1
|
Wang J, Xiao M, Hu Z, Lin Y, Li K, Chen P, Lu C, Dong Z, Pan M. Bombyx mori nucleopolyhedrovirus LEF-2 disrupts the cell cycle in the G2/M phase by triggering a host cell DNA damage response. INSECT MOLECULAR BIOLOGY 2024. [PMID: 39150688 DOI: 10.1111/imb.12951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 07/25/2024] [Indexed: 08/17/2024]
Abstract
It is a common strategy for viruses to block the host cell cycle to favour their DNA replication. Baculovirus, being a double-stranded DNA virus, can arrest the cell cycle in the G2/M phase to facilitate its replication. However, the key viral genes and mechanisms crucial for inducing cell cycle arrest remain poorly understood. Here, we initially examined the impacts of several Bombyx mori nucleopolyhedrovirus (BmNPV) DNA replication-associated genes: ie1, lef-1, lef-2, lef-3, lef-4, odv-ec27 and dbp. We assessed their effects on both the host cells' DNA replication and cell cycle. Our findings reveal that when the lef-2 gene was overexpressed, it led to a significant increase in the number of cells in the G2/M phase and a reduction in the number of cells in the S phase. Furthermore, we discovered that the LEF-2 protein is located in the virogenic stroma and confirmed its involvement in viral DNA replication. Additionally, by employing interference and overexpression experiments, we found that LEF-2 influences host cell DNA replication and blocks the cell cycle in the G2/M phase by regulating the expression of CyclinB and CDK1. Finally, we found that BmNPV lef-2 triggered a DNA damage response in the host cell, and inhibiting this response removed the cell cycle block caused by BmNPV LEF-2. Thus, our findings indicate that the BmNPV lef-2 gene plays a crucial role in viral DNA replication and can regulate host cell cycle processes. This study furthers our understanding of baculovirus-host cell interactions and provides new insight into the molecular mechanisms of antiviral research.
Collapse
Affiliation(s)
- Jie Wang
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
| | - Miao Xiao
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
| | - Zhigang Hu
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
| | - Yu Lin
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
| | - Kejie Li
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
| | - Peng Chen
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing, China
| | - Cheng Lu
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing, China
| | - Zhanqi Dong
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing, China
| | - Minhui Pan
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing, China
| |
Collapse
|
2
|
Wang Q, Zhang Q, Shi X, Yang N, Zhang Y, Li S, Zhao Y, Zhang S, Xu X. ACADM inhibits AMPK activation to modulate PEDV-induced lipophagy and β-oxidation for impairing viral replication. J Biol Chem 2024; 300:107549. [PMID: 39002673 PMCID: PMC11342783 DOI: 10.1016/j.jbc.2024.107549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 06/19/2024] [Accepted: 06/22/2024] [Indexed: 07/15/2024] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) belongs to the Alphacoronavirus genus within the Coronavirus family, causing severe watery diarrhea in piglets and resulting in significant economic losses. Medium-chain acyl-CoA dehydrogenase (ACADM) is an enzyme participating in lipid metabolism associated with metabolic diseases and pathogen infections. Nonetheless, the precise role of ACADM in regulating PEDV replication remains uncertain. In this study, we identified ACADM as the host binding partner of NSP4 via immunoprecipitation-mass spectrometry analysis. The interaction between ACADM and NSP4 was subsequently corroborated through coimmunoprecipitation and laser confocal microscopy. Following this, a notable upsurge in ACADM expression was observed during PEDV infection. ACADM overexpression effectively inhibited virus replication, whereas ACADM knockdown facilitated virus replication, suggesting ACADM has negative regulation effect on PEDV infection. Furthermore, we demonstrated fatty acid β-oxidation affected PEDV replication for the first time, inhibition of fatty acid β-oxidation reduced PEDV replication. ACADM decreased PEDV-induced β-oxidation to suppress PEDV replication. Mechanistically, ACADM reduced cellular free fatty acid levels and subsequent β-oxidation by hindering AMPK-mediated lipophagy. In summary, our results reveal that ACADM plays a negative regulatory role in PEDV replication by regulating lipid metabolism. The present study introduces a novel approach for the prevention and control of PEDV infection.
Collapse
Affiliation(s)
- Quanqiong Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Qi Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiaojie Shi
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Naling Yang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Yanxia Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Shifan Li
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Yina Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Shuxia Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.
| | - Xingang Xu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.
| |
Collapse
|
3
|
Yang N, Zhang Q, Wang Q, Zhang Y, Li S, Zhao Y, Shi X, Li Q, Xu X. Nsp10-interacting host protein SAP18 restricts PEDV replication in Marc-145 cells via enhancing dephosphorylation of RIG-I. Vet Microbiol 2024; 294:110124. [PMID: 38795403 DOI: 10.1016/j.vetmic.2024.110124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/13/2024] [Accepted: 05/18/2024] [Indexed: 05/27/2024]
Abstract
PEDV, a single-stranded RNA virus, causes significant economic losses in the pig industry. Sin3-associated protein 18 (SAP18) is known for its role in transcriptional inhibition and RNA splicing. However, research on SAP18's involvement in PEDV infection is limited. Here, we identified an interaction between SAP18 and PEDV nonstructural protein 10 (Nsp10) using immunoprecipitation-mass spectrometry (IP-MS) and confirmed it through immunoprecipitation and laser confocal microscopy. Additionally, PEDV Nsp10 reduced SAP18 protein levels and induced its cytoplasmic accumulation. Overexpressing SAP18 suppressed PEDV replication, meanwhile its knockdown via short interfering RNA (siRNA) enhanced replication. SAP18 overexpression boosted IRF3 and NF-κB P65 phosphorylation, nuclear translocation, and IFN-β antiviral response. Furthermore, SAP18 upregulated RIG-I expression and facilitated its dephosphorylation, while SAP18 knockdown had the opposite effect. Finally, SAP18 interacted with phosphatase 1 (PP1) catalytic subunit alpha (PPP1CA), promoting PPP1CA-RIG-I interaction during PEDV infection. These findings highlight SAP18's role in activating the type I interferon pathway and inhibiting viral replication by promoting RIG-I dephosphorylation through its interaction with PPP1CA.
Collapse
Affiliation(s)
- Naling Yang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shanxi 712100, China
| | - Qi Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shanxi 712100, China
| | - Quanqiong Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shanxi 712100, China
| | - Yanxia Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shanxi 712100, China
| | - Shifan Li
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shanxi 712100, China
| | - Yina Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shanxi 712100, China
| | - Xiaojie Shi
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shanxi 712100, China
| | - Qinfan Li
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shanxi 712100, China.
| | - Xingang Xu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shanxi 712100, China.
| |
Collapse
|
4
|
Zhong Y, Liu F, Zhang X, Guo Q, Wang Z, Wang R. Research progress on reproductive system damage caused by high altitude hypoxia. Endocrine 2024; 83:559-570. [PMID: 38170433 DOI: 10.1007/s12020-023-03643-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 11/28/2023] [Indexed: 01/05/2024]
Abstract
PURPOSE The high altitude area is characterized by low pressure and hypoxia, and rapidly entering the high altitude area will cause a series of damage to the body. Some studies have shown that hypoxia can cause damage to the reproductive system. In recent years, researchers have been paying attention to the effects of hypoxia on hormone level, ovarian reserve, embryonic development, testicular development, sperm motility level, and have begun to explore its injury mechanism, but its mechanism is not clear. In this paper, the mechanism of hypoxia on the reproductive system is reviewed, which is expected to provide a new idea for solving the problem of the low fertility rate of humans and animals at high altitudes. METHODS A comprehensive PubMed search was conducted, selecting all relevant peer-reviewed English papers published before January 2022. Other relevant papers were selected from the list of references. RESULTS Studies have shown that the complete fertility rate of people living at low altitudes is 7.7, and the complete fertility rate of people living at high altitudes is 4.77, and the hypoxic environment at high altitudes reduces fertility. At the same time, high-altitude, low-oxygen environments are associated with increased infant mortality and post-neonatal mortality. To date, most studies seem to point to a correlation between anoxic exposure at high altitudes and low fertility in humans and animals. CONCLUSION Although the molecular mechanisms are not fully understood, the effects of hypoxia at high altitude on hormonal level, ovarian reserve, embryonic development, testicular development, and sperm motility and levels require further research to investigate this complex topic.
Collapse
Affiliation(s)
- Yan Zhong
- School of Pharmacy, Gansu University of Traditional Chinese Medicine, Lanzhou, China.
- Pharmacy of the 940th Hospital of Joint Logistic Support Force of Chinese People's Liberation Army, Lanzhou, China.
| | - Feifei Liu
- School of Pharmacy, Gansu University of Traditional Chinese Medicine, Lanzhou, China
- Pharmacy of the 940th Hospital of Joint Logistic Support Force of Chinese People's Liberation Army, Lanzhou, China
| | - Xiaojing Zhang
- Pharmacy of the 940th Hospital of Joint Logistic Support Force of Chinese People's Liberation Army, Lanzhou, China.
| | - Qianwen Guo
- Pharmacy of the 940th Hospital of Joint Logistic Support Force of Chinese People's Liberation Army, Lanzhou, China
| | - Zihan Wang
- Pharmacy of the 940th Hospital of Joint Logistic Support Force of Chinese People's Liberation Army, Lanzhou, China
| | - Rong Wang
- Pharmacy of the 940th Hospital of Joint Logistic Support Force of Chinese People's Liberation Army, Lanzhou, China.
| |
Collapse
|
5
|
Shi X, Zhang Q, Yang N, Wang Q, Zhang Y, Xu X. PEDV inhibits HNRNPA3 expression by miR-218-5p to enhance cellular lipid accumulation and promote viral replication. mBio 2024; 15:e0319723. [PMID: 38259103 PMCID: PMC10865979 DOI: 10.1128/mbio.03197-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 12/12/2023] [Indexed: 01/24/2024] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) requires complete dependence on the metabolic system of the host cell to complete its life cycle. There is a strong link between efficient viral replication and cellular lipid synthesis. However, the mechanism by which PEDV interacts with host cells to hijack cellular lipid metabolism to promote its replication remains unclear. In this study, PEDV infection significantly enhanced the expression of lipid synthesis-related genes and increased cellular lipid accumulation. Furthermore, using liquid chromatography-tandem mass spectrometry, we identified heterogeneous nuclear ribonucleoprotein A3 (HNRNPA3) as the interacting molecule of PEDV NSP9. We demonstrated that the expression of HNRNPA3 was downregulated by PEDV-induced miR-218-5p through targeting its 3' untranslated region. Interestingly, knocking down HNRNPA3 facilitated the PEDV replication by promoting cellular lipid synthesis. We next found that the knockdown of HNRNPA3 potentiated the transcriptional activity of sterol regulatory element-binding transcription factor 1 (SREBF1) through zinc finger protein 135 (ZNF135) as well as PI3K/AKT and JNK signaling pathways. In summary, we propose a model in which PEDV downregulates HNRNPA3 expression to promote the expression and activation of SREBF1 and increase cellular lipid accumulation, providing a novel mechanism by which PEDV interacts with the host to utilize cellular lipid metabolism to promote its replication.IMPORTANCEAs the major components and structural basis of the viral replication complexes of positive-stranded RNA viruses, lipids play an essential role in viral replication. However, how PEDV manipulates host cell lipid metabolism to promote viral replication by interacting with cell proteins remains poorly understood. Here, we found that SREBF1 promotes cellular lipid synthesis, which is essential for PEDV replication. Moreover, HNRNPA3 negatively regulates SREBF1 activation and specifically reduces lipid accumulation, ultimately inhibiting PEDV dsRNA synthesis. Our study provides new insight into the mechanisms by which PEDV hijacks cell lipid metabolism to benefit viral replication, which can offer a potential target for therapeutics against PEDV infection.
Collapse
Affiliation(s)
- Xiaojie Shi
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Qi Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Naling Yang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Quanqiong Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Yanxia Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Xingang Xu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
6
|
Li M, Wang M, Xi Y, Qiu S, Zeng Q, Pan Y. Isolation and Identification of a Tibetan Pig Porcine Epidemic Diarrhoea Virus Strain and Its Biological Effects on IPEC-J2 Cells. Int J Mol Sci 2024; 25:2200. [PMID: 38396878 PMCID: PMC10889329 DOI: 10.3390/ijms25042200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 01/31/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024] Open
Abstract
Porcine epidemic diarrhoea virus (PEDV) is a coronavirus that can cause severe watery diarrhoea in piglets, with high morbidity and mortality rates, seriously hindering the healthy development of the global swine industry. In this study, we isolated a strain of PEDV from Tibetan pigs and named it CH/GS/2022. Subsequently, we screened the apoptosis signals of PEDV-infected IPEC-J2 cells and studied the correlation between apoptosis signals and cell apoptosis. The results showed that different infections of PEDV induced different degrees of apoptosis in cells, and PEDV-induced cell apoptosis was dose-dependent. We then detected the expression of the p53, p38, JNK, Bax, and Bcl-2 genes in the apoptosis signal pathway. The results showed that 24 h after PEDV infection, the expression of the p53, p38, JNK, and Bax genes in IPEC-J2 cells increased significantly, while the expression of the Bcl-2 gene decreased significantly (p < 0.05). Subsequently, we used Western blot to detect the protein levels of these five genes, and the results showed that PEDV infection upregulated the expression of p53, p38, JNK, and Bax proteins (p < 0.05) while downregulating the expression of Bcl-2 protein (p < 0.05). Thus, it was initially inferred that PEDV infection could regulate cell apoptosis by activating the p53, p38, and JNK signalling pathways. Finally, we further investigated the apoptosis of the cells through the use of inhibitors. The results indicated that the p53 inhibitor Pifithrin-α has a significant inhibitory effect on the expression of the p53 protein after PEDV infection and can reverse the expression levels of Bax and Bcl-2 proteins. This suggested that p53 is involved in PEDV-induced cell apoptosis. Similarly, the p38 MAPK inhibitor SB203580 has an inhibitory effect on the expression of the p38 protein and can reverse the expression levels of Bax and Bcl-2 proteins. This suggested that p38 is also involved in PEDV-induced cell apoptosis. On the other hand, the JNK inhibitor SP600125 has no inhibitory effect on the expression of the JNK protein after PEDV infection, but the expression levels of Bax and Bcl-2 proteins have changed. Furthermore, it is noteworthy that SP600125 can inhibit the activity of apoptotic proteins but not their levels, resulting in reduced cell apoptosis. These preliminary results indicated that JNK may be involved in PEDV-induced IPEC-J2 cell apoptosis.
Collapse
Affiliation(s)
- Mei Li
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (M.L.); (M.W.); (Y.X.); (S.Q.)
| | - Meng Wang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (M.L.); (M.W.); (Y.X.); (S.Q.)
| | - Yao Xi
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (M.L.); (M.W.); (Y.X.); (S.Q.)
| | - Shantong Qiu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (M.L.); (M.W.); (Y.X.); (S.Q.)
| | - Qiaoying Zeng
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (M.L.); (M.W.); (Y.X.); (S.Q.)
| | - Yangyang Pan
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (M.L.); (M.W.); (Y.X.); (S.Q.)
- Technology and Research Center of Gansu Province for Embryonic Engineering of Bovine and Sheep & Goat, Lanzhou 730070, China
| |
Collapse
|
7
|
Xia W, Gong ES, Lin Y, Zheng B, Yang W, Li T, Zhang S, Li P, Liu RH. Wild pink bayberry free phenolic extract induces mitochondria-dependent apoptosis and G0/G1 cell cycle arrest through p38/MAPK and PI3K/Akt pathway in MDA-MB-231 cancer cells. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2023.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
8
|
Shen X, Yin L, Xu S, Wang J, Yin D, Zhao R, Pan X, Dai Y, Hou H, Zhou X, Hu X. Altered Proteomic Profile of Exosomes Secreted from Vero Cells Infected with Porcine Epidemic Diarrhea Virus. Viruses 2023; 15:1640. [PMID: 37631983 PMCID: PMC10459195 DOI: 10.3390/v15081640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/23/2023] [Accepted: 07/23/2023] [Indexed: 08/27/2023] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) infection causes severe diarrhea in pigs and can be fatal in newborn piglets. Exosomes are extracellular vesicles secreted by cells that transfer biologically active proteins, lipids, and RNA to neighboring or distant cells. Herein, the morphology, particle size, and secretion of exosomes derived from a control and PEDV-infected group are examined, followed by a proteomic analysis of the exosomes. The results show that the exosomes secreted from the Vero cells had a typical cup-shaped structure. The average particle size of the exosomes from the PEDV-infected group was 112.4 nm, whereas that from the control group was 150.8 nm. The exosome density analysis and characteristic protein determination revealed that the content of exosomes in the PEDV-infected group was significantly higher than that in the control group. The quantitative proteomics assays revealed 544 differentially expressed proteins (DEPs) in the PEDV-infected group's exosomes compared with those in the controls, with 236 upregulated and 308 downregulated proteins. The DEPs were closely associated with cellular regulatory pathways, such as the phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K)-protein kinase B (Akt) signaling pathway, extracellular matrix-receptor interaction, focal adhesion, and cytoskeletal regulation. These findings provide the basis for further investigation of the pathogenic mechanisms of PEDV and the discovery of novel antiviral targets.
Collapse
Affiliation(s)
- Xuehuai Shen
- Livestock and Poultry Epidemic Diseases Research Center of Anhui Province, Institute of Animal Husbandry and Veterinary Science, Anhui Academy of Agricultural Science, Hefei 230031, China; (X.S.); (L.Y.); (S.X.); (J.W.); (D.Y.); (R.Z.); (Y.D.); (H.H.); (X.Z.); (X.H.)
- Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Hefei 230031, China
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Lei Yin
- Livestock and Poultry Epidemic Diseases Research Center of Anhui Province, Institute of Animal Husbandry and Veterinary Science, Anhui Academy of Agricultural Science, Hefei 230031, China; (X.S.); (L.Y.); (S.X.); (J.W.); (D.Y.); (R.Z.); (Y.D.); (H.H.); (X.Z.); (X.H.)
- Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Hefei 230031, China
| | - Shuangshuang Xu
- Livestock and Poultry Epidemic Diseases Research Center of Anhui Province, Institute of Animal Husbandry and Veterinary Science, Anhui Academy of Agricultural Science, Hefei 230031, China; (X.S.); (L.Y.); (S.X.); (J.W.); (D.Y.); (R.Z.); (Y.D.); (H.H.); (X.Z.); (X.H.)
- Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Hefei 230031, China
| | - Jieru Wang
- Livestock and Poultry Epidemic Diseases Research Center of Anhui Province, Institute of Animal Husbandry and Veterinary Science, Anhui Academy of Agricultural Science, Hefei 230031, China; (X.S.); (L.Y.); (S.X.); (J.W.); (D.Y.); (R.Z.); (Y.D.); (H.H.); (X.Z.); (X.H.)
- Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Hefei 230031, China
| | - Dongdong Yin
- Livestock and Poultry Epidemic Diseases Research Center of Anhui Province, Institute of Animal Husbandry and Veterinary Science, Anhui Academy of Agricultural Science, Hefei 230031, China; (X.S.); (L.Y.); (S.X.); (J.W.); (D.Y.); (R.Z.); (Y.D.); (H.H.); (X.Z.); (X.H.)
- Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Hefei 230031, China
| | - Ruihong Zhao
- Livestock and Poultry Epidemic Diseases Research Center of Anhui Province, Institute of Animal Husbandry and Veterinary Science, Anhui Academy of Agricultural Science, Hefei 230031, China; (X.S.); (L.Y.); (S.X.); (J.W.); (D.Y.); (R.Z.); (Y.D.); (H.H.); (X.Z.); (X.H.)
- Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Hefei 230031, China
| | - Xiaocheng Pan
- Livestock and Poultry Epidemic Diseases Research Center of Anhui Province, Institute of Animal Husbandry and Veterinary Science, Anhui Academy of Agricultural Science, Hefei 230031, China; (X.S.); (L.Y.); (S.X.); (J.W.); (D.Y.); (R.Z.); (Y.D.); (H.H.); (X.Z.); (X.H.)
- Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Hefei 230031, China
| | - Yin Dai
- Livestock and Poultry Epidemic Diseases Research Center of Anhui Province, Institute of Animal Husbandry and Veterinary Science, Anhui Academy of Agricultural Science, Hefei 230031, China; (X.S.); (L.Y.); (S.X.); (J.W.); (D.Y.); (R.Z.); (Y.D.); (H.H.); (X.Z.); (X.H.)
- Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Hefei 230031, China
| | - Hongyan Hou
- Livestock and Poultry Epidemic Diseases Research Center of Anhui Province, Institute of Animal Husbandry and Veterinary Science, Anhui Academy of Agricultural Science, Hefei 230031, China; (X.S.); (L.Y.); (S.X.); (J.W.); (D.Y.); (R.Z.); (Y.D.); (H.H.); (X.Z.); (X.H.)
- Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Hefei 230031, China
| | - Xueli Zhou
- Livestock and Poultry Epidemic Diseases Research Center of Anhui Province, Institute of Animal Husbandry and Veterinary Science, Anhui Academy of Agricultural Science, Hefei 230031, China; (X.S.); (L.Y.); (S.X.); (J.W.); (D.Y.); (R.Z.); (Y.D.); (H.H.); (X.Z.); (X.H.)
- Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Hefei 230031, China
| | - Xiaomiao Hu
- Livestock and Poultry Epidemic Diseases Research Center of Anhui Province, Institute of Animal Husbandry and Veterinary Science, Anhui Academy of Agricultural Science, Hefei 230031, China; (X.S.); (L.Y.); (S.X.); (J.W.); (D.Y.); (R.Z.); (Y.D.); (H.H.); (X.Z.); (X.H.)
- Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Hefei 230031, China
| |
Collapse
|
9
|
Xu X, Liu Y, Gao J, Shi X, Yan Y, Yang N, Wang Q, Zhang Q. GRAMD4 regulates PEDV-induced cell apoptosis inhibiting virus replication via the endoplasmic reticulum stress pathway. Vet Microbiol 2023; 279:109666. [PMID: 36738512 DOI: 10.1016/j.vetmic.2023.109666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/14/2023] [Accepted: 01/22/2023] [Indexed: 01/25/2023]
Abstract
Porcine epidemic diarrhea (PED) caused by the porcine epidemic diarrhea virus (PEDV) has caused huge losses in the swine industry worldwide. Glucosyltransferase Rab-like GTPase activator and myotubularin domain containing 4 (GRAMD4) is a proapoptotic protein, which replaced p53 inducing mitochondrial apoptosis. However, the relationship between GRAMD4 and PEDV has not been reported. Here, we aimed to investigate the potential role of GRAMD4 during PEDV infection. In this study, we used co-immunoprecipitation (co-IP) and mass spectrometry to identify GRAMD4 interaction with PEDV non-structural protein 6 (NSP6). Immunoprecipitation and laser confocal microscopy were utilized to demonstrate that GRAMD4 interacts with NSP6. NSP6 reduces GRAMD4 production through PERK and IRE1 pathway-mediated apoptosis. We demonstrated that overexpression of GRAMD4 effectively impaired the replication of PEDV, whereas knockdown of GRAMD4 facilitated the replication of PEDV. Overexpression of GRAMD4 increased GRP78, phosphorylated PERK (p-PERK), phosphorylated IRE1(p-IRE1) levels, promoted CHOP, phosphorylated JNK (p-JNK), Bax expression, caspase 9 and caspase 3 cleavage, and inhibited Bcl-2 production. Knockdown of GRAMD4 has the opposite effect. Finally, deletion of the GRAM domain of GRAMD4 cannot cause endoplasmic reticulum stress (ER stress)-mediated apoptosis and inhibit virus replication. In conclusion, these studies revealed the mechanism by which GRAMD4 was associated with ER stress and apoptosis regulating PEDV replication. NSP6 acted as a potential down-regulator of GRAMD4 and promoted the degradation of GRAMD4. GRAMD4 played a role in facilitating apoptosis and restricting virus replication, and the GRAM domain was required. These findings provided a reference for host-PEDV interactions and offered the possibility for PEDV decontamination and prevention.
Collapse
Affiliation(s)
- Xingang Xu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yi Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jie Gao
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiaojie Shi
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yuchao Yan
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Naling Yang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Quanqiong Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Qi Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
10
|
Wang X, Liu Y, Li K, Hao Z. Roles of p53-Mediated Host–Virus Interaction in Coronavirus Infection. Int J Mol Sci 2023; 24:ijms24076371. [PMID: 37047343 PMCID: PMC10094438 DOI: 10.3390/ijms24076371] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/22/2023] [Accepted: 03/27/2023] [Indexed: 03/30/2023] Open
Abstract
The emergence of the SARS-CoV-2 coronavirus has garnered global attention due to its highly pathogenic nature and the resulting health crisis and economic burden. Although drugs such as Remdesivir have been considered a potential cure by targeting the virus on its RNA polymerase, the high mutation rate and unique 3’ to 5’ exonuclease with proofreading function make it challenging to develop effective anti-coronavirus drugs. As a result, there is an increasing focus on host–virus interactions because coronaviruses trigger stress responses, cell cycle changes, apoptosis, autophagy, and the dysregulation of immune function and inflammation in host cells. The p53 tumor suppressor molecule is a critical regulator of cell signaling pathways, cellular stress responses, DNA repair, and apoptosis. However, viruses can activate or inhibit p53 during viral infections to enhance viral replication and spread. Given its pivotal role in cell physiology, p53 represents a potential target for anti-coronavirus drugs. This review aims to summarize the relationship between p53 and coronaviruses from various perspectives, to shed light on potential targets for antiviral drug development and vaccine design.
Collapse
Affiliation(s)
| | | | | | - Zhihui Hao
- Correspondence: ; Tel./Fax: +86-010-6273-1192
| |
Collapse
|
11
|
Zhou H, Yan Y, Gao J, Ma M, Liu Y, Shi X, Zhang Q, Xu X. Heterogeneous Nuclear Protein U Degraded the m 6A Methylated TRAF3 Transcript by YTHDF2 To Promote Porcine Epidemic Diarrhea Virus Replication. J Virol 2023; 97:e0175122. [PMID: 36752613 PMCID: PMC9973030 DOI: 10.1128/jvi.01751-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 01/06/2023] [Indexed: 02/09/2023] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) belongs to the genus Alphacoronavirus of the Coronaviridae family and can cause fatal watery diarrhea in piglets, causing significant economic losses. Heterogeneous nuclear protein U (HNRNPU) is a novel RNA sensor involved in sensing viral RNA in the nucleus and mediating antiviral immunity. However, it remains elusive whether and how cytoplasmic PEDV can be sensed by the RNA sensor HNRNPU. In this study we determined that HNRNPU was the binding partner of Nsp13 by immunoprecipitation-liquid chromatography-tandem mass spectrometry (IP/LC-MS/MS) analysis. The interaction between Nsp13 and HNRNPU was demonstrated by using coimmunoprecipitation and confocal immunofluorescence. Next, we identified that HNRNPU expression is significantly increased during PEDV infection, whereas the transcription factor hepatocyte nuclear factor 1α (HNF1A) could negatively regulate HNRNPU expression. HNRNPU was retained in the cytoplasm by interaction with PEDV Nsp13. We found that HNRNPU overexpression effectively facilitated PEDV replication, while knockdown of HNRNPU impaired viral replication, suggesting a promoting function of HNRNPU to PEDV infection. Additionally, HNRNPU was found to promote PEDV replication by affecting TRAF3 degradation at the transcriptional level to inhibit PEDV-induced beta interferon (IFN-β) production. Mechanistically, HNRNPU downregulates TRAF3 mRNA levels via the METTL3-METTL14/YTHDF2 axis and regulates immune responses through YTHDF2-dependent mRNA decay. Together, our findings reveal that HNRNPU serves as a negative regulator of innate immunity by degrading TRAF3 mRNA in a YTHDF2-dependent manner and consequently facilitating PEDV propagation. Our findings provide new insights into the immune escape of PEDV. IMPORTANCE PEDV, a highly infectious enteric coronavirus, has spread rapidly worldwide and caused severe economic losses. During virus infection, the host regulates innate immunity to inhibit virus infection. However, PEDV has evolved a variety of different strategies to suppress host IFN-mediated antiviral responses. Here, we identified that HNRNPU interacted with viral protein Nsp13. HNRNPU protein expression was upregulated, and the transcription factor HNF1A could negatively regulate HNRNPU expression during PEDV infection. HNRNPU also downregulated TRAF3 mRNA through the METTL3-METTL14/YTHDF2 axis to inhibit the production of IFN-β and downstream antiviral genes in PEDV-infected cells, thereby promoting viral replication. Our findings reveal a new mechanism with which PEDV suppresses the host antiviral response.
Collapse
Affiliation(s)
- Hongchao Zhou
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Yuchao Yan
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Jie Gao
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Mingrui Ma
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Yi Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiaojie Shi
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Qi Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Xingang Xu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
12
|
Li M, Guo L, Feng L. Interplay between swine enteric coronaviruses and host innate immune. Front Vet Sci 2022; 9:1083605. [PMID: 36619958 PMCID: PMC9814124 DOI: 10.3389/fvets.2022.1083605] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 12/06/2022] [Indexed: 12/24/2022] Open
Abstract
Swine enteric coronavirus (SeCoV) causes acute diarrhea, vomiting, dehydration, and high mortality in neonatal piglets, causing severe losses worldwide. SeCoV includes the following four members: transmissible gastroenteritis virus (TGEV), porcine epidemic diarrhea virus (PEDV), porcine delta coronavirus (PDCoV), and swine acute diarrhea syndrome coronavirus (SADS-CoV). Clinically, mixed infections with several SeCoVs, which are more common in global farms, cause widespread infections. It is worth noting that PDCoV has a broader host range, suggesting the risk of PDCoV transmission across species, posing a serious threat to public health and global security. Studies have begun to focus on investigating the interaction between SeCoV and its host. Here, we summarize the effects of viral proteins on apoptosis, autophagy, and innate immunity induced by SeCoV, providing a theoretical basis for an in-depth understanding of the pathogenic mechanism of coronavirus.
Collapse
|
13
|
Gupta RK, Mlcochova P. Cyclin D3 restricts SARS-CoV-2 envelope incorporation into virions and interferes with viral spread. EMBO J 2022; 41:e111653. [PMID: 36161661 PMCID: PMC9539236 DOI: 10.15252/embj.2022111653] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 01/13/2023] Open
Abstract
The COVID-19 pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) presents a great threat to human health. The interplay between the virus and host plays a crucial role in successful virus replication and transmission. Understanding host-virus interactions are essential for the development of new COVID-19 treatment strategies. Here, we show that SARS-CoV-2 infection triggers redistribution of cyclin D1 and cyclin D3 from the nucleus to the cytoplasm, followed by proteasomal degradation. No changes to other cyclins or cyclin-dependent kinases were observed. Further, cyclin D depletion was independent of SARS-CoV-2-mediated cell cycle arrest in the early S phase or S/G2/M phase. Cyclin D3 knockdown by small-interfering RNA specifically enhanced progeny virus titres in supernatants. Finally, cyclin D3 co-immunoprecipitated with SARS-CoV-2 envelope (E) and membrane (M) proteins. We propose that cyclin D3 impairs the efficient incorporation of envelope protein into virions during assembly and is depleted during SARS-CoV-2 infection to restore efficient assembly and release of newly produced virions.
Collapse
Affiliation(s)
- Ravi K Gupta
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID)CambridgeUK
- Department of MedicineUniversity of CambridgeCambridgeUK
- Africa Health Research InstituteDurbanSouth Africa
| | - Petra Mlcochova
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID)CambridgeUK
- Department of MedicineUniversity of CambridgeCambridgeUK
| |
Collapse
|
14
|
Porcine Circovirus 2 Activates the PERK-Reactive Oxygen Species Axis To Induce p53 Phosphorylation with Subsequent Cell Cycle Arrest at S Phase in Favor of Its Replication. J Virol 2022; 96:e0127422. [PMID: 36300938 PMCID: PMC9683002 DOI: 10.1128/jvi.01274-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Coinfections or noninfectious triggers have long been considered to potentiate PCV2 infection, leading to manifestation of PCVAD. The triggering mechanisms remain largely unknown.
Collapse
|
15
|
Shi X, Zhang Q, Wang J, Zhang Y, Yan Y, Liu Y, Yang N, Wang Q, Xu X. Differential expression analysis of mRNAs, lncRNAs, and miRNAs expression profiles and construction of ceRNA networks in PEDV infection. BMC Genomics 2022; 23:586. [PMID: 35964002 PMCID: PMC9375197 DOI: 10.1186/s12864-022-08805-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 07/28/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Porcine Epidemic Diarrhea Virus (PEDV) is a coronavirus that seriously affects the swine industry. MicroRNAs and long noncoding RNAs are two relevant non-coding RNAs (ncRNAs) class and play crucial roles in a variety of physiological processes. Increased evidence indicates a complex interaction between mRNA and ncRNA. However, our understanding of the function of ncRNA involved in host-PEDV interaction is limited. RESULTS A total of 1,197 mRNA transcripts, 539 lncRNA transcripts, and 208 miRNA transcripts were differentially regulated at 24 h and 48 h post-infection. Gene ontology (GO) and KEGG pathway enrichment analysis showed that DE mRNAs and DE lncRNAs were mainly involved in biosynthesis, innate immunity, and lipid metabolism. Moreover, we constructed a miRNA-mRNA-pathway network using bioinformatics, including 12 DE mRNAs, 120 DE miRNAs, and 11 pathways. Finally, the target genes of DE miRNAs were screened by bioinformatics, and we constructed immune-related lncRNA-miRNA-mRNA ceRNA networks. Then, the selected DE genes were validated by qRT-PCR, which were consistent with the results from RNA-Seq data. CONCLUSIONS This study provides the comprehensive analysis of the expression profiles of mRNAs, lncRNAs, and miRNAs during PEDV infection. We characterize the ceRNA networks which can provide new insights into the pathogenesis of PEDV.
Collapse
Affiliation(s)
- Xiaojie Shi
- College of Veterinary Medicine, Northwest A&F University, Yangling, Xianyang, 712100, Shaanxi, China
| | - Qi Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Xianyang, 712100, Shaanxi, China
| | - Jingjing Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Xianyang, 712100, Shaanxi, China
| | - Yuting Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Xianyang, 712100, Shaanxi, China
| | - Yuchao Yan
- College of Veterinary Medicine, Northwest A&F University, Yangling, Xianyang, 712100, Shaanxi, China
| | - Yi Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Xianyang, 712100, Shaanxi, China
| | - Naling Yang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Xianyang, 712100, Shaanxi, China
| | - Quanqiong Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Xianyang, 712100, Shaanxi, China
| | - Xingang Xu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Xianyang, 712100, Shaanxi, China.
| |
Collapse
|
16
|
Samy A, Maher MA, Abdelsalam NA, Badr E. SARS-CoV-2 potential drugs, drug targets, and biomarkers: a viral-host interaction network-based analysis. Sci Rep 2022; 12:11934. [PMID: 35831333 PMCID: PMC9279364 DOI: 10.1038/s41598-022-15898-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 06/30/2022] [Indexed: 12/13/2022] Open
Abstract
COVID-19 is a global pandemic impacting the daily living of millions. As variants of the virus evolve, a complete comprehension of the disease and drug targets becomes a decisive duty. The Omicron variant, for example, has a notably high transmission rate verified in 155 countries. We performed integrative transcriptomic and network analyses to identify drug targets and diagnostic biomarkers and repurpose FDA-approved drugs for SARS-CoV-2. Upon the enrichment of 464 differentially expressed genes, pathways regulating the host cell cycle were significant. Regulatory and interaction networks featured hsa-mir-93-5p and hsa-mir-17-5p as blood biomarkers while hsa-mir-15b-5p as an antiviral agent. MYB, RRM2, ERG, CENPF, CIT, and TOP2A are potential drug targets for treatment. HMOX1 is suggested as a prognostic biomarker. Enhancing HMOX1 expression by neem plant extract might be a therapeutic alternative. We constructed a drug-gene network for FDA-approved drugs to be repurposed against the infection. The key drugs retrieved were members of anthracyclines, mitotic inhibitors, anti-tumor antibiotics, and CDK1 inhibitors. Additionally, hydroxyquinone and digitoxin are potent TOP2A inhibitors. Hydroxyurea, cytarabine, gemcitabine, sotalol, and amiodarone can also be redirected against COVID-19. The analysis enforced the repositioning of fluorouracil and doxorubicin, especially that they have multiple drug targets, hence less probability of resistance.
Collapse
Affiliation(s)
- Asmaa Samy
- University of Science and Technology, Zewail City, Giza, 12578, Egypt
| | - Mohamed A Maher
- University of Science and Technology, Zewail City, Giza, 12578, Egypt
| | - Nehal Adel Abdelsalam
- University of Science and Technology, Zewail City, Giza, 12578, Egypt.,Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Eman Badr
- University of Science and Technology, Zewail City, Giza, 12578, Egypt. .,Faculty of Computers and Artificial Intelligence, Cairo University, Giza, 12613, Egypt.
| |
Collapse
|
17
|
The Isolation and Full-Length Transcriptome Sequencing of a Novel Nidovirus and Response of Its Infection in Japanese Flounder (Paralichthys olivaceus). Viruses 2022; 14:v14061216. [PMID: 35746687 PMCID: PMC9230003 DOI: 10.3390/v14061216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/26/2022] [Accepted: 05/31/2022] [Indexed: 02/01/2023] Open
Abstract
A novel nidovirus, CSBV Bces-Po19, was isolated from the marine fish, Japanese flounder (Paralichthys olivaceus). The viral genome was 26,597 nucleotides long and shared 98.62% nucleotide identity with CSBV WHQSR4345. PacBio Sequel and Illumina sequencing were used to perform full-length transcriptome sequencing on CSBV Bces-Po19-sensitive (S) and -resistant (R) Japanese flounder. The results of negative staining revealed bacilliform and spherical virions. There were in total 1444 different genes between CSBV Bces-Po19 S and R groups, with 935 being up-regulated and 513 being down-regulated. Metabolism-, immune-, and RNA-related pathways were significantly enriched. Furthermore, CSBV Bces-Po19 infection induced alternative splicing (AS) events in Japanese flounder; the S group had a higher numbers of AS events (12,352) than the R group (11,452). The number of long non-coding RNA (lncRNA) in the S group, on the other hand, was significantly lower than in the R group. In addition to providing valuable information that sheds more light on CSBV Bces-Po19 infection, these research findings provide further clues for CSBV Bces-Po19 prevention and treatment.
Collapse
|
18
|
Xu X, Wang L, Liu Y, Shi X, Yan Y, Zhang S, Zhang Q. TRIM56 overexpression restricts porcine epidemic diarrhoea virus replication in Marc-145 cells by enhancing TLR3-TRAF3-mediated IFN-β antiviral response. J Gen Virol 2022; 103. [PMID: 35503719 DOI: 10.1099/jgv.0.001748] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Infection with the porcine epidemic diarrhoea virus (PEDV) causes severe enteric disease in suckling piglets, causing massive economic losses in the swine industry worldwide. Tripartite motif-containing 56 (TRIM56) has been shown to augment type I IFN response, but whether it affects PEDV replication remains uncharacterized. Here we investigated the role of TRIM56 in Marc-145 cells during PEDV infection. We found that TRIM56 expression was upregulated in cells infected with PEDV. Overexpression of TRIM56 effectively reduced PEDV replication, while knockdown of TRIM56 resulted in increased viral replication. TRIM56 overexpression significantly increased the phosphorylation of IRF3 and NF-κB P65, and enhanced the IFN-β antiviral response, while silencing TRIM56 did not affect IRF3 activation. TRIM56 overexpression increased the protein level of TRAF3, the component of the TLR3 pathway, thereby significantly activating downstream IRF3 and NF-κB signalling. We demonstrated that TRIM56 overexpression inhibited PEDV replication and upregulated expression of IFN-β, IFN-stimulated genes (ISGs) and chemokines in a dose-dependent manner. Moreover, truncations of the RING domain, N-terminal domain or C-terminal portion on TRIM56 were unable to induce IFN-β expression and failed to restrict PEDV replication. Together, our results suggested that TRIM56 was upregulated in Marc-145 cells in response to PEDV infection. Overexpression of TRIM56 inhibited PEDV replication by positively regulating the TLR3-mediated antiviral signalling pathway. These findings provide evidence that TRIM56 plays a positive role in the innate immune response during PEDV infection.
Collapse
Affiliation(s)
- Xingang Xu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Lixiang Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Yi Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Xiaojie Shi
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Yuchao Yan
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Shuxia Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Qi Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| |
Collapse
|
19
|
Zhou H, Zhang Y, Wang J, Yan Y, Liu Y, Shi X, Zhang Q, Xu X. The CREB and AP-1-Dependent Cell Communication Network Factor 1 Regulates Porcine Epidemic Diarrhea Virus-Induced Cell Apoptosis Inhibiting Virus Replication Through the p53 Pathway. Front Microbiol 2022; 13:831852. [PMID: 35418961 PMCID: PMC8996185 DOI: 10.3389/fmicb.2022.831852] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 02/14/2022] [Indexed: 12/15/2022] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) infection causes severe diarrhea, dehydration, and high mortality in sick pigs, causing huge economic losses to the pig industry. However, the relationship between cell communication network factor 1 (CCN1) and PEDV infection has not been reported. In this study, we showed that the expression of CCN1 was enhanced by PEDV infection, and we observed that PEDV promotes the CREB and AP-1 activation to promote CCN1 expression. The PKA and p38 inhibitors significantly suppress CCN1 expression, indicating that PEDV-induced CCN1 expression may be through PKA and p38 pathway. Further tests confirmed that CREB and AP-1 are regulated by PKA and p38, respectively. Overexpression of CCN1 decreased the replication of PEDV, whereas knockdown of CCN1 increased the replication of PEDV. We proved that the overexpression of CCN1 increased the phosphorylation level of p53, promoted the expresion of Bax and the cleavage of caspase 9 and caspase 3, and inhibited the production of Bcl-2. CCN1 knockdown decreased the phosphorylation level of p53, inhibited the production of Bax and the cleavage of caspase 9 and caspase 3, and promoted the expression of Bcl-2. The treatment of PFT-α (p53 inhibitor) significantly suppressed the expression of cleaved caspase 9 and caspase 3, leading to the decrease of apoptosis. Together, these studies showed that PEDV promotes the activation of CREB and AP-1 to increase the expression of CCN1. Overexpression of CCN1 promotes apoptosis by elevating p53 protein phosphorylation and inhibits PEDV replication, and knockdown of CCN1 inhibits apoptosis by decreasing p53 protein phosphorylation and promotes PEDV replication. Our study could provide some reference for the molecular mechanisms of PEDV-induced CCN1 induction and supply a new therapeutic target for PEDV.
Collapse
Affiliation(s)
- Hongchao Zhou
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| | - Yuting Zhang
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| | - Jingjing Wang
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| | - Yuchao Yan
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| | - Yi Liu
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| | - Xiaojie Shi
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| | - Qi Zhang
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| | - Xingang Xu
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| |
Collapse
|
20
|
Harford JB, Kim SS, Pirollo KF, Chang EH. TP53 Gene Therapy as a Potential Treatment for Patients with COVID-19. Viruses 2022; 14:v14040739. [PMID: 35458469 PMCID: PMC9027273 DOI: 10.3390/v14040739] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 03/29/2022] [Accepted: 03/29/2022] [Indexed: 02/04/2023] Open
Abstract
SGT-53 is a novel investigational agent that comprises an immunoliposome carrying a plasmid vector driving expression of the human TP53 gene that encodes wild-type human p53. SGT-53 is currently in phase II human trials for advanced pancreatic cancer. Although p53 is best known as a tumor suppressor, its participation in both innate and adaptive immune responses is well documented. It is now clear that p53 is an important component of the host response to various viral infections. To facilitate their viral life cycles, viruses have developed a diverse repertoire of strategies for counteracting the antiviral activities of host immune system by manipulating p53-dependent pathways in host cells. Coronaviruses reduce endogenous p53 levels in the cells they infect by enhancing the degradation of p53 in proteasomes. Thus, interference with p53 function is an important component in viral pathogenesis. Transfection of cells by SGT-53 has been shown to transiently produce exogenous p53 that is active as a pleiotropic transcription factor. We herein summarize the rationale for repurposing SGT-53 as a therapy for infection by SARS-CoV-2, the pathogen responsible for the COVID-19 pandemic. Because p53 regulation was found to play a crucial role in different infection stages of a wide variety of viruses, it is rational to believe that restoring p53 function based on SGT-53 treatment may lead to beneficial therapeutic outcomes for infectious disease at large including heretofore unknown viral pathogens that may emerge in the future.
Collapse
Affiliation(s)
- Joe B. Harford
- SynerGene Therapeutics, Inc., Potomac, MD 20854, USA;
- Correspondence:
| | - Sang Soo Kim
- SynerGene Therapeutics, Inc., Potomac, MD 20854, USA;
- Department of Oncology, Georgetown University Medical Center, Washington, DC 20007, USA; (K.F.P.); (E.H.C.)
| | - Kathleen F. Pirollo
- Department of Oncology, Georgetown University Medical Center, Washington, DC 20007, USA; (K.F.P.); (E.H.C.)
| | - Esther H. Chang
- Department of Oncology, Georgetown University Medical Center, Washington, DC 20007, USA; (K.F.P.); (E.H.C.)
| |
Collapse
|
21
|
Xu X, Wang J, Zhang Y, Yan Y, Liu Y, Shi X, Zhang Q. Inhibition of DDX6 enhances autophagy and alleviates endoplasmic reticulum stress in Vero cells under PEDV infection. Vet Microbiol 2022; 266:109350. [DOI: 10.1016/j.vetmic.2022.109350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 01/17/2022] [Accepted: 01/19/2022] [Indexed: 11/30/2022]
|
22
|
Zhou J, Gu L, Shi Y, Huang T, Fan X, Bi X, Lu S, Liang J, Luo L, Cao P, Yin Z. GSTpi reduces DNA damage and cell death by regulating the ubiquitination and nuclear translocation of NBS1. Cell Mol Life Sci 2021; 79:54. [PMID: 34936032 PMCID: PMC11072236 DOI: 10.1007/s00018-021-04057-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 11/15/2021] [Accepted: 11/21/2021] [Indexed: 01/22/2023]
Abstract
Glutathione S-transferase pi (GSTpi) is an important phase II detoxifying enzyme that participates in various physiological processes, such as antioxidant, detoxification, and signal transduction. The high expression level of GSTpi has been reported to be related to drug-resistant and anti-inflammatory and it functioned via its non-catalytic ligandin. However, the previous protection mechanism of GSTpi in DNA damage has not been addressed so far. Nijmegen breakage syndrome 1 (NBS1) is one of the most important sensor proteins to detect damaged DNA. Here, we investigated the interaction between GSTpi and NBS1 in HEK-293 T cells and human breast adenocarcinoma cells during DNA damage. Our results showed that overexpression of GSTpi in cells by transfecting DNA vector decreased the DNA damage level after methyl methanesulfonate (MMS) or adriamycin (ADR) treatment. We found that cytosolic GSTpi could increase NBS1 ubiquitin-mediated degradation in unstimulated cells, which suggested that GSTpi could maintain the basal level of NBS1 during normal conditions. In response to DNA damage, GSTpi can be phosphorylated in Ser184 and inhibit the ubiquitination degradation of NBS1 mediated by Skp2 to recover NBS1 protein level. Phosphorylated GSTpi can further enhance NBS1 nuclear translocation to activate the ATM-Chk2-p53 signaling pathway. Finally, GSTpi blocked the cell cycle in the G2/M phase to allow more time for DNA damage repair. Thus, our finding revealed the novel mechanism of GSTpi via its Ser184 phosphorylation to protect cells from cell death during DNA damage and it enriches the function of GSTpi in drug resistance.
Collapse
Affiliation(s)
- Jinyi Zhou
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, No.1 Wenyuan Road, Nanjing, 210046, People's Republic of China
| | - Lili Gu
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, No.1 Wenyuan Road, Nanjing, 210046, People's Republic of China
| | - Yingying Shi
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, No.1 Wenyuan Road, Nanjing, 210046, People's Republic of China
| | - Ting Huang
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, No.1 Wenyuan Road, Nanjing, 210046, People's Republic of China
| | - Xirui Fan
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, No.1 Wenyuan Road, Nanjing, 210046, People's Republic of China
| | - Xiaowen Bi
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, No.1 Wenyuan Road, Nanjing, 210046, People's Republic of China
| | - Shuai Lu
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, No.1 Wenyuan Road, Nanjing, 210046, People's Republic of China
| | - Juanjuan Liang
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, No.1 Wenyuan Road, Nanjing, 210046, People's Republic of China
| | - Lan Luo
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, People's Republic of China.
| | - Peng Cao
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, People's Republic of China.
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, People's Republic of China.
| | - Zhimin Yin
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, No.1 Wenyuan Road, Nanjing, 210046, People's Republic of China.
| |
Collapse
|
23
|
Sanie-Jahromi F, NejatyJahromy Y, Jahromi RR. A Review on the Role of Stem Cells against SARS-CoV-2 in Children and Pregnant Women. Int J Mol Sci 2021; 22:11787. [PMID: 34769218 PMCID: PMC8584228 DOI: 10.3390/ijms222111787] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/10/2021] [Accepted: 10/28/2021] [Indexed: 12/18/2022] Open
Abstract
Since the COVID-19 outbreak was acknowledged by the WHO on 30 January 2020, much research has been conducted to unveil various features of the responsible SARS-CoV-2 virus. Different rates of contagion in adults, children, and pregnant women may guide us to understand the underlying infection conditions of COVID-19. In this study, we first provide a review of recent reports of COVID-19 clinical outcomes in children and pregnant women. We then suggest a mechanism that explains the curious case of COVID-19 in children/pregnant women. The unique stem cell molecular signature, as well as the very low expression of angiotensin-converting enzyme 2 and the lower ACE/ACE2 ratio in stem cells of children/pregnant women compared to adults might be the cause of milder symptoms of COVID-19 in them. This study provides the main molecular keys on how stem cells can function properly and exert their immunomodulatory and regenerative effects in COVID-19-infected children/pregnant women, while failing to replicate their role in adults. This can lay the groundwork for both predicting the pattern of spread and severity of the symptoms in a population and designing novel stem cell-based treatment and prevention strategies for COVID-19.
Collapse
Affiliation(s)
- Fatemeh Sanie-Jahromi
- Poostchi Ophthalmology Research Center, Shiraz University of Medical Sciences, Shiraz 7134997446, Iran;
| | - Yaser NejatyJahromy
- Institut für Physikalische und Theoretische Chemie, Rheinische Friedrich-Wilhelms-Universität Bonn, 53012 Bonn, Germany
| | - Rahim Raoofi Jahromi
- Department of Infectious Disease, Peymanieh Hospital, Jahrom University of Medical Science, Jahrom 7414846199, Iran
| |
Collapse
|
24
|
Screening of Lactic Acid Bacterial Strains with Antiviral Activity Against Porcine Epidemic Diarrhea. Probiotics Antimicrob Proteins 2021; 14:546-559. [PMID: 34350565 DOI: 10.1007/s12602-021-09829-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/29/2021] [Indexed: 12/12/2022]
Abstract
Newly emerging and re-emerging viral infectious diseases cause significant economic losses in swine production. Efficacious vaccines have not yet been developed for several major swine infectious diseases, including porcine epidemic diarrhea virus (PEDV). We used the PEDV-infected Vero cell model to screen lactic acid bacteria (LAB) strains with antiviral activity. Sixty LAB strains were isolated from the feces of nursing piglets. After the elimination of LAB strains with high cytotoxicity to Vero cells, the protective effects of the remaining 6 strains against PEDV infection were determined. Vero cells pretreated with the intracellular extracts or cell wall fractions of YM22 and YM33 strains for 24 h before infection with PEDV showed significantly higher cell viabilities and lower mRNA expression of PEDV nucleocapsid (PEDV-N) than the unpretreated cells, indicating that the intracellular extracts and cell wall fractions of YM22 and YM33 possessed prophylactic effects on Vero cells against PEDV infection. PEDV-infection significantly increased the mRNA expression of proinflammatory cytokines, including tumor necrosis factor-α (TNF-α) and interleukin-8 (IL-8) in Vero cells. However, pretreatment of Vero cells with the cell wall fractions of YM22 and YM33 decreased the mRNA expression of TNF-α and IL-8, which could be a mechanism associated with the protective effects of YM22 and YM33 against PEDV. Based on the biochemical characteristics and phylogenetic analyses, YM22 and YM33 were identified as Ligilactobacillus agilis (basonym: Lactobacillus agilis) and Ligilactobacillus salivarius (basonym: Lactobacillus salivarius), respectively. These findings suggest that L. agilis YM22 and L. salivarius YM33 could provide some levels of protective effects against PEDV infections.
Collapse
|
25
|
Coronavirus Porcine Epidemic Diarrhea Virus Nucleocapsid Protein Interacts with p53 To Induce Cell Cycle Arrest in S-Phase and Promotes Viral Replication. J Virol 2021; 95:e0018721. [PMID: 34037422 DOI: 10.1128/jvi.00187-21] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Subversion of the host cell cycle to facilitate viral replication is a common feature of coronavirus infections. Coronavirus nucleocapsid (N) protein can modulate the host cell cycle, but the mechanistic details remain largely unknown. Here, we investigated the effects of manipulation of porcine epidemic diarrhea virus (PEDV) N protein on the cell cycle and the influence on viral replication. Results indicated that PEDV N induced Vero E6 cell cycle arrest at S-phase, which promoted viral replication (P < 0.05). S-phase arrest was dependent on the N protein nuclear localization signal S71NWHFYYLGTGPHADLRYRT90 and the interaction between N protein and p53. In the nucleus, the binding of N protein to p53 maintained consistently high-level expression of p53, which activated the p53-DREAM pathway. The key domain of the N protein interacting with p53 was revealed to be S171RGNSQNRGNNQGRGASQNRGGNN194 (NS171-N194), in which G183RG185 are core residues. NS171-N194 and G183RG185 were essential for N-induced S-phase arrest. Moreover, small molecular drugs targeting the NS171-N194 domain of the PEDV N protein were screened through molecular docking. Hyperoside could antagonize N protein-induced S-phase arrest by interfering with interaction between N protein and p53 and inhibit viral replication (P < 0.05). The above-described experiments were also validated in porcine intestinal cells, and data were in line with results in Vero E6 cells. Therefore, these results reveal the PEDV N protein interacts with p53 to activate the p53-DREAM pathway, and subsequently induces S-phase arrest to create a favorable environment for virus replication. These findings provide new insight into the PEDV-host interaction and the design of novel antiviral strategies against PEDV. IMPORTANCE Many viruses subvert the host cell cycle to create a cellular environment that promotes viral growth. PEDV, an emerging and reemerging coronavirus, has led to substantial economic loss in the global swine industry. Our study is the first to demonstrate that PEDV N-induced cell cycle arrest during the S-phase promotes viral replication. We identified a novel mechanism of PEDV N-induced S-phase arrest, where the binding of PEDV N protein to p53 maintains consistently high levels of p53 expression in the nucleus to mediate S-phase arrest by activating the p53-DREAM pathway. Furthermore, a small molecular compound, hyperoside, targeted the PEDV N protein, interfering with the interaction between the N protein and p53 and, importantly, inhibited PEDV replication by antagonizing cell cycle arrest. This study reveals a new mechanism of PEDV-host interaction and also provides a novel antiviral strategy for PEDV. These data provide a foundation for further research into coronavirus-host interactions.
Collapse
|
26
|
Yang L, Wang C, Shu J, Feng H, He Y, Chen J, Shu J. Porcine Epidemic Diarrhea Virus Induces Vero Cell Apoptosis via the p53-PUMA Signaling Pathway. Viruses 2021; 13:v13071218. [PMID: 34202551 PMCID: PMC8310168 DOI: 10.3390/v13071218] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/08/2021] [Accepted: 06/15/2021] [Indexed: 11/25/2022] Open
Abstract
Porcine Epidemic Diarrhea Virus (PEDV) is the causative agent of swine epidemic diarrhea. In order to study the pathogenic mechanism of PEDV, PEDV was inoculated into Vero cells cultured in vitro, and the total RNA of Vero cells was extracted to construct a library for Illumina high-throughput sequencing and screening of differentially expressed genes (p < 0.05). Five differentially expressed genes for qRT-PCR verification analysis were randomly selected, and the verification results were consistent with the transcriptome sequencing results. The Kyoto Encyclopedia of Genes and Genomes (KEGG) signal pathway enrichment analysis was performed on the differentially expressed genes screened above. The results showed that the target gene annotations of differentially expressed genes in the African green monkey genome were mainly enriched in the TNF signaling pathway, the P53 signaling pathway, the Jak-STAT signaling pathway, the MAPK signaling pathway, and immune inflammation. In addition, it has been reported that Puma can promote apoptosis and is a key mediator of P53-dependent and non-dependent apoptosis pathways. However, there is no report that PEDV infection can activate Puma and induce apoptosis in a P53-dependent pathway. It was found by flow cytometry that PEDV infection induced apoptosis, and by Western Blotting detection, PEDV infection significantly increased the expression of p53, BAX, and Puma apoptosis-related proteins. Treatment Vero cells with the p53 inhibitor, PFT-α, could significantly inhibit PEDV-induced apoptosis. Studies have shown that PEDV infection can activate Puma and induce apoptosis in a P53-dependent pathway. These findings provide data support for further elucidating the pathogenic mechanism of PEDV and developing an effective vaccine against PEDV.
Collapse
Affiliation(s)
- Lin Yang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (L.Y.); (C.W.); (J.S.); (H.F.); (Y.H.); (J.C.)
| | - Chenyu Wang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (L.Y.); (C.W.); (J.S.); (H.F.); (Y.H.); (J.C.)
| | - Jinqi Shu
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (L.Y.); (C.W.); (J.S.); (H.F.); (Y.H.); (J.C.)
| | - Huapeng Feng
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (L.Y.); (C.W.); (J.S.); (H.F.); (Y.H.); (J.C.)
| | - Yulong He
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (L.Y.); (C.W.); (J.S.); (H.F.); (Y.H.); (J.C.)
| | - Jian Chen
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (L.Y.); (C.W.); (J.S.); (H.F.); (Y.H.); (J.C.)
| | - Jianhong Shu
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (L.Y.); (C.W.); (J.S.); (H.F.); (Y.H.); (J.C.)
- Shaoxing Biomedical Research Institute, Zhejiang Sci-Tech University, Shaoxing 312000, China
- Correspondence:
| |
Collapse
|
27
|
Liu QN, Tang YY, Zhou MJ, Luo S, Li YT, Wang G, Zhang DZ, Yang H, Tang BP, He WF. Differentially expressed genes involved in immune pathways from yellowhead catfish (Tachysurus fulvidraco) after poly (I:C) challenge. Int J Biol Macromol 2021; 183:340-345. [PMID: 33932411 DOI: 10.1016/j.ijbiomac.2021.04.167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 04/23/2021] [Accepted: 04/24/2021] [Indexed: 01/11/2023]
Abstract
Yellowhead catfish (Tachysurus fulvidraco) is an important aquaculture fish species in China with a high market value. Infectious diseases pose serious threats in farmed fish species, and although vaccines can prevent certain infections, they rely on potent adjuvants. In this study, we analyzed the transcriptomic profiles of spleens from poly (I:C)-treated T. fulvidraco. We obtained 46,362,922 reads corresponding to 490,926 transcripts and 318,059 genes. Gene annotation using different databases and subsequent differential gene expression analyses led to the identification of 5587 differentially expressed genes (DEGs), of which 2473 were up-regulated and 3114 were down-regulated in poly (I:C)-treated fish. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses of DEGs revealed the significant dysregulation of immune- and cancer-related genes in the spleens of poly (I:C)-treated fish. Notably, several components of JAK-STAT, MAPK, and p53 signaling pathways were significantly dysregulated in response to poly (I:C) treatment. Quantitative real-time PCR (qRT-PCR) analysis of 11 randomly selected immune response genes confirmed the reliability of our findings. In conclusion, our findings provide novel insight into the immune responses of T. fulvidraco and suggest that poly (I:C) may represent a promising adjuvant of fish vaccines.
Collapse
Affiliation(s)
- Qiu-Ning Liu
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng 224007, People's Republic of China; School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, People's Republic of China
| | - Ying-Yu Tang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng 224007, People's Republic of China; College of Biotechnology and Pharmaceutical Engineering, Nanjing University of Technology, Nanjing 210009, People's Republic of China
| | - Meng-Jiao Zhou
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng 224007, People's Republic of China
| | - Sha Luo
- Institute of Life Sciences, Wenzhou University, Wenzhou 325035, People's Republic of China
| | - Yue-Tian Li
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng 224007, People's Republic of China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, College of Aquaculture and Life Science, Shanghai Ocean University, Shanghai 201306, People's Republic of China
| | - Gang Wang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng 224007, People's Republic of China
| | - Dai-Zhen Zhang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng 224007, People's Republic of China
| | - Hui Yang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, People's Republic of China.
| | - Bo-Ping Tang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng 224007, People's Republic of China.
| | - Wen-Fei He
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, People's Republic of China.
| |
Collapse
|
28
|
Wen X, Ge X, Zhou L, Zhang Y, Guo X, Yang H. PRRSV Promotes MARC-145 Cells Entry Into S Phase of the Cell Cycle to Facilitate Viral Replication via Degradation of p21 by nsp11. Front Vet Sci 2021; 8:642095. [PMID: 33869322 PMCID: PMC8044838 DOI: 10.3389/fvets.2021.642095] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/03/2021] [Indexed: 12/21/2022] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) remains one of the most economically significant pathogens that seriously affect the global swine industry. Despite sustained efforts, the factors that affect PRRSV replication in host cells are far from being fully elucidated and thus warrants further investigation. In this study, we first demonstrated that PRRSV infection can cause downregulation of endogenous p21 protein in MARC-145 cells in a virus dose-dependent manner. Next, we analyzed the effect of p21 knockdown by RNA interference on cell cycle progression using flow cytometric analysis, and found that knockdown of p21 promotes MARC-145 cells entry into S phase of the cell cycle. Interestingly, we further discovered PRRSV infection is also able to promote MARC-145 cells entry into the S phase. Subsequently, we synchronized MARC-145 cells into G0/G1, S and G2/M phases, respectively, and then determined PRRSV replication in these cells. Results here show that the MARC-145 cells synchronized into the S phase exhibited the highest viral titer among the cells synchronized to different phases. Additionally, to reliably analyze the potential role of endogenous p21 protein in PRRSV replication, we constructed a p21 gene-knockout MARC-145 cell line (p21-/-) using CRISPR/Cas9 technology and evaluated its capability to support PRRSV replication. Our results indicate that knockout of p21 is conducive to PRRSV replication in MARC-145 cells. Furthermore, through construction of a series of eukaryotic plasmids expressing each of individual PRRSV proteins combined with cell transfection, we demonstrated that the nonstructural protein 11 (nsp11) of PRRSV mediates p21 degradation, which was further confirmed by generating a stable MARC-145 cell line constitutively expressing nsp11 using a lentivirus system. Notably, we further demonstrated that the endoribonuclease activity rather than the deubiquitinating activity of nsp11 is essential for p21 degradation via mutagenic analysis. Finally, we demonstrated that nsp11 mediates p21 degradation via a ubiquitin-independent proteasomal degradation manner. Altogether, our study not only uncovers a new pathogenesis of PRRSV, but also provides new insights into development of novel antiviral strategies.
Collapse
Affiliation(s)
- Xuexia Wen
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China.,Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Xinna Ge
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Lei Zhou
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yongning Zhang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xin Guo
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Hanchun Yang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
29
|
Gioti K, Kottaridi C, Voyiatzaki C, Chaniotis D, Rampias T, Beloukas A. Animal Coronaviruses Induced Apoptosis. Life (Basel) 2021; 11:185. [PMID: 33652685 PMCID: PMC7996831 DOI: 10.3390/life11030185] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/21/2021] [Accepted: 02/22/2021] [Indexed: 02/06/2023] Open
Abstract
Apoptosis is a form of programmed death that has also been observed in cells infected by several viruses. It is considered one of the most critical innate immune mechanisms that limits pathogen proliferation and propagation before the initiation of the adaptive immune response. Recent studies investigating the cellular responses to SARS-CoV and SARS-CoV-2 infection have revealed that coronaviruses can alter cellular homeostasis and promote cell death, providing evidence that the modulation of apoptotic pathways is important for viral replication and propagation. Despite the genetic diversity among different coronavirus clades and the infection of different cell types and several hosts, research studies in animal coronaviruses indicate that apoptosis in host cells is induced by common molecular mechanisms and apoptotic pathways. We summarize and critically review current knowledge on the molecular aspects of cell-death regulation during animal coronaviruses infection and the viral-host interactions to this process. Future research is expected to lead to a better understanding of the regulation of cell death during coronavirus infection. Moreover, investigating the role of viral proteins in this process will help us to identify novel antiviral targets related to apoptotic signaling pathways.
Collapse
Affiliation(s)
- Katerina Gioti
- Department of Biomedical Sciences, University of West Attica, 12243 Athens, Greece; (K.G.); (C.K.); (C.V.); (D.C.)
| | - Christine Kottaridi
- Department of Biomedical Sciences, University of West Attica, 12243 Athens, Greece; (K.G.); (C.K.); (C.V.); (D.C.)
- Department of Genetics, Development and Molecular Biology, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Chrysa Voyiatzaki
- Department of Biomedical Sciences, University of West Attica, 12243 Athens, Greece; (K.G.); (C.K.); (C.V.); (D.C.)
| | - Dimitrios Chaniotis
- Department of Biomedical Sciences, University of West Attica, 12243 Athens, Greece; (K.G.); (C.K.); (C.V.); (D.C.)
| | - Theodoros Rampias
- Biomedical Research Foundation of the Academy of Athens, Basic Research Center, 11527 Athens, Greece
| | - Apostolos Beloukas
- Department of Biomedical Sciences, University of West Attica, 12243 Athens, Greece; (K.G.); (C.K.); (C.V.); (D.C.)
- Institute of Infection & Global Health, University of Liverpool, Liverpool L69 7BE, UK
| |
Collapse
|
30
|
Wong NA, Saier MH. The SARS-Coronavirus Infection Cycle: A Survey of Viral Membrane Proteins, Their Functional Interactions and Pathogenesis. Int J Mol Sci 2021; 22:1308. [PMID: 33525632 PMCID: PMC7865831 DOI: 10.3390/ijms22031308] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/21/2021] [Accepted: 01/22/2021] [Indexed: 02/07/2023] Open
Abstract
Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) is a novel epidemic strain of Betacoronavirus that is responsible for the current viral pandemic, coronavirus disease 2019 (COVID-19), a global health crisis. Other epidemic Betacoronaviruses include the 2003 SARS-CoV-1 and the 2009 Middle East Respiratory Syndrome Coronavirus (MERS-CoV), the genomes of which, particularly that of SARS-CoV-1, are similar to that of the 2019 SARS-CoV-2. In this extensive review, we document the most recent information on Coronavirus proteins, with emphasis on the membrane proteins in the Coronaviridae family. We include information on their structures, functions, and participation in pathogenesis. While the shared proteins among the different coronaviruses may vary in structure and function, they all seem to be multifunctional, a common theme interconnecting these viruses. Many transmembrane proteins encoded within the SARS-CoV-2 genome play important roles in the infection cycle while others have functions yet to be understood. We compare the various structural and nonstructural proteins within the Coronaviridae family to elucidate potential overlaps and parallels in function, focusing primarily on the transmembrane proteins and their influences on host membrane arrangements, secretory pathways, cellular growth inhibition, cell death and immune responses during the viral replication cycle. We also offer bioinformatic analyses of potential viroporin activities of the membrane proteins and their sequence similarities to the Envelope (E) protein. In the last major part of the review, we discuss complement, stimulation of inflammation, and immune evasion/suppression that leads to CoV-derived severe disease and mortality. The overall pathogenesis and disease progression of CoVs is put into perspective by indicating several stages in the resulting infection process in which both host and antiviral therapies could be targeted to block the viral cycle. Lastly, we discuss the development of adaptive immunity against various structural proteins, indicating specific vulnerable regions in the proteins. We discuss current CoV vaccine development approaches with purified proteins, attenuated viruses and DNA vaccines.
Collapse
Affiliation(s)
- Nicholas A. Wong
- Department of Molecular Biology, Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093-0116, USA
| | - Milton H. Saier
- Department of Molecular Biology, Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093-0116, USA
| |
Collapse
|
31
|
Sun P, Jin J, Wang L, Wang J, Zhou H, Zhang Q, Xu X. Porcine epidemic diarrhea virus infections induce autophagy in Vero cells via ROS-dependent endoplasmic reticulum stress through PERK and IRE1 pathways. Vet Microbiol 2020; 253:108959. [PMID: 33360915 DOI: 10.1016/j.vetmic.2020.108959] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 12/13/2020] [Indexed: 12/12/2022]
Abstract
Porcine epidemic diarrhea virus (PEDV), the causative agent of PED, belongs to the genus Alphacoronavirus in the family Coronaviridae. Reactive oxygen species (ROS), endoplasmic reticulum (ER) stress, and autophagy play crucial roles in regulating a variety of cellular processes during viral infection. However, the precise role of autophagy in PEDV-infected Vero cells remains largely elusive. To elucidate how PEDV infection induces autophagy, this study ascertained whether ER stress was present in PEDV-infected Vero cells. The results showed PEDV infection significantly increased the expression of GRP78 and LC3Ⅱ. Treatment with the ER stress inhibitor 4-phenylbutyrate (4-PBA) could significantly inhibit PEDV-induced autophagy. Antioxidants, such as N-acetylcysteine (NAC), could significantly inhibit PEDV-induced ER stress and autophagy, indicating that ROS act as an upstream regulator of ER stress-mediated autophagy. Further research found that activation of ER stress triggered the unfolded protein response (UPR) through PERK, IRE1, and ATF6 pathways during PEDV infection. However, treatment with the PERK inhibitor GSK2606414, IRE1 inhibitor STF-083010 but not ATF6 inhibitor AEBSF reversed PEDV-induced autophagy. Taken together, the results of this study showed that accumulated ROS played an essential role in regulating ER stress-mediated autophagy during PEDV infection. We also found that PERK and IER1 pathways of UPR signalling were involved in PEDV-induced autophagy. Furthermore, PEDV induced autophagy to promote viral replication via PERK and IER1 pathways in Vero cells. These results provide the mechanism of PEDV-induced ROS-dependent ER stress-mediated autophagy in Vero cells through activating PERK and IRE1 pathways.
Collapse
Affiliation(s)
- Pei Sun
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui, 230036, China
| | - Jian Jin
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui, 230036, China
| | - Lixiang Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jingjing Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Hongchao Zhou
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Qi Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Xingang Xu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
32
|
Su M, Chen Y, Qi S, Shi D, Feng L, Sun D. A Mini-Review on Cell Cycle Regulation of Coronavirus Infection. Front Vet Sci 2020; 7:586826. [PMID: 33251267 PMCID: PMC7674852 DOI: 10.3389/fvets.2020.586826] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 10/19/2020] [Indexed: 12/13/2022] Open
Abstract
Coronaviruses are widespread in nature and infect humans, mammals and poultry. They cause harm to humans and animals. Virus-mediated cell cycle arrest is an essential strategy for viral survival and proliferation in the host cells. A clarification system of the mechanisms of virus-induced cell cycle arrest is highly desirable to promote the development of antiviral therapies. In this review, molecular mechanisms of coronavirus-induced cell cycle arrest were systematically summarized. Moreover, the common features of coronavirus-mediated cell cycle arrest were discussed. This review will provide a theoretical basis for further studies on the infection mechanisms and prevention of coronaviruses.
Collapse
Affiliation(s)
- Mingjun Su
- Laboratory for the Prevention and Control of Swine Infectious Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Yaping Chen
- Laboratory for the Prevention and Control of Swine Infectious Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Shanshan Qi
- Laboratory for the Prevention and Control of Swine Infectious Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Da Shi
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Li Feng
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Dongbo Sun
- Laboratory for the Prevention and Control of Swine Infectious Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| |
Collapse
|
33
|
Zhang F, Yuan W, Li Z, Zhang Y, Ye Y, Li K, Ding Z, Chen Y, Cheng T, Wu Q, Tang Y, Song D. RNA-Seq-Based Whole Transcriptome Analysis of IPEC-J2 Cells During Swine Acute Diarrhea Syndrome Coronavirus Infection. Front Vet Sci 2020; 7:492. [PMID: 32903570 PMCID: PMC7438718 DOI: 10.3389/fvets.2020.00492] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 06/30/2020] [Indexed: 12/13/2022] Open
Abstract
The new emergence of swine acute diarrhea syndrome coronavirus (SADS-CoV) has resulted in high mortality in suckling pigs in China. To date, the transcriptional expression of host cells during SADS-CoV infection has not been documented. In this study, by means of RNA-Seq technology, we investigated the whole genomic expression profiles of intestinal porcine epithelial cells (IPEC-J2) infected with a SADS-CoV strain SADS-CoV-CH-FJWT-2018. A total of 24,676 genes were identified: 23,677 were known genes, and 999 were novel genes. A total of 1,897 differentially expressed genes (DEGs) were identified between SADS-CoV-infected and uninfected cells at 6, 24, and 48 h post infection (hpi). Of these, 1,260 genes were upregulated and 637 downregulated. A Gene Ontology enrichment analysis revealed that DEGs in samples from 6, 24, and 48 hpi were enriched in 79, 383, and 233 GO terms, respectively, which were mainly involved in immune system process, response to stimulus, signal transduction, and cytokine-cytokine receptor interactions. The 1,897 DEGs were mapped to 109 KEGG Ontology (KO) pathways classified into four main categories. Most of the DEGs annotated in the KEGG pathways were related to the immune system, infectious viral disease, and signal transduction. The mRNA of porcine serum amyloid A-3 protein (SAA3), an acute phase response protein, was significantly upregulated during the infection. Over-expressed SAA3 in IPEC-J2 cells drastically inhibited the replication of SADS-CoV, while under-expressed SAA3 promoted virus replication. To our knowledge, this is the first report on the profiles of gene expression of IPEC-J2 cells infected by SADS-CoV by means of RNA-Seq technology. Our results indicate that SADS-CoV infection significantly modified the host cell gene expression patterns, and the host cells responded in highly specific manners, including immune response, signal and cytokine transduction, and antiviral response. The findings provide important insights into the transcriptome of IPEC-J2 in SADS-CoV infection.
Collapse
Affiliation(s)
- Fanfan Zhang
- Key Laboratory for Animal Health of Jiangxi Province, Jiangxi Agricultural University, Nanchang, China.,Department of Preventive Veterinary Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China.,Institute of Animal Husbandry and Veterinary Medicine, Jiangxi Academy of Agricultural Sciences, Nanchang, China
| | - Weifeng Yuan
- Key Laboratory for Animal Health of Jiangxi Province, Jiangxi Agricultural University, Nanchang, China.,Department of Preventive Veterinary Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Zhiquan Li
- Key Laboratory for Animal Health of Jiangxi Province, Jiangxi Agricultural University, Nanchang, China.,Department of Preventive Veterinary Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Yuhan Zhang
- Key Laboratory for Animal Health of Jiangxi Province, Jiangxi Agricultural University, Nanchang, China.,Department of Preventive Veterinary Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Yu Ye
- Key Laboratory for Animal Health of Jiangxi Province, Jiangxi Agricultural University, Nanchang, China.,Department of Preventive Veterinary Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Kai Li
- Key Laboratory for Animal Health of Jiangxi Province, Jiangxi Agricultural University, Nanchang, China.,Department of Preventive Veterinary Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Zhen Ding
- Key Laboratory for Animal Health of Jiangxi Province, Jiangxi Agricultural University, Nanchang, China.,Department of Preventive Veterinary Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Yunyan Chen
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Ting Cheng
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Qiong Wu
- Key Laboratory for Animal Health of Jiangxi Province, Jiangxi Agricultural University, Nanchang, China.,Department of Preventive Veterinary Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Yuxin Tang
- Key Laboratory for Animal Health of Jiangxi Province, Jiangxi Agricultural University, Nanchang, China.,Department of Preventive Veterinary Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Deping Song
- Key Laboratory for Animal Health of Jiangxi Province, Jiangxi Agricultural University, Nanchang, China.,Department of Preventive Veterinary Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| |
Collapse
|
34
|
Porcine epidemic diarrhea virus infection blocks cell cycle and induces apoptosis in pig intestinal epithelial cells. Microb Pathog 2020; 147:104378. [PMID: 32653434 PMCID: PMC7347497 DOI: 10.1016/j.micpath.2020.104378] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 05/17/2020] [Accepted: 07/02/2020] [Indexed: 12/16/2022]
Abstract
Porcine epidemic diarrhea virus (PEDV) is responsible for the acute infectious swine disease porcine epidemic diarrhea (PED). PED causes damage to the intestine, including villus atrophy and shedding, leading to serious economic losses to the pig industry worldwide. We carried out an in vitro study to investigate cell apoptosis and the cell cycle in a PEDV-infected host using transcriptomic shotgun sequencing (RNA-Seq) to study gene responses to PEDV infection. Results revealed that the PEDV infection reduced proliferation activity, blocked the cell cycle at S-phase and induced apoptosis in IPEC-J2 cells. The expression of gene levels related to ribosome proteins and oxidative phosphorylation were significantly up-regulated post-PEDV infection. Although the significantly down-regulated on PI3K/Akt signaling pathway post-PEDV infection, the regulator-related genes of mTOR signaling pathway exerted significantly up-regulated or down-regulated in IPEC-J2 cells. These results indicated that ribosome proteins and oxidative phosphorylation process were widely involved in the pathological changes and regulation of host cells caused by PEDV infection, and PI3K/AKT and mTOR signaling pathways played a vital role in antiviral regulation in IPEC-J2 cells. These data might provide new insights into the specific pathogenesis of PEDV infection and pave the way for the development of effective therapeutic strategies.
Collapse
|
35
|
Qu D, Ma J, Song N, Hui L, Yang L, Guo Y, Sang C. Lappaconitine sulfate induces apoptosis and G0/G1 phase cell cycle arrest by PI3K/AKT signaling pathway in human non-small cell lung cancer A549 cells. Acta Histochem 2020; 122:151557. [PMID: 32622431 DOI: 10.1016/j.acthis.2020.151557] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 04/27/2020] [Accepted: 05/02/2020] [Indexed: 02/09/2023]
Abstract
Lappaconitine sulfate (LS) has good solubility and bioavailability. We have previously studied the anti-proliferative activity of LS on colon cancer HT-29 cell, but its anti-proliferative activity and molecular mechanism on human non-small cell lung cancer A549 cells are still unclear. This study was to investigate the effects of LS on proliferation, cell cycle and apoptosis in human non-small cell lung cancer A549 cells, and its possible molecular mechanisms. Cell proliferation activity was measured by Cell Counting Kit-8 (CCK-8) and 5-Ethynyl-2'- deoxyuridine (EdU) cell proliferation kit. Cell cycle was detected by propidium iodide (PI) flow cytometry. Apoptosis was detected by Annexin-V-FITC/PI method. Western blot was used to detect cycle and apoptosis-related proteins expression. These results showed that the proliferation activity of LS was significantly decreased in A549 cells, showing a dose- and time-dependent manner (p < 0.05). LS could increase the proportion of G0/G1 phase cells and decrease the proportion of cells in S phase, showing obvious G0/G1 phase arrest. LS significantly inhibited the expression of p-PI3K/PI3K, p-AKT/AKT, Cyclin D1 and Bcl-2 proteins (p < 0.05), and increased the expression of p53, p21, Bax, caspase 3 and caspase 9 (p < 0.05). Moreover, PI3K inhibitor (LY294002) significantly decreased A549 cell viability rate induced by LS, abrogated the activation of p-PI3K/PI3K and p-AKT/AKT in the presence of LS. These results indicated that LS could block A549 cells in the G0/G1 phase, induce apoptosis, and inhibit cell proliferation through the PI3K/AKT signaling pathway.
Collapse
|
36
|
Zhang J, Cui Z, Hu G, Jiang X, Wang J, Qiao G, Li Q. Transcriptome analysis provides insights into the antiviral response in the spleen of gibel carp (Carassius auratus gibelio) after poly I: C treatment. FISH & SHELLFISH IMMUNOLOGY 2020; 102:13-19. [PMID: 32247830 DOI: 10.1016/j.fsi.2020.03.065] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 02/13/2020] [Accepted: 03/30/2020] [Indexed: 06/11/2023]
Abstract
Gibel carp (Carassius auratus gibelio) is an important commercial fish that has become one of the most cultured fishes in the region of Yangtze River in China. However, the fish faces increasing hazard due to cyprinid herpesvirus 2 (CyHV-2) infection, which has caused great economic losses. In this study, healthy gibel carp were intraperitoneally injected with different doses of poly I:C at 24 h before CyHV-2 challenge. Results showed that the mortality decreased and peak death time appeared later in the fish injected with poly I:C at a dose of 10 μg/g body weight. To explore what gene plays an important role after poly I:C treatment, the transcriptome analysis of the gibel carp spleen was further performed. Compared with the PBS group, 1286 differentially expressed genes (DEGs) were obtained in the poly I:C-treated fish, including 1006 up-regulated and 280 down-regulated DEGs. GO analysis revealed that the most enriched DEGs responded to "biological regulation", "regulation of cellular process" and "regulation of biological process". Meanwhile, KEGG enrichment analysis showed that the DEGs were mainly mapped on the immune pathways like "TNF signal pathway", "p53 signal pathway" and "JAK-STAT signal pathway", suggesting that these signal pathways may be responsible for the delayed peak of CyHV-2 infection in gibel carp after poly I:C treatment. Taken together, this study provides insights into the immune protection effect of poly I:C against CyHV-2 infection, as well as providing useful information for antiviral defense in gibel carp.
Collapse
Affiliation(s)
- Jialin Zhang
- Department of Ocean Technology, College of Marine and Biology Engineering, Yancheng Institute of Technology, Yancheng, 224051, China
| | - Zhengyi Cui
- Department of Ocean Technology, College of Marine and Biology Engineering, Yancheng Institute of Technology, Yancheng, 224051, China; Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian, 116023, China
| | - Guangyao Hu
- Department of Ocean Technology, College of Marine and Biology Engineering, Yancheng Institute of Technology, Yancheng, 224051, China
| | - Xinyu Jiang
- Department of Ocean Technology, College of Marine and Biology Engineering, Yancheng Institute of Technology, Yancheng, 224051, China
| | - Jia Wang
- Department of Ocean Technology, College of Marine and Biology Engineering, Yancheng Institute of Technology, Yancheng, 224051, China
| | - Guo Qiao
- Department of Ocean Technology, College of Marine and Biology Engineering, Yancheng Institute of Technology, Yancheng, 224051, China
| | - Qiang Li
- Department of Ocean Technology, College of Marine and Biology Engineering, Yancheng Institute of Technology, Yancheng, 224051, China.
| |
Collapse
|
37
|
Serine Protease from Nereis virens Inhibits H1299 Lung Cancer Cell Proliferation via the PI3K/AKT/mTOR Pathway. Mar Drugs 2019; 17:md17060366. [PMID: 31226829 PMCID: PMC6627947 DOI: 10.3390/md17060366] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 06/15/2019] [Accepted: 06/18/2019] [Indexed: 02/07/2023] Open
Abstract
This study explores the in vitro anti-proliferative mechanism between Nereis Active Protease (NAP) and human lung cancer H1299 cells. Colony formation and migration of cells were significantly lowered, following NAP treatment. Flow cytometry results suggested that NAP-induced growth inhibition of H1299 cells is linked to apoptosis, and that NAP can arrest the cells at the G0/G1 phase. The ERK/MAPK and PI3K/AKT/mTOR pathways were selected for their RNA transcripts, and their roles in the anti-proliferative mechanism of NAP were studied using Western blots. Our results suggested that NAP led to the downregulation of p-ERK (Thr 202/Tyr 204), p-AKT (Ser 473), p-PI3K (p85), and p-mTOR (Ser 2448), suggesting that NAP-induced H1299 cell apoptosis occurs via the PI3K/AKT/mTOR pathway. Furthermore, specific inhibitors LY294002 and PD98059 were used to inhibit these two pathways. The effect of NAP on the downregulation of p-ERK and p-AKT was enhanced by the LY294002 (a PI3K inhibitor), while the inhibitor PD98059 had no obvious effect. Overall, the results suggested that NAP exhibits antiproliferative activity by inducing apoptosis, through the inhibition of the PI3K/AKT/mTOR pathway.
Collapse
|
38
|
Xu X, Xu Y, Zhang Q, Yang F, Yin Z, Wang L, Li Q. Porcine epidemic diarrhea virus infections induce apoptosis in Vero cells via a reactive oxygen species (ROS)/p53, but not p38 MAPK and SAPK/JNK signalling pathways. Vet Microbiol 2019; 232:1-12. [PMID: 31030832 PMCID: PMC7117205 DOI: 10.1016/j.vetmic.2019.03.028] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 03/25/2019] [Accepted: 03/25/2019] [Indexed: 12/25/2022]
Abstract
p53 is activated, translocated to nucleus and involved in PEDV-induced apoptosis. ROS are accumulated during PEDV infection and involved in PEDV-induced apoptosis. ROS are the upper stream of p53 in PEDV infection. This is the first report that PEDV induce Vero cells apoptosis via ROS/p53 signal pathway.
Porcine epidemic diarrhea virus (PEDV) is a member of Coronavirus, which causes severe watery diarrhea in piglets with high morbidity and mortality. ROS and p53 play key roles in regulating many kinds of cell process during viral infection, however, the exact function in PEDV-induced apoptosis remains unclear. In this study, the pro-apoptotic effect of PEDV was examined in Vero cells and we observed that PEDV infection increased MDM2 and CBP, promoted p53 phosphorylation at serine 20 and, promoted p53 nuclear translocation, leading to p53 activation in Vero cells. Treatment with the p53 inhibitor PFT-α could significantly inhibit PEDV-induced apoptosis. We also observed PEDV infection induced time-dependent ROS accumulation. Treatment with antioxidants, such as pyrrolidine dithiocarbamate (PDTC) or N-acetylcysteine (NAC), significantly inhibited PEDV-induced apoptosis. Moreover, further inhibition tests were established to prove that p53 was regulated by ROS in PEDV-induced apoptosis. In addition, we also found that p38 MAPK and SAPK/JNK were activated in PEDV-infected Vero cells. However, treatment with the p38 MAPK inhibitor SB203580, and the SAPK/JNK inhibitor SP600125 reversed PEDV-induced apoptosis. Taken together, the results of this study demonstrate that activated p53 and accumulated ROS participated in PEDV-induced apoptosis and p53 could be regulated by ROS during PEDV infection. Activated p38 MAPK and SAPK/JNK exerted no influence on PEDV-induced apoptosis. These findings provide new insights into the function of p53 and ROS in the interaction of PEDV with Vero cells.
Collapse
Affiliation(s)
- Xingang Xu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Ying Xu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Qi Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Feng Yang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Zheng Yin
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Lixiang Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Qinfan Li
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
39
|
Hao Z, Fu F, Cao L, Guo L, Liu J, Xue M, Feng L. Tumor suppressor p53 inhibits porcine epidemic diarrhea virus infection via interferon-mediated antiviral immunity. Mol Immunol 2019; 108:68-74. [PMID: 30784764 PMCID: PMC7112615 DOI: 10.1016/j.molimm.2019.02.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 01/26/2019] [Accepted: 02/12/2019] [Indexed: 12/15/2022]
Abstract
p53 is a tumor suppressor gene that can be activated in many contexts, such as DNA damage or stressful conditions. p53 has also been shown to be important for responses to certain viral infections. Porcine epidemic diarrhea virus (PEDV) is a major enteric pathogen of the coronavirus family that causes extensive mortality among piglets. The involvement of p53 during PEDV infection has not previously been investigated. In this study, we detected p53 upregulation in response to PEDV infection. Treatment with a p53 specific activator or p53 overexpression markedly decreased viral replication, and we showed that there was more viral progeny produced in p53 knock-out cells than in p53 wild-type cells. Finally, we demonstrated that inhibition of viral infection by p53 was mediated via p53-dependent IFN signaling, leading to IFN-stimulated response element (ISRE) activation, as well as the upregulation of IFN-stimulated genes (ISGs) and IFN-β released from infected cells. These findings demonstrate that p53 suppresses PEDV infection, offering a novel therapeutic strategy for combatting this deadly disease in piglets.
Collapse
Affiliation(s)
- Zhichao Hao
- Division of Swine Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 678 Haping Road, Harbin, 150069, China.
| | - Fang Fu
- Division of Swine Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 678 Haping Road, Harbin, 150069, China.
| | - Liyan Cao
- Division of Swine Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 678 Haping Road, Harbin, 150069, China.
| | - Longjun Guo
- Division of Swine Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 678 Haping Road, Harbin, 150069, China.
| | - Jianbo Liu
- Division of Swine Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 678 Haping Road, Harbin, 150069, China.
| | - Mei Xue
- Division of Swine Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 678 Haping Road, Harbin, 150069, China.
| | - Li Feng
- Division of Swine Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 678 Haping Road, Harbin, 150069, China.
| |
Collapse
|