1
|
Michaeli T, Khateb S, Levy J. The Effect of Glucagon-like-Peptide-1 Receptor Agonists on Diabetic Retinopathy Progression, Central Subfield Thickness, and Response to Intravitreal Injections. J Clin Med 2024; 13:6269. [PMID: 39458219 PMCID: PMC11508636 DOI: 10.3390/jcm13206269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/15/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
Objectives: To examine the effects of glucagon-like-peptide-1 receptor agonists (GLP1-RAs) on diabetic retinopathy (DR) progression, visual acuity (VA), central subfield thickness (CST), and response to intravitreal injections (IVIs) in the Hadassah ophthalmological cohort. Methods: Of 4500 Hadassah patients with DR, 146 had a documented first course of GLP1-RA treatment lasting at least a year along with ophthalmological follow-up. Of these, 35 underwent at least two optical coherence tomography (OCT) exams with a one-year interval. These 35 GLP1-RA-naïve patients were compared to a control group of 31 patients with DR who did not receive GLP1-RA treatment. We compared demographics, medical records, ocular data, and OCT characteristics between the two study groups. Results: At baseline, patients who received GLP1-RA treatment had a significantly higher prevalence of retinal detachment and vitreous hemorrhage, as well as a higher (though not statistically significant) prevalence of cardiovascular comorbidities compared to the control group. At the end of the follow-up period, the GLP1-RA group had a higher prevalence of DR progression compared to controls (3/19 vs. 0/20, respectively; p = 0.106, Fisher's exact test), but also showed a better response to IVIs (27/35 vs. 17/31, respectively; unadjusted OR: 2.78, p = 0.058; 95% CI: [0.963, 8.020], Pearson's chi-square test). However, vitreous hemorrhage and hyperreflective retinal foci were confounding factors (adjusted IVI response OR: 1.76, p = 0.229, 95% CI: [0.553, 5.650], logistic regression). No significant differences were observed between the two groups in terms of change in visual acuity (-0.135 vs. -0.063 logMAR, respectively; p = 0.664, Student's t-test) or CST (-13.49 vs. -30.13 μm; p = 0.464, Student's t-test). Conclusions: This study presents preliminary findings showing no significant differences in DR progression, visual acuity, and CST between patients treated with GLP1-RA and control patients. Moreover, GLP1-RA therapy was not significantly associated with improved IVI response, with ocular parameters acting as confounding factors.
Collapse
Affiliation(s)
- Tomer Michaeli
- “Tzameret”, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel;
- Medical Corps, Israel Defense Forces, Ramat Gan 52625, Israel
| | - Samer Khateb
- Division of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel;
| | - Jaime Levy
- Division of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel;
| |
Collapse
|
2
|
Xue H, Hao Z, Gao Y, Cai X, Tang J, Liao X, Tan J. Research progress on the hypoglycemic activity and mechanisms of natural polysaccharides. Int J Biol Macromol 2023; 252:126199. [PMID: 37562477 DOI: 10.1016/j.ijbiomac.2023.126199] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/19/2023] [Accepted: 08/05/2023] [Indexed: 08/12/2023]
Abstract
The incidence of diabetes, as a metabolic disease characterized by high blood sugar levels, is increasing every year. The predominantly western medicine treatment is associated with certain side effects, which has prompted people to turn their attention to natural active substances. Natural polysaccharide is a safe and low-toxic natural substance with various biological activities. Hypoglycemic activity is one of the important biological activities of natural polysaccharides, which has great potential for development. A systematic review of the latest research progress and possible molecular mechanisms of hypoglycemic activity of natural polysaccharides is of great significance for better understanding them. In this review, we systematically reviewed the relationship between the hypoglycemic activity of polysaccharides and their structure in terms of molecular weight, monosaccharide composition, and glycosidic bonds, and summarized underlying molecular mechanisms the hypoglycemic activity of natural polysaccharides. In addition, the potential mechanisms of natural polysaccharides improving the complications of diabetes were analyzed and discussed. This paper provides some valuable insights and important guidance for further research on the hypoglycemic mechanisms of natural polysaccharides.
Collapse
Affiliation(s)
- Hongkun Xue
- College of Traditional Chinese Medicine, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China
| | - Zitong Hao
- College of Traditional Chinese Medicine, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China
| | - Yuchao Gao
- College of Traditional Chinese Medicine, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China
| | - Xu Cai
- Key Laboratory of Particle & Radiation Imaging, Ministry of Education, Department of Engineering Physics, Tsinghua University, No. 30 Shuangqing Road, Haidian District, Beijing 100084, China
| | - Jintian Tang
- Key Laboratory of Particle & Radiation Imaging, Ministry of Education, Department of Engineering Physics, Tsinghua University, No. 30 Shuangqing Road, Haidian District, Beijing 100084, China
| | - Xiaojun Liao
- College of Food Science and Nutritional Engineering, China Agricultural University, No. 17 Qinghua East Road, Haidian District, Beijing 100083, China.
| | - Jiaqi Tan
- College of Traditional Chinese Medicine, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China; Medical Comprehensive Experimental Center, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China.
| |
Collapse
|
3
|
Zhou J, Chen B. Retinal Cell Damage in Diabetic Retinopathy. Cells 2023; 12:1342. [PMID: 37174742 PMCID: PMC10177610 DOI: 10.3390/cells12091342] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/05/2023] [Accepted: 05/06/2023] [Indexed: 05/15/2023] Open
Abstract
Diabetic retinopathy (DR), the most common microvascular complication that occurs in diabetes mellitus (DM), is the leading cause of vision loss in working-age adults. The prevalence of diabetic retinopathy is approximately 30% of the diabetic population and untreated DR can eventually cause blindness. For decades, diabetic retinopathy was considered a microvascular complication and clinically staged by its vascular manifestations. In recent years, emerging evidence has shown that diabetic retinopathy causes early neuronal dysfunction and neurodegeneration that may precede vascular pathology and affect retinal neurons as well as glial cells. This knowledge leads to new therapeutic strategies aiming to prevent dysfunction of retinal neurons at the early stage of DR. Early detection and timely treatment to protect retinal neurons are critical to preventing visual loss in DR. This review provides an overview of DR and the structural and functional changes associated with DR, and discusses neuronal degeneration during diabetic retinopathy, the mechanisms underlying retinal neurodegeneration and microvascular complications, and perspectives on current and future clinic therapies.
Collapse
Affiliation(s)
| | - Bo Chen
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
4
|
Yu X, Teng Q, Bao K, Chudhary M, Qi H, Zhou W, Che H, Liu J, Ren X, Kong L. Thioredoxin 1 overexpression attenuated diabetes-induced endoplasmic reticulum stress in Müller cells via apoptosis signal-regulating kinase 1. J Cell Biochem 2023; 124:421-433. [PMID: 36780445 DOI: 10.1002/jcb.30378] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 01/19/2023] [Accepted: 01/24/2023] [Indexed: 02/15/2023]
Abstract
As one of the common and serious chronic complications of diabetes mellitus (DM), the related mechanism of diabetic retinopathy (DR) has not been fully understood. Müller cell reactive gliosis is one of the early pathophysiological features of DR. Therefore, exploring the manner to reduce diabetes-induced Müller cell damage is essential to delay DR. Thioredoxin 1 (Trx1), one of the ubiquitous redox enzymes, plays a vital role in redox homeostasis via protein-protein interactions, including apoptosis signal-regulating kinase 1 (ASK1). Previous studies have shown that upregulation of Trx by some drugs can attenuate endoplasmic reticulum stress (ERS) in DR, but the related mechanism was unclear. In this study, we used DM mouse and high glucose (HG)-cultured human Müller cells as models to clarify the effect of Trx1 on ERS and the underlying mechanism. The data showed that the diabetes-induced Müller cell damage was increased significantly. Moreover, the expression of ERS and reactive gliosis was also upregulated in diabetes in vivo and in vitro. However, it was reversed after Trx1 overexpression. Besides, ERS-related protein expression, reactive gliosis, and apoptosis were decreased after transfection with ASK1 small-interfering RNA in stable Trx1 overexpression Müller cells after HG treatment. Taken together, Trx1 could protect Müller cells from diabetes-induced damage, and the underlying mechanism was related to inhibited ERS via ASK1.
Collapse
Affiliation(s)
- Xuebin Yu
- Department of Histology and Embryology, College of Basic Medicine, Dalian Medical University, Dalian, Liaoning, China
| | - Qiufeng Teng
- Department of Histology and Embryology, College of Basic Medicine, Dalian Medical University, Dalian, Liaoning, China
| | - Kaimin Bao
- Department of Histology and Embryology, College of Basic Medicine, Dalian Medical University, Dalian, Liaoning, China
| | - Maryam Chudhary
- Department of Histology and Embryology, College of Basic Medicine, Dalian Medical University, Dalian, Liaoning, China
| | - Hui Qi
- Department of Histology and Embryology, College of Basic Medicine, Dalian Medical University, Dalian, Liaoning, China
| | - Wenying Zhou
- Department of Histology and Embryology, College of Basic Medicine, Dalian Medical University, Dalian, Liaoning, China
| | - Hongxin Che
- Department of Histology and Embryology, College of Basic Medicine, Dalian Medical University, Dalian, Liaoning, China
| | - Junli Liu
- Department of Histology and Embryology, College of Basic Medicine, Dalian Medical University, Dalian, Liaoning, China
- Henan Key Laboratory of Neural Regeneration, Henan International Joint Laboratory of Neurorestoratology for Senile Dementia, Life Science Research Center, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
| | - Xiang Ren
- Department of Histology and Embryology, College of Basic Medicine, Dalian Medical University, Dalian, Liaoning, China
| | - Li Kong
- Department of Histology and Embryology, College of Basic Medicine, Dalian Medical University, Dalian, Liaoning, China
| |
Collapse
|
5
|
Al Ashoor M, Al Hamza A, Zaboon I, Almomin A, Mansour A. Prevalence and risk factors of diabetic retinopathy in Basrah, Iraq. J Med Life 2023; 16:299-306. [PMID: 36937483 PMCID: PMC10015581 DOI: 10.25122/jml-2022-0170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 10/22/2022] [Indexed: 03/21/2023] Open
Abstract
This study aimed to measure the prevalence and risk factors of diabetic retinopathy (DR) among patients with diabetes mellitus aged 20 to 82 years attending the Faiha Diabetes, Endocrine, and Metabolism Center (FDEMC) in Basrah. A cross-sectional study was conducted at FDEMC, including 1542 participants aged 20 to 82 from January 2019 to December 2019. Both eyes were examined for evidence of DR by a mobile nonmydriatic camera, and statistical analysis was performed to measure the prevalence rates (95% CI) for patients with different characteristics. The mean age of participants was 35.9, with 689 males (44.7%; 95% CI: 42.2-47.2%) and 853 females (55.3%; 95% CI: 52.8-57.8%). The prevalence rate of DR was 30.5% (95% CI: 28.1-32.8%), and 11.27% of cases were proliferative retinopathy. DR significantly increased with age (p-value=0.000), it was higher in females (p-value=0.005), and significantly increased with a longer duration of diabetes (p-value<0.001), hyperglycemia (p-value<0.001), hypertension (p-value=0.004), dyslipidemia (p-value<0.001), nephropathy (p-value<0.001) and smoking (p-value<0.001). There was no statistical association between DR and the type of diabetes or obesity. One-third of the participants in this study had DR. Screening and early detection of DR using a simple tool such as a digital camera should be a priority to improve a person's health status.
Collapse
Affiliation(s)
- Mohammed Al Ashoor
- Department of Ophthalmology, Al Zahraa Medical College, University of Basrah, Basrah, Iraq
- Department of Ophthalmology, Basrah Teaching Hospital, Basrah, Iraq
- Corresponding Author: Mohammed Al Ashoor, Department of Ophthalmology, Basrah Teaching Hospital, Basrah, Iraq. Department of Ophthalmology, Al Zahraa Medical College, University of Basrah, Basrah, Iraq. E-mail:
| | - Ali Al Hamza
- Department of Medicine, University of Basrah, Basrah, Iraq
| | - Ibrahim Zaboon
- Department of Medicine, University of Basrah, Basrah, Iraq
| | - Ammar Almomin
- Department of Medicine, University of Basrah, Basrah, Iraq
| | - Abbas Mansour
- Department of Medicine, University of Basrah, Basrah, Iraq
| |
Collapse
|
6
|
Hassan D, Gill HM, Happe M, Bhatwadekar AD, Hajrasouliha AR, Janga SC. Combining transfer learning with retinal lesion features for accurate detection of diabetic retinopathy. Front Med (Lausanne) 2022; 9:1050436. [PMID: 36425113 PMCID: PMC9681494 DOI: 10.3389/fmed.2022.1050436] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 10/24/2022] [Indexed: 11/11/2022] Open
Abstract
Diabetic retinopathy (DR) is a late microvascular complication of Diabetes Mellitus (DM) that could lead to permanent blindness in patients, without early detection. Although adequate management of DM via regular eye examination can preserve vision in in 98% of the DR cases, DR screening and diagnoses based on clinical lesion features devised by expert clinicians; are costly, time-consuming and not sufficiently accurate. This raises the requirements for Artificial Intelligent (AI) systems which can accurately detect DR automatically and thus preventing DR before affecting vision. Hence, such systems can help clinician experts in certain cases and aid ophthalmologists in rapid diagnoses. To address such requirements, several approaches have been proposed in the literature that use Machine Learning (ML) and Deep Learning (DL) techniques to develop such systems. However, these approaches ignore the highly valuable clinical lesion features that could contribute significantly to the accurate detection of DR. Therefore, in this study we introduce a framework called DR-detector that employs the Extreme Gradient Boosting (XGBoost) ML model trained via the combination of the features extracted by the pretrained convolutional neural networks commonly known as transfer learning (TL) models and the clinical retinal lesion features for accurate detection of DR. The retinal lesion features are extracted via image segmentation technique using the UNET DL model and captures exudates (EXs), microaneurysms (MAs), and hemorrhages (HEMs) that are relevant lesions for DR detection. The feature combination approach implemented in DR-detector has been applied to two common TL models in the literature namely VGG-16 and ResNet-50. We trained the DR-detector model using a training dataset comprising of 1,840 color fundus images collected from e-ophtha, retinal lesions and APTOS 2019 Kaggle datasets of which 920 images are healthy. To validate the DR-detector model, we test the model on external dataset that consists of 81 healthy images collected from High-Resolution Fundus (HRF) dataset and MESSIDOR-2 datasets and 81 images with DR signs collected from Indian Diabetic Retinopathy Image Dataset (IDRID) dataset annotated for DR by expert. The experimental results show that the DR-detector model achieves a testing accuracy of 100% in detecting DR after training it with the combination of ResNet-50 and lesion features and 99.38% accuracy after training it with the combination of VGG-16 and lesion features. More importantly, the results also show a higher contribution of specific lesion features toward the performance of the DR-detector model. For instance, using only the hemorrhages feature to train the model, our model achieves an accuracy of 99.38 in detecting DR, which is higher than the accuracy when training the model with the combination of all lesion features (89%) and equal to the accuracy when training the model with the combination of all lesions and VGG-16 features together. This highlights the possibility of using only the clinical features, such as lesions that are clinically interpretable, to build the next generation of robust artificial intelligence (AI) systems with great clinical interpretability for DR detection. The code of the DR-detector framework is available on GitHub at https://github.com/Janga-Lab/DR-detector and can be readily employed for detecting DR from retinal image datasets.
Collapse
Affiliation(s)
- Doaa Hassan
- Department of BioHealth Informatics, School of Informatics and Computing, Indiana University Purdue University, Indianapolis, IN, United States
- Computers and Systems Department, National Telecommunication Institute, Cairo, Egypt
| | - Hunter Mathias Gill
- Department of BioHealth Informatics, School of Informatics and Computing, Indiana University Purdue University, Indianapolis, IN, United States
| | - Michael Happe
- Department of Ophthalmology, Glick Eye Institute, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Ashay D. Bhatwadekar
- Department of Ophthalmology, Glick Eye Institute, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Amir R. Hajrasouliha
- Department of Ophthalmology, Glick Eye Institute, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Sarath Chandra Janga
- Department of BioHealth Informatics, School of Informatics and Computing, Indiana University Purdue University, Indianapolis, IN, United States
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Medical Research and Library Building, Indianapolis, IN, United States
- Centre for Computational Biology and Bioinformatics, Indiana University School of Medicine, 5021 Health Information and Translational Sciences (HITS), Indianapolis, IN, United States
- *Correspondence: Sarath Chandra Janga
| |
Collapse
|
7
|
Sahiledengle B, Assefa T, Negash W, Tahir A, Regasa T, Tekalegn Y, Mamo A, Teferu Z, Solomon D, Gezahegn H, Bekele K, Zenbaba D, Tasew A, Desta F, Regassa Z, Feleke Z, Kene C, Tolcha F, Gomora D, Dibaba D, Atlaw D. Prevalence and Factors Associated with Diabetic Retinopathy among Adult Diabetes Patients in Southeast Ethiopia: A Hospital-Based Cross-Sectional Study. Clin Ophthalmol 2022; 16:3527-3545. [PMID: 36274673 PMCID: PMC9581466 DOI: 10.2147/opth.s385806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 10/11/2022] [Indexed: 11/26/2022] Open
Abstract
Background Diabetic retinopathy (DR) is the most prevalent microvascular consequence of diabetes mellitus, and it can result in blindness that is irreversible. Due to delayed diagnosis and limited access to diabetic care, the situation is even worse in developing countries. Scientific evidence on the prevalence of DR and its associated factors among diabetes patients in low-income countries, such as Ethiopia, is limited. This study aimed to determine the prevalence of DR and associated factors among adult diabetes patients in southeast Ethiopia. Methods A hospital-based cross-sectional study was conducted among diabetes patients who visited Madda Walabu University Goba Referral Hospital. Fundus and slit-lamp examination were performed for screening of DR. Multivariate binary logistic regression was computed to identify factors associated with DR. Results A total of 256 patients (144 men, 56.2%) aged 50.15±15.71 years were included in the study. The prevalence of any DR was 19.9% (95% CI 15.4%-25.3%), mild nonproliferative diabetic retinopathy (NPDR) 10.9% (95% CI 7.6%-15.4%), moderate NPDR 5.9% (95% CI 3.5%-9.5%), severe NPDR 0.9% (95% CI 0.2%-3.9%), and proliferative DR 2.3% (95% CI 1.0%-5.1%). Duration of diabetes ≥10 years (AOR 10.22, 95% CI 1.70-61.44), central obesity (AOR 5.42, 95% CI 1.38-21.19), overweight/obese (AOR 2.65, 95% CI 1.02-6.92), lower high-density lipoprotein (HDL) cholesterol (AOR 5.82, 95% CI 1.86-18.24), moderate triglyceride:HDL cholesterol ratio (AOR 4.13, 95% CI 1.13-15.15), and urban dwelling (AOR 2.84, 95% CI 1.04-7.78) were significantly associated with DR. Conclusion One in every five DM patients had DR. Sociodemographic, anthropometric, and blood lipids were independently associated with DR. To reduce the burden of diabetes, strategies that focus on lifestyle modifications targeted at identified modifiable risk factors are essential.
Collapse
Affiliation(s)
- Biniyam Sahiledengle
- Public Health Department, Madda Walabu University, Goba Referral Hospital, Bale Goba, Ethiopia
| | - Tesfaye Assefa
- Nursing Department, Madda Walabu University, Goba Referral Hospital, Bale Goba, Ethiopia
| | - Wogene Negash
- Nursing Department, Madda Walabu University, Goba Referral Hospital, Bale Goba, Ethiopia
| | - Anwar Tahir
- Nursing Department, Madda Walabu University, Goba Referral Hospital, Bale Goba, Ethiopia
| | - Tadele Regasa
- Biomedical Department, Madda Walabu University, Goba Referral Hospital, Bale Goba, Ethiopia
| | - Yohannes Tekalegn
- Public Health Department, Madda Walabu University, Goba Referral Hospital, Bale Goba, Ethiopia
| | - Ayele Mamo
- Pharmacy Department, Madda Walabu University, Goba Referral Hospital, Bale Goba, Ethiopia
| | - Zinash Teferu
- Public Health Department, Madda Walabu University, Goba Referral Hospital, Bale Goba, Ethiopia
| | - Damtew Solomon
- Biomedical Department, Madda Walabu University, Goba Referral Hospital, Bale Goba, Ethiopia
| | - Habtamu Gezahegn
- Biomedical Department, Madda Walabu University, Goba Referral Hospital, Bale Goba, Ethiopia
| | - Kebebe Bekele
- Surgery Department, Madda Walabu University, Goba Referral Hospital, Bale Goba, Ethiopia
| | - Demisu Zenbaba
- Public Health Department, Madda Walabu University, Goba Referral Hospital, Bale Goba, Ethiopia
| | - Alelign Tasew
- Public Health Department, Madda Walabu University, Goba Referral Hospital, Bale Goba, Ethiopia
| | - Fikreab Desta
- Public Health Department, Madda Walabu University, Goba Referral Hospital, Bale Goba, Ethiopia
| | - Zegeye Regassa
- Nursing Department, Madda Walabu University, Goba Referral Hospital, Bale Goba, Ethiopia
| | - Zegeye Feleke
- Nursing Department, Madda Walabu University, Goba Referral Hospital, Bale Goba, Ethiopia
| | - Chala Kene
- Midwifery of Department, Madda Walabu University, Goba Referral Hospital, Bale Goba, Ethiopia
| | - Fekata Tolcha
- Pediatrics and Child Health Department, Madda Walabu University, Goba Referral Hospital, Bale Goba, Ethiopia
| | - Degefa Gomora
- Midwifery of Department, Madda Walabu University, Goba Referral Hospital, Bale Goba, Ethiopia
| | - Diriba Dibaba
- Public Health Department, Madda Walabu University, Goba Referral Hospital, Bale Goba, Ethiopia
| | - Daniel Atlaw
- Biomedical Department, Madda Walabu University, Goba Referral Hospital, Bale Goba, Ethiopia
| |
Collapse
|
8
|
Sharma K, Zhang Y, Paudel KR, Kachelmeier A, Hansbro PM, Shi X. The Emerging Role of Pericyte-Derived Extracellular Vesicles in Vascular and Neurological Health. Cells 2022; 11:cells11193108. [PMID: 36231071 PMCID: PMC9563036 DOI: 10.3390/cells11193108] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/27/2022] [Accepted: 09/30/2022] [Indexed: 12/02/2022] Open
Abstract
Pericytes (PCs), as a central component of the neurovascular unit, contribute to the regenerative potential of the central nervous system (CNS) and peripheral nervous system (PNS) by virtue of their role in blood flow regulation, angiogenesis, maintenance of the BBB, neurogenesis, and neuroprotection. Emerging evidence indicates that PCs also have a role in mediating cell-to-cell communication through the secretion of extracellular vesicles (EVs). Extracellular vesicles are cell-derived, micro- to nano-sized vesicles that transport cell constituents such as proteins, nucleic acids, and lipids from a parent originating cell to a recipient cell. PC-derived EVs (PC-EVs) play a crucial homeostatic role in neurovascular disease, as they promote angiogenesis, maintain the integrity of the blood-tissue barrier, and provide neuroprotection. The cargo carried by PC-EVs includes growth factors such as endothelial growth factor (VEGF), connecting tissue growth factors (CTGFs), fibroblast growth factors, angiopoietin 1, and neurotrophic growth factors such as brain-derived neurotrophic growth factor (BDNF), neuron growth factor (NGF), and glial-derived neurotrophic factor (GDNF), as well as cytokines such as interleukin (IL)-6, IL-8, IL-10, and MCP-1. The PC-EVs also carry miRNA and circular RNA linked to neurovascular health and the progression of several vascular and neuronal diseases. Therapeutic strategies employing PC-EVs have potential in the treatment of vascular and neurodegenerative diseases. This review discusses current research on the characteristic features of EVs secreted by PCs and their role in neuronal and vascular health and disease.
Collapse
Affiliation(s)
- Kushal Sharma
- Oregon Hearing Research Center, Department of Otolaryngology/Head & Neck Surgery, Oregon Health & Science University, Portland, OR 97239, USA
| | - Yunpei Zhang
- Oregon Hearing Research Center, Department of Otolaryngology/Head & Neck Surgery, Oregon Health & Science University, Portland, OR 97239, USA
| | - Keshav Raj Paudel
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW 2007, Australia
| | - Allan Kachelmeier
- Oregon Hearing Research Center, Department of Otolaryngology/Head & Neck Surgery, Oregon Health & Science University, Portland, OR 97239, USA
| | - Philip M. Hansbro
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW 2007, Australia
| | - Xiaorui Shi
- Oregon Hearing Research Center, Department of Otolaryngology/Head & Neck Surgery, Oregon Health & Science University, Portland, OR 97239, USA
- Correspondence: ; Tel.: +1-503-494-2997
| |
Collapse
|
9
|
Complement 3a Mediates CCN2/CTGF in Human Retinal Pigment Epithelial Cells. J Ophthalmol 2022; 2022:3259453. [PMID: 36276919 PMCID: PMC9581697 DOI: 10.1155/2022/3259453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 07/01/2022] [Accepted: 07/04/2022] [Indexed: 11/17/2022] Open
Abstract
Background. Complement 3 (C3) is the crucial component of the complement cascade when retina was exposed to external stimulus. Cellular communication network 2/connective tissue growth factor (CCN2/CTGF) is important in response of retinal stress and a fulcrum for angiogenesis and fibrosis scar formation. Our study aims to explore the interaction between C3 and CCN2/CTGF via bioinformatics analyses and in vitro cell experiments. Methods. The GSE dataset was selected to analyse the chemokine expression in human retinal pigment epithelium (ARPE-19) cells under stimulus. Then, RPE cells were further transfected with or without C3 siRNA, followed by C3a (0.1 μM or 0.3 μM) for 24, 48, and 72 hours. Reverse transcription-polymerase chain reaction (RT-PCR) and enzyme-linked immunosorbent assay (ELISA) were used to measure CCN2/CTGF mRNA and protein levels. Results. The GSE36331 revealed C3 expression was significantly elevated in RPE under stimulus. Compared with negative control, CCN2/CTGF mRNA was increased with all types of C3a treatments, whereas a significant increase of protein level was only observed with high concentration of 0.3 μM C3a for a prolonged 72-hour time. Compared with nontransfected cells, significant reductions of CCN2/CTGF mRNA were observed in the C3 siRNA transfected cells with 0.3 μM C3a for 24, 48, and 72 hours, and a significant reduction of CCN2/CTGF protein was observed with 0.3 μM C3a for 48 hours. Conclusions. C3 was elevated in RPE under environmental stimulus and long-term exposure to specified concentration of C3a increased CCN2/CTGF expression in RPE, which could be partially reversed by C3 siRNA.
Collapse
|
10
|
Lin J, Cui K, Xu Y, Tang X, Shi Y, Lu X, Yang B, He Q, Yu S, Liang X. Inhibition of CD146 attenuates retinal neovascularization via vascular endothelial growth factor receptor 2 signalling pathway in proliferative diabetic retinopathy. Acta Ophthalmol 2022; 100:e899-e911. [PMID: 34477295 DOI: 10.1111/aos.15007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 06/24/2021] [Accepted: 08/04/2021] [Indexed: 11/30/2022]
Abstract
PURPOSE To investigate the expression of CD146 and its role in proliferative diabetic retinopathy (PDR). METHODS Enzyme linked immunosorbent assay was performed to analyse the expression and relationship of sCD146, vascular endothelial growth factor (VEGF), sVEGFR1 and sVEGFR2 in vitreous specimens from PDR and idiopathic epiretinal membranes (IERM) or idiopathic macular hole patients. The location of CD146 in ERMs was detected by immunofluorescence. The oxygen-induced retinopathy (OIR) mice model was established and the adeno-associated virus expressing a shRNA of CD146 (AAV1-shCD146-GFP) was administered via intravitreal injection. The effect of AAV1-shCD146-GFP was explored by immunofluorescence, Western blot and quantitative real-time PCR. RESULTS The levels of sCD146 in vitreous specimens from PDR patients and CD146 in retinas from OIR mice were significantly increased. Immunofluorescence showed that CD146 was co-located with CD31, VEGF, VEGFR1 and VEGFR2, respectively. Intravitreal injection of AAV1-shCD146-GFP could dramatically reduce the formation of neovascularization and non-perfusion area by inhibiting VEGFR2 phosphorylation. CONCLUSION Our results indicated that CD146 was involved in the development of retinal neovascularization via VEGFR2 pathway. Anti-CD146 may be an innovative or adjuvant therapy, which provides a new direction for the treatment of PDR and other ocular neovascular diseases.
Collapse
Affiliation(s)
- Jianqiang Lin
- State Key Laboratory of Ophthalmology Zhongshan Ophthalmic Center Sun Yat‐sen University Guangzhou China
| | - Kaixuan Cui
- State Key Laboratory of Ophthalmology Zhongshan Ophthalmic Center Sun Yat‐sen University Guangzhou China
| | - Yue Xu
- State Key Laboratory of Ophthalmology Zhongshan Ophthalmic Center Sun Yat‐sen University Guangzhou China
| | - Xiaoyu Tang
- State Key Laboratory of Ophthalmology Zhongshan Ophthalmic Center Sun Yat‐sen University Guangzhou China
| | - Yuxun Shi
- State Key Laboratory of Ophthalmology Zhongshan Ophthalmic Center Sun Yat‐sen University Guangzhou China
| | - Xi Lu
- State Key Laboratory of Ophthalmology Zhongshan Ophthalmic Center Sun Yat‐sen University Guangzhou China
| | - Boyu Yang
- State Key Laboratory of Ophthalmology Zhongshan Ophthalmic Center Sun Yat‐sen University Guangzhou China
| | - Qingjing He
- State Key Laboratory of Ophthalmology Zhongshan Ophthalmic Center Sun Yat‐sen University Guangzhou China
| | - Shanshan Yu
- State Key Laboratory of Ophthalmology Zhongshan Ophthalmic Center Sun Yat‐sen University Guangzhou China
| | - Xiaoling Liang
- State Key Laboratory of Ophthalmology Zhongshan Ophthalmic Center Sun Yat‐sen University Guangzhou China
| |
Collapse
|
11
|
Huneif MA, Alshehri DB, Alshaibari KS, Dammaj MZ, Mahnashi MH, Majid SU, Javed MA, Ahmad S, Rashid U, Sadiq A. Design, synthesis and bioevaluation of new vanillin hybrid as multitarget inhibitor of α-glucosidase, α-amylase, PTP-1B and DPP4 for the treatment of type-II diabetes. Biomed Pharmacother 2022; 150:113038. [PMID: 35658208 DOI: 10.1016/j.biopha.2022.113038] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/20/2022] [Accepted: 04/25/2022] [Indexed: 01/02/2023] Open
Abstract
Diabetes mellitus (DM) is a real challenge to the recent era and is one of the major diseases for initiating life-threatening disorders. In current research, a compound was designed by combining vanillin, thiazolidinedione and morpholine. The goal of our designed work is to demonstrate the ability of our design compound (9) to modulate more than one target responsible for hyperglycemia at the same time. The synthesized compound was able to show good to moderate inhibition potential against α-glucosidase, α-amylase and protein tyrosine phosphatase 1B. However, it exhibited excellent in-vitro inhibition of Dipeptidyl peptidase-4 (DPP-4) with IC50 value of 0.09 µM. Antioxidant activity by using DPPH assay also showed its good antioxidant potential. In in-vivo experiments, the compound 9 was proved to be safe in experimental mice. The activity profile of the compound was observed for 21 days which showed that the compound was also effective in experimental mice. Binding orientations and Interactions with key amino acid residues of the selected targets were also studied by using docking studies. Overall, we were successful in synthesizing multitarget preclinical therapeutic by combining three pharmacophoric moieties into a single chemical entity that can modulate more than one target at the same time.
Collapse
Affiliation(s)
- Mohammed A Huneif
- Pediatric Department, Medical College, Najran University, Najran, Saudi Arabia.
| | | | - Khaled S Alshaibari
- Pediatric Department, Medical College, Najran University, Najran, Saudi Arabia.
| | - Mayasa Z Dammaj
- Pediatric Department, Medical College, Najran University, Najran, Saudi Arabia.
| | - Mater H Mahnashi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Najran University, Najran, Saudi Arabia.
| | - Safi Ullah Majid
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, 22060 Abbottabad, Pakistan.
| | - Muhammad Aamir Javed
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, 22060 Abbottabad, Pakistan.
| | - Sajjad Ahmad
- Department of Pharmacy, Faculty of Biological Sciences, University of Malakand, Dir (L), Chakdara 18000, KP, Pakistan.
| | - Umer Rashid
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, 22060 Abbottabad, Pakistan.
| | - Abdul Sadiq
- Department of Pharmacy, Faculty of Biological Sciences, University of Malakand, Dir (L), Chakdara 18000, KP, Pakistan.
| |
Collapse
|
12
|
Bunch KL, Abdelrahman AA, Caldwell RB, Caldwell RW. Novel Therapeutics for Diabetic Retinopathy and Diabetic Macular Edema: A Pathophysiologic Perspective. Front Physiol 2022; 13:831616. [PMID: 35250632 PMCID: PMC8894892 DOI: 10.3389/fphys.2022.831616] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 01/17/2022] [Indexed: 12/12/2022] Open
Abstract
Diabetic retinopathy (DR) and diabetic macular edema (DME) are retinal complications of diabetes that can lead to loss of vision and impaired quality of life. The current gold standard therapies for treatment of DR and DME focus on advanced disease, are invasive, expensive, and can trigger adverse side-effects, necessitating the development of more effective, affordable, and accessible therapies that can target early stage disease. The pathogenesis and pathophysiology of DR is complex and multifactorial, involving the interplay between the effects of hyperglycemia, hyperlipidemia, hypoxia, and production of reactive oxygen species (ROS) in the promotion of neurovascular dysfunction and immune cell polarization to a proinflammatory state. The pathophysiology of DR provides several therapeutic targets that have the potential to attenuate disease progression. Current novel DR and DME therapies under investigation include erythropoietin-derived peptides, inducers of antioxidant gene expression, activators of nitric oxide/cyclic GMP signaling pathways, and manipulation of arginase activity. This review aims to aid understanding of DR and DME pathophysiology and explore novel therapies that capitalize on our knowledge of these diabetic retinal complications.
Collapse
Affiliation(s)
- Katharine L. Bunch
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA, United States
- James and Jean Culver Vision Discovery Institute, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Ammar A. Abdelrahman
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA, United States
- James and Jean Culver Vision Discovery Institute, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Ruth B. Caldwell
- James and Jean Culver Vision Discovery Institute, Medical College of Georgia, Augusta University, Augusta, GA, United States
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, United States
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - R. William Caldwell
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA, United States
- James and Jean Culver Vision Discovery Institute, Medical College of Georgia, Augusta University, Augusta, GA, United States
- *Correspondence: R. William Caldwell,
| |
Collapse
|
13
|
Aljundi W, Suffo S, Munteanu C, Langenbucher A, Seitz B, Abdin AD. Intravitreal Injection for Diabetic Macular Edema as Adjunctive Therapy for Proliferative Diabetic Retinopathy: A Retrospective Study. Clin Ophthalmol 2022; 16:135-143. [PMID: 35058686 PMCID: PMC8765541 DOI: 10.2147/opth.s346065] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 12/20/2021] [Indexed: 12/20/2022] Open
Abstract
Purpose To detect the impact of intravitreal injection (IVI) therapy with sole anti-vascular-endothelial-growth-factor (VEGF) or combined with steroids treating diabetic macular edema (DME) on activity of proliferative diabetic retinopathy (PDR) based on total number of panretinal photocoagulation (PRP) spots needed within 2 years. Patients and Methods A retrospective study of 102 eyes with primary-onset PDR and minimum follow-up of 24 months divided into 2 groups: Group 1 (G1) 40 eyes received only PRP and did not develop DME. Group 2 (G2) 62 eyes received additional IVI-therapy due to concomitant DME, with anti-VEGF only (subgroup 2a, G2a) or in combination with steroids (subgroup 2b, G2b). Main outcomes: central macular thickness (CMT, µm), best-corrected visual acuity (BCVA, LogMAR) and total number of needed PRP spots and IVI after 24 months. Results CMT was significantly higher in G2 compared to G1, initially (p < 0.01) and after 24 months (p = 0.01). CMT was significantly higher in G2b compared to G2a, both initially (p = 0.01) and after 24 months (p < 0.01). BCVA was significantly higher in G1 compared to G2, initially and after 24 months (p = 0.01). BCVA was not significantly different between the two subgroups, initially (p = 0.54) and after 24 months (p = 0.29). The total number of PRP spots was significantly higher in G1 compared to G2 (p < 0.01) but not significantly different between the subgroups (p = 0.8). Conclusion Regardless of severity of concomitant DME, IVI with sole anti-VEGF or combined with steroids reduced the total number of PRP spots needed within 2 years significantly indicating a favorable effect on activity of PDR.
Collapse
Affiliation(s)
- Wissam Aljundi
- Department of Ophthalmology, Saarland University Medical Center UKS, Homburg, Saar, Germany
- Correspondence: Wissam Aljundi, Tel +4968411622387, Fax +4968411622400, Email
| | - Shady Suffo
- Department of Ophthalmology, Saarland University Medical Center UKS, Homburg, Saar, Germany
| | - Cristian Munteanu
- Department of Ophthalmology, Saarland University Medical Center UKS, Homburg, Saar, Germany
| | - Achim Langenbucher
- Institute of Experimental Ophthalmology, Saarland University, Homburg, Saar, Germany
| | - Berthold Seitz
- Department of Ophthalmology, Saarland University Medical Center UKS, Homburg, Saar, Germany
| | - Alaa Din Abdin
- Department of Ophthalmology, Saarland University Medical Center UKS, Homburg, Saar, Germany
| |
Collapse
|
14
|
Tiwari R, Sethiya NK, Gulbake AS, Mehra NK, Murty USN, Gulbake A. A review on albumin as a biomaterial for ocular drug delivery. Int J Biol Macromol 2021; 191:591-599. [PMID: 34562538 DOI: 10.1016/j.ijbiomac.2021.09.112] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 09/16/2021] [Accepted: 09/17/2021] [Indexed: 02/06/2023]
Abstract
Development of ocular drug delivery system is one of the most technically challenging tasks, when compared with other routes of drug delivery. Eye (an intricate organ) is highly sophisticated and sensitive organ due to presence of various structurally differed anatomical layers, which many times limits the drug delivery approaches. Despite several limitations, many advancements have been made as evidence from various recent studies involving improvement of both residence time and permeation of the drug at the ocular region. In the last few decades, albumin(s) based ophthalmic products have been gained most attention to solve the major challenges associated with conventional ocular drug delivery systems. Interestingly, an albumin-based micro, nano, conjugates, and genetically fused target specific to ligand(s) formulation being exploited through many studies for successful ocular delivery of bioactives (mostly repurposed drugs). Past and current studies suggested that albumin(s) based ocular drug delivery system is multifunctional in nature and capable of extending both drug residence time and sustaining the release of drugs to deliver desired pharmacological outcomes. Despite wide applications, still complete progress made in albumin based ocular drug delivery is limited in literature and missing in market. So, herein we presented an overview to explore the key concepts of albumin-based nanocarrier(s) including strategies involved in the treatment of ocular disease, that have yet to be explored.
Collapse
Affiliation(s)
- Rahul Tiwari
- Faculty of Pharmacy, DIT University, Mussoorie Diversion Road, Dehradun, Uttarakhand 248009, India
| | - Neeraj K Sethiya
- Faculty of Pharmacy, DIT University, Mussoorie Diversion Road, Dehradun, Uttarakhand 248009, India
| | - Anamika Sahu Gulbake
- Faculty of Pharmacy, DIT University, Mussoorie Diversion Road, Dehradun, Uttarakhand 248009, India
| | - Neelesh Kumar Mehra
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research (NIPER), Hyderabad, Telangana 500037, India
| | - U S N Murty
- National Institute of Pharmaceutical Education & Research (NIPER), Guwahati, Assam 781101, India
| | - Arvind Gulbake
- Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research (NIPER), Guwahati, Assam 781101, India.
| |
Collapse
|
15
|
Seid K, Tesfaye T, Belay A, Mohammed H. Determinants of diabetic retinopathy in Tikur Anbessa Hospital, Ethiopia: a case-control study. Clin Diabetes Endocrinol 2021; 7:12. [PMID: 34325741 PMCID: PMC8323205 DOI: 10.1186/s40842-021-00128-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 06/16/2021] [Indexed: 11/10/2022] Open
Abstract
Background Diabetic retinopathy is the most frequent complication of Diabetes Mellitus and remains the leading cause of preventable blindness. However, there are limited studies on the determinants of diabetic retinopathy in the study area as well in Ethiopia. Hence, this study aimed to assess the determinants of diabetic retinopathy among diabetic patients at Tikur Anbessa Hospital. Methods An institution-based unmatched case–control study design was conducted at Tikur Anbessa Hospital from May 11 to June 26, 2020. Diabetic patients who developed retinopathy within 2 years were cases in the study. Patients who were free of retinopathy were controls in this study. Data were collected using a pretested interviewer-administered questionnaire, Topcon retinal examination, and a record review. The collected data were entered into Epi Data version 3.1 software, and analyzed using SPSS version 25. Binary logistic regression analysis was used to assess the determinants of diabetic retinopathy. Results A total of 282 patients (142 cases and 140 controls) were included in the study. The mean age (± Standard deviation) for the cases and the controls were 50.6 (SD: ± 18.7) and 44.9 (SD: ± 17.65) respectively. Patients who had a glucometer at home (AOR = 0.048; 95% CI: 0.005–0.492), exercise adherence (AOR = 0.075; 95% CI: 0.007–0.84), diabetes duration < 5 years (AOR = 0.005; 95% CI: 0.00–0.10) and 5–10 years (AOR = 0.041; 95% CI: 0.003–0.57), health information on diabetic complications (AOR = 0.002; 95% CI: 0.00–0.042) and appointments every month (AOR = 0.004; 95% CI: 0.00–0.073) and every 3 months (AOR = 0.022; 95% CI: 0.002–0.23) were less likely to develop diabetic retinopathy. Participants who had poor glycemic control (AOR = 19.9; 95% CI: 2.34–168.69), systolic hypertension (AOR = 23.4; 95% CI: 2.56–215.36) and nephropathy (AOR = 17.85; 95% CI: 2.01–158.1), had a higher risk of developing diabetic retinopathy. Conclusions Patients who had a glucometer at home, exercise adherence, diabetes duration < 10 years, health information on diabetic complications, and frequent follow-up had a preventive role. However, poor glycemic control, systolic hypertension, and nephropathy increase the risk of diabetic retinopathy. A concerted effort should be made to improve the health status of patients with Diabetes Mellitus, with particular emphasis on lifestyle modification practices to prevent diabetic retinopathy.
Collapse
Affiliation(s)
- Kalid Seid
- Department of Nursing, College of Health Science, Mizan-Tepi University, P.O. Box: 260, Mizan, SNNPR, Ethiopia.
| | - Temamen Tesfaye
- School of Nursing, Faculty of Health Science, Institute of Health, Jimma University, P.O. Box: 378, Jimma, Ethiopia
| | - Admasu Belay
- School of Nursing, Faculty of Health Science, Institute of Health, Jimma University, P.O. Box: 378, Jimma, Ethiopia
| | - Hayat Mohammed
- Department of Medical Laboratory Science, College of Health Science, Mizan-Tepi University, P.O. Box: 260, Mizan, SNNPR, Ethiopia
| |
Collapse
|
16
|
Ajlan RS, Barnard LR, Mainster MA. NONCONFOCAL ULTRA-WIDEFIELD SCANNING LASER OPHTHALMOSCOPY: Polarization Artifacts and Diabetic Macular Edema. Retina 2021; 40:1374-1378. [PMID: 31181039 PMCID: PMC7302328 DOI: 10.1097/iae.0000000000002588] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Nonconfocal ultra-widefield scanning laser ophthalmoscopes produce foveal polarization artifacts that require normal Henle layer structure and are suppressed by center-involving diabetic macular edema. Polarization sensitivity is insufficient for the artifacts to be reliable clinical screening biomarkers. Purpose: Bowtie-shaped polarization artifacts are often present in nonconfocal ultra-widefield scanning laser ophthalmoscope (SLO) images. We studied these artifacts and evaluated their potential value as clinical biomarkers in screening for center-involving diabetic macular edema (DME). Methods: We performed a retrospective, observational, cohort study on 78 diabetic adult patients (143 eyes) who had spectral domain optical coherence tomography and nonmydriatic nonconfocal ultra-widefield SLO testing on the same day. Scanning laser ophthalmoscope green-only (532 nm), red-only (635 nm), and composite pseudocolor (532 plus 635 nm) images were examined for the presence of a foveal bowtie polarization artifact. Results: Polarization artifacts were absent in all but one eye with center-involving DME (32 of 33 eyes). Polarization artifacts were also absent in many eyes without center-involving DME (49 of 110 eyes in pseudocolor images). As clinical biomarkers of center-involving DME, artifact absence has high specificity (99, 100, and 98% for green, red, and pseudocolor images, respectively) but poor sensitivity (49, 31, and 40% for green, red, and pseudocolor images, respectively). Conclusion: Foveal bowtie-shaped polarization artifacts occur routinely in nonconfocal ultra-widefield SLO images. Their presence indicates preserved foveal Henle fiber layer structure. Contemporary nonconfocal ultra-widefield SLO images lack the sensitivity for their bowtie artifacts to serve as reliable biomarkers in screening for center-involving DME.
Collapse
Affiliation(s)
- Radwan S Ajlan
- Department of Ophthalmology, University of Kansas School of Medicine, Prairie Village, Kansas
| | | | | |
Collapse
|
17
|
Exosomal circEhmt1 Released from Hypoxia-Pretreated Pericytes Regulates High Glucose-Induced Microvascular Dysfunction via the NFIA/NLRP3 Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:8833098. [PMID: 33815662 PMCID: PMC7994074 DOI: 10.1155/2021/8833098] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 12/22/2020] [Accepted: 01/27/2021] [Indexed: 12/18/2022]
Abstract
Diabetic retinopathy (DR) is a frequently occurring microvascular complication induced by long-term hyperglycemia. Pericyte-endothelial cell crosstalk is critical for maintaining vascular homeostasis and remodeling; however, the molecular mechanism underlying that crosstalk remains unknown. In this study, we explored the crosstalk that occurs between endothelial cells and pericytes in response to diabetic retinopathy. Pericytes were stimulated with cobalt chloride (CoCl2) to activate the HIF pathway. Hypoxia-stimulated pericytes were cocultured with high glucose- (HG-) induced endotheliocytes. Cell viability was determined using the CCK-8 assay. Western blot studies were performed to detect the expression of proteins associated with apoptosis, hypoxia, and inflammation. ELISA assays were conducted to analyze the release of IL-1β and IL-18. We performed a circRNA microarray analysis of exosomal RNAs expressed under normoxic or hypoxic conditions. A FISH assay was performed to identify the location of circEhmt1 in pericytes. Chromatin immunoprecipitation (CHIP) was used to identify the specific DNA-binding site on the NFIA-NLRP3 complex. We found that pericyte survival was negatively correlated with the angiogenesis activity of endotheliocytes. We also found that hypoxia upregulated circEhmt1 expression in pericytes, and circEhmt1 could be transferred from pericytes to endotheliocytes via exosomes. Moreover, circEhmt1 overexpression protected endotheliocytes against HG-induced injury in vitro. Mechanistically, circEhmt1 was highly expressed in the nucleus of pericytes and could upregulate the levels of NFIA (a transcription factor) to suppress NLRP3-mediated inflammasome formation. Our study revealed a critical role for circEhmt1-mediated NFIA/NLRP3 signaling in retinal microvascular dysfunction and suggests that signaling pathway as a target for treating DR.
Collapse
|
18
|
Hashmi S, Lopez J, Chiu B, Sarrafpour S, Gupta A, Young J. Fractal Dimension Analysis of OCTA Images of Diabetic Retinopathy Using Circular Mass-Radius Method. Ophthalmic Surg Lasers Imaging Retina 2021; 52:116-122. [DOI: 10.3928/23258160-20210302-01] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
19
|
Taşlı NG, Icel E, Karakurt Y, Ucak T, Ugurlu A, Yilmaz H, Akbas EM. The findings of corneal specular microscopy in patients with type-2 diabetes mellitus. BMC Ophthalmol 2020; 20:214. [PMID: 32493325 PMCID: PMC7271396 DOI: 10.1186/s12886-020-01488-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 05/27/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND We aimed to compare the morphological characteristics of corneal endothelial cells in type 2 diabetic patients and age-matched healthy subjects by specular microscopy. We also aimed to determine the association of corneal morphological features with the general characteristics and laboratory data of diabetic patients, including disease duration, haemoglobin A1c (HbA1c) levels and urine albumin creatinine ratio. METHODS A total of 195 diabetic patients and 100 healthy controls were enrolled in the study. All participants underwent a complete ophthalmological examination. Corneal endothelial measurements were performed using a noncontact specular microscopy. Laboratory data including serum fasting glucose, haemoglobin A1c levels, creatinine levels, and the urinary albumin-to-creatinine ratio were recorded. Diabetic patients were further subdivided into 3 groups according to the presence and stage of diabetic retinopathy. Specular microscopy findings and central corneal thickness of all patients were compared. RESULTS The ECD and hexagonal cell ratio were significantly lower, while the average cell size, CV%, and central corneal thickness were determined to be significantly higher in diabetic patients than in healthy controls (p = 0.001). With the presence and advancement of diabetic retinopathy, the ECD and hexagonal cell ratio decreased, while the average cell size, CV%, and central corneal thickness increased. When correlation analysis was performed between corneal morphological features and laboratory data of diabetic patients, ECD showed a significant negative correlation with diabetes duration (p = 0.028). HbA1c levels, urinary albumin-creatinine ratio (p = 0.041), average cell size and CV showed a positive correlation with these parameters. CONCLUSION In conclusion, keratopathy is an important complication of type 2 diabetes. With an increase in the stage of diabetic retinopathy, alterations in corneal findings also increased. In that respect, we can suggest that keratopathy should be evaluated more cautiously in diabetic patients.
Collapse
Affiliation(s)
- Nurdan Gamze Taşlı
- Erzincan Binali Yildirim University Faculty of Medicine Department of Ophthalmology, 24100 Erzincan, Turkey
| | - Erel Icel
- Erzincan Binali Yildirim University Faculty of Medicine Department of Ophthalmology, 24100 Erzincan, Turkey
| | - Yücel Karakurt
- Erzincan Binali Yildirim University Faculty of Medicine Department of Ophthalmology, 24100 Erzincan, Turkey
| | - Turgay Ucak
- Erzincan Binali Yildirim University Faculty of Medicine Department of Ophthalmology, 24100 Erzincan, Turkey
| | - Adem Ugurlu
- Erzincan Binali Yildirim University Faculty of Medicine Department of Ophthalmology, 24100 Erzincan, Turkey
| | - Hayati Yilmaz
- Erzincan Binali Yildirim University Faculty of Medicine Department of Ophthalmology, 24100 Erzincan, Turkey
| | - Emin Murat Akbas
- Erzincan Binali Yildirim University Faculty of Medicine Department of Ophthalmology, 24100 Erzincan, Turkey
| |
Collapse
|
20
|
Eyeing the Extracellular Matrix in Vascular Development and Microvascular Diseases and Bridging the Divide between Vascular Mechanics and Function. Int J Mol Sci 2020; 21:ijms21103487. [PMID: 32429045 PMCID: PMC7278940 DOI: 10.3390/ijms21103487] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 05/12/2020] [Accepted: 05/13/2020] [Indexed: 12/20/2022] Open
Abstract
The extracellular matrix (ECM) is critical in all aspects of vascular development and health: supporting cell anchorage, providing structure, organization and mechanical stability, and serving as a sink for growth factors and sustained survival signals. Abnormal changes in ECM protein expression, organization, and/or properties, and the ensuing changes in vascular compliance affect vasodilator responses, microvascular pressure transmission, and collateral perfusion. The changes in microvascular compliance are independent factors initiating, driving, and/or exacerbating a plethora of microvascular diseases of the eye including diabetic retinopathy (DR) and vitreoretinopathy, retinopathy of prematurity (ROP), wet age-related macular degeneration (AMD), and neovascular glaucoma. Congruently, one of the major challenges with most vascular regenerative therapies utilizing localized growth factor, endothelial progenitor, or genetically engineered cell delivery, is the regeneration of blood vessels with physiological compliance properties. Interestingly, vascular cells sense physical forces, including the stiffness of their ECM, through mechanosensitive integrins, their associated proteins and the actomyosin cytoskeleton, which generates biochemical signals that culminate in a rapid expression of matricellular proteins such as cellular communication network 1 (CCN1) and CCN2 (aka connective tissue growth factor or CTGF). Loss or gain of function of these proteins alters genetic programs of cell growth, ECM biosynthesis, and intercellular signaling, that culminate in changes in cell behavior, polarization, and barrier function. In particular, the function of the matricellular protein CCN2/CTGF is critical during retinal vessel development and regeneration wherein new blood vessels form and invest a preformed avascular neural retina following putative gradients of matrix stiffness. These observations underscore the need for further in-depth characterization of the ECM-derived cues that dictate structural and functional properties of the microvasculature, along with the development of new therapeutic strategies addressing the ECM-dependent regulation of pathophysiological stiffening of blood vessels in ischemic retinopathies.
Collapse
|
21
|
Zhou M, Li G, Zhu L, Zhou H, Lu L. Arctiin attenuates high glucose-induced human retinal capillary endothelial cell proliferation by regulating ROCK1/PTEN/PI3K/Akt/VEGF pathway in vitro. J Cell Mol Med 2020; 24:5695-5706. [PMID: 32297701 PMCID: PMC7214144 DOI: 10.1111/jcmm.15232] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 03/01/2020] [Accepted: 03/06/2020] [Indexed: 12/11/2022] Open
Abstract
Diabetic retinopathy (DR) is one of the most prominent microvascular complications of diabetes, which remains the leading cause of legal blindness in the world. Arctiin, a bioactive compound from Arctium lappa L., has been reported to have antidiabetic activity. In this study, we investigated the effect of arctiin on a human retinal capillary endothelial cell (HRCEC) line and how arctiin inhibits cell proliferation in high glucose (HG)-induced HRCECs. Results showed that arctiin decreased HG-induced HRCECs proliferation in a dose-dependent manner by inducing cell cycle arrest at the G0/G1 phase. Tube formation assay and immunofluorescence staining indicated that arctiin abrogated tube formation induced by HG-induced HRCECs in a dose-dependent manner via down-regulation of VEGF expression. Mechanistic study indicated that perturbation of the ROCK1/PTEN/PI3K/Akt signalling pathway plays a vital role in the arctiin-mediated anti-proliferative effect. Furthermore, pre-incubation of HRCECs with Y-27632 attenuated arctiin-induced cell cycle arrest, cell proliferation and tube formation inhibition. Y-27632 also reversed the activation of PTEN, the inactivation/dephosphorylation of PI3K/Akt and down-regulation of VEGF. Taken together, the results demonstrated that arctiin inhibits the proliferation of HG-induced HRCECs through the activation of ROCK1 and PTEN and inactivation of PI3K and Akt, resulting in down-regulation of VEGF, which inhibits endothelial cell proliferation.
Collapse
Affiliation(s)
- Min Zhou
- Key Laboratory of Biorheological Science and TechnologyMinistry of EducationCollege of BioengineeringChongqing UniversityChongqingChina
- Department of PharmacyXinqiao HospitalArmy Medical UniversityChongqingChina
| | - Guobing Li
- Department of PharmacyXinqiao HospitalArmy Medical UniversityChongqingChina
| | - Liancai Zhu
- Key Laboratory of Biorheological Science and TechnologyMinistry of EducationCollege of BioengineeringChongqing UniversityChongqingChina
| | - Huyue Zhou
- Department of PharmacyXinqiao HospitalArmy Medical UniversityChongqingChina
| | - Laichun Lu
- Key Laboratory of Biorheological Science and TechnologyMinistry of EducationCollege of BioengineeringChongqing UniversityChongqingChina
| |
Collapse
|
22
|
Wang W, Zhao H, Chen B. DJ-1 protects retinal pericytes against high glucose-induced oxidative stress through the Nrf2 signaling pathway. Sci Rep 2020; 10:2477. [PMID: 32051471 PMCID: PMC7016111 DOI: 10.1038/s41598-020-59408-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 01/29/2020] [Indexed: 11/08/2022] Open
Abstract
Oxidative stress has been associated with the etipathogenesis of Diabetic retinopathy (DR). Studies have shown that DJ-1 plays an important role in regulating the reactive oxygen species (ROS) production and resistance to oxidative stress-induced apoptosis. This study aimed to investigate whether DJ-1 upregulates oxidative stress and prevents damage to retinal capillary pericytes by increasing antioxidant capacity through the Nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway. Nrf2 is a redox-sensitive transcription factor that encode antioxidant enzymes and phase II metabolic enzymes, activation of Nrf2 functions is one of the critical defensive mechanisms against oxidative stress in many tissues. Our results showed after DJ-1 overexpression, apoptosis of rat retinal pericytes (RRPs) decreased, the ratio of B-cell lymphoma-2 (Bcl-2) to BCL2-Associated X Protein (BAX) increased, the production of ROS decreased, and the protein expression and activity of manganese superoxide dismutase (MnSOD, also called SOD2) and catalase (CAT) increased. DJ-1 overexpression activated Nrf2 expression, however, after Nrf2 silencing, apoptosis of RRPs increased, the ratio of Bcl-2 to BAX decreased, the production of ROS increased, the protein expression of MnSOD and CAT decreased, and the expression of heme oxygenase-1 (HO-1), NADP(H) quinone oxidoreductase (NQO1), glutamate-cysteine ligase catalytic subunit (GCLC) and modifier subunit (GCLM) decreased. These data suggest that enhancement of the Nrf2 pathway is a potential protective strategy for the treatment of DR. Therefore, DJ-1 may prevent high glucose-induced oxidative stress and RRPs apoptosis through the Nrf2 signaling pathway, thereby preventing the early onset and progression of DR.
Collapse
Affiliation(s)
- Wanpeng Wang
- Department of Ophthalmology, the second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China
- Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Han Zhao
- Department of Ophthalmology, the second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China
| | - Baihua Chen
- Department of Ophthalmology, the second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China.
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China.
| |
Collapse
|
23
|
Cabrera AP, Monickaraj F, Rangasamy S, Hobbs S, McGuire P, Das A. Do Genomic Factors Play a Role in Diabetic Retinopathy? J Clin Med 2020; 9:jcm9010216. [PMID: 31947513 PMCID: PMC7019561 DOI: 10.3390/jcm9010216] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 01/06/2020] [Accepted: 01/09/2020] [Indexed: 02/07/2023] Open
Abstract
Although there is strong clinical evidence that the control of blood glucose, blood pressure, and lipid level can prevent and slow down the progression of diabetic retinopathy (DR) as shown by landmark clinical trials, it has been shown that these factors only account for 10% of the risk for developing this disease. This suggests that other factors, such as genetics, may play a role in the development and progression of DR. Clinical evidence shows that some diabetics, despite the long duration of their diabetes (25 years or more) do not show any sign of DR or show minimal non-proliferative diabetic retinopathy (NPDR). Similarly, not all diabetics develop proliferative diabetic retinopathy (PDR). So far, linkage analysis, candidate gene studies, and genome-wide association studies (GWAS) have not produced any statistically significant results. We recently initiated a genomics study, the Diabetic Retinopathy Genetics (DRGen) Study, to examine the contribution of rare and common variants in the development of different phenotypes of DR, as well as their responsiveness to anti-VEGF treatment in diabetic macular edema (DME). Our preliminary findings reveal a novel set of genetic variants involved in the angiogenesis and inflammatory pathways that contribute to DR progression or protection. Further investigation of variants can help to develop novel biomarkers and lead to new therapeutic targets in DR.
Collapse
Affiliation(s)
- Andrea P. Cabrera
- Department of Surgery/Ophthalmology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA; (A.P.C.); (F.M.); (S.H.)
| | - Finny Monickaraj
- Department of Surgery/Ophthalmology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA; (A.P.C.); (F.M.); (S.H.)
- New Mexico VA Health Care System, Albuquerque, NM 87131, USA
| | | | - Sam Hobbs
- Department of Surgery/Ophthalmology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA; (A.P.C.); (F.M.); (S.H.)
| | - Paul McGuire
- Department of Cell Biology & Physiology, UNM, Albuquerque, NM 87131, USA;
| | - Arup Das
- Department of Surgery/Ophthalmology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA; (A.P.C.); (F.M.); (S.H.)
- New Mexico VA Health Care System, Albuquerque, NM 87131, USA
- Department of Cell Biology & Physiology, UNM, Albuquerque, NM 87131, USA;
- Correspondance:
| |
Collapse
|
24
|
Aires ID, Madeira MH, Boia R, Rodrigues-Neves AC, Martins JM, Ambrósio AF, Santiago AR. Intravitreal injection of adenosine A 2A receptor antagonist reduces neuroinflammation, vascular leakage and cell death in the retina of diabetic mice. Sci Rep 2019; 9:17207. [PMID: 31748653 PMCID: PMC6868354 DOI: 10.1038/s41598-019-53627-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 11/01/2019] [Indexed: 12/20/2022] Open
Abstract
Diabetic retinopathy is a major complication of diabetes mellitus and a leading cause of blindness. The pathogenesis of diabetic retinopathy is accompanied by chronic low-grade inflammation. Evidence shows that the blockade of adenosine A2A receptors (A2AR) affords protection to the retina through the control of microglia-mediated neuroinflammation. Herein, we investigated the therapeutic potential of an antagonist of A2AR in a model of diabetic retinopathy. Type 1 diabetes was induced in 4–5 months old C57BL/6 J mice with a single intraperitoneal injection streptozotocin. Animals were treated one month after the onset of diabetes. The A2AR antagonist was delivered by intravitreal injection once a week for 4 weeks. Microglia reactivity and inflammatory mediators were increased in the retinas of diabetic animals. The treatment with the A2AR antagonist was able to control microglial reactivity and halt neuroinflammation. Furthermore, the A2AR antagonist rescued retinal vascular leakage, attenuated alterations in retinal thickness, decreased retinal cell death and the loss of retinal ganglion cells induced by diabetes. These results demonstrate that intravitreal injection of the A2AR antagonist controls inflammation, affords protection against cell loss and reduces vascular leakage associated with diabetes, which could be envisaged as a therapeutic approach for the early complications of diabetes in the retina.
Collapse
Affiliation(s)
- Inês Dinis Aires
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548, Coimbra, Portugal.,CNC.IBILI Consortium, University of Coimbra, Coimbra, Portugal.,Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
| | - Maria Helena Madeira
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548, Coimbra, Portugal.,CNC.IBILI Consortium, University of Coimbra, Coimbra, Portugal.,Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
| | - Raquel Boia
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548, Coimbra, Portugal.,CNC.IBILI Consortium, University of Coimbra, Coimbra, Portugal.,Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
| | - Ana Catarina Rodrigues-Neves
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548, Coimbra, Portugal.,CNC.IBILI Consortium, University of Coimbra, Coimbra, Portugal.,Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
| | - Joana Margarida Martins
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548, Coimbra, Portugal.,CNC.IBILI Consortium, University of Coimbra, Coimbra, Portugal.,Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
| | - António Francisco Ambrósio
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548, Coimbra, Portugal.,CNC.IBILI Consortium, University of Coimbra, Coimbra, Portugal.,Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
| | - Ana Raquel Santiago
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548, Coimbra, Portugal. .,CNC.IBILI Consortium, University of Coimbra, Coimbra, Portugal. .,Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
25
|
Chen X, Yu X, Li X, Li L, Li F, Guo T, Guan C, Miao L, Cao G. MiR-126 targets IL-17A to enhance proliferation and inhibit apoptosis in high-glucose-induced human retinal endothelial cells. Biochem Cell Biol 2019; 98:277-283. [PMID: 31608649 DOI: 10.1139/bcb-2019-0174] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Diabetic retinopathy (DR) is a common complication of diabetes mellitus (DM), which results in vision loss. This study explored the role of miR-126 in high-glucose-induced human retinal endothelial cells (HRECs) and its underlying molecular mechanisms. The results showed that the expression levels of miR-126 and interleukin-17A (IL-17A) in high-glucose-induced HRECs were downregulated and upregulated, respectively. Functionally, overexpression of miR-126 promoted proliferation and suppressed apoptosis in high-glucose-induced HRECs, while IL-17A reversed the effects induced by miR-126. However, overexpression of IL-17A inhibited the proliferation and induced apoptosis, while knockdown of IL-17A accelerated the proliferation and repressed apoptosis. In addition, miR-126 repressed the expression of IL-17A, Bax, and caspase-3, while promoting the expression of survivin and phosphorylation of PI3K and AKT; restoration of IL-17A rescued these effects. Furthermore, IL-17A was identified as a target of miR-126. This indicates that miR-126 enhances proliferation and inhibits apoptosis in high-glucose-induced HRECs by activating the PI3K-AKT pathway, increasing survivin levels, and decreasing Bax and caspase-3 expression by targeting IL-17A, suggesting that miR-126 could be a novel target for preventing DR.
Collapse
Affiliation(s)
- Xiujuan Chen
- Department of Ophthalmology, Jiangsu Taizhou People's Hospital, Taizhou 225000, Jiangsu, China
| | - Xuequn Yu
- Department of Ophthalmology, Jiangsu Taizhou People's Hospital, Taizhou 225000, Jiangsu, China
| | - Xinxiang Li
- Department of Ophthalmology, Jiangsu Taizhou People's Hospital, Taizhou 225000, Jiangsu, China
| | - Li Li
- Department of Ophthalmology, Jiangsu Taizhou People's Hospital, Taizhou 225000, Jiangsu, China
| | - Fang Li
- Department of Ophthalmology, Jiangsu Taizhou People's Hospital, Taizhou 225000, Jiangsu, China
| | - Ting Guo
- Central Laboratory, Jiangsu Taizhou People's Hospital, Taizhou 225000, Jiangsu, China
| | - Cuihong Guan
- Department of Ophthalmology, Jiangsu Taizhou People's Hospital, Taizhou 225000, Jiangsu, China
| | - Liping Miao
- Department of Ophthalmology, Jiangsu Taizhou People's Hospital, Taizhou 225000, Jiangsu, China
| | - Guoping Cao
- Department of Ophthalmology, Jiangsu Taizhou People's Hospital, Taizhou 225000, Jiangsu, China
| |
Collapse
|
26
|
Okuwobi IP, Ji Z, Fan W, Yuan S, Bekalo L, Chen Q. Automated Quantification of Hyperreflective Foci in SD-OCT With Diabetic Retinopathy. IEEE J Biomed Health Inform 2019; 24:1125-1136. [PMID: 31329137 DOI: 10.1109/jbhi.2019.2929842] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The presence of hyperreflective foci (HFs) is related to retinal disease progression, and the quantity has proven to be a prognostic factor of visual and anatomical outcome in various retinal diseases. However, lack of efficient quantitative tools for evaluating the HFs has deprived ophthalmologist of assessing the volume of HFs. For this reason, we propose an automated quantification algorithm to segment and quantify HFs in spectral domain optical coherence tomography (SD-OCT). The proposed algorithm consists of two parallel processes namely: region of interest (ROI) generation and HFs estimation. To generate the ROI, we use morphological reconstruction to obtain the reconstructed image and histogram constructed for data distributions and clustering. In parallel, we estimate the HFs by extracting the extremal regions from the connected regions obtained from a component tree. Finally, both the ROI and the HFs estimation process are merged to obtain the segmented HFs. The proposed algorithm was tested on 40 3D SD-OCT volumes from 40 patients diagnosed with non-proliferative diabetic retinopathy (NPDR), proliferative diabetic retinopathy (PDR), and diabetic macular edema (DME). The average dice similarity coefficient (DSC) and correlation coefficient (r) are 69.70%, 0.99 for NPDR, 70.31%, 0.99 for PDR, and 71.30%, 0.99 for DME, respectively. The proposed algorithm can provide ophthalmologist with good HFs quantitative information, such as volume, size, and location of the HFs.
Collapse
|
27
|
Fushiming Capsule Attenuates Diabetic Rat Retina Damage via Antioxidation and Anti-Inflammation. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:5376439. [PMID: 31396288 PMCID: PMC6668547 DOI: 10.1155/2019/5376439] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Accepted: 03/21/2019] [Indexed: 01/14/2023]
Abstract
Aims Diabetic retinopathy (DR) remains one of the leading causes of acquired blindness. Fushiming capsule (FSM), a compound traditional Chinese medicine, is clinically used for DR treatment in China. The present study was to investigate the effect of FSM on retinal alterations, inflammatory response, and oxidative stress triggered by diabetes. Main Methods Diabetic rat model was induced by 6-week high-fat and high-sugar diet combined with 35 mg/kg streptozotocin (STZ). 30 days after successful establishment of diabetic rat model, full field electroretinography (ffERG) and optical coherence tomography (OCT) were performed to detect retinal pathological alterations. Then, FSM was administered to diabetic rats at different dosages for 42-day treatment and diabetic rats treated with Calcium dobesilate (CaD) capsule served as the positive group. Retinal function and structure were observed, and retinal vascular endothelial growth factor-α (VEGF-α), glial fibrillary acidic (GFAP), and vascular cell adhesion protein-1 (VCAM-1) expressions were measured both on mRNA and protein levels, and a series of blood metabolic indicators were also assessed. Key Findings In DR rats, FSM (1.0 g/kg and 0.5 g/kg) treatment significantly restored retinal function (a higher amplitude of b-wave in dark-adaptation 3.0 and OPs2 wave) and prevented the decrease of retinal thickness including inner nuclear layer (INL), outer nuclear layer (ONL), and entire retina. Additionally, FSM dramatically decreased VEGF-α, GFAP, and VCAM-1 expressions in retinal tissues. Moreover, FSM notably improved serum antioxidative enzymes glutathione peroxidase, superoxide dismutase, and catalase activities, whereas it reduced serum advanced glycation end products, methane dicarboxylic aldehyde, nitric oxide, and total cholesterol and triglycerides levels. Significance FSM could ameliorate diabetic rat retina damage possibly via inhibiting inflammation and improving antioxidation.
Collapse
|
28
|
Lynch G, Romo JSA, Linderman R, Krawitz BD, Mo S, Zakik A, Carroll J, Rosen RB, Chui TYP. Within-subject assessment of foveal avascular zone enlargement in different stages of diabetic retinopathy using en face OCT reflectance and OCT angiography. BIOMEDICAL OPTICS EXPRESS 2018; 9:5982-5996. [PMID: 31065407 PMCID: PMC6491024 DOI: 10.1364/boe.9.005982] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 10/27/2018] [Accepted: 10/28/2018] [Indexed: 05/04/2023]
Abstract
Enlargement of the foveal avascular zone (FAZ) due to progressive capillary nonperfusion is associated with visual deterioration in patients with diabetic retinopathy. The FAZ area has long been considered an important clinical marker of advancing retinopathy. However, a large body of literature shows that the FAZ area varies considerably in healthy eyes, resulting in substantial overlap between controls and diabetics, thus reducing its discriminatory value. In this study, within-subject FAZ area enlargement was obtained by the comparison of the structural FAZ area to the functional FAZ area using simultaneously-acquired, corresponding en face OCT reflectance and OCT angiography images. Our study suggests that en face OCT reflectance images provide useful anatomic baselines of structural FAZ morphology prior to the onset of disease. Measurements of within-subject FAZ area enlargement appear to be a more sensitive method for identifying the onset of diabetic retinopathy as compared to using OCT angiographic measurements of FAZ alone.
Collapse
Affiliation(s)
- Giselle Lynch
- Ophthalmology, New York Eye and Ear Infirmary of Mount Sinai, 310 East 14th St., Suite 500, S. Bldg., New York, NY, 10003, USA
- Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Pl, New York, NY, 10029, USA
| | - Jorge S. Andrade Romo
- Ophthalmology, New York Eye and Ear Infirmary of Mount Sinai, 310 East 14th St., Suite 500, S. Bldg., New York, NY, 10003, USA
| | - Rachel Linderman
- Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, 8701 Watertown Plank Rd., Milwaukee, WI, 53226, USA
| | - Brian D. Krawitz
- Ophthalmology, New York Eye and Ear Infirmary of Mount Sinai, 310 East 14th St., Suite 500, S. Bldg., New York, NY, 10003, USA
| | - Shelley Mo
- Ophthalmology, New York Eye and Ear Infirmary of Mount Sinai, 310 East 14th St., Suite 500, S. Bldg., New York, NY, 10003, USA
| | - Amir Zakik
- Ophthalmology, New York Eye and Ear Infirmary of Mount Sinai, 310 East 14th St., Suite 500, S. Bldg., New York, NY, 10003, USA
| | - Joseph Carroll
- Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, 8701 Watertown Plank Rd., Milwaukee, WI, 53226, USA
- Ophthalmology & Visual Sciences, Medical College of Wisconsin, 925 N. 87th St., Milwaukee, WI, 53226, USA
| | - Richard B. Rosen
- Ophthalmology, New York Eye and Ear Infirmary of Mount Sinai, 310 East 14th St., Suite 500, S. Bldg., New York, NY, 10003, USA
- Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Pl, New York, NY, 10029, USA
| | - Toco Y. P. Chui
- Ophthalmology, New York Eye and Ear Infirmary of Mount Sinai, 310 East 14th St., Suite 500, S. Bldg., New York, NY, 10003, USA
- Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Pl, New York, NY, 10029, USA
| |
Collapse
|
29
|
Diabetic retinopathy techniques in retinal images: A review. Artif Intell Med 2018; 97:168-188. [PMID: 30448367 DOI: 10.1016/j.artmed.2018.10.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 10/08/2018] [Accepted: 10/24/2018] [Indexed: 12/23/2022]
Abstract
The diabetic retinopathy is the main reason of vision loss in people. Medical experts recognize some clinical, geometrical and haemodynamic features of diabetic retinopathy. These features include the blood vessel area, exudates, microaneurysm, hemorrhages and neovascularization, etc. In Computer Aided Diagnosis (CAD) systems, these features are detected in fundus images using computer vision techniques. In this paper, we review the methods of low, middle and high level vision for automatic detection and classification of diabetic retinopathy.We give a detailed review of 79 algorithms for detecting different features of diabetic retinopathy during the last eight years.
Collapse
|
30
|
Yao J, Wang J, Yao Y, Wang K, Zhou Q, Tang Y. miR‑133b regulates proliferation and apoptosis in high‑glucose‑induced human retinal endothelial cells by targeting ras homolog family member A. Int J Mol Med 2018; 42:839-850. [PMID: 29786744 PMCID: PMC6034913 DOI: 10.3892/ijmm.2018.3694] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 05/03/2018] [Indexed: 12/26/2022] Open
Abstract
The aim of the present study was to investigate the role of microRNA (miR)‑133b in high‑glucose‑induced human retinal endothelial cells (hRECs), particularly regarding its potential targeting of ras homolog family member A (RhoA). To establish the high‑glucose‑induced diabetic retinopathy (DR) model, hRECs were cultured in high‑glucose medium for 1, 2 and 3 days. An Annexin allophycocyanin (APC)/7‑aminoactinomycin D (7‑AAD) staining assay was performed to measure the apoptosis of hRECs. Next, the cells were transfected with miR‑133b inhibitors or mimics, and the cell proliferation and apoptosis were measured by MTT and Annexin‑APC/7‑AAD staining assays, respectively. In addition, reverse transcription‑quantitative polymerase chain reaction (RT‑qPCR), western blotting and immunocytochemistry were used to detect the expression levels of RhoA, Rho‑associated protein kinase 1 (ROCK1), LIM domain kinase 1 (LIMK), myosin light chain (MLC) and phosphorylated (p)‑MLC. It was observed that high‑glucose or miR‑133b inhibitor treatment attenuated the apoptosis of hRECs, and upregulated the mRNA and protein expression levels of RhoA, ROCK1 and LIMK, as well as the p‑MLC protein level, in the hRECs. However, miR‑133b overexpression inhibited the cell proliferation, promoted apoptosis, and downregulated the mRNA and protein levels of RhoA, ROCK1 and LIMK, as well as p‑MLC protein, in high‑glucose‑induced hRECs. In conclusion, overexpression of miR‑133b inhibited the proliferation and promoted apoptosis in a DR cell model by downregulating RhoA expression.
Collapse
Affiliation(s)
- Jun Yao
- Department of Ophthalmology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430014, P.R. China
| | - Jihong Wang
- Department of Ophthalmology, Wuxi Affiliated Hospital of Nanjing University of Traditional Chinese Medicine, Wuxi, Jiangsu 214071, P.R. China
| | - Yong Yao
- Department of Ophthalmology, Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu 214023, P.R. China
| | - Kelei Wang
- Department of Ophthalmology, Wuxi Affiliated Hospital of Nanjing University of Traditional Chinese Medicine, Wuxi, Jiangsu 214071, P.R. China
| | - Qianqian Zhou
- Department of Ophthalmology, Wuxi Affiliated Hospital of Nanjing University of Traditional Chinese Medicine, Wuxi, Jiangsu 214071, P.R. China
| | - Ying Tang
- Department of Ophthalmology, Wuxi Affiliated Hospital of Nanjing University of Traditional Chinese Medicine, Wuxi, Jiangsu 214071, P.R. China
| |
Collapse
|
31
|
Simmons AB, Bretz CA, Wang H, Kunz E, Hajj K, Kennedy C, Yang Z, Suwanmanee T, Kafri T, Hartnett ME. Gene therapy knockdown of VEGFR2 in retinal endothelial cells to treat retinopathy. Angiogenesis 2018; 21:751-764. [PMID: 29730824 PMCID: PMC6203654 DOI: 10.1007/s10456-018-9618-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 04/26/2018] [Indexed: 12/14/2022]
Abstract
Inhibition of vascular endothelial growth factor (VEGF) in retinopathy of prematurity (ROP) raises concerns for premature infants because VEGF is essential for retinovascular development as well as neuronal and glial health. This study tested the hypothesis that endothelial cell-specific knockdown of VEGF receptor 2 (VEGFR2), or downstream STAT3, would inhibit VEGF-induced retinopathy without delaying physiologic retinal vascular development. We developed an endothelial cell-specific lentiviral vector that delivered shRNAs to VEGFR2 or STAT3 and a green fluorescent protein reporter under control of the VE-cadherin promoter. The specificity and efficacy of the lentiviral vector-driven shRNAs were validated in vitro and in vivo. In the rat oxygen-induced retinopathy model highly representative of human ROP, the effects of endothelial cell knockdown of VEGFR2 or STAT3 were determined on intravitreal neovascularization (IVNV), physiologic retinal vascular development [assessed as area of peripheral avascular/total retina (AVA)], retinal structure, and retinal function. Targeted knockdown of VEGFR2 or STAT3 specifically in retinal endothelial cells by subretinal injection of lentiviral vectors into postnatal day 8 rat pup eyes efficiently inhibited IVNV, and knockdown of VEGFR2 also reduced AVA and increased retinal thickness without altering retinal function. Taken together, our results support specific knockdown of VEGFR2 in retinal endothelial cells as a novel therapeutic method to treat retinopathy.
Collapse
Affiliation(s)
- Aaron B Simmons
- John A. Moran Eye Center, University of Utah, 65 N. Mario Capecchi Drive, Salt Lake City, UT, 84132, USA
| | - Colin A Bretz
- John A. Moran Eye Center, University of Utah, 65 N. Mario Capecchi Drive, Salt Lake City, UT, 84132, USA
| | - Haibo Wang
- John A. Moran Eye Center, University of Utah, 65 N. Mario Capecchi Drive, Salt Lake City, UT, 84132, USA
| | - Eric Kunz
- John A. Moran Eye Center, University of Utah, 65 N. Mario Capecchi Drive, Salt Lake City, UT, 84132, USA
| | - Kassem Hajj
- John A. Moran Eye Center, University of Utah, 65 N. Mario Capecchi Drive, Salt Lake City, UT, 84132, USA
| | - Carson Kennedy
- John A. Moran Eye Center, University of Utah, 65 N. Mario Capecchi Drive, Salt Lake City, UT, 84132, USA
| | - Zhihong Yang
- John A. Moran Eye Center, University of Utah, 65 N. Mario Capecchi Drive, Salt Lake City, UT, 84132, USA
| | - Thipparat Suwanmanee
- Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Tal Kafri
- Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - M Elizabeth Hartnett
- John A. Moran Eye Center, University of Utah, 65 N. Mario Capecchi Drive, Salt Lake City, UT, 84132, USA.
| |
Collapse
|