carro AC, Piccini LE, Damonte EB. Blockade of dengue virus entry into myeloid cells by endocytic inhibitors in the presence or absence of antibodies. PLoS Negl Trop Dis 2018; 12:e0006685. [PMID: 30092029 PMCID: PMC6103515 DOI: 10.1371/journal.pntd.0006685] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Revised: 08/21/2018] [Accepted: 07/12/2018] [Indexed: 12/28/2022] Open
Abstract
Background Dengue is the most prevalent arthropod-borne viral human disease in tropical and subtropical regions, caused by four dengue virus (DENV) serotypes. In spite of the increasing global incidence, no specific antiviral therapy is available. Cells of the mononuclear phagocyte lineage are the main targets either for direct antibody (Ab)-independent or Ab-mediated human DENV infection, usually associated to the severe forms of disease. Since the virus entry may be a convenient therapeutic alternative, this study aimed to investigate the mode of DENV internalization into myeloid cells in the absence and presence of DENV Ab and evaluate the inhibitory activity of diverse biochemical inhibitors of endocytosis. Methodology/principal findings By infectivity assays and quantitative RT-PCR determinations, it was demonstrated that DENV-2 entry into U937 and K562 cells in the absence of Ab was highly inhibited by the early treatment with ammonium chloride, chlorpromazine and dynasore, but it was not affected by methyl-β-cyclodextrin, indicating that DENV-2 utilizes a low pH-dependent, clathrin- and dynamin-mediated endocytic infectious pathway for the direct entry into both human myeloid cells. To study the Ab-mediated entry of DENV, the experimental conditions for enhancement of infection were established by inoculating immune complexes formed with DENV-2 and the Ab 2H2 or 3H5. The internalization of DENV-2-2H2 or DENV-2-3H5 complexes in both myeloid cells was also dependent on acid pH and dynamin but a differential requirement of the clathrin-mediated endocytic route was observed depending on the FcγR involved in the complex uptake: the infection through FcγRII was dependent on clathrin-coated vesicles whereas the internalization pathway mediated by FcγRI was independent of clathrin. This property was not serotype-specific. Conclusions/significance DENV entry into myeloid cells in the absence or presence of Ab can be blocked by diverse biochemical inhibitors affecting the cellular factors involved in endocytosis. The identification of the virus-host interactions involved in virus penetration may allow the finding of host-targeted antivirals widely active against diverse pathogenic flaviviruses with similar requirements for virus entry. Dengue is currently a widespread viral disease transmitted to human by mosquitoes, with very high prevalence in tropical and subtropical regions of América and Asia. Approximately 2.5 billion people are living in endemic areas and it is estimated that 350 million apparent and inapparent infections occur each year. There is no specific antiviral for treatment of dengue patients. On this basis, the search of antiviral agents is an urgent need. Dengue virus (DENV) entry is an attractive alternative for chemotherapeutic intervention since it represents a barrier to block the beginning of infection. We intended to evaluate the antiviral activity of diverse biochemical inhibitors of endocytosis against DENV in human myeloid cells. Results showed that DENV entry into these cells can be blocked by diverse biochemical inhibitors affecting the cellular factors involved in endocytosis such as intravesicular pH, clathrin-coated vesicles and dynamin, although the presence of non neutralizing antibodies, as can occur in secondary human infections, may alter the entry pathway under certain conditions. Then, the blockade of virus entry with host-targeted inhibitors may be a promising strategy for the development of safe antiviral agents with wide spectrum of activity against DENV and other related pathogenic flaviviruses.
Collapse
Affiliation(s)
- Ana C Carro
- Laboratory of Virology, Department of Biological Chemistry, Faculty of Sciences, University of Buenos Aires, Buenos Aires, Argentina
| | - Luana E Piccini
- Laboratory of Virology, Department of Biological Chemistry, Faculty of Sciences, University of Buenos Aires, Buenos Aires, Argentina
- IQUIBICEN, National Research Council (CONICET)-Department of Biological Chemistry, University of Buenos Aires, Ciudad Universitaria, Buenos Aires, Argentina
| | - Elsa B Damonte
- Laboratory of Virology, Department of Biological Chemistry, Faculty of Sciences, University of Buenos Aires, Buenos Aires, Argentina
- IQUIBICEN, National Research Council (CONICET)-Department of Biological Chemistry, University of Buenos Aires, Ciudad Universitaria, Buenos Aires, Argentina
| |
Collapse
|
47
|
Gullberg RC, Steel JJ, Pujari V, Rovnak J, Crick DC, Perera R. Stearoly-CoA desaturase 1 differentiates early and advanced dengue virus infections and determines virus particle infectivity. PLoS Pathog 2018; 14:e1007261. [PMID: 30118512 PMCID: PMC6114894 DOI: 10.1371/journal.ppat.1007261] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 08/29/2018] [Accepted: 08/06/2018] [Indexed: 02/04/2023] Open
Abstract
Positive strand RNA viruses, such as dengue virus type 2 (DENV2) expand and structurally alter ER membranes to optimize cellular communication pathways that promote viral replicative needs. These complex rearrangements require significant protein scaffolding as well as changes to the ER chemical composition to support these structures. We have previously shown that the lipid abundance and repertoire of host cells are significantly altered during infection with these viruses. Specifically, enzymes in the lipid biosynthesis pathway such as fatty acid synthase (FAS) are recruited to viral replication sites by interaction with viral proteins and displayed enhanced activities during infection. We have now identified that events downstream of FAS (fatty acid desaturation) are critical for virus replication. In this study we screened enzymes in the unsaturated fatty acid (UFA) biosynthetic pathway and found that the rate-limiting enzyme in monounsaturated fatty acid biosynthesis, stearoyl-CoA desaturase 1 (SCD1), is indispensable for DENV2 replication. The enzymatic activity of SCD1, was required for viral genome replication and particle release, and it was regulated in a time-dependent manner with a stringent requirement early during viral infection. As infection progressed, SCD1 protein expression levels were inversely correlated with the concentration of viral dsRNA in the cell. This modulation of SCD1, coinciding with the stage of viral replication, highlighted its function as a trigger of early infection and an enzyme that controlled alternate lipid requirements during early versus advanced infections. Loss of function of this enzyme disrupted structural alterations of assembled viral particles rendering them non-infectious and immature and defective in viral entry. This study identifies the complex involvement of SCD1 in DENV2 infection and demonstrates that these viruses alter ER lipid composition to increase infectivity of the virus particles.
Collapse
Affiliation(s)
- Rebekah C. Gullberg
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States of America
| | - J. Jordan Steel
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States of America
| | - Venugopal Pujari
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States of America
| | - Joel Rovnak
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States of America
| | - Dean C. Crick
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States of America
| | - Rushika Perera
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States of America
| |
Collapse
|
48
|
Affiliation(s)
- Hans C. Leier
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University (OHSU), Portland, Oregon, United States of America
| | - William B. Messer
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University (OHSU), Portland, Oregon, United States of America
- Department of Medicine, Division of Infectious Diseases, OHSU, Portland, Oregon, United States of America
| | - Fikadu G. Tafesse
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University (OHSU), Portland, Oregon, United States of America
- * E-mail:
| |
Collapse
|
49
|
Barrows NJ, Campos RK, Liao KC, Prasanth KR, Soto-Acosta R, Yeh SC, Schott-Lerner G, Pompon J, Sessions OM, Bradrick SS, Garcia-Blanco MA. Biochemistry and Molecular Biology of Flaviviruses. Chem Rev 2018; 118:4448-4482. [PMID: 29652486 DOI: 10.1021/acs.chemrev.7b00719] [Citation(s) in RCA: 206] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Flaviviruses, such as dengue, Japanese encephalitis, tick-borne encephalitis, West Nile, yellow fever, and Zika viruses, are critically important human pathogens that sicken a staggeringly high number of humans every year. Most of these pathogens are transmitted by mosquitos, and not surprisingly, as the earth warms and human populations grow and move, their geographic reach is increasing. Flaviviruses are simple RNA-protein machines that carry out protein synthesis, genome replication, and virion packaging in close association with cellular lipid membranes. In this review, we examine the molecular biology of flaviviruses touching on the structure and function of viral components and how these interact with host factors. The latter are functionally divided into pro-viral and antiviral factors, both of which, not surprisingly, include many RNA binding proteins. In the interface between the virus and the hosts we highlight the role of a noncoding RNA produced by flaviviruses to impair antiviral host immune responses. Throughout the review, we highlight areas of intense investigation, or a need for it, and potential targets and tools to consider in the important battle against pathogenic flaviviruses.
Collapse
Affiliation(s)
- Nicholas J Barrows
- Department of Biochemistry and Molecular Biology , University of Texas Medical Branch , Galveston , Texas 77555 , United States.,Department of Molecular Genetics and Microbiology , Duke University , Durham , North Carolina 27710 , United States
| | - Rafael K Campos
- Department of Biochemistry and Molecular Biology , University of Texas Medical Branch , Galveston , Texas 77555 , United States.,Department of Molecular Genetics and Microbiology , Duke University , Durham , North Carolina 27710 , United States
| | - Kuo-Chieh Liao
- Programme in Emerging Infectious Diseases , Duke-NUS Medical School , Singapore 169857 , Singapore
| | - K Reddisiva Prasanth
- Department of Biochemistry and Molecular Biology , University of Texas Medical Branch , Galveston , Texas 77555 , United States
| | - Ruben Soto-Acosta
- Department of Biochemistry and Molecular Biology , University of Texas Medical Branch , Galveston , Texas 77555 , United States
| | - Shih-Chia Yeh
- Programme in Emerging Infectious Diseases , Duke-NUS Medical School , Singapore 169857 , Singapore
| | - Geraldine Schott-Lerner
- Department of Biochemistry and Molecular Biology , University of Texas Medical Branch , Galveston , Texas 77555 , United States
| | - Julien Pompon
- Programme in Emerging Infectious Diseases , Duke-NUS Medical School , Singapore 169857 , Singapore.,MIVEGEC, IRD, CNRS, Université de Montpellier , Montpellier 34090 , France
| | - October M Sessions
- Programme in Emerging Infectious Diseases , Duke-NUS Medical School , Singapore 169857 , Singapore
| | - Shelton S Bradrick
- Department of Biochemistry and Molecular Biology , University of Texas Medical Branch , Galveston , Texas 77555 , United States
| | - Mariano A Garcia-Blanco
- Department of Biochemistry and Molecular Biology , University of Texas Medical Branch , Galveston , Texas 77555 , United States.,Programme in Emerging Infectious Diseases , Duke-NUS Medical School , Singapore 169857 , Singapore
| |
Collapse
|
50
|
Conflict in the Intracellular Lives of Endosymbionts and Viruses: A Mechanistic Look at Wolbachia-Mediated Pathogen-blocking. Viruses 2018; 10:v10040141. [PMID: 29561780 PMCID: PMC5923435 DOI: 10.3390/v10040141] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 03/14/2018] [Accepted: 03/20/2018] [Indexed: 12/16/2022] Open
Abstract
At the forefront of vector control efforts are strategies that leverage host-microbe associations to reduce vectorial capacity. The most promising of these efforts employs Wolbachia, a maternally transmitted endosymbiotic bacterium naturally found in 40% of insects. Wolbachia can spread through a population of insects while simultaneously inhibiting the replication of viruses within its host. Despite successes in using Wolbachia-transfected mosquitoes to limit dengue, Zika, and chikungunya transmission, the mechanisms behind pathogen-blocking have not been fully characterized. Firstly, we discuss how Wolbachia and viruses both require specific host-derived structures, compounds, and processes to initiate and maintain infection. There is significant overlap in these requirements, and infection with either microbe often manifests as cellular stress, which may be a key component of Wolbachia’s anti-viral effect. Secondly, we discuss the current understanding of pathogen-blocking through this lens of cellular stress and develop a comprehensive view of how the lives of Wolbachia and viruses are fundamentally in conflict with each other. A thorough understanding of the genetic and cellular determinants of pathogen-blocking will significantly enhance the ability of vector control programs to deploy and maintain effective Wolbachia-mediated control measures.
Collapse
|