1
|
Tang X, Li W, Wang H, Sheng X, Xing J, Chi H, Guo M, Zhan W. The development of RT-RPA and CRISPR-Cas12a based assay for sensitive detection of Hirame novirhabdovirus. Microb Pathog 2024; 196:106959. [PMID: 39303955 DOI: 10.1016/j.micpath.2024.106959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 08/30/2024] [Accepted: 09/18/2024] [Indexed: 09/22/2024]
Abstract
Hirame novirhabdovirus (HIRRV) is a highly pathogenic fish virus that poses a significant threat to the farming of a variety of economic fish. Due to no commercial vaccines and effective drugs available, sensitive and rapid detection of HIRRV at latent and early stages is important and critical for the control of disease outbreaks. However, most of the current methods for HIRRV detection have a large dependence on instruments and operations. For better detection of HIRRV, we have established a detection technology based on the reverse transcription and recombinase polymerase amplification (RT-RPA) and CRISPR/Cas12a to detect the N gene of HIRRV in two steps. Following the screening of primer pairs, the reaction temperature and time for RPA were optimized to be 40 °C and 32min, respectively, and the CRISPR/Cas12a reaction was performed at 37 °C for 15min. The whole detection procedure including can be accomplished within 1 h, with a detection sensitivity of about 8.7 copies/μl. The detection method exhibited high specificity with no cross-reaction to the other Novirhabdoviruses IHNV and VHSV, allowing naked-eye color-based interpretation of the detection results through lateral flow (LF) strip or fluorescence under violet light. Furthermore, the proliferation dynamic of HIRRV in the spleen of flounder were comparatively detected by LF- and fluorescence-based RPA-CRISPR/Cas12a assay in comparison to qRT-PCR at the early infection stage, and the results showed that the viral positive signal could be firstly detected by the two RPA-CRISPR/Cas12a based methods at 6 hpi, and then by qRT-PCR at 12 hpi. Overall, our results demonstrated that the developed RPA-CRISPR/Cas12a method is a stable, specific, sensitive and more suitable in the field, which has a significant effect on the prevention of HIRRV. RT-RPA-Cas12a-mediated assay is a rapid, specific and sensitive detection method for visual and on-site detection of HIRRV, which shows a great application promise for the prevention of HIRRV infections.
Collapse
Affiliation(s)
- Xiaoqian Tang
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China.
| | - Wenshuo Li
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, 266003, China
| | - Hongsheng Wang
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, 266003, China
| | - Xiuzhen Sheng
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, 266003, China
| | - Jing Xing
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| | - Heng Chi
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, 266003, China
| | - Ming Guo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Wenbin Zhan
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| |
Collapse
|
2
|
He B, Wilson B, Chen SH, Sharma K, Scappini E, Cook M, Petrovich R, Martin NP. Molecular Engineering of Virus Tropism. Int J Mol Sci 2024; 25:11094. [PMID: 39456875 PMCID: PMC11508178 DOI: 10.3390/ijms252011094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/03/2024] [Accepted: 10/07/2024] [Indexed: 10/28/2024] Open
Abstract
Engineered viral vectors designed to deliver genetic material to specific targets offer significant potential for disease treatment, safer vaccine development, and the creation of novel biochemical research tools. Viral tropism, the specificity of a virus for infecting a particular host, is often modified in recombinant viruses to achieve precise delivery, minimize off-target effects, enhance transduction efficiency, and improve safety. Key factors influencing tropism include surface protein interactions between the virus and host-cell, the availability of host-cell machinery for viral replication, and the host immune response. This review explores current strategies for modifying the tropism of recombinant viruses by altering their surface proteins. We provide an overview of recent advancements in targeting non-enveloped viruses (adenovirus and adeno-associated virus) and enveloped viruses (retro/lentivirus, Rabies, Vesicular Stomatitis Virus, and Herpesvirus) to specific cell types. Additionally, we discuss approaches, such as rational design, directed evolution, and in silico and machine learning-based methods, for generating novel AAV variants with the desired tropism and the use of chimeric envelope proteins for pseudotyping enveloped viruses. Finally, we highlight the applications of these advancements and discuss the challenges and future directions in engineering viral tropism.
Collapse
Affiliation(s)
- Bo He
- Viral Vector Core, Neurobiology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA; (B.H.); (B.W.); (S.-H.C.)
| | - Belinda Wilson
- Viral Vector Core, Neurobiology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA; (B.H.); (B.W.); (S.-H.C.)
| | - Shih-Heng Chen
- Viral Vector Core, Neurobiology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA; (B.H.); (B.W.); (S.-H.C.)
| | - Kedar Sharma
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA; (K.S.); (M.C.); (R.P.)
| | - Erica Scappini
- Fluorescent Microscopy and Imaging Center, Molecular and Cellular Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA;
| | - Molly Cook
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA; (K.S.); (M.C.); (R.P.)
| | - Robert Petrovich
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA; (K.S.); (M.C.); (R.P.)
| | - Negin P. Martin
- Viral Vector Core, Neurobiology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA; (B.H.); (B.W.); (S.-H.C.)
| |
Collapse
|
3
|
Debat H, Farrher ES, Bejerman N. Insights into the RNA Virome of the Corn Leafhopper Dalbulus maidis, a Major Emergent Threat of Maize in Latin America. Viruses 2024; 16:1583. [PMID: 39459917 PMCID: PMC11512364 DOI: 10.3390/v16101583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 07/26/2024] [Accepted: 07/29/2024] [Indexed: 10/28/2024] Open
Abstract
The maize leafhopper (Dalbulus maidis) is a significant threat to maize crops in tropical and subtropical regions, causing extensive economic losses. While its ecological interactions and control strategies are well studied, its associated viral diversity remains largely unexplored. Here, we employ high-throughput sequencing data mining to comprehensively characterize the D. maidis RNA virome, revealing novel and diverse RNA viruses. We characterized six new viral members belonging to distinct families, with evolutionary cues of beny-like viruses (Benyviridae), bunya-like viruses (Bunyaviridae) iflaviruses (Iflaviridae), orthomyxo-like viruses (Orthomyxoviridae), and rhabdoviruses (Rhabdoviridae). Phylogenetic analysis of the iflaviruses places them within the genus Iflavirus in affinity with other leafhopper-associated iflaviruses. The five-segmented and highly divergent orthomyxo-like virus showed a relationship with other insect associated orthomyxo-like viruses. The rhabdo virus is related to a leafhopper-associated rhabdo-like virus. Furthermore, the beny-like virus belonged to a cluster of insect-associated beny-like viruses, while the bi-segmented bunya-like virus was related with other bi-segmented insect-associated bunya-like viruses. These results highlight the existence of a complex virome linked to D. maidis and paves the way for future studies investigating the ecological roles, evolutionary dynamics, and potential biocontrol applications of these viruses on the D. maidis-maize pathosystem.
Collapse
Affiliation(s)
- Humberto Debat
- Instituto de Patología Vegetal—Centro de Investigaciones Agropecuarias—Instituto Nacional de Tecnología Agropecuaria (IPAVE-CIAP-INTA), Camino 60 Cuadras Km 5.5, Córdoba X5020ICA, Argentina
- Unidad de Fitopatología y Modelización Agrícola—Consejo Nacional de Investigaciones Científicas y Técnicas (UFYMA-CONICET), Camino 60 Cuadras Km 5.5, Córdoba X5020ICA, Argentina
| | - Esteban Simon Farrher
- Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba 5000, Argentina;
| | - Nicolas Bejerman
- Instituto de Patología Vegetal—Centro de Investigaciones Agropecuarias—Instituto Nacional de Tecnología Agropecuaria (IPAVE-CIAP-INTA), Camino 60 Cuadras Km 5.5, Córdoba X5020ICA, Argentina
- Unidad de Fitopatología y Modelización Agrícola—Consejo Nacional de Investigaciones Científicas y Técnicas (UFYMA-CONICET), Camino 60 Cuadras Km 5.5, Córdoba X5020ICA, Argentina
| |
Collapse
|
4
|
Cai X, Zhou K, Alvarez-Cabrera AL, Si Z, Wang H, He Y, Li C, Zhou ZH. Structural Heterogeneity of the Rabies Virus Virion. Viruses 2024; 16:1447. [PMID: 39339924 PMCID: PMC11437398 DOI: 10.3390/v16091447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/05/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
Rabies virus (RABV) is among the first recognized viruses of public health concern and has historically contributed to the development of viral vaccines. Despite these significances, the three-dimensional structure of the RABV virion remains unknown due to the challenges in isolating structurally homogenous virion samples in sufficient quantities needed for structural investigation. Here, by combining the capabilities of cryogenic electron tomography (cryoET) and microscopy (cryoEM), we determined the three-dimensional structure of the wild-type RABV virion. Tomograms of RABV virions reveal a high level of structural heterogeneity among the bullet-shaped virion particles encompassing the glycoprotein (G) trimer-decorated envelope and the nucleocapsid composed of RNA, nucleoprotein (N), and matrix protein (M). The structure of the trunk region of the virion was determined by cryoEM helical reconstruction, revealing a one-start N-RNA helix bound by a single layer of M proteins at an N:M ratio of 1. The N-M interaction differs from that in fellow rhabdovirus vesicular stomatitis virus (VSV), which features two layers of M stabilizing the N-RNA helix at an M:N ratio of 2. These differences in both M-N stoichiometry and binding allow RABV to flex its N-RNA helix more freely and point to different mechanisms of viral assembly between these two bullet-shaped rhabdoviruses.
Collapse
Affiliation(s)
- Xiaoying Cai
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, CA 90095-1489, USA; (X.C.); (A.L.A.-C.); (Z.S.); (H.W.); (Y.H.)
- The California NanoSystems Institute (CNSI), University of California, Los Angeles (UCLA), Los Angeles, CA 90095-7364, USA; (K.Z.); (C.L.)
| | - Kang Zhou
- The California NanoSystems Institute (CNSI), University of California, Los Angeles (UCLA), Los Angeles, CA 90095-7364, USA; (K.Z.); (C.L.)
| | - Ana Lucia Alvarez-Cabrera
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, CA 90095-1489, USA; (X.C.); (A.L.A.-C.); (Z.S.); (H.W.); (Y.H.)
- The California NanoSystems Institute (CNSI), University of California, Los Angeles (UCLA), Los Angeles, CA 90095-7364, USA; (K.Z.); (C.L.)
| | - Zhu Si
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, CA 90095-1489, USA; (X.C.); (A.L.A.-C.); (Z.S.); (H.W.); (Y.H.)
- The California NanoSystems Institute (CNSI), University of California, Los Angeles (UCLA), Los Angeles, CA 90095-7364, USA; (K.Z.); (C.L.)
| | - Hui Wang
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, CA 90095-1489, USA; (X.C.); (A.L.A.-C.); (Z.S.); (H.W.); (Y.H.)
- The California NanoSystems Institute (CNSI), University of California, Los Angeles (UCLA), Los Angeles, CA 90095-7364, USA; (K.Z.); (C.L.)
| | - Yao He
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, CA 90095-1489, USA; (X.C.); (A.L.A.-C.); (Z.S.); (H.W.); (Y.H.)
- The California NanoSystems Institute (CNSI), University of California, Los Angeles (UCLA), Los Angeles, CA 90095-7364, USA; (K.Z.); (C.L.)
| | - Cally Li
- The California NanoSystems Institute (CNSI), University of California, Los Angeles (UCLA), Los Angeles, CA 90095-7364, USA; (K.Z.); (C.L.)
- Alsion Montessori High School, 750 Witherly Ln., Fremont, CA 94539, USA
| | - Z. Hong Zhou
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, CA 90095-1489, USA; (X.C.); (A.L.A.-C.); (Z.S.); (H.W.); (Y.H.)
- The California NanoSystems Institute (CNSI), University of California, Los Angeles (UCLA), Los Angeles, CA 90095-7364, USA; (K.Z.); (C.L.)
| |
Collapse
|
5
|
Bejerman N, Debat H. Alpha- and Betagymnorhavirus: two new genera of gymnosperm-infecting viruses in the family Rhabdoviridae, subfamily Betarhabdovirinae. Arch Virol 2024; 169:193. [PMID: 39242424 DOI: 10.1007/s00705-024-06119-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2024]
Abstract
The family Rhabdoviridae includes viruses with a negative-sense RNA genome. This family is divided into four subfamilies, and until recently, the subfamily Betarhabdovirinae, encompassing all plant-associated rhabdoviruses, was further divided into six genera. Here, we report the creation of two new genera within the subfamily Betarhabdovirinae - Alphagymnorhavirus and Betagymnorhavirus - to include recently described gymnosperm-associated viruses. The genus Alphagymnorhavirus includes nine species, while the genus Betagymnorhavirus includes only one species. Phylogenetic analysis indicated that these viruses form two well-supported clades that are clustered with the varicosaviruses, which have bisegmented genomes. In contrast, the 10 viruses included in the newly created genera have the distinctive feature that they have an unsegmented genome encoding five or six proteins. The creation of the genera Alphagymnorhavirus and Betagymnorhavirus has been ratified by the International Committee on Taxonomy of Viruses (ICTV).
Collapse
Affiliation(s)
- Nicolas Bejerman
- Instituto de Patología Vegetal, Centro de Investigaciones, Instituto Nacional de Tecnología Agropecuaria (IPAVE-CIAP-INTA), Camino 60 Cuadras Km 5.5, X5020ICA, Córdoba, Argentina.
- Consejo Nacional de Investigaciones Científicas y Técnicas. Unidad de Fitopatología y Modelización Agrícola, Camino 60 Cuadras Km 5.5, Córdoba X5020ICA, Córdoba, Argentina.
| | - Humberto Debat
- Instituto de Patología Vegetal, Centro de Investigaciones, Instituto Nacional de Tecnología Agropecuaria (IPAVE-CIAP-INTA), Camino 60 Cuadras Km 5.5, X5020ICA, Córdoba, Argentina.
- Consejo Nacional de Investigaciones Científicas y Técnicas. Unidad de Fitopatología y Modelización Agrícola, Camino 60 Cuadras Km 5.5, Córdoba X5020ICA, Córdoba, Argentina.
| |
Collapse
|
6
|
da Silva AF, Machado LC, da Silva LMI, Dezordi FZ, Wallau GL. Highly divergent and diverse viral community infecting sylvatic mosquitoes from Northeast Brazil. J Virol 2024; 98:e0008324. [PMID: 38995042 PMCID: PMC11334435 DOI: 10.1128/jvi.00083-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 06/11/2024] [Indexed: 07/13/2024] Open
Abstract
Mosquitoes can transmit several pathogenic viruses to humans, but their natural viral community is also composed of a myriad of other viruses such as insect-specific viruses (ISVs) and those that infect symbiotic microorganisms. Besides a growing number of studies investigating the mosquito virome, the majority are focused on few urban species, and relatively little is known about the virome of sylvatic mosquitoes, particularly in high biodiverse biomes such as the Brazilian biomes. Here, we characterized the RNA virome of 10 sylvatic mosquito species from Atlantic forest remains at a sylvatic-urban interface in Northeast Brazil employing a metatranscriptomic approach. A total of 16 viral families were detected. The phylogenetic reconstructions of 14 viral families revealed that the majority of the sequences are putative ISVs. The phylogenetic positioning and, in most cases, the association with a high RNA-dependent RNA polymerase amino acid divergence from other known viruses suggests that the viruses characterized here represent at least 34 new viral species. Therefore, the sylvatic mosquito viral community is predominantly composed of highly divergent viruses highlighting the limited knowledge we still have about the natural virome of mosquitoes in general. Moreover, we found that none of the viruses recovered were shared between the species investigated, and only one showed high identity to a virus detected in a mosquito sampled in Peru, South America. These findings add further in-depth understanding about the interactions and coevolution between mosquitoes and viruses in natural environments. IMPORTANCE Mosquitoes are medically important insects as they transmit pathogenic viruses to humans and animals during blood feeding. However, their natural microbiota is also composed of a diverse set of viruses that cause no harm to the insect and other hosts, such as insect-specific viruses. In this study, we characterized the RNA virome of sylvatic mosquitoes from Northeast Brazil using unbiased metatranscriptomic sequencing and in-depth bioinformatic approaches. Our analysis revealed that these mosquitoes species harbor a diverse set of highly divergent viruses, and the majority comprises new viral species. Our findings revealed many new virus lineages characterized for the first time broadening our understanding about the natural interaction between mosquitoes and viruses. Finally, it also provided several complete genomes that warrant further assessment for mosquito and vertebrate host pathogenicity and their potential interference with pathogenic arboviruses.
Collapse
Affiliation(s)
- Alexandre Freitas da Silva
- Departamento de Entomologia, Instituto Aggeu Magalhães, Fundação Oswaldo Cruz, Recife, Pernambuco, Brazil
- Núcleo de Bioinformática, Instituto Aggeu Magalhães, Fundação Oswaldo Cruz, Recife, Pernambuco, Brazil
| | - Laís Ceschini Machado
- Departamento de Entomologia, Instituto Aggeu Magalhães, Fundação Oswaldo Cruz, Recife, Pernambuco, Brazil
| | | | - Filipe Zimmer Dezordi
- Departamento de Entomologia, Instituto Aggeu Magalhães, Fundação Oswaldo Cruz, Recife, Pernambuco, Brazil
- Núcleo de Bioinformática, Instituto Aggeu Magalhães, Fundação Oswaldo Cruz, Recife, Pernambuco, Brazil
| | - Gabriel Luz Wallau
- Departamento de Entomologia, Instituto Aggeu Magalhães, Fundação Oswaldo Cruz, Recife, Pernambuco, Brazil
- Núcleo de Bioinformática, Instituto Aggeu Magalhães, Fundação Oswaldo Cruz, Recife, Pernambuco, Brazil
- Department of Arbovirology and Entomology, Bernhard Nocht Institute for Tropical Medicine, WHO Collaborating Center for Arbovirus and Hemorrhagic Fever Reference and Research, National Reference Center for Tropical Infectious Diseases, Hamburg, Germany
| |
Collapse
|
7
|
Xiao J, Nie B, Chen ME, Ge D, Liu R. Discovery and Genomic Analysis of Three Novel Viruses in the Order Mononegavirales in Leafhoppers. Viruses 2024; 16:1321. [PMID: 39205295 PMCID: PMC11360795 DOI: 10.3390/v16081321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/11/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024] Open
Abstract
Leafhoppers are economically important pests and may serve as vectors for pathogenic viruses that cause substantial crop damage. In this study, using deep transcriptome sequencing, we identified three novel viruses within the order Mononegavirales, including two viruses belonging to the family Rhabdoviridae and one to the family Lispiviridae. The complete genome sequences were obtained via the rapid amplification of cDNA ends and tentatively named Recilia dorsalis rhabdovirus 1 (RdRV1, 14,251 nucleotides, nt), Nephotettix virescens rhabdovirus 1 (NvRV1, 13,726 nt), and Nephotettix virescens lispivirus 1 (NvLV1, 14,055 nt). The results of a phylogenetic analysis and sequence identity comparison suggest that RdRV1 and NvRV1 represent novel species within the family Rhabdoviridae, while NvLV1 is a new virus belonging to the family Lispiviridae. As negative-sense single-strand RNA viruses, RdRV1 and NvRV1 contain the conserved transcription termination signal and intergenic trinucleotides in the non-transcribed region. Intergenomic sequence and transcriptome profile analyses suggested that all these genes were co-transcriptionally expressed in these viral genomes, facilitated by specific intergenic trinucleotides and putative transcription initiation sequences.
Collapse
Affiliation(s)
- Jiajing Xiao
- Center for Agroforestry Mega Data Science, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.X.); (B.N.); (M.-E.C.)
| | - Binghua Nie
- Center for Agroforestry Mega Data Science, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.X.); (B.N.); (M.-E.C.)
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Meng-En Chen
- Center for Agroforestry Mega Data Science, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.X.); (B.N.); (M.-E.C.)
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Danfeng Ge
- Center for Agroforestry Mega Data Science, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.X.); (B.N.); (M.-E.C.)
| | - Renyi Liu
- Center for Agroforestry Mega Data Science, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.X.); (B.N.); (M.-E.C.)
| |
Collapse
|
8
|
Huang H, Lu X, Guo J, Chen Y, Yi M, Jia K. Protective efficacy and immune responses of largemouth bass (Micropterus salmoides) immunized with an inactivated vaccine against the viral hemorrhagic septicemia virus genotype IVa. FISH & SHELLFISH IMMUNOLOGY 2024; 151:109691. [PMID: 38871138 DOI: 10.1016/j.fsi.2024.109691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/09/2024] [Accepted: 06/10/2024] [Indexed: 06/15/2024]
Abstract
Viral hemorrhagic septicemia virus (VHSV) poses a significant threat to the aquaculture industry, prompting the need for effective preventive measures. Here, we developed an inactivated VHSV and revealed the molecular mechanisms underlying the host's protective response against VHSV. The vaccine was created by treating VHSV with 0.05 % formalin at 16 °C for 48 h, which was determined to be the most effective inactivation method. Compared with nonvaccinated fish, vaccinated fish exhibited a remarkable increase in survival rate (99 %) and elevated levels of serum neutralizing antibodies, indicating strong immunization. To investigate the gene changes induced by vaccination, RNA sequencing was performed on spleen samples from control and vaccinated fish 14 days after vaccination. The analysis revealed 893 differentially expressed genes (DEGs), with notable up-regulation of immune-related genes such as annexin A1a, coxsackievirus and adenovirus receptor homolog, V-set domain-containing T-cell activation inhibitor 1-like, and heat shock protein 90 alpha class A member 1 tandem duplicate 2, indicating a vigorous innate immune response. Furthermore, KEGG enrichment analysis highlighted significant enrichment of DEGs in processes related to antigen processing and presentation, necroptosis, and viral carcinogenesis. GO enrichment analysis further revealed enrichment of DEGs related to the regulation of type I interferon (IFN) production, type I IFN production, and negative regulation of viral processes. Moreover, protein-protein interaction network analysis identified central hub genes, including IRF3 and HSP90AA1.2, suggesting their crucial roles in coordinating the immune response elicited by the vaccine. These findings not only confirm the effectiveness of our vaccine formulation but also offer valuable insights into the underlying immunological mechanisms, which can be valuable for future vaccine development and disease management in the aquaculture industry.
Collapse
Affiliation(s)
- Hao Huang
- School of Marine Sciences, Sun Yat-sen University, Guangzhou, 510000, China.
| | - Xiaobing Lu
- School of Marine Sciences, Sun Yat-sen University, Guangzhou, 510000, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangzhou, 510000, China.
| | - Jiasen Guo
- School of Marine Sciences, Sun Yat-sen University, Guangzhou, 510000, China.
| | - Yihong Chen
- Institute of Modern Aquaculture Science and Engineering (IMASE)/Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou, 510631, China.
| | - Meisheng Yi
- School of Marine Sciences, Sun Yat-sen University, Guangzhou, 510000, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangzhou, 510000, China.
| | - Kuntong Jia
- School of Marine Sciences, Sun Yat-sen University, Guangzhou, 510000, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangzhou, 510000, China.
| |
Collapse
|
9
|
Emmenegger EJ, Bueren EK, Conway CM, Sanders GE, Hendrix AN, Schroeder T, Di Cicco E, Pham PH, Lumsden JS, Clouthier SC. Host Jump of an Exotic Fish Rhabdovirus into a New Class of Animals Poses a Disease Threat to Amphibians. Viruses 2024; 16:1193. [PMID: 39205167 PMCID: PMC11360232 DOI: 10.3390/v16081193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 09/04/2024] Open
Abstract
Spring viremia of carp virus (SVCV) is a rhabdovirus that primarily infects cyprinid finfishes and causes a disease notifiable to the World Organization for Animal Health. Amphibians, which are sympatric with cyprinids in freshwater ecosystems, are considered non-permissive hosts of rhabdoviruses. The potential host range expansion of SVCV in an atypical host species was evaluated by testing the susceptibility of amphibians native to the Pacific Northwest. Larval long-toed salamanders Ambystoma macrodactylum and Pacific tree frog Pseudacris regilla tadpoles were exposed to SVCV strains from genotypes Ia, Ib, Ic, or Id by either intraperitoneal injection, immersion, or cohabitation with virus-infected koi Cyprinus rubrofuscus. Cumulative mortality was 100% for salamanders injected with SVCV, 98-100% for tadpoles exposed to virus via immersion, and 0-100% for tadpoles cohabited with SVCV-infected koi. Many of the animals that died exhibited clinical signs of disease and SVCV RNA was found by in situ hybridization in tissue sections of immersion-exposed tadpoles, particularly in the cells of the gastrointestinal tract and liver. SVCV was also detected by plaque assay and RT-qPCR testing in both amphibian species regardless of the virus exposure method, and viable virus was detected up to 28 days after initial exposure. Recovery of infectious virus from naïve tadpoles cohabited with SVCV-infected koi further demonstrated that SVCV transmission can occur between classes of ectothermic vertebrates. Collectively, these results indicated that SVCV, a fish rhabdovirus, can be transmitted to and cause lethal disease in two amphibian species. Therefore, members of all five of the major vertebrate groups (mammals, birds, reptiles, fish, and amphibians) appear to be vulnerable to rhabdovirus infections. Future research studying potential spillover and spillback infections of aquatic rhabdoviruses between foreign and domestic amphibian and fish species will provide insights into the stressors driving novel interclass virus transmission events.
Collapse
Affiliation(s)
- Eveline J Emmenegger
- U.S. Geological Survey, Western Fisheries Research Center (WFRC), 6505 NE 65th Street, Seattle, WA 98115, USA
| | - Emma K Bueren
- U.S. Geological Survey, Western Fisheries Research Center (WFRC), 6505 NE 65th Street, Seattle, WA 98115, USA
- Department of Biology, Indiana University, 1001 E 3rd St, Bloomington, IN 47405, USA
| | - Carla M Conway
- U.S. Geological Survey, Western Fisheries Research Center (WFRC), 6505 NE 65th Street, Seattle, WA 98115, USA
| | - George E Sanders
- Department of Comparative Medicine, University of Washington, Seattle, WA 98195, USA
| | - A Noble Hendrix
- QEDA Consulting, 4007 Densmore Avenue N, Seattle, WA 98103, USA
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA 98195, USA
| | - Tamara Schroeder
- Freshwater Institute, Fisheries and Oceans Canada (DFO), 501 University Crescent, Winnipeg, MB R3T 2N6, Canada
| | - Emiliano Di Cicco
- Pacific Salmon Foundation (PSF), 1682 W 7th Ave., Vancouver, BC V6J 4S6, Canada
| | - Phuc H Pham
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - John S Lumsden
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Sharon C Clouthier
- Freshwater Institute, Fisheries and Oceans Canada (DFO), 501 University Crescent, Winnipeg, MB R3T 2N6, Canada
| |
Collapse
|
10
|
Fang H, Wu XM, Zheng SY, Chang MX. Tripartite motif 2b ( trim2b) restricts spring viremia of carp virus by degrading viral proteins and negative regulators NLRP12-like receptors. J Virol 2024; 98:e0015824. [PMID: 38695539 PMCID: PMC11237789 DOI: 10.1128/jvi.00158-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 04/04/2024] [Indexed: 06/14/2024] Open
Abstract
Tripartite motif (TRIM) proteins are involved in different cellular functions, including regulating virus infection. In teleosts, two orthologous genes of mammalian TRIM2 are identified. However, the functions and molecular mechanisms of piscine TRIM2 remain unclear. Here, we show that trim2b-knockout zebrafish are more susceptible to spring viremia of carp virus (SVCV) infection than wild-type zebrafish. Transcriptomic analysis demonstrates that NOD-like receptor (NLR), but not RIG-I-like receptor (RLR), signaling pathway is significantly enriched in the trim2b-knockout zebrafish. In vitro, overexpression of Trim2b fails to degrade RLRs and those key proteins involved in the RLR signaling pathway but does for negative regulators NLRP12-like proteins. Zebrafish Trim2b degrades NLRP12-like proteins through its NHL_TRIM2_like and IG_FLMN domains in a ubiquitin-proteasome degradation pathway. SVCV-N and SVCV-G proteins are also degraded by NHL_TRIM2_like domains, and the degradation pathway is an autophagy lysosomal pathway. Moreover, zebrafish Trim2b can interfere with the binding between NLRP12-like protein and SVCV viral RNA and can completely block the negative regulation of NLRP12-like protein on SVCV infection. Taken together, our data demonstrate that the mechanism of action of zebrafish trim2b against SVCV infection is through targeting the degradation of host-negative regulators NLRP12-like receptors and viral SVCV-N/SVCV-G genes.IMPORTANCESpring viremia of carp virus (SVCV) is a lethal freshwater pathogen that causes high mortality in cyprinid fish. In the present study, we identified zebrafish trim2b, NLRP12-L1, and NLRP12-L2 as potential pattern recognition receptors (PRRs) for sensing and binding viral RNA. Zebrafish trim2b functions as a positive regulator; however, NLRP12-L1 and NLRP12-L2 function as negative regulators during SVCV infection. Furthermore, we find that zebrafish trim2b decreases host lethality in two manners. First, zebrafish Trim2b promotes protein degradations of negative regulators NLRP12-L1 and NLRP12-L2 by enhancing K48-linked ubiquitination and decreasing K63-linked ubiquitination. Second, zebrafish trim2b targets viral RNAs for degradation. Therefore, this study reveals a special antiviral mechanism in lower vertebrates.
Collapse
Affiliation(s)
- Hong Fang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xiao Man Wu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Si Yao Zheng
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Ming Xian Chang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
11
|
Michael P, Panchavarnam S, Bagthasingh C, Palaniappan S, Velu R, Mohaideenpitchai MM, Palraj M, Muthumariyapan S, David EP. Innate immune response of snakehead fish to Indian strain of snakehead rhabdovirus (SHRV-In) infection and the infectivity potential of the virus to other freshwater fishes. FISH & SHELLFISH IMMUNOLOGY 2024; 149:109577. [PMID: 38643957 DOI: 10.1016/j.fsi.2024.109577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/08/2024] [Accepted: 04/18/2024] [Indexed: 04/23/2024]
Abstract
A new virus known as snakehead rhabdovirus (SHRV-In) was discovered in South India in striped snakehead (Channa striata) that had hemorrhagic patches and cutaneous ulcerations. The virus is the most potentially harmful pathogen of snakehead because it could cause 100% mortality within 5 days. The goal of the current investigation was to evaluate the infectivity of rhabdovirus in freshwater fishes and to analyze the immune response in snakehead fish after challenge with SHRV-In. The infectivity study of SHRV-In against three freshwater fish such as tilapia, grass carp and loach showed that the virus could not induce mortality in any of them. Snakehead fish challenged with SHRV-In showed significant (p < 0.05) changes in haematological parameters such as red blood cell (RBC), haemoglobin (HGB), haematocrit (HCT), mean corpuscular haemoglobin concentration (MCHC), mean corpuscular volume (MCV), mean corpuscular haemoglobin (MCH), white blood cell (WBC), total platelet (PLT) counts, mean platelet volume (MPV) and immunological markers such as respiratory burst, superoxide dismutase, catalase activity and myeloperoxidase activity at 6, 12, 24 and 48 hpi. Real time PCR was executed to examine the expression profile of innate immune genes such as IRF-7, IL-8 and IL-12 in Snakehead fish at 6, 12, 24 and 48 h post SHRV-In infection. Immune gene expression of IRF-7, IL-8 and IL-12 were up-regulated in the spleen when compared to kidney at 6 and 12 hpi. However, the expression level of all the genes was down-regulated at 24 and 48 hpi. The down regulation of innate immune genes after 24 hpi in these tissues may be the result of increased multiplication of SHRV-In by interfering with the immune signaling pathway.
Collapse
Affiliation(s)
- Priyadharshini Michael
- Department of Fish Pathology and Health Management, Fisheries College and Research Institute, Thoothukudi, 628 008, Tamil Nadu Dr.J.Jayalalithaa Fisheries University, Tamil Nadu, India
| | - Sivasankar Panchavarnam
- Department of Fish Pathology and Health Management, Fisheries College and Research Institute, Thoothukudi, 628 008, Tamil Nadu Dr.J.Jayalalithaa Fisheries University, Tamil Nadu, India.
| | - Chrisolite Bagthasingh
- Department of Fish Pathology and Health Management, Fisheries College and Research Institute, Thoothukudi, 628 008, Tamil Nadu Dr.J.Jayalalithaa Fisheries University, Tamil Nadu, India
| | - Subash Palaniappan
- Department of Fish Pathology and Health Management, Fisheries College and Research Institute, Thoothukudi, 628 008, Tamil Nadu Dr.J.Jayalalithaa Fisheries University, Tamil Nadu, India
| | - Rani Velu
- Department of Fish Pathology and Health Management, Fisheries College and Research Institute, Thoothukudi, 628 008, Tamil Nadu Dr.J.Jayalalithaa Fisheries University, Tamil Nadu, India
| | - Mohamed Mansoor Mohaideenpitchai
- Department of Fish Pathology and Health Management, Fisheries College and Research Institute, Thoothukudi, 628 008, Tamil Nadu Dr.J.Jayalalithaa Fisheries University, Tamil Nadu, India
| | - Mageshkumar Palraj
- Department of Fish Pathology and Health Management, Fisheries College and Research Institute, Thoothukudi, 628 008, Tamil Nadu Dr.J.Jayalalithaa Fisheries University, Tamil Nadu, India
| | - Selvamagheswaran Muthumariyapan
- Department of Fish Pathology and Health Management, Fisheries College and Research Institute, Thoothukudi, 628 008, Tamil Nadu Dr.J.Jayalalithaa Fisheries University, Tamil Nadu, India
| | - Evangelin Paripoorana David
- Department of Fish Pathology and Health Management, Fisheries College and Research Institute, Thoothukudi, 628 008, Tamil Nadu Dr.J.Jayalalithaa Fisheries University, Tamil Nadu, India
| |
Collapse
|
12
|
Vakharia VN, Ammayappan A, Yusuff S, Tesfaye TM, Kurath G. Heterologous Exchanges of Glycoprotein and Non-Virion Protein in Novirhabdoviruses: Assessment of Virulence in Yellow Perch ( Perca flavescens) and Rainbow Trout ( Oncorhynchus mykiss). Viruses 2024; 16:652. [PMID: 38675990 PMCID: PMC11054476 DOI: 10.3390/v16040652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/15/2024] [Accepted: 04/19/2024] [Indexed: 04/28/2024] Open
Abstract
Infectious hematopoietic necrosis virus (IHNV) and viral hemorrhagic septicemia virus (VHSV) are rhabdoviruses in two different species belonging to the Novirhabdovirus genus. IHNV has a narrow host range restricted to trout and salmon species, and viruses in the M genogroup of IHNV have high virulence in rainbow trout (Oncorhynchus mykiss). In contrast, the VHSV genotype IVb that invaded the Great Lakes in the United States has a broad host range, with high virulence in yellow perch (Perca flavescens), but not in rainbow trout. By using reverse-genetic systems of IHNV-M and VHSV-IVb strains, we generated six IHNV:VHSV chimeric viruses in which the glycoprotein (G), non-virion-protein (NV), or both G and NV genes of IHNV-M were replaced with the analogous genes from VHSV-IVb, and vice versa. These chimeric viruses were used to challenge groups of rainbow trout and yellow perch. The parental recombinants rIHNV-M and rVHSV-IVb were highly virulent in rainbow trout and yellow perch, respectively. Parental rIHNV-M was avirulent in yellow perch, and chimeric rIHNV carrying G, NV, or G and NV genes from VHSV-IVb remained low in virulence in yellow perch. Similarly, the parental rVHSV-IVb exhibited low virulence in rainbow trout, and chimeric rVHSV with substituted G, NV, or G and NV genes from IHNV-M remained avirulent in rainbow trout. Thus, the G and NV genes of either virus were not sufficient to confer high host-specific virulence when exchanged into a heterologous species genome. Some exchanges of G and/or NV genes caused a loss of host-specific virulence, providing insights into possible roles in viral virulence or fitness, and interactions between viral proteins.
Collapse
Affiliation(s)
- Vikram N. Vakharia
- Institute of Marine & Environmental Technology, University of Maryland Baltimore County, Baltimore, MD 21202, USA; (A.A.); (S.Y.)
| | - Arun Ammayappan
- Institute of Marine & Environmental Technology, University of Maryland Baltimore County, Baltimore, MD 21202, USA; (A.A.); (S.Y.)
| | - Shamila Yusuff
- Institute of Marine & Environmental Technology, University of Maryland Baltimore County, Baltimore, MD 21202, USA; (A.A.); (S.Y.)
| | | | - Gael Kurath
- U.S. Geological Survey, Western Fisheries Research Center, Seattle, WA 98115, USA
| |
Collapse
|
13
|
Ramos-González PL, Alexandre MAV, Potsclam-Barro M, Duarte LML, Michea Gonzalez GL, Chabi-Jesus C, Ramos AF, Harakava R, Lorenzi H, Freitas-Astúa J, Kitajima EW. Two Novel Betarhabdovirins Infecting Ornamental Plants and the Peculiar Intracellular Behavior of the Cytorhabdovirus in the Liana Aristolochia gibertii. Viruses 2024; 16:322. [PMID: 38543688 PMCID: PMC10976027 DOI: 10.3390/v16030322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/17/2024] [Accepted: 02/19/2024] [Indexed: 05/23/2024] Open
Abstract
Two novel members of the subfamily Betarhabdovirinae, family Rhabdoviridae, were identified in Brazil. Overall, their genomes have the typical organization 3'-N-P-P3-M-G-L-5' observed in mono-segmented plant-infecting rhabdoviruses. In aristolochia-associated cytorhabdovirus (AaCV), found in the liana aristolochia (Aristolochia gibertii Hook), an additional short orphan ORF encoding a transmembrane helix was detected between P3 and M. The AaCV genome and inferred encoded proteins share the highest identity values, consistently < 60%, with their counterparts of the yerba mate chlorosis-associated virus (Cytorhabdovirus flaviyerbamate). The second virus, false jalap virus (FaJV), was detected in the herbaceous plant false jalap (Mirabilis jalapa L.) and represents together with tomato betanucleorhabdovirus 2, originally found in tomato plants in Slovenia, a tentative new species of the genus Betanucleorhabdovirus. FaJV particles accumulate in the perinuclear space, and electron-lucent viroplasms were observed in the nuclei of the infected cells. Notably, distinct from typical rhabdoviruses, most virions of AaCV were observed to be non-enclosed within membrane-bounded cavities. Instead, they were frequently seen in close association with surfaces of mitochondria or peroxisomes. Unlike FaJV, AaCV was successfully graft-transmitted to healthy plants of three species of the genus Aristolochia, while mechanical and seed transmission proved unsuccessful for both viruses. Data suggest that these viruses belong to two new tentative species within the subfamily Betarhabdovirinae.
Collapse
Affiliation(s)
- Pedro Luis Ramos-González
- Laboratório de Biologia Molecular Aplicada, Centro de Pesquisa e Sanidade Vegetal, Instituto Biológico de São Paulo, Av. Cons. Rodrigues Alves, 1252, São Paulo 04014-002, SP, Brazil; (M.P.-B.); (G.L.M.G.); (C.C.-J.); (R.H.)
| | - Maria Amelia Vaz Alexandre
- Laboratório de Fitovirologia Fisiopatológica, Centro de Pesquisa e Sanidade Vegetal, Instituto Biológico de São Paulo, Av. Cons. Rodrigues Alves, 1252, São Paulo 04014-002, SP, Brazil; (M.A.V.A.); (L.M.L.D.); (A.F.R.)
| | - Matheus Potsclam-Barro
- Laboratório de Biologia Molecular Aplicada, Centro de Pesquisa e Sanidade Vegetal, Instituto Biológico de São Paulo, Av. Cons. Rodrigues Alves, 1252, São Paulo 04014-002, SP, Brazil; (M.P.-B.); (G.L.M.G.); (C.C.-J.); (R.H.)
| | - Lígia Maria Lembo Duarte
- Laboratório de Fitovirologia Fisiopatológica, Centro de Pesquisa e Sanidade Vegetal, Instituto Biológico de São Paulo, Av. Cons. Rodrigues Alves, 1252, São Paulo 04014-002, SP, Brazil; (M.A.V.A.); (L.M.L.D.); (A.F.R.)
| | - Gianluca L. Michea Gonzalez
- Laboratório de Biologia Molecular Aplicada, Centro de Pesquisa e Sanidade Vegetal, Instituto Biológico de São Paulo, Av. Cons. Rodrigues Alves, 1252, São Paulo 04014-002, SP, Brazil; (M.P.-B.); (G.L.M.G.); (C.C.-J.); (R.H.)
| | - Camila Chabi-Jesus
- Laboratório de Biologia Molecular Aplicada, Centro de Pesquisa e Sanidade Vegetal, Instituto Biológico de São Paulo, Av. Cons. Rodrigues Alves, 1252, São Paulo 04014-002, SP, Brazil; (M.P.-B.); (G.L.M.G.); (C.C.-J.); (R.H.)
- Escola Superior de Agricultura Luiz de Queiroz (ESALQ), Universidade de São Paulo, Piracicaba 13418-900, SP, Brazil;
| | - Alyne F. Ramos
- Laboratório de Fitovirologia Fisiopatológica, Centro de Pesquisa e Sanidade Vegetal, Instituto Biológico de São Paulo, Av. Cons. Rodrigues Alves, 1252, São Paulo 04014-002, SP, Brazil; (M.A.V.A.); (L.M.L.D.); (A.F.R.)
| | - Ricardo Harakava
- Laboratório de Biologia Molecular Aplicada, Centro de Pesquisa e Sanidade Vegetal, Instituto Biológico de São Paulo, Av. Cons. Rodrigues Alves, 1252, São Paulo 04014-002, SP, Brazil; (M.P.-B.); (G.L.M.G.); (C.C.-J.); (R.H.)
| | - Harri Lorenzi
- Instituto Plantarum, Nova Odessa 13380-410, SP, Brazil;
| | | | - Elliot Watanabe Kitajima
- Escola Superior de Agricultura Luiz de Queiroz (ESALQ), Universidade de São Paulo, Piracicaba 13418-900, SP, Brazil;
| |
Collapse
|
14
|
Zheng YY, Zhao L, Wei XF, Sun TZ, Xu FF, Wang GX, Zhu B. Vaccine Molecule Design Based on Phage Display and Computational Modeling against Rhabdovirus. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:551-562. [PMID: 38197664 DOI: 10.4049/jimmunol.2300447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 12/12/2023] [Indexed: 01/11/2024]
Abstract
Rhabdoviruses with rich species lead a variety of high lethality and rapid transmission diseases to plants and animals around the globe. Vaccination is one of the most effective approaches to prevent and control virus disease. However, the key antigenic epitopes of glycoprotein being used for vaccine development are unclear. In this study, fish-derived Abs are employed for a Micropterus salmoides rhabdovirus (MSRV) vaccine design by phage display and bioinformatics analysis. We constructed an anti-MSRV phage Ab library to screen Abs for glycoprotein segment 2 (G2) (G129-266). Four M13-phage-displayed Abs (Ab-5, Ab-7, Ab-8 and Ab-30) exhibited strong specificity to target Ag, and Ab-7 had the highest affinity with MSRV. Ab-7 (300 μg/ml) significantly increased grass carp ovary cell viability to 83.40% and significantly decreased the titer of MSRV. Molecular docking results showed that the key region of Ag-Ab interaction was located in 10ESQEFTTLTSH20 of G2. G2Ser11 and G2Gln12 were replaced with alanine, respectively, and molecular docking results showed that the Ag-Ab was nonbinding (ΔG > 0). Then, the peptide vaccine KLH-G210-20 was immunized to M. salmoides via i.p. injection. ELISA result showed that the serum Ab potency level increased significantly (p < 0.01). More importantly, the challenge test demonstrated that the peptide vaccine elicited robust protection against MSRV invasion, and the relative percentage survival reached 62.07%. Overall, this study proposed an approach for screening key epitope by combining phage display technology and bioinformatics tools to provide a reliable theoretical reference for the prevention and control of viral diseases.
Collapse
Affiliation(s)
- Yu-Ying Zheng
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Liang Zhao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Xue-Feng Wei
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Tian-Zi Sun
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Fei-Fan Xu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Gao-Xue Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Livestock Biology, Northwest A&F University, Yangling, Shaanxi, China
| | - Bin Zhu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Livestock Biology, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
15
|
Huang X, Wang J, Chen S, Liu S, Li Z, Wang Z, Chen B, Zhang C, Zhang Y, Wu J, Yang X, Xie Q, Li F, An H, Huang J, Li H, Liu C, Wu X, Liu DX, Yang X, Zhou G, Zhang T. Rhabdovirus encoded glycoprotein induces and harnesses host antiviral autophagy for maintaining its compatible infection. Autophagy 2024; 20:275-294. [PMID: 37656054 PMCID: PMC10813567 DOI: 10.1080/15548627.2023.2252273] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 08/17/2023] [Accepted: 08/21/2023] [Indexed: 09/02/2023] Open
Abstract
Macroautophagy/autophagy has been recognized as a central antiviral defense mechanism in plant, which involves complex interactions between viral proteins and host factors. Rhabdoviruses are single-stranded RNA viruses, and the infection causes serious harm to public health, livestock, and crop production. However, little is known about the role of autophagy in the defense against rhabdovirus infection by plant. In this work, we showed that Rice stripe mosaic cytorhabdovirus(RSMV) activated autophagy in plants and that autophagy served as an indispensable defense mechanism during RSMV infection. We identified RSMV glycoprotein as an autophagy inducer that interacted with OsSnRK1B and promoted the kinase activity of OsSnRK1B on OsATG6b. RSMV glycoprotein was toxic to rice cells and its targeted degradation by OsATG6b-mediated autophagy was essential to restrict the viral titer in plants. Importantly, SnRK1-glycoprotein and ATG6-glycoprotein interactions were well-conserved between several other rhabdoviruses and plants. Together, our data support a model that SnRK1 senses rhabdovirus glycoprotein for autophagy initiation, while ATG6 mediates targeted degradation of viral glycoprotein. This conserved mechanism ensures compatible infection by limiting the toxicity of viral glycoprotein and restricting the infection of rhabdoviruses.Abbreviations: AMPK: adenosine 5'-monophosphate (AMP)-activated protein kinase; ANOVA: analysis of variance; ATG: autophagy related; AZD: AZD8055; BiFC: bimolecular fluorescence complementation; BYSMV: barley yellow striate mosaic virus; Co-IP: co-immunoprecipitation; ConA: concanamycin A; CTD: C-terminal domain; DEX: dexamethasone; DMSO: dimethyl sulfoxide; G: glycoprotein; GFP: green fluorescent protein; MD: middle domain; MDC: monodansylcadaverine; NTD: N-terminal domain; OE: over expression; Os: Oryza sativa; PBS: phosphate-buffered saline; PtdIns3K: class III phosphatidylinositol-3-kinase; qRT-PCR: quantitative real-time reverse-transcription PCR; RFP: red fluorescent protein; RSMV: rice stripe mosaic virus; RSV: rice stripe virus; SGS3: suppressor of gene silencing 3; SnRK1: sucrose nonfermenting1-related protein kinase1; SYNV: sonchus yellow net virus; TEM: transmission electron microscopy; TM: transmembrane region; TOR: target of rapamycin; TRV: tobacco rattle virus; TYMaV: tomato yellow mottle-associated virus; VSV: vesicular stomatitis virus; WT: wild type; Y2H: yeast two-hybrid; YFP: yellow fluorescent protein.
Collapse
Affiliation(s)
- Xiuqin Huang
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, Guangdong, China
| | - Junkai Wang
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, Guangdong, China
| | - Siping Chen
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, Guangdong, China
| | - Siying Liu
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, Guangdong, China
| | - Zhanbiao Li
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, Guangdong, China
| | - Zhiyi Wang
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, Guangdong, China
| | - Biao Chen
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, Guangdong, China
| | - Chong Zhang
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, Guangdong, China
| | - Yifei Zhang
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, Guangdong, China
| | - Jinhui Wu
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, Guangdong, China
| | - Xiaorong Yang
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, Guangdong, China
| | - Qingjun Xie
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, China
| | - Faqiang Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, China
| | - Hong An
- Bioinformatics and Analytics Core, University of Missouri, Columbia, MO, USA
| | - Jilei Huang
- Instrumental Analysis and Research Center, South China Agricultural University, Guangzhou, Guangdong, China
| | - Huali Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, Guangdong, China
| | - Chuanhe Liu
- Instrumental Analysis and Research Center, South China Agricultural University, Guangzhou, Guangdong, China
| | - Xiaoxian Wu
- Instrumental Analysis and Research Center, South China Agricultural University, Guangzhou, Guangdong, China
| | - Ding Xiang Liu
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, Guangdong, China
| | - Xin Yang
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, Guangdong, China
| | - Guohui Zhou
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, Guangdong, China
| | - Tong Zhang
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, Guangdong, China
| |
Collapse
|
16
|
Gong C, Zhu P, Ye J, Lou J, Zhang L, Liu X, Kong W. Application and development of a TaqMan-based real-time PCR assay for rapid detection of snakehead vesiculovirus. FEMS Microbiol Lett 2024; 371:fnae018. [PMID: 38460951 DOI: 10.1093/femsle/fnae018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/26/2024] [Accepted: 03/08/2024] [Indexed: 03/11/2024] Open
Abstract
Snakehead vesiculovirus (SHVV) is one of the primary pathogens responsible for viral diseases in the snakehead fish. A TaqMan-based real-time PCR assay was established for the rapid detection and quantification of SHVV in this study. Specific primers and fluorescent probes were designed for phosphoprotein (P) gene, and after optimizing the reaction conditions, the results indicated that the detection limit of this method could reach 37.1 copies, representing a 100-fold increase in detection sensitivity compared to RT-PCR. The specificity testing results revealed that this method exhibited no cross-reactivity with ISKNV, LMBV, RSIV, RGNNV, GCRV, and CyHV-2. Repetition experiments demonstrated that both intra-batch and inter-batch coefficients of variation were not higher than 1.66%. Through in vitro infection experiments monitoring the quantitative changes of SHVV in different tissues, the results indicated that the liver and spleen exhibited the highest viral load at 3 poi. The TaqMan-based real-time PCR method established in this study exhibits high sensitivity, excellent specificity, and strong reproducibility. It can be employed for rapid detection and viral load monitoring of SHVV, thus providing a robust tool for the clinical diagnosis and pathogen research of SHVV.
Collapse
Affiliation(s)
- Cuiping Gong
- Huzhou Academy of Agricultural Sciences, Huzhou Municipal Bureau of Agriculture and Rural Affairs, Huzhou 313000, China
| | - Panpan Zhu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Jiaxin Ye
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Jianfeng Lou
- Huzhou Academy of Agricultural Sciences, Huzhou Municipal Bureau of Agriculture and Rural Affairs, Huzhou 313000, China
| | - Liwen Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Xiaodan Liu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou 225009, China
| | - Weiguang Kong
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| |
Collapse
|
17
|
Wang R, Liu S, Xu C, Yu J, Wei J, Ding W, Li Y. Identification and characterization of a novel Cytorhabdovirus associated with goji berry ( Lycium barbarum L.) crinkle disease. Front Microbiol 2024; 14:1294616. [PMID: 38239727 PMCID: PMC10794335 DOI: 10.3389/fmicb.2023.1294616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 12/12/2023] [Indexed: 01/22/2024] Open
Abstract
Goji berry (Lycium barbarum L.) is a traditional Chinese herbal medicinal plant that is extensively cultivated in the arid and semiarid regions of northwest China. In this study, a novel cytorhabdovirus, tentatively named "goji cytorhabdovirus A (GCVA)," was identified from the goji berry plant exhibiting leaf crinkle symptoms through high-throughput sequencing (HTS). GCVA contains a linear, negative sense single-stranded RNA genome of 14,812 nucleotides and encodes six open reading frames in the order of 3' leader-N-P-P4-M-G-L-5' trailer. The genome of GCVA shares the highest nucleotide (nt) identity of 65.80% (16% query coverage) with yerba mate virus A (YmVA) (NC_076472). The N and L proteins also share low amino acid (aa) identities (<35.42 and < 41.23%, respectively) with known cytorhabdoviruses. Typical features of the viruses in the genus Cytorhabdovirus include a highly conserved consensus sequence in the intergenic regions and extensive complementation of the 5' non-coding trailer and the 3' leader. These features were also found in GCVA. These data in combination with a phylogenetic analysis that was based on the aa sequences of the N and L proteins support the proposal that GCVA is a new species in the genus Cytorhabdovirus.
Collapse
Affiliation(s)
| | | | | | | | | | - Wanlong Ding
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yong Li
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
18
|
Biasini L, Zamperin G, Pascoli F, Abbadi M, Buratin A, Marsella A, Panzarin V, Toffan A. Transcriptome Profiling of Oncorhynchus mykiss Infected with Low or Highly Pathogenic Viral Hemorrhagic Septicemia Virus (VHSV). Microorganisms 2023; 12:57. [PMID: 38257883 PMCID: PMC10821180 DOI: 10.3390/microorganisms12010057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/20/2023] [Accepted: 12/22/2023] [Indexed: 01/24/2024] Open
Abstract
The rainbow trout (Oncorhynchus mykiss) is the most important produced species in freshwater within the European Union, usually reared in intensive farming systems. This species is highly susceptible to viral hemorrhagic septicemia (VHS), a severe systemic disease widespread globally throughout the world. Viral hemorrhagic septicemia virus (VHSV) is the etiological agent and, recently, three classes of VHSV virulence (high, moderate, and low) have been proposed based on the mortality rates, which are strictly dependent on the viral strain. The molecular mechanisms that regulate VHSV virulence and the stimulated gene responses in the host during infection are not completely unveiled. While some preliminary transcriptomic studies have been reported in other fish species, to date there are no publications on rainbow trout. Herein, we report the first time-course RNA sequencing analysis on rainbow trout juveniles experimentally infected with high and low VHSV pathogenic Italian strains. Transcriptome analysis was performed on head kidney samples collected at different time points (1, 2, and 5 days post infection). A large set of notable genes were found to be differentially expressed (DEGs) in all the challenged groups (e.s. trim63a, acod1, cox-2, skia, hipk1, cx35.4, ins, mtnr1a, tlr3, tlr7, mda5, lgp2). Moreover, the number of DEGs progressively increased especially during time with a greater amount found in the group infected with the high VHSV virulent strain. The gene ontology (GO) enrichment analysis highlighted that functions related to inflammation were modulated in rainbow trout during the first days of VHSV infection, regardless of the pathogenicity of the strain. While some functions showed slight differences in enrichments between the two infected groups, others appeared more exclusively modulated in the group challenged with the highly pathogenic strain.
Collapse
|
19
|
Bejerman N, Dietzgen R, Debat H. Novel Tri-Segmented Rhabdoviruses: A Data Mining Expedition Unveils the Cryptic Diversity of Cytorhabdoviruses. Viruses 2023; 15:2402. [PMID: 38140643 PMCID: PMC10747219 DOI: 10.3390/v15122402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/07/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
Cytorhabdoviruses (genus Cytorhabdovirus, family Rhabdoviridae) are plant-infecting viruses with enveloped, bacilliform virions. Established members of the genus Cytorhabdovirus have unsegmented single-stranded negative-sense RNA genomes (ca. 10-16 kb) which encode four to ten proteins. Here, by exploring large publicly available metatranscriptomics datasets, we report the identification and genomic characterization of 93 novel viruses with genetic and evolutionary cues of cytorhabdoviruses. Strikingly, five unprecedented viruses with tri-segmented genomes were also identified. This finding represents the first tri-segmented viruses in the family Rhabdoviridae, and they should be classified in a novel genus within this family for which we suggest the name "Trirhavirus". Interestingly, the nucleocapsid and polymerase were the only typical rhabdoviral proteins encoded by those tri-segmented viruses, whereas in three of them, a protein similar to the emaravirus (family Fimoviridae) silencing suppressor was found, while the other predicted proteins had no matches in any sequence databases. Genetic distance and evolutionary insights suggest that all these novel viruses may represent members of novel species. Phylogenetic analyses, of both novel and previously classified plant rhabdoviruses, provide compelling support for the division of the genus Cytorhabdovirus into three distinct genera. This proposed reclassification not only enhances our understanding of the evolutionary dynamics within this group of plant rhabdoviruses but also illuminates the remarkable genomic diversity they encompass. This study not only represents a significant expansion of the genomics of cytorhabdoviruses that will enable future research on the evolutionary peculiarity of this genus but also shows the plasticity in the rhabdovirus genome organization with the discovery of tri-segmented members with a unique evolutionary trajectory.
Collapse
Affiliation(s)
- Nicolas Bejerman
- Instituto de Patología Vegetal—Centro de Investigaciones Agropecuarias—Instituto Nacional de Tecnología Agropecuaria (IPAVE—CIAP—INTA), Camino 60 Cuadras Km 5,5, Córdoba X5020ICA, Argentina
- Unidad de Fitopatología y Modelización Agrícola, Consejo Nacional de Investigaciones Científicas y Técnicas, Camino 60 Cuadras Km 5,5, Córdoba X5020ICA, Argentina
| | - Ralf Dietzgen
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Humberto Debat
- Instituto de Patología Vegetal—Centro de Investigaciones Agropecuarias—Instituto Nacional de Tecnología Agropecuaria (IPAVE—CIAP—INTA), Camino 60 Cuadras Km 5,5, Córdoba X5020ICA, Argentina
- Unidad de Fitopatología y Modelización Agrícola, Consejo Nacional de Investigaciones Científicas y Técnicas, Camino 60 Cuadras Km 5,5, Córdoba X5020ICA, Argentina
| |
Collapse
|
20
|
Khairullah AR, Kurniawan SC, Hasib A, Silaen OSM, Widodo A, Effendi MH, Ramandinianto SC, Moses IB, Riwu KHP, Yanestria SM. Tracking lethal threat: in-depth review of rabies. Open Vet J 2023; 13:1385-1399. [PMID: 38107233 PMCID: PMC10725282 DOI: 10.5455/ovj.2023.v13.i11.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 10/10/2023] [Indexed: 12/19/2023] Open
Abstract
An infectious disease known as rabies (family Rhabdoviridae, genus Lyssavirus) causes severe damage to mammals' central nervous systems (CNS). This illness has been around for a very long time. The majority of human cases of rabies take place in underdeveloped regions of Africa and Asia. Following viral transmission, the Rhabdovirus enters the peripheral nervous system and proceeds to the CNS, where it targets the encephalon and produces encephalomyelitis. Postbite prophylaxis requires laboratory confirmation of rabies in both people and animals. All warm-blooded animals can transmit the Lyssavirus infection, while the virus can also develop in the cells of cold-blooded animals. In the 21st century, more than 3 billion people are in danger of contracting the rabies virus in more than 100 different nations, resulting in an annual death toll of 50,000-59,000. There are three important elements in handling rabies disease in post exposure prophylaxis (PEP), namely wound care, administration of anti-rabies serum, and anti-rabies vaccine. Social costs include death, lost productivity as a result of early death, illness as a result of vaccination side effects, and the psychological toll that exposure to these deadly diseases has on people. Humans are most frequently exposed to canine rabies, especially youngsters and the poor, and there are few resources available to treat or prevent exposure, making prevention of human rabies challenging.
Collapse
Affiliation(s)
- Aswin Rafif Khairullah
- Division of Animal Husbandry, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Shendy Canadya Kurniawan
- Master Program of Animal Sciences, Department of Animal Sciences, Specialisation in Molecule, Cell and Organ Functioning, Wageningen University and Research, Wageningen, Netherlands
| | - Abdullah Hasib
- School of Agriculture and Food Sustainability, The University of Queensland, Gatton, Australia
| | - Otto Sahat Martua Silaen
- Doctoral Program in Biomedical Science, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Agus Widodo
- Department of Health, Faculty of Vocational Studies, Universitas Airlangga, Surabaya, Indonesia
| | - Mustofa Helmi Effendi
- Division of Veterinary Public Health, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | | | - Ikechukwu Benjamin Moses
- Department of Applied Microbiology, Faculty of Science, Ebonyi State University, Abakaliki, Nigeria
| | - Katty Hendriana Priscilia Riwu
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, Universitas Pendidikan Mandalika, Mataram, Indonesia
| | | |
Collapse
|
21
|
Pfrieme AK, Will T, Pillen K, Stahl A. The Past, Present, and Future of Wheat Dwarf Virus Management-A Review. PLANTS (BASEL, SWITZERLAND) 2023; 12:3633. [PMID: 37896096 PMCID: PMC10609771 DOI: 10.3390/plants12203633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/29/2023] [Accepted: 10/04/2023] [Indexed: 10/29/2023]
Abstract
Wheat dwarf disease (WDD) is an important disease of monocotyledonous species, including economically important cereals. The causative pathogen, wheat dwarf virus (WDV), is persistently transmitted mainly by the leafhopper Psammotettix alienus and can lead to high yield losses. Due to climate change, the periods of vector activity increased, and the vectors have spread to new habitats, leading to an increased importance of WDV in large parts of Europe. In the light of integrated pest management, cultivation practices and the use of resistant/tolerant host plants are currently the only effective methods to control WDV. However, knowledge of the pathosystem and epidemiology of WDD is limited, and the few known sources of genetic tolerance indicate that further research is needed. Considering the economic importance of WDD and its likely increasing relevance in the coming decades, this study provides a comprehensive compilation of knowledge on the most important aspects with information on the causal virus, its vector, symptoms, host range, and control strategies. In addition, the current status of genetic and breeding efforts to control and manage this disease in wheat will be discussed, as this is crucial to effectively manage the disease under changing environmental conditions and minimize impending yield losses.
Collapse
Affiliation(s)
- Anne-Kathrin Pfrieme
- Institute for Resistance Research and Stress Tolerance, Julius Kühn Institute (JKI)—Federal Research Centre for Cultivated Plants, 06484 Quedlinburg, Germany; (T.W.); (A.S.)
| | - Torsten Will
- Institute for Resistance Research and Stress Tolerance, Julius Kühn Institute (JKI)—Federal Research Centre for Cultivated Plants, 06484 Quedlinburg, Germany; (T.W.); (A.S.)
| | - Klaus Pillen
- Institute of Agricultural and Nutritional Science, Plant Breeding, Martin-Luther-University Halle-Wittenberg, 06108 Halle (Saale), Germany;
| | - Andreas Stahl
- Institute for Resistance Research and Stress Tolerance, Julius Kühn Institute (JKI)—Federal Research Centre for Cultivated Plants, 06484 Quedlinburg, Germany; (T.W.); (A.S.)
| |
Collapse
|
22
|
Potter-Birriel JM, Pollio AR, Knott BD, Chunashvili T, Fung CK, Conte MA, Reinbold-Wasson DD, Hang J. Metagenomics analysis reveals presence of the Merida-like virus in Georgia. Front Microbiol 2023; 14:1258810. [PMID: 37901812 PMCID: PMC10602647 DOI: 10.3389/fmicb.2023.1258810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 09/27/2023] [Indexed: 10/31/2023] Open
Abstract
Arbovirus surveillance is fundamental for the discovery of novel viruses and prevention of febrile vector-borne illnesses. Vector-borne pathogens can rapidly expand and adapt in new geographic and environmental conditions. In this study, metagenomic surveillance was conducted to identify novel viruses in the Country of Georgia. A total of 521 mosquitoes were captured near a military training facility and pooled from species Culex pipiens (Linnaeus) (87%) and Aedes albopictus (Skuse) (13%). We decided to further analyze the Culex pipiens mosquitoes, due to the more extensive number of samples collected. Our approach was to utilize an unbiased total RNA-seq for pathogen discovery in order to explore the mosquito virome. The viral reads from this analysis were mostly aligned to Insect-specific viruses from two main families, the Iflaviridae; a positive-stranded RNA virus and the Rhabdoviridae; a negative- and single-stranded RNA virus. Our pathogen discovery analysis revealed viral reads aligning to the Merida-like virus Turkey (MERDLVT) strain among the Rhabdoviridae. To further validate this result, we conducted a BLAST sequence comparison analysis of our samples with the MERDLVT strain. Our positive samples aligned to the MERDLVT strain with 96-100% sequence identity and 99.7-100% sequence coverage. A bootstrapped maximum-likelihood phylogenetic tree was used to evaluate the evolutionary relationships among these positive pooled specimens with the (MERDLVT) strain. The Georgia samples clustered most closely with two strains from Turkey, the Merida-like virus KE-2017a isolate 139-1-21 and the Merida-like virus Turkey isolate P431. Collectively, these results show the presence of the MERDLVT strain in Georgia.
Collapse
Affiliation(s)
| | - Adam R. Pollio
- Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Brian D. Knott
- U.S. Army Medical Research Directorate – Georgia (USAMRD-G), Walter Reed Army Institute of Research, Tbilisi, Georgia
| | - Tamar Chunashvili
- U.S. Army Medical Research Directorate – Georgia (USAMRD-G), Walter Reed Army Institute of Research, Tbilisi, Georgia
| | - Christian K. Fung
- Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Matthew A. Conte
- Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Drew D. Reinbold-Wasson
- U.S. Army Medical Research Directorate – Georgia (USAMRD-G), Walter Reed Army Institute of Research, Tbilisi, Georgia
| | - Jun Hang
- Walter Reed Army Institute of Research, Silver Spring, MD, United States
| |
Collapse
|
23
|
Morán F, Olmos A, Candresse T, Ruiz-García AB. Complete Genome Characterization of Penicillimonavirus gammaplasmoparae, a Bipartite Member of the Family Mymonaviridae. PLANTS (BASEL, SWITZERLAND) 2023; 12:3300. [PMID: 37765464 PMCID: PMC10538141 DOI: 10.3390/plants12183300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 08/29/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023]
Abstract
In this study, we identified Plasmopara-viticola-lesion-associated mononegaambi virus 3 (recently classified as Penicillimonavirus gammaplasmoparae), a fungi-associated mymonavirus, in grapevine plants showing an unusual upward curling symptomatology on the leaves and premature decline. Mymonaviridae is a family comprising nine genera of negative-sense single-stranded RNA viruses infecting filamentous fungi, although few of them have been associated with oomycetes, plants, and insects. Although the first mymonavirus genome description was reported a decade ago, the genome organization of several genera in the family, including the genus Penicillimonavirus, has remained unclear to date. We have determined the complete genome of P. gammaplasmoparae, which represents the first complete genomic sequence for this genus. Moreover, we provide strong evidence that P. gammaplasmoparae genome is bipartite and comprises two RNA molecules of around 6150 and 4560 nt. Our results indicate that the grapevine powdery mildew pathogen, Erysiphe necator, was also present in the analyzed plants and suggest P. gammaplasmoparae could be infecting this fungus. However, whether the fungus and/or the mycovirus are associated with the symptomatology that initially prompted these efforts remains to be determined.
Collapse
Affiliation(s)
- Félix Morán
- Centro de Protección Vegetal y Biotecnología, Instituto Valenciano de Investigaciones Agrarias (IVIA), Ctra. Moncada-Náquera km 4.5, 46113 Valencia, Spain; (F.M.); (A.O.)
| | - Antonio Olmos
- Centro de Protección Vegetal y Biotecnología, Instituto Valenciano de Investigaciones Agrarias (IVIA), Ctra. Moncada-Náquera km 4.5, 46113 Valencia, Spain; (F.M.); (A.O.)
| | - Thierry Candresse
- UMR 1332 Biologie du Fruit et Pathologie, INRAE, University Bordeaux, CEDEX, 33882 Villenave d’Ornon, France;
| | - Ana Belén Ruiz-García
- Centro de Protección Vegetal y Biotecnología, Instituto Valenciano de Investigaciones Agrarias (IVIA), Ctra. Moncada-Náquera km 4.5, 46113 Valencia, Spain; (F.M.); (A.O.)
| |
Collapse
|
24
|
Khan HA, Mukhtar M, Bhatti MF. Mycovirus-induced hypovirulence in notorious fungi Sclerotinia: a comprehensive review. Braz J Microbiol 2023; 54:1459-1478. [PMID: 37523037 PMCID: PMC10485235 DOI: 10.1007/s42770-023-01073-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 07/18/2023] [Indexed: 08/01/2023] Open
Abstract
Members of the genus Sclerotinia are notorious plant pathogens with a diverse host range that includes many important crops. A huge number of mycoviruses have been identified in this genus; some of these viruses are reported to have a hypovirulent effect on the fitness of their fungal hosts. These mycoviruses are important to researchers from a biocontrol perspective which was first implemented against fungal diseases in 1990. In this review, we have presented the data of all hypovirulent mycoviruses infecting Sclerotinia sclerotiorum isolates. The data of hypovirulent mycoviruses ranges from 1992 to 2023. Currently, mycoviruses belonging to 17 different families, including (+) ssRNA, (-ssRNA), dsRNA, and ssDNA viruses, have been reported from this genus. Advances in studies had shown a changed expression of certain host genes (responsible for cell cycle regulation, DNA replication, repair pathways, ubiquitin proteolysis, gene silencing, methylation, pathogenesis-related, sclerotial development, carbohydrate metabolism, and oxalic acid biosynthesis) during the course of mycoviral infection, which were termed differentially expressed genes (DEGs). Together, research on fungal viruses and hypovirulence in Sclerotinia species can deepen our understanding of the cellular processes that affect how virulence manifests in these phytopathogenic fungi and increase the potential of mycoviruses as a distinct mode of biological control. Furthermore, the gathered data can also be used for in-silico analysis, which includes finding the signature sites [e.g., hypovirus papain-like protease (HPP) domain, "CCHH" motif, specific stem-loop structures, p29 motif as in CHV1, A-rich sequence, CA-rich sequences as in MoV1, GCU motif as in RnMBV1, Core motifs in hypovirus-associated RNA elements (HAREs) as in CHV1] that are possibly responsible for hypovirulence in mycoviruses.
Collapse
Affiliation(s)
- Haris Ahmed Khan
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), H-12, Islamabad, 44000, Pakistan.
- Department of Biotechnology, University of Mianwali, Mianwali, Punjab, 42200, Pakistan.
| | - Mamuna Mukhtar
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), H-12, Islamabad, 44000, Pakistan
| | - Muhammad Faraz Bhatti
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), H-12, Islamabad, 44000, Pakistan
| |
Collapse
|
25
|
Podgoreanu P, Petre A, Tănasă RI, Dinu S, Oprea M, Marandiuc IM, Vlase E. Sequencing and Partial Molecular Characterization of BAB-TMP, the Babeș Strain of the Fixed Rabies Virus Adapted for Multiplication in Cell Lines. Viruses 2023; 15:1851. [PMID: 37766258 PMCID: PMC10536377 DOI: 10.3390/v15091851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/10/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023] Open
Abstract
The rabies virus is a major zoonosis that causes severe nervous disease in humans, leading to paralysis and death. The world's second anti-rabies center was established in 1888 by Victor Babeș, in Bucharest, where an eponymous strain of rabies was isolated and used to develop a method for immunization. The Babeș strain of the rabies virus was used for over 100 years in Romania to produce a rabies vaccine for human use, based on animal nerve tissue, thus having a proven history of prophylactic use. The present study aimed to sequence the whole genome of the Babeș strain and to explore its genetic relationships with other vaccine strains as well as to characterize its relevant molecular traits. After being adapted for multiplication in cell lines and designated BAB-TMP, 99% of the viral genome was sequenced. The overall organization of the genome is similar to that of other rabies vaccine strains. Phylogenetic analysis indicated that the BAB-TMP strain is closely related to the Russian RV-97 vaccine strain, and both seem to have a common ancestor. The nucleoprotein gene of the investigated genome was the most conserved, and the glycoprotein showed several unique amino acid substitutions within the major antigenic sites and linear epitopes.
Collapse
Affiliation(s)
| | | | - Radu Iulian Tănasă
- Cantacuzino National Military Medical Institute for Research and Development, 050096 Bucharest, Romania; (P.P.); (A.P.)
| | | | | | | | | |
Collapse
|
26
|
Dundarova H, Ivanova-Aleksandrova N, Bednarikova S, Georgieva I, Kirov K, Miteva K, Neov B, Ostoich P, Pikula J, Zukal J, Hristov P. Phylogeographic Aspects of Bat Lyssaviruses in Europe: A Review. Pathogens 2023; 12:1089. [PMID: 37764897 PMCID: PMC10534866 DOI: 10.3390/pathogens12091089] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/08/2023] [Accepted: 08/22/2023] [Indexed: 09/29/2023] Open
Abstract
During the last few decades, bat lyssaviruses have become the topic of intensive molecular and epidemiological investigations. Since ancient times, rhabdoviruses have caused fatal encephalitis in humans which has led to research into effective strategies for their eradication. Modelling of potential future cross-species virus transmissions forms a substantial component of the recent infection biology of rabies. In this article, we summarise the available data on the phylogeography of both bats and lyssaviruses in Europe and the adjacent reg ions, especially in the contact zone between the Palearctic and Ethiopian realms. Within these zones, three bat families are present with high potential for cross-species transmission and the spread of lyssaviruses in Phylogroup II to Europe (part of the western Palearctic). The lack of effective therapies for rabies viruses in Phylogroup II and the most divergent lyssaviruses generates impetus for additional phylogenetic and virological research within this geographical region.
Collapse
Affiliation(s)
- Heliana Dundarova
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 1 Tsar Osvoboditel Blvd., 1000 Sofia, Bulgaria
| | | | - Sarka Bednarikova
- Department of Ecology and Diseases of Zoo Animals, Game, Fish and Bees, University of Veterinary Sciences Brno, Palackého tř. 1946/1, 612 42 Brno, Czech Republic
| | - Irina Georgieva
- National Centre of Infectious and Parasitic Diseases, 26 Yanko Sakazov Blvd., 1504 Sofia, Bulgaria
| | - Krasimir Kirov
- Faculty of Biology, University of Plovdiv “Paisii Hilendarski”, 24 Tzar Assen Str., 4000 Plovdiv, Bulgaria
| | - Kalina Miteva
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 1 Tsar Osvoboditel Blvd., 1000 Sofia, Bulgaria
| | - Boyko Neov
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 1 Tsar Osvoboditel Blvd., 1000 Sofia, Bulgaria
| | - Peter Ostoich
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 1 Tsar Osvoboditel Blvd., 1000 Sofia, Bulgaria
| | - Jiri Pikula
- Department of Ecology and Diseases of Zoo Animals, Game, Fish and Bees, University of Veterinary Sciences Brno, Palackého tř. 1946/1, 612 42 Brno, Czech Republic
| | - Jan Zukal
- Institute of Vertebrate Biology, Czech Academy of Sciences, Květná 8, 603 65 Brno, Czech Republic
| | - Peter Hristov
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 1 Tsar Osvoboditel Blvd., 1000 Sofia, Bulgaria
| |
Collapse
|
27
|
Hu J, Miao T, Que K, Rahman MS, Zhang L, Dong X, Ji P, Dong J. Identification, molecular characterization and phylogenetic analysis of a novel nucleorhabdovirus infecting Paris polyphylla var. yunnanensis. Sci Rep 2023; 13:10040. [PMID: 37340012 DOI: 10.1038/s41598-023-37022-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 06/14/2023] [Indexed: 06/22/2023] Open
Abstract
A novel betanucleorhabdovirus infecting Paris polyphylla var. yunnanensis, tentatively named Paris yunnanensis rhabdovirus 1 (PyRV1), was recently identified in Yunnan Province, China. The infected plants showed vein clearing and leaf crinkle at early stage of infection, followed by leaf yellowing and necrosis. Enveloped bacilliform particles were observed using electron microscopy. The virus was mechanically transmissible to Nicotiana bethamiana and N. glutinosa. The complete genome of PyRV1 consists of 13,509 nucleotides, the organization of which was typical of rhabdoviruses, containing six open reading frames encoding proteins N-P-P3-M-G-L on the anti-sense strand, separated by conserved intergenic regions and flanked by complementary 3'-leader and 5'-trailer sequences. The genome of PyRV1 shared highest nucleotide sequence identity (55.1%) with Sonchus yellow net virus (SYNV), and the N, P, P3, M, G, and L proteins showed 56.9%, 37.2%, 38.4%, 41.8%, 56.7%, and 49.4% amino acid sequence identities with respective proteins of SYNV, suggesting RyRV1 belongs to a new species of the genus Betanucleorhabdovirus.
Collapse
Affiliation(s)
- Jingyu Hu
- School of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicinal Resource, Yunnan University of Chinese Medicine, Yunnan, 650500, China
- Institute of Medicinal Plant Cultivation, Academy of Southern Medicine, Yunnan University of Chinese Medicine, Yunnan, 650500, China
| | - Tianli Miao
- School of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicinal Resource, Yunnan University of Chinese Medicine, Yunnan, 650500, China
| | - Kaijuan Que
- School of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicinal Resource, Yunnan University of Chinese Medicine, Yunnan, 650500, China
| | - Md Siddiqur Rahman
- Plant Pathology Division, Bangladesh Agricultural Research Institute, Gazipur, 1701, Bangladesh
| | - Lei Zhang
- School of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicinal Resource, Yunnan University of Chinese Medicine, Yunnan, 650500, China
- Institute of Medicinal Plant Cultivation, Academy of Southern Medicine, Yunnan University of Chinese Medicine, Yunnan, 650500, China
| | - Xian Dong
- School of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicinal Resource, Yunnan University of Chinese Medicine, Yunnan, 650500, China
- Institute of Medicinal Plant Cultivation, Academy of Southern Medicine, Yunnan University of Chinese Medicine, Yunnan, 650500, China
| | - Pengzhang Ji
- School of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicinal Resource, Yunnan University of Chinese Medicine, Yunnan, 650500, China
- Institute of Medicinal Plant Cultivation, Academy of Southern Medicine, Yunnan University of Chinese Medicine, Yunnan, 650500, China
| | - Jiahong Dong
- School of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicinal Resource, Yunnan University of Chinese Medicine, Yunnan, 650500, China.
- Institute of Medicinal Plant Cultivation, Academy of Southern Medicine, Yunnan University of Chinese Medicine, Yunnan, 650500, China.
| |
Collapse
|
28
|
Shepherd JG, Davis C, Streicker DG, Thomson EC. Emerging Rhabdoviruses and Human Infection. BIOLOGY 2023; 12:878. [PMID: 37372162 PMCID: PMC10294888 DOI: 10.3390/biology12060878] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/09/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023]
Abstract
Rhabdoviridae is a large viral family, with members infecting a diverse range of hosts including, vertebrate species, arthropods, and plants. The predominant human pathogen within the family is Rabies lyssavirus, the main cause of human rabies. While rabies is itself a neglected disease, there are other, less well studied, rhabdoviruses known to cause human infection. The increasing application of next-generation sequencing technology to clinical samples has led to the detection of several novel or rarely detected rhabdoviruses associated with febrile illness. Many of these viruses have been detected in low- and middle-income countries where the extent of human infection and the burden of disease remain largely unquantified. This review describes the rhabdoviruses other than Rabies lyssavirus that have been associated with human infection. The discovery of the Bas Congo virus and Ekpoma virus is discussed, as is the re-emergence of species such as Le Dantec virus, which has recently been detected in Africa 40 years after its initial isolation. Chandipura virus and the lyssaviruses that are known to cause human rabies are also described. Given their association with human disease, the viruses described in this review should be prioritised for further study.
Collapse
Affiliation(s)
- James G. Shepherd
- Centre for Virus Research, MRC-University of Glasgow, Glasgow G61 1QH, UK; (C.D.); (D.G.S.)
| | - Chris Davis
- Centre for Virus Research, MRC-University of Glasgow, Glasgow G61 1QH, UK; (C.D.); (D.G.S.)
| | - Daniel G. Streicker
- Centre for Virus Research, MRC-University of Glasgow, Glasgow G61 1QH, UK; (C.D.); (D.G.S.)
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow G12 8QQ, UK
| | - Emma C. Thomson
- Centre for Virus Research, MRC-University of Glasgow, Glasgow G61 1QH, UK; (C.D.); (D.G.S.)
| |
Collapse
|
29
|
Reyes-Proaño EG, Cañada-Bautista MG, Cornejo-Franco JF, Alvarez-Quinto RA, Mollov D, Sanchez-Timm E, Quito-Avila DF. The Virome of Babaco ( Vasconcellea × heilbornii) Expands to Include New Members of the Rhabdoviridae and Bromoviridae. Viruses 2023; 15:1380. [PMID: 37376679 DOI: 10.3390/v15061380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
Babaco (Vasconcellea × heilbornii) is a subtropical species in the Caricaceae family. The plant is native to Ecuador and represents an important crop for hundreds of families. The objective of this study was to characterize, at the genomic level, two new babaco viruses identified by high-throughput sequencing. The viruses, an ilarvirus and a nucleorhabdovirus, were found in a symptomatic babaco plant from a commercial nursery in the Azuay province of Ecuador. The tripartite genome of the new ilarvirus, provisionally named babaco ilarvirus 1 (BabIV-1), is related to subgroup 3 ilarviruses, including apple mosaic virus, apple necrotic mosaic virus, and prunus necrotic ringspot virus as the closest relatives. The genome of the nucleorhabdovirus, provisionally named babaco nucleorhabdovirus 1 (BabRV-1), showed the closest relation with joa yellow blotch-associated virus and potato yellow dwarf nucleorhabdovirus. Molecular-based detection methods found BabIV-1 and BabRV-1 in 21% and 36%, respectively, of plants surveyed in a commercial babaco nursery, highlighting the importance of enforcing virus testing and nursery certification programs for babaco.
Collapse
Affiliation(s)
- Edison G Reyes-Proaño
- Facultad de Ciencias de la Vida, Escuela Superior Politécnica del Litoral, ESPOL, Km 30.5 Vía Perimetral Campus Gustavo Galindo, Guayaquil 090902, Ecuador
- Department of Entomology and Plant Pathology, University of Idaho, Moscow, ID 83843, USA
| | - Maria G Cañada-Bautista
- Facultad de Ciencias de la Vida, Escuela Superior Politécnica del Litoral, ESPOL, Km 30.5 Vía Perimetral Campus Gustavo Galindo, Guayaquil 090902, Ecuador
| | - Juan F Cornejo-Franco
- Centro de Investigaciones Biotecnológicas del Ecuador, Escuela Superior Politécnica del Litoral, CIBE-ESPOL, Km 30.5 Vía Perimetral Campus Gustavo Galindo, Guayaquil 090902, Ecuador
| | | | | | - Eduardo Sanchez-Timm
- Facultad de Ciencias de la Vida, Escuela Superior Politécnica del Litoral, ESPOL, Km 30.5 Vía Perimetral Campus Gustavo Galindo, Guayaquil 090902, Ecuador
- Centro de Investigaciones Biotecnológicas del Ecuador, Escuela Superior Politécnica del Litoral, CIBE-ESPOL, Km 30.5 Vía Perimetral Campus Gustavo Galindo, Guayaquil 090902, Ecuador
| | - Diego F Quito-Avila
- Facultad de Ciencias de la Vida, Escuela Superior Politécnica del Litoral, ESPOL, Km 30.5 Vía Perimetral Campus Gustavo Galindo, Guayaquil 090902, Ecuador
- Centro de Investigaciones Biotecnológicas del Ecuador, Escuela Superior Politécnica del Litoral, CIBE-ESPOL, Km 30.5 Vía Perimetral Campus Gustavo Galindo, Guayaquil 090902, Ecuador
| |
Collapse
|
30
|
Zhang P, Zhang Y, Cao L, Li J, Wu C, Tian M, Zhang Z, Zhang C, Zhang W, Li Y. A Diverse Virome Is Identified in Parasitic Flatworms of Domestic Animals in Xinjiang, China. Microbiol Spectr 2023; 11:e0070223. [PMID: 37042768 PMCID: PMC10269781 DOI: 10.1128/spectrum.00702-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 03/17/2023] [Indexed: 04/13/2023] Open
Abstract
Parasitic flatworms infect diverse vertebrates and are major threats to animal and even human health; however, little is known about the virome of these lower life forms. Using viral metagenomic sequencing, we characterized the virome of the parasitic flatworms collected from major domestic animals, including Dicrocoelium lanceatum and Taenia hydatigena, Echinococcus granulosus sensu stricto and Echinococcus multilocularis. Seven and three different viruses were discovered from D. lanceatum and T. hydatigena, respectively, and no viral sequences were found in adult tapeworms and protoscoleces of E. granulosus sensu stricto and E. multilocularis. Two out of the five parasitic flatworm species carry viruses, showing a host specificity of these viruses. These viruses belong to the Parvoviridae, Circoviridae, unclassified circular, Rep-encoding single-stranded (CRESS) DNA virus, Rhabdoviridae, Endornaviridae, and unclassified RNA viruses. The presence of multiple highly divergent RNA viruses, especially those that cluster with viruses found in marine animals, implies a deep evolutionary history of parasite-associated viruses. In addition, we found viruses with high identity to common pathogens in dogs, including canine circovirus and canine parvovirus 2. The presence of these viruses in the parasites implies that they may infect parasitic flatworms but does not completely exclude the possibility of contamination from host intestinal contents. Furthermore, we demonstrated that certain viruses, such as CRESS DNA virus may integrate into the genome of their host. Our results expand the knowledge of viral diversity in parasites of important domestic animals, highlighting the need for further investigations of their prevalence among other parasites of key animals. IMPORTANCE Characterizing the virome of parasites is important for unveiling the viral diversity, evolution, and ecology and will help to understand the "Russian doll" pattern among viruses, parasites, and host animals. Our data indicate that diverse viruses are present in specific parasitic flatworms, including viruses that may have an ancient evolutionary history and viruses currently circulating in parasite-infected host animals. These data also raise the question of whether parasitic flatworms acquire and/or carry some viruses that may have transmission potential to animals. In addition, through the study of virus-parasite-host interactions, including the influence of viral infection on the life cycle of the parasite, as well as its fitness and pathogenicity to the host, we could find new strategies to prevent and control parasitic diseases.
Collapse
Affiliation(s)
- Peng Zhang
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Yao Zhang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, WHO-Collaborating Centre for Prevention and Care Management of Echinococcosis, Xinjiang Medical University, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Le Cao
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Jun Li
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, WHO-Collaborating Centre for Prevention and Care Management of Echinococcosis, Xinjiang Medical University, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Chuanchuan Wu
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, WHO-Collaborating Centre for Prevention and Care Management of Echinococcosis, Xinjiang Medical University, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Mengxiao Tian
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, WHO-Collaborating Centre for Prevention and Care Management of Echinococcosis, Xinjiang Medical University, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Zhuangzhi Zhang
- Veterinary Research Institute, Xinjiang Academy of Animal Sciences, Urumqi, Xinjiang, China
| | - Chiyu Zhang
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Wenbao Zhang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, WHO-Collaborating Centre for Prevention and Care Management of Echinococcosis, Xinjiang Medical University, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
- Veterinary Research Institute, Xinjiang Academy of Animal Sciences, Urumqi, Xinjiang, China
| | - Yanpeng Li
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| |
Collapse
|
31
|
Nagalo BM, Zhou Y, Loeuillard EJ, Dumbauld C, Barro O, Elliott NM, Baker AT, Arora M, Bogenberger JM, Meurice N, Petit J, Uson PLS, Aslam F, Raupach E, Gabere M, Basnakian A, Simoes CC, Cannon MJ, Post SR, Buetow K, Chamcheu JC, Barrett MT, Duda DG, Jacobs B, Vile R, Barry MA, Roberts LR, Ilyas S, Borad MJ. Characterization of Morreton virus as an oncolytic virotherapy platform for liver cancers. Hepatology 2023; 77:1943-1957. [PMID: 36052732 DOI: 10.1002/hep.32769] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 08/04/2022] [Accepted: 08/10/2022] [Indexed: 01/11/2023]
Abstract
BACKGROUND Morreton virus (MORV) is an oncolytic Vesiculovirus , genetically distinct from vesicular stomatitis virus (VSV). AIM To report that MORV induced potent cytopathic effects (CPEs) in cholangiocarcinoma (CCA) and hepatocellular carcinoma (HCC) in vitro models. APPROACH AND RESULTS In preliminary safety analyses, high intranasal doses (up to 10 10 50% tissue culture infectious dose [TCID 50 ]) of MORV were not associated with significant adverse effects in immune competent, non-tumor-bearing mice. MORV was shown to be efficacious in a Hep3B hepatocellular cancer xenograft model but not in a CCA xenograft HuCCT1 model. In an immune competent, syngeneic murine CCA model, single intratumoral treatments with MORV (1 × 10 7 TCID 50 ) triggered a robust antitumor immune response leading to substantial tumor regression and disease control at a dose 10-fold lower than VSV (1 × 10 8 TCID 50 ). MORV led to increased CD8 + cytotoxic T cells without compensatory increases in tumor-associated macrophages and granulocytic or monocytic myeloid-derived suppressor cells. CONCLUSIONS Our findings indicate that wild-type MORV is safe and can induce potent tumor regression via immune-mediated and immune-independent mechanisms in HCC and CCA animal models without dose limiting adverse events. These data warrant further development and clinical translation of MORV as an oncolytic virotherapy platform.
Collapse
Affiliation(s)
- Bolni Marius Nagalo
- Department of Molecular Medicine , Mayo Clinic , Rochester , Minnesota , USA
- Department of Pathology , University of Arkansas for Medical Sciences , Little Rock , Arkansas , USA
- The Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences , Little Rock , Arkansas , USA
| | - Yumei Zhou
- Department of Molecular Medicine , Mayo Clinic , Rochester , Minnesota , USA
- Division of Hematology and Medical Oncology , Mayo Clinic , Phoenix , Arizona , USA
| | - Emilien J Loeuillard
- Division of Gastroenterology and Hepatology , Mayo Clinic , Rochester , Minnesota , USA
| | - Chelsae Dumbauld
- Department of Molecular Medicine , Mayo Clinic , Rochester , Minnesota , USA
- Division of Hematology and Medical Oncology , Mayo Clinic , Phoenix , Arizona , USA
| | - Oumar Barro
- Department of Molecular Medicine , Mayo Clinic , Rochester , Minnesota , USA
- Division of Hematology and Medical Oncology , Mayo Clinic , Phoenix , Arizona , USA
| | - Natalie M Elliott
- Department of Molecular Medicine , Mayo Clinic , Rochester , Minnesota , USA
- Division of Hematology and Medical Oncology , Mayo Clinic , Phoenix , Arizona , USA
| | - Alexander T Baker
- Department of Molecular Medicine , Mayo Clinic , Rochester , Minnesota , USA
- Division of Hematology and Medical Oncology , Mayo Clinic , Phoenix , Arizona , USA
| | - Mansi Arora
- Department of Molecular Medicine , Mayo Clinic , Rochester , Minnesota , USA
- Division of Hematology and Medical Oncology , Mayo Clinic , Phoenix , Arizona , USA
| | - James M Bogenberger
- Department of Molecular Medicine , Mayo Clinic , Rochester , Minnesota , USA
- Division of Hematology and Medical Oncology , Mayo Clinic , Phoenix , Arizona , USA
| | - Nathalie Meurice
- Department of Molecular Medicine , Mayo Clinic , Rochester , Minnesota , USA
- Division of Hematology and Medical Oncology , Mayo Clinic , Phoenix , Arizona , USA
| | - Joachim Petit
- Department of Molecular Medicine , Mayo Clinic , Rochester , Minnesota , USA
- Division of Hematology and Medical Oncology , Mayo Clinic , Phoenix , Arizona , USA
| | - Pedro Luiz Serrano Uson
- Department of Molecular Medicine , Mayo Clinic , Rochester , Minnesota , USA
- Division of Hematology and Medical Oncology , Mayo Clinic , Phoenix , Arizona , USA
- Center for Personalized Medicine , Hospital Israelita Albert Einstein , São Paulo , Brazil
| | - Faaiq Aslam
- Department of Molecular Medicine , Mayo Clinic , Rochester , Minnesota , USA
- Division of Hematology and Medical Oncology , Mayo Clinic , Phoenix , Arizona , USA
| | - Elizabeth Raupach
- Department of Molecular Medicine , Mayo Clinic , Rochester , Minnesota , USA
- Division of Hematology and Medical Oncology , Mayo Clinic , Phoenix , Arizona , USA
| | - Musa Gabere
- Department of Molecular Medicine , Mayo Clinic , Rochester , Minnesota , USA
- Division of Hematology and Medical Oncology , Mayo Clinic , Phoenix , Arizona , USA
| | - Alexei Basnakian
- Department of Pathology , University of Arkansas for Medical Sciences , Little Rock , Arkansas , USA
- Department of Pharmacology and Toxicology , University of Arkansas for Medical Sciences , Little Rock , Arkansas , USA
| | - Camila C Simoes
- Department of Pathology , University of Arkansas for Medical Sciences , Little Rock , Arkansas , USA
- The Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences , Little Rock , Arkansas , USA
| | - Martin J Cannon
- The Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences , Little Rock , Arkansas , USA
- Department of Microbiology and Immunology , University of Arkansas for Medical Sciences , Little Rock , Arkansas , USA
| | - Steven R Post
- Department of Pathology , University of Arkansas for Medical Sciences , Little Rock , Arkansas , USA
- The Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences , Little Rock , Arkansas , USA
| | - Kenneth Buetow
- Computational Sciences and Informatics Program for Complex Adaptive System Arizona State University , Tempe , Arizona , USA
| | - Jean Christopher Chamcheu
- School of Basic Pharmaceutical and Toxicological Sciences , College of Pharmacy, University of Louisiana , Monroe , Louisiana , USA
| | - Michael T Barrett
- Department of Molecular Medicine , Mayo Clinic , Rochester , Minnesota , USA
- Division of Hematology and Medical Oncology , Mayo Clinic , Phoenix , Arizona , USA
| | - Dan G Duda
- Steele Laboratories for Tumor Biology, Department of Radiation Oncology , Massachusetts General Hospital and Harvard Medical School , Boston , Massachusetts , USA
| | - Bertram Jacobs
- Center for Infectious Diseases and Vaccinology , the Biodesign Institute, Arizona State University , Tempe , Arizona , USA
| | - Richard Vile
- Department of Molecular Medicine , Mayo Clinic , Rochester , Minnesota , USA
- Mayo Clinic Comprehensive Cancer Center , Phoenix , Minnesota , USA
| | - Michael A Barry
- Department of Molecular Medicine , Mayo Clinic , Rochester , Minnesota , USA
- Mayo Clinic Comprehensive Cancer Center , Phoenix , Minnesota , USA
- Division of Infectious Diseases, Department of Internal Medicine , Mayo Clinic Rochester , Rochester , Minnesota , USA
| | - Lewis R Roberts
- Division of Gastroenterology and Hepatology , Mayo Clinic , Rochester , Minnesota , USA
| | - Sumera Ilyas
- Division of Gastroenterology and Hepatology , Mayo Clinic , Rochester , Minnesota , USA
| | - Mitesh J Borad
- Department of Molecular Medicine , Mayo Clinic , Rochester , Minnesota , USA
- Division of Hematology and Medical Oncology , Mayo Clinic , Phoenix , Arizona , USA
- Mayo Clinic Comprehensive Cancer Center , Phoenix , Minnesota , USA
- Mayo Clinic Center for Individualized Medicine , Rochester , Minnesota , USA
| |
Collapse
|
32
|
Claassen DD, Odendaal L, Sabeta CT, Fosgate GT, Mohale DK, Williams JH, Clift SJ. Diagnostic sensitivity and specificity of immunohistochemistry for the detection of rabies virus in domestic and wild animals in South Africa. J Vet Diagn Invest 2023; 35:236-245. [PMID: 36782370 PMCID: PMC10185990 DOI: 10.1177/10406387231154537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023] Open
Abstract
We estimated the diagnostic sensitivity (DSe) and specificity (DSp) of an immunohistochemistry (IHC) protocol compared to the direct fluorescent antibody test (DFAT), which is the gold standard test for rabies diagnosis. We obtained brain samples from 199 domestic and wild animal cases (100 DFAT-negative, 99 DFAT-positive), by convenience sampling from 2 government-accredited rabies virus (RABV) testing laboratories in South Africa, between February 2015 and August 2017. Tissues that had been stored at 4-8°C for several days to weeks at the 2 accredited laboratories were formalin-fixed and paraffin-embedded. Nighty-eight cases tested IHC-positive using a polyclonal anti-RABV nucleoprotein antibody and a polymer detection system. The overall DSe and DSp for the RABV IHC test were 98% (95% CI: 93-100%) and 99% (95% CI: 95-100%), respectively. Domestic dogs accounted for 41 of 98 RABV IHC-positive cases, with the remainder in 4 domestic cats, 25 livestock, and 28 wildlife. Herpestidae species, including 7 meerkats and 9 other mongoose species, were the most frequently infected wild carnivores, followed by 11 jackals. Three cases in domestic dogs had discordant test results; 2 cases were IHC-/DFAT+ and 1 case was IHC+/DFAT-. Considering the implications of a false-negative rabies diagnosis, participating in regular inter-laboratory comparisons is vital, and a secondary or confirmatory method, such as IHC, should be performed on all submitted specimens, particularly negative cases with human contact history.
Collapse
Affiliation(s)
- Drienie D. Claassen
- Departments of Paraclinical Sciences, Faculty of Veterinary Science, University of Pretoria, Pretoria, Gauteng, South Africa
| | - Lieza Odendaal
- Departments of Paraclinical Sciences, Faculty of Veterinary Science, University of Pretoria, Pretoria, Gauteng, South Africa
| | - Claude T. Sabeta
- Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Pretoria, Gauteng, South Africa
| | - Geoffrey T. Fosgate
- Production Animal Studies, Faculty of Veterinary Science, University of Pretoria, Pretoria, Gauteng, South Africa
| | - Debrah K. Mohale
- Agricultural Research Council–Onderstepoort Veterinary Research, Onderstepoort, Gauteng, South Africa
| | - June H. Williams
- Departments of Paraclinical Sciences, Faculty of Veterinary Science, University of Pretoria, Pretoria, Gauteng, South Africa
| | - Sarah J. Clift
- Departments of Paraclinical Sciences, Faculty of Veterinary Science, University of Pretoria, Pretoria, Gauteng, South Africa
| |
Collapse
|
33
|
Wu Y, Yang M, Yang H, Qiu Y, Xuan Z, Xing F, Cao M. Identification and molecular characterization of a novel cytorhabdovirus from rose plants (Rosa chinensis Jacq.). Arch Virol 2023; 168:118. [PMID: 36952055 DOI: 10.1007/s00705-023-05742-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 02/06/2023] [Indexed: 03/24/2023]
Abstract
A novel negative-sense single-stranded RNA virus, tentatively named "rose-associated cytorhabdovirus" (RaCV), was identified by high-throughput sequencing. RaCV is 16,067 nucleotides in length and contains eight open reading frames (ORFs 1-8) encoding a nucleocapsid protein (N), a putative phosphoprotein (P), a putative P3 protein (P3), a putative P4 protein (P4), a putative matrix protein (M), a glycoprotein (G), a putative P7 protein (P7), and an RNA-dependent RNA polymerase (L), respectively. The coding genes are flanked by a 3' leader sequence (228 nt) and a 5' trailer sequence (251 nt) and are separated by conserved intergenic junctions (3'-AUUCUUUUUG(N)nCUN-5'). Phylogenetic analysis showed that RaCV clustered with yerba mate virus A (YmVA) within the cytorhabdovirus clade, and it exhibited low a degree of nt sequence similarity (<40% identity) to other rhabdoviruses. Amino acid sequence comparisons between the putative proteins of RaCV and the corresponding proteins of other cytorhabdoviruses showed that the sequence identity levels were far below the species demarcation cutoff of 80% for cytorhabdoviruses. These results suggest that RaCV should be classified as a new member of the genus Cytorhabdovirus.
Collapse
Affiliation(s)
- Yujiao Wu
- National Citrus Engineering Research Center, Citrus Research Institute, Southwest University, Chongqing, 400712, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Mengxue Yang
- National Citrus Engineering Research Center, Citrus Research Institute, Southwest University, Chongqing, 400712, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Han Yang
- National Citrus Engineering Research Center, Citrus Research Institute, Southwest University, Chongqing, 400712, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Yuanjian Qiu
- National Citrus Engineering Research Center, Citrus Research Institute, Southwest University, Chongqing, 400712, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Zhiyou Xuan
- National Citrus Engineering Research Center, Citrus Research Institute, Southwest University, Chongqing, 400712, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Fei Xing
- National Citrus Engineering Research Center, Citrus Research Institute, Southwest University, Chongqing, 400712, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Mengji Cao
- National Citrus Engineering Research Center, Citrus Research Institute, Southwest University, Chongqing, 400712, China.
- Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
34
|
First Discovery of Phenuiviruses within Diverse RNA Viromes of Asiatic Toad (Bufo gargarizans) by Metagenomics Sequencing. Viruses 2023; 15:v15030750. [PMID: 36992458 PMCID: PMC10056474 DOI: 10.3390/v15030750] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/10/2023] [Accepted: 03/11/2023] [Indexed: 03/17/2023] Open
Abstract
Most zoonotic pathogens originate from mammals and avians, but viral diversity and related biosafety risk assessment in lower vertebrates also need to be explored. Amphibians are an important group of lower vertebrates that played a momentous role in animal evolution. To elucidate the diversity of RNA viruses in one important species of amphibians, the Asiatic toad (Bufo gargarizans), we obtained 44 samples including lung, gut, liver, and kidney tissues from Asiatic toads in Sichuan and Jilin provinces, China, for viral metagenomics sequencing. More than 20 novel RNA viruses derived from the order Bunyavirales and 7 families of Astroviridae, Dicistroviridae, Leviviridae, Partitiviridae, Picornaviridae, Rhabdoviridae, and Virgaviridae were discovered, which were distinct from previously described viruses and formed new clusters, as revealed by phylogenetic analyses. Notably, a novel bastrovirus, AtBastV/GCCDC11/2022, of the family Astroviridae was identified from the gut library, the genome of which contains three open reading frames, with the RNA-dependent RNA polymerase (RdRp) coded by ORF1 closely related to that of hepeviruses, and ORF2 encoding an astrovirus-related capsid protein. Notably, phenuiviruses were discovered for the first time in amphibians. AtPhenV1/GCCDC12/2022 and AtPhenV2/GCCDC13/2022 clustered together and formed a clade with the group of phenuiviruses identified from rodents. Picornaviruses and several invertebrate RNA viruses were also detected. These findings improve our understanding of the high RNA viral diversity in the Asiatic toad and provide new insights in the evolution of RNA viruses in amphibians.
Collapse
|
35
|
Jia D, Liang Q, Chen H, Liu H, Li G, Zhang X, Chen Q, Wang A, Wei T. Autophagy mediates a direct synergistic interaction during co-transmission of two distinct arboviruses by insect vectors. SCIENCE CHINA. LIFE SCIENCES 2023:10.1007/s11427-022-2228-y. [PMID: 36917406 DOI: 10.1007/s11427-022-2228-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 10/21/2022] [Indexed: 03/16/2023]
Abstract
Multiple viral infections in insect vectors with synergistic effects are common in nature, but the underlying mechanism remains elusive. Here, we find that rice gall dwarf reovirus (RGDV) facilitates the transmission of rice stripe mosaic rhabdovirus (RSMV) by co-infected leafhopper vectors. RSMV nucleoprotein (N) alone activates complete anti-viral autophagy, while RGDV nonstructural protein Pns11 alone induces pro-viral incomplete autophagy. In co-infected vectors, RSMV exploits Pns11-induced autophagosomes to assemble enveloped virions via N-Pns11-ATG5 interaction. Furthermore, RSMV could effectively propagate in Sf9 cells. Expression of Pns11 in Sf9 cells or leafhopper vectors causes the recruitment of N from the ER to Pns11-induced autophagosomes and inhibits N-induced complete autophagic flux, finally facilitating RSMV propagation. In summary, these results demonstrate a previously unappreciated role of autophagy in the regulation of the direct synergistic interaction during co-transmission of two distinct arboviruses by insect vectors and reveal the functional importance of virus-induced autophagosomes in rhabdovirus assembly.
Collapse
Affiliation(s)
- Dongsheng Jia
- Vector-borne Virus Research Center, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Qifu Liang
- Vector-borne Virus Research Center, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Hongyan Chen
- Vector-borne Virus Research Center, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Huan Liu
- Vector-borne Virus Research Center, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Guangjun Li
- Vector-borne Virus Research Center, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xiaofeng Zhang
- Vector-borne Virus Research Center, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Qian Chen
- Vector-borne Virus Research Center, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Aiming Wang
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, Ontario, N5V 4T3, Canada
| | - Taiyun Wei
- Vector-borne Virus Research Center, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
36
|
Perinet LC, Mutebi JP, Powers AM, Lutwama JJ, Mossel EC. Yata Virus (Family Rhabdoviridae, Genus Ephemerovirus) Isolation from Mosquitoes from Uganda, the First Reported Isolation since 1969. Diseases 2023; 11:21. [PMID: 36810535 PMCID: PMC9944095 DOI: 10.3390/diseases11010021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 01/16/2023] [Accepted: 01/19/2023] [Indexed: 01/31/2023] Open
Abstract
As a part of a systematic study of mosquitoes and associated viruses in Uganda, a virus was isolated from a pool of Mansonia uniformis collected in July 2017, in the Kitgum District of northern Uganda. Sequence analysis determined that the virus is Yata virus (YATAV; Ephemerovirus yata; family Rhabdoviridae). The only previous reported isolation of YATAV was in 1969 in Birao, Central African Republic, also from Ma. uniformis mosquitoes. The current sequence is over 99% identical at the nucleotide level to the original isolate, indicating a high level of YATAV genomic stability.
Collapse
Affiliation(s)
- Lara C. Perinet
- Division of Vector-Borne Diseases, US Centers for Disease Control and Prevention, Fort Collins, CO 80521, USA
| | - John-Paul Mutebi
- Division of Vector-Borne Diseases, US Centers for Disease Control and Prevention, Fort Collins, CO 80521, USA
| | - Ann M. Powers
- Division of Vector-Borne Diseases, US Centers for Disease Control and Prevention, Fort Collins, CO 80521, USA
| | - Julius J. Lutwama
- Department of Arbovirology, Emerging, and Re-emerging Diseases, Uganda Virus Research Institute, Entebbe, Uganda
| | - Eric C. Mossel
- Division of Vector-Borne Diseases, US Centers for Disease Control and Prevention, Fort Collins, CO 80521, USA
| |
Collapse
|
37
|
Abstract
Arctic permafrost is thawing due to global warming, with unknown consequences on the microbial inhabitants or associated viruses. DNA viruses have previously been shown to be abundant and active in thawing permafrost, but little is known about RNA viruses in these systems. To address this knowledge gap, we assessed the composition of RNA viruses in thawed permafrost samples that were incubated for 97 days at 4°C to simulate thaw conditions. A diverse RNA viral community was assembled from metatranscriptome data including double-stranded RNA viruses, dominated by Reoviridae and Hypoviridae, and negative and positive single-stranded RNA viruses, with relatively high representations of Rhabdoviridae and Leviviridae, respectively. Sequences corresponding to potential plant and human pathogens were also detected. The detected RNA viruses primarily targeted dominant eukaryotic taxa in the samples (e.g., fungi, Metazoa and Viridiplantae) and the viral community structures were significantly associated with predicted host populations. These results indicate that RNA viruses are linked to eukaryotic host dynamics. Several of the RNA viral sequences contained auxiliary metabolic genes encoding proteins involved in carbon utilization (e.g., polygalacturosase), implying their potential roles in carbon cycling in thawed permafrost. IMPORTANCE Permafrost is thawing at a rapid pace in the Arctic with largely unknown consequences on ecological processes that are fundamental to Arctic ecosystems. This is the first study to determine the composition of RNA viruses in thawed permafrost. Other recent studies have characterized DNA viruses in thawing permafrost, but the majority of DNA viruses are bacteriophages that target bacterial hosts. By contrast RNA viruses primarily target eukaryotic hosts and thus represent potential pathogenic threats to humans, animals, and plants. Here, we find that RNA viruses in permafrost are novel and distinct from those in other habitats studied to date. The COVID-19 pandemic has heightened awareness of the importance of potential environmental reservoirs of emerging RNA viral pathogens. We demonstrate that some potential pathogens were detected after an experimental thawing regime. These results are important for understanding critical viral-host interactions and provide a better understanding of the ecological roles that RNA viruses play as permafrost thaws.
Collapse
|
38
|
Kauffmann CM, de Jesus Boari A, Silva JMF, Blawid R, Nagata T. Complete genome sequence of patchouli chlorosis-associated cytorhabdovirus, a new cytorhabdovirus infecting patchouli plants in Brazil. Arch Virol 2022; 167:2817-2820. [PMID: 36125555 DOI: 10.1007/s00705-022-05594-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 07/31/2022] [Indexed: 12/14/2022]
Abstract
A cytorhabdovirus, tentatively named "patchouli chlorosis-associated cytorhabdovirus" (PCaCV), was identified in a patchouli plant, using high-throughput sequencing, and its genome sequence was confirmed by Sanger sequencing. The PCaCV genome consists of 12,913 nucleotides and contains six open reading frames in the order 3'-N-P'-P-P3-M-(G)-L-5'. The glycoprotein gene was found to contain stop codons in the coding frame; hence, this gene is considered defective. PCaCV is most closely related to tomato yellow mottle-associated virus, sharing 61.1% nucleotide sequence identity in the complete genome and 73.9% amino acid sequence identity in the L protein. These data suggest that PCaCV should be considered a new member of the genus Cytorhabdovirus, and the binomial species name "Cytorhabdovirus patchoulii" is proposed.
Collapse
Affiliation(s)
| | | | | | - Rosana Blawid
- Department of Agronomy, Universidade Federal Rural de Pernambuco, Recife, Pernambuco, Brazil
| | - Tatsuya Nagata
- Department of Plant Pathology, University of Brasilia, Brasília, Federal District, Brazil. .,Department of Molecular Biology, University of Brasilia, Brasília, Federal District, Brazil.
| |
Collapse
|
39
|
Tangudu CS, Hargett AM, Laredo-Tiscareño SV, Smith RC, Blitvich BJ. Isolation of a novel rhabdovirus and detection of multiple novel viral sequences in Culex species mosquitoes in the United States. Arch Virol 2022; 167:2577-2590. [PMID: 36056958 DOI: 10.1007/s00705-022-05586-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 07/21/2022] [Indexed: 12/14/2022]
Abstract
To increase our understanding of the diversity of the mosquito virome, 6956 mosquitoes of five species (Culex erraticus, Culex pipiens, Culex restuans, Culex tarsalis, and Culex territans) collected in Iowa in the United States in 2017 and 2020 were assayed for novel viruses by performing polyethylene glycol precipitation, virus isolation in cell culture, and unbiased high-throughput sequencing. A novel virus, provisionally named "Walnut Creek virus", was isolated from Cx. tarsalis, and its genomic sequence and organization are characteristic of viruses in the genus Hapavirus (family Rhabdoviridae). Replication of Walnut Creek virus occurred in avian, mammalian, and mosquito, but not tick, cell lines. A novel virus was also isolated from Cx. restuans, and partial genome sequencing revealed that it is distantly related to an unclassified virus of the genus Phytoreovirus (family Sedoreoviridae). Two recognized viruses were also isolated: Culex Y virus (family Birnaviridae) and Houston virus (family Mesoniviridae). We also identified sequences of eight novel viruses from six families (Amalgaviridae, Birnaviridae, Partitiviridae, Sedoreoviridae, Tombusviridae, and Totiviridae), two viruses that do not belong to any established families, and many previously recognized viruses. In summary, we provide evidence of multiple novel and recognized viruses in Culex spp. mosquitoes in the United States.
Collapse
Affiliation(s)
- Chandra S Tangudu
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, 50011, USA
| | - Alissa M Hargett
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, 50011, USA
| | - S Viridiana Laredo-Tiscareño
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, 50011, USA
| | - Ryan C Smith
- Department of Entomology, College of Agriculture and Life Sciences, Iowa State University, Ames, IA, USA
| | - Bradley J Blitvich
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, 50011, USA.
| |
Collapse
|
40
|
Guo C, Ye Z, Hu B, Shan S, Chen J, Sun Z, Li J, Wei Z. The Characterization of Three Novel Insect-Specific Viruses Discovered in the Bean Bug, Riptortus pedestris. Viruses 2022; 14:v14112500. [PMID: 36423109 PMCID: PMC9696879 DOI: 10.3390/v14112500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/04/2022] [Accepted: 11/04/2022] [Indexed: 11/16/2022] Open
Abstract
Insect-specific virus (ISV) is one of the most promising agents for the biological control of insects, which is abundantly distributed in hematophagous insects. However, few ISVs have been reported in Riptortus pedestris (Fabricius), one of the major pests threatening soybeans and causing great losses in yield and quality. In this work, field Riptortus pedestris was collected from six soybean-producing regions in China, and their virome was analyzed with the metatranscriptomic approach. Altogether, seven new insect RNA viruses were identified, three of which had complete RNA-dependent RNA polymerase (RdRp) and nearly full-length genome sequences, which were named Riptortus pedestris alphadrosrha-like virus 1 (RpALv1), Riptortus pedestris alphadrosrha-like virus 2 (RpALv2) and Riptortus pedestris almendra-like virus (RiALv). The three identified novel ISVs belonged to the family Rhabdoviridae, and phylogenetic tree analysis indicated that they were clustered into new distinct clades. Interestingly, the analysis of virus-derived small-interfering RNAs (vsiRNAs) indicated that only RiALv-derived siRNAs exhibited 22 nt length preference, whereas no clear 21 or 22 nt peaks were observed for RpALv1 and RpALv2, suggesting the complexity of siRNA-based antiviral immunity in R. pedestris. In conclusion, this study contributes to a better understanding of the microenvironment in R. pedestris and provides viral information for the development of potential soybean insect-specific biocontrol agents.
Collapse
|
41
|
Petrzik K, Přibylová J, Špak J, Sarkisova T, Fránová J, Holub J, Skalík J, Koloniuk I. Mixed Infection of Blackcurrant with a Novel Cytorhabdovirus and Black Currant-Associated Nucleorhabdovirus. Viruses 2022; 14:v14112456. [PMID: 36366554 PMCID: PMC9697673 DOI: 10.3390/v14112456] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/01/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022] Open
Abstract
A virome screen was performed on a new breeding line, KB1, of blackcurrant. Rhabdovirus-like particles were observed by electron microscopy in ultrathin sections of flower stalks, and the complete genome sequence of a novel virus, provisionally named blackcurrant rhabdovirus 2 (BCRV2), was determined and verified using high-throughput sequencing. The genomic organization of BCRV2 was characteristic of cytorhabdoviruses (family Rhabdoviridae) and included seven genes: 3 ́- N-P´-P-P3-M-G-L -5 ́. BLASTP analysis revealed that the putative L protein had the highest amino acid sequence identity (75 %) with strawberry virus 2. BCRV2 was detected in Cryptomyzusgaleopsidis, but efficient transmission by this aphid was not confirmed. Of note, we observed coinfection of the KB1 line with blackcurrant-associated rhabdovirus (BCaRV) by RT-PCR. This is likely the first evidence of the presence of a cyto- and a nucleorhabdovirus in a single host.
Collapse
Affiliation(s)
- Karel Petrzik
- Biology Centre Academy of Sciences of the Czech Republic, Institute of Plant Molecular Biology, 370 05 České Budějovice, Czech Republic
- Correspondence:
| | - Jaroslava Přibylová
- Biology Centre Academy of Sciences of the Czech Republic, Institute of Plant Molecular Biology, 370 05 České Budějovice, Czech Republic
| | - Josef Špak
- Biology Centre Academy of Sciences of the Czech Republic, Institute of Plant Molecular Biology, 370 05 České Budějovice, Czech Republic
| | - Tatiana Sarkisova
- Biology Centre Academy of Sciences of the Czech Republic, Institute of Plant Molecular Biology, 370 05 České Budějovice, Czech Republic
| | - Jana Fránová
- Biology Centre Academy of Sciences of the Czech Republic, Institute of Plant Molecular Biology, 370 05 České Budějovice, Czech Republic
| | - Jan Holub
- Jan Holub Ltd., Hvozdečko 7, 783 25 Bouzov, Czech Republic
| | - Jan Skalík
- Jan Holub Ltd., Hvozdečko 7, 783 25 Bouzov, Czech Republic
| | - Igor Koloniuk
- Biology Centre Academy of Sciences of the Czech Republic, Institute of Plant Molecular Biology, 370 05 České Budějovice, Czech Republic
| |
Collapse
|
42
|
Xu FF, Jiang FY, Zhou GQ, Xia JY, Yang F, Zhu B. The recombinant subunit vaccine encapsulated by alginate-chitosan microsphere enhances the immune effect against Micropterus salmoides rhabdovirus. JOURNAL OF FISH DISEASES 2022; 45:1757-1765. [PMID: 35944110 DOI: 10.1111/jfd.13697] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/20/2022] [Accepted: 07/22/2022] [Indexed: 06/15/2023]
Abstract
The disease caused by Micropterus salmoides rhabdovirus (MSRV) has brought substantial economic losses to the largemouth bass aquaculture industry in China. Vaccination was considered as a potential way to prevent and control this disease. As a kind of sustained and controlled release system, alginate and chitosan microspheres (SA-CS) are widely used in the development of oral vaccination for fish. Here, we prepared a king of alginate-chitosan composite microsphere to encapsulate the second segment of MSRV glycoprotein (G2 protein) and then evaluated the immune effect of the microsphere vaccine on largemouth bass. Largemouth bass were vaccinated via intragastric immunization by different treatments (PBS, SA-CS, G2 and SA-CS-G2). The results showed that a stronger immune response including serum antibody levels, immune-related physiological indexes (acid phosphatase, alkaline phosphatase, superoxide dismutase and total antioxidant capacity) and the expression of immune-related gene (IgM、IL-8、IL-1β、CD4、TGF-β、TNF-α) can be induced obviously with SA-CS-G2 groups compared with G2 groups when fish were vaccinated. Furthermore, fish were injected with a lethal dose of MSRV after immunization for 28 days, and the highest relative percentage survival (54.8%) was observed in SA-CS-G2 group (40 μg per fish), which is significantly higher than that of G2 group (25.8%). This study showed that alginate-chitosan microspheres as the vaccine carrier can effectively improve the immune effect of oral vaccination and induce better immune protection effect against MSRV infection.
Collapse
Affiliation(s)
- Fei-Fan Xu
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Fu-Yi Jiang
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Guo-Qing Zhou
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Jun-Yao Xia
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Fei Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Bin Zhu
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| |
Collapse
|
43
|
Medberry A, Tzanetakis IE. Identification, Characterization, and Detection of a Novel Strawberry Cytorhabdovirus. PLANT DISEASE 2022; 106:2784-2787. [PMID: 36176214 DOI: 10.1094/pdis-11-21-2449-sc] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
In 2020, a novel agent was discovered in strawberry, a rhabdovirus closely related to lettuce necrotic yellows virus. The new virus, named strawberry virus 2 (StrV-2), was discovered in an accession of the Fragaria virus collection of the National Clonal Germplasm Repository (NCGR), and for this reason, it was studied in-depth. The complete StrV-2 genome was obtained and investigated in silico. Transmission was assessed using two aphid species whereas a multiplex RT-PCR test targeting plant and virus genes was developed and used to screen the NCGR Fragaria virus collection.
Collapse
Affiliation(s)
- Ava Medberry
- Department of Entomology and Plant Pathology, Division of Agriculture, University of Arkansas System, Fayetteville, AR 72701
| | - Ioannis E Tzanetakis
- Department of Entomology and Plant Pathology, Division of Agriculture, University of Arkansas System, Fayetteville, AR 72701
| |
Collapse
|
44
|
Benites LF, Stephens TG, Bhattacharya D. Multiple waves of viral invasions in Symbiodiniaceae algal genomes. Virus Evol 2022; 8:veac101. [PMID: 36381231 PMCID: PMC9651163 DOI: 10.1093/ve/veac101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 08/29/2022] [Accepted: 10/25/2022] [Indexed: 08/13/2023] Open
Abstract
Dinoflagellates from the family Symbiodiniaceae are phototrophic marine protists that engage in symbiosis with diverse hosts. Their large and distinct genomes are characterized by pervasive gene duplication and large-scale retroposition events. However, little is known about the role and scale of horizontal gene transfer (HGT) in the evolution of this algal family. In other dinoflagellates, high levels of HGTs have been observed, linked to major genomic transitions, such as the appearance of a viral-acquired nucleoprotein that originated via HGT from a large DNA algal virus. Previous work showed that Symbiodiniaceae from different hosts are actively infected by viral groups, such as giant DNA viruses and ssRNA viruses, that may play an important role in coral health. Latent viral infections may also occur, whereby viruses could persist in the cytoplasm or integrate into the host genome as a provirus. This hypothesis received experimental support; however, the cellular localization of putative latent viruses and their taxonomic affiliation are still unknown. In addition, despite the finding of viral sequences in some genomes of Symbiodiniaceae, viral origin, taxonomic breadth, and metabolic potential have not been explored. To address these questions, we searched for putative viral-derived proteins in thirteen Symbiodiniaceae genomes. We found fifty-nine candidate viral-derived HGTs that gave rise to twelve phylogenies across ten genomes. We also describe the taxonomic affiliation of these virus-related sequences, their structure, and their genomic context. These results lead us to propose a model to explain the origin and fate of Symbiodiniaceae viral acquisitions.
Collapse
Affiliation(s)
- L Felipe Benites
- Department of Biochemistry and Microbiology, Rutgers University, 102 Foran Hall, 59 Dudley Road, New Brunswick, NJ 08901-8520, USA
| | - Timothy G Stephens
- Department of Biochemistry and Microbiology, Rutgers University, 102 Foran Hall, 59 Dudley Road, New Brunswick, NJ 08901-8520, USA
| | - Debashish Bhattacharya
- Department of Biochemistry and Microbiology, Rutgers University, 102 Foran Hall, 59 Dudley Road, New Brunswick, NJ 08901-8520, USA
| |
Collapse
|
45
|
Trim69 is a microtubule regulator that acts as a pantropic viral inhibitor. Proc Natl Acad Sci U S A 2022; 119:e2211467119. [PMID: 36251989 PMCID: PMC9618055 DOI: 10.1073/pnas.2211467119] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Through a screen that combines functional and evolutionary analyses, we identified tripartite motif protein (Trim69), a poorly studied member of the Trim family, as a negative regulator of HIV-1 infection in interferon (IFN)-stimulated myeloid cells. Trim69 inhibits the early phases of infection of HIV-1, but also of HIV-2 and SIVMAC in addition to the negative and positive-strand RNA viruses vesicular stomatitis virus and severe acute respiratory syndrome coronavirus 2, with magnitudes that depend on the combination between cell type and virus. Mechanistically, Trim69 associates directly to microtubules and its antiviral activity is linked to its ability to promote the accumulation of stable microtubules, a program that we uncover to be an integral part of antiviral IFN-I responses in myeloid cells. Overall, our study identifies Trim69 as the antiviral innate defense factor that regulates the properties of microtubules to limit viral spread and highlights the cytoskeleton as an unappreciated battleground in the host-pathogen interactions that underlie viral infections.
Collapse
|
46
|
Seo H, Lubis ADM, Lee S. A Novel Specific Single-Chain Variable Fragment Diagnostic System for Viral Hemorrhagic Septicemia Virus. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2022; 24:979-990. [PMID: 36071349 DOI: 10.1007/s10126-022-10161-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 08/25/2022] [Indexed: 06/15/2023]
Abstract
Viral hemorrhagic septicemia virus (VHSV), one of the most important viral marine pathogens worldwide, has a broad range of hosts, such as members of the families Salmonidae and Paralichthyidae. In addition to being highly contagious, VHSV causes high lethality. The transmission of VHSV can be both vertical and horizontal. In fish, the resolution of VHSV infection is challenging. Thus, early diagnosis of VHSV infections is critical, especially in fish farms that have a high population of juvenile fish. Serological methods are commonly used to detect viral antigens. However, limited serological methods are available for marine viruses. In this study, a VHSV-specific single-chain variable fragment (scFv), E5, was selected using the yeast surface display and phage display systems. scFv, a type of recombinant antibody, comprises a variable heavy chain ([Formula: see text]) and a variable light chain ([Formula: see text]) connected by a polypeptide linker. An scFv clone was selected from the VHSV glycoprotein-expressing yeast cells using the bio-panning method. The scFv-encoding gene was subcloned and expressed in the Escherichia coli expression system. The binding affinity of the expressed and purified scFv protein was determined using an enzyme-linked immunosorbent assay and western blotting. Thus, this study reported a method to identify VHSV-specific scFv using bio-panning that can be utilized to develop a diagnostic system for other viruses.
Collapse
Affiliation(s)
- Haneul Seo
- Celtech Laboratory, Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, Republic of Korea
| | - Andre Ditya Maulana Lubis
- Celtech Laboratory, Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, Republic of Korea
| | - Sukchan Lee
- Celtech Laboratory, Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, Republic of Korea.
| |
Collapse
|
47
|
Kondo H, Botella L, Suzuki N. Mycovirus Diversity and Evolution Revealed/Inferred from Recent Studies. ANNUAL REVIEW OF PHYTOPATHOLOGY 2022; 60:307-336. [PMID: 35609970 DOI: 10.1146/annurev-phyto-021621-122122] [Citation(s) in RCA: 77] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
High-throughput virome analyses with various fungi, from cultured or uncultured sources, have led to the discovery of diverse viruses with unique genome structures and even neo-lifestyles. Examples in the former category include splipalmiviruses and ambiviruses. Splipalmiviruses, related to yeast narnaviruses, have multiple positive-sense (+) single-stranded (ss) RNA genomic segments that separately encode the RNA-dependent RNA polymerase motifs, the hallmark of RNA viruses (members of the kingdom Orthornavirae). Ambiviruses appear to have an undivided ssRNA genome of 3∼5 kb with two large open reading frames (ORFs) separated by intergenic regions. Another narna-like virus group has two fully overlapping ORFs on both strands of a genomic segment that span more than 90% of the genome size. New virus lifestyles exhibited by mycoviruses include the yado-kari/yado-nushi nature characterized by the partnership between the (+)ssRNA yadokarivirus and an unrelated dsRNA virus (donor of the capsid for the former) and the hadaka nature of capsidless 10-11 segmented (+)ssRNA accessible by RNase in infected mycelial homogenates. Furthermore, dsRNA polymycoviruses with phylogenetic affinity to (+)ssRNA animal caliciviruses have been shown to be infectious as dsRNA-protein complexes or deproteinized naked dsRNA. Many previous phylogenetic gaps have been filled by recently discovered fungal and other viruses, which haveprovided interesting evolutionary insights. Phylogenetic analyses and the discovery of natural and experimental cross-kingdom infections suggest that horizontal virus transfer may have occurred and continue to occur between fungi and other kingdoms.
Collapse
Affiliation(s)
- Hideki Kondo
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan;
| | - Leticia Botella
- Department of Forest Protection and Wildlife Management, Faculty of Forestry and Wood Technology, Mendel University, Brno, Czech Republic
| | - Nobuhiro Suzuki
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan;
| |
Collapse
|
48
|
Negative Regulatory Role of the Spring Viremia of Carp Virus Matrix Protein in the Host Interferon Response by Targeting the MAVS/TRAF3 Signaling Axis. J Virol 2022; 96:e0079122. [PMID: 35913215 PMCID: PMC9400495 DOI: 10.1128/jvi.00791-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Spring viremia of carp virus (SVCV) is a severe infectious pathogen that causes high rates of mortality in cyprinids and other fish species. Despite numerous investigations of SVCV infection, the underlying molecular mechanisms remain poorly understood. In this study, we found that the SVCV matrix protein (SVCV-M) played an inhibitory role in the host interferon (IFN) response by targeting the MAVS/TRAF3 signaling axis, thereby uncovering a previously unrecognized mechanism of SVCV escape from host innate antiviral immunity. Mechanistically, SVCV-M was located at the mitochondria independent of MAVS, which allowed SVCV-M to build an arena for competition with the MAVS platform. A microscale thermophoresis assay showed that SVCV-M had a high affinity for TRAF3, as indicated by a lower equilibrium dissociation constant (KD) value than that of MAVS with TRAF3. Therefore, the association of MAVS with TRAF3 was competitively impaired by SVCV-M in a dose-dependent manner. Accordingly, SVCV-M showed a potent ability to inhibit the K63-linked polyubiquitination of TRAF3. This inhibition was accompanied by the impairment of the IFN response, as shown by the marked decline in IFN-φ1-promoter (pro) luciferase reporter activity. By constructing truncated TRAF3 and SVCV-M proteins, the RING finger, zinc finger, and coiled-coil domains of TRAF3 and the hydrophobic-pocket-like structure formed by the α2-, α3-, and α4-helices of SVCV-M may be the major target and antagonistic modules responsible for the protein-protein interaction between the TRAF3 and SVCV-M proteins. These findings highlighted the intervention of SVCV-M in host innate immunity, thereby providing new insights into the extensive participation of viral matrix proteins in multiple biological activities. IMPORTANCE The matrix protein of SVCV (SVCV-M) is an indispensable structural element for nucleocapsid condensation and virion formation during viral morphogenesis, and it connects the core nucleocapsid particle to the outer membrane within the mature virus. Previous studies have emphasized the architectural role of SVCV-M in viral construction; however, the potential nonstructural functions of SVCV-M in viral replication and virus-host interactions remain poorly understood. In this study, we identified the inhibitory role of the SVCV-M protein in host IFN production by competitively recruiting TRAF3 from the MAVS signaling complex and impairing TRAF3 activation via inhibition of K63-linked polyubiquitination. This finding provided new insights into the regulatory role of SVCV-M in host innate immunity, which highlighted the broader functionality of rhabdovirus matrix protein apart from being a structural protein. This study also revealed a previously unrecognized mechanism underlying SVCV immune evasion by inhibiting the IFN response by targeting the MAVS/TRAF3 signaling axis.
Collapse
|
49
|
Complete genome sequence of a putative novel cytorhabdovirus isolated from Rudbeckia sp. Arch Virol 2022; 167:2381-2385. [PMID: 35920980 DOI: 10.1007/s00705-022-05556-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 06/23/2022] [Indexed: 11/02/2022]
Abstract
Through high-throughput RNA sequencing, we discovered a putative new cytorhabdovirus in the seeds of Rudbeckia sp., which we have tentatively named "rudbeckia virus 1" (RudV1). Its complete 12,502-nt genomic sequence contains five open reading frames (ORFs): ORF1 (putative nucleocapsid protein, N), ORF2 (putative phosphoprotein, P), ORF3 (putative cell-to-cell movement protein, P3), ORF4 (putative matrix protein, M), and ORF5 (putative RNA-dependent RNA polymerase, L). BLASTp searches showed that ORF1, ORF3, ORF4, and ORF5 of RudV1 are most closely related to the corresponding proteins of Tagetes erecta virus 1 (a putative member of the genus Cytorhabdovirus) with 33.87% (88% query coverage), 55.98% (89% query coverage), 35.33% (94% query coverage), and 57.75% (98% query coverage) sequence identity at the amino acid level, respectively. Phylogenetic analysis and pairwise comparisons indicated that RudV1 is a novel member of the genus Cytorhabdovirus within the family Rhabdoviridae.
Collapse
|
50
|
Read DA, Strydom E, Slippers B, Steenkamp E, Pietersen G. Genomic characterization of soybean blotchy mosaic virus, a cytorhabdovirus from South Africa. Arch Virol 2022; 167:2359-2363. [PMID: 35857145 DOI: 10.1007/s00705-022-05526-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 05/24/2022] [Indexed: 11/25/2022]
Abstract
Samples showing blotchy mottle symptoms were collected from soybeans in North-West province, South Africa. The assembly of high-throughput sequencing data from three samples yielded contigs of 13,426 to 13,435nt, which represent the first complete genome sequences of soybean blotchy mosaic virus (SbBMV). SbBMV shows a typical cytorhabdovirus gene organization (3'-N-P-P3-M-G-L-5'), with each putative gene product being most similar, but with only 49.1-71.1% sequence identity, to those of cucurbit cytorhabdovirus 1. Given the species demarcation thresholds for rhabdoviruses, SbBMV is thus a distinct member of the genus Cytorhabdovirus.
Collapse
Affiliation(s)
- David A Read
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa.
| | - Elrea Strydom
- Macadamias South Africa (SAMAC), Ben Vista Office Park, Jansen Park, Boksburg, 1459, South Africa
| | - Bernard Slippers
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Emma Steenkamp
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | | |
Collapse
|