1
|
Li X, Sun Y, Li W, Nie Y, Wang F, Bian R, Wang H, Wang YN, Gong Z, Lu J, Gao W, Lu C. Solidification/stabilization pre-treatment coupled with landfill disposal of heavy metals in MSWI fly ash in China: A systematic review. JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135479. [PMID: 39141943 DOI: 10.1016/j.jhazmat.2024.135479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 07/26/2024] [Accepted: 08/08/2024] [Indexed: 08/16/2024]
Abstract
The growth in municipal solid waste incineration (MSWI) has resulted in a substantial rise in the production of fly ash in China. It is anticipated that during the "14th Five-Year Plan", the accumulated amount of fly ash stocked and disposed of at landfills will surpass 100 million tons. With the development of the economy and the implementation of garbage classification relevant policies, the pollution characteristics of heavy metal change in spatiotemporal distribution. Solidification/stabilization (S/S) pre-treatment coupled with landfill disposal is the mainstream method for fly ash. This study provides a systematic overview and comparison of the current application status and research on the mechanism of S/S technology, and the long-term stability of solidified/stabilized fly ash is a crucial factor in controlling the risks of landfills. Subsequently, it examines the influencing factors and mechanisms associated with heavy metals leaching under different environmental scenarios (meteorological factors, leachate and acid rain erosion, and carbonation, etc.), and concludes that single stabilization technology is difficult to meet long-term landfill requirements. Finally, the limits of heavy metal leaching toxicity evaluation methods and landfilled fly ash supervision were discussed, and relevant suggestions for future development were proposed. This study can provide theoretical instruction and technical support for the risk control of potential environmental risks of heavy metals in solidified/stabilized fly ash from landfills in China.
Collapse
Affiliation(s)
- Xue Li
- Qingdao Solid Waste Pollution Control and Resource Engineering Research Center, Qingdao University of Technology, School of Environmental and Municipal Engineering, Qingdao 266033, China
| | - Yingjie Sun
- Qingdao Solid Waste Pollution Control and Resource Engineering Research Center, Qingdao University of Technology, School of Environmental and Municipal Engineering, Qingdao 266033, China.
| | - Weihua Li
- Qingdao Solid Waste Pollution Control and Resource Engineering Research Center, Qingdao University of Technology, School of Environmental and Municipal Engineering, Qingdao 266033, China.
| | - Yanqi Nie
- Qingdao Solid Waste Pollution Control and Resource Engineering Research Center, Qingdao University of Technology, School of Environmental and Municipal Engineering, Qingdao 266033, China
| | - Fuhao Wang
- Qingdao Solid Waste Disposal Co., Ltd., Qingdao 266300, China
| | - Rongxing Bian
- Qingdao Solid Waste Pollution Control and Resource Engineering Research Center, Qingdao University of Technology, School of Environmental and Municipal Engineering, Qingdao 266033, China
| | - Huawei Wang
- Qingdao Solid Waste Pollution Control and Resource Engineering Research Center, Qingdao University of Technology, School of Environmental and Municipal Engineering, Qingdao 266033, China
| | - Ya-Nan Wang
- Qingdao Solid Waste Pollution Control and Resource Engineering Research Center, Qingdao University of Technology, School of Environmental and Municipal Engineering, Qingdao 266033, China
| | - Zhaoguo Gong
- Qingdao Solid Waste Disposal Co., Ltd., Qingdao 266300, China
| | - Jing Lu
- Qingdao SUS Renewable Energy Co., Ltd., Qingdao 266113, China
| | - Weijie Gao
- Qingdao Solid Waste Disposal Co., Ltd., Qingdao 266300, China
| | - Chenggang Lu
- Qingdao Solid Waste Pollution Control and Resource Engineering Research Center, Qingdao University of Technology, School of Environmental and Municipal Engineering, Qingdao 266033, China
| |
Collapse
|
2
|
Hamid Y, Chen Y, Lin Q, Haris M, Usman M, Saqib Rashid M, Anastopoulos I, Hussain B, Ali HM, Hannan F, Yin X, Yang X. Functionality of wheat straw-derived biochar enhanced its efficiency for actively capping Cd and Pb in contaminated water and soil matrices: Insights through batch adsorption and flow-through experiments. CHEMOSPHERE 2024; 362:142770. [PMID: 38969230 DOI: 10.1016/j.chemosphere.2024.142770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/20/2024] [Accepted: 07/03/2024] [Indexed: 07/07/2024]
Abstract
The impact of functionality of biochar on pressing environmental issue of cadmium (Cd) and lead (Pb) co-contamination in simultaneous soil and water systems has not sufficiently reported. This study investigated the impact of Fe- and Mg-functionalized wheat straw biochar (Fe-WSBC and Mg-WSBC) on Cd and Pb adsorption/immobilization through batch sorption and column leaching trials. Importantly, Fe-WSBC was more effective in adsorbing Cd and Pb (82.84 and 111.24 mg g-1), regeneration ability (removal efficiency 94.32 and 92.365), and competitive ability under competing cations (83.15 and 84.36%) compared to other materials (WSBC and Mg-WSBC). The practical feasibility of Fe-WSBC for spiked river water verified the 92.57% removal of Cd and 85.73% for Pb in 50 mg L-1 and 100 mg L-1 contamination, respectively. Besides, the leaching of Cd and Pb with Fe-WSBC under flow-through conditions was lowered to (0.326 and 17.62 mg L-1), respectively as compared to control (CK) (0.836 and 40.40 mg L-1). In short, this study presents the applicable approach for simultaneous remediation of contaminated water and soil matrices, offering insights into environmentally friendly green remediation strategies for heavy metals co-contaminated matrices.
Collapse
Affiliation(s)
- Yasir Hamid
- Ministry of Education (MOE) Key Lab of Environ. Remediation and Ecol. Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yonglong Chen
- Ministry of Education (MOE) Key Lab of Environ. Remediation and Ecol. Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Qiang Lin
- Ministry of Education (MOE) Key Lab of Environ. Remediation and Ecol. Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Muhammad Haris
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China
| | - Muhammad Usman
- Université de Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR-UMR 6226, F-35000, Rennes, France
| | - Muhammad Saqib Rashid
- Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture, Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation, Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Ioannis Anastopoulos
- Department of Agriculture, University of Ioannina, UoI Kostakii Campus, 47100, Arta, Greece
| | - Bilal Hussain
- Ministry of Education (MOE) Key Lab of Environ. Remediation and Ecol. Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Hayssam M Ali
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Fakhir Hannan
- Institute of Crop Science, Ministry of Agriculture and Rural Affairs Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou, 310058, China
| | - Xianyuan Yin
- Beautiful Village Construction Center of Quzhou Agriculture and Rural Affairs Bureau, Quzhou, 324002, China.
| | - Xiaoe Yang
- Ministry of Education (MOE) Key Lab of Environ. Remediation and Ecol. Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
3
|
Levandoski WMK, Ferrazzo ST, Piovesan MA, Bruschi GJ, Consoli NC, Korf EP. Long-term performance: strength and metal encapsulation in alkali-activated iron ore tailings. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:47071-47083. [PMID: 38985421 DOI: 10.1007/s11356-024-34234-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 06/30/2024] [Indexed: 07/11/2024]
Abstract
Understanding the strength behavior and leaching characteristics of mining tailings stabilized with alkali-activated cements in the short, medium, and long term is crucial for the feasibility of material applications. In this context, this study assessed the stabilization/solidification of iron ore tailings (IOT) using alkali-activated binder (AAB) composed of sugarcane bagasse ash and eggshell lime at curing times of 7, 28, 60, 90, 180, and 365 days. Additionally, leaching tests were conducted, along with the examination of possible changes in the chemical and mineralogical composition resulting from exposure to acidic environments. Tests included unconfined compression strength (UCS), leaching, X-ray diffraction, and Fourier-transform infrared spectroscopy for the IOT-AAB mixtures. The highest increase in UCS was observed between 7 and 60 days, reaching 6.47 MPa, with minimal variation thereafter. The AAB-bonded IOT exhibited no metal toxicity over time. Elements Ba, Mn, Pb, and Zn present in IOT and ash were encapsulated in the cemented matrix, with complete encapsulation of all metals observed from 90 days of curing time. The mineralogy of the stabilized/solidified tailings showed no changes resulting from leaching tests. Characteristic bands associated with the presence of N-A-S-H gel were identified in both pre-leaching and post-leaching samples for all curing times analyzed. Exposure to acidic environments altered bands related to carbonate bonds formed in the IOT-AAB mixture.
Collapse
Affiliation(s)
| | - Suéllen Tonatto Ferrazzo
- Graduate Program in Civil Engineering, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, 90035-190, Brazil
| | - Maria Alice Piovesan
- Undergraduate Program in Environmental and Sanitary Engineering, Universidade Federal da Fronteira Sul, Erechim, RS, 99700-970, Brazil
| | - Giovani Jordi Bruschi
- Graduate Program in Civil Engineering, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, 90035-190, Brazil
| | - Nilo Cesar Consoli
- Graduate Program in Civil Engineering, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, 90035-190, Brazil
| | - Eduardo Pavan Korf
- Graduate Program in Environmental Science and Technology, Universidade Federal da Fronteira Sul, Erechim, RS, 99700-970, Brazil.
| |
Collapse
|
4
|
Zhang Y, Qu J, Zhang J, Li S, Wu W, Li H, Hou X, Chang R, Guo Y. Distribution, occurrence, and leachability of typical heavy metals in coal gasification slag. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:172011. [PMID: 38561128 DOI: 10.1016/j.scitotenv.2024.172011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 02/26/2024] [Accepted: 03/25/2024] [Indexed: 04/04/2024]
Abstract
Coal gasification slag (CGS) contains variable amounts of heavy metals, which can negatively impact the environment. The mineral composition, element distribution, occurrence, and leaching characteristics of heavy metals in coal gasification coarse slag (CGCS) and coal gasification fine slag (CGFS) are studied to explain the leaching behavior of heavy metals in CGS. The movable components of heavy metals in CGFS (0.06 %-63.03 %) are significantly higher than those in CGCS (0 %-18.72 %). Leaching Environmental Assessment Framework 1313 data shows that heavy metals Zn, Cr, Cd, As, Pb, Ni, and Cu exhibit high leaching rates at low pH conditions, with Zn leaching concentrations as high as 2.11 mg/L at pH 2. Zn, Cr, and As exhibit obvious amphoteric leaching characteristics, and the leaching concentration of As at high pH (1.34 mg/L) even exceeds that at low pH (1.31 mg/L). Except for Cu, all heavy metals in CGS exceed the class III groundwater standard in some cases. Therefore, evaluation is needed before resource utilization of CGS due to potential leaching of some heavy metals.
Collapse
Affiliation(s)
- Yifan Zhang
- State Environmental Protection Key Laboratory of Efficient Utilization Technology of Coal Waste Resources, Institute of Resources and Environmental Engineering, Shanxi University, Taiyuan 030006, China; CAS Key Laboratory of Green Process and Engineering, National Engineering Research Center of Green Recycling for Strategic Metal Resources, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100090, China
| | - Jiangshan Qu
- CAS Key Laboratory of Green Process and Engineering, National Engineering Research Center of Green Recycling for Strategic Metal Resources, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100090, China; School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianbo Zhang
- CAS Key Laboratory of Green Process and Engineering, National Engineering Research Center of Green Recycling for Strategic Metal Resources, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100090, China.
| | - Shaopeng Li
- CAS Key Laboratory of Green Process and Engineering, National Engineering Research Center of Green Recycling for Strategic Metal Resources, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100090, China
| | - Wenfen Wu
- CAS Key Laboratory of Green Process and Engineering, National Engineering Research Center of Green Recycling for Strategic Metal Resources, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100090, China
| | - Huiquan Li
- CAS Key Laboratory of Green Process and Engineering, National Engineering Research Center of Green Recycling for Strategic Metal Resources, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100090, China; School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinjuan Hou
- CAS Key Laboratory of Green Process and Engineering, National Engineering Research Center of Green Recycling for Strategic Metal Resources, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100090, China; School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ruiqi Chang
- CAS Key Laboratory of Green Process and Engineering, National Engineering Research Center of Green Recycling for Strategic Metal Resources, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100090, China; School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanxia Guo
- State Environmental Protection Key Laboratory of Efficient Utilization Technology of Coal Waste Resources, Institute of Resources and Environmental Engineering, Shanxi University, Taiyuan 030006, China.
| |
Collapse
|
5
|
Zhao L, Zaborowski E, Bordoloi S, Rajagopalan N, Sharma BK, Baroi C, Xing W, Zhang L. Characterization of novel polysulfide polymer coated fly ash and its application in mitigating diffusion of contaminants. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 347:123706. [PMID: 38467367 DOI: 10.1016/j.envpol.2024.123706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 02/17/2024] [Accepted: 03/02/2024] [Indexed: 03/13/2024]
Abstract
Fly ash consists of a considerable amount of hazardous elements with high mobility, posing substantial environmental risks during storage in surface impoundments and landfills. This hinders its efficient reuse in construction or material industries. To enhance the versatility of fly ash applications, a novel surface modification technique, termed SuMo, has been developed to create a hydrophobic polysulfide polymer coating on the surface of fly ash particles. The physicochemical properties of SuMo fly ash samples were examined using atomic force microscopy (AFM), environmental scanning electron microscopy (ESEM), thermal gravimetric analysis (TGA), Fourier Transform Infrared spectroscopy (FTIR), and leaching of hazardous elements was tested under practical environmental conditions (pH 4-12) based on the EPA's leaching environmental assessment framework (LEAF). The successful coating of polysulfide polymer on fly ash surface was verified through an increased percentage of C, S, and O in elemental mapping, coupled with the identification of S-O, CO, and C-H functional groups consistent with the chemical structure of polysulfide polymer. While the SuMo fly ash particles maintained their spherical shape, they exhibited increased surface roughness, robust hydrophobicity, and thermal stability up to 250 °C. Notably, owing to the coating's resilience against water leaching, the SuMo fly ash demonstrated a substantial reduction (up to 60-fold) in leachate concentrations of multiple concerning elements, including B, Be, Ba, Mn, Zn, As, Cr, Hg, etc., under various pH conditions compared to the uncoated fly ash. Furthermore, the polysulphide polymer coating effectively prevented Hg volatilization from fly ash below 163 °C. This study highlights the efficacy of the developed polysulfide polymer coating in mitigating the diffusion of hazardous elements from fly ash, thereby enhancing its potential reutilization in material, construction, and agriculture industries.
Collapse
Affiliation(s)
- L Zhao
- Prairie Research Institute-Illinois Sustainable Technology Centre, University of Illinois at Urbana Champaign, USA.
| | - E Zaborowski
- Prairie Research Institute-Illinois Sustainable Technology Centre, University of Illinois at Urbana Champaign, USA.
| | - S Bordoloi
- School of Engineering, Aalto University, Finland.
| | - N Rajagopalan
- Prairie Research Institute-Illinois Sustainable Technology Centre, University of Illinois at Urbana Champaign, USA.
| | - B K Sharma
- United States Department of Agriculture, Agricultural Research Service Eastern Regional Research Center, Wyndmoor, PA, USA.
| | - C Baroi
- Prairie Research Institute-Illinois Sustainable Technology Centre, University of Illinois at Urbana Champaign, USA.
| | - W Xing
- Chemistry and Environmental Science, New Jersey Institute of Technology, USA.
| | - L Zhang
- Chemistry and Environmental Science, New Jersey Institute of Technology, USA.
| |
Collapse
|
6
|
Ferrazzo ST, Tonini de Araújo M, Bruschi GJ, Korf EP, Levandoski WMK, Pereira Dos Santos C, Consoli NC. Metal encapsulation of waste foundry sand stabilized with alkali-activated binder: Batch and column leaching tests. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 348:119287. [PMID: 37852081 DOI: 10.1016/j.jenvman.2023.119287] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 10/02/2023] [Accepted: 10/06/2023] [Indexed: 10/20/2023]
Abstract
Waste stabilization processes are important to add value and reduce environmental risks related to metal contamination of soils and groundwater. This study evaluated the metal encapsulation of: (i) waste foundry sand (WFS) stabilized with an alkali-activated binder (AAB), compared to (ii) WFS-Portland cement (PC) mixture. The AAB was composed by sugar cane bagasse ash (SCBA), hydrated eggshell lime, and sodium hydroxide solution. The metal leaching behavior from WFS-AAB and WFS-PC was investigated through batch and column tests according to NBR 10005 and ASTM D4874 methods, respectively. All WFS-AAB and WFS-PC mixtures showed no metal toxicity. WFS-AAB matrices encapsulated the heavy metals Cd, Cr, and Pb from WFS and SCBA. Leaching results from NBR 10005 method were more favorable than ASTM D4874 for water quality limits (CONAMA 460, Dutch List, and EPA). Binder type, metals leaching patterns, and leaching test procedures were key factors in understanding the environmental performance of cemented WFS.
Collapse
Affiliation(s)
- Suéllen Tonatto Ferrazzo
- Graduate Program in Civil Engineering, Universidade Federal do Rio Grande Do Sul, Porto Alegre, 90035-190, Brazil.
| | - Mariana Tonini de Araújo
- Graduate Program in Civil Engineering, Universidade Federal do Rio Grande Do Sul, Porto Alegre, 90035-190, Brazil.
| | - Giovani Jordi Bruschi
- Graduate Program in Civil Engineering, Universidade Federal do Rio Grande Do Sul, Porto Alegre, 90035-190, Brazil.
| | - Eduardo Pavan Korf
- Graduate Program in Environmental Science and Technology, Universidade Federal da Fronteira Sul, Erechim, RS, 99700-970, Brazil.
| | | | - Carolina Pereira Dos Santos
- Graduate Program in Civil Engineering, Universidade Federal do Rio Grande Do Sul, Porto Alegre, 90035-190, Brazil.
| | - Nilo Cesar Consoli
- Graduate Program in Civil Engineering, Universidade Federal do Rio Grande Do Sul, Porto Alegre, 90035-190, Brazil.
| |
Collapse
|
7
|
Buha Marković JZ, Marinković AD, Savić JZ, Mladenović MR, Erić MD, Marković ZJ, Ristić MĐ. Risk Evaluation of Pollutants Emission from Coal and Coal Waste Combustion Plants and Environmental Impact of Fly Ash Landfilling. TOXICS 2023; 11:396. [PMID: 37112623 PMCID: PMC10144006 DOI: 10.3390/toxics11040396] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/06/2023] [Accepted: 04/15/2023] [Indexed: 06/19/2023]
Abstract
Emission factors (EFs) of gaseous pollutants, particulate matter, certain harmful trace elements, and polycyclic aromatic hydrocarbons (PAHs) from three thermal power plants (TPPs) and semi-industrial fluidized bed boiler (FBB) were compared. EFs of particulate matter, trace elements (except Cd and Pb), benzo[a]pyrene, and benzo[b]fluoranthene exceed the upper limits specified in the EMEP inventory guidebook for all combustion facilities. The comparison of trace elements and PAHs content in fly ashes (FAs) from lignite and coal waste combustion in TPPs and FBB, respectively, as well as the potential environmental impact of FAs disposal, was performed by employing a set of ecological indicators such as crustal enrichment factor, risk assessment code, risk indices for trace elements, and benzo[a]pyrene equivalent concentration for PAHs. Sequential analysis shows that the trace elements portion is the lowest for water-soluble and exchangeable fractions. The highest enrichment levels in FAs are noticed for As and Hg. Based on toxic trace elements content, FAs from TPPs represent a very high ecological risk, whereas fly ash from FBB poses a moderate ecological risk but has the highest benzo[a]pyrene equivalent concentration, indicating its increased carcinogenic potential. Lead isotope ratios for Serbian coals and FAs can contribute to a lead pollution global database.
Collapse
Affiliation(s)
- Jovana Z Buha Marković
- Vinča Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, Mike Petrovića Alasa 12-14, 11351 Belgrade, Serbia
| | - Ana D Marinković
- Vinča Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, Mike Petrovića Alasa 12-14, 11351 Belgrade, Serbia
| | - Jasmina Z Savić
- Vinča Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, Mike Petrovića Alasa 12-14, 11351 Belgrade, Serbia
| | - Milica R Mladenović
- Vinča Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, Mike Petrovića Alasa 12-14, 11351 Belgrade, Serbia
| | - Milić D Erić
- Vinča Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, Mike Petrovića Alasa 12-14, 11351 Belgrade, Serbia
| | - Zoran J Marković
- Vinča Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, Mike Petrovića Alasa 12-14, 11351 Belgrade, Serbia
| | - Mirjana Đ Ristić
- Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11120 Belgrade, Serbia
| |
Collapse
|
8
|
Seki T, Ogawa Y, Ibi K, Chida T, Inoue C, Niibori Y. Leaching behavior of arsenic and selenium in coal fly ash by aging treatment and cement mixing. J NUCL SCI TECHNOL 2023. [DOI: 10.1080/00223131.2023.2176378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Affiliation(s)
- Tsugumi Seki
- Graduate School of Engineering, Tohoku University, Sendai, Miyagi, Japan
| | - Yasumasa Ogawa
- Department of Earth Resource Engineering and Environmental Science, Faculty of International Resource Sciences, Akita University, Akita, Japan
| | - Koki Ibi
- Business Strategy Division, JDC Corporation, Tokyo, Japan
| | - Taiji Chida
- Graduate School of Engineering, Tohoku University, Sendai, Miyagi, Japan
| | - Chihiro Inoue
- Graduate School of Environmental Studies, Tohoku University, Sendai,Miyagi, Japan
| | - Yuichi Niibori
- Graduate School of Engineering, Tohoku University, Sendai, Miyagi, Japan
| |
Collapse
|
9
|
Cruz N, Ruivo L, Avellan A, Rӧmkens PFAM, Tarelho LAC, Rodrigues SM. Stabilization of biomass ash granules using accelerated carbonation to optimize the preparation of soil improvers. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 156:297-306. [PMID: 36424246 DOI: 10.1016/j.wasman.2022.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 10/07/2022] [Accepted: 11/06/2022] [Indexed: 06/16/2023]
Abstract
After the revision of the Fertilizer Regulation (EC 2019/1009), biomass ash can be used as component material for soil improvers to be placed on the EU market. This provides opportunities for large scale recycling of biomass ash. However, this material cannot be directly applied to soil without stabilization by carbonation, which also creates an opportunity for CO2 capture and storage. Here, accelerated carbonation in an atmospheric fixed-bed reactor (AFR) was applied to prepare ash granules (AG). Relative humidity of gas, temperature, reaction time and CO2 concentration were optimized and further tested in a closed high-pressure reactor (HPR). Materials resulting from both reactors were compared with those obtained after 1-year of carbonation under atmospheric conditions. This study showed that AFR accelerated tests resulted in a significant reduction of the reaction time than HPR to achieve a similar pH adjustment. Also, under 100 vol.% CO2 atmospheric conditions, pH and electrical conductivity reached target values faster than under 15 vol.% CO2 conditions. Based on results obtained here we recommend AFR operating at 25 °C and 100 vol.% CO2 for 20 h, as the optimal procedure for stabilization of AG. In this study we provide evidence that accelerated carbonation enables a much faster and cost-efficient preparation of potentially valuable soil additives than natural carbonation. Also, leaching tests revealed that plant nutrient availability (B, Mg, Mn, Mo and P) was increased under accelerated carbonation compared to natural carbonation. The present work paves the way towards the development of optimized protocols to effectively recycle biomass ashes for soil recovery.
Collapse
Affiliation(s)
- N Cruz
- CESAM & Department of Environment and Planning, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - L Ruivo
- CESAM & Department of Environment and Planning, University of Aveiro, 3810-193 Aveiro, Portugal
| | - A Avellan
- Géosciences Environnement Toulouse (GET), CNRS, IRD, Université de Toulouse, 31400 Toulouse, France
| | - P F A M Rӧmkens
- Wageningen Environmental Research (WUR), PO Box 47, 6700 AA Wageningen, The Netherlands
| | - L A C Tarelho
- CESAM & Department of Environment and Planning, University of Aveiro, 3810-193 Aveiro, Portugal
| | - S M Rodrigues
- CESAM & Department of Environment and Planning, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
10
|
Wei X, Xie F, Dong C, Wang P, Xu J, Yan F, Zhang Z. Safe disposal of hazardous waste incineration fly ash: Stabilization/solidification of heavy metals and removal of soluble salts. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 324:116246. [PMID: 36162320 DOI: 10.1016/j.jenvman.2022.116246] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 08/22/2022] [Accepted: 09/09/2022] [Indexed: 06/16/2023]
Abstract
Hazardous waste incineration fly ash (HFA) is considered a hazardous waste owing to the high associated concentrations of heavy metals and soluble salts. Hence, cost effective methods are urgently needed to properly dispose HFA. In this study, geopolymers were prepared by alkali-activation technology to stabilize and solidify heavy metals in HFA. In addition, the effects of three different aluminosilicates (metakaolin, fly ash, and glass powder) on the heavy metal immobilization efficiency were investigated. Because the soluble salt content of HFA is too high for their direct placement in flexible landfill sites and water washing can lead to heavy metal leaching, water-washing experiments were conducted after alkali-activation treatment to remove soluble salts. The results suggest that the concentrations of heavy metals leached from geopolymers can satisfy the Chinese Standard limits (GB18598-2019) when the addition of aluminosilicates exceeds 20 wt%. More than 77% of Cl- and >64% of SO42- in geopolymers could be removed via water-washing treatment. The Zn leaching concentration was maintained below approximately 0.52 ppm. After alkali-activation treatment, the water-washing process could efficiently remove soluble salts while inhibiting heavy metal leaching. Sodium-aluminosilicate-hydrate (N-A-S-H) gel, a product of the geopolymerization process in this study, was demonstrated to act as a protective shell that inhibited heavy metal leaching. Hence, HFA-based geopolymers are considered suitable for disposal in flexible landfills.
Collapse
Affiliation(s)
- Xuankun Wei
- School of Environmental Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen 518055, PR China; College of Engineering, Peking University, Beijing 100871, PR China
| | - Feng Xie
- School of Environmental Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen 518055, PR China
| | - Chunling Dong
- School of Environmental Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen 518055, PR China
| | - Pengju Wang
- School of Environmental Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen 518055, PR China
| | - Jiyun Xu
- China Everbright Greentech LTD, Hong Kong, PR China
| | - Feng Yan
- School of Environmental Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen 518055, PR China
| | - Zuotai Zhang
- School of Environmental Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen 518055, PR China.
| |
Collapse
|
11
|
Wang Q, Li JS, Xue Q, Poon CS. Immobilization and recycling of contaminated marine sediments in cement-based materials incorporating iron-biochar composites. JOURNAL OF HAZARDOUS MATERIALS 2022; 435:128971. [PMID: 35472547 DOI: 10.1016/j.jhazmat.2022.128971] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 03/31/2022] [Accepted: 04/17/2022] [Indexed: 06/14/2023]
Abstract
Sustainable stabilization/solidification (S/S) incorporating biochar for hazardous wastes has attracted increasing attention. In this study, contaminated marine sediments were remediated and recycled as useful materials via cement-based S/S process incorporating iron-biochar composites derived from incinerated sewage sludge ash (ISSA) and peanut shell. Results showed that incorporation of 20% iron-biochar composites notably increased the Cr immobilization (52.8% vs 92.1-99.7%), while attained similar As (70%) and Cu (95%) immobilization efficiencies compared to the control group (CK) prepared with plain cement as the binder based on the Toxicity Characteristic Leaching Procedure. S/S products with the addition of ISSA derived iron-biochar composite had a mechanical strength of 5.0 MPa, which was significantly higher than its counterparts derived from pure iron oxide or pristine biochar (< 4.5 MPa). Microstructural and spectroscopic characterizations and chemical leaching experiments demonstrated that reduction of Cr(VI) to Cr(III) followed by formation of Cr-Fe precipitates by zero valent iron in iron-biochar composites contributed to the enhanced immobilization efficacy of Cr(VI) compared to CK. Overall, these results demonstrated the potential of applying ISSA and peanut shell derived iron-biochar composites as additives in the cement-based S/S treatment for contaminated sediments.
Collapse
Affiliation(s)
- Qiming Wang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong; IRSM-CAS/HK PolyU Joint Laboratory on Solid Waste Science, Hung Hom, Kowloon, Hong Kong; Research Centre for Resources Engineering towards Carbon Neutrality, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Jiang-Shan Li
- State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, China; IRSM-CAS/HK PolyU Joint Laboratory on Solid Waste Science, Hung Hom, Kowloon, Hong Kong.
| | - Qiang Xue
- State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, China; IRSM-CAS/HK PolyU Joint Laboratory on Solid Waste Science, Hung Hom, Kowloon, Hong Kong
| | - Chi Sun Poon
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong; IRSM-CAS/HK PolyU Joint Laboratory on Solid Waste Science, Hung Hom, Kowloon, Hong Kong; Research Centre for Resources Engineering towards Carbon Neutrality, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong.
| |
Collapse
|
12
|
Petrović M, Fiket Ž, Medunić G, Chakravarty S. Mobility of metals and metalloids from SHOS coal ash and slag deposit: mineralogical and geochemical constraints. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:46916-46928. [PMID: 35175526 DOI: 10.1007/s11356-022-19074-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 02/02/2022] [Indexed: 06/14/2023]
Abstract
Deposits remained after coal combustion are a well-known occurrence in the world; unfortunately, only a small percentage of such deposits are adequately regulated and, consequently, pose a serious threat to the local environment. Attenuation of negative consequences presupposes knowledge of a number of features, both of the deposit and the local environment as well the interaction with local biota. In this study, unregulated waste generated from decades of coal mining and combustion of superhigh-organic-sulfur Raša coal, enriched in Se-U-Mo-V and located in a vulnerable karst region, was investigated. To assess the impact of landfill on the environment, in addition to its general geochemical and mineralogical features, the human health risk was assessed and the leaching of elements from the landfill, local soil, and the coal itself was investigated. For the latter, three extraction procedures, ASTM, EP, and TCLP (pH 4.93 and 2.9), were employed, mimicking different environmental conditions, including the sporadic occurrence of acid rains in the region. The soil around the landfill displayed enrichment in the majority of elements compared to expected values, with exception of Se, Mo, U, V, Sr, and Cu found at the highest levels in landfill samples. Mobility of elements was found to be controlled by both pH and mineralogy (carbonates and sulfates), whereby the overall highest relative mobility was observed in landfill samples for elements prevalently bound to sulfate phases. Calculated Hazard Quotient describes this landfill as a risk to the environment and human health through different pathways.
Collapse
Affiliation(s)
- Marija Petrović
- Divison for Marine and Environmental Research, Ruđer Bošković Institute, Bijenička cesta 54, 10000, Zagreb, Croatia
| | - Željka Fiket
- Divison for Marine and Environmental Research, Ruđer Bošković Institute, Bijenička cesta 54, 10000, Zagreb, Croatia.
| | - Gordana Medunić
- Department of Geology, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000, Zagreb, Croatia
| | - Sanchita Chakravarty
- Analytical & Applied Chemistry Division, CSIR-National Metallurgical Laboratory, Jamshedpur, 831007, Jharkhand, India
| |
Collapse
|
13
|
Zhang J, Su P, Li L. Bioremediation of stainless steel pickling sludge through microbially induced carbonate precipitation. CHEMOSPHERE 2022; 298:134213. [PMID: 35283154 DOI: 10.1016/j.chemosphere.2022.134213] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 03/01/2022] [Accepted: 03/03/2022] [Indexed: 06/14/2023]
Abstract
In this study, microbial induce carbonate precipitation (MICP) was introduced to immobilize chromium (Cr) in stainless steel pickling sludge (SSPS). Two methods were utilized to conduct the MICP process - Bacteria lysis liquor (BLL)-based MICP and bacteria-based MICP. BLL was obtained by breaking the cell walls with ultrasonic treatment. The urea hydrolyzation test illustrated that the BLL was better than bacteria solution. Both the treatments of bacteria lysis liquor-based MICP and bacteria-based MICP process can effectively entrap the Cr into mineral lattices, that reduce the potential environmental risk of SSPS. With 30 g/L urea and 7 days' treatment, BLL-based MICP presented better immobilization performance than bacteria-based MICP by lowering the bacteria concentration (OD600) from 0.8 to 0.7. The excellent biosorption of BLL contributed to Cr removal. Nevertheless, the addition of calcium (Ca) significantly enhanced the immobilization performance of bacteria-based MICP process rather than BLL-based MICP process. pH-dependent leaching tests illustrated the leaching of Cr followed an amphoteric pattern, while the leaching of Ni and Ca followed the cation pattern. Geochemical modeling revealed that the leaching of Cr from bio-mineralized products was solubility-controlled by Cr(OH)3 and Cr2O3.
Collapse
Affiliation(s)
- Junke Zhang
- Department of Environmental Engineering, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, PR China; Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, PR China.
| | - Peidong Su
- Department of Environmental Engineering, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, PR China; Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, PR China.
| | - Lin Li
- Department of Civil and Architectural Engineering, Tennessee State University, Nashville, TN, 37209, USA.
| |
Collapse
|
14
|
Zimar Z, Robert D, Zhou A, Giustozzi F, Setunge S, Kodikara J. Application of coal fly ash in pavement subgrade stabilisation: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 312:114926. [PMID: 35364515 DOI: 10.1016/j.jenvman.2022.114926] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 03/14/2022] [Accepted: 03/17/2022] [Indexed: 06/14/2023]
Abstract
Expansive clays are found in many countries worldwide, and they exhibit inherent volume change during the seasonal moisture variation causing cracks, heaves, and damages to the overlying pavements. Chemical stabilisation is one of the most used approaches to treat the expansive clay subgrades. Cement, Lime and Fly ash are the most commonly used stabilisers, in which fly is cheaper and a by-product obtained from the coal power plant. This paper reviews fly ash stabilisation on various clay types, including low plasticity clays, high plasticity clays, silty clays, organic clays, and peats. The review begins with the properties of fly ash, followed by the characteristics of fly ash stabilised subgrades. The micro-level mechanism, physical, mechanical, and hydraulic characteristics of stabilised pavements are presented graphically for the Class C, and F fly ashes. The micro-level studies reveal that the pozzolanic reaction is stronger than the cation exchange during the fly ash stabilisation. The unconfined compressive strength (UCS), California bearing ratio (CBR) and resilient modulus (Mr) increased with the fly ash addition and curing time for most soft soils except peat clays. Based on the mechanical and hydraulic characteristics, using 15% class C fly ash with 7 days of curing is recommended for optimum performance. Although few research studies confirm that the leachate limit of stabilised soil is within the acceptable limit, further studies are required to investigate the uptake of heavy metals and other certain carcinogenic contaminants. This study will provide key information for researchers and Engineers on the selection of fly ash stabilisation measures for expansive subgrades.
Collapse
Affiliation(s)
- Z Zimar
- Civil Engineering Department, School of Engineering, RMIT University, VIC, 3001, Australia
| | - D Robert
- Civil Engineering Department, School of Engineering, RMIT University, VIC, 3001, Australia.
| | - A Zhou
- Civil Engineering Department, School of Engineering, RMIT University, VIC, 3001, Australia
| | - F Giustozzi
- Civil Engineering Department, School of Engineering, RMIT University, VIC, 3001, Australia
| | - S Setunge
- Civil Engineering Department, School of Engineering, RMIT University, VIC, 3001, Australia
| | - J Kodikara
- Civil Engineering Department, Monash University, VIC, Australia
| |
Collapse
|
15
|
Characteristics and impact of aged coal ash with slag emplaced in a karst cave: the case of Divaška jama, Slovenia. Sci Rep 2021; 11:23410. [PMID: 34862432 PMCID: PMC8642485 DOI: 10.1038/s41598-021-02842-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 11/16/2021] [Indexed: 11/08/2022] Open
Abstract
A mixture of coal bottom ash and slag, with a fraction of fly ash (CAFAS) from steam locomotives, was placed in the cave Divaška jama to delimit and level tourist trails. Emplacement began in 1914 and carried on for several decades. The CAFAS mixed with other cave material gradually changed its structure and appearance. Currently the concentration of some elements in the CAFAS (As, Cu, Hg, Ni, Pb, Zn), and also to a lesser extent in cave sediments (Cr, Cu, Ni), indicates a possibly harmful effect on sediment-associated biota based on ecotoxicological assays. Compared to the cave sediment, the CAFAS contains distinctly different mineral phases and presents a different source of radioactivity. Microbial metabolic activity of CAFAS is low, 0.22 μl O2/gDW h, but higher than that of cave sediment. The present environmental hazards from CAFAS are estimated to be low. Whereas the emplacement of CAFAS was seen initially a long-term solution for waste disposal and management of the cave, it turned out that CAFAS enriches the underground environment with inorganic and organic compounds and disperses pollution into the cave ecosystem. After its removal from the cave, the CAFAS should be investigated thoroughly due to its susceptibility to alteration.
Collapse
|
16
|
Hannan F, Islam F, Huang Q, Farooq MA, Ayyaz A, Fang R, Ali B, Xie X, Zhou W. Interactive effects of biochar and mussel shell activated concoctions on immobilization of nickel and their amelioration on the growth of rapeseed in contaminated aged soil. CHEMOSPHERE 2021; 282:130897. [PMID: 34470145 DOI: 10.1016/j.chemosphere.2021.130897] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 05/06/2021] [Accepted: 05/15/2021] [Indexed: 06/13/2023]
Abstract
Mussel shell (MS) and biochar (BC) are commonly used for the remediation of metal contaminated soil. However, less research has been focused to examine the efficacy of their combinations to reduce metal toxicity in crop plants. This study was therefore conducted to investigate the effects of BC, MS and their activated concoctions on the soil properties, enzyme activities and nickel (Ni) immobilization in aged Ni contaminated soil. Moreover, the growth, photosynthetic pigments and anti-oxidative machnery of Brassica napus plants has also been investigated in order to determine amendments efficiency in reducing soil Ni toxicity for plants. The results showed that the application of Ni adversely affected soil health and trigged stress responses by inducing oxidative stress in B. napus. However, the incorporation of amendments reduced the bioavailability of Ni, and the concoctions of BC and MS showed promising results in the immobilization of Ni. Among various combinations of BC and MS, treatment with BC + MS (3:1) significantly reduced Ni uptake, decreased reactive oxygen species (ROS) and enhanced antioxidant defense of B. napus plants. Results showed that amendment's combinations stimulated the transcriptional levels of ROS scavenging enzymes and suppressed the expression level of Ni transporters. The morphological and physical characterization techniques (i.e. SEM, BET, EDS, FTIR and X-ray diffraction analyses) showed that amendment's combinations had relatively higher Ni adsorption capacity, indicating that BC and MS concoctions are efficient immobilizing agents for minimizing Ni availability, preventing oxidative toxicity and promoting growth and biomass production in rapeseed plants under metal stress conditions.
Collapse
Affiliation(s)
- Fakhir Hannan
- Institute of Crop Science and Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, 310058, China
| | - Faisal Islam
- Institute of Crop Science and Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, 310058, China
| | - Qian Huang
- Institute of Crop Science and Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, 310058, China
| | - Muhammad A Farooq
- Institute of Crop Science, Ministry of Agriculture and Rural Affairs Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou, 310058, China
| | - Ahsan Ayyaz
- Institute of Crop Science and Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, 310058, China
| | - Rouyi Fang
- Institute of Crop Science and Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, 310058, China
| | - Basharat Ali
- Department of Agronomy, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Xiaohong Xie
- Department of Landscape Architecture, Zhejiang Wanli University, Ningbo, 315100, China.
| | - Weijun Zhou
- Institute of Crop Science and Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, 310058, China; Institute of Crop Science, Ministry of Agriculture and Rural Affairs Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
17
|
|
18
|
Seki T, Nakamura K, Ogawa Y, Inoue C. Leaching of As and Se from coal fly ash: fundamental study for coal fly ash recycling. ENVIRONMENTAL MONITORING AND ASSESSMENT 2021; 193:225. [PMID: 33768424 DOI: 10.1007/s10661-021-08954-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 02/15/2021] [Indexed: 06/12/2023]
Abstract
Coal fly ash (CFA) is a useful recycled resource for uses such as cement raw material. To manage and evaluate safety for effective utilization of CFA, the leaching concentration and amounts of toxic elements in CFA need to be determined. In this study, 38 types of CFA and aged CFA generated in Japan were used to measure the occurrence and leaching concentration range of As and Se. In addition, the leaching characteristics over the long term were examined using statistical analysis. Leaching concentrations of As and Se from CFAs were in the range of 0.001-0.163 mg/L (average: 0.025 mg/L, median: 0.014 mg/L) and 0.001-0.189 mg/L (average: 0.071 mg/L, median: 0.055 mg/L), respectively. In general, the concentrations of aged CFAs were less than those of the CFAs with a few exceptions. Leaching concentrations of As and Se in the tank leaching test changed with time, and As and Se concentrations in the dispersions increased with stirring time. In contrast, pH of the dispersion decreased with time. The relation between As or Se and CFA factors showed that As or Se and pH or Ca were highly correlated. However, in aged CFAs for long-term use, the correlation coefficient for the relation between As and other factors was low while that for Se-S was high. Considering the effective utilization of CFA as a long-term recyclable resource, the leaching processes of As and Se in CFA would change with time depending on the environmental conditions.
Collapse
Affiliation(s)
- Tsugumi Seki
- Graduate School of Environmental Studies, Tohoku University, Aoba 6-6-20, Aramaki, Aoba-ku, Sendai, Miyagi Pref., 980-8579, Japan.
| | - Kengo Nakamura
- Graduate School of Environmental Studies, Tohoku University, Aoba 6-6-20, Aramaki, Aoba-ku, Sendai, Miyagi Pref., 980-8579, Japan
| | - Yasumasa Ogawa
- Department of Earth Resource Engineering and Environmental Science, Faculty of International Resource Sciences, Akita University, Tegatagakuen-machi 1-1, Akita, Akita Pref., 010-8502, Japan
| | - Chihiro Inoue
- Graduate School of Environmental Studies, Tohoku University, Aoba 6-6-20, Aramaki, Aoba-ku, Sendai, Miyagi Pref., 980-8579, Japan
| |
Collapse
|
19
|
Zhang J, Su P, Li Y, Li L. Environmental investigation of bio-modification of steel slag through microbially induced carbonate precipitation. J Environ Sci (China) 2021; 101:282-292. [PMID: 33334523 DOI: 10.1016/j.jes.2020.08.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 08/20/2020] [Accepted: 08/20/2020] [Indexed: 06/12/2023]
Abstract
Steel slag (SS) is one of byproduct of steel manufacture industry. The environmental concerns of SS may limit their re-use in different applications. The goal of this study was to investigate the leaching behavior of metals from SS before and after treated by microbially induced carbonate precipitation (MICP). Toxicity characteristic leaching procedure, synthetic precipitation leaching procedure and water leaching tests were performed to evaluate the leaching behavior of major elements (Fe, Mg and Ca) and trace elements (Ba, Cu and Mn) in three scenarios. The concentrations of leaching metals increased with the content of SS. After it reached the peak concentration, the leaching concentration decreased with the content of SS. The leachability of all elements concerned in this study was below 0.5%. The carbonate generated from the MICP process contributed to the low leachability of metals. After bio-modified by MICP process, the leaching concentrations of Ba from TCLP, SPLP and WLT tests were below 2.0 mg/L, which was the limit in drinking water regulated by U.S. EPA. The concentrations of Cu leached out from MICP-treated SS-sand samples were below 1.3 mg/L which is the limit regulated by national secondary drinking water. Compared with the regulations of U.S.EPA and Mississippi Department of Environment Quality (MDEQ), MICP-treated samples were classified as non-hazardous materials with respects to the leaching of metals. Meanwhile, maximum contaminant limits regulated by U.S.EPA states that MICP-treated SS are eco-friendly materials that can be reused as construction materials.
Collapse
Affiliation(s)
- Junke Zhang
- Department of Civil and Environmental Engineering, Jackson State University, Jackson, MS 39217, United States
| | - Peidong Su
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Science, Chinese Academy of Sciences, Beijing 100085, China
| | - Yadong Li
- Department of Civil and Environmental Engineering, Jackson State University, Jackson, MS 39217, United States
| | - Lin Li
- Department of Civil and Architectural Engineering, Tennessee State University, Nashville, TN 37209, United States.
| |
Collapse
|
20
|
Richard D, Neculita CM, Zagury GJ. Removal of nickel from neutral mine drainage using peat-calcite, compost, and wood ash in column reactors. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:14854-14866. [PMID: 33219931 DOI: 10.1007/s11356-020-11623-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 11/09/2020] [Indexed: 06/11/2023]
Abstract
The effectiveness of compost, peat-calcite, and wood ash to remove Ni from a circum-neutral-contaminated mine water was tested in continuous flow experiments. Materials were compared in 4.8-L columns at hydraulic residence times (HRT) of ∼ 16.5 h over the course of 2.5-4 months. During this period, all columns successfully treated over 400 L of synthetic contaminated neutral drainage (4.05 mg/L Ni), mainly through sorption processes. Mid-column results (HRT ∼ 9 h) indicated that wood ash was the most effective material for Ni removal, and chemical extractions revealed that retained Ni was less mobile in this spent material. The pH-increasing properties of wood ash played a major role in this material's performance, but a pH correction would be required in the initial stages of full-scale treatment to maintain the effluent within regulatory limits (6-9.5). Scaled to full-sized, mid-column results indicated that treatment cell sizes, designed for the 1-year treatment of a high discharge (10 m3/h)-contaminated effluent (4.05 mg/L Ni), would be the smallest with wood ash (< 500 m3), followed by compost (600 ± 140 m3) and peat-calcite (720 ± 50 m3).
Collapse
Affiliation(s)
- Dominique Richard
- Civil, Geological, and Mining Engineering Department, Research Institute on Mines and Environment (RIME), Polytechnique Montréal, Montreal, QC, H3C 3A7, Canada
| | - Carmen Mihaela Neculita
- RIME, University of Quebec in Abitibi-Temiscamingue (UQAT), 445 Boul. de l'Université, Rouyn-Noranda, QC, J9X 5E4, Canada
| | - Gérald J Zagury
- Civil, Geological, and Mining Engineering Department, Research Institute on Mines and Environment (RIME), Polytechnique Montréal, Montreal, QC, H3C 3A7, Canada.
| |
Collapse
|
21
|
Li W, Gu K, Yu Q, Sun Y, Wang Y, Xin M, Bian R, Wang H, Wang YN, Zhang D. Leaching behavior and environmental risk assessment of toxic metals in municipal solid waste incineration fly ash exposed to mature landfill leachate environment. WASTE MANAGEMENT (NEW YORK, N.Y.) 2021; 120:68-75. [PMID: 33285375 DOI: 10.1016/j.wasman.2020.11.020] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/31/2020] [Accepted: 11/18/2020] [Indexed: 06/12/2023]
Abstract
Solidification/stabilization pretreatment + landfill disposal in municipal solid waste (MSW) landfill sites is a widely accepted MSW incineration (MSWI) fly ash (FA) management strategy in China. However, in reality, the stability of FA disposed in MSW landfill sites may be affected by the organic landfill leachate environment. The purpose of this study was to explore the mobility and environmental risks of six toxic metals (Mn+, Pb/Zn/Cu/Cd/Cr/Ni), from raw and solidified/stabilized FA, by simulating a leaching environment with mature landfill leachate (MLL). The leaching of Mn+ mainly occurred in the early leaching stage, and their leaching behavior was controlled by the diffusion of surface Mn+ in the FA matrix. The destructive effect of dissolved organic matter (DOM) on the local precipitation-dissolution equilibrium of FA-leachate interface, the formation of non-adsorptive DOM-Mn+ complex (easy to migrate), and the competitive effect of DOM on the binding sites of Mn+ on the surface of the FA matrix may play an important role in increasing the leaching level of most Mn+. By contrast, the potential of solidified FA in reducing the environmental risk level of leached Mn+ was better than that of stabilized FA. However, the immobilization capability of solidification/stabilization pretreatment on various types of Mn+ in FA should be judged according to their practical disposal environment. Compared to MLL leaching tests, Acetic Acid Buffer Solution Method (HJ/T300-2007) can effectively strengthen the exposure environment and provide a reliable reference level of environmental risk for MSWI FA disposed in MSW landfill sites.
Collapse
Affiliation(s)
- Weihua Li
- Qingdao Solid Waste Pollution Control and Resource Engineering Research Center, Qingdao University of Technology, School of Environmental and Municipal Engineering, Qingdao 266033, China
| | - Kai Gu
- Qingdao Solid Waste Pollution Control and Resource Engineering Research Center, Qingdao University of Technology, School of Environmental and Municipal Engineering, Qingdao 266033, China
| | - Qianwen Yu
- Qingdao Solid Waste Pollution Control and Resource Engineering Research Center, Qingdao University of Technology, School of Environmental and Municipal Engineering, Qingdao 266033, China
| | - Yingjie Sun
- Qingdao Solid Waste Pollution Control and Resource Engineering Research Center, Qingdao University of Technology, School of Environmental and Municipal Engineering, Qingdao 266033, China.
| | - Yan Wang
- Qingdao Solid Waste Pollution Control and Resource Engineering Research Center, Qingdao University of Technology, School of Environmental and Municipal Engineering, Qingdao 266033, China
| | - Mingxue Xin
- Qingdao Solid Waste Pollution Control and Resource Engineering Research Center, Qingdao University of Technology, School of Environmental and Municipal Engineering, Qingdao 266033, China
| | - Rongxing Bian
- Qingdao Solid Waste Pollution Control and Resource Engineering Research Center, Qingdao University of Technology, School of Environmental and Municipal Engineering, Qingdao 266033, China
| | - Huawei Wang
- Qingdao Solid Waste Pollution Control and Resource Engineering Research Center, Qingdao University of Technology, School of Environmental and Municipal Engineering, Qingdao 266033, China
| | - Ya-Nan Wang
- Qingdao Solid Waste Pollution Control and Resource Engineering Research Center, Qingdao University of Technology, School of Environmental and Municipal Engineering, Qingdao 266033, China
| | - Dalei Zhang
- Qingdao Solid Waste Pollution Control and Resource Engineering Research Center, Qingdao University of Technology, School of Environmental and Municipal Engineering, Qingdao 266033, China
| |
Collapse
|
22
|
Hamid Y, Tang L, Hussain B, Usman M, Liu L, Cao X, Ulhassan Z, Bilal Khan M, Yang X. Cadmium mobility in three contaminated soils amended with different additives as evaluated by dynamic flow-through experiments. CHEMOSPHERE 2020; 261:127763. [PMID: 32721697 DOI: 10.1016/j.chemosphere.2020.127763] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 07/13/2020] [Accepted: 07/17/2020] [Indexed: 06/11/2023]
Abstract
As arable land has become an important sink for cadmium (Cd), soil is being recognized as a major source of metals to the food chain. It becomes, therefore, essential to investigate metal mobility in contaminated soils and to identify suitable remediation strategies. For this, immobilization of Cd was evaluated in contaminated stagnic anthrosol: S1, gleysol: S2 and fluvisol: S3 under flow through conditions. Ten treatments including control were tested alone or in composite form firstly at natural Cd contents (0.58-0.69 mg kg-1). Here, T2 (lime), T5 (biochar) and T10 (composite amendment) were found better in reducing the Cd concentration in the soils' leachates, so, their efficacy was further investigated in the same soils of higher Cd contents (1 and 2 mg kg-1 imposed by soil spiking). Amendments significantly reduced the leachate metal contents especially in 1 mg kg-1 spiked soils. Characterization of T2, T5 and T10 revealed their structural transformations in all the studied soil types, while active functional groups e.g. C-O, CO, O-H, Si-O-Si, ester and alcoholic groups were notably involved in Cd precipitation or adsorption on amendments surface. Variations in Cd speciation in these soils exhibited the exchange of Cd to more stable fractions with tested amendments. These continuous-flow experiments confirmed the strong efficiency of T2, T5 and T10 in reducing the Cd concentration in the leachate of three soils. This study has strong implications in understanding the role of different amendments in controlling the fate, leaching behavior and immobilization of Cd in diverse soil types.
Collapse
Affiliation(s)
- Yasir Hamid
- Ministry of Education (MOE) Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resources Science, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Lin Tang
- Ministry of Education (MOE) Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resources Science, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Bilal Hussain
- Ministry of Education (MOE) Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resources Science, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Muhammad Usman
- PEIE Research Chair for the Development of Industrial Estates and Free Zones, Center for Environmental Studies and Research, Sultan Qaboos University, Al-Khoud 123, Muscat, Oman
| | - Lei Liu
- Ministry of Education (MOE) Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resources Science, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Xuerui Cao
- Ministry of Education (MOE) Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resources Science, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Zaid Ulhassan
- Institute of Crop Science and Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, 310058, China
| | - Muhammad Bilal Khan
- Ministry of Education (MOE) Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resources Science, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Xiaoe Yang
- Ministry of Education (MOE) Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resources Science, Zhejiang University, Hangzhou, 310058, People's Republic of China.
| |
Collapse
|
23
|
Li W, Sun Y, Xin M, Bian R, Wang H, Wang YN, Hu Z, Linh HN, Zhang D. Municipal solid waste incineration fly ash exposed to carbonation and acid rain corrosion scenarios: Release behavior, environmental risk, and dissolution mechanism of toxic metals. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 744:140857. [PMID: 32688004 DOI: 10.1016/j.scitotenv.2020.140857] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 07/05/2020] [Accepted: 07/08/2020] [Indexed: 06/11/2023]
Abstract
This study investigated the leaching behavior, environmental risk, and dissolution mechanism of toxic metals (TMs) in solidified/stabilized municipal solid waste incineration fly ash (MSWI FA) exposed to alternative "carbonation + acid rain corrosion" disposal scenarios. The content of TMs (mg/kg) showed a trend of Zn (12,187.10 ± 168.60) > Pb (3374.43 ± 66.12) > Cu (1055.14 ± 32.52) > Cr (127.95 ± 8.12) > Cd (119.05 ± 6.26) > Ni (49.50 ± 3.20). Initial leaching of CO2-saturated water (CSW) and replacement of simulated acid rain (SAR) increased the environmental risk of leached TMs. The results of "average release rate" (mg/(kg·d)) of TMs indicated that Zn (0.8307)/Cu (0.0278)/Cd (0.0109) and Cu (0.0581)/Cr (0.001176)/Ni (0.004339) in phosphoric acid stabilized FA and Pb (0.0753)/Cr (0.001921)/Ni (0.00111) and Pb (0.0656)/Zn (1.0560)/Cd (0.0050) in Portland cement solidified FA were the key "problem TMs" during carbonation and acid rain corrosion, respectively. CSW leaching increased the independent environmental risk of most TMs in residual FA (especially Zn/Cd) due to the increased carbonate-bound fraction. Compared with independent carbonation, alternative "carbonation + acid rain corrosion" contributed to a higher comprehensive environmental risk for TMs in residual FA. CSW leaching system was an indirect carbonation based on CO2-water and FA matrix, in which "nucleation and dissolution" of carbonates and "immobilization and dissolution" of TMs coexisted. The dissolution mechanism of TMs was mainly controlled by reaction equilibrium of nucleation and dissolution of carbonates containing TMs. Dissolution and nucleation were the dominant mechanism in the early and later periods of CSW leaching, respectively. Carbonate layer dissolution, H+ corrosion/displacement, and counter-ion effect (SO42- > NO3- > Cl-) were the main mechanisms affecting TM dissolution during SAR leaching.
Collapse
Affiliation(s)
- Weihua Li
- Qingdao Solid Waste Pollution Control and Resource Engineering Research Center, Qingdao University of Technology, School of Environmental and Municipal Engineering, Qingdao 266033, China
| | - Yingjie Sun
- Qingdao Solid Waste Pollution Control and Resource Engineering Research Center, Qingdao University of Technology, School of Environmental and Municipal Engineering, Qingdao 266033, China.
| | - Mingxue Xin
- Qingdao Solid Waste Pollution Control and Resource Engineering Research Center, Qingdao University of Technology, School of Environmental and Municipal Engineering, Qingdao 266033, China
| | - Rongxing Bian
- Qingdao Solid Waste Pollution Control and Resource Engineering Research Center, Qingdao University of Technology, School of Environmental and Municipal Engineering, Qingdao 266033, China
| | - Huawei Wang
- Qingdao Solid Waste Pollution Control and Resource Engineering Research Center, Qingdao University of Technology, School of Environmental and Municipal Engineering, Qingdao 266033, China; Xinjiang Key Laboratory of Environmental Pollution and Bioremediation, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
| | - Ya-Nan Wang
- Qingdao Solid Waste Pollution Control and Resource Engineering Research Center, Qingdao University of Technology, School of Environmental and Municipal Engineering, Qingdao 266033, China
| | - Zhanbo Hu
- Guangxi Yijiang Environmental Protection Technology Co., Ltd., Nanning 530007, China
| | - Ho Nhut Linh
- Department of Urban and Environmental Engineering, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Dalei Zhang
- Qingdao Solid Waste Pollution Control and Resource Engineering Research Center, Qingdao University of Technology, School of Environmental and Municipal Engineering, Qingdao 266033, China
| |
Collapse
|
24
|
Zierold KM, Odoh C. A review on fly ash from coal-fired power plants: chemical composition, regulations, and health evidence. REVIEWS ON ENVIRONMENTAL HEALTH 2020; 35:401-418. [PMID: 32324165 DOI: 10.1515/reveh-2019-0039] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 03/09/2020] [Indexed: 05/29/2023]
Abstract
Throughout the world, coal is responsible for generating approximately 38% of power. Coal ash, a waste product, generated from the combustion of coal, consists of fly ash, bottom ash, boiler slag, and flue gas desulfurization material. Fly ash, which is the main component of coal ash, is composed of spherical particulate matter with diameters that range from 0.1 μm to >100 μm. Fly ash is predominately composed of silica, aluminum, iron, calcium, and oxygen, but the particles may also contain heavy metals such as arsenic and lead at trace levels. Most nations throughout the world do not consider fly ash a hazardous waste and therefore regulations on its disposal and storage are lacking. Fly ash that is not beneficially reused in products such as concrete is stored in landfills and surface impoundments. Fugitive dust emissions and leaching of metals into groundwater from landfills and surface impoundments may put people at risk for exposure. There are limited epidemiological studies regarding the health effects of fly ash exposure. In this article, the authors provide an overview of fly ash, its chemical composition, the regulations from nations generating the greatest amount of fly ash, and epidemiological evidence regarding the health impacts associated with exposure to fly ash.
Collapse
Affiliation(s)
- Kristina M Zierold
- Environmental Health Sciences, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Chisom Odoh
- Rehabilitation and Health Services, University of North Texas, Denton, TX, USA
| |
Collapse
|
25
|
Mahedi M, Cetin B. Carbonation based leaching assessment of recycled concrete aggregates. CHEMOSPHERE 2020; 250:126307. [PMID: 32114349 DOI: 10.1016/j.chemosphere.2020.126307] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 02/19/2020] [Accepted: 02/21/2020] [Indexed: 06/10/2023]
Abstract
The leaching characteristics of seven different recycled concrete aggregates (RCA) samples derived from building demolition waste, concrete pavement, stockpiled, and freshly crushed concrete were evaluated focusing on the effects of carbonation, liquid-to-solid ratio (L/S), and particle sizes. Batch water leach test (WLT), toxicity characteristic leaching procedure (TCLP), and synthetic precipitation leaching procedure (SPLP) were performed to assess the pH, electrical conductivity (EC), alkalinity, and the leached concentrations of Ba, Ca, Cr, Mg, and SO4 in RCA effluent. The leaching efficiency of the test methods at different RCA carbonation levels was also evaluated. Results indicated that the effluent pH, EC, and alkalinity decreased, while the leached fractions of elements increased with an increase in L/S ratio. An increase in calcium carbonate content tended to increase the leaching of Mg, Cr, and SO4. For highly carbonated RCA samples, effluent pH, EC, alkalinity, and Ca concentrations were higher for particle sizes of 1.19 mm-0.149 mm, while fresher RCA samples resulted in higher values from particles finer than 0.149 mm. Carbonated RCA samples leached higher Ca, Mg, and Ba in TCLP, whereas the maximum concentrations of Cr and SO4 were found in WLT effluent. For less carbonated RCA samples, Ca concentrations in WLT and TCLP effluents were comparable, SPLP leached higher amounts of Mg, Ba concentrations were maximum in WLT, and TCLP concentrations of Cr and SO4 were the most critical ones. TCLP alkalinity increased, whereas WLT and SPLP alkalinity decreased with an increase in calcium carbonate content of the RCA.
Collapse
Affiliation(s)
- Masrur Mahedi
- Department of Civil, Construction and Environmental Engineering, Iowa State University, 813 Bissell Road, Ames, IA, 50011, USA.
| | - Bora Cetin
- Department of Civil and Environmental Engineering, Michigan State University, 428 S. Shaw Ln., East Lansing, MI, 48824, USA.
| |
Collapse
|
26
|
Liu H, Zhang J, Li B, Zhou N, Xiao X, Li M, Zhu C. Environmental behavior of construction and demolition waste as recycled aggregates for backfilling in mines: Leaching toxicity and surface subsidence studies. JOURNAL OF HAZARDOUS MATERIALS 2020; 389:121870. [PMID: 31848089 DOI: 10.1016/j.jhazmat.2019.121870] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 12/03/2019] [Accepted: 12/09/2019] [Indexed: 06/10/2023]
Abstract
Environmental behavior of construction and demolition waste in cemented backfilling mining technology (CW-CBMT) is studied, with the aim of expanding the scope of construction and demolition waste (CDW) utilization, as well as developing strategies to release coal resources. Toxicity leaching, scanning electron microscopy (SEM), and mechanical properties testing about on-site sampling are carried out, and surface subsidence is surveyed. The results reveal that the maximum leaching concentration (0.00113 mg/L) of arsenic from cemented backfilling body with construction and demolition waste (CBCW) is small, the leaching solution is alkaline, and the leaching of heavy metals is influenced by aggregate particle size and by acidity and alkalinity. The results also show that the average compressive strength of CBCW is 2.4 MPa. The distribution of aggregates and elemental content influence the spatial distribution of compressive strength. The variation of internal distribution of elemental content of the CBCW can be interpreted by multifractal parameters. The maximum surface subsidence value is 245 mm, with the fastest sinking speed occurring in the mining stage and a return of surface subsidence stability after halting of mining. A comprehensive analysis of the test results shows that, from an environmental viewpoint, the application of CW-CBMT is successful.
Collapse
Affiliation(s)
- Hengfeng Liu
- State Key Laboratory of Coal Resources and Safe Mining, School of Mines, China University of Mining and Technology, Xuzhou 221116, China
| | - Jixiong Zhang
- State Key Laboratory of Coal Resources and Safe Mining, School of Mines, China University of Mining and Technology, Xuzhou 221116, China.
| | - Baiyi Li
- State Key Laboratory of Coal Resources and Safe Mining, School of Mines, China University of Mining and Technology, Xuzhou 221116, China.
| | - Nan Zhou
- State Key Laboratory of Coal Resources and Safe Mining, School of Mines, China University of Mining and Technology, Xuzhou 221116, China
| | - Xin Xiao
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China
| | - Meng Li
- State Key Laboratory of Coal Resources and Safe Mining, School of Mines, China University of Mining and Technology, Xuzhou 221116, China
| | - Cunli Zhu
- State Key Laboratory of Coal Resources and Safe Mining, School of Mines, China University of Mining and Technology, Xuzhou 221116, China
| |
Collapse
|
27
|
Xu Q, Xiang J, Ko JH. Municipal plastic recycling at two areas in China and heavy metal leachability of plastic in municipal solid waste. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 260:114074. [PMID: 32018201 DOI: 10.1016/j.envpol.2020.114074] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 01/14/2020] [Accepted: 01/23/2020] [Indexed: 06/10/2023]
Abstract
The total plastic waste generation in China has not been reported due to a lack of information on diverted recyclable wastes. This study was conducted with two objectives: to identify the characteristics of plastic waste generation, recycling, and compositions in informal and formal waste management sectors in selected Shenzhen (SZ) and Honghuatao Town (HT) study areas in China and to measure the leachability of the heavy metals of waste plastics using the synthetic precipitation leaching procedure (SPLP) and leaching tests with different pHs. The results showed that film plastic waste occupied the largest proportion among plastic components in the mixed MSW. It is estimated that the plastic waste generation rates in SZ and HT were 0.20-0.33 kg/capita/day and 0.08-0.14 kg/capita/day, respectively. The plastic recycling rates of SZ and HT ranged from 6.24 to 11.93% and 16.84-33.31%, respectively. Among the measured heavy metals, Ba, Zn, Cu, Mn contents were high in most plastic samples. In addition, Mn, Pb, Ni, and Zn in plastic wastes occasionally exceeded Chinese national drinking water standards in the different pH leaching tests and SPLP. Therefore, it is suggested that plastic waste should be managed in a controlled manner.
Collapse
Affiliation(s)
- Qiyong Xu
- Key Laboratory for Eco-efficient Recycled Materials, School of Environment and Energy, Peking University Shenzhen Graduate School, Guangdong, 518055, China
| | - Jingya Xiang
- Key Laboratory for Eco-efficient Recycled Materials, School of Environment and Energy, Peking University Shenzhen Graduate School, Guangdong, 518055, China
| | - Jae Hac Ko
- Department of Environmental Engineering, College of Ocean Sciences, Jeju National University, Jeju Special Self-Governing Province, 63243, Republic of Korea.
| |
Collapse
|
28
|
Ohbuchi A, Koike Y, Nakamura T. Crystal Morphology Analysis for Heavy Elements in Municipal Solid Waste Incineration Fly and Bottom Ash by X-ray Characterization Techniques. ANAL SCI 2020; 36:471-477. [PMID: 31866605 DOI: 10.2116/analsci.19p374] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 12/10/2019] [Indexed: 08/09/2023]
Abstract
The elemental and crystalline phase compositions of fly ash collected before and after spraying of the ash with slaked lime (first and second fly ash) and the bottom ash of municipal solid waste collected at an incineration plant were analyzed using powder briquette by X-ray fluorescence spectrometry and Rietveld refinement by X-ray diffraction. The crystalline and amorphous phase contents were quantified by adding 10% corundum as an internal standard. In the first fly ash, SiO2, Cl, and CaO were the main components, and several thousand ppm (μg/g) of Zn and Pb were detected. Anhydrite, gehlenite, and amorphous phases were the main phases in the first fly ash samples. The components of the first fly ash originated exclusively from the incineration of municipal solid waste in a furnace. The crystal morphologies of the heavy elements in the ash samples were estimated by determining the correlations among the concentrations of all the elements. The heavy elements in the bottom ash showed no strong correlations with other elements; therefore, the heavy elements in the bottom ash were present in an amorphous phase.
Collapse
Affiliation(s)
- Atsushi Ohbuchi
- Rigaku Americas Corporation, 9009 New Trails Drive, The Woodlands, TX, 77381, USA.
- Rigaku Corporation, 3-9-12 Matsubara-cho, Akishima, Tokyo, 196-8666, Japan.
| | - Yuya Koike
- Department of Applied Chemistry, School of Science and Technology, Meiji University, 1-1-1 Higashimita, Tama, Kawasaki, Kanagawa, 214-8571, Japan
| | - Toshihiro Nakamura
- Rigaku Corporation, 3-9-12 Matsubara-cho, Akishima, Tokyo, 196-8666, Japan
- Department of Applied Chemistry, School of Science and Technology, Meiji University, 1-1-1 Higashimita, Tama, Kawasaki, Kanagawa, 214-8571, Japan
| |
Collapse
|
29
|
Geng H, Wang F, Yan C, Tian Z, Chen H, Zhou B, Yuan R, Yao J. Leaching behavior of metals from iron tailings under varying pH and low-molecular-weight organic acids. JOURNAL OF HAZARDOUS MATERIALS 2020; 383:121136. [PMID: 31525690 DOI: 10.1016/j.jhazmat.2019.121136] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 09/01/2019] [Accepted: 09/01/2019] [Indexed: 06/10/2023]
Abstract
The migration of metals (e.g., Fe, Cd, Co, Cr, Cu, Mn, Ni, and Zn) in both of iron tailings under different pH leachates was studied by laboratory static leaching experiments. The results indicated that Fe showed the highest leaching concentration at an initial pH of 2, reaching 16.19 and 51.72 mg L-1 in the Qian'anling (Q0) and Majuanzi (M0) iron tailings, respectively. Metal ions manifested a strong pH dependence. In addition, the leaching behavior of Cd, Cr, Fe, and Cu for the two tailings was also evaluated under leaching by three low-molecular-weight organic acids (LMWOAs). The results indicated the leaching of Cd and Fe followed the order of citric acid > malic acid > oxalic acid and that the leaching order for Cr and Cu was citric acid > oxalic acid > malic acid. The concentration of Fe was low in 5 mM oxalic acid leaching for 20 days because of the hydrolysis precipitation of iron ions and the complexation with organic ligand. The crystal lattice on the tailings was significantly damaged after leaching. The CO32- peak appeared in M0 with different treatments, and the proportion of COO- fitting peak areas increased markedly after leaching with LMWOAs.
Collapse
Affiliation(s)
- Huanhuan Geng
- School of Energy & Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, 100083, Beijing, China
| | - Fei Wang
- School of Energy & Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, 100083, Beijing, China.
| | - Changchun Yan
- School of Energy & Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, 100083, Beijing, China
| | - Zhijun Tian
- Beijing Geo-engineering Design and Research Institute, 6 East Yuanlin Road, Miyun District, 101500, Beijing, China
| | - Huilun Chen
- School of Energy & Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, 100083, Beijing, China
| | - Beihai Zhou
- School of Energy & Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, 100083, Beijing, China
| | - Rongfang Yuan
- School of Energy & Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, 100083, Beijing, China
| | - Jun Yao
- School of Water Resource and Environmental Engineering, Sino-Hungarian Joint Laboratory of Environmental Science and Health, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, 100083, Beijing, China
| |
Collapse
|
30
|
Mahedi M, Cetin B, Dayioglu AY. Effect of cement incorporation on the leaching characteristics of elements from fly ash and slag treated soils. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 253:109720. [PMID: 31654932 DOI: 10.1016/j.jenvman.2019.109720] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 10/04/2019] [Accepted: 10/14/2019] [Indexed: 06/10/2023]
Abstract
Inclusion of cement in fly ash and slag mixed soils could potentially alter the leaching behavior of elements. This study investigated the leaching characteristics of calcium (Ca), magnesium (Mg), sulfur (S), manganese (Mn), barium (Ba) and chromium (Cr) from cement activated soil-fly ash, soil-slag mixtures and soil, fly ash, steel slag and cement alone. Batch water leach tests, acid neutralization capacity and pH-dependent leach tests were performed. Test results indicated that, effluent concentrations of Ca and Ba increased, while Mg concentrations decreased with cement additions. No consistent trend was observed between S concentrations and cement content. The leaching of Cr and Mn remained unaffected by cement incorporation. Results of this study showed that the solution pH had the greatest influence on the leaching behaviors of the elements. Ca, Mg, S and Mn followed cationic leaching patterns, whereas Ba showed both cationic and amphoteric leaching patterns. The highest concentrations of Cr were observed at extreme acidic conditions, followed by a concentration plateau at the pH range of 5.5-10, and subsequent decrease and increase in concentrations at pH of 11.5 and 13, respectively. Geochemical modeling results suggested that except for Cr, the leaching mechanisms of the elements were controlled by their sulfate and (hydr)oxide minerals. The leaching of Cr was possibly controlled by BaCrO4 and CaCrO4. It was observed that the presence of carbonate minerals did not play a significant role on the leaching mechanisms of the elements, when cement was used as an activator.
Collapse
Affiliation(s)
- Masrur Mahedi
- Department of Civil, Construction and Environmental Engineering, 813 Bissell Road, Town Engineering Building, Iowa State University, Ames, IA, 50011, USA.
| | - Bora Cetin
- Department of Civil and Environmental Engineering, 428 S. Shaw Lane, Michigan State University, East Lansing, MI, 48824, USA.
| | - Asli Y Dayioglu
- Department of Civil Engineering, 259 School of Civil Engineering, Istanbul Technical University, Istanbul, 34467, Turkey.
| |
Collapse
|
31
|
Dontriros S, Likitlersuang S, Janjaroen D. Mechanisms of chloride and sulfate removal from municipal-solid-waste-incineration fly ash (MSWI FA): Effect of acid-base solutions. WASTE MANAGEMENT (NEW YORK, N.Y.) 2020; 101:44-53. [PMID: 31586876 DOI: 10.1016/j.wasman.2019.09.033] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 08/21/2019] [Accepted: 09/24/2019] [Indexed: 06/10/2023]
Abstract
A general approach to managing municipal solid waste is by incineration. Unfortunately, large amounts of municipal-solid-waste-incineration fly ash (MSWI FA) is produced in the process, with their heavy metals content posing further problems to the environment. One fundamental treatment of MSWI FA heavy metals is called solidification-stabilization, where MSWI FA is solidified in cement-based materials to cap hazardous elements from being released into the environment. Mortar formed from this cement mixed with MSWI FA suffer from decreased compressive strength due to their chloride and sulfate contents. Thus, pre-treatment of MSWI FA to remove these salts before producing mortar is desirable. This study investigated treating MSWI FA with deionized water, 0.01 M and 0.1 M nitric acid, and 0.1 M and 0.25 M sodium carbonate to remove chloride and sulfate. Physical and chemical structures of treated and untreated MSWI FA was studied to understand the chloride and sulfate removal mechanisms. Treated MSWI FA was used as cement replacement in mortar, and the compressive strength was tested. Results suggest that all of the treatment solutions tested in this study can equally remove chloride (around 250,000 mg/kg), but sodium carbonate can remove sulfate at the highest extent (15,821 mg/kg). In addition, mortar with deionized-water-treated MSWI FA gave the highest compressive strength. Heavy metals leaching was tested by the Toxicity Characterization Leaching Procedure (TCLP) method, with results passing the standard.
Collapse
Affiliation(s)
- Suthatta Dontriros
- Department of Environmental Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, Thailand.
| | - Suched Likitlersuang
- Centre of Excellence in Geotechnical and Geoenvironmental Engineering, Department of Civil Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, Thailand.
| | - Dao Janjaroen
- Department of Environmental Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, Thailand; Research Program: Sustainable Management of Industrial and Agricultural Wastes for Transitioning to a Circular Economy, Center of Excellence on Hazardous Substance Management (HSM), Bangkok, Thailand; Research Program of Industrial Waste Management - Policies and Practices, Center of Excellence on Hazardous Substance Management (HSM), Bangkok, Thailand; Research Network of NANOTEC - CU on Environment, Bangkok 10330, Thailand.
| |
Collapse
|
32
|
Application of the Flotation Tailings as an Alternative Material for an Acid Mine Drainage Remediation: A Case Study of the Extremely Acidic Lake Robule (Serbia). METALS 2019. [DOI: 10.3390/met10010016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Flotation tailings rich in carbonate minerals from the tailings deposit of the copper mine Majdanpek (Serbia) were applied for neutralization of the water taken from the extremely acidic Lake Robule (Bor, Serbia). Tests conducted in Erlenmeyer flasks showed that after neutralization of the lake water to pH 7, over 99% of aluminum (Al), iron (Fe), and copper (Cu) precipitated, as well as 92% of Zn and 98% of Pb. In order to remove residual Mn and Ag, the water was further treated with NaOH. After treatment with NaOH, all concentrations of the metals in the lake water samples were below discharge limits for municipal wastewater according to the national legislation of the Republic of Serbia. The results of this work suggest that mining waste could be used for active neutralization of the acid mine drainage. The use of the mining waste instead of lime could reduce the costs of the active treatment of the acid mine drainage.
Collapse
|
33
|
Mahedi M, Cetin B. Leaching of elements from cement activated fly ash and slag amended soils. CHEMOSPHERE 2019; 235:565-574. [PMID: 31276869 DOI: 10.1016/j.chemosphere.2019.06.178] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 06/10/2019] [Accepted: 06/23/2019] [Indexed: 06/09/2023]
Abstract
Very few studies have investigated the leaching characteristics of cement activated fly ash and slag treated soils, although the inclusion of cement significantly enhances the material pH and may alter the leachability of elements. In this study the leaching behavior and mechanisms of chromium (Cr), copper (Cu), iron (Fe) and sulfur (S) from cement activated fly ash and slag stabilized soils were evaluated. An array of synthetic precipitation leaching procedure (SPLP), batch water leach test (WLT), toxicity characteristic leaching procedure (TCLP) and pH-Static leach tests were conducted. A geochemical equilibrium model Visual MINTEQ was implemented to identify the leaching controlling mechanisms of the metals. Results indicated that, the leached concentrations of Cr, Cu, Fe and S in SPLP, WLT and TCLP effluents were in the range of 0.016-0.74 mg/L, 0.013-0.17 mg/L, 0.019-0.27 mg/L and 1.78-234 mg/L, respectively. Quantitative comparisons between the standard test procedures suggested the necessity of multiple test methods for a comprehensive leaching assessment. Cr and Cu showed amphoteric leaching behaviors, whereas Fe and S followed cationic leaching patterns. According to the geochemical analyses, amorphous Cr(OH)3; tenorite and Cu(OH)2; ferrihydrite and goethite; gypsum and anhydrite; could control the leaching of Cr, Cu, Fe and S, respectively. The effluent Cr concentrations frequently exceeding the U.S. EPA specified maximum contaminant level of 0.1 mg/L. Yet, the use of cement activated fly ash and slag mixed soils could be beneficial, since less toxic trivalent Cr (III) was identified through geochemical modeling.
Collapse
Affiliation(s)
- Masrur Mahedi
- Department of Civil, Construction and Environmental Engineering 813 Bissell Road, Town Engineering Building Iowa State University, Ames, IA, 50011, USA.
| | - Bora Cetin
- Department of Civil, Construction and Environmental Engineering 813 Bissell Road, Town Engineering Building Iowa State University, Ames, IA, 50011, USA.
| |
Collapse
|
34
|
Mineralogy Characteristic Study and Exploration on the Valuable Metals Enrichment of Coal Fly Ash. ADVANCES IN POLYMER TECHNOLOGY 2019. [DOI: 10.1155/2019/1839450] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The separation and enrichment can be targeted to enrich in fly ash and reduce the cost of leaching and recovering of fly ash. Regarding their different properties, the single-component separation was used to obtain uncompleted burned carbon, glass microbeads, minerals, and other characteristic components from the ash. Also, the mineral composition of each component was analyzed by electron microscopy. The metal minerals were mainly concentrated in the mineral components. Besides, the electron probe microanalysis shows that the Pt content in the minerals of fly ash was significantly correlated with the metal contents of Ni and Cu. After the obtainment of the characteristics of fly ash metal enrichment, the heavy minerals with Cu, Ni, Pt, Pd, and other target metal elements were enriched by gravity separation and flotation. The enrichment coefficients of Cu, Ni, Pt, and Pd were 1.45, 1.33, 1.90, and 1.60, respectively, and the recovery rates were 77%, 81%, 97%, and 88%, respectively. Since the yield of heavy minerals obtained by separation was 62.24%, it indicated the physical separation method could significantly reduce the cost of leaching and recovering of fly ash metal resources.
Collapse
|
35
|
Mahedi M, Cetin B, Dayioglu AY. Leaching behavior of aluminum, copper, iron and zinc from cement activated fly ash and slag stabilized soils. WASTE MANAGEMENT (NEW YORK, N.Y.) 2019; 95:334-355. [PMID: 31351620 DOI: 10.1016/j.wasman.2019.06.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Revised: 05/02/2019] [Accepted: 06/10/2019] [Indexed: 06/10/2023]
Abstract
The use of industrial by-products such as fly ash and slag have become very prevalent in soil stabilization owing to its suitable physical and mechanical properties, and economical advantages. However, fly ash and slag have been identified as the potential source of toxic substances, and may pose environmental risk by leaching heavy and trace metals into soil, surface and groundwater. Toxicity characteristic leaching procedure (TCLP) tests were conducted to investigate the environmental hazards associated with the leaching of aluminum (Al), copper (Cu), iron (Fe) and zinc (Zn) from fly ashes, slag, type I/II cement and cement activated fly ash and slag stabilized soils. Sulfate (SO4), dissolved inorganic carbon (DIC) and dissolved organic carbon (DOC) concentrations were also quantified to evaluate their influence on metal leaching. To understand the effect of pH on the leaching behavior, pH-dependent leach tests were conducted at the pH ranges of 2-14. Results indicated that an increase in fly ash or slag content may not necessarily increase the effluent metal concentrations. Al, Cu, Zn and DOC followed an amphoteric leaching pattern where concentrations increased in both acidic and basic conditions. In contrast, maximum DIC concentrations occurred at neutral or near neutral pH values. Fe and SO4 showed cationic leaching behavior where concentrations decreased with an increase in effluent pH. Additionally, the leaching controlling mechanisms of the metals were identified by implementing geochemical modeling program Visual MINTEQ. The geochemical analyses indicated that the solubility of Al3+ and Fe3+ were controlled by precipitation/dissolution reactions of oxide/hydroxide minerals at all pH values. Leaching of Cu2+ was only solubility controlled at pH higher than 7, whereas Zn2+ leaching was solubility controlled in the pH range of 8-12.
Collapse
Affiliation(s)
- Masrur Mahedi
- Department of Civil, Construction and Environmental Engineering, 813 Bissell Road, Town Engineering Building, Iowa State University, Ames, IA 50011, United States.
| | - Bora Cetin
- Department of Civil, Construction and Environmental Engineering, 813 Bissell Road, Town Engineering Building, Iowa State University, Ames, IA 50011, United States.
| | - Asli Y Dayioglu
- Department of Civil Engineering, Ayazaga Campus, Civil Engineering Building, Istanbul Technical University, Istanbul 34469, Turkey.
| |
Collapse
|
36
|
pH-Dependent Leaching Characteristics of Major and Toxic Elements from Red Mud. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16112046. [PMID: 31185604 PMCID: PMC6603915 DOI: 10.3390/ijerph16112046] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 06/02/2019] [Accepted: 06/07/2019] [Indexed: 12/03/2022]
Abstract
This study analyzes the leaching behavior of elements from red mud (bauxite residue) at pH values ranging from 2 to 13. The leaching characteristics of metals and contaminated anions in five red mud samples produced by Bayer and combined processes were analyzed using the batch leaching technique following the US Environmental Protection Agency (USEPA) Method 1313. In addition, the geochemical model of MINTEQ 3.1 was used to identify the leaching mechanisms of metals. The results showed that Ca, Mg, and Ba follow the cationic leaching pattern. Al, As, and Cr show an amphoteric leaching pattern. The leaching of Cl− is unaffected by the pH. The maximum leaching concentration of the proprietary elements occurs under extremely acidic conditions (pH = 2), except for As. The leaching concentration of F− reaches 1.4–27.0 mg/L in natural pH conditions (i.e., no acid or base addition). At the same pH level, the leaching concentrations of Pb, As, Cr, and Cu are generally higher from red mud produced by the combined process than that those of red mud from the Bayer process. The leaching concentration of these elements is not strongly related to the total elemental concentration in the red mud. Geochemical modeling analysis indicates that the leaching of metal elements, including Al, Ca, Fe, Cr, Cu, Pb, Mg, Ba, and Mn, in red mud are controlled by solubility. The leaching of these elements depended on the dissolution/precipitation of their (hydr)oxides, carbonate, or sulfate solids.
Collapse
|
37
|
Seki T, Ogawa Y, Inoue C. Classification of coal fly ash based on pH, CaO content, glassy components, and leachability of toxic elements. ENVIRONMENTAL MONITORING AND ASSESSMENT 2019; 191:358. [PMID: 31073910 DOI: 10.1007/s10661-019-7489-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Accepted: 04/22/2019] [Indexed: 06/09/2023]
Abstract
Coal fly ash (CFA), a by-product generated from coal-burning power plants, readily leaches toxic elements into aquatic environments. The present study describes a classification system for CFA based on the chemical composition of CFA and leachability of toxic elements, which can promote the safe and effective utilization of CFA for uses such as fly ash cement. To classify CFA samples, the CaO content, leachate pH, leachability of toxic elements such as B, As, and Se, and the acid- and alkali-soluble Si and Al in glassy components were determined for ten types of CFA samples produced in Japan. The results indicated that the CFA samples could be grouped into three groups: group A, which was characterized by low CaO content, low leachate pH, and a relatively high amount of alkaline-soluble Al; group B, which was characterized by low CaO content, low leachate pH, and relatively low amount of alkaline-soluble Al; and group C, which was characterized by high CaO content, high leachate pH, and relatively low amount of alkaline-soluble Al. Characteristic of group A CFA was the simultaneous leaching of Al and the minor elements along with a gradual increase in pH. This type of CFA carries the risk of leaching toxic substances upon contact with alkali solutions. These results can aid the discovery and separation of safe and unsafe CFA, allowing the safe CFA to be used in cement to produce concrete under alkali conditions.
Collapse
Affiliation(s)
- Tsugumi Seki
- Graduate School of Environmental Studies, Tohoku University, Aoba 6-6-20, Aramaki, Aoba-ku, Sendai, Miyagi, 980-8579, Japan
| | - Yasumasa Ogawa
- Department of Earth Resource Engineering and Environmental Science, Faculty of International Resource Sciences, Akita University, Tegatagakuen-machi 1-1, Akita, Akita, 010-8502, Japan.
| | - Chihiro Inoue
- Graduate School of Environmental Studies, Tohoku University, Aoba 6-6-20, Aramaki, Aoba-ku, Sendai, Miyagi, 980-8579, Japan
| |
Collapse
|
38
|
Lu CC, Hsu MH, Lin YP. Evaluation of heavy metal leachability of incinerating recycled aggregate and solidification/stabilization products for construction reuse using TCLP, multi-final pH and EDTA-mediated TCLP leaching tests. JOURNAL OF HAZARDOUS MATERIALS 2019; 368:336-344. [PMID: 30685722 DOI: 10.1016/j.jhazmat.2019.01.066] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 01/19/2019] [Accepted: 01/21/2019] [Indexed: 06/09/2023]
Abstract
Incinerating recycled aggregate (IRA) produced using bottom ash generated from the incineration of municipal solid wastes can be reused as construction materials and cement-based solidification/stabilization (S/S) can be employed to improve their environmental compatibility. Toxicity characteristic leaching procedure (TCLP) is commonly used to evaluate heavy metal leachability before reuse. However, the applicability of TCLP to IRA and their S/S products can be limited because of their alkaline nature which may cause underestimation of metal release. In this study, the leaching of heavy metals from an IRA and two S/S products, low-strength material (CLSM) and multi-functional regenerated concrete (MRC), were evaluated using TCLP, multi-final pH leaching test and EDTA-mediated TCLP. The results showed that TCLP results generally met the reuse standards. However, the results obtained from multi-final pH leaching test and EDTA-mediated TCLP showed exceedances of reuse standards for Pb and Cu when the final pH was < 5 or in the presence of> 7 mM EDTA. The results suggested that the reuse of IRA or S/S products requires further evaluation of their metal leachability in more harsh environmental conditions. Considering its simplicity, it is suggested that EDTA-mediated TCLP could be used for this purpose.
Collapse
Affiliation(s)
- Chien-Chih Lu
- Graduate Institute of Environmental Engineering, National Taiwan University, Taipei 10673, Taiwan
| | - Ming Huang Hsu
- Taiwan Construction Research Institute, New Taipei City 231, Taiwan
| | - Yi-Pin Lin
- Graduate Institute of Environmental Engineering, National Taiwan University, Taipei 10673, Taiwan; NTU Research Center for Future Earth, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
39
|
Wang J. Short-term geochemical investigation and assessment of dissolved elements from simulated ash reclaimed soil into groundwater. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 247:302-311. [PMID: 30685671 DOI: 10.1016/j.envpol.2019.01.060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 12/24/2018] [Accepted: 01/16/2019] [Indexed: 06/09/2023]
Abstract
A soil column migration trough was used to study the leaching behavior and geochemical partitioning of fifteen elements Al, As, Cr, Cu, Fe, Mg, Sn, Sb, Zn, V, Co, Mn, Pb, Ni and Cd in simulated ash reclaimed soil. According to the results of cluster analysis for the sampling stations, there were three clusters: Cluster 1 of 7 wells with relative good groundwater quality originated from the background control area, Cluster 2 of 9 wells with worst groundwater quality in the downstream parts of the simulated ash reclaimed soil, and Cluster 3 of 2 wells with representative of samples influenced by the combined effect of injection of leaching solution and the main current. Statistical analysis identified five factor types that accounted for 83.055% of the total variance, which declined in the order: ash-soil rate > leaching intensity > water depths > flow velocity > leaching time. As, Sb, Cd, Pb and Ni were the dominant contaminants. The water around ash reclaimed soil was unsuitable for drinking. As, Mn, Cd, Sb, Co and V were the largest contributors to health risks. Soils reclaimed with fly ash can consequently be a long-time source for the transfer of toxic elements into groundwater.
Collapse
Affiliation(s)
- Jiao Wang
- Environment and Resources College, Shanxi University, No.92 Wucheng Rd., Taiyuan, 030006, China.
| |
Collapse
|
40
|
Li W, Sun Y, Huang Y, Shimaoka T, Wang H, Wang YN, Ma L, Zhang D. Evaluation of chemical speciation and environmental risk levels of heavy metals during varied acid corrosion conditions for raw and solidified/stabilized MSWI fly ash. WASTE MANAGEMENT (NEW YORK, N.Y.) 2019; 87:407-416. [PMID: 31109541 DOI: 10.1016/j.wasman.2019.02.033] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 01/25/2019] [Accepted: 02/14/2019] [Indexed: 06/09/2023]
Abstract
In this work, the leaching pattern, chemical speciation, and environmental risks of various heavy metals (Pb, Zn, Cu, Cd, Cr, and Ni) were investigated synchronously under different acid corrosion conditions through end-point pH leaching experiments. The heavy metals were present in raw, stabilized (phosphoric acid; chelating agent), and solidified (Portland cement) municipal solid waste incineration (MSWI) fly ash. The results showed that the stabilization and solidification pre-treatment could effectively decrease the leaching of most heavy metals. However, phosphoric acid stabilization and Portland cement solidification increased the solubility of Ni and Pb/Cu/Cd under low end-point pH conditions, while that of Cr and Pb increased under high end-point pH conditions. Overall, the leaching pattern of heavy metals was not affected by the addition of binders/additives. The results from speciation analysis showed that the bioavailable fractions (exchangeable and carbonate-bound) were leached out from initial raw or solidified/stabilized fly ash after distilled water leaching. However, with the decrease in end-point pH levels, the bioavailable fractions increased again due to the increase in acid corrosion on metal-bearing mineral matrixes. The risk assessment results indicated that, after exposing the raw or solidified/stabilized fly ash to highly acidic conditions, not only the high-content Pb/Zn/Cu, but also some low-content Cd posed potential risks to the environment. During the leaching process, under extremely acidic conditions, the increased environmental risks posed by Pb/Zn/Cu/Cd in residual fly ash solids were greatly ascribed to the increase in bioavailable fractions, which might result in the re-leaching of some heavy metals to the environment.
Collapse
Affiliation(s)
- Weihua Li
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, China; Qingdao Solid Waste Pollution Control and Resource Engineering Research Center, Qingdao 266033, China
| | - Yingjie Sun
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, China; Qingdao Solid Waste Pollution Control and Resource Engineering Research Center, Qingdao 266033, China.
| | - Yaomin Huang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, China; Qingdao Solid Waste Pollution Control and Resource Engineering Research Center, Qingdao 266033, China
| | - Takayuki Shimaoka
- Department of Urban and Environmental Engineering, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Huawei Wang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, China; Qingdao Solid Waste Pollution Control and Resource Engineering Research Center, Qingdao 266033, China
| | - Ya-Nan Wang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, China; Qingdao Solid Waste Pollution Control and Resource Engineering Research Center, Qingdao 266033, China
| | - Li Ma
- Qingdao Environmental Monitoring Center Station, Qingdao 266003, China
| | - Dalei Zhang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, China; Qingdao Solid Waste Pollution Control and Resource Engineering Research Center, Qingdao 266033, China
| |
Collapse
|
41
|
Patel KM, Devatha CP. Investigation on leaching behaviour of toxic metals from biomedical ash and its controlling mechanism. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:6191-6198. [PMID: 30617896 DOI: 10.1007/s11356-018-3953-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 12/07/2018] [Indexed: 06/09/2023]
Abstract
It is comprehensible that disposal of biomedical ash (BMA) is a serious threat to human life and to the environment compared to any other type of waste without proper treatment. In the present study, it is focused in studying the leaching behaviour and its controlling mechanism to predict the contamination levels of BMA. Experimental investigation was carried out to determine the physico-chemical properties of BMA. The morphological and mineralogical composition was performed by SEM equipped with EDAX and XRD. A leaching pattern was identified for various heavy metals simultaneously (Hg, Se, As, Fe, Cd, Zn, Pb, Ca, Co, Ni, Cr and Cu) by varying pH (3, 5, 7, 9, and 11) via a pH-dependent batch leaching test using AAS and ICP. Major oxidation states of leached mineral/metal were established by Visual MINTEQA 3.1. Leaching test results show that a high concentration of Hg (9.3 mg/l), Se (2.4 mg/l) and As (9.7 mg/l) at pH 11 was obtained. Characterisation studies substantiate 60% of calcium silicate presence and major minerals like ettringite, calcite and thermonatrite. Geochemical modelling reveals that leached elements were solubility controlled except As and Se. It is inferred that, presence/formation of ettringite, calcite and thermonatrite minerals are responsible for immobilizing/reduced leaching of toxic heavy metals in alkaline environment except for Hg, Se and As as they are highly mobile in an alkaline condition which can be reduced by adopting a suitable pretreatment option so as to reduce the contamination levels of handling even untreated waste disposal.
Collapse
|
42
|
Tian Q, Guo B, Nakama S, Sasaki K. Distributions and Leaching Behaviors of Toxic Elements in Fly Ash. ACS OMEGA 2018; 3:13055-13064. [PMID: 31458026 PMCID: PMC6644505 DOI: 10.1021/acsomega.8b02096] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Accepted: 09/28/2018] [Indexed: 05/14/2023]
Abstract
Fly ash usually contains a considerable amount of toxic elements that can be leached into the environment, thereby easily leading to serious contaminations. In this work, the leaching behaviors of poisonous elements including boron (B), phosphorus (P), vanadium (V), chromium (Cr), arsenic (As), selenium (Se), molybdenum (Mo), antimony (Sb), and tungsten (W) from fly ash were explored by sequential extraction. Importantly, the associations of these elements in fly ash were discussed based on their leaching and X-ray absorption near-edge structure (XANES) results. From the XANES results, it was observed that V(IV), Cr(III), As(V), Se(IV), and W(IV) were their main states of existence in fly ash. In terms of leaching results, large amounts of Mo and W were leached into pure water, which indicated their high mobilities. Furthermore, the occurrence of Mo in fly ash was mainly in the form of oxides, and W had complex associations including WX4 (X can be monovalent anions), its reduction state or association with the elements that can be oxidized, and existence in silicates. B was as easily released into the environment as Mo and W. It can have several associations with the other cations, such as Ca2+, Na+, and Mg2+, and occurs in silicates. In contrast, most of the Cr and Sb were locked in silicates, indicating that they were very stable in fly ash. In addition, P, V, and As can exist within the structure of silicates as well. However, a considerable amount of them leached in the reduction step with a low pH. Hence, they can be associated with Ca2+, Na+, Mg2+, or Fe3+. In terms of Se, oxidation processes played an important role in controlling its leaching because of the oxidation of Se(IV) to Se(VI). Calcium selenite should be the predominant form of Se in fly ash.
Collapse
Affiliation(s)
- Quanzhi Tian
- Department of Earth Resources Engineering,
Faculty of Engineering, Kyushu University, 744 Motooka, Nishiku, Fukuoka 819-0395, Japan
| | - Binglin Guo
- Department of Earth Resources Engineering,
Faculty of Engineering, Kyushu University, 744 Motooka, Nishiku, Fukuoka 819-0395, Japan
| | - Shingo Nakama
- Department of Earth Resources Engineering,
Faculty of Engineering, Kyushu University, 744 Motooka, Nishiku, Fukuoka 819-0395, Japan
| | - Keiko Sasaki
- Department of Earth Resources Engineering,
Faculty of Engineering, Kyushu University, 744 Motooka, Nishiku, Fukuoka 819-0395, Japan
| |
Collapse
|
43
|
Leelarungroj K, Likitlersuang S, Chompoorat T, Janjaroen D. Leaching mechanisms of heavy metals from fly ash stabilised soils. WASTE MANAGEMENT & RESEARCH : THE JOURNAL OF THE INTERNATIONAL SOLID WASTES AND PUBLIC CLEANSING ASSOCIATION, ISWA 2018; 36:616-623. [PMID: 29893191 DOI: 10.1177/0734242x18775494] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Fly ash is an industrial waste material that is repurposed as a soil stabiliser worldwide. In Thailand, many ground improvement projects utilise mixtures of cement and fly ash to stabilise weak soils. In this study, leaching mechanisms of arsenic, chromium, lead, and zinc from cement and fly ash stabilised soils were investigated in the laboratory. Leaching tests were performed, with different leachants and pH conditions, on cement and fly ash stabilised soils used for soil improvement in road embankment construction projects in Northern Thailand. The results suggested that chemical compounds (CaO and MgO) on fly ash surfaces can control the pH of the fly ash and soil leachant. The dissolution of chromium and zinc was found to be amphoteric and controlled by oxide minerals at a high or low pH. Arsenic leaching was found to be oxyanionic where AsO43- prevented the adsorption of arsenic onto the negatively charged fly ash surface. Different types of leachant also leached out in different amounts of heavy metals.
Collapse
Affiliation(s)
- Kittitat Leelarungroj
- 1 Center of Excellence on Hazardous Substance Management, Chulalongkorn University, Bangkok, Thailand
| | - Suched Likitlersuang
- 2 Geotechnical Research Unit, Department of Civil Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, Thailand
| | - Thanakorn Chompoorat
- 3 Department of Civil Engineering, School of Engineering, University of Phayao, Phayao, Thailand
| | - Dao Janjaroen
- 4 Department of Environmental Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, Thailand
- 5 Research Program : Toxic Substance Management in the Mining Industry, Center of Excellence on Hazardous Substance Management (HSM), Bangkok, Thailand
| |
Collapse
|
44
|
Xiong Y, Xiao T, Liu Y, Zhu J, Ning Z, Xiao Q. Occurrence and mobility of toxic elements in coals from endemic fluorosis areas in the Three Gorges Region, SW China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2017; 144:1-10. [PMID: 28595096 DOI: 10.1016/j.ecoenv.2017.05.045] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 05/20/2017] [Accepted: 05/26/2017] [Indexed: 06/07/2023]
Abstract
Fluorine (F) is a topic of great interest in coal-combustion related endemic fluorosis areas. However, little extent research exists regarding the environmental geochemistry of toxic elements that are enriched in coals and coal wastes in traditional endemic fluorosis areas, particularly focusing on their occurrences and mobilities during the weathering-leaching processes of coals and coal wastes in the surface environment. This paper addressed the issue of toxic elements in coals and coal wastes in the Three Gorges Region, Southwest (SW) China, where endemic fluorosis has historically prevailed, and investigated the distribution, occurrence, mobility features, and associated potential health risks. For this purpose, a modified experiment combined with long-term humidity cell test and column leaching trial was applied to elucidate the mobility of toxic elements in coals and coal wastes. In addition, sequential chemical extraction (SCE) was used to ascertain the modes of occurrence of toxic elements. The results demonstrated that the contents of toxic elements in the study area followed the order: stone coals > gangues > coal balls > coals. Furthermore, modes of occurrence of toxic elements were obviously different in coals and coal wastes. For example, cadmium (Cd) was mainly associated with monosulfide fraction in coals, molybdenum (Mo) and arsenic (As) were mainly associated with carbonate and silicate in coal gangues and stone coals, chromium (Cr) mainly existed in silicate and insoluble matter in coal gangues and coal balls, thallium (Tl) mainly occurred in organic matter in stone coals and sulfide in coals, and the occurrence of antimony (Sb) varied with different kinds of samples. Moreover, a large amount of toxic elements released to the leachates during the weathering and leaching process, which might pollute the environment and threaten human health. Based on the geo-accumulation index (Igeo), single factor index (Pi) and Nemerow index (PN), soils in the study area were mainly polluted by Cd, which constituted a potential risk to locally planted crops.
Collapse
Affiliation(s)
- Yan Xiong
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tangfu Xiao
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; The Key Laboratory of Water Safety and Protection of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China.
| | - Yizhang Liu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Jianming Zhu
- State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Beijing 100083, China
| | - Zengping Ning
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Qingxiang Xiao
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
45
|
Ni P, Xiong Z, Tian C, Li H, Zhao Y, Zhang J, Zheng C. Influence of carbonation under oxy-fuel combustion flue gas on the leachability of heavy metals in MSWI fly ash. WASTE MANAGEMENT (NEW YORK, N.Y.) 2017; 67:171-180. [PMID: 28551279 DOI: 10.1016/j.wasman.2017.05.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 05/03/2017] [Accepted: 05/11/2017] [Indexed: 06/07/2023]
Abstract
Due to the high cost of pure CO2, carbonation of MSWI fly ash has not been fully developed. It is essential to select a kind of reaction gas with rich CO2 instead of pure CO2. The CO2 uptake and leaching toxicity of heavy metals in three typical types of municipal solid waste incinerator (MSWI) fly ash were investigated with simulated oxy-fuel combustion flue gas under different reaction temperatures, which was compared with both pure CO2 and simulated air combustion flue gas. The CO2 uptake under simulated oxy-fuel combustion flue gas were similar to that of pure CO2. The leaching concentration of heavy metals in all MSWI fly ash samples, especially in ash from Changzhou, China (CZ), decreased after carbonation. Specifically, the leached Pb concentration of the CZ MSWI fly ash decreased 92% under oxy-fuel combustion flue gas, 95% under pure CO2 atmosphere and 84% under the air combustion flue gas. After carbonation, the leaching concentration of Pb was below the Chinese legal limit. The leaching concentration of Zn from CZ sample decreased 69% under oxy-fuel combustion flue gas, which of Cu, As, Cr and Hg decreased 25%, 33%, 11% and 21%, respectively. In the other two samples of Xuzhou, China (XZ) and Wuhan, China (WH), the leaching characteristics of heavy metals were similar to the CZ sample. The speciation of heavy metals was largely changed from the exchangeable to carbonated fraction because of the carbonation reaction under simulated oxy-fuel combustion flue gas. After carbonation reaction, most of heavy metals bound in carbonates became more stable and leached less. Therefore, oxy-fuel combustion flue gas could be a low-cost source for carbonation of MSWI fly ash.
Collapse
Affiliation(s)
- Peng Ni
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Zhuo Xiong
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Chong Tian
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Hailong Li
- School of Energy Science and Engineering, Central South University, Changsha, Hunan 410083, China
| | - Yongchun Zhao
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China.
| | - Junying Zhang
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China.
| | - Chuguang Zheng
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| |
Collapse
|
46
|
An Efficient Approach for Lithium and Aluminum Recovery from Coal Fly Ash by Pre-Desilication and Intensified Acid Leaching Processes. METALS 2017. [DOI: 10.3390/met7070272] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
47
|
Shin J, Natanson A, Khun, J, Odorizzi N, DeCreny-Jackson J, Fowowe H, Jackson C, Springthorpe S, Rhodes T, Lutz H, Askey J, Aleman L, Ciccolella A, Wesley B, Lewis K, Kuppinger D, DeFord-Watts L. Research Article: Assessing the impact of coal ash exposure on soil microbes in the Dan River. ACTA ACUST UNITED AC 2017. [DOI: 10.1893/bios-d-16-00006.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Juyoung Shin
- Department of Biology, Salem College, Winston Salem, NC 27101
| | - Alanna Natanson
- Department of Biology, Salem College, Winston Salem, NC 27101
| | - Joelisa Khun,
- Department of Biology, Salem College, Winston Salem, NC 27101
| | | | | | - Helen Fowowe
- Department of Biology, Salem College, Winston Salem, NC 27101
| | - Cristal Jackson
- Department of Biology, Salem College, Winston Salem, NC 27101
| | | | - Taylor Rhodes
- Department of Biology, Salem College, Winston Salem, NC 27101
| | - Holland Lutz
- Department of Biology, Salem College, Winston Salem, NC 27101
| | - Jessica Askey
- Department of Biology, Salem College, Winston Salem, NC 27101
| | - Laura Aleman
- Department of Biology, Salem College, Winston Salem, NC 27101
| | - Amy Ciccolella
- Department of Biology, Salem College, Winston Salem, NC 27101
| | - Bryce Wesley
- Department of Biology, Salem College, Winston Salem, NC 27101
| | - Kaitlin Lewis
- Department of Biology, Salem College, Winston Salem, NC 27101
| | - Dane Kuppinger
- Department of Biology, Salem College, Winston Salem, NC 27101
| | | |
Collapse
|
48
|
Bestgen JO, Cetin B, Tanyu BF. Effects of extraction methods and factors on leaching of metals from recycled concrete aggregates. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:12983-13002. [PMID: 26996910 DOI: 10.1007/s11356-016-6456-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2015] [Accepted: 03/09/2016] [Indexed: 06/05/2023]
Abstract
Leaching of metals (calcium (Ca), chromium (Cr), copper, (Cu), iron (Fe), and zinc (Zn)) of recycled concrete aggregates (RCAs) were investigated with four different leachate extraction methods (batch water leach tests (WLTs), toxicity leaching procedure test (TCLP), synthetic precipitation leaching procedure test (SPLP), and pH-dependent leach tests). WLTs were also used to perform a parametric study to evaluate factors including (i) effects of reaction time, (ii) atmosphere, (iii) liquid-to-solid (L/S) ratio, and (iv) particle size of RCA. The results from WLTs showed that reaction time and exposure to atmosphere had impact on leaching behavior of metals. An increase in L/S ratio decreased the effluent pH and all metal concentrations. Particle size of the RCA had impact on some metals but not all. Comparison of the leached concentrations of metals from select RCA samples with WLT method to leached concentrations from TCLP and SPLP methods revealed significant differences. For the same RCA samples, the highest metal concentrations were obtained with TCLP method, followed by WLT and SPLP methods. However, in all tests, the concentrations of all four (Cr, Cu, Fe, and Zn) metals were below the regulatory limits determined by EPA MCLs in all tests with few exceptions. pH-dependent batch water leach tests revealed that leaching pattern for Ca is more cationic whereas for other metals showed more amphoteric. The results obtained from the pH-dependent tests were evaluated with geochemical modeling (MINTEQA2) to estimate the governing leaching mechanisms for different metals. The results indicated that the releases of the elements were solubility-controlled except Cr.
Collapse
Affiliation(s)
- Janile O Bestgen
- Sequoia Engineering and Environmental Inc, St. Louis, MO, 63178, USA
| | - Bora Cetin
- Civil, Construction, and Environmental Engineering, Iowa State University, Ames, IA, 50011, USA.
| | - Burak F Tanyu
- Department of Civil, Environmental and Infrastructure Engineering, George Mason University, Fairfax, VA, 22030, USA
| |
Collapse
|
49
|
Lu H, Wei F, Tang J, Giesy JP. Leaching of metals from cement under simulated environmental conditions. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2016; 169:319-327. [PMID: 26802528 DOI: 10.1016/j.jenvman.2015.12.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 10/27/2015] [Accepted: 12/08/2015] [Indexed: 06/05/2023]
Abstract
Leaching of metals from cement under various environmental conditions was measured to evaluate their environmental safety. A cement product containing clinker, which was produced from cement kiln co-processing of hazardous wastes, was solidified and leaching of metals was characterized using the 8-period test. Concentrations and speciation of metals in cements were determined. Effects of ambient environment and particle size on leachability of metals and mineralogical phases of cement mortars were evaluated by use of XRD and SEM. Results indicated that metals in cements were leachable in various media in descending order of: sea water, groundwater and acid rain. Cr, Ni, As, Co and V were leached by simulated sea water, while Cu, Cd, Pb, Zn, Mn, Sb and Tl were not leached in simulated sea water, groundwater or acid rain. When exposed to simulated acid rain or groundwater, amounts of Cr, Ni, As and V leached was inversely proportional to particle size of cement mortar. According to the one-dimensional diffusion equation, Cr was most leachable and the cumulative leached mass was predicted to be 9.6 mg kg(-1) after 20 years. Results of this study are useful in predicting releases of metals from cement products containing ash and clinkers cement kiln co-processing of hazardous wastes, so that they can be safely applied in the environment.
Collapse
Affiliation(s)
- Huixia Lu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, China
| | - Fang Wei
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, China
| | - Jingchun Tang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, China.
| | - John P Giesy
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada; Department of Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, Canada; School of Biological Sciences, University of Hong Kong, Hong Kong, China; State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, China
| |
Collapse
|
50
|
Zhang Q, Liu G, Peng S, Wang J, Li H. Leaching of Arsenic, Chromium, and Copper from Coal Fly Ash Treated Soil. ANAL LETT 2016. [DOI: 10.1080/00032719.2015.1137300] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|