1
|
Zapata-Bravo E, Douros A, Yun Yu OH, Filion KB. Comparative risk of infection of medications used for type 2 diabetes. Expert Opin Drug Saf 2024; 23:1079-1091. [PMID: 39258857 DOI: 10.1080/14740338.2024.2401024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 09/02/2024] [Indexed: 09/12/2024]
Abstract
INTRODUCTION Glucose-lowering drugs pose a potential infection risk among individuals with type 2 diabetes. The U.S. Food and Drug Administration has issued safety warnings regarding increased risks of urinary tract infections (UTIs) and genital infections with sodium-glucose cotransporter 2 (SGLT2) inhibitors. However, the infection risk associated with other glucose-lowering drugs remains unclear. We conducted a PubMed database search to review the infection risk of glucose-lowering drugs, focusing on meta-analysis of randomized controlled trials. AREAS COVERED We described the infection risks associated with SGLT2 inhibitors, dipeptidyl peptidase-4 (DPP-4) inhibitors, glucose-like peptide-1 receptor agonists, metformin, and thiazolidinediones, covering infections of the genitourinary, respiratory, and gastrointestinal systems, including skin and soft tissue infections (SSTIs). EXPERT OPINION SGLT2 inhibitors are associated with a higher genital infection risk, while their UTI risk remains inconclusive. DPP-4 inhibitors could be a treatment option for those intolerant to SGLT2 inhibitors, given their lower genital infection risk compared to placebo. Uncertainty persists regarding the risks of respiratory infections, gastroenteritis, and SSTIs with SGLT2 inhibitors. Limited evidence is available regarding the impact of DPP-4 inhibitors on respiratory infections. Additional research is needed to determine the comparative infection risk of other glucose-lowering drugs.
Collapse
Affiliation(s)
- Estefania Zapata-Bravo
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, QC, Canada
- Center for Clinical Epidemiology, Lady Davis Institute, Jewish General Hospital, Montreal, QC, Canada
| | - Antonios Douros
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, QC, Canada
- Institute of Clinical Pharmacology and Toxicology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Oriana Hoi Yun Yu
- Center for Clinical Epidemiology, Lady Davis Institute, Jewish General Hospital, Montreal, QC, Canada
- Division of Endocrinology and Metabolism, Jewish General Hospital/McGill University, Montreal, Quebec, Canada
| | - Kristian B Filion
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, QC, Canada
- Center for Clinical Epidemiology, Lady Davis Institute, Jewish General Hospital, Montreal, QC, Canada
- Department of Medicine, McGill University, Montreal, QC, Canada
| |
Collapse
|
2
|
Kour N, Bhagat G, Singh S, Bhatti SS, Arora S, Singh B, Bhatia A. Polyphenols mediated attenuation of diabetes associated cardiovascular complications: A comprehensive review. J Diabetes Metab Disord 2024; 23:73-99. [PMID: 38932901 PMCID: PMC11196529 DOI: 10.1007/s40200-023-01326-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 09/29/2023] [Indexed: 06/28/2024]
Abstract
Background Diabetes mellitus is a common chronic metabolic disorder that is characterized by increased levels of glucose for prolonged periods of time. Incessant hyperglycemia leads to diabetic complications such as retinopathy, nephropathy, and neuropathy, and cardiovascular complications such as ischemic heart disease, peripheral vascular disease, diabetic cardiomyopathy, stroke, etc. There are many studies that suggest that various polyphenols affect glucose homeostasis and can help to attenuate the complications associated with diabetes. Objective This review focuses on the possible role of various dietary polyphenols in palliating diabetes-induced cardiovascular complications. This review also aims to give an overview of the interrelationship among ROS production (due to diabetes), inflammation, glycoxidative stress, and cardiovascular complications as well as the anti-hyperglycemic effects of dietary polyphenols. Methods Various scientific databases including Scopus, Web of Science, Google Scholar, PubMed, Science Direct, Springer Link, and Wiley Online Library were used for searching articles that complied with the inclusion and exclusion criteria. Results This review lists several polyphenols based on various pre-clinical and clinical studies that have anti-hyperglycemic potential as well as a protective function against cardiovascular complications. Conclusion Several pre-clinical and clinical studies suggest that various dietary polyphenols can be a promising intervention for the attenuation of diabetes-associated cardiovascular complications.
Collapse
Affiliation(s)
- Navdeep Kour
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, 143005 Punjab India
| | - Gulshan Bhagat
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, 143005 Punjab India
| | - Simran Singh
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, 143005 Punjab India
| | - Sandip Singh Bhatti
- Department of Chemistry, Lovely Professional University, Phagwara, 144001 India
| | - Saroj Arora
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, 143005 Punjab India
| | - Balbir Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, 143005 Punjab India
| | - Astha Bhatia
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, 143005 Punjab India
| |
Collapse
|
3
|
Wang M, Li M, Wang L, Wang F, Cao X, Li S, Zheng Z. Association of SGLT2i vs DPP4i With Pneumonia, COVID-19, and Other Adverse Respiratory Events in Patients With Type 2 Diabetes Mellitus: A Systematic Review and Meta-analysis. Can J Diabetes 2024:S1499-2671(24)00088-1. [PMID: 38636589 DOI: 10.1016/j.jcjd.2024.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 04/02/2024] [Accepted: 04/06/2024] [Indexed: 04/20/2024]
Abstract
OBJECTIVE Our aim in this study was to systematically assess the association of sodium-glucose cotransporter-2 inhibitors (SGLT2i) vs dipeptidyl peptidase-4 inhibitors (DPP4i) with pneumonia, COVID-19, and adverse respiratory events in patients with type 2 diabetes mellitus (DM). METHODS PubMed, Embase, and Cochrane Library databases were retrieved to include studies on DM patients receiving SGLT2i (exposure group) or DPP4i (control group). Stata version 15.0 statistical software was used for the meta-analysis. RESULTS Ten studies were included, all 10 of which were used for the qualitative review and 7 for the meta-analysis. According to the meta-analysis, patients receiving SGLT2i had a lower incidence of pneumonia (odds ratio [OR] 0.62, 95% confidence interval [CI] 0.51 to 0.74) and pneumonia risk (OR 0.63, 95% CI 0.60 to 0.68, p=0.000) compared with those receiving DPP4i. The same situation was seen for mortality for pneumonia (OR 0.49, 95% CI 0.39 to 0.60) and pneumonia mortality risk (OR 0.47, 95% CI 0.42 to 0.51). There was lower mortality due to COVID-19 (OR 0.31, 95% CI 0.28 to 0.34) and a lower hospitalization rate (OR 0.61, 95% CI 0.56 to 0.68, p=0.000) and incidence of mechanical ventilation (OR 0.69, 95% CI 0.58 to 0.83, p=0.000) due to COVID-19 in patients with type 2 DM receiving SGLT2i. Qualitative analysis results show that SGLT2i was associated with a lower incidence of COVID-19, lower risk of obstructive airway disease events, and lower hospitalization rate of health-care-associated pneumonia than DPP4i. CONCLUSION In patients with type 2 DM, SGLT2i are associated with a lower risk of pneumonia, COVID-19, and mortality than DPP4i.
Collapse
Affiliation(s)
- Mengna Wang
- Guizhou Hospital of the First Affiliated Hospital, Sun Yat-sen University, Guiyang, Guizhou, China; Department of Pharmacy, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Ming Li
- Department of Pharmacy, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Libin Wang
- Department of Pharmacy, Guizhou Provincial People's Hospital, Guiyang, Guizhou, China
| | - Fang Wang
- Guizhou Hospital of the First Affiliated Hospital, Sun Yat-sen University, Guiyang, Guizhou, China
| | - Xulin Cao
- Department of Pharmacy, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Shengyou Li
- Guizhou Hospital of the First Affiliated Hospital, Sun Yat-sen University, Guiyang, Guizhou, China
| | - Zhichang Zheng
- Department of Pharmacy, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China.
| |
Collapse
|
4
|
Kim KJ, Park JB, Lee SP, Kim HK, Kim YJ. Thalidomide and a Dipeptidyl Peptidase 4 Inhibitor in a Rat Model of Experimental Autoimmune Myocarditis. Korean Circ J 2023; 53:795-810. [PMID: 37880871 PMCID: PMC10751183 DOI: 10.4070/kcj.2023.0042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 06/30/2023] [Accepted: 07/11/2023] [Indexed: 10/27/2023] Open
Abstract
BACKGROUND AND OBJECTIVES Myocarditis is a potentially fatal disease, but curative treatments have not yet been established. Myocardial inflammation is an important pathogenesis of this disease, and immunosuppressants such as methylprednisolone and immunoglobulin have been used for treatment; however, the effectiveness needs to be improved. Thalidomide and dipeptidyl peptidase (DPP) 4 inhibitors were recently investigated regarding their immunomodulatory properties. This study aimed to test whether thalidomide or a DPP4 inhibitor (evogliptin) can improve the effectiveness of myocarditis treatment using a rat model of experimental autoimmune myocarditis (EAM). METHODS Rats with or without myocarditis were administered thalidomide at 100 mg/kg/day and DPP4 inhibitor at 10 mg/kg/day orally. Measurement of echocardiography, serum inflammatory cytokines, myocardial histopathological examination, and immunohistochemical staining for leukocytes, macrophages, CD4+ T cells, and cytoskeleton were performed after 3 weeks, and the fibrosis area was measured after 3 and 6 weeks. RESULTS Thalidomide and DPP4 inhibitor did not reduce the severity of myocarditis compared with the EAM without treatment rats by comparing the echocardiographic data, myocardial CD4+, macrophages, neutrophil infiltrations, and the heart weight/body weight ratio in 3 weeks. The levels of inflammatory cytokines were not lower in the thalidomide and DPP4 inhibitor-treated group than in the untreated group in 3 weeks. In 6 weeks, thalidomide and DPP4 inhibitors did not reduce the fibrosis area compared to untreated groups. CONCLUSIONS Although thalidomide and the DPP4 inhibitor had an immunomodulatory effect and are used against inflammatory diseases, they did not ameliorate myocardial inflammation and fibrosis in this rat model of EAM.
Collapse
Affiliation(s)
- Kyung-Jin Kim
- Department of Internal Medicine, Ewha Womans University Medical Center, Ewha Womans University School of Medicine, Seoul, Korea
| | - Jun-Bean Park
- Department of Internal Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Seung-Pyo Lee
- Department of Internal Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Hyung-Kwan Kim
- Department of Internal Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Yong-Jin Kim
- Department of Internal Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea.
| |
Collapse
|
5
|
Soejima H, Ogawa H, Morimoto T, Okada S, Matsumoto C, Nakayama M, Masuda I, Jinnouchi H, Waki M, Saito Y. Dipeptidyl peptidase-4 inhibitors reduce the incidence of first cardiovascular events in Japanese diabetic patients. Heart Vessels 2023; 38:1371-1379. [PMID: 37522902 DOI: 10.1007/s00380-023-02291-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 07/13/2023] [Indexed: 08/01/2023]
Abstract
BACKGROUND Dipeptidyl Peptidase-4 (DPP-4) inhibitors do not suppress cardiovascular events in diabetic patients with a history of cardiovascular disease. However, the effect of DPP-4 inhibitors on cardiovascular events in Japanese diabetic patients is unclear. Therefore, we investigated whether DPP-4 inhibitors alter the incidence of cardiovascular events in Japanese diabetic patients without a history of cardiovascular events. METHODS The Japanese Primary Prevention of Atherosclerosis with Aspirin for Diabetes (JPAD) trial was a multicenter, prospective, randomized, open label, blinded, end-point study conducted from 2002 to 2008. After completion of the JPAD trial, we followed up the patients until 2019. Patients who had had a cardiovascular event by the 2013 follow-up were excluded from the study. JPAD patients were divided into a DPP-4 group and a non-DPP-4 group based on whether they were taking DPP-4 inhibitors at the 2013 follow-up because few patients took DPP-4 inhibitors before 2013. We investigated the incidence of cardiovascular events consisting of coronary events, cerebrovascular events, heart failure requiring hospitalization, and aortic and peripheral vascular disease in 1099 JPAD patients until 2019. RESULTS During the observation period from 2013 to 2019, 37 (7%) first cardiovascular events occurred in the DPP-4 group (n = 518) and 66 (11%) in the non-DPP-4 group (n = 581). The incidence of cardiovascular events was significantly lower in the DPP-4 group than in the non-DPP-4 group (Log-Rank P = 0.0065). Cox proportional hazards model analysis revealed that the use of DPP-4 inhibitors (hazard ratio 0.65; 95% confidence interval 0.43-0.98; P = 0.038) was an independent factor after adjustment for age ≥ 65 years, hypertension, statin usage, and insulin usage. CONCLUSIONS Our findings have demonstrated that the use of DPP-4 inhibitors may be associated with a reduced incidence of first cardiovascular events in Japanese diabetic patients. The results require confirmation in randomized controlled trials.
Collapse
Affiliation(s)
- Hirofumi Soejima
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto, 860-8556, Japan.
- Health Care Center, Kumamoto University, Kumamoto, Japan.
| | | | - Takeshi Morimoto
- Department of Clinical Epidemiology, Hyogo College of Medicine, Nishinomiya, Japan
| | - Sadanori Okada
- Department of Diabetes and Endocrinology, Nara Medical University, Kashihara, Japan
| | - Chisa Matsumoto
- Department of Cardiology, Center for Health Surveillance & Preventive Medicine, Tokyo Medical University Hospital, Tokyo, Japan
| | | | - Izuru Masuda
- Internal Medicine, Koseikai Clinic, Kyoto, Japan
| | - Hideaki Jinnouchi
- Department of Internal Medicine, Jinnouchi Hospital Diabetes Care Center, Kumamoto, Japan
| | - Masako Waki
- Food Safety Commission of Japan, Tokyo, Japan
| | | |
Collapse
|
6
|
Park S, Jeong J, Woo Y, Choi YJ, Shin S. Incident infection risks depending on oral antidiabetic exposure in insulin-treated type 2 diabetes patients. Sci Rep 2023; 13:18462. [PMID: 37891260 PMCID: PMC10611756 DOI: 10.1038/s41598-023-45793-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 10/24/2023] [Indexed: 10/29/2023] Open
Abstract
Dipeptidyl peptidase-4 inhibitors (DPP4is) and sodium glucose cotransporter-2 inhibitors (SGLT2is) have been speculated to have a potential to increase infection risks in type 2 diabetes mellitus (T2DM) patients. We performed a cohort study using the Korean health insurance data to investigate infection risks with each drug class relative to metformin in insulin-treated T2DM patients. After propensity score matching, we included 1,498 and 749 patients in DPP4i + insulin vs metformin + insulin and 300 and 549 patients in SGLT2i + insulin vs metformin + insulin, respectively. In stratified analyses per patient factor, none of the odds ratios (ORs) were associated with a statistical significance across respiratory, genital, and urinary tract infections (UTIs), except that of the male stratum for respiratory infections (OR 0.77, p = 0.04). With regard to SGLT2is, a higher risk of genital infections was analyzed with their use than with metformin therapy (OR 1.76, p = 0.03). In stratified analyses, the OR for genital infections remained significant in the baseline cardiovascular disease stratum (OR 2.29, p = 0.01). No increased UTI risk was detected with SGLT2is compared against metformin. In this study on insulin-receiving T2DM patients, DPP4is were not associated with increased infection risks, whereas SGLT2is led to a higher risk for genital infections, but not for UTIs, relative to metformin.
Collapse
Affiliation(s)
- Sanghwa Park
- College of Pharmacy, Ajou University, Suwon, Republic of Korea
| | - Jiseon Jeong
- College of Pharmacy, Ajou University, Suwon, Republic of Korea
| | - Yunna Woo
- College of Pharmacy, Ajou University, Suwon, Republic of Korea
| | - Yeo Jin Choi
- Department of Pharmacy, College of Pharmacy, Kyung Hee University, Seoul, Republic of Korea.
| | - Sooyoung Shin
- College of Pharmacy, Ajou University, Suwon, Republic of Korea.
- Research Institute of Pharmaceutical Science and Technology (RIPST), Ajou University, Suwon, Republic of Korea.
| |
Collapse
|
7
|
Saini K, Sharma S, Khan Y. DPP-4 inhibitors for treating T2DM - hype or hope? an analysis based on the current literature. Front Mol Biosci 2023; 10:1130625. [PMID: 37287751 PMCID: PMC10242023 DOI: 10.3389/fmolb.2023.1130625] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 05/08/2023] [Indexed: 06/09/2023] Open
Abstract
DPP-4 inhibition is an interesting line of therapy for treating Type 2 Diabetes Mellitus (T2DM) and is based on promoting the incretin effect. Here, the authors have presented a brief appraisal of DPP-4 inhibitors, their modes of action, and the clinical efficiency of currently available drugs based on DPP-4 inhibitors. The safety profiles as well as future directions including their potential application in improving COVID-19 patient outcomes have also been discussed in detail. This review also highlights the existing queries and evidence gaps in DPP-4 inhibitor research. Authors have concluded that the excitement surrounding DPP-4 inhibitors is justified because in addition to controlling blood glucose level, they are good at managing risk factors associated with diabetes.
Collapse
|
8
|
Jones L, Jones AM. Suspected adverse drug reactions of the type 2 antidiabetic drug class dipeptidyl-peptidase IV inhibitors (DPP4i): Can polypharmacology help explain? Pharmacol Res Perspect 2022; 10:e01029. [PMID: 36468400 PMCID: PMC9720577 DOI: 10.1002/prp2.1029] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 09/12/2022] [Accepted: 10/13/2022] [Indexed: 12/12/2022] Open
Abstract
To interpret the relationship between the polypharmacology of dipeptidyl-peptidase IV inhibitors (DPP4i) and their suspected adverse drug reaction (ADR) profiles using a national registry. A retrospective investigation into the suspected ADR profile of four licensed DPP4i in the United Kingdom using the National MHRA Yellow Card Scheme and OpenPrescribing databases. Experimental data from the ChEMBL database alongside physiochemical (PC) and pharmacokinetic (PK) profiles were extracted and interpreted. DPP4i show limited polypharmacology alongside low suspected ADR rates. We found a minimal statistical difference between the unique ADR profiles ascribed to the DPP4i except for total ADRs (χ2 ; p < .05). Alogliptin consistently showed the highest suspected ADR rate per 1 000 000 items prescribed. Saxagliptin showed the lowest suspected ADR rate across all organ classes but did not reach statistical difference (χ2 ; p > .05). We confirmed the Phase III clinical trial data that showed gastrointestinal and skin reactions are the most reported ADRs across the DPP4i class and postulated underlying mechanisms for this based on possible drug interactions. The main pharmacological mechanism behind the ADRs is attributed to interactions with DPP4 activity and/or structure homolog (DASH) proteins which augment the immune-inflammatory modulation of DPP4.
Collapse
Affiliation(s)
- Lauren Jones
- Medicines Safety Research Group (MSRG), School of PharmacyUniversity of BirminghamBirminghamUK
| | - Alan M. Jones
- Medicines Safety Research Group (MSRG), School of PharmacyUniversity of BirminghamBirminghamUK
| |
Collapse
|
9
|
Lee CH, Huang SC, Hung KC, Cho CJ, Liu SJ. Enhanced Diabetic Wound Healing Using Electrospun Biocompatible PLGA-Based Saxagliptin Fibrous Membranes. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3740. [PMID: 36364516 PMCID: PMC9659155 DOI: 10.3390/nano12213740] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/19/2022] [Accepted: 10/20/2022] [Indexed: 05/26/2023]
Abstract
Delayed diabetic wound healing is an adverse event that frequently leads to limb disability or loss. A novel and promising vehicle for the treatment of diabetic wounds is required for clinical purposes. The biocompatible and resorbable poly (lactic-co-glycolic acid) (PLGA)-based fibrous membranes prepared by electrospinning that provide a sustained discharge of saxagliptin for diabetic wound healing were fabricated. The concentration of released saxagliptin in Dulbecco’s phosphate-buffered saline was analyzed for 30 days using high-performance liquid chromatography. The effectiveness of the eluted saxagliptin was identified using an endothelial progenitor cell migration assay in vitro and a diabetic wound healing in vivo. Greater hydrophilicity and water storage were shown in the saxagliptin-incorporated PLGA membranes than in the pristine PLGA membranes (both p < 0.001). For diabetic wound healing, the saxagliptin membranes accelerated the wound closure rate, the dermal thickness, and the heme oxygenase-1 level over the follicle areas compared to those in the pristine PLGA group at two weeks post-treatment. The saxagliptin group also had remarkably higher expressions of insulin-like growth factor I expression and transforming growth factor-β1 than the control group (p = 0.009 and p < 0.001, respectively) in diabetic wounds after treatment. The electrospun PLGA-based saxagliptin membranes exhibited excellent biomechanical and biological features that enhanced diabetic wound closure and increased the antioxidant activity, cellular granulation, and functionality.
Collapse
Affiliation(s)
- Chen-Hung Lee
- Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital-Linkou, Chang Gung University College of Medicine, Taoyuan 33305, Taiwan
| | - Shu-Chun Huang
- Department of Physical Medicine and Rehabilitation, New Taipei Municipal Tucheng Hospital, New Taipei City 23652, Taiwan
- Department of Physical Medicine & Rehabilitation, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
- College of Medicine, Chang Gung University, Kwei-Shan, Taoyuan 33302, Taiwan
| | - Kuo-Chun Hung
- Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital-Linkou, Chang Gung University College of Medicine, Taoyuan 33305, Taiwan
| | - Chia-Jung Cho
- Institute of Biotechnology and Chemical Engineering, I-Shou University, Kaohsiung 84001, Taiwan
| | - Shih-Jung Liu
- Department of Orthopedic Surgery, Bone and Joint Research Center, Chang Gung Memorial Hospital-Linkou, Taoyuan 33305, Taiwan
- Department of Mechanical Engineering, Chang Gung University, Taoyuan 33302, Taiwan
| |
Collapse
|
10
|
Mohammad BD, Baig MS, Bhandari N, Siddiqui FA, Khan SL, Ahmad Z, Khan FS, Tagde P, Jeandet P. Heterocyclic Compounds as Dipeptidyl Peptidase-IV Inhibitors with Special Emphasis on Oxadiazoles as Potent Anti-Diabetic Agents. Molecules 2022; 27:molecules27186001. [PMID: 36144735 PMCID: PMC9502781 DOI: 10.3390/molecules27186001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/11/2022] [Accepted: 09/12/2022] [Indexed: 11/25/2022] Open
Abstract
Dipeptidyl peptidase-IV (DPP-IV) inhibitors, often known as gliptins, have been used to treat type 2 diabetes mellitus (T2DM). They may be combined with other medications as an additional treatment or used alone as a monotherapy. In addition to insulin, sulfonylureas, thiazolidinediones, and metformin, these molecules appear as possible therapeutic options. Oxadiazole rings have been employed in numerous different ways during drug development efforts. It has been shown that including them in the pharmacophore increases the amount of ligand that may be bound. The exceptional hydrogen bond acceptor properties of oxadiazoles and the distinct hydrocarbon bonding potential of their regioisomers have been established. Beside their anti-diabetic effects, oxadiazoles display a wide range of pharmacological properties. In this study, we made the assumption that molecules containing oxadiazole rings may afford a different approach to the treatment of diabetes, not only for controlling glycemic levels but also for preventing atherosclerosis progression and other complications associated with diabetes. It was observed that oxadiazole fusion with benzothiazole, 5-(2,5,2-trifluoroethoxy) phenyl, β-homophenylalanine, 2-methyl-2-{5-(4-chlorophenyl), diamine-bridged bis-coumarinyl, 5-aryl-2-(6′-nitrobenzofuran-2′-yl), nitrobenzofuran, and/or oxindole leads to potential anti-diabetic activity.
Collapse
Affiliation(s)
- Badrud Duza Mohammad
- Department of Pharmaceutical Chemistry, G R T Institute of Pharmaceutical Education and Research, GRT Mahalakshmi Nagar, Tiruttani 631209, Tamil Nadu, India
| | - Mirza Shahed Baig
- Department of Pharmaceutical Chemistry, Y. B. Chavan College of Pharmacy, Aurangabad 431001, Maharashtra, India
| | - Neeraj Bhandari
- Arni School of Pharmacy, Arni University, Kathgarh, Indora 176401, Himachal Pradesh, India
| | - Falak A. Siddiqui
- Department of Pharmaceutical Chemistry, N.B.S. Institute of Pharmacy, Ausa 413520, Maharashtra, India
| | - Sharuk L. Khan
- Department of Pharmaceutical Chemistry, N.B.S. Institute of Pharmacy, Ausa 413520, Maharashtra, India
- Correspondence: (S.L.K.); (P.J.)
| | - Zubair Ahmad
- Unit of Bee Research and Honey Production, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
- Biology Department, College of Arts and Sciences, Dehran Al-Junub, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Farhat S. Khan
- Biology Department, College of Arts and Sciences, Dehran Al-Junub, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Priti Tagde
- Patel College of Pharmacy, Madhyanchal Professional University, Bhopal 462044, Madhya Pradesh, India
| | - Philippe Jeandet
- Research Unit Induced Resistance and Plant Bioprotection, University of Reims, USC INRAe 1488, SFR Condorcet FR CNRS 3417, 51687 Reims, France
- Correspondence: (S.L.K.); (P.J.)
| |
Collapse
|
11
|
Yagyu H, Shimano H. Treatment of diabetes mellitus has borne much fruit in the prevention of cardiovascular disease. J Diabetes Investig 2022; 13:1472-1488. [PMID: 35638331 PMCID: PMC9434581 DOI: 10.1111/jdi.13859] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 05/27/2022] [Indexed: 11/28/2022] Open
Abstract
Cardiovascular (CV) disease is the most alarming complication of diabetes mellitus (DM), and a strategy aiming at cardiovascular event prevention in diabetes mellitus has long been debated. Large landmark clinical trials have shown cardiovascular benefits of intensive glycemic control as a 'legacy effect' in newly diagnosed type 2 diabetes mellitus. In contrast, we have learned that excessive intervention aimed at strong glycemic control could cause unexpected cardiovascular death in patients who are resistant to treatments against hyperglycemia. It has also been shown that the comprehensive multifactorial intervention for cardiovascular risk factors that was advocated in the current guideline provided substantial cardiovascular event reduction. The impact of classical antidiabetic agents launched before 1990s on cardiovascular events is controversial. Although there are many clinical or observational studies assessing the impact of those agents on cardiovascular events, the conclusions are inconsistent owing to variable patient backgrounds and concomitant antidiabetic agents among the studies. Moreover, most of them were not large-scale, randomized, cardiovascular outcome trials. In contrast, GLP-1RA (glucagon-like peptide-1 receptor agonist) and SGLT2 (sodium-glucose cotransporter 2) inhibitors have demonstrated undeniable cardiovascular benefits in large-scale, randomized, controlled trials. Whereas GLP-1RAs decrease atherosclerotic disease, especially stroke, SGLT2 inhibitors mainly prevent heart failure. SGLT2 inhibitors are superior to GLP-1RAs with respect to hard renal outcomes. Therefore, it can be said that drugs such as GLP-1RAs and SGLT2 inhibitors that prevent cardiovascular events, in addition to their glucose-lowering effect, are incredible novel tools that we have gained for use in diabetic treatment.
Collapse
Affiliation(s)
- Hiroaki Yagyu
- Department of Endocrinology and Metabolism, Tsukuba University Hospital Mito Clinical Education and Training CenterMito Kyodo General HospitalMitoJapan
| | - Hitoshi Shimano
- Department of Endocrinology and Metabolism, Faculty of MedicineUniversity of TsukubaTsukubaJapan
| |
Collapse
|
12
|
Ng JKC, Than WH, Szeto CC. Obesity, Weight Gain, and Fluid Overload in Peritoneal Dialysis. FRONTIERS IN NEPHROLOGY 2022; 2:880097. [PMID: 37675033 PMCID: PMC10479638 DOI: 10.3389/fneph.2022.880097] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 06/02/2022] [Indexed: 09/08/2023]
Abstract
Obesity is a global epidemic that has a complicated pathogenesis as well as impact on the outcome of peritoneal dialysis (PD) patients. In this review, the prevalence of obesity in incident PD patients as well as the phenomenon of new-onset glucose intolerance after PD will be reviewed. Published literature on the effect of obesity on the survival and incidence of cardiovascular disease in PD patients will be discussed. Particular emphasis would be put on literature that compared the impact of obesity on the outcome of hemodialysis and PD, and the confounding effect of dialysis adequacy. Next, the complex concept of obesity and its relevance for PD will be explored. The focus would be put on the methods of assessment and clinical relevance of central versus general obesity, as well as visceral versus subcutaneous adipose tissue. The relation between obesity and systemic inflammation, as well as the biological role of several selected adipokines will be reviewed. The confounding effects of metabolic syndrome and insulin resistance will be discussed, followed by the prevalence and prognostic impact of weight gain during the first few years of PD. The differences between weight gain due to fluid overload and accumulation of adipose tissue will be discussed, followed by the current literature on the change in body composition after patients are put on chronic PD. The methods of body composition will be reviewed, and the clinical relevance of individual body component (fluid, fat, muscle, and bone) will be discussed. The review will conclude by highlighting current gaps of knowledge and further research directions in this area.
Collapse
Affiliation(s)
- Jack Kit-Chung Ng
- Carol & Richard Yu Peritoneal Dialysis Research Centre, Department of Medicine & Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Win Hlaing Than
- Carol & Richard Yu Peritoneal Dialysis Research Centre, Department of Medicine & Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences (LiHS), Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Cheuk Chun Szeto
- Carol & Richard Yu Peritoneal Dialysis Research Centre, Department of Medicine & Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences (LiHS), Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| |
Collapse
|
13
|
Rafaqat S, Rafaqat S, Rafaqat S. Pathophysiological aspects of insulin resistance in Atrial Fibrillation: novel therapeutic approaches. INTERNATIONAL JOURNAL OF ARRHYTHMIA 2022. [DOI: 10.1186/s42444-021-00057-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Abstract
Background
Insulin resistance is associated with metabolic disorders including diabetes, obesity, hypertension, and inflammation which are the risk factors for Atrial Fibrillation. Many studies have reported that type 2 diabetes and AF are related and also their prevalence is increasing globally. Moreover, insulin resistance begins the type 2 diabetes.
Main body
This review explains the pathophysiological aspects of insulin resistance in AF patients and discusses the drugs that are used to manage insulin resistance including Biguanides (metformin), thiazolidinediones (TZDs) [Pioglitazone, rosiglitazone], Sodium-glucose cotransporter 2 (SGLT2) inhibitors, Concentrated Insulin Products, Dipeptidyl peptidase-4 (DPP-4) Inhibitors, Glucagon-like peptide 1 (GLP-1) receptor Agonists, Pramlintide, Sulfonylureas, Meglitinides, α-Glucosidase Inhibitors, Colesevelam, Bromocriptine. This review will highlight a few major drugs that played a significant role in AF patients. For this purpose, many databases were used for reviewing the literature and keywords are used such as Insulin Resistance, Pathophysiology, Atrial Fibrillation, and Drugs.
Conclusion
This review article concludes that insulin resistance is related to AF. It also provides an outlook on the recent pathophysiological aspects of insulin resistance in AF; however, more studies are needed to clarify the management of insulin resistance in AF patients to prevent the development of type 2 diabetes.
Collapse
|
14
|
Sinitsky MY, Dyleva YA, Uchasova EG, Belik EV, Yuzhalin AE, Gruzdeva OV, Matveeva VG, Ponasenko AV. Adipokine gene expression in adipocytes isolated from different fat depots of coronary artery disease patients. Arch Physiol Biochem 2022; 128:261-269. [PMID: 31595792 DOI: 10.1080/13813455.2019.1674338] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
To compare DPP4, LCN2, NAMPT, ITLN1, APLN mRNA levels in adipocytes isolated from the biopsies of subcutaneous, epicardial and perivascular fat obtained from 25 patients with coronary artery disease. Gene expression signature was determined by RT-qPCR with hydrolysis probes. We found DPP4 and APLN mRNA was higher expressed only in adipocytes isolated from epicardial adipose tissue compared to the subcutaneous fat. The ITLN1 gene was overexpressed in epicardial adipose tissue compared to both subcutaneous and perivascular tissues. APLN mRNA expression was positively correlated with total and LDL cholesterol plasma level, and DPP4 mRNA expression - with VLDL cholesterol concentration. Thus, adipocytes isolated from different adipose depots are characterised by differential gene expression of adipokines. Epicardial adipose tissue is of particular interest in the context of its function, molecular and genetic mechanisms of regulation of the cardiovascular system and as a therapeutic target for correction of adipose tissue-induced effects on health.
Collapse
Affiliation(s)
- Maxim Yu Sinitsky
- Laboratory of Genome Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, Kemerovo, Russian Federation
| | - Yulia A Dyleva
- Laboratory of Homeostasis, Research Institute for Complex Issues of Cardiovascular Diseases, Kemerovo, Russian Federation
| | - Evgenya G Uchasova
- Laboratory of Homeostasis, Research Institute for Complex Issues of Cardiovascular Diseases, Kemerovo, Russian Federation
| | - Ekaterina V Belik
- Laboratory of Homeostasis, Research Institute for Complex Issues of Cardiovascular Diseases, Kemerovo, Russian Federation
| | - Arseniy E Yuzhalin
- Laboratory of Fundamental Aspects of Atherosclerosis, Research Institute for Complex Issues of Cardiovascular Diseases, Kemerovo, Russian Federation
| | - Olga V Gruzdeva
- Laboratory of Homeostasis, Research Institute for Complex Issues of Cardiovascular Diseases, Kemerovo, Russian Federation
| | - Vera G Matveeva
- Laboratory of Cell Technologies, Research Institute for Complex Issues of Cardiovascular Diseases, Kemerovo, Russian Federation
| | - Anastasia V Ponasenko
- Laboratory of Genome Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, Kemerovo, Russian Federation
| |
Collapse
|
15
|
Nishina S, Hino K. CD26/DPP4 as a Therapeutic Target in Nonalcoholic Steatohepatitis Associated Hepatocellular Carcinoma. Cancers (Basel) 2022; 14:cancers14020454. [PMID: 35053615 PMCID: PMC8774170 DOI: 10.3390/cancers14020454] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/10/2022] [Accepted: 01/11/2022] [Indexed: 02/07/2023] Open
Abstract
Simple Summary CD26/DPP4 has been reported to attenuate anticancer immunity via chemokine cleavage and to promote insulin resistance and inflammation in the liver and/or adipose tissue via dysregulation of macrophage M1/M2 polarization. These results suggest the promotive roles of CD26/DPP4 especially in nonalcoholic steatohepatitis (NASH) associated hepatocellular carcinoma (HCC). In this review, we discuss the biological roles of CD26/DPP4 in the development and progression of NASH associated HCC and the potential of DPP4 inhibitors as therapeutic agents for HCC. Abstract Hepatocellular carcinoma (HCC) is generally considered an “immune-cold” cancer since T cells are not observed abundantly in HCC tumor tissue. Combination therapy with immune checkpoint inhibitors and vascular endothelial growth factor (VEGF) inhibitors is currently recognized as a first-line systemic treatment for advanced-stage HCC. Immunologically, immune checkpoint inhibitors influence the recognition of cancer cells by T cells, and VEGF inhibitors influence the infiltration of T cells into tumors. However, no drugs that facilitate the trafficking of T cells toward tumors have been developed. Chemokines are promising agents that activate T cell trafficking. On the other hand, metabolic factors such as obesity and insulin resistance are considered risk factors for HCC development. CD26/dipeptidyl peptidase 4 (DPP4) functions as a serine protease, selectively cleaving polypeptides with a proline or alanine at the penultimate N-terminal position, such as chemokines. Recently, CD26/DPP4 has been reported to attenuate anticancer immunity via chemokine cleavage and to promote insulin resistance and inflammation in the liver and/or adipose tissue via dysregulation of macrophage M1/M2 polarization. In this review, we discuss the promotive roles of CD26/DPP4 in HCC development and progression and the potential of DPP4 inhibitors as therapeutic agents for HCC.
Collapse
Affiliation(s)
| | - Keisuke Hino
- Correspondence: ; Tel.: +81-864621111; Fax: +81-864641196
| |
Collapse
|
16
|
Rogić S, Gagić Ž. 3D-QSAR-based pharmacophore determination and design of novel DPP-4 inhibitors. SCRIPTA MEDICA 2022. [DOI: 10.5937/scriptamed53-40866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Background/Aim: Therapy of diabetes mellitus type 2 includes drugs that act as inhibitors of dipeptidyl peptidase 4 (DPP-4) enzyme. Several DPP-4 inhibitors are marketed today and although they have favourable safety profile and tolerability, they show moderate activity in controlling glycaemia. The 3D quantitative structure-activity relationship (3D-QSAR) methodology was employed in order to find pharmacophore responsible for good DPP-4 inhibitory activity and designed new compounds with enhanced activity. Methods: For 3D-QSAR model development, 48 compounds structurally related to sitagliptin were collected from ChEMBL database. Structures of all compounds were optimised in order to find the best 3D conformations prior to QSAR modelling. To establish correlation between structure and biological activity Partial Least Squares (PLS) regression method integrated in Pentacle software was used. Results: Parameters of internal and external validation (R2 = 0.80, Q2 = 0.64 and R2 pred = 0.610) confirmed reliability of developed QSAR model. Analysis of obtained structural descriptors enabled identification of key structural characteristics that influenced DPP-4 inhibitory activity. Based on that information, new compounds were designed, of which 35 compounds had a better predicted activity, compared to sitagliptin. Conclusion: This QSAR model can be used for DPP-4 inhibitory activity prediction of structurally related compounds and resulting pharmacophore contains information useful for optimisation and design of new DPP-4 inhibitors. Finally, authors propose designed compounds for further synthesis, in vitro and in vivo testing, as new potential DPP-4 inhibitors.
Collapse
|
17
|
Wan Y, Xu X, Gilbert RG, Sullivan MA. A Review on the Structure and Anti-Diabetic (Type 2) Functions of β-Glucans. Foods 2021; 11:57. [PMID: 35010185 PMCID: PMC8750484 DOI: 10.3390/foods11010057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/19/2021] [Accepted: 12/24/2021] [Indexed: 12/14/2022] Open
Abstract
Type 2 diabetes, a long-term chronic metabolic disease, causes severe and increasing economic and health problems globally. There is growing evidence that β-glucans can function as bioactive macromolecules that help control type 2 diabetes with minimal side effects. However, conflicting conclusions about the antidiabetic activities of β-glucans have been published, potentially resulting from incomplete understanding of their precise structural characteristics. This review aims to increase clarity on the structure-function relationships of β-glucans in treating type 2 diabetes by examining detailed structural and conformational features of naturally derived β-glucans, as well as both chemical and instrumental methods used in their characterization, and their underlying anti-diabetic mechanisms. This may help to uncover additional structure and function relationships and to expand applications of β-glucans.
Collapse
Affiliation(s)
- Yujun Wan
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD 4072, Australia;
| | - Xiaojuan Xu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China;
| | - Robert G. Gilbert
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD 4072, Australia;
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, College of Agriculture, Yangzhou University, Yangzhou 225009, China
| | - Mitchell A. Sullivan
- Glycation and Diabetes Group, Mater Research Institute, The University of Queensland, Translational Research Institute, Brisbane, QLD 4072, Australia
| |
Collapse
|
18
|
Kang SM, Park JH. Pleiotropic Benefits of DPP-4 Inhibitors Beyond Glycemic Control. CLINICAL MEDICINE INSIGHTS-ENDOCRINOLOGY AND DIABETES 2021; 14:11795514211051698. [PMID: 34733107 PMCID: PMC8558587 DOI: 10.1177/11795514211051698] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 09/20/2021] [Indexed: 12/14/2022]
Abstract
Dipeptidyl peptidase (DPP)-4 inhibitors are oral anti-diabetic medications that block the activity of the ubiquitous enzyme DPP-4. Inhibition of this enzyme increases the level of circulating active glucagon-like peptide (GLP)-1 secreted from L-cells in the small intestine. GLP-1 increases the glucose level, dependent on insulin secretion from pancreatic β-cells; it also decreases the abnormally increased level of glucagon, eventually decreasing the blood glucose level in patients with type 2 diabetes. DPP-4 is involved in many physiological processes other than the degradation of GLP-1. Therefore, the inhibition of DPP-4 may have numerous effects beyond glucose control. In this article, we review the pleiotropic effects of DPP-4 inhibitors beyond glucose control, including their strong beneficial effects on the stress induced accelerated senescence of vascular cells, and the possible clinical implications of these effects.
Collapse
Affiliation(s)
- Seon Mee Kang
- Department of Internal Medicine, College of Medicine, Inje University, Busan, Republic of Korea.,Paik Institute for Clinical Research, Inje University, Busan, Republic of Korea
| | - Jeong Hyun Park
- Department of Internal Medicine, College of Medicine, Inje University, Busan, Republic of Korea.,Paik Institute for Clinical Research, Inje University, Busan, Republic of Korea
| |
Collapse
|
19
|
Ahmadi A, Panahi Y, Johnston TP, Sahebkar A. Antidiabetic drugs and oxidized low-density lipoprotein: A review of anti-atherosclerotic mechanisms. Pharmacol Res 2021; 172:105819. [PMID: 34400317 DOI: 10.1016/j.phrs.2021.105819] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/12/2021] [Accepted: 08/12/2021] [Indexed: 02/07/2023]
Abstract
Cardiovascular disease is one of the leading causes of mortality globally. Atherosclerosis is an important step towards different types of cardiovascular disease. The role of oxidized low-density lipoprotein (oxLDL) in the initiation and progression of atherosclerosis has been thoroughly investigated in recent years. Moreover, clinical trials have established that diabetic patients are at a greater risk of developing atherosclerotic plaques. Hence, we aimed to review the clinical and experimental impacts of various classes of antidiabetic drugs on the circulating levels of oxLDL. Metformin, pioglitazone, and dipeptidyl peptidase-4 inhibitors were clinically associated with a suppressive effect on oxLDL in patients with impaired glucose tolerance. However, there is an insufficient number of studies that have clinically evaluated the relationship between oxLDL and newer agents such as agonists of glucagon-like peptide 1 receptor or inhibitors of sodium-glucose transport protein 2. Next, we attempted to explore the multitude of mechanisms that antidiabetic agents exert to counter the undesirable effects of oxLDL in macrophages, endothelial cells, and vascular smooth muscle cells. In general, antidiabetic drugs decrease the uptake of oxLDL by vascular cells and reduce subsequent inflammatory signaling, which prevents macrophage adhesion and infiltration. Moreover, these agents suppress the oxLDL-induced transformation of macrophages into foam cells by either inhibiting oxLDL entrance, or by facilitating its efflux. Thus, the anti-inflammatory, anti-oxidant, and anti-apoptotic properties of antidiabetic agents abrogate changes induced by oxLDL, which can be extremely beneficial in controlling atherosclerosis in diabetic patients.
Collapse
Affiliation(s)
- Ali Ahmadi
- Pharmacotherapy Department, Faculty of Pharmacy, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Yunes Panahi
- Pharmacotherapy Department, Faculty of Pharmacy, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Thomas P Johnston
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, Missouri, USA
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; School of Medicine, The University of Western Asutralia, Perth, Australia; School of Pharmacy, Mashhad University of Medical Sciences, Mashhad 9177948567, Iran.
| |
Collapse
|
20
|
Prattichizzo F, de Candia P, Ceriello A. Diabetes and kidney disease: emphasis on treatment with SGLT-2 inhibitors and GLP-1 receptor agonists. Metabolism 2021; 120:154799. [PMID: 34029597 DOI: 10.1016/j.metabol.2021.154799] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/06/2021] [Accepted: 05/17/2021] [Indexed: 12/12/2022]
Abstract
Kidney disease is a frequent microvascular complication of both type 1 and type 2 diabetes. Historic trials have demonstrated that a tight glycaemic control is the most powerful approach to decrease the chances of developing diabetic nephropathy. However, having an HbA1c < 7% does not completely suppress the risk of kidney disease. The observed residual risk is likely ascribable to two phenomena: 1- the presence of risk factors and alterations additive to and independent of glycaemia, and 2- the activation of long-lasting imbalances by periods of exposure to uncontrolled glycemia, a phenomenon referred to as metabolic memory or legacy effect. Long-lasting oxidative stress, epigenetic alterations, cellular senescence, and the resulting chronic low-grade inflammation are all candidate mechanisms explaining the development of nephropathy despite proper control of risk factors. Recently, two classes of drugs, i.e. glucagon-like peptide (GLP) 1 receptor agonists (RA) and sodium-glucose transporter 2 inhibitors (SGLT-i) have changed this scenario. Indeed, cardiovascular outcome and other trials have clearly shown a renoprotective effect for these drugs, well-beyond their glucose-lowering properties. In this review, we summarize: 1- selected key trials and mechanisms underlying the development of diabetic kidney disease and 2- the results relative to renal endpoints in clinical trials of GLP-1 RA and SGLT-2i. Then, we briefly discuss some of the hypotheses posited to explain the marked renoprotective properties of these two classes, evidencing the still existing gaps in knowledge and proposing future directions to further implement the use of these powerful, disease-modifying drugs.
Collapse
|
21
|
Akoumianakis I, Badi I, Douglas G, Chuaiphichai S, Herdman L, Akawi N, Margaritis M, Antonopoulos AS, Oikonomou EK, Psarros C, Galiatsatos N, Tousoulis D, Kardos A, Sayeed R, Krasopoulos G, Petrou M, Schwahn U, Wohlfart P, Tennagels N, Channon KM, Antoniades C. Insulin-induced vascular redox dysregulation in human atherosclerosis is ameliorated by dipeptidyl peptidase 4 inhibition. Sci Transl Med 2021; 12:12/541/eaav8824. [PMID: 32350133 DOI: 10.1126/scitranslmed.aav8824] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 10/01/2019] [Accepted: 04/01/2020] [Indexed: 12/12/2022]
Abstract
Recent clinical trials have revealed that aggressive insulin treatment has a neutral effect on cardiovascular risk in patients with diabetes despite improved glycemic control, which may suggest confounding direct effects of insulin on the human vasculature. We studied 580 patients with coronary atherosclerosis undergoing coronary artery bypass surgery (CABG), finding that high endogenous insulin was associated with reduced nitric oxide (NO) bioavailability ex vivo in vessels obtained during surgery. Ex vivo experiments with human internal mammary arteries and saphenous veins obtained from 94 patients undergoing CABG revealed that both long-acting insulin analogs and human insulin triggered abnormal responses of post-insulin receptor substrate 1 downstream signaling ex vivo, independently of systemic insulin resistance status. These abnormal responses led to reduced NO bioavailability, activation of NADPH oxidases, and uncoupling of endothelial NO synthase. Treatment with an oral dipeptidyl peptidase 4 inhibitor (DPP4i) in vivo or DPP4i administered to vessels ex vivo restored physiological insulin signaling, reversed vascular insulin responses, reduced vascular oxidative stress, and improved endothelial function in humans. The detrimental effects of insulin on vascular redox state and endothelial function as well as the insulin-sensitizing effect of DPP4i were also validated in high-fat diet-fed ApoE-/- mice treated with DPP4i. High plasma DPP4 activity and high insulin were additively related with higher cardiac mortality in patients with coronary atherosclerosis undergoing CABG. These findings may explain the inability of aggressive insulin treatment to improve cardiovascular outcomes, raising the question whether vascular insulin sensitization with DPP4i should precede initiation of insulin treatment and continue as part of a long-term combination therapy.
Collapse
Affiliation(s)
- Ioannis Akoumianakis
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DU, UK
| | - Ileana Badi
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DU, UK
| | - Gillian Douglas
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DU, UK
| | - Surawee Chuaiphichai
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DU, UK
| | - Laura Herdman
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DU, UK
| | - Nadia Akawi
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DU, UK
| | - Marios Margaritis
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DU, UK
| | - Alexios S Antonopoulos
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DU, UK
| | - Evangelos K Oikonomou
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DU, UK
| | - Costas Psarros
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DU, UK
| | | | - Dimitris Tousoulis
- First Cardiology Clinic, Athens University Medical School, Athens 115 27, Greece
| | - Attila Kardos
- Milton Keynes University Hospital NHS Foundation Trust and Faculty of Life Sciences, University of Buckingham, Buckingham MK6 5LD, UK
| | - Rana Sayeed
- Cardiothoracic Surgery Department, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 9DU, UK
| | - George Krasopoulos
- Cardiothoracic Surgery Department, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 9DU, UK
| | - Mario Petrou
- Cardiothoracic Surgery Department, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 9DU, UK
| | - Uwe Schwahn
- Sanofi Aventis Deutschland GmbH, Frankfurt D-65926, Germany
| | | | | | - Keith M Channon
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DU, UK
| | - Charalambos Antoniades
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DU, UK.
| |
Collapse
|
22
|
Abouelkheir M. Evaluation of Dual Inhibitory Effect of Anagliptin, Ramipril, and Lisinopril on Angiotensin-Converting Enzyme and DPP-4 Activities. Curr Mol Pharmacol 2021; 15:582-588. [PMID: 34077352 DOI: 10.2174/1874467214666210601104117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 03/14/2021] [Accepted: 03/15/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND We previously tested two angiotensin-converting enzyme (ACE) inhibitors and two dipeptidyl peptidase-4 (DPP-4) inhibitors for dual enzyme inhibitory effect. Only two DPP-4 inhibitors, linagliptin and sitagliptin, were able to inhibit ACE. OBJECTIVE In the present study, we investigated if other inhibitors of ACE or DPP-4 could simultaneously inhibit the activities of both DPP-4 and ACE. METHODS Forty Sprague Dawley rats were used. The control group received saline only. The other three groups were treated with anagliptin, ramipril, or lisinopril. Two different doses were tested, separated with a 6-day drug-free interval. Angiotensin II (ang II) levels, the activities of ACE, and DPP-4 were measured from blood samples at baseline and days 1, 10, and 14. After the oral glucose challenge, levels of the active form of glucagon-like peptide-1 (GLP-1) were measured. RESULTS Regardless of the dose, anagliptin did not show any inhibitory effect on the activity of ACE or ang II levels. For ramipril and lisinopril, only a high dose of lisinopril was able to produce a modest reduction of the DPP-4 activity, but it was not enough to inhibit the inactivation of GLP-1. CONCLUSION It seems that while most ACE inhibitors cannot affect DPP-4 activity, inhibitors of DPP-4 vary in their effect on ACE activity. The selection of DPP-4 inhibitors under different clinical situations should take into account the action of these drugs on ACE.
Collapse
Affiliation(s)
- Mohamed Abouelkheir
- Department of Pharmacology and Therapeutics, College of Medicine, Jouf University, Sakaka, Saudi Arabia
| |
Collapse
|
23
|
Gorelova A, Berman M, Al Ghouleh I. Endothelial-to-Mesenchymal Transition in Pulmonary Arterial Hypertension. Antioxid Redox Signal 2021; 34:891-914. [PMID: 32746619 PMCID: PMC8035923 DOI: 10.1089/ars.2020.8169] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 07/23/2020] [Indexed: 12/14/2022]
Abstract
Endothelial-to-mesenchymal transition (EndMT) is a process that encompasses extensive transcriptional reprogramming of activated endothelial cells leading to a shift toward mesenchymal cellular phenotypes and functional responses. Initially observed in the context of embryonic development, in the last few decades EndMT is increasingly recognized as a process that contributes to a variety of pathologies in the adult organism. Within the settings of cardiovascular biology, EndMT plays a role in various diseases, including atherosclerosis, heart valvular disease, cardiac fibrosis, and myocardial infarction. EndMT is also being progressively implicated in development and progression of pulmonary hypertension (PH) and pulmonary arterial hypertension (PAH). This review covers the current knowledge about EndMT in PH and PAH, and provides comprehensive overview of seminal discoveries. Topics covered include evidence linking EndMT to factors associated with PAH development, including hypoxia responses, inflammation, dysregulation of bone-morphogenetic protein receptor 2 (BMPR2), and redox signaling. This review amalgamates these discoveries into potential insights for the identification of underlying mechanisms driving EndMT in PH and PAH, and discusses future directions for EndMT-based therapeutic strategies in disease management.
Collapse
Affiliation(s)
- Anastasia Gorelova
- Heart, Lung and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Mariah Berman
- Heart, Lung and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Imad Al Ghouleh
- Heart, Lung and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
24
|
Sitagliptin, a dipeptidyl peptidase-4 inhibitor, attenuates apoptosis of vascular smooth muscle cells and reduces atherosclerosis in diabetic apolipoprotein E-deficient mice. Vascul Pharmacol 2021; 140:106854. [PMID: 33781961 DOI: 10.1016/j.vph.2021.106854] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 03/03/2021] [Accepted: 03/05/2021] [Indexed: 11/20/2022]
Abstract
Sitagliptin, a dipeptidyl peptidase-4(DPP-4) Inhibitor, has been found to have an anti-atherosclerotic effect. Since apoptosis of vascular smooth muscle cells (VSMCs) contributes to the occurrence of diabetic atherosclerosis. This study aimed to examine whether sitagliptin suppresses the atherosclerosis progression to hyperglycemia in a low-dose streptozotocin (STZ)-induced diabetic mouse model, and then investigated the effect of sitagliptin on VSMCs apoptosis and its underlying mechanism. In vivo studies, eight-week-old low-dose STZ-induced diabetic apolipoprotein E (apoE)-deficient (apoE-/-) mice fed a high-fat diet were administered a DPP-4 inhibitor, sitagliptin, 200 mg/kg/day, or Lantus insulin by daily subcutaneous injection of 1 unit/mouse over a period of 12 weeks. Aortic atherosclerosis and apoptosis in the plaque were determined using dUTP-biotin nick end labeling (TUNEL) staining and immunohistochemistry. In vitro studies utilized the VSMCs for determination of glucagon-like peptide 1 receptor (GLP-1R) and DPP-4 expression and flow cytometry and Western blotting were used to determine apoptosis and protein expression, respectively. Sitagliptin significantly reduced atherosclerotic lesion area (7.00 ± 0.13 vs. 12.80 ± 2.7%, p = 0.003) and suppressed vascular smooth muscle cell apoptosis (2.30 ± 1.34 vs. 4.8 ± 1.93%, p = 0.003) compared with vehicle treatment. In addition, sitagliptin significantly increased the expression of β-catenin in the aortic tissue(0.56 ± 0.13 vs.0.17 ± 0.02, p = 0.008)compared with vehicle treatment. In cultured mouse VSMCs, sitagliptin enhanced GLP-1 activity significantly retarded oxidative stress (H2O2)-induced apoptosis compared with GLP-1 or sitagliptin alone. Sitagliptin increased GLP-1-induced cytosolic levels of β-catenin compared with GLP-1 alone, resulted in increasing the expression of survivin, and suppressed proinflammatory cytokines, i.e., interleukin-6(IL-6) and tumor necrosis factor-alpha(TNF-α), production in response to H2O2. In conclusion, these results indicated that the anti-atherosclerotic effect of sitagliptin is mediated, at least in part, by its inhibition of VSMCs apoptosis.
Collapse
|
25
|
Sámano-Hernández L, Fierro R, Marchal A, Guéant JL, González-Márquez H, Guéant-Rodríguez RM. Beneficial and deleterious effects of sitagliptin on a methionine/choline-deficient diet-induced steatohepatitis in rats. Biochimie 2020; 181:240-248. [PMID: 33333172 DOI: 10.1016/j.biochi.2020.12.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 11/05/2020] [Accepted: 12/10/2020] [Indexed: 02/07/2023]
Abstract
Non-alcoholic fat liver disease (NAFLD) is the most common chronic liver disease in the world. NAFLD is a spectrum of diseases ranging from simple steatosis to hepatic carcinoma. The complexity of pathomechanisms makes treatment difficult. The oral antidiabetic agents, dipeptidyl peptidase four inhibitors (DPP-4i) have been proposed as possible therapeutic agents. This study was performed using a well-established NAFLD model in rats to elucidate whether sitagliptin could prevent steatohepatitis. Rats were fed a methionine/choline-deficient (MCD) diet with or without sitagliptin treatment for six weeks. Liver tissue was examined to estimate sitagliptin's effect on the development of NASH. The MCD diet decreased the SAM/SAH ratio, and increased plasma levels of homocysteine, free fatty acids, and long-chain acylcarnitines in the MCD rats. MMP2 and Col1A2 expression also increased under the MCD diet. Sitagliptin treatment did not reverse these effects and increased steatosis and long-chain acylcarnitines. In conclusion, sitagliptin was ineffective to prevent from NAFLD in the MCD rat model. This result challenges previous data reporting beneficial effects and is consistent with the clinical trials' negative results.
Collapse
Affiliation(s)
- Leslye Sámano-Hernández
- Doctorado en Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana, Mexico City, Mexico.
| | - Reyna Fierro
- Laboratorio de Andrología, Depto. Ciencias de la Salud, D.C.B.S. Universidad Autónoma Metropolitana, Iztapalapa, Mexico City, Mexico.
| | - Aude Marchal
- Laboratoire de Biopathologie, Hôpital Robert-Debré, Avenue du Général-Koenig, 51092, Reims CEDEX, France.
| | - Jean-Louis Guéant
- Laboratoire INSERM UMR_S 1256, Nutrition, Genetics, and Environmental Risk Exposure (NGERE), Nancy, France.
| | - Humberto González-Márquez
- Laboratorio de Expresión Génica, Depto. Ciencias de la Salud, D.C.B.S. Universidad Autónoma Metropolitana, Iztapalapa, Mexico City, Mexico.
| | | |
Collapse
|
26
|
Werida R, Kabel M, Omran G, Shokry A, Mostafa T. Comparative clinical study evaluating the effect of adding Vildagliptin versus Glimepiride to ongoing Metformin therapy on diabetic patients with symptomatic coronary artery disease. Diabetes Res Clin Pract 2020; 170:108473. [PMID: 33002553 DOI: 10.1016/j.diabres.2020.108473] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 08/27/2020] [Accepted: 09/21/2020] [Indexed: 02/08/2023]
Abstract
BACKGROUND AND OBJECTIVE Cardiovascular diseases (CVDs) remain the most identified cause of death in patients with diabetes mellitus (DM). This study aimed to evaluate the effect of adding Vildagliptin versus Glimepiride to ongoing Metformin on the biomarkers of inflammation, thrombosis, and atherosclerosis in T2DM patients with symptomatic coronary artery disease (CAD). METHODS This study included 80 patients with uncontrolled T2DM and symptomatic CAD who were randomized to add either Vildagliptin 50 mg/day "group I" or Glimepiride 4 mg/day "group II" to ongoing Metformin therapy (1000 mg/day). Blood samples were collected at baseline and 3 months after intervention for biochemical analysis of HbA1c %, IL-1β, adiponectin, hsCRP and lipid profile. Additionally atherogenic index (AI) and coronary risk index (CRI) were determined. RESULTS Three months after intervention and as compared to group II (Glimepiride/Metformin), group 1 (Vildagliptin/Metformin) showed significantly lower BMI (28.73 ± 3.48 versus 30.55 ± 3.15; p = 0.02), HbA1c (6.05 ± 0.72 versus 7.06 ± 0.89; p < 0.0001), hsCRP (0.96 ± 0.20 versus 1.72 ± 0.38; p < 0.0001), IL-1β (34.95 ± 10.01 versus 45.13 ± 10.26; p < 0.0001), TC (136 ± 23.45 versus 169 ± 35.72; p < 0.0001), TG (116 ± 29.10 versus 146 ± 56.58; p = 0.005), and CRI (2.47 ± 0.90 versus 3.65 ± 1.19; p < 0.0001) which was associated with significantly higher adiponectin and HDL-C (4.42 ± 1.29 versus 2.52 ± 1.86; p < 0.0001 and 61 ± 23.04 versus 48 ± 12.92; p = 0.003 respectively). CONCLUSION In patients with T2DM and symptomatic CAD, the addition of Vildagliptin to ongoing metformin showed better glycemic control, lower inflammatory markers (IL-1β and hsCRP), higher protective markers (adiponectin and HDL-C) and improved lipid profile compared to Glimepiride/metformin therapy.
Collapse
Affiliation(s)
- Rehab Werida
- Clinical Pharmacy & Pharmacy Practice Department, Faculty of Pharmacy, Damanhour University, Egypt.
| | - Mahmoud Kabel
- Clinical Pharmacy Unit, Alexandria Armed Forces Hospital, Egypt
| | - Gamal Omran
- Biochemistry Department, Faculty of Pharmacy, Damanhour University, Egypt
| | - Ahmed Shokry
- Cardiology Department, Alexandria Armed Forces Hospital, Egypt
| | - Tarek Mostafa
- Clinical Pharmacy Department, Faculty of Pharmacy, Tanta University, Egypt
| |
Collapse
|
27
|
Albiero M, Bonora BM, Fadini GP. Diabetes pharmacotherapy and circulating stem/progenitor cells. State of the art and evidence gaps. Curr Opin Pharmacol 2020; 55:151-156. [PMID: 33271409 DOI: 10.1016/j.coph.2020.10.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 10/22/2020] [Accepted: 10/23/2020] [Indexed: 12/13/2022]
Abstract
Diabetes is burdened with the development of several end-organ complications leading to excess mortality. Though the causes of such organ damage are far from being clarified, diabetes has been redefined as a disease of impaired damage control, wherein ongoing damage is not adequately compensated by activation of repair processes. Bone marrow-derived hematopoietic stem/progenitor cells (HSPCs) and their descendants endothelial progenitor cells (EPCs) have been extensively studied as major players in tissue homeostasis as well as biomarkers of diabetic complication risk. Thus, strategies to raise the levels of circulating HSPCs/EPCs have attracted interest for their potential to modify the future risk of complications. We herein discuss state-of-the-art of the effects exerted by diabetes pharmacotherapy on such cell populations. Further, we highlight which outstanding questions remain to be addressed for a more comprehensive understanding of this topic.
Collapse
Affiliation(s)
- Mattia Albiero
- Department of Medicine, University of Padova, 35128 Padova, Italy; Veneto Institute of Molecular Medicine, 35128 Padova, Italy
| | - Benedetta Maria Bonora
- Department of Medicine, University of Padova, 35128 Padova, Italy; Veneto Institute of Molecular Medicine, 35128 Padova, Italy
| | - Gian Paolo Fadini
- Department of Medicine, University of Padova, 35128 Padova, Italy; Veneto Institute of Molecular Medicine, 35128 Padova, Italy.
| |
Collapse
|
28
|
Perry C, Kapur N, Barrett TA. DPP-4 as a Novel Biomarker for Inflammatory Bowel Disease: Is It Ready for Clinical Use? Inflamm Bowel Dis 2020; 26:1720-1721. [PMID: 31913471 PMCID: PMC7584134 DOI: 10.1093/ibd/izz320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Indexed: 12/09/2022]
Affiliation(s)
- Courtney Perry
- Division of Gastroenterology, Department of Internal Medicine, University of Kentucky, Lexington, USA
| | - Neeraj Kapur
- Division of Gastroenterology, Department of Internal Medicine, University of Kentucky, Lexington, USA
| | - Terrence A Barrett
- Division of Gastroenterology, Department of Internal Medicine, University of Kentucky, Lexington, USA
| |
Collapse
|
29
|
Fadini GP, Morieri ML, Longato E, Bonora BM, Pinelli S, Selmin E, Voltan G, Falaguasta D, Tresso S, Costantini G, Sparacino G, Di Camillo B, Tramontan L, Cattelan AM, Vianello A, Fioretto P, Vettor R, Avogaro A. Exposure to dipeptidyl-peptidase-4 inhibitors and COVID-19 among people with type 2 diabetes: A case-control study. Diabetes Obes Metab 2020; 22:1946-1950. [PMID: 32463179 PMCID: PMC7283835 DOI: 10.1111/dom.14097] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 05/20/2020] [Accepted: 05/24/2020] [Indexed: 12/17/2022]
Abstract
Because other coronaviruses enter the cells by binding to dipeptidyl-peptidase-4 (DPP-4), it has been speculated that DPP-4 inhibitors (DPP-4is) may exert an activity against severe acute respiratory syndrome coronavirus 2. In the absence of clinical trial results, we analysed epidemiological data to support or discard such a hypothesis. We retrieved information on exposure to DPP-4is among patients with type 2 diabetes (T2D) hospitalized for COVID-19 at an outbreak hospital in Italy. As a reference, we retrieved information on exposure to DPP-4is among matched patients with T2D in the same region. Of 403 hospitalized COVID-19 patients, 85 had T2D. The rate of exposure to DPP-4is was similar between T2D patients with COVID-19 (10.6%) and 14 857 matched patients in the region (8.8%), or 793 matched patients in the local outpatient clinic (15.4%), 8284 matched patients hospitalized for other reasons (8.5%), and when comparing 71 patients hospitalized for COVID-19 pneumonia (11.3%) with 351 matched patients with pneumonia of another aetiology (10.3%). T2D patients with COVID-19 who were on DPP-4is had a similar disease outcome as those who were not. In summary, we found no evidence that DPP-4is might affect hospitalization for COVID-19.
Collapse
Affiliation(s)
| | | | - Enrico Longato
- Department of Information EngineeringUniversity of PadovaPadovaItaly
| | | | | | - Elisa Selmin
- Department of MedicineUniversity of PadovaPadovaItaly
| | | | | | - Silvia Tresso
- Department of MedicineUniversity of PadovaPadovaItaly
| | | | | | | | | | | | - Andrea Vianello
- Department of Cardiothoracic Vascular Sciences and Public HealthUniversity of PadovaPadovaItaly
| | | | | | | |
Collapse
|
30
|
Morieri ML, Bonora BM, Longato E, Di Camilo B, Sparacino G, Tramontan L, Avogaro A, Fadini GP. Exposure to dipeptidyl-peptidase 4 inhibitors and the risk of pneumonia among people with type 2 diabetes: Retrospective cohort study and meta-analysis. Diabetes Obes Metab 2020; 22:1925-1934. [PMID: 32691492 DOI: 10.1111/dom.14142] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 07/16/2020] [Accepted: 07/16/2020] [Indexed: 01/08/2023]
Abstract
AIM Concerns have been raised that dipeptidyl-peptidase 4 inhibitors (DPP-4i) may increase the risk of pneumonia. We analysed observational data and clinical trials to explore whether use of DPP-4i modifies the risk of pneumonia. METHODS We identified patients with diabetes in the Veneto region administrative database and performed propensity score matching between new users of DPP-4 inhibitors and new users of other oral glucose-lowering medications (OGLMs). We compared the rate of hospitalization for pneumonia between matched cohorts using the Cox proportional hazard model. The same analysis was repeated using the database of a local diabetes outpatient clinic. We retrieved similar observational studies from the literature to perform a meta-analysis. Results from trials reporting pneumonia rates among patients randomized to DPP-4 inhibitors versus placebo/active comparators were also meta-analysed. RESULTS In the regional database, after matching 6495 patients/group, new users of DPP-4 inhibitors had a lower rate of hospitalization for pneumonia than new users of other OGLMs (HR 0.76; 95% CI 0.61-0.95). In the outpatient database, after matching 867 patients/group, new users of DPP-4 inhibitors showed a non-significantly lower rate of hospitalization for pneumonia (HR 0.65; 95% CI 0.41-1.04). The meta-analysis of observational studies yielded an overall non-significant lower risk of hospitalization for pneumonia among DPP-4 inhibitor users (RR 0.81; 95% CI 0.65-1.01). The meta-analysis of randomized controlled trials showed no overall effect of DPP-4 inhibitors on pneumonia risk (RR 1.06; 95% CI 0.93-1.20). CONCLUSION The use of DPP-4 inhibitors can be considered as safe with regard to the risk of pneumonia.
Collapse
Affiliation(s)
| | | | - Enrico Longato
- Department of Information Engineering, University of Padova, Padova, Italy
| | - Barbara Di Camilo
- Department of Information Engineering, University of Padova, Padova, Italy
| | - Giovanni Sparacino
- Department of Information Engineering, University of Padova, Padova, Italy
| | - Lara Tramontan
- Arsenàl.IT, Veneto's Research Centre for eHealth Innovation, Treviso, Italy
| | - Angelo Avogaro
- Department of Medicine, University of Padova, Padova, Italy
| | | |
Collapse
|
31
|
Abstract
Previous studies have demonstrated that individuals with type 2 diabetes mellitus (T2DM) have a two- to fourfold propensity to develop cardiovascular disease (CVD) than nondiabetic population, making CVD a major cause of death and disability among people with T2DM. The present treatment options for management of diabetes propose the earlier and more frequent use of new antidiabetic drugs that could control hyperglycaemia and reduce the risk of cardiovascular events. Findings from basic and clinical studies pointed out DPP-4 inhibitors as potentially novel pharmacological tools for cardioprotection. There is a growing body of evidence suggesting that these drugs have ability to protect the heart against acute ischaemia-reperfusion injury as well as reduce the size of infarction. Consequently, the prevention of degradation of the incretin hormones by the use of DPP-4 inhibitors represents a new strategy in the treatment of patients with T2DM and reduction of CV events in these patients. Here, we discuss the cardioprotective effects of DPP-4 inhibitors as well as proposed pathways that these hypoglycaemic agents target in the cardiovascular system.
Collapse
|
32
|
Dipeptidyl Peptidase-4 Inhibitor Decreases Allograft Vasculopathy Via Regulating the Functions of Endothelial Progenitor Cells in Normoglycemic Rats. Cardiovasc Drugs Ther 2020; 35:1111-1127. [PMID: 32623597 DOI: 10.1007/s10557-020-07013-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
PURPOSE Chronic rejection induces the occurrence of orthotopic allograft transplantation (OAT) vasculopathy, which results in failure of the donor organ. Numerous studies have demonstrated that in addition to regulating blood sugar homeostasis, dipeptidyl peptidase-4 (DPP-4) inhibitors can also provide efficacious therapeutic and protective effects against cardiovascular diseases. However, their effects on OAT-induced vasculopathy remain unknown. Thus, the aim of this study was to investigate the direct effects of sitagliptin on OAT vasculopathy in vivo and in vitro. METHODS The PVG/Seac rat thoracic aorta graft to ACI/NKyo rat abdominal aorta model was used to explore the effects of sitagliptin on vasculopathy. Human endothelial progenitor cells (EPCs) were used to investigate the possible underlying mechanisms. RESULTS We demonstrated that sitagliptin decreases vasculopathy in OAT ACI/NKyo rats. Treatment with sitagliptin decreased BNP and HMGB1 levels, increased GLP-1 activity and stromal cell-derived factor 1α (SDF-1α) expression, elevated the number of circulating EPCs, and improved the differentiation possibility of mononuclear cells to EPCs ex vivo. However, in vitro studies showed that recombinant B-type natriuretic peptide (BNP) and high mobility group box 1 (HMGB1) impaired EPC function, whereas these phenomena were reversed by glucagon-like peptide 1 (GLP-1) receptor agonist treatment. CONCLUSIONS We suggest that the mechanisms underlying sitagliptin-mediated inhibition of OAT vasculopathy probably occur through a direct increase in GLP-1 activity. In addition to the GLP-1-dependent pathway, sitagliptin may regulate SDF-1α levels and EPC function to reduce OAT-induced vascular injury. This study may provide new prevention and treatment strategies for DPP-4 inhibitors in chronic rejection-induced vasculopathy.
Collapse
|
33
|
Sitagliptin on Carotid Intima-Media Thickness in Type 2 Diabetes Mellitus Patients and Anemia: A Subgroup Analysis of the PROLOGUE Study. Mediators Inflamm 2020; 2020:8143835. [PMID: 32454794 PMCID: PMC7238362 DOI: 10.1155/2020/8143835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 04/07/2020] [Accepted: 04/11/2020] [Indexed: 11/21/2022] Open
Abstract
Introduction Randomized clinical trials have not shown an additional clinical benefit of sitagliptin treatment over conventional treatment alone. However, studies of sitagliptin treatment have not examined the relationship between anemia and treatment group outcomes. Methods The PROLOGUE study is a prospective clinical trial of 442 participants with type 2 diabetes mellitus (T2DM) randomized to sitagliptin treatment or conventional treatment which showed no treatment differences [Estimated mean (± standard error) common carotid intima-media thickness (CIMT) was 0.827 ± 0.007 mm and 0.837 ± 0.007 mm, respectively, with a mean difference of -0.009 mm (97.2% CI −0.028 to 0.011, p = 0.309) at 24 mo of follow-up]. This is a post hoc subanalysis using data obtained from the PROLOGUE study; the study population was divided into anemic groups (n = 94) and nonanemic group (n = 343) based on hemoglobin level. And we analyzed for the changes in each CIMT parameter from baseline to 24 months in subgroups. Results The treatment group difference in baseline-adjusted mean common carotid artery- (CCA-) IMT at 24 months was −0.003 mm (95% CI −0.022 to 0.015, p = 0.718) in the nonanemic subgroup and −0.007 mm (95% CI −0.043 to 0.030, p = 0.724) in the anemic subgroup. Although there were no significant differences in the other CIMT parameters between the treatment groups in the anemic subgroup, the changes in mean and max ICA-IMT at 24 months in the nonanemic subgroup were significantly lower in the sitagliptin group than the conventional group [−0.104 mm (95% CI −0.182 to −0.026), p = 0.009 and −0.142 mm (−0.252 to −0.033), p = 0.011, respectively]. Conclusion These data suggest that nonanemia may indicate a potentially large subgroup of those with T2DM patients that sitagliptin therapy has a better antiatherosclerotic effect than conventional therapy. Further research is needed to confirm these preliminary observations.
Collapse
|
34
|
Liu H, Guo L, Xing J, Li P, Sang H, Hu X, Du Y, Zhao L, Song R, Gu H. The protective role of DPP4 inhibitors in atherosclerosis. Eur J Pharmacol 2020; 875:173037. [PMID: 32097656 DOI: 10.1016/j.ejphar.2020.173037] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 01/30/2020] [Accepted: 02/21/2020] [Indexed: 12/16/2022]
Abstract
Diabetes is a chronic non-communicable disease whose incidence continues to grow rapidly, and it is one of the most serious and critical public health problems. Diabetes complications, especially atherosclerosis-related chronic vascular complications, are a serious threat to human life and health. Growing evidence suggests that dipeptidyl peptidase 4 (DPP4) inhibitors, beyond their role in improving glycemic control, are helpful in ameliorating endothelial dysfunction in humans and animal models of T2DM. In fact, DPP4 inhibitors have been shown by successive studies to play a protective effect against vascular complications. On one hand, in addition to their hypoglycemic effects, DPP4 inhibitors participate in the control of atherosclerotic risk factors by regulating blood lipids and lowering blood pressure. On the other hand, DPP4 inhibitors exert anti-atherosclerotic effects directly through multiple mechanisms, including improving endothelial cell dysfunction, increasing circulating endothelial progenitor cell (EPCs) levels, regulating mononuclear macrophages and smooth muscle cells, inhibiting inflammation and oxidative stress and improving plaque instability. Herein, we review the beneficial roles of DPP4 inhibitors in atherosclerosis as detailed.
Collapse
Affiliation(s)
- Hengdao Liu
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Lingli Guo
- Department of General Medicine, The Third People's Provincial Hospital of Henan Province, Zhengzhou, 450000, Henan, China
| | - Junhui Xing
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Peicheng Li
- Department of Cardiology, The First Affiliated Hospital of Xinxiang Medical University. Xinxiang, Henan, 453100, China
| | - Haiqiang Sang
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Xiaofang Hu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China; National Clinical Research Center for Geriatric Disorders (Xiangya), Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Yunpeng Du
- Department of Cardiology, Huixian People's Hospital, Xinxiang, Henan, 453600, China
| | - Liangping Zhao
- Department of Cardiology, The First Affiliated Hospital of Xinxiang Medical University. Xinxiang, Henan, 453100, China
| | - Ruipeng Song
- Department of Endocrinology, The Third People's Provincial Hospital of Henan Province, Zhengzhou, 450000, Henan, China.
| | - Heping Gu
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| |
Collapse
|
35
|
Tomovic K, Ilic BS, Smelcerovic Z, Miljkovic M, Yancheva D, Kojic M, Mavrova AT, Kocic G, Smelcerovic A. Benzimidazole-based dual dipeptidyl peptidase-4 and xanthine oxidase inhibitors. Chem Biol Interact 2020; 315:108873. [DOI: 10.1016/j.cbi.2019.108873] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 10/08/2019] [Accepted: 10/21/2019] [Indexed: 12/13/2022]
|
36
|
4-Hydroxyderricin Isolated from the Sap of Angelica keiskei Koidzumi: Evaluation of Its Inhibitory Activity towards Dipeptidyl Peptidase-IV. Sci Pharm 2019. [DOI: 10.3390/scipharm87040030] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Angelica keiskei sap is used as a blood-sugar reducer in Indonesia, however its molecular mechanism has not yet been explored. 4-hydroxyderricin (4-HD) is one of the major components extracted from A. keiskei sap. The aim of this work was to isolate 4-HD from the sap of A. keiskei planted in Lombok, Indonesia, and to study in silico and in vitro mechanisms against dipeptidyl peptidase-IV (DPP-IV). The dried sap was submitted to liquid–liquid extraction using solvents with different polarity. Further purification processing was conducted using gradient elution column chromatography. The isolated compound was a yellowish powder, m/z 339.2215 [M + H]+, which was confirmed as 4-HD. Sitagliptin, a DPP-IV inhibitor, was employed as the positive control for both the in silico and in vitro studies. It was indicated that 4-HD interacts with Glu206 and Phe357, important amino acid residues in the DPP-IV binding pocket. These interactions are similar to that of sitagliptin. The affinity of 4-HD (inhibition constant (Ki) = 3.99 μM) to DPP-IV is lower than that of sitagliptin (inhibition constant (Ki) = 0.17 μM). Furthermore, in vitro study showed that 4-HD inhibits DPP-IV (IC50 = 81.44 μM) weaker than for sitagliptin (IC50 = 0.87 μM). We concluded that 4- HD might have potential in inhibiting DPP-IV. However, by considering the polar interaction of sitagliptin with DPP-IV, a further structure modification of 4-HD, e.g., by introducing a polar moiety such as a hydroxyl group, might be needed to obtain stronger activity as a DPP-IV inhibitor.
Collapse
|
37
|
Tomovic K, Ilic BS, Miljkovic M, Dimov S, Yancheva D, Kojic M, Mavrova AT, Kocic G, Smelcerovic A. Benzo[4,5]thieno[2,3-d]pyrimidine phthalimide derivative, one of the rare noncompetitive inhibitors of dipeptidyl peptidase-4. Arch Pharm (Weinheim) 2019; 353:e1900238. [PMID: 31710123 DOI: 10.1002/ardp.201900238] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 10/07/2019] [Accepted: 10/16/2019] [Indexed: 11/11/2022]
Abstract
A small library of benzo[4,5]thieno[2,3-d]pyrimidine phthalimide and amine derivatives was evaluated for inhibitory activity against dipeptidyl peptidase-4 (DPP-4). The phthalimide derivatives exhibited better activity than the amine precursors, with 2-(2-(3-chlorobenzyl)-5,6,7,8-tetrahydrobenzo[4,5]thieno[2,3-d]pyrimidin-4-yl)isoindoline-1,3-dione (compound 14) as the most effective inhibitor (IC50 = 34.17 ± 5.11 μM). The five most potent selected inhibitors did not show cytotoxicity to a greater extent on Caco-2 cells, even at a concentration of 250 μM. Compound 14 is considered as a novel representative of the rare noncompetitive DPP-4 inhibitors. Molecular docking and dynamics simulation indicated the importance of the Tyr547, Lys554, and Trp629 residues of DPP-4 in the formation of the enzyme-inhibitor complex. These observations could be potentially utilized for the rational design and optimization of novel (structurally similar, with phthalimide moiety, or different) noncompetitive DPP-4 inhibitors, which are anyway rare, but favorable in terms of the saturation of substrate competition.
Collapse
Affiliation(s)
- Katarina Tomovic
- Department of Pharmacy, Faculty of Medicine, University of Nis, Nis, Serbia
| | - Budimir S Ilic
- Department of Chemistry, Faculty of Medicine, University of Nis, Nis, Serbia
| | - Marija Miljkovic
- Laboratory for Molecular Microbiology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Stefan Dimov
- Department of Organic Synthesis, University of Chemical Technology and Metallurgy, Sofia, Bulgaria
| | - Denitsa Yancheva
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Science, Sofia, Bulgaria
| | - Milan Kojic
- Laboratory for Molecular Microbiology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Anelia T Mavrova
- Department of Organic Synthesis, University of Chemical Technology and Metallurgy, Sofia, Bulgaria
| | - Gordana Kocic
- Institute of Biochemistry, Faculty of Medicine, University of Nis, Nis, Serbia
| | - Andrija Smelcerovic
- Department of Chemistry, Faculty of Medicine, University of Nis, Nis, Serbia
| |
Collapse
|
38
|
Lee CH, Hsieh MJ, Chang SH, Hung KC, Wang CJ, Hsu MY, Juang JH, Hsieh IC, Wen MS, Liu SJ. Nanofibrous vildagliptin-eluting stents enhance re-endothelialization and reduce neointimal formation in diabetes: in vitro and in vivo. Int J Nanomedicine 2019; 14:7503-7513. [PMID: 31686818 PMCID: PMC6751553 DOI: 10.2147/ijn.s211898] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 07/16/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The high lifetime risk of vascular disease is one of the important issues that plague patients with diabetes mellitus. Systemic oral vildagliptin administration favors endothelial recovery and inhibits smooth muscle cell (SMC) proliferation. However, the localized release of vildagliptin in the diabetic vessel damage has seldom been investigated. RESEARCH DESIGN AND METHODS In this work, nanofiber-eluting stents that loaded with vildagliptin, a dipeptidyl peptidase-4 enzyme (DPP-4) inhibitor, was fabricated to treat diabetic vascular disease. To prepare nanofibers, the poly (D,L)-lactide-co-glycolide (PLGA) and vildagliptin were mixed using hexafluoroisopropanol and electrospinning process. In vitro and in vivo release rates of the vildagliptin were characterized using high-performance liquid chromatography. RESULTS Effective vildagliptin concentrations were delivered for more than 28 days from the nanofibrous membranes coating on the surface of the stents in vitro and in vivo. The vildagliptin-eluting PLGA membranes greatly accelerated the recovery of diabetic endothelia and reduced SMC hyperplasia. The type I collagen content of the diabetic vascular intimal area that was treated by vildagliptin-eluting stents was lower than that of the non-vildagliptin-eluting group. CONCLUSION The experimental results revealed that stenting with vildagliptin-eluting PLGA membranes could potentially promote healing for diabetic arterial diseases.
Collapse
Affiliation(s)
- Chen-Hung Lee
- Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital-Linkou, Chang Gung University College of Medicine, Linkou, Taiwan
| | - Ming-Jer Hsieh
- Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital-Linkou, Chang Gung University College of Medicine, Linkou, Taiwan
| | - Shang-Hung Chang
- Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital-Linkou, Chang Gung University College of Medicine, Linkou, Taiwan
| | - Kuo-Chun Hung
- Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital-Linkou, Chang Gung University College of Medicine, Linkou, Taiwan
| | - Chao-Jan Wang
- Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital, Linkou, Tao-Yuan, Taiwan
| | - Ming-Yi Hsu
- Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital, Linkou, Tao-Yuan, Taiwan
| | - Jyuhn-Huarng Juang
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Chang Gung University and Chang Gung Memorial Hospital, Tao-Yuan, Taiwan
| | - I-Chang Hsieh
- Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital-Linkou, Chang Gung University College of Medicine, Linkou, Taiwan
| | - Ming-Shien Wen
- Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital-Linkou, Chang Gung University College of Medicine, Linkou, Taiwan
| | - Shih-Jung Liu
- Department of Mechanical Engineering, Chang Gung University, Tao-Yuan, Taiwan
- Department of Orthopedic Surgery, Chang Gung Memorial Hospital-Linkou, Tao-Yuan33305, Taiwan
| |
Collapse
|
39
|
Abouelkheir M, El-Metwally TH. Dipeptidyl peptidase-4 inhibitors can inhibit angiotensin converting enzyme. Eur J Pharmacol 2019; 862:172638. [PMID: 31491403 DOI: 10.1016/j.ejphar.2019.172638] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 08/30/2019] [Accepted: 09/02/2019] [Indexed: 12/16/2022]
Abstract
Angiotensin-1 converting enzyme inhibitors (ACEIs) improve insulin sensitivity. Inhibitors of dipeptidyl peptidase-4 (DPP-4) are anti-diabetic drugs with several cardio-renal effects. Both ACE and DPP-4 share common features. Thus, we tested if they could be inhibited by one inhibitor. First, in silico screening was used to investigate the ability of different DPP-4 inhibitors or ACEIs to interact with DPP-4 and ACE. The results of screening were then extrapolated into animal study. Fifty Sprague Dawley rats were randomly assigned into 5 groups treated with vehicle, captopril, enalapril, linagliptin or sitagliptin. Both low and high doses of each drug were tested. Baseline blood samples and samples at days 1, 8, 10, 14 were used to measure plasma DPP-4 and ACE activities and angiotensin II levels. Active glucagon-like peptide-1 (GLP-1) levels were measured after oral glucose challenge. All tested DPP-4 inhibitors could interact with ACE at a relatively reasonable binding energy while most of the ACEIs only interacted with DPP-4 at a predicted high inhibition constant. In rats, high dose of sitagliptin was able to inhibit ACE activity and reduce angiotensin II levels while linagliptin had only a mild effect. ACEIs did not significantly affect DPP-4 activity or prevent GLP-1 degradation. It seems that some DPP-4 inhibitors could inhibit ACE and this could partially explain the cardio-renal effects of these drugs. Further studies are required to determine if such inhibition could take place in clinical settings.
Collapse
Affiliation(s)
- Mohamed Abouelkheir
- Department of Pharmacology and Therapeutics, College of Medicines, Jouf University, Sakaka, Saudi Arabia; Pharmacology department, Faculty of Medicine, Mansoura University, Mansoura, Egypt.
| | - Tarek H El-Metwally
- Departments of Medical Biochemistry, Jouf University, Sakaka, Saudi Arabia; Faculty of Medicine, Assiut University, Assiut, Egypt
| |
Collapse
|
40
|
Nam DH, Park J, Park SH, Kim KS, Baek EB. Effect of gemigliptin on cardiac ischemia/reperfusion and spontaneous hypertensive rat models. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2019; 23:329-334. [PMID: 31496870 PMCID: PMC6717789 DOI: 10.4196/kjpp.2019.23.5.329] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 07/23/2019] [Accepted: 07/24/2019] [Indexed: 02/06/2023]
Abstract
Diabetes is associated with an increased risk of cardiovascular complications. Dipeptidyl peptidase-4 (DPP-IV) inhibitors are used clinically to reduce high blood glucose levels as an antidiabetic agent. However, the effect of the DPP-IV inhibitor gemigliptin on ischemia/reperfusion (I/R)-induced myocardial injury and hypertension is unknown. In this study, we assessed the effects and mechanisms of gemigliptin in rat models of myocardial I/R injury and spontaneous hypertension. Gemigliptin (20 and 100 mg/kg/d) or vehicle was administered intragastrically to Sprague-Dawley rats for 4 weeks before induction of I/R injury. Gemigliptin exerted a preventive effect on I/R injury by improving hemodynamic function and reducing infarct size compared to the vehicle control group. Moreover, administration of gemigliptin (0.03% and 0.15%) powder in food for 4 weeks reversed hypertrophy and improved diastolic function in spontaneously hypertensive rats. We report here a novel effect of the gemigliptin on I/R injury and hypertension.
Collapse
Affiliation(s)
- Dae-Hwan Nam
- Predictive Model Research Center, Korea Institute of Toxicology, Daejeon 34114, Korea.,Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA
| | - Jinsook Park
- Corporate R&D, LG Chem, Ltd., Daejeon 34122, Korea
| | - Sun-Hyun Park
- Predictive Model Research Center, Korea Institute of Toxicology, Daejeon 34114, Korea
| | - Ki-Suk Kim
- Predictive Model Research Center, Korea Institute of Toxicology, Daejeon 34114, Korea.,Department of Human and Environmental Toxicology, University of Science and Technology, Daejeon 34113, Korea
| | - Eun Bok Baek
- Corporate R&D, LG Chem, Ltd., Daejeon 34122, Korea
| |
Collapse
|
41
|
Vildagliptin and G-CSF Improved Angiogenesis and Survival after Acute Myocardial Infarction. Arch Med Res 2019; 50:133-141. [PMID: 31495390 DOI: 10.1016/j.arcmed.2019.07.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 07/06/2019] [Accepted: 07/23/2019] [Indexed: 12/18/2022]
Abstract
BACKGROUND Myocardial infarction (MI) is one of the most important diseases that has stimulated interest in understanding cardiac function recovery. SDF-1 is a chemotactic factor and a pro-angiogenic molecule; SDF-1 degradation is inhibited by dipeptidyl peptidase-4 (DPP4) inhibitors, such as vildagliptin. We investigated whether vildagliptin affects angiogenesis in MI and improves cardiac function recovery. METHODS We established a therapeutic strategy using vildagliptin and G-CSF treatment to improve cardiac function recovery after MI in mice. RESULTS Vildagliptin treatment increased the myocardial homing of circulating CXCR4+ stem cells and angiogenesis. The combination of vildagliptin and G-CSF treatment attenuated cardiac remodeling and improved survival and cardiac function after MI. Vildagliptin treatment induced active SDF-1, which preserved the cardiac SDF-1-CXCR4 homing axis for MI injury. CONCLUSION Vildagliptin and G-CSF induced stem cell mobilization and increased angiogenesis as a therapeutic strategy for improving survival and cardiac function after MI.
Collapse
|
42
|
Birnbaum Y, Tran D, Bajaj M, Ye Y. DPP-4 inhibition by linagliptin prevents cardiac dysfunction and inflammation by targeting the Nlrp3/ASC inflammasome. Basic Res Cardiol 2019; 114:35. [PMID: 31388770 DOI: 10.1007/s00395-019-0743-0] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 07/26/2019] [Indexed: 12/16/2022]
Abstract
We compared the effects of linagliptin (Lina, a DPP4 inhibitor) and GLP-1 receptor activation by exenatide followed by exendin-4 in an infusion pump (EX) on infarct size (IS), post-infarction activation of the inflammasome and remodeling in wild-type (WT) and db/db diabetic mice. Mice underwent 30 min ischemia followed by 24 h reperfusion. IS was assessed by TTC. Additional mice underwent permanent coronary artery occlusion. Echocardiography was performed 2w after infarction. Activation of the inflammasome in the border zone of the infarction was assessed by rt-PCR and ELISA 2w after reperfusion. Further in vitro experiments were done using primary human cardiofibroblasts and cardiomyocytes exposed to simulated ischemia-reoxygenation. Lina and EX limited IS in both the WT and the db/db mice. Lina and EX equally improved ejection fraction in both the WT and the db/db mice. mRNA levels of ASC, NALP3, IL-1β, IL-6, Collagen-1, and Collagen-3 were higher in the db/db mice than in the WT mice. Infarction increased these levels in the WT and db/db mice. Lina more than EX attenuated the increase in ASC, NALP3, IL-1β, IL-6, Collagen-1 and Collagen-3, TNFα and IL-1β, and decreased apoptosis, especially in the db/db mice. In vitro experiments showed that Lina, but not EX, attenuated the increase in TLR4 expression, an effect that was dependent on p38 activation with downstream upregulation of Let-7i and miR-146b levels. Lina and EX had similar effects on IS and post-infarction function, but Lina attenuated the activation of the inflammasome and the upregulation of collagen-1 and collagen-3 more than direct GLP-1 receptor activation. This effect depends on p38 activation with downstream upregulation of miR-146b levels that suppresses TLR4 expression.
Collapse
Affiliation(s)
- Yochai Birnbaum
- Section of Cardiology, Baylor College of Medicine, and the Texas Heart Institute, Baylor St Luke Medical Center, Houston, TX, USA.
| | - Dat Tran
- School of Medicine, University of Texas Medical Branch, Galveston, TX, USA
| | - Mandeep Bajaj
- Section of Endocrinology, Baylor College of Medicine, Houston, TX, USA
| | - Yumei Ye
- The Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|
43
|
Fadini GP, Frison V, Simioni N, Lapolla A, Gatti A, Bossi AC, Del Buono A, Fornengo P, Gottardo L, Laudato M, Perseghin G, Bonora E, Avogaro A. Changes in the Prescription of Glucose-Lowering Medications in Patients With Type 2 Diabetes Mellitus After a Cardiovascular Event: A Call to Action From the DATAFILE Study. J Am Heart Assoc 2019; 8:e012244. [PMID: 31269877 PMCID: PMC6662129 DOI: 10.1161/jaha.119.012244] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Background Evidence accumulated that some glucose‐lowering medications protect against cardiovascular events (CVEs) in patients with type 2 diabetes mellitus (T2DM) and established cardiovascular disease. The present study evaluated if and how glucose‐lowering medication prescription pattern changes in T2DM after a CVE. Methods and Results DATAFILE (Diabetes Therapy After a Cardiovascular Event) was a retrospective multicenter study conducted at 12 diabetes mellitus specialist outpatient clinics in Italy. We identified T2DM patients with an incident CVE for whom a follow‐up visit was available after the event. We selected control T2DM patients without an incident CVE, who were matched with cases for age, sex, known diabetes mellitus duration, baseline hemoglobin A1c, kidney function, and follow‐up time. We extracted clinical variables and compared prescribed therapies at baseline and follow‐up. We included 563 patients with and 497 matched patients without an incident CVE. As expected, patients with a subsequent CVE had a higher baseline prevalence of ischemic heart disease. After a median of 9.5 months, in patients with versus those without a CVE, there was a significant increase in the prescription of beta‐blockers, loop diuretics, dual antiplatelet therapy, and, among glucose‐lowering medications, a significant decrease in metformin. Hemoglobin A1c marginally declined only in the control group, whereas low‐density lipoprotein cholesterol decreased only in patients with CVE. Conclusions This study highlights that occurrence of a CVE in T2DM patients did not prime the prescription of glucose‐lowering medications provided with cardiovascular protective effects, even though glucose control remained poor. These data emphasize the need to optimize the therapeutic regimen of T2DM patients with established cardiovascular disease, according to updated guidelines.
Collapse
Affiliation(s)
| | - Vera Frison
- 2 Diabetology Service ULSS6 Cittadella Italy
| | | | | | - Adriano Gatti
- 4 Diabetology Service ASL Napoli 1 Centro Napoli Italy
| | | | | | - Paolo Fornengo
- 7 Department of Medicine Internal Medicine 3 University Hospital of Turin Italy
| | | | | | - Gianluca Perseghin
- 10 Department of Medicine and Rehabilitation Policlinico di Monza and University of Milan Bicocca Monza Italy
| | - Enzo Bonora
- 11 Division of Endocrinology, Diabetes and Metabolism University and Hospital Trust of Verona Verona Italy
| | | |
Collapse
|
44
|
Ahn CH, Lim S. Effects of Thiazolidinedione and New Antidiabetic Agents on Stroke. J Stroke 2019; 21:139-150. [PMID: 31161759 PMCID: PMC6549069 DOI: 10.5853/jos.2019.00038] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 04/05/2019] [Indexed: 12/11/2022] Open
Abstract
Patients with hyperglycemia are at a high risk of cardio- and cerebrovascular diseases. Diabetes patients also have poor outcomes after cerebrovascular disease development. Several classes of drugs are used for diabetes management in clinical practice. Thiazolidinedione (TZD) was introduced in the late 1990s, and new antidiabetic agents have been introduced since 2000. After issues with rosiglitazone in 2007, the U.S. Food and Drug Administration strongly recommended that trials investigating cardiovascular risk associated with new antidiabetic medications should be conducted before drug approval in the United States, to prove the safety of these new drugs and to determine their superiority to previous medications. Currently, results are available from two studies with TZD focusing on cardiovascular diseases, including stroke, and from 12 cardiovascular outcome trials focusing on major adverse cardiovascular events associated with new antidiabetic agents (four with dipeptidyl peptidase-4 inhibitors, three with sodium-glucose cotransporter-2 inhibitors, and five with glucagon-like peptide-1 analogues). These studies showed different results for primary cardiovascular outcomes and stroke prevention. It is important to determine whether prescription of TZD or new antidiabetic medications compared to conventional treatment, such as sulfonylurea or insulin, is better for stroke management. Furthermore, it is unclear whether drugs in the same class show greater safety and efficacy than other drugs for stroke management.
Collapse
Affiliation(s)
- Chang Ho Ahn
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Soo Lim
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea.,Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| |
Collapse
|
45
|
Dipeptidyl dipeptidase-4 inhibitor recovered ischemia through an increase in vasculogenic endothelial progenitor cells and regeneration-associated cells in diet-induced obese mice. PLoS One 2019; 14:e0205477. [PMID: 30889182 PMCID: PMC6424405 DOI: 10.1371/journal.pone.0205477] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 02/18/2019] [Indexed: 01/21/2023] Open
Abstract
Metabolic syndrome (MS), overlapping type 2 diabetes, hyperlipidemia, and/or hypertension, owing to high-fat diet, poses risk for cardiovascular disease. A critical feature associated with such risk is the functional impairment of endothelial progenitor cells (EPCs). Dipeptidyl dipeptidase-4 inhibitors (DPP-4 i) not only inhibit degradation of incretins to control blood glucose levels, but also improve EPC bioactivity and induce anti-inflammatory effects in tissues. In the present study, we investigated the effects of such an inhibitor, MK-06266, in an ischemia model of MS using diet-induced obese (DIO) mice. EPC bioactivity was examined in MK-0626-administered DIO mice and a non-treated control group, using an EPC colony-forming assay and bone marrow cKit+ Sca-1+ lineage-cells, and peripheral blood-mononuclear cells. Our results showed that, in vitro, the effect of MK-0626 treatment on EPC bioactivities and differentiation was superior compared to the control. Furthermore, microvascular density and pericyte-recruited arteriole number increased in MK-0626-administered mice, but not in the control group. Lineage profiling of isolated cells from ischemic tissues revealed that MK-0626 administration has an inhibitory effect on unproductive inflammation. This occurred via a decrease in the influx of total blood cells and pro-inflammatory cells such as neutrophils, total macrophages, M1, total T-cells, cytotoxic T-cells, and B-cells, with a concomitant increase in number of regeneration-associated cells, such as M2/M ratio and Treg/T-helper. Laser Doppler analysis revealed that at day 14 after ischemic injury, blood perfusion in hindlimb was greater in MK-0626-treated DIO mice, but not in control. In conclusion, the DPP-4 i had a positive effect on EPC differentiation in MS model of DIO mice. Following ischemic injury, DPP-4 i sharply reduced recruitment of pro-inflammatory cells into ischemic tissue and triggered regeneration and reparation, making it a promising therapeutic agent for MS treatment.
Collapse
|
46
|
Hussain M, Rafique MA, Iqbal J, Akhtar L. Effect of sitagliptin and glimepiride on C-reactive protein (CRP) in overweight Type-2 diabetic patients. Pak J Med Sci 2019; 35:383-387. [PMID: 31086519 PMCID: PMC6500845 DOI: 10.12669/pjms.35.2.645] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Objectives To compare the anti-inflammatory effect of sitagliptin and glimepiride by measuring CRP in overweight Type-2 diabetic patients. Methods This clinical trial was conducted at diabetic clinic of Islam Central Hospital, Sialkot over a period of six months from June to November 2017. A total of 110 overweight Type-2 diabetic patients were divided in to two groups. Group-A was given tablet sitagliptin 50mg while Group-B was given tablet glimepiride 2mg for a period of 12 weeks. The dose was titrated according to blood sugar level. The primary outcome was measuring changes in CRP while secondary outcomes was changes in BMI, blood sugar, HbA1C, lipid profile and CRP from baseline in both study group using SPSS 16. Results After 12 weeks treatment, body weight increased in glimepiride but slightly reduced in sitagliptin, however comparison between them was non significant (p=0.07). Although both groups reduced blood sugar and HbA1c but comparison between them was non significant (p=0.59 and p=0.17 respectively) value. However lipid profile improved significantly in sitagliptin vs. glimepiride group i.e total cholesterol (-25±32.5 vs +1.5±45.4 P=0.02) triglycerides (-19±44.6 vs-1.8±48.7 P=0.001) LDL- cholesterol (-10±22.4 vs-0.8±18.7 P=0.001) HDL-cholesterol (-2.6±6.2 vs 1.2±5.2 P=0.03).Sitagliptin significantly reduced CRP in comparison to glimepiride (-2.3±1.8 vs0.8±1.5 P=0.001). Conclusion Sitagliptin has strong anti inflammatory effect marked by reduction in CRP level in comparison to glimepiride in overweight type-2 diabetic patients. It also exerted beneficial effect on glycemic and lipid profiles.
Collapse
Affiliation(s)
- Mazhar Hussain
- Dr. Mazhar Hussain, MBBS, M.Phil (Pharmacology). Associate Professor of Pharmacology, Department of Pharmacology, Sheikh Zayed Medical College, Rahim Yar Khan, Punjab, Pakistan
| | - Muhammad Aamir Rafique
- Muhammad Aamir Rafique, MBBS, M.Phil (Pharmacology). Assistant Professor of Pharmacology, Department of Pharmacology, Islam Medical, Sialkot, Punjab, Pakistan
| | - Javed Iqbal
- Dr. Javed Iqbal, MBBS, FCPS (Medicine). Assistant Professor, Department of Medicine, Sheikh Zayed Medical College, Rahim Yar Khan, Punjab, Pakistan
| | - Lubna Akhtar
- Dr. Lubna Akhtar, MBBS, FCPS. (Gynae & Obs). Senior Demonstrator Pharmacology, Department of Pharmacology, Sheikh Zayed Medical College, Rahim Yar Khan, Punjab, Pakistan
| |
Collapse
|
47
|
Akoumianakis I, Antoniades C. Impaired Vascular Redox Signaling in the Vascular Complications of Obesity and Diabetes Mellitus. Antioxid Redox Signal 2019; 30:333-353. [PMID: 29084432 DOI: 10.1089/ars.2017.7421] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Significance: Oxidative stress, a crucial regulator of vascular disease pathogenesis, may be involved in the vascular complications of obesity, systemic insulin resistance (IR), and diabetes mellitus (DM). Recent Advances: Excessive production of reactive oxygen species in the vascular wall has been linked with vascular disease pathogenesis. Recent evidence has revealed that vascular redox state is dysregulated in cases of obesity, systemic IR, and DM, potentially participating in the well-known vascular complications of these disease entities. Critical Issues: The detrimental effects of obesity and the metabolic syndrome on vascular biology have been extensively described at a clinical level. Further, vascular oxidative stress has often been associated with the presence of obesity and IR as well as with a variety of detrimental vascular phenotypes. However, the mechanisms of vascular redox state regulation under conditions of obesity and systemic IR, as well as their clinical relevance, are not adequately explored. In addition, the notion of vascular IR, and its relationship with systemic parameters of obesity and systemic IR, is not fully understood. In this review, we present all the important components of vascular redox state and the evidence linking oxidative stress with obesity and IR. Future Directions: Future studies are required to describe the cellular effects and the translational potential of vascular redox state in the context of vascular disease. In addition, further elucidation of the direct vascular effects of obesity and IR is required for better management of the vascular complications of DM.
Collapse
Affiliation(s)
- Ioannis Akoumianakis
- Division of Cardiovascular Medicine, University of Oxford , Oxford, United Kingdom
| | | |
Collapse
|
48
|
Kumar S, Talwalkar PG, Das S, Goswami S. Cardiovascular Effects of Sodium Glucose Co-transporter-2 Inhibitors in Patients with Type 2 Diabetes Mellitus. Indian J Endocrinol Metab 2019; 23:150-158. [PMID: 31016170 PMCID: PMC6446691 DOI: 10.4103/ijem.ijem_161_17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM), the leading type of diabetes, has a typical association with coronary heart disease. In India, patients with diabetes are at an increased risk of developing coronary disease as compared to people without diabetes and this suggests the requirement of intensive treatment of cardiovascular (CV) risk factors. Consequently, there is a need for an intervention that could target CV risk factors in multiple paths beyond hyperglycemic control alone. Although metformin is the mainstay of treatment in most of the patients with T2DM, a second line of treatment with anti-hyperglycemic agent is warranted in patients with T2DM in the management of CV risk factors beyond glycemic control. Sodium glucose co-transporter-2 (SGLT-2) inhibitors, the oral hypoglycemic drug, that act independent of insulin secretion are associated with a reduced risk of hypoglycemia which is associated with the increased risk of CV events. Moreover, it has been observed that the use of SGLT-2 inhibitors in patients with T2DM is associated with reductions in blood pressure and body weight beyond improved glycemic control. In this article, the clinical efficacy, safety, and tolerability of SGLT-2 inhibitors on glycemic, nonglycemic parameters, and CV outcome including data from the EMPA-REG OUTCOME study are discussed. The EMPA-REG OUTCOME study is the first CV outcome study that demonstrated the association of a glucose lowering agent with the reduced CV mortality and all-cause mortality, and reduced hospitalization for heart failure in patients with T2DM at high risk of CV events. Although the mode of action associated with the CV benefits remains unknown, data from ongoing trials including DECLARE-TIMI (Dapagliflozin Effect on CV Events) and CANVAS (Canagliflozin CV Assessment Study) trials potentially can validate the class-effect for SGLT-2 inhibitors regarding the CV outcomes.
Collapse
Affiliation(s)
- Surender Kumar
- Department Endocrinology, Sir Ganga Ram Hospital, New Delhi, India
| | | | - Sambit Das
- Department Endocrinology, Apollo Hospital, Bhubaneswar, Orissa, India
| | - Soumik Goswami
- Department Endocrinology, NRS Medical College, Kolkata, West Bengal, India
| |
Collapse
|
49
|
Silva Júnior WS, Souza MDGC, Kraemer-Aguiar LG. Dipeptidyl peptidase 4 (DPP4), adipose inflammation, and insulin resistance: is it time to look to the hepatocyte? Hepatobiliary Surg Nutr 2018; 7:499-500. [PMID: 30652100 DOI: 10.21037/hbsn.2018.10.05] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Wellington S Silva Júnior
- Endocrinology Discipline, Faculty of Medicine, Center of Natural, Human, Health, and Technology Sciences, Federal University of Maranhão (UFMA), Pinheiro, MA, Brazil
| | - Maria das Graças C Souza
- Laboratory for Clinical and Experimental Research on Vascular Biology (BioVasc), Biomedical Center, State University of Rio de Janeiro (UERJ), Rio de Janeiro, RJ, Brazil
| | - Luiz Guilherme Kraemer-Aguiar
- Laboratory for Clinical and Experimental Research on Vascular Biology (BioVasc), Biomedical Center, State University of Rio de Janeiro (UERJ), Rio de Janeiro, RJ, Brazil.,Postgraduate Program in Clinical and Experimental Physiopathology (FISCLINEX), Faculty of Medical Sciences, UERJ, Rio de Janeiro, RJ, Brazil.,Endocrinology, Department of Internal Medicine, Faculty of Medical Sciences, UERJ, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
50
|
Ku HC, Liang YJ. Incretin-based therapy for diabetic ulcers: from bench to bedside. Expert Opin Investig Drugs 2018; 27:989-996. [PMID: 30449201 DOI: 10.1080/13543784.2018.1548607] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
INTRODUCTION Diabetic foot ulcers are a serious complication of diabetes and are associated with pain, disability, and poor quality of life. Incretin-based therapy is available for type-2 diabetes. Aside from glucose control, such treatment can impart numerous beneficial effects. AREAS COVERED This review summarizes the preclinical and clinical evidence supporting incretin-based treatment approaches for diabetic ulcers. EXPERT OPINION Incretin-based therapy may have a role in the treatment of diabetic foot ulcers; the benefits of such treatment arise from attenuation of inflammatory response, improvement of keratinocyte migration, induction of angiogenesis, and the enhancement of tissue remodeling. Large-scale clinical trials are required to determine the advantages of GLP-1 receptor agonists and DPP4 inhibitors. Future research on the topical application of incretin-based therapy is necessary. Such therapeutic approaches may provide new hope in improving the treatment of impaired diabetic foot ulcers.
Collapse
Affiliation(s)
- Hui-Chun Ku
- a Department and Institute of Life Science , Fu-Jen Catholic University , New Taipei City , Taiwan
| | - Yao-Jen Liang
- a Department and Institute of Life Science , Fu-Jen Catholic University , New Taipei City , Taiwan.,b Graduate Institute of Applied Science and Engineering , Fu-Jen Catholic University , New Taipei City , Taiwan
| |
Collapse
|