1
|
Li M, Jiang H, Li R, Liu W, Xie Y, Wu W, Liu D, Wu M, Qiu Z. Effects of biochar-loaded microbial agent in regulating nitrogen transformation and integration into humification for straw composting. BIORESOURCE TECHNOLOGY 2025; 417:131873. [PMID: 39586479 DOI: 10.1016/j.biortech.2024.131873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/22/2024] [Accepted: 11/22/2024] [Indexed: 11/27/2024]
Abstract
Exogenous additives can impact organic matter transformation in composting, but their effects on nitrogen conversion and humification in straw composting require clarification. This study investigated how rice husk biochar-loaded microbial agent (RM) affects nitrogen transformation and humification during straw composting. Results showed that the addition of RM enhanced ammonia oxidation and assimilation during composting, leading to a 10.32%-22.27% increase in total nitrogen content. Furthermore, the RM treatment enriched nitrogen-converting microbes such as Longispora and Coprinopsis, enhancing synergistic relationships among microbes, facilitating the accumulation of pivotal nitrogenous humus precursors (amino acid nitrogen), and promoting humus formation. This research not only guides reducing nitrogen loss during composting and elucidating the relationship between nitrogen transformation and humification but also contributes to enhancing bioconversion efficiency of agricultural waste to explore new ways of straw waste management.
Collapse
Affiliation(s)
- Mingxing Li
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, PR China; School of Material Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, PR China
| | - Hui Jiang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, PR China
| | - Ruiding Li
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, PR China; School of Material Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, PR China
| | - Wendong Liu
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, PR China
| | - Yong Xie
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, PR China
| | - Wenchan Wu
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, PR China
| | - Dongyang Liu
- Liangshan Prefecture Company, Sichuan Tobacco Company, China National Tobacco Corporation, Liangshan 615000, Sichuan, PR China
| | - Minghui Wu
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, PR China.
| | - Zhongping Qiu
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, PR China.
| |
Collapse
|
2
|
Agyemang E, Ofori-Dua K, Dwumah P, Forkuor JB. Towards responsible resource utilization: A review of sustainable vs. unsustainable reuse of wood waste. PLoS One 2024; 19:e0312527. [PMID: 39715227 DOI: 10.1371/journal.pone.0312527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 10/08/2024] [Indexed: 12/25/2024] Open
Abstract
Abundant wood waste is generated globally, but the literature lacks a framework distinguishing sustainable versus unsustainable reuse practices. This gap hinders policy makers and stakeholders from effectively supporting responsible resource utilization. As such, this scoping review aimed to address this gap by evaluating wood waste reuse practices through ecological, financial, and social sustainability lenses. A comprehensive database search yielded 1,150 records, narrowed to 106 included studies through eligibility screening. Data on study details and sustainability factors was extracted without a formal quality appraisal. The protocol ensures a rigorous evidence-mapping approach. The findings revealed that sustainable uses included renewable energy, adsorbents, construction materials, and composting applications. However, toxic preservatives, uncontrolled emissions from burning, intensive harvesting impacts, and contamination risks from uncontrolled mulching perpetuate ecological, social, and financial challenges. Preventing contamination and managing sustainability trade-offs are key priorities. Research innovations, stringent quality control, and supportive policies are imperative to distinguish practices aligned with sustainability principles from those inadvertently causing harm. This review provides a comprehensive framework for making informed decisions to progress wood waste systems toward responsible resource utilization.
Collapse
Affiliation(s)
- Eric Agyemang
- Department of Sociology and Social Work, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Kwadwo Ofori-Dua
- Department of Sociology and Social Work, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Peter Dwumah
- Department of Sociology and Social Work, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - John Boulard Forkuor
- Department of Sociology and Social Work, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| |
Collapse
|
3
|
Liu C, Li H, Ni JQ, Zhuo G, Zhang Q, Zheng Y, Zhen G. Synergistic effects of heterogeneous mature compost and aeration rate on humification and nitrogen fixing during kitchen waste composting. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 373:123743. [PMID: 39693993 DOI: 10.1016/j.jenvman.2024.123743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/20/2024] [Accepted: 12/01/2024] [Indexed: 12/20/2024]
Abstract
Sludge mature compost (SMC) is notable for its high production, easy accessibility, and stable supply. This study investigated the impact of the SMC addition and different aeration rates on the humification and nitrogen fixing process during kitchen waste composting. The results demonstrated that addition of SMC prolonged the thermophilic phase, as a comparison, increased aeration shortened this phase. The addition of SMC and increased aeration enhanced humus formation and nitrogen retention. SMC introduced more amide and polysaccharide compounds into the compost, promoting the Maillard humification pathway. Additionally, both SMC and high aeration inhibited denitrification: the SMC reduced the abundance of the nirK gene, while high aeration decreased the abundance of nosZ gene. Network analysis revealed that higher aeration enhanced fungal interactions but diminished bacterial interactions. Conversely, SMC addition bolstered both bacterial and fungal interactions. The final compost product with SMC addition showed a 11.56%-44.19% reduction in antibiotic resistance gene content compared with the control group, and heavy metal contents remained within safe application limits. The combination of high SMC addition and high aeration achieved optimal humification and nitrogen retention, underscoring its potential as a promising solution for kitchen waste composting.
Collapse
Affiliation(s)
- Changqing Liu
- College of Geographical Sciences, College of Carbon Neutral Future Technology, Fujian Normal University, Fuzhou, 350007, China; Fujian College and University Engineering Research Center for Municipal Solid Waste Resuscitation and Management, Fuzhou, 350007, Fujian, China
| | - Haimin Li
- College of Environment and Resources, College of Carbon Neutral Modern Technology, Fujian Normal University, Pollution Control and Resource Recycling Laboratory of Fujian Province, Fuzhou, 350007, China; Fujian College and University Engineering Research Center for Municipal Solid Waste Resuscitation and Management, Fuzhou, 350007, Fujian, China
| | - Ji-Qin Ni
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Guihua Zhuo
- Fujian Provincial Academy of Environmental Science, Fuzhou, 350013, China
| | - Qingyi Zhang
- College of Environment and Resources, College of Carbon Neutral Modern Technology, Fujian Normal University, Pollution Control and Resource Recycling Laboratory of Fujian Province, Fuzhou, 350007, China; Fujian College and University Engineering Research Center for Municipal Solid Waste Resuscitation and Management, Fuzhou, 350007, Fujian, China
| | - Yuyi Zheng
- College of Environment and Resources, College of Carbon Neutral Modern Technology, Fujian Normal University, Pollution Control and Resource Recycling Laboratory of Fujian Province, Fuzhou, 350007, China; Fujian College and University Engineering Research Center for Municipal Solid Waste Resuscitation and Management, Fuzhou, 350007, Fujian, China.
| | - Guangyin Zhen
- School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China
| |
Collapse
|
4
|
Li J, Wu S, Zheng J, Sun X, Hu C. Combining citrus waste-derived function microbes with biochar promotes humus formation by enhancing lignocellulose degradation in citrus waste compost. CHEMOSPHERE 2024; 368:143754. [PMID: 39549969 DOI: 10.1016/j.chemosphere.2024.143754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 11/12/2024] [Accepted: 11/13/2024] [Indexed: 11/18/2024]
Abstract
The low degradation rate of lignocellulose limits the humification process of citrus organic waste composting. This study explored the roles of general microbial inoculation (GM), citrus waste-derived function microbial inoculation (CM), and CM combined with biochar (CMB) in citrus waste compost. Results showed microbial inoculations all promoted lignocellulose degradation and humus formation, but the roles of CM and CMB were better than GM, especially CMB. Compared to the control, CMB raised the temperature and duration of thermophilic phase by 2.8 °C and 4 days, and improved lignin degradation rate and humus content by 21.5% and 7.6%. Furthermore, CMB promoted bacterial community succession and cooperation, and decreased network complexity. Moreover, CMB strengthened the correlation between mainly bacterial communities and polysaccharides, reducing sugars as well as carbohydrates metabolic, enhancing the contribution of bacteria such as Bacillus, Flavobacterium and Staphylococcus to humus and its precursors. It concludes that the naturally derived microbes in compost had better effects on promoting humus synthesis than exogenous microbes, which provides a new route for rapid humification of high-lignin organic waste in composting.
Collapse
Affiliation(s)
- Jinye Li
- Hubei Provincial Engineering Laboratory for New Fertilizers/College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China; National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, China
| | - Songwei Wu
- Hubei Provincial Engineering Laboratory for New Fertilizers/College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China; National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jixiang Zheng
- Guangxi Fruit Industry Technology Research Institute, Nanning, 530105, China
| | - Xuecheng Sun
- Hubei Provincial Engineering Laboratory for New Fertilizers/College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chengxiao Hu
- Hubei Provincial Engineering Laboratory for New Fertilizers/College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China; National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
5
|
Zhou Y, Shen Y, Wang H, Jia Y, Ding J, Fan S, Li D, Zhang A, Zhou H, Xu Q, Li Q. Biochar addition accelerates the humification process by affecting the microbial community during human excreta composting. ENVIRONMENTAL TECHNOLOGY 2024; 45:5332-5345. [PMID: 38100615 DOI: 10.1080/09593330.2023.2291418] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 09/30/2023] [Indexed: 12/17/2023]
Abstract
Biochar addition plays an important role in manure composting, but its driving mechanism on microbial succession and humification process of human excreta composting is still unclear. In the present study, the mechanism of biochar addition was explored by analysing the humification process and microbial succession pattern of human excreta aerobic composting without and with 10% biochar (HF and BHF). Results indicated that BHF improved composting temperature, advanced the thermophilic phase by 1 d, increased the germination index by 49.03%, promoted the growth rate of humic acid content by 17.46%, and raised the compost product with the ratio of humic acid to fulvic acid (HA/FA) by 16.19%. Biochar regulated the diversity of fungi and bacteria, increasing the relative abundance of Planifilum, Meyerozyma and Melanocarpus in the thermophilic phase, and Saccharomonospora, Flavobacterium, Thermomyces and Remersonia in the mature phase, which accelerates the humification. Bacterial communities' succession had an obvious correlation with the total carbon, total nitrogen, and temperature (P < 0.05), while the succession of fungal communities was influenced by the HA/FA and pH (P < 0.05). This study could provide a reference for the improvement of on-site human excreta harmless by extending the thermophilic phase, and facilitating the humification in human excreta compost with biochar addition.
Collapse
Affiliation(s)
- Yawen Zhou
- Academy of Agricultural Planning and Engineering, Beijing, People's Republic of China
- Key Laboratory of Rural Toilet and Sewage Treatment Technology, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Beijing, People's Republic of China
| | - Yujun Shen
- Academy of Agricultural Planning and Engineering, Beijing, People's Republic of China
- Key Laboratory of Rural Toilet and Sewage Treatment Technology, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Beijing, People's Republic of China
| | - Huihui Wang
- Academy of Agricultural Planning and Engineering, Beijing, People's Republic of China
- Key Laboratory of Rural Toilet and Sewage Treatment Technology, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Beijing, People's Republic of China
| | - Yiman Jia
- Academy of Agricultural Planning and Engineering, Beijing, People's Republic of China
- Key Laboratory of Rural Toilet and Sewage Treatment Technology, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Beijing, People's Republic of China
| | - Jingtao Ding
- Academy of Agricultural Planning and Engineering, Beijing, People's Republic of China
- Key Laboratory of Rural Toilet and Sewage Treatment Technology, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Beijing, People's Republic of China
| | - Shengyuan Fan
- Academy of Agricultural Planning and Engineering, Beijing, People's Republic of China
- Key Laboratory of Rural Toilet and Sewage Treatment Technology, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Beijing, People's Republic of China
| | - Danyang Li
- Academy of Agricultural Planning and Engineering, Beijing, People's Republic of China
- Key Laboratory of Rural Toilet and Sewage Treatment Technology, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Beijing, People's Republic of China
| | - Aiqin Zhang
- Academy of Agricultural Planning and Engineering, Beijing, People's Republic of China
- Key Laboratory of Rural Toilet and Sewage Treatment Technology, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Beijing, People's Republic of China
| | - Haibin Zhou
- Academy of Agricultural Planning and Engineering, Beijing, People's Republic of China
- Key Laboratory of Rural Toilet and Sewage Treatment Technology, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Beijing, People's Republic of China
| | - Qing Xu
- United Nations International Children's Emergency Fund China, Beijing, People's Republic of China
| | - Qian Li
- United Nations International Children's Emergency Fund China, Beijing, People's Republic of China
| |
Collapse
|
6
|
Zhang J, Fan B, Zhao L, Zhao C, Yang F. Biochar promotes compost humification by regulating bacterial and fungal communities. Front Microbiol 2024; 15:1470930. [PMID: 39360319 PMCID: PMC11445164 DOI: 10.3389/fmicb.2024.1470930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 09/09/2024] [Indexed: 10/04/2024] Open
Abstract
Introduction Humus can be formed during composting through biological pathways, nonetheless, the mechanisms through which bacterial and fungal communities govern the development of humus in compost with the addition of biochar remain uncertain. Methods In this study, compost with cow dung and maize stover as feedstock was employed as a control group, and compost with 10% biochar added on top of the feedstock was adopted as a treatment group to investigate the effect of bacterial and fungal communities on humus formation during biochar composting. Results and Discussion The results demonstrated that the humic acid content increased by 24.82 and 25.10% at the cooling and maturation stages, respectively, after adding biochar. Besides, the degree of polymerization content in the maturation stage was elevated by 90.98%, which accelerated the humification process of the compost. During the thermophilic and maturity stages, there was a respective increase of 51.34 and 31.40% in reducing sugar content, suggesting that the inclusion of biochar could furnish ample reducing sugar substrate for the Maillard reaction. The addition of biochar reduced the number of humus precursor-associated genera by 35, increased the number of genera involved in humus synthesis by two, and enhanced the stability of the cross-domain network between bacteria and fungi, which confirms that microorganisms contribute to the humification process by decreasing humus precursor consumption as well as increasing humus synthesis with the addition of biochar. Additionally, adding biochar could enhance the humification capacity of the compost pile by dominating the Maillard reaction with reducing sugars as the substrate and strengthening the function of humus synthesis-associated genera. This study enhances our comprehension of the regulatory pathways of biochar in the humification process during composting.
Collapse
Affiliation(s)
- Junying Zhang
- College of Agronomy, Heilongjiang Bayi Agricultural University, Daqing, China
- Key Laboratory of Low-Carbon Green Agriculture in Northeastern China, Ministry of Agriculture and Rural Affairs, Daqing, Heilongjiang, China
- Engineering Research Center of Crop Straw Utilization, Heilongjiang Province, Daqing, Heilongjiang, China
| | - Bowen Fan
- College of Agronomy, Heilongjiang Bayi Agricultural University, Daqing, China
- Key Laboratory of Low-Carbon Green Agriculture in Northeastern China, Ministry of Agriculture and Rural Affairs, Daqing, Heilongjiang, China
- Engineering Research Center of Crop Straw Utilization, Heilongjiang Province, Daqing, Heilongjiang, China
- College of Horticulture and Landscape Architecture, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Liqin Zhao
- College of Horticulture and Landscape Architecture, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Changjiang Zhao
- College of Agronomy, Heilongjiang Bayi Agricultural University, Daqing, China
- Key Laboratory of Low-Carbon Green Agriculture in Northeastern China, Ministry of Agriculture and Rural Affairs, Daqing, Heilongjiang, China
- Engineering Research Center of Crop Straw Utilization, Heilongjiang Province, Daqing, Heilongjiang, China
| | - Fengjun Yang
- College of Horticulture and Landscape Architecture, Heilongjiang Bayi Agricultural University, Daqing, China
| |
Collapse
|
7
|
Zhao B, Xu Z, Li S, Yang Z, Ling W, Wu Z, Gao J, Wang Y. Reduction of the exchangeable cadmium content in soil by appropriately increasing the maturity degree of organic fertilizers. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 365:121599. [PMID: 38968895 DOI: 10.1016/j.jenvman.2024.121599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 06/02/2024] [Accepted: 06/23/2024] [Indexed: 07/07/2024]
Abstract
To enhance the remediation effect of heavy metal pollution, organic fertilizers with different maturity levels were added to cadmium-contaminated soil. The remediation effect was determined by evaluating the form transformation and bioavailability of cadmium in heavy metal-contaminated soil. -Results showed that when the maturity was 50%, although the soil humus (HS) content increased, it didn't contribute to reducing the bioavailability of soil Cd. Appropriately increasing the maturity (GI ≥ 80%), the HS increased by 113.95%∼157.96%, and reduced significantly the bioavailability of soil Cd, among the exchangeable Cd decreased by 16.04%∼33.51% (P < 0.01). The structural equation modeling (SEM) revealed that HS content is a critical factor influencing the transformation of Cd forms and the reduction of exchangeable Cd accumulation; the HS and residual Cd content were positively correlated with the maturity (P < 0.01), while exchangeable Cd content was negatively correlated with maturity (P < 0.01), and the correlation increased with increasing maturity. In summary, appropriately increasing the maturity (GI ≥ 80%) can increase significantly HS, promote the transformation of exchangeable Cd into residual Cd, and ultimately enhance the effectiveness of organic fertilizers in the remediation of soil Cd pollution. These results provide a new insight into the remediation of Cd-contaminated soil through organic fertilizer as soil amendment in Cd-contaminated soil.
Collapse
Affiliation(s)
- Bing Zhao
- College of Resources and Environmental Science, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
| | - Zhi Xu
- College of Resources and Environmental Science, Yunnan Agricultural University, Kunming, 650201, Yunnan, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Suzhou, 215128, Jiangsu, China
| | - Shaoming Li
- College of Resources and Environmental Science, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
| | - Zhixin Yang
- College of Resources and Environmental Science, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
| | - Wen Ling
- College of Resources and Environmental Science, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
| | - Zhicheng Wu
- College of Resources and Environmental Science, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
| | - Jiangfei Gao
- College of Resources and Environmental Science, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
| | - Yuyun Wang
- College of Resources and Environmental Science, Yunnan Agricultural University, Kunming, 650201, Yunnan, China.
| |
Collapse
|
8
|
Yang F, Wang M, Zhao L, Fan B, Sun N, Liu J, Sun X, Dong Z. The role of cattle manure-driven polysaccharide precursors in humus formation during composting of spent mushroom substrate. Front Microbiol 2024; 15:1375808. [PMID: 39091308 PMCID: PMC11291364 DOI: 10.3389/fmicb.2024.1375808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 07/09/2024] [Indexed: 08/04/2024] Open
Abstract
The study examined the impact of adding cattle manure to the composting process of Agaricus bisporus mushroom substrate on compost humification. A control group CK comprised entirely of Agaricus bisporus mushroom substrate, while the experimental group CD (70 percent Agaricus bisporus mushroom substrate and 30 percent cattle manure) comprised the two composting treatments that were established. The study determined that the addition of cow dung has promoted the formation of humus components. Particularly, humic substance (HS-C) and humic acid (HA) increased by 41.3 and 74.7%, respectively, and the ratio of humic acid to fulvic acid (HA/FA) also increased by 2.78. It showed that the addition of cow dung accelerated the synthesis and decomposition of precursors, such as polysaccharides, polyphenols, and reducing sugars. Thereby promoting the formation of humic acid. Network analysis revealed that adding cow dung promoted microbial interactions increased the complexity and stability of the bacterial and fungal symbiotic network, enhanced cooperation and reciprocity among microbes, and assisted in transforming fulvic acid (FA) components. Structural equation modeling (SEM) is a multivariate data analysis method for analyzing complex relationships among constructs and core indicators. SEM illustrated that introducing cattle manure into the composting process resulted in alterations to the correlation between physicochemical parameters and the microbial community, in addition to humus formation. Polysaccharides are the primary precursors for polymerization to form HA, which is an essential prerequisite for the conversion of fulvic acid to humic acid. Additionally, microbes affected the formation of humus, with bacteria substantially more influential than fungi. These findings provide new ideas for regulating the degree of humification in the composting process and have important practical implications for optimizing mushroom cultivation and composting techniques today.
Collapse
Affiliation(s)
- Fengjun Yang
- College of Horticulture and Landscape Architecture, Heilongjiang Bayi Agricultural University, Daqing, China
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Wang Y, Li J, Chang Y, Chang S, Chen Y, Wei D, Li R, Zheng Y, Kang Z, Wu Z, Chen P, Wei Y, Li J, Xu Z. Metabolomics analysis of advancing humification mechanism in secondary fermentation of composting by fungal bioaugmentation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 933:173267. [PMID: 38754504 DOI: 10.1016/j.scitotenv.2024.173267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/30/2024] [Accepted: 05/13/2024] [Indexed: 05/18/2024]
Abstract
The aim of this study was to investigate the differential metabolites and core metabolic pathways caused by fungal bioaugmentation (pH regulation and Phanerochaete chrysosporium inoculation) in secondary fermentation of composting, as well as their roles in advancing humification mechanism. Metabolomics analyses showed that inoculation strengthened the expression of carbohydrate, amino acid, and aromatic metabolites, and pH regulation resulted in the up-regulation of the phosphotransferase system and its downstream carbohydrate metabolic pathways, inhibiting Toluene degradation and driving biosynthesis of aromatic amino acids via the Shikimate pathway. Partial least squares path model suggested that lignocellulose degradation, precursors especially amino acids and their metabolism process enhanced by the regulation of pH and Phanerochaete were the main direct factors for humic acid formation in composting. This finding helps to understand the regulating mechanism of fungal bioaugmentation to improve the maturity of agricultural waste composting.
Collapse
Affiliation(s)
- Yuyun Wang
- College of Resources and Environmental Science, Yunnan Agricultural University, Kunming 650201, China
| | - Jun Li
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou 215128, China
| | - Yuan Chang
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou 215128, China
| | - Su Chang
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China
| | - Yanting Chen
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou 215128, China
| | - Dan Wei
- Institute of Plant Nutrition and Resources, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Ruoqi Li
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou 215128, China
| | - Yi Zheng
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China
| | - Zitong Kang
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou 215128, China
| | - Zhen Wu
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China
| | - Peizhen Chen
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China.
| | - Yuquan Wei
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou 215128, China.
| | - Ji Li
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou 215128, China
| | - Zhi Xu
- College of Resources and Environmental Science, Yunnan Agricultural University, Kunming 650201, China
| |
Collapse
|
10
|
Lu M, Hao Y, Lin B, Huang Z, Zhang Y, Chen L, Li K, Li J. The bioaugmentation effect of microbial inoculants on humic acid formation during co-composting of bagasse and cow manure. ENVIRONMENTAL RESEARCH 2024; 252:118604. [PMID: 38548254 DOI: 10.1016/j.envres.2024.118604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 06/07/2024]
Abstract
The effective degradation of recalcitrant lignocellulose has emerged as a bottleneck for the humification of compost, and strategies are required to improve the efficiency of bagasse composting. Bioaugmentation is a promising method for promoting compost maturation and improving the quality of final compost. In this study, the bioaugmentation effects of microbial inoculants on humic acid (HA) formation during lignocellulosic composting were explored. In the inoculated group, the maximum temperature was increased to 72.5 °C, and the phenol-protein condensation and Maillard humification pathways were enhanced, thus increasing the HA content by 43.85%. After inoculation, the intensity of the microbial community interactions increased, particularly for fungi (1.4-fold). Macrogenomic analysis revealed that inoculation enriched thermophilic bacteria and lignocellulose-degrading fungi and increased the activity of carbohydrate-active enzymes and related metabolic functions, which effectively disrupted the recalcitrant structure of lignocellulose to achieve a high humification degree. Spearman correlation analysis indicated that Stappia of the Proteobacteria phylum, Ilumatobacter of the Actinomycetes phylum, and eleven genera of Ascomycota were the main HA producers. This study provides new ideas for bagasse treatment and recycling and realizing the comprehensive use of resources.
Collapse
Affiliation(s)
- Mengling Lu
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, Guangxi, China
| | - Yuhao Hao
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, Guangxi, China
| | - Binfeng Lin
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, Guangxi, China
| | - Zhi Huang
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, Guangxi, China
| | - Yu Zhang
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, Guangxi, China
| | - Liang Chen
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, Guangxi, China
| | - Kai Li
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, Guangxi, China
| | - Jianbin Li
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, Guangxi, China; Academy of Sugarcane and Sugar Industry, Guangxi University, Nanning 530004, Guangxi, China.
| |
Collapse
|
11
|
Wang N, Cui Y, Zhou Y, Liu P, Wang M, Sun H, Huang Y, Wang S. Changes in the Glucose Concentration Affect the Formation of Humic-like Substances in Polyphenol-Maillard Reactions Involving Gibbsite. Molecules 2024; 29:2115. [PMID: 38731606 PMCID: PMC11085651 DOI: 10.3390/molecules29092115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/27/2024] [Accepted: 04/30/2024] [Indexed: 05/13/2024] Open
Abstract
The polyphenol-Maillard reaction is considered one of the important pathways in the formation of humic-like substances (HLSs). Glucose serves as a microbial energy source that drives the humification process. However, the effects of changes in glucose, particularly its concentration, on abiotic pathways remain unclear. Given that the polyphenol-Maillard reaction requires high precursor concentrations and elevated temperatures (which are not present in soil), gibbsite was used as a catalyst to overcome energetic barriers. Catechol and glycine were introduced in fixed concentrations into a phosphate-buffered solution containing gibbsite using the liquid shake-flask incubation method, while the concentration of glucose was controlled in a sterile incubation system. The supernatant fluid and HLS components were dynamically extracted over a period of 360 h for analysis, thus revealing the influence of different glucose concentrations on abiotic humification pathways. The results showed the following: (1) The addition of glucose led to a higher degree of aromatic condensation in the supernatant fluid. In contrast, the supernatant fluid without glucose (Glu0) and the control group without any Maillard precursor (CK control group) exhibited lower degrees of aromatic condensation. Although the total organic C (TOC) content in the supernatant fluid decreased in all treatments during the incubation period, the addition of Maillard precursors effectively mitigated the decreasing trend of TOC content. (2) While the C content of humic-like acid (CHLA) and the CHLA/CFLA ratio (the ratio of humic-like acid to fulvic-like acid) showed varying increases after incubation, the addition of Maillard precursors resulted in a more noticeable increase in CHLA content and the CHLA/CFLA ratio compared to the CK control group. This indicated that more FLA was converted into HLA, which exhibited a higher degree of condensation and humification, thus improving the quality of HLS. The addition of glycine and catechol without glucose or with a glucose concentration of 0.06 mol/L was particularly beneficial in enhancing the degree of HLA humification. Furthermore, the presence of glycine and catechol, as well as higher concentrations of glucose, promoted the production of N-containing compounds in HLA. (3) The presence of Maillard precursors enhanced the stretching vibration of the hydroxyl group (-OH) of HLA. After the polyphenol-Maillard reaction of glycine and catechol with glucose concentrations of 0, 0.03, 0.06, 0.12, or 0.24 mol/L, the aromatic C structure in HLA products increased, while the carboxyl group decreased. The presence of Maillard precursors facilitated the accumulation of polysaccharides in HLA with higher glucose concentrations, ultimately promoting the formation of Al-O bonds. However, the quantities of phenolic groups and phenols in HLA decreased to varying extents.
Collapse
Affiliation(s)
- Nan Wang
- College of Agriculture, Jilin Agricultural Science and Technology University, Jilin 132101, China; (N.W.); (Y.C.); (P.L.); (M.W.); (H.S.); (Y.H.)
| | - Yongquan Cui
- College of Agriculture, Jilin Agricultural Science and Technology University, Jilin 132101, China; (N.W.); (Y.C.); (P.L.); (M.W.); (H.S.); (Y.H.)
| | - Yanhui Zhou
- Agricultural Technology Extension Station of Jiaohe City, Jiaohe 132500, China;
| | - Pingxin Liu
- College of Agriculture, Jilin Agricultural Science and Technology University, Jilin 132101, China; (N.W.); (Y.C.); (P.L.); (M.W.); (H.S.); (Y.H.)
| | - Mingshuo Wang
- College of Agriculture, Jilin Agricultural Science and Technology University, Jilin 132101, China; (N.W.); (Y.C.); (P.L.); (M.W.); (H.S.); (Y.H.)
| | - Haihang Sun
- College of Agriculture, Jilin Agricultural Science and Technology University, Jilin 132101, China; (N.W.); (Y.C.); (P.L.); (M.W.); (H.S.); (Y.H.)
| | - Yubao Huang
- College of Agriculture, Jilin Agricultural Science and Technology University, Jilin 132101, China; (N.W.); (Y.C.); (P.L.); (M.W.); (H.S.); (Y.H.)
| | - Shuai Wang
- College of Agriculture, Jilin Agricultural Science and Technology University, Jilin 132101, China; (N.W.); (Y.C.); (P.L.); (M.W.); (H.S.); (Y.H.)
| |
Collapse
|
12
|
Bicalho SF, Pegoraro RF, Almeida Neta MN, Barroso AMF, França LO, Santos LS, Silva RR, Rodrigues MN, Sampaio RA, Viana LB. Biochemical changes, metal content, and spectroscopic analysis in sewage sludge composted with lignocellulosic residue using FTIR-MIR and FTIR-NIR. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:35727-35743. [PMID: 38740679 DOI: 10.1007/s11356-024-33652-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 05/07/2024] [Indexed: 05/16/2024]
Abstract
The use of lignocellulosic residues, originating from sawdust, in composting sewage sludge for organic fertilizer production, is a practice of growing interest. However, few studies have explored the effect of the proportion of sawdust and sewage sludge raw materials on composting performance in the humification process. This study assessed the addition of sawdust in the sewage sludge composting process, regarding carbon content, presence of heavy metals, and humification of the organic compost. The experimental design employed was a randomized complete block design with five treatments featuring different proportions of organic residues to achieve C/N ratios between 30-1 (T1: 100% sewage sludge and 0% sawdust, T2: 86% sewage sludge and 14.0% sawdust, T3: 67% sewage sludge and 33% sawdust, T4: 55% sewage sludge and 45% sawdust, and T5: 46.5% sewage sludge and 53.5% sawdust) and five replications, totaling 25 experimental units. The addition of lignocellulosic residue in sewage sludge composting increased the levels of TOC and the C/N ratio, reduced the levels of pH, P, N, Na, Ba, and Cr, and did not interfere with the levels of K, Ca, Mg, S, CEC, labile carbon, and metals Fe, Zn, Cu, Mn, Ni, and Pb. The increase in the proportion of sawdust residue favored the degradation of aliphatic groups, increasing the presence of aromatic structures and reducing humification at the end of composting. The use of sawdust as a lignocellulosic residue in sewage sludge composting is a viable and efficient alternative to produce high-quality organomineral fertilizers.
Collapse
Affiliation(s)
| | - Rodinei Facco Pegoraro
- Universidade Federal de Minas Gerais, Instituto de Ciências Agrárias, Av. Universitária 1000, Montes Claros, MG, 39400-090, Brazil
| | - Maria Nilfa Almeida Neta
- Universidade Federal de Minas Gerais, Instituto de Ciências Agrárias, Av. Universitária 1000, Montes Claros, MG, 39400-090, Brazil.
| | - Aline Martins Ferreira Barroso
- Universidade Federal de Minas Gerais, Instituto de Ciências Agrárias, Av. Universitária 1000, Montes Claros, MG, 39400-090, Brazil
| | - Letícia Oliveira França
- Universidade Federal de Minas Gerais, Instituto de Ciências Agrárias, Av. Universitária 1000, Montes Claros, MG, 39400-090, Brazil
| | - Leandro Soares Santos
- Universidade Estadual Do Sudoeste da Bahia, UESB. BR 415, Itapetinga, BA, 45700-000, Brazil
| | | | - Márcio Neves Rodrigues
- Universidade Federal de Minas Gerais, Instituto de Ciências Agrárias, Av. Universitária 1000, Montes Claros, MG, 39400-090, Brazil
| | - Regynaldo Arruda Sampaio
- Universidade Federal de Minas Gerais, Instituto de Ciências Agrárias, Av. Universitária 1000, Montes Claros, MG, 39400-090, Brazil
| | - Lucas Barbosa Viana
- Universidade Federal de Minas Gerais, Instituto de Ciências Agrárias, Av. Universitária 1000, Montes Claros, MG, 39400-090, Brazil
| |
Collapse
|
13
|
Wang Y, Yu Q, Zheng C, Wang Y, Chen H, Dong S, Hu X. The impact of microbial inoculants on large-scale composting of straw and manure under natural low-temperature conditions. BIORESOURCE TECHNOLOGY 2024; 400:130696. [PMID: 38614144 DOI: 10.1016/j.biortech.2024.130696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 04/10/2024] [Accepted: 04/10/2024] [Indexed: 04/15/2024]
Abstract
Understanding large-scale composting under natural conditions is essential for improving waste management and promoting sustainable agriculture. In this study, corn straw (400 tons) and pig manure (200 tons) were composted with microbial inoculants. The thermophilic phase of composting lasted for fourteen weeks, resulting in an alkaline final product. Microbial systems with low-temperature initiation and high-temperature fermentation played a crucial role in enhancing lignocellulose degradation and humic substances (HS) formation. Adding microbes, including Rhodanobacter, Pseudomonas, and Planococcus, showed a positive correlation with degradation rates of cellulose, hemicellulose, and lignin. Bacillus, Planococcus, and Acinetobacter were positively correlated with HS formation. Microorganisms facilitated efficient hydrolysis of lignocelluloses, providing humic precursors to accelerate composting humification through phenolic protein and Maillard pathways. This study provides significant insights into large-scale composting under natural conditions, contributing to the advancement of waste management strategies and the promotion of sustainable agriculture.
Collapse
Affiliation(s)
- Yanping Wang
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Qi Yu
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Chuang Zheng
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Yanbo Wang
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Heshu Chen
- Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China
| | | | - Xiaomei Hu
- College of Life Science, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
14
|
Zhao M, Luo Z, Wang Y, Liao H, Yu Z, Zhou S. Phage lysate can regulate the humification process of composting. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 178:221-230. [PMID: 38412754 DOI: 10.1016/j.wasman.2024.02.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/24/2024] [Accepted: 02/22/2024] [Indexed: 02/29/2024]
Abstract
Phages play a crucial role in orchestrating top-down control within microbial communities, influencing the dynamics of the composting process. Despite this, the impact of phage-induced thermophilic bacterial lysis on humification remains ambiguous. This study investigates the effects of phage lysate, derived explicitly from Geobacillus subterraneus, on simulated composting, employing ultrahigh-resolution mass spectrometry and 16S rRNA sequencing techniques. The results show the significant role of phage lysate in expediting humus formation over 40 days. Notably, the rapid transformation of protein-like precursors released from phage-induced lysis of the host bacterium resulted in a 14.8 % increase in the proportion of lignins/CRAM-like molecules. Furthermore, the phage lysate orchestrated a succession in bacterial communities, leading to the enrichment of core microbes, exemplified by the prevalence of Geobacillus. Through network analysis, it was revealed that these enriched microbes exhibit a capacity to convert protein and lignin into essential building blocks such as amino acids and phenols. Subsequently, these components were polymerized into humus, aligning with the phenol-protein theory. These findings enhance our understanding of the intricate microbial interactions during composting and provide a scientific foundation for developing engineering-ready composting humification regulation technologies.
Collapse
Affiliation(s)
- Meihua Zhao
- School of Civil Engineering, Guangzhou University, Guangzhou 510006, China
| | - Zhibin Luo
- School of Civil Engineering, Guangzhou University, Guangzhou 510006, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Yueqiang Wang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Hanpeng Liao
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhen Yu
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China.
| | - Shungui Zhou
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China; Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
15
|
Yin Y, Tao X, Du Y, Li M, Yang S, Zhang W, Yang C, Li H, Wang X, Chen R. Biochar improves the humification process during pig manure composting: Insights into roles of the bacterial community and metabolic functions. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 355:120463. [PMID: 38430882 DOI: 10.1016/j.jenvman.2024.120463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 02/01/2024] [Accepted: 02/20/2024] [Indexed: 03/05/2024]
Abstract
Biochar could promote humification in composting, nevertheless, its mechanism has not been fully explored from the perspective of the overall bacterial community and its metabolism. This study investigated the effects of bamboo charcoal (BC) and wheat straw biochar (WSB) on the humic acid (HA) and fulvic acid (FA) contents during pig manure composting. The results showed that BC enhanced humification more than WSB, and significantly increased the HA content and HA/FA ratio. The bacterial community structure under BC differed from those under the other treatments, and BC increased the abundance of bacteria associated with the transformation of organic matter compared with the other treatments. Furthermore, biochar enhanced the metabolism of carbohydrates and amino acids in the thermophilic and cooling phases, especially BC. Through Mantel tests and network analysis, we found that HA was mainly related to carbon source metabolism and the bacterial community, and BC might change the interaction patterns among carbohydrates, amino acid metabolism, Bacillales, Clostridiales, and Lactobacillales with HA and FA to improve the humification process during composting. These results are important for understanding the mechanisms associated with the effects of biochar on humification during composting.
Collapse
Affiliation(s)
- Yanan Yin
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an, 710055, PR China; International S&T Cooperation Center for Urban Alternative Water Resources Development, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an, 710055, PR China.
| | - Xiaohui Tao
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an, 710055, PR China
| | - Yifei Du
- Yellow River Institute of Eco-Environmental Research, No.6 Changchun Road, Zhengzhou, 450003, PR China
| | - Mengtong Li
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an, 710055, PR China
| | - Sai Yang
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an, 710055, PR China
| | - Wenrong Zhang
- School of Building Services Science and Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an, 710055, PR China
| | - Chao Yang
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an, 710055, PR China
| | - Haichao Li
- Department of Soil and Environment, Swedish University of Agricultural Sciences, Lennart Hjelms Väg 9, 750 07, Uppsala, Sweden
| | - Xiaochang Wang
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an, 710055, PR China; International S&T Cooperation Center for Urban Alternative Water Resources Development, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an, 710055, PR China
| | - Rong Chen
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an, 710055, PR China; International S&T Cooperation Center for Urban Alternative Water Resources Development, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an, 710055, PR China
| |
Collapse
|
16
|
Wang F, Kang Y, Fu D, Singh RP. Effect evaluation of different green wastes on food waste digestate composting and improvement of operational conditions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-32386-y. [PMID: 38361099 DOI: 10.1007/s11356-024-32386-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 02/04/2024] [Indexed: 02/17/2024]
Abstract
This study attempted to determine the influence of diverse green wastes on food waste digestate composting and the improvement of operational conditions. Various effects of the green wastes (GW), with different types and sizes, initial substrate mixture C/N ratios, compost pile heights, and turning frequencies on the food waste digestate (FWD) composting were examined in the current work. The findings showed that the use of street sweeping green waste (SSGW) as an additive can maintain the thermophilic stage of the FWD composting for 28 days, while the end-product contained the greatest amounts of total phosphorus (TP, 2.29%) and total potassium (TK, 4.61%) and the lowest moisture content (14.8%). Crushed SSGW (20 mm) enabled the FWD composting to maintain the longest thermophilic period (28 days), achieving the highest temperature (70.2 °C) and seed germination index (GI, 100%). Adjusting the initial substrate mixture C/N ratio to 25, compost pile height to 30 cm, and turning frequency to three times a day could enhance the efficiency and improve the fertilizer quality of the co-composting of the FWD and SSGW. This study suggested that co-composting of FWD and SSGW (FWD/SSGW = 2.3, wet weight) is a promising technique for the treatment of municipal solid waste and provided significant theoretical data for the application of composting.
Collapse
Affiliation(s)
- Fei Wang
- School of Civil Engineering, Southeast University, Nanjing, 211189, People's Republic of China
| | - Yangtianrui Kang
- School of Civil Engineering, Southeast University, Nanjing, 211189, People's Republic of China
| | - Dafang Fu
- School of Civil Engineering, Southeast University, Nanjing, 211189, People's Republic of China
| | - Rajendra Prasad Singh
- School of Civil Engineering, Southeast University, Nanjing, 211189, People's Republic of China.
| |
Collapse
|
17
|
Zhang S, Gao W, Xie L, Zhang G, Wei Z, Li J, Song C, Chang M. Malonic acid shapes bacterial community dynamics in compost to promote carbon sequestration and humic substance synthesis. CHEMOSPHERE 2024; 350:141092. [PMID: 38169202 DOI: 10.1016/j.chemosphere.2023.141092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 12/06/2023] [Accepted: 12/30/2023] [Indexed: 01/05/2024]
Abstract
The incorporation of malonic acid (MA) into compost as a regulator of the tricarboxylic acid (TCA) cycle has the potential to increase carbon sequestration. However, the influence of MA on the transformation of the microbial community during the composting process remains unclear. In this investigation, MA was introduced at different stages of chicken manure (CM) composting to characterize the bacterial community within the compost using high-throughput sequencing. We assess the extent of increased carbon sequestration by comparing the concentration of total organic carbon (TOC). At the same time, this study examines whether increased carbon sequestration contributes to humus formation, which was elucidated by evaluating the content and composition of humus. Our results show that the addition of MA significantly improved carbon sequestration within the compost, reducing the carbon loss rate (C loss (%)) from 64.70% to 52.94%, while increasing HS content and stability. High throughput sequencing and Random Forest (RF) analysis show that the introduction of MA leads to a reduction in the diversity of the bacterial communities, but enhanced the ability of bacterial communities to synthesize humus. Furthermore, the addition of MA favors the proliferation of Firmicutes. Also, the hub of operational taxonomic units (OTUs) within the community co-occurrence network shifts from Proteobacteria to Firmicutes. Remarkably, our study finds a significant decrease in negative correlations between bacteria, potentially mitigating substrate consumption due to negative interactions such as competition. This phenomenon contributes to the improved retention of TOC in the compost. This research provides new insights into the mechanisms by which MA regulates bacterial communities in compost, and provides a valuable theoretical basis for the adoption of this innovative composting strategy.
Collapse
Affiliation(s)
- Shubo Zhang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, 300387, China; College of Life Sciences, Northeast Agricultural University, Harbin, 150030, China
| | - Wenfang Gao
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, 300387, China
| | - Lina Xie
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, 300387, China
| | - Guogang Zhang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, 300387, China
| | - Zimin Wei
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, 300387, China.
| | - Jie Li
- College of Life Science, Liaocheng University, Liaocheng, 252000, China
| | - Caihong Song
- College of Life Science, Liaocheng University, Liaocheng, 252000, China
| | - Mingkai Chang
- College of Life Sciences, Northeast Agricultural University, Harbin, 150030, China
| |
Collapse
|
18
|
Gao X, Zhang J, Liu G, Kong Y, Li Y, Li G, Luo Y, Wang G, Yuan J. Enhancing the transformation of carbon and nitrogen organics to humus in composting: Biotic and abiotic synergy mediated by mineral material. BIORESOURCE TECHNOLOGY 2024; 393:130126. [PMID: 38036150 DOI: 10.1016/j.biortech.2023.130126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 11/18/2023] [Accepted: 11/27/2023] [Indexed: 12/02/2023]
Abstract
To investigate the conversion of carbon and nitrogen organic matter to humus mediated by mineral material additives through biotic and abiotic pathways, three chicken manure composting experiments were conducted using calcium superphosphate (CS) and fly ash (FA). Results showed that CS and FA promoted carbon and nitrogen organic degradation and improved compost maturity. The ratio of humic acid-like to fulvic acid-like substances for FA (30) was significantly higher than for control (18) and CS (13). Excitation-emission-matrix spectra and parallel factor analysis identified a higher transformation of protein-like components into humic-like components in FA. Network analysis showed that CS improved compost maturity by promoting the rapid conversion of humus precursors to humus, while FA increased the richness and diversity of the microbial community, such as Chloroflexi, the unique phylum in FA. Overall, CS and FA facilitated the humification process through abiotic and biotic pathways, and FA had better humification performance.
Collapse
Affiliation(s)
- Xia Gao
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agriculture University, Beijing 100193, China
| | - Jing Zhang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agriculture University, Beijing 100193, China
| | - Guoliang Liu
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agriculture University, Beijing 100193, China
| | - Yilin Kong
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agriculture University, Beijing 100193, China
| | - Yun Li
- College of Resources and Environmental Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Guoxue Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agriculture University, Beijing 100193, China
| | - Yiming Luo
- Beijing General Station of Animal Husbandry, Beijing, China
| | - Guoying Wang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agriculture University, Beijing 100193, China.
| | - Jing Yuan
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agriculture University, Beijing 100193, China
| |
Collapse
|
19
|
Yin J, Xie M, Yu X, Feng H, Wang M, Zhang Y, Chen T. A review of the definition, influencing factors, and mechanisms of rapid composting of organic waste. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 342:123125. [PMID: 38081379 DOI: 10.1016/j.envpol.2023.123125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 11/07/2023] [Accepted: 12/07/2023] [Indexed: 12/17/2023]
Abstract
Composting is a traditional method of treating organic waste. A growing number of studies have been focusing on accelerating the process to achieve "rapid composting." However, the specific definition and influencing factors of rapid composting remain unclear. Therefore, we aimed to gather more insight into the features of rapid composting by reviewing the literature concerning organic waste composting published in the Web of Science database in the past 5 years. We selected 1615 sample studies with "composting" as the subject word and analyzed the effective composting time stated in each study. We defined rapid composting within 15 days using the median test and quartile method. Based on this definition, we summarized the influencing factors of "rapid composting," namely materials, reactors, temperature, and microorganisms. Finally, we summarized two mechanisms related to humus formation during organic waste rapid composting: high temperature-promoting maturation and microbial driving mechanisms. This literature review compiled useful references to help promote the development of rapid composting technology and related equipment.
Collapse
Affiliation(s)
- Jun Yin
- School of Environment Science & Engineering, Zhejiang Gongshang University, Hangzhou, 310012, China; International Science and Technology Cooperation Platform for Low-Carbon Recycling of Waste and Green Development, Zhejiang Gongshang University, Hangzhou, 310012, China
| | - Mengjie Xie
- School of Environment Science & Engineering, Zhejiang Gongshang University, Hangzhou, 310012, China; International Science and Technology Cooperation Platform for Low-Carbon Recycling of Waste and Green Development, Zhejiang Gongshang University, Hangzhou, 310012, China
| | - Xiaoqin Yu
- Zhejiang Best Energy and Environment Co., Ltd, Hangzhou, 310007, China
| | - Huajun Feng
- School of Environment Science & Engineering, Zhejiang Gongshang University, Hangzhou, 310012, China; International Science and Technology Cooperation Platform for Low-Carbon Recycling of Waste and Green Development, Zhejiang Gongshang University, Hangzhou, 310012, China
| | - Meizhen Wang
- School of Environment Science & Engineering, Zhejiang Gongshang University, Hangzhou, 310012, China; International Science and Technology Cooperation Platform for Low-Carbon Recycling of Waste and Green Development, Zhejiang Gongshang University, Hangzhou, 310012, China
| | - Yanfeng Zhang
- Beijing Environmental Sanitation Engineering Group Limited, Beijing, 100000, China
| | - Ting Chen
- School of Environment Science & Engineering, Zhejiang Gongshang University, Hangzhou, 310012, China; International Science and Technology Cooperation Platform for Low-Carbon Recycling of Waste and Green Development, Zhejiang Gongshang University, Hangzhou, 310012, China.
| |
Collapse
|
20
|
Gao P, Wang K, Qi C, Chen K, Xiang W, Zhang Y, Zhang J, Shu C. A New Method for Discovering Plant Biostimulants. PLANTS (BASEL, SWITZERLAND) 2023; 13:56. [PMID: 38202363 PMCID: PMC10780382 DOI: 10.3390/plants13010056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/10/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024]
Abstract
Structurally well-defined compounds have advantages for quality control in plant biostimulant production and application processes. Humic acid (HA) is a biostimulant that significantly affects plant growth, and soil-dwelling Protaetia brevitarsis larva (PBLs) can rapidly convert agricultural waste into HA. In this study, we use PBLs as a model to investigate HA formation and screen for structurally well-defined HA-related plant biostimulant compounds. Dephasing magic angle spinning nuclear magnetic resonance (13C DD-MAS NMR) analysis indicated HA structural changes during PBL digestion; metabolic profiling detected seven HA-related aromatic ring-containing compounds. A total of six compounds that significantly stimulate plant growth were identified through plant experiments, and all six compounds demonstrate the ability to enhance seed germination. It is noteworthy that piperic acid exhibits a remarkable promotion of root growth in plants, a finding reported for the first time in this study. Thus, this study not only provides insights into the insect-mediated transformation of HA but also illustrates a new method for discovering structurally well-defined plant biostimulant compounds.
Collapse
Affiliation(s)
- Peiwen Gao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (P.G.); (C.Q.); (K.C.); (Y.Z.); (J.Z.)
| | - Kui Wang
- School of Plant Protection, Anhui Agricultural University, Hefei 230036, China;
| | - Chang Qi
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (P.G.); (C.Q.); (K.C.); (Y.Z.); (J.Z.)
| | - Keming Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (P.G.); (C.Q.); (K.C.); (Y.Z.); (J.Z.)
| | - Wensheng Xiang
- College of Life Science, Northeast Agricultural University, HarBin 150030, China;
| | - Yue Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (P.G.); (C.Q.); (K.C.); (Y.Z.); (J.Z.)
- Hebei Key Laboratory of Soil Entomology, Cangzhou Academy of Agricultural and Forestry Sciences, Cangzhou 061001, China
| | - Jie Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (P.G.); (C.Q.); (K.C.); (Y.Z.); (J.Z.)
| | - Changlong Shu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (P.G.); (C.Q.); (K.C.); (Y.Z.); (J.Z.)
| |
Collapse
|
21
|
Efremenko E, Stepanov N, Senko O, Lyagin I, Maslova O, Aslanli A. Artificial Humic Substances as Biomimetics of Natural Analogues: Production, Characteristics and Preferences Regarding Their Use. Biomimetics (Basel) 2023; 8:613. [PMID: 38132553 PMCID: PMC10742262 DOI: 10.3390/biomimetics8080613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/12/2023] [Accepted: 12/13/2023] [Indexed: 12/23/2023] Open
Abstract
Various processes designed for the humification (HF) of animal husbandry wastes, primarily bird droppings, reduce their volumes, solve environmental problems, and make it possible to obtain products with artificially formed humic substances (HSs) as analogues of natural HSs, usually extracted from fossil sources (coal and peat). This review studies the main characteristics of various biological and physicochemical methods of the HF of animal wastes (composting, anaerobic digestion, pyrolysis, hydrothermal carbonation, acid or alkaline hydrolysis, and subcritical water extraction). A comparative analysis of the HF rates and HS yields in these processes, the characteristics of the resulting artificial HSs (humification index, polymerization index, degree of aromaticity, etc.) was carried out. The main factors (additives, process conditions, waste pretreatment, etc.) that can increase the efficiency of HF and affect the properties of HSs are highlighted. Based on the results of chemical composition analysis, the main trends and preferences with regard to the use of HF products as complex biomimetics are discussed.
Collapse
Affiliation(s)
- Elena Efremenko
- Faculty of Chemistry, Lomonosov Moscow State University, Lenin Hills 1/3, Moscow 119991, Russia; (N.S.); (O.S.)
| | | | | | | | | | | |
Collapse
|
22
|
Li X, Zhong X, Yang Z, Cai C, Zhang W, Li X, Sun X, Dong B, Xu Z. Novelty three stages for humification of sewage sludge during hyperthermophilic aerobic fermentation. ENVIRONMENTAL RESEARCH 2023; 239:117276. [PMID: 37806481 DOI: 10.1016/j.envres.2023.117276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 09/27/2023] [Accepted: 09/28/2023] [Indexed: 10/10/2023]
Abstract
Compared with conventional aerobic fermentation (CAF), there is limited knowledge of how hyperthermophilic aerobic fermentation (HAF) enhances the humification of sewage sludge. This study compared three novel stages of organic degradation, precursors, functional groups, bacterial community, and humus synthesis mechanism in HAF with CAF. The results showed that organic matter (OM) degraded rapidly, and 68% of the degradation could be completed of stage I in HAF. Compared with the initial stage, ammonium nitrogen (NH4+-N), water-soluble organic carbon, and water-soluble total nitrogen increased by 2.83 times, 40.5 times, and 33.5 times, respectively. Cellulose and hemicellulose decreased by 29.22% and 21.85%, respectively. These results suggested that temperature (>80 °C) and Bacillus dominated accelerate the humification process by rapidly improving OM degradation. Compared with the initial value of HAF, the maximum increment of reducing sugar at stage II was 297%, and the degradation rate of cellulose was effectively increased by 21.03% compared with that of CAF. The precursors such as reducing sugars and amino acids formed humus at stage II. The content of Aryl C increased significantly during the HAF process, the degree of polymerization of humus and the aromatization degree of HA and FA increased significantly, and complex organic macromolecular material polymers were formed at stage III. The sugar-amine condensation was the mechanism of humification in the sludge HAF process. This investigation provided three new stages of insights into the synthesis of humification during the HAF process and extended the current mechanism of humification in the HAF process.
Collapse
Affiliation(s)
- Xin Li
- School of Environmental Science and Engineering. Tongji University, Shanghai, 200092, PR China
| | - Xinru Zhong
- School of Environmental Science and Engineering. Tongji University, Shanghai, 200092, PR China
| | - Zao Yang
- School of Environmental Science and Engineering. Tongji University, Shanghai, 200092, PR China
| | - Chen Cai
- School of Environmental Science and Engineering. Tongji University, Shanghai, 200092, PR China
| | - Wei Zhang
- School of Environment and Architecture. University of Shanghai for Science and Technology, Shanghai, 200093, PR China.
| | - Xiaowei Li
- School of Environmental and Chemical Engineering, Organic Compound Pollution Control Engineering, Ministry of Education, Institute for the Conservation of Cultural Heritage, Shanghai University, Shanghai, 200444, PR China
| | - Xiaojie Sun
- Guangxi Key laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, PR China
| | - Bin Dong
- School of Environmental Science and Engineering. Tongji University, Shanghai, 200092, PR China; Guangxi Key laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, PR China.
| | - Zuxin Xu
- School of Environmental Science and Engineering. Tongji University, Shanghai, 200092, PR China
| |
Collapse
|
23
|
Chang Y, Zhou K, Yang T, Zhao X, Li R, Li J, Xu S, Feng Z, Ding X, Zhang L, Shi X, Su J, Li J, Wei Y. Bacillus licheniformis inoculation promoted humification process for kitchen waste composting: Organic components transformation and bacterial metabolic mechanism. ENVIRONMENTAL RESEARCH 2023; 237:117016. [PMID: 37657603 DOI: 10.1016/j.envres.2023.117016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/24/2023] [Accepted: 08/27/2023] [Indexed: 09/03/2023]
Abstract
Kitchen waste (KW) composting always has trouble with slow humification process and low humification degree. The objective of this study was to develop potentially efficient solutions to improve the humification of KW composting, accelerate the humus synthesis and produce HS with a high polymerization degree. The impact of Bacillus licheniformis inoculation on the transformation of organic components, humus synthesis, and bacterial metabolic pathways in kitchen waste composting, was investigated. Results revealed that microbial inoculation promoted the degradation of organic constituents, especially readily degradable carbohydrates during the heating phase and lignocellulose fractions during the cooling phase. Inoculation facilitated the production and conversion of polyphenol, reducing sugar, and amino acids, leading to an increase of 20% in the content of humic acid compared to the control. High-throughput sequencing and network analysis indicated inoculation enriched the presence of Bacillus, Lactobacillus, and Streptomyces during the heating phase, while suppressing the abundance of Pseudomonas and Oceanobacillus, enhancing positive microbial interactions. PICRUSt2 analysis suggested inoculation enhanced the metabolism of carbohydrates and amino acids, promoting the polyphenol humification pathway and facilitating the formation of humus. These findings provide insights for optimizing the humification process of kitchen waste composting by microbial inoculation.
Collapse
Affiliation(s)
- Yuan Chang
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, 100193, Beijing, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou, 215128, China
| | - Kaiyun Zhou
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, 100193, Beijing, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou, 215128, China
| | - Tianxue Yang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Xinyu Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Ruoqi Li
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, 100193, Beijing, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou, 215128, China
| | - Jun Li
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, 100193, Beijing, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou, 215128, China
| | - Shaoqi Xu
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, 100193, Beijing, China
| | - Ziwei Feng
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, 100193, Beijing, China
| | - Xiaoyan Ding
- Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou, 215128, China
| | - Longli Zhang
- Beijing VOTO Biotech Co.,Ltd, 100193, Beijing, China
| | - Xiong Shi
- Yangtze Eco-Environment Engineering Research Center, China Three Gorges Corporation, Beijing, 100038, China
| | - Jing Su
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, China.
| | - Ji Li
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, 100193, Beijing, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou, 215128, China
| | - Yuquan Wei
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, 100193, Beijing, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou, 215128, China.
| |
Collapse
|
24
|
Li Y, Li J, Chang Y, Li R, Zhou K, Zhan Y, Wei R, Wei Y. Comparing bacterial dynamics for the conversion of organics and humus components during manure composting from different sources. Front Microbiol 2023; 14:1281633. [PMID: 37840749 PMCID: PMC10568323 DOI: 10.3389/fmicb.2023.1281633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 09/15/2023] [Indexed: 10/17/2023] Open
Abstract
The study aimed to compare the differences in organic fractions transformation, humus components and bacterial community dynamics during manure composting from different sources, and to identify the key biotic and abiotic factors driving the humification process. Five types of manure [pig manure (PM), cow dung (CD), sheep manure (SM), chicken manure (CM), and duck manure (DM)] were used as raw materials for 30 days composting. The results showed the obvious difference of organic fractions decomposition with more cellulose degradation in CD and SM composting and more hemicellulose degradation in PM and CM composting. Composting of PM and CD contained significantly higher humus fractions than the other composts. Fluorescence spectra indicated that SM composting tended to form structurally stable humic acid fractions, while CM and DM tended to form structurally complex fulvic acid fractions. Pearson correlation analysis showed that humification process of composts in category A (PM, CD) with higher humification degree than category B (SM, CM, and DM) was positively correlated with lignin and hemicellulose degradation. Bioinformatics analysis found that Lysinibacillus promoted the degradation of hemicellulose and the conversion of fulvic to humic acid in the composts of category A, and in category B, Thermobifida, Lactobacillus, and Ureibacillus were key genera for humic acid formation. Network analysis indicated that bacterial interaction patterns had obvious differences in composting with different humus and humification levels.
Collapse
Affiliation(s)
- Yan Li
- Central Laboratory, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou, China
- Haikou City Key Laboratory of Clinical Medicine, Haikou, China
- Key Laboratory of Tropical Biological Resources, Ministry of Education, Key Laboratory for Marine Drugs of Haikou, Hainan University, Haikou, China
| | - Jun Li
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing, China
- Organic Recycling Institute (Suzhou) of China Agricultural University, Suzhou, China
| | - Yuan Chang
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing, China
- Organic Recycling Institute (Suzhou) of China Agricultural University, Suzhou, China
| | - Ruoqi Li
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing, China
- Organic Recycling Institute (Suzhou) of China Agricultural University, Suzhou, China
| | - Kaiyun Zhou
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing, China
- Organic Recycling Institute (Suzhou) of China Agricultural University, Suzhou, China
| | - Yabin Zhan
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing, China
- Organic Recycling Institute (Suzhou) of China Agricultural University, Suzhou, China
- Key Laboratory of Fertilization from Agricultural Wastes, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection and Soil Fertilizer, Hubei Academy of Agricultural Sciences, Wuhan, Hubei, China
| | - Renyue Wei
- College of Life Science, Northeast Agricultural University, Harbin, China
| | - Yuquan Wei
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing, China
- Organic Recycling Institute (Suzhou) of China Agricultural University, Suzhou, China
| |
Collapse
|
25
|
Ma Y, Liu L, Zhou X, Tian T, Xu S, Li D, Li C, Li Y. Optimizing Straw-Rotting Cultivation for Sustainable Edible Mushroom Production: Composting Spent Mushroom Substrate with Straw Additions. J Fungi (Basel) 2023; 9:925. [PMID: 37755033 PMCID: PMC10532571 DOI: 10.3390/jof9090925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 09/03/2023] [Accepted: 09/09/2023] [Indexed: 09/28/2023] Open
Abstract
In recent years, the optimization of straw-rotting formulations for cultivating edible mushrooms and the management of the resulting spent mushroom substrate have emerged as new challenges. This study aimed to investigate the composting of spent mushroom substrate produced from mushroom cultivation with various straw additions, under conditions where chicken manure was also used. Parameters measured during the composting process included temperature, pH, electrical conductivity (EC), germination index (GI), moisture, and total nitrogen content. Additionally, changes in nutrient content within the compost piles before and after composting were determined, and the variations in bacterial and fungal communities across different treatments before and after composting were analyzed using 16S rRNA and ITS sequencing. The results indicated that the spent mushroom substrate produced by adding 20% straw during mushroom cultivation was more suitable for composting treatment. The findings suggest that incorporating an appropriate amount of straw in mushroom cultivation can facilitate subsequent composting of spent mushroom substrate, providing an effective strategy for both environmental protection and cost reduction.
Collapse
Affiliation(s)
- Yongsheng Ma
- Engineering Research Center of Edible and Medicinal Fungi, Ministry of Education, Jilin Agricultural University, Changchun 130118, China; (Y.M.); (L.L.); (X.Z.); (T.T.); (S.X.); (D.L.); (Y.L.)
| | - Lingyun Liu
- Engineering Research Center of Edible and Medicinal Fungi, Ministry of Education, Jilin Agricultural University, Changchun 130118, China; (Y.M.); (L.L.); (X.Z.); (T.T.); (S.X.); (D.L.); (Y.L.)
| | - Xiaoyan Zhou
- Engineering Research Center of Edible and Medicinal Fungi, Ministry of Education, Jilin Agricultural University, Changchun 130118, China; (Y.M.); (L.L.); (X.Z.); (T.T.); (S.X.); (D.L.); (Y.L.)
| | - Tian Tian
- Engineering Research Center of Edible and Medicinal Fungi, Ministry of Education, Jilin Agricultural University, Changchun 130118, China; (Y.M.); (L.L.); (X.Z.); (T.T.); (S.X.); (D.L.); (Y.L.)
| | - Shuai Xu
- Engineering Research Center of Edible and Medicinal Fungi, Ministry of Education, Jilin Agricultural University, Changchun 130118, China; (Y.M.); (L.L.); (X.Z.); (T.T.); (S.X.); (D.L.); (Y.L.)
| | - Dan Li
- Engineering Research Center of Edible and Medicinal Fungi, Ministry of Education, Jilin Agricultural University, Changchun 130118, China; (Y.M.); (L.L.); (X.Z.); (T.T.); (S.X.); (D.L.); (Y.L.)
| | - Changtian Li
- Engineering Research Center of Edible and Medicinal Fungi, Ministry of Education, Jilin Agricultural University, Changchun 130118, China; (Y.M.); (L.L.); (X.Z.); (T.T.); (S.X.); (D.L.); (Y.L.)
- International Joint Research Center for the Creation of New Edible Mushroom Germplasm Resources, Ministry of Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Yu Li
- Engineering Research Center of Edible and Medicinal Fungi, Ministry of Education, Jilin Agricultural University, Changchun 130118, China; (Y.M.); (L.L.); (X.Z.); (T.T.); (S.X.); (D.L.); (Y.L.)
- International Joint Research Center for the Creation of New Edible Mushroom Germplasm Resources, Ministry of Science and Technology, Jilin Agricultural University, Changchun 130118, China
| |
Collapse
|
26
|
Jiang W, Li D, Yang J, Ye Y, Luo J, Zhou X, Yang L, Liu Z. A combined passivator of zeolite and calcium magnesium phosphate fertilizer: Passivation behavior and mechanism for Cd (II) in composting. ENVIRONMENTAL RESEARCH 2023; 231:116306. [PMID: 37268202 DOI: 10.1016/j.envres.2023.116306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/27/2023] [Accepted: 05/31/2023] [Indexed: 06/04/2023]
Abstract
Passivation of heavy metals is one of the most efficient techniques to improve the quality of compost. Many studies confirmed the passivation effect of passivators (e.g., zeolite and calcium magnesium phosphate fertilizer) on cadmium (Cd), but passivators with single component could not effectively passivate Cd in the long-term operation of composting. In the present study, a combined passivator of zeolite and calcium magnesium phosphate fertilizer (ZCP) was used to explore its impacts of adding at different composting periods (heating period, thermophilic period, cooling period) on the Cd control, compost quality (e.g., temperature, moisture content and humification), microbial community structure as well as the compost available forms of Cd and addition strategy of ZCP. Results showed that Cd passivation rate could be increased by 35.70-47.92% under all treatments in comparison to the control treatment. By altering bacterial community structure, reducing Cd bioavailability and improving the chemical properties of the compost, the combined inorganic passivator could achieve high efficiency for Cd passivation. To sum up, the addition of ZCP at different composting periods has effects on the process and quality of composting, which could provide ideas for the optimization of the passivators addition strategy.
Collapse
Affiliation(s)
- Wei Jiang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Wuhan, 430074, China
| | - Dian Li
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Wuhan, 430074, China
| | - Junlin Yang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Wuhan, 430074, China
| | - Yuanyao Ye
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Wuhan, 430074, China.
| | - Jiwu Luo
- Central & Southern China Municipal Engineering Design and Research Institute Co,Ltd, No. 8 Jiefang Park Rord, Wuhan, 430010, China
| | - Xiaojuan Zhou
- Central & Southern China Municipal Engineering Design and Research Institute Co,Ltd, No. 8 Jiefang Park Rord, Wuhan, 430010, China
| | - Lin Yang
- Wuhan Huantou Solid Waste Operation Co., Ltd, No. 37 Xinye Road, Wuhan, 430024, China
| | - Zizheng Liu
- School of Civil Engineering, Wuhan University, No. 8 Donghu South Road, Wuhan, 430072, China
| |
Collapse
|
27
|
Zhang Z, Duan C, Liu Y, Li A, Hu X, Chen J, Zhang S, Li X, Che R, Li S, Ekelund F, Cui X. Green waste and sewage sludge feeding ratio alters co-composting performance: Emphasis on the role of bacterial community during humification. BIORESOURCE TECHNOLOGY 2023; 380:129014. [PMID: 37028527 DOI: 10.1016/j.biortech.2023.129014] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/29/2023] [Accepted: 04/02/2023] [Indexed: 05/14/2023]
Abstract
Composting with five levels of green waste and sewage sludge was compared to examine how feeding ratios affected composting performance with special focus on humification, and the underlying mechanisms. The results showed that the raw material ratio persistently affected compost nutrients and stability. Humification and mineralization were promoted by higher proportion of sewage sludge. Bacterial community composition and within-community relationships were also significantly affected by the raw material feeding ratio. Network analysis indicated that clusters 1 and 4 which dominated by Bacteroidetes, Proteobacteria, and Acidobacteria shown significantly positive correlation with humic acid concentration. Notably, the structural equational model and variance partitioning analysis demonstrated that bacterial community structure (explained 47.82% of the variation) mediated the effect of raw material feeding ratio on humification, and exceeded the effect of environmental factors (explained 19.30% of the variation) on humic acid formation. Accordingly, optimizing the composting raw material improves the composting performance.
Collapse
Affiliation(s)
- Zejin Zhang
- School of Ecology and Environmental Science & Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, Yunnan University, Kunming 650091, China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100190, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; Department of Biology, University of Copenhagen, Copenhagen Ø DK-2100, Denmark
| | - Changqun Duan
- School of Ecology and Environmental Science & Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, Yunnan University, Kunming 650091, China
| | - Yuxian Liu
- Yuxi Experimental Senior High School, Yuxi 653100, China
| | - Anning Li
- School of Ecology and Environmental Science & Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, Yunnan University, Kunming 650091, China
| | - Xi Hu
- School of Ecology and Environmental Science & Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, Yunnan University, Kunming 650091, China
| | - Jingkun Chen
- Institute of International Rivers and Eco-security, Yunnan University, Kunming 650091, China
| | - Song Zhang
- Institute of International Rivers and Eco-security, Yunnan University, Kunming 650091, China
| | - Xin Li
- School of Ecology and Environmental Science & Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, Yunnan University, Kunming 650091, China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Rongxiao Che
- Institute of International Rivers and Eco-security, Yunnan University, Kunming 650091, China
| | - Shiyu Li
- School of Ecology and Environmental Science & Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, Yunnan University, Kunming 650091, China.
| | - Flemming Ekelund
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100190, China; Department of Biology, University of Copenhagen, Copenhagen Ø DK-2100, Denmark
| | - Xiaoyong Cui
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100190, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
28
|
Li Y, Kuramae EE, Nasir F, Wang E, Zhang Z, Li J, Yao Z, Tian L, Sun Y, Luo S, Guo L, Ren G, Tian C. Addition of cellulose degrading bacterial agents promoting keystone fungal-mediated cellulose degradation during aerobic composting: Construction the complex co-degradation system. BIORESOURCE TECHNOLOGY 2023; 381:129132. [PMID: 37149269 DOI: 10.1016/j.biortech.2023.129132] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 04/26/2023] [Accepted: 05/01/2023] [Indexed: 05/08/2023]
Abstract
To excavate a complex co-degradation system for decomposing cellulose more efficiently, cellulose-degrading bacteria, including Bacillus subtilis WF-8, Bacillus licheniformis WF-11, Bacillus Cereus WS-1 and Streptomyces Nogalater WF-10 were added during maize straw and cattle manure aerobic composting. Bacillus and Streptomyces successfully colonized, which improve cellulose degrading ability. Continuous colonization of cellulose-degrading bacteria can promote the fungi to produce more precursors for humus and promote the negative correlation with Ascomycota. In the current study, the addition of cellulose-degrading bacteria has resulted in the rapid development of Mycothermus and Remersonia in the phylum Ascomycota as keystone fungal genera which constitute the foundation of the co-degradation system. Network analysis reveals the complex co-degradation system of efficient cellulose bacteria and mature fungi to treat cellulose in the process of straw aerobic composting mainly related to the influence of total carbon (TC) /total nitrogen (TN) and humic acid (HA)/fulvic acid (FA). This research offers a complex co-degradation system more efficiently to decompose cellulose aiming to maintain the long-term sustainability of agriculture.
Collapse
Affiliation(s)
- Yingxin Li
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, Jilin, PR China; University of Chinese Academy of Sciences, Beijing 101408, PR China; Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), 6708 PB Wageningen, the Netherlands
| | - Eiko E Kuramae
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), 6708 PB Wageningen, the Netherlands; Ecology and Biodiversity Group, Department of Biology, Institute of Environmental Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | - Fahad Nasir
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, Jilin, PR China
| | - Enze Wang
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, Jilin, PR China; University of Chinese Academy of Sciences, Beijing 101408, PR China
| | - Zhengang Zhang
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, Jilin, PR China; University of Chinese Academy of Sciences, Beijing 101408, PR China
| | - Ji Li
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, Jilin, PR China; University of Chinese Academy of Sciences, Beijing 101408, PR China; Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), 6708 PB Wageningen, the Netherlands
| | - Zongmu Yao
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, Jilin, PR China; University of Chinese Academy of Sciences, Beijing 101408, PR China
| | - Lei Tian
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, Jilin, PR China
| | - Yu Sun
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, Jilin, PR China
| | - Shouyang Luo
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, Jilin, PR China; University of Chinese Academy of Sciences, Beijing 101408, PR China
| | - Lingling Guo
- Microbial Research Institute of Liaoning Province, Chaoyang, 122000, PR China
| | - Gaidi Ren
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), 6708 PB Wageningen, the Netherlands; Institute of Agricultural Resources and Environment, Nanjing, 210000, Jiangsu Academy of Sciences, PR China
| | - Chunjie Tian
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, Jilin, PR China.
| |
Collapse
|
29
|
Fu M, Cao Z, Sun R, Wen X, Wang Y, Li K, Li Q. Maleic anhydride promotes humus formation via inducing functional enzymes response in composting. BIORESOURCE TECHNOLOGY 2023; 380:129125. [PMID: 37127171 DOI: 10.1016/j.biortech.2023.129125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/25/2023] [Accepted: 04/28/2023] [Indexed: 05/03/2023]
Abstract
The purpose of this paper was to explore the promotion of maleic anhydride on the polymerization of precursors into humus in composting, and analyze the changes of key functional enzymes. The results showed that the content of humus in the treatment group added maleic anhydride (MAH) was higher than that in the control check (CK). The decrease rate of humus precursor concentration of MAH was also higher than that of CK. In MAH, the activities of laccase and tyrosinase were improved, thus enhanced the catalytic conversion of humus precursors. The analysis of bacterial community showed that maleic anhydride optimized the community structure of humification functional enzymes producing bacteria, with the most obvious increase of Firmicutes. In conclusion, this study provided theoretical supports for the introduction of maleic anhydride into the compost system to promote the polymerization of precursors to form humus.
Collapse
Affiliation(s)
- Mengxin Fu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Ziyi Cao
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Ru Sun
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Xiaoli Wen
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Yiwu Wang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Kecheng Li
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Qunliang Li
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China.
| |
Collapse
|
30
|
Song Y, Li R, Wang Y, Hou Y, Chen G, Yan B, Cheng Z, Mu L. Co-composting of cattle manure and wheat straw covered with a semipermeable membrane: organic matter humification and bacterial community succession. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:32776-32789. [PMID: 36471148 DOI: 10.1007/s11356-022-24544-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
Semipermeable membrane-covered composting is one of the most commonly used composting technologies in northeast China, but its humification process is not yet well understood. This study employed a semipermeable membrane-covered composting system to detect the organic matter humification and bacterial community evolution patterns over the course of agricultural waste composting. Variations in physicochemical properties, humus composition, and bacterial communities were studied. The results suggested that membrane covering improved humic acid (HA) content and degree of polymerization (DP) by 9.28% and 21.57%, respectively. Bacterial analysis indicated that membrane covering reduced bacterial richness and increased bacterial diversity. Membrane covering mainly affected the bacterial community structure during thermophilic period of composting. RDA analysis revealed that membrane covering may affect the bacterial community by altering the physicochemical properties such as moisture content. Correlation analysis showed that membrane covering activated the dominant genera Saccharomonospora and Planktosalinus to participate in the formation of HS and HA in composting, thus promoting HS formation and its structural complexity. Membrane covering significantly reduced microbial metabolism during the cooling phase of composting.
Collapse
Affiliation(s)
- Yingjin Song
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Ruiyi Li
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Yuxin Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Yu Hou
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Guanyi Chen
- School of Mechanical Engineering, Tianjin University of Commerce, Tianjin, 300134, China
- School of Science, Tibet University, Lhasa, 850012, China
| | - Beibei Yan
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
- Tianjin Key Lab of Biomass/Wastes Utilization, Tianjin, 300072, China
| | - Zhanjun Cheng
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China.
| | - Lan Mu
- School of Mechanical Engineering, Tianjin University of Commerce, Tianjin, 300134, China
| |
Collapse
|
31
|
Chen L, Chen Y, Li Y, Liu Y, Jiang H, Li H, Yuan Y, Chen Y, Zou B. Improving the humification by additives during composting: A review. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 158:93-106. [PMID: 36641825 DOI: 10.1016/j.wasman.2022.12.040] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 12/13/2022] [Accepted: 12/31/2022] [Indexed: 06/17/2023]
Abstract
Humic substances (HSs) are key indicators of compost maturity and are important for the composting process. The application of additives is generally considered to be an efficient and easy-to-master strategy to promote the humification of composting and quickly caught the interest of researchers. This review summarizes the recent literature on humification promotion by additives in the composting process. Firstly, the organic, inorganic, biological, and compound additives are introduced emphatically, and the effects and mechanisms of various additives on composting humification are systematically discussed. Inorganic, organic, biological, and compound additives can promote 5.58-82.19%, 30.61-50.92%, 2.3-40%, and 28.09-104.51% of humification during composting, respectively. Subsequently, the advantages and disadvantages of various additives in promoting composting humification are discussed and indicated that compound additives are the most promising method in promoting composting humification. Finally, future research on humification promotion is also proposed such as long-term stability, environmental impact, and economic feasibility of additive in the large-scale application of composting. It is aiming to provide a reference for future research and the application of additives in composting.
Collapse
Affiliation(s)
- Li Chen
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Yaoning Chen
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China.
| | - Yuanping Li
- College of Municipal and Mapping Engineering, Hunan City University, Yiyang, Hunan 413000, China.
| | - Yihuan Liu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Hongjuan Jiang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Hui Li
- State Key Laboratory of Utilization of Woody Oil Resource and Institute of Biological and Environmental Engineering, Hunan Academy of Forestry, Changsha, 410004, China
| | - Yu Yuan
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Yanrong Chen
- School of Resource & Environment, Hunan University of Technology and Business, Changsha 410205, China
| | - Bin Zou
- College of Municipal and Mapping Engineering, Hunan City University, Yiyang, Hunan 413000, China
| |
Collapse
|
32
|
Liu C, Zhuang J, Xue J, Peng M, Zhang W, Mao L. Passivation mechanism of Cu and Zn with the introduction of composite passivators during anaerobic digestion of pig manure. BIORESOURCE TECHNOLOGY 2023; 369:128360. [PMID: 36423767 DOI: 10.1016/j.biortech.2022.128360] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/14/2022] [Accepted: 11/16/2022] [Indexed: 06/16/2023]
Abstract
Heavy metals in livestock manure pose a threat to the environment after biogas fertilizer being utilized, while its bioavailability is reduced substantially by passivator during the anaerobic digestion. In this study, an optimal composite passivator of humic acid, fly ash and biochar with proportion of 7.5%:7.5%:7.5% and 5.0%:7.5%:7.5% is obtained and the passivation mechanism on Cu and Zn during anaerobic digestion of pig manure is explored. The content of humic acid (HA) in biogas residue increased by 15.66-27.82%, which promoted the transformation from FA-Cu/Zn to HA-Cu/Zn and was beneficial to the passivation of Cu and Zn. The bioavailability of Cu and Zn was reduced by the adsorption and complexation at the early and middle stages of anaerobic digestion. Humic substances play a major role in the passivation of heavy metals at the late stage. The composite passivator can improve the humification degree of biogas residue and reduce heavy metal biotoxicity.
Collapse
Affiliation(s)
- Cunlan Liu
- School of Environmental Science & Engineering, Changzhou University, Changzhou 213164, China
| | - Jie Zhuang
- School of Environmental Science & Engineering, Changzhou University, Changzhou 213164, China
| | - Jinhui Xue
- School of Environmental Science & Engineering, Changzhou University, Changzhou 213164, China
| | - Mingguo Peng
- School of Environmental Science & Engineering, Changzhou University, Changzhou 213164, China
| | - Wenyi Zhang
- School of Environmental Science & Engineering, Changzhou University, Changzhou 213164, China.
| | - Linqiang Mao
- School of Environmental Science & Engineering, Changzhou University, Changzhou 213164, China.
| |
Collapse
|
33
|
Yang H, Ma L, Fu M, Li K, Li Y, Li Q. Mechanism analysis of humification coupling metabolic pathways based on cow dung composting with ionic liquids. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 325:116426. [PMID: 36240639 DOI: 10.1016/j.jenvman.2022.116426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/22/2022] [Accepted: 10/01/2022] [Indexed: 06/16/2023]
Abstract
This study focused on how adding ionic liquids (IL) affects composting humification. During the warming and thermophilic phases, addition of IL increased precursors content, and increased the polymerization of humus (HS) at later stages. Furthermore, the final HS and humic acid (HA) content of experimental groups (T) groups 129.79 mg/g and 79.91 mg/g were higher than in control group (CK) 118.57 mg/g and 74.53 mg/g, respectively (p < 0.05). IL up-regulated the gene abundance of metabolism for carbohydrate and amino acid (AA), and promoted the contributions of Actinobacteria and Proteobacteria, which affected humification. The redundancy analysis (RDA) results showed that the citrate-cycle (TCA cycle)(ko0020), pentose phosphate pathway (ko00030), pyruvate metabolism (ko00620), glyoxylate and dicarboxylate metabolism (ko00630), propanoate metabolism (ko00640), butanoate metabolism (ko00650) positively correlated with HA and HI. HA and humification index (HI) positively correlated with AA metabolic pathways, and fulvic acid (FA) was negatively correlated with these pathways. Overall, metabolism for carbohydrate and AA metabolism favored compost humification. ILs improved metabolism for carbohydrate and amino acid metabolism, thus enhancing humification.
Collapse
Affiliation(s)
- Hongxiang Yang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China
| | - Liangcai Ma
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China
| | - Mengxin Fu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China
| | - Kecheng Li
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China
| | - Yinzhong Li
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China
| | - Qunliang Li
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China.
| |
Collapse
|
34
|
Liu Y, Zhang K, Zhang H, Zhou K, Chang Y, Zhan Y, Pan C, Shi X, Zuo H, Li J, Wei Y. Humic acid and phosphorus fractions transformation regulated by carbon-based materials in composting steered its potential for phosphorus mobilization in soil. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 325:116553. [PMID: 36283197 DOI: 10.1016/j.jenvman.2022.116553] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 10/10/2022] [Accepted: 10/15/2022] [Indexed: 06/16/2023]
Abstract
This study investigated the effects of different carbon-based additives including biochar, woody peat, and glucose on humic acid, fulvic acid, and phosphorus fractions in chicken manure composting and its potential for phosphorus mobilization in soil. The results showed that the addition of glucose effectively increased the total humic substance content (90.2 mg/g) of composts, and the fulvic acid content was significantly higher than other groups (P < 0.05). The addition of biochar could effectively improve the content of available phosphorus by 59.9% in composting. The addition of carbon-based materials to the composting was beneficial for the production of more stable inorganic phosphorus in the phosphorus fraction. The highest proportion of soluble inorganic phosphorus components of sodium hydroxide was found in group with woody peat addition (8.7%) and the highest proportion of soluble inorganic phosphorus components of hydrochloric acid was found in group with glucose addition (35.2%). The compost products with the addition of biochar (humic acid decreased by 17.9%) and woody peat (fulvic acid decreased by 72.6%) significantly increased soil humic acid mineralization. The compost products with the addition of biochar was suitable as active phosphate fertilizer, while the compost products with the addition of glucose was suitable as slow-release phosphate fertilizer.
Collapse
Affiliation(s)
- Yongdi Liu
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China; Organic Recycling Research Institute (Suzhou) of China Agricultural University, Suzhou, 215100, China
| | - Kui Zhang
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China; Organic Recycling Research Institute (Suzhou) of China Agricultural University, Suzhou, 215100, China
| | - Hao Zhang
- Technical Centre for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing, 100012, China
| | - Kaiyun Zhou
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China; Organic Recycling Research Institute (Suzhou) of China Agricultural University, Suzhou, 215100, China
| | - Yuan Chang
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China; Organic Recycling Research Institute (Suzhou) of China Agricultural University, Suzhou, 215100, China
| | - Yabin Zhan
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China; Organic Recycling Research Institute (Suzhou) of China Agricultural University, Suzhou, 215100, China
| | - Chengjie Pan
- Organic Recycling Research Institute (Suzhou) of China Agricultural University, Suzhou, 215100, China
| | - Xiong Shi
- Yangtze Eco-Environment Engineering Research Center, China Three Gorges Corporation, Beijing, 100038, China; National Engineering Research Center of Eco-Environment Protection for Yangtze River Economic Belt, China Three Gorges Corporation, Suzhou, 215163, China
| | - Huiduan Zuo
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Ji Li
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China; Organic Recycling Research Institute (Suzhou) of China Agricultural University, Suzhou, 215100, China
| | - Yuquan Wei
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China; Organic Recycling Research Institute (Suzhou) of China Agricultural University, Suzhou, 215100, China.
| |
Collapse
|
35
|
Mei J, Zhao F, Hou Y, Ahmad S, Cao Y, Yang Z, Ai H, Sheng L. Two novel phosphorus/potassium-degradation bacteria: Bacillus aerophilus SD-1/Bacillus altitudinis SD-3 and their application in two-stage composting of corncob residue. Arch Microbiol 2022; 205:17. [PMID: 36480050 DOI: 10.1007/s00203-022-03357-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/25/2022] [Accepted: 11/28/2022] [Indexed: 12/13/2022]
Abstract
For effective utilization of corncob residue to realize green circular production, using composting to obtain a high-quality and low-cost biomass fertilizer has become a very important transformation avenue. In this paper, two novel phosphorus/potassium-degradation bacterial strains were isolated from tobacco straw and identified as Bacillus aerophilus SD-1/Bacillus altitudinis SD-3 (abbreviated as SD-1/SD-3). These identified two novel bacteria SD-1/SD-3 show that the soluble phosphorus content of SD-1/SD-3 reached 360.89 mg L-1/403.56 mg L-1 in the shake flask test, and the mass concentration of soluble potassium is 136.56 mg L-1/139.89 mg L-1. In addition, the Laccase (Lac), Lignin peroxidase (LiP), and Manganese peroxidase (MnP) activities of SD-1 and SD-3 are 54.45 U L-1/394.84 U L-1/222.79 U L-1 and 46.27 U L-1/395.26 U L-1/203.98 U L-1 respectively, with the carboxy-methyl cellulase (CMCase) of 72.07 U mL-1 and 52.69 U mL-1. Meanwhile, the effects of three different combinations of cultures, i.e., no inoculation (K1), inoculation of SD-1/SD-3 on day 21 (K2) and on day 0 (G) are investigated to understand the influence on the degradation degree of corncob residue compost. The results of K2 compost treatment showed that the effective P/K content increased nearly 3.1/2.4 times, the degradation of cellulose/lignin was 49.1/68.0%, and the germination rate was 110.23%, which were higher than other experiment groups K1/G. In conclusion, knowledge of this paper will be very useful for the industrial sector for the treatment of complex corncob residue.
Collapse
Affiliation(s)
- Jinfei Mei
- Engineering Research Centre of Biomass Conversion and Pollution Prevention Control of Anhui Provincial Department of Education, Fuyang, 236037, People's Republic of China
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, People's Republic of China
- School of Chemistry and Materials Engineering, Fuyang Normal University, Fuyang, 236037, People's Republic of China
| | - Fengbei Zhao
- Engineering Research Centre of Biomass Conversion and Pollution Prevention Control of Anhui Provincial Department of Education, Fuyang, 236037, People's Republic of China
- School of Chemistry and Materials Engineering, Fuyang Normal University, Fuyang, 236037, People's Republic of China
| | - Yumei Hou
- Engineering Research Centre of Biomass Conversion and Pollution Prevention Control of Anhui Provincial Department of Education, Fuyang, 236037, People's Republic of China
- School of Chemistry and Materials Engineering, Fuyang Normal University, Fuyang, 236037, People's Republic of China
| | - Sajjad Ahmad
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, People's Republic of China
| | - Yujie Cao
- Engineering Research Centre of Biomass Conversion and Pollution Prevention Control of Anhui Provincial Department of Education, Fuyang, 236037, People's Republic of China
- School of Chemistry and Materials Engineering, Fuyang Normal University, Fuyang, 236037, People's Republic of China
| | - Zheng Yang
- Engineering Research Centre of Biomass Conversion and Pollution Prevention Control of Anhui Provincial Department of Education, Fuyang, 236037, People's Republic of China
- School of Chemistry and Materials Engineering, Fuyang Normal University, Fuyang, 236037, People's Republic of China
| | - Hongqi Ai
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, People's Republic of China
| | - Liangquan Sheng
- Engineering Research Centre of Biomass Conversion and Pollution Prevention Control of Anhui Provincial Department of Education, Fuyang, 236037, People's Republic of China.
- School of Chemistry and Materials Engineering, Fuyang Normal University, Fuyang, 236037, People's Republic of China.
| |
Collapse
|
36
|
Yu C, Lu Q, Fu C, Jiang Z, Huang J, Jiang F, Wei Z. Exploring the internal driving mechanism underlying bacterial community-induced organic component conversion and humus formation during rice straw composting with tricarboxylic acid cycle regulator addition. BIORESOURCE TECHNOLOGY 2022; 365:128149. [PMID: 36265785 DOI: 10.1016/j.biortech.2022.128149] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/10/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
The aim of this study was to investigate the effect of tricarboxylic acid (TCA) cycle regulators on CO2 emissions, the conversion of organic components and humus formation during composting. The addition of adenosine triphosphate (ATP) and nicotinamide adenine dinucleotide (NADH) reduced CO2 emissions during rice straw composting. According to co-occurrence networks results, ATP enhanced the connectivity and complexity of the network; NADH enhanced microbial interactions. The different kind of TCA cycle regulators had different effect on humus formation pathway. The structural equation model showed that ATP might promote lignin transformation into humus via the sugar-amine condensation pathway and lignin-protein pathway while NADH may promote cellulose degradation into soluble sugar and organic matter, which are transformed into humus. This work will provide valuable guidance for exploring the mechanism of TCA cycle regulators in promoting organic carbon fixation and reducing inorganic carbon mineralization.
Collapse
Affiliation(s)
- Chunjing Yu
- College of Life Sciences and Technology, Harbin Normal University, Harbin 150025, China
| | - Qian Lu
- College of Life Sciences and Technology, Harbin Normal University, Harbin 150025, China
| | - Chang Fu
- College of Life Sciences and Technology, Harbin Normal University, Harbin 150025, China
| | - Ziwei Jiang
- College of Life Sciences and Technology, Harbin Normal University, Harbin 150025, China
| | - Jiayue Huang
- College of Life Sciences and Technology, Harbin Normal University, Harbin 150025, China
| | - Fangzhi Jiang
- College of Life Sciences and Technology, Harbin Normal University, Harbin 150025, China
| | - Zimin Wei
- College of Life Sciences and Technology, Harbin Normal University, Harbin 150025, China; College of Life Sciences, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
37
|
Wei J, Shangguan H, Shen C, Mi H, Liu X, Fu T, Tang J, Zhou S. Deciphering the structural characteristics and molecular transformation of dissolved organic matter during the electrolytic oxygen aerobic composting process. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 845:157174. [PMID: 35809732 DOI: 10.1016/j.scitotenv.2022.157174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/30/2022] [Accepted: 07/01/2022] [Indexed: 06/15/2023]
Abstract
Electrolytic oxygen aerobic composting (EOAC) effectively treats organic solid waste by using in-situ electrolytic oxygen for aeration. However, the fundamental mechanism of compost maturity is still unclear. Therefore, we comprehensively characterized dissolved organic matter (DOM) transformation closely related to compost maturity during EOAC. Excitation-emission matrix-parallel factor (EEM-PARAFAC) and Fourier transform infrared (FTIR) analysis confirmed that EOAC quickly decreased organic matter and increased humus substances, accelerating the compost humification process compared with conventional aerobic composting. Electrospray ionization (ESI) Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) analysis reveals that the double bound equivalent and aromaticity index during EOAC are higher than in conventional aerobic composting (CAC), suggesting more aromatic compounds in EOAC. DOM's detailed transformation investigation suggested that low O/C and high H/C compounds were preferentially decomposed during EOAC. Our investigation firstly extends the in-depth molecular mechanisms of humification during EOAC, and reveals its practical engineering applications.
Collapse
Affiliation(s)
- Junrong Wei
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Huayuan Shangguan
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chang Shen
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Huan Mi
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiaoming Liu
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510641, China
| | - Tao Fu
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jiahuan Tang
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Shungui Zhou
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
38
|
Wu X, Amanze C, Yu R, Li J, Wu X, Shen L, Liu Y, Yu Z, Wang J, Zeng W. Insight into the microbial mechanisms for the improvement of composting efficiency driven by Aneurinibacillus sp. LD3. BIORESOURCE TECHNOLOGY 2022; 359:127487. [PMID: 35724906 DOI: 10.1016/j.biortech.2022.127487] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 06/13/2022] [Accepted: 06/14/2022] [Indexed: 06/15/2023]
Abstract
This work explored the microbial mechanisms for the improvement of composting efficiency driven by thermotolerant lignin-degrading bacterium Aneurinibacillus sp. LD3 (LD3). Results showed that LD3 inoculant prolonged the thermophilic period by 4 days, improved the final content of humic acid, total phosphorus (TP), nitrogen, potassium and seed germination index. Inoculating LD3 enhanced the relative abundance of thermotolerant and phosphate-solubilizing microbes including the phyla of Proteobacteria, Bacteroidota, Firmicutes, and Actinobacteriota, and the genus of Bacillus, Thermoactinomyces, and Pseudomonas. Metabolic function analysis showed that sequences involved in carbohydrate and amino acid metabolism were boosted, while sequences associated with human disease were reduced after inoculating LD3. Spearman correlation analysis revealed that Aneurinibacillus has a significant positive correlation with temperature, TP, Bacillus, and Thermoactinomyces. This study provides useful information for understanding the microbial mechanisms of LD3 promoting composting efficiency, and reveals the tremendous potential of LD3 in the resource utilization of organic solid wastes.
Collapse
Affiliation(s)
- Xiaoyan Wu
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Charles Amanze
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Runlan Yu
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biometallurgy, Ministry of Education, Changsha 410083, China
| | - Jiaokun Li
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biometallurgy, Ministry of Education, Changsha 410083, China
| | - Xueling Wu
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biometallurgy, Ministry of Education, Changsha 410083, China
| | - Li Shen
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biometallurgy, Ministry of Education, Changsha 410083, China
| | - Yuandong Liu
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biometallurgy, Ministry of Education, Changsha 410083, China
| | - Zhaojing Yu
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Jingshu Wang
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Weimin Zeng
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biometallurgy, Ministry of Education, Changsha 410083, China.
| |
Collapse
|
39
|
Wang X, Tian L, Li Y, Zhong C, Tian C. Effects of exogenous cellulose-degrading bacteria on humus formation and bacterial community stability during composting. BIORESOURCE TECHNOLOGY 2022; 359:127458. [PMID: 35700902 DOI: 10.1016/j.biortech.2022.127458] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/04/2022] [Accepted: 06/09/2022] [Indexed: 06/15/2023]
Abstract
This study aimed to reveal the potential mechanism of influence exogenous cellulose-degrading bacteria (ECDB) exerted on humus synthesis during the co-composting of corn straw and cattle manure. By measuring the changes in physicochemical factors and bacterial communities, it was revealed that inoculation with ECDB enhanced the driving force of cellulose degradation and humus synthesis. ECDB not only directly participated in cellulose degradation as degrading bacteria, but also changed the bacterial community succession, and increased the abundance of bacterial communities associated with cellulose degradation. The results showed that ECDB stimulated the potential functions and interactions of bacterial communities. Structural equation modeling confirmed that ECDB acted mainly as a bioactivator to promote humus formation in co-composting of corn straw and cattle manure. Taken together, these findings offered new strategies which can be effectively utilized to increase the efficiency and quality of corn straw composting.
Collapse
Affiliation(s)
- Xinguang Wang
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, Jilin, China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Lei Tian
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, Jilin, China
| | - Yingxin Li
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, Jilin, China
| | - Cheng Zhong
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Chunjie Tian
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, Jilin, China.
| |
Collapse
|
40
|
Liu Y, Ma R, Tang R, Kong Y, Wang J, Li G, Yuan J. Effects of phosphate-containing additives and zeolite on maturity and heavy metal passivation during pig manure composting. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 836:155727. [PMID: 35523334 DOI: 10.1016/j.scitotenv.2022.155727] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 04/12/2022] [Accepted: 05/02/2022] [Indexed: 06/14/2023]
Abstract
This study investigated the effects of the combination of phosphogypsum with calcium oxide (PPG + CaO), superphosphate with calcium oxide (SSP + CaO) and zeolite (Zeolite) on composting maturity and heavy metal passivation in pig manure composting. The results showed that all treatments reached the maturity requirements and the phosphorus-containing additive treatments had higher final germination indices (GIs). Compared with CK, additive treatments enhanced the compost maturity by promoting volatile fatty acids (VFAs) decomposition (26.4%-30.5%) and formation of stable humus substances. All additive amendment treatments increased humic acid-like substances by over 20%, and the PPG + CaO treatment had the highest level of humus. Composting process reduced the bioavailability of Cu (49.2%), Cd (5.0%), Cr (54.3%), and Pb (26.6%). Correlation analysis found that the heavy mental passivation rate was significantly negatively correlated with the contents of VFAs and nitrogenous substances, and positively correlated with the pH, GI, humic acid content and the ratio of humic acid to fulvic acid (HA/FA). Therefore, the PPG + CaO treatment further increased the passivation rates of Cu (65.6%), Cd (21.7%), and Pb (48.7%) and decreased the mobilization of Zn by promoting maturity and humification during composting.
Collapse
Affiliation(s)
- Yan Liu
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China
| | - Ruonan Ma
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China
| | - Ruolan Tang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China
| | - Yilin Kong
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China
| | - Jiani Wang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China
| | - Guoxue Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China
| | - Jing Yuan
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
41
|
Zhao X, Xu K, Wang J, Wang Z, Pan R, Wang Q, Li S, Kumar S, Zhang Z, Li R. Potential of biochar integrated manganese sulfate for promoting pig manure compost humification and its biological mechanism. BIORESOURCE TECHNOLOGY 2022; 357:127350. [PMID: 35609751 DOI: 10.1016/j.biortech.2022.127350] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/15/2022] [Accepted: 05/18/2022] [Indexed: 05/16/2023]
Abstract
This study aimed to clarify the effect of the integrated addition of different proportions of biochar (0 and 5%) and MnSO4 (0, 0.25%, and 0.50%) to pig manure compost. The results indicated the integrated use of biochar (BC) and Mn2+ advanced the compost humification. In particular, the integrated use of 0.50% Mn2+ and 5% BC showed higher total organic carbon degradation (20.67%) and humic acid production (81.26 g kg-1) than other treatments. Microbial community analysis showed the integrated use of BC and Mn2+ regulated the diversity and community structure of organic matter-mineralizing microbes by maintaining the relative abundance of bacteria Firmicutes (54.62%) and Proteobacteria (38.05%) at high levels during the thermophilic period and boosting those of the fungi of Ascomycota (58.91%) and Actinobacteria (15.60%) during the maturity period of composting. This study illustrated the potential and biological mechanisms of integrating BC and Mn2+ as additives in compost humification.
Collapse
Affiliation(s)
- Xinyu Zhao
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Kaili Xu
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Jingwen Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Ziqi Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Ruokun Pan
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Quan Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Songling Li
- Qinghai Academy of Agricultural and Forestry Sciences, Qinghai University, Qinghai 810016, PR China
| | - Sunil Kumar
- Solid & Hazardous Waste Management Division, National Environmental Engineering Research Institute (Council of Scientific & Industrial Research-India) Nehru Marg, Nagpur 440020, India
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Ronghua Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
42
|
Zhou X, Li J, Zhang J, Deng F, Chen Y, Zhou P, Li D. Bioaugmentation mechanism on humic acid formation during composting of food waste. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 830:154783. [PMID: 35339549 DOI: 10.1016/j.scitotenv.2022.154783] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/13/2022] [Accepted: 03/19/2022] [Indexed: 06/14/2023]
Abstract
In this study, microbes were added to food waste compost in order to investigate the bioaugmentation mechanism of Humic acid (HA) formation. Thermogravimetric analysis, structural equation model, Fourier transform infrared spectroscopy and statistical analysis were utilized to explain the bioaugmentation mechanism. The results showed that bioaugmentation increased humification rate and degree. Bioaugmentation not only promoted the formation of aromatic structures and CC bonds but also brought different change orders of functional groups in HA. The HA obtained in bioaugmentation group (BA, 7.51 g/kg) was significantly higher compared to the control group (CK, 2.37 g/kg). Similarly, the HA/FA of BA (1.90) was also higher than that of CK (0.62), and peaked at 2.34 on day 40. The polyphenol humification pathway played a major role regardless of the addition of inoculant. However, the exogenous microbes promoted protein and carbohydrate degradation in the initial stage, and the abundance of precursors (amino acids and reducing sugars) enhanced both Maillard and polyphenol humification pathways. When polyphenol was insufficient in later stage, bioaugmentation mainly embodied in the strengthening of Maillard humification pathway. This finding benefited the practice of directional humification process of food waste composting.
Collapse
Affiliation(s)
- Xiaolu Zhou
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiabao Li
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Jie Zhang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Fang Deng
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Yichao Chen
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Pan Zhou
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Dong Li
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
43
|
Wei Z, Ahmed Mohamed T, Zhao L, Zhu Z, Zhao Y, Wu J. Microhabitat drive microbial anabolism to promote carbon sequestration during composting. BIORESOURCE TECHNOLOGY 2022; 346:126577. [PMID: 34923079 DOI: 10.1016/j.biortech.2021.126577] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/10/2021] [Accepted: 12/11/2021] [Indexed: 06/14/2023]
Abstract
Transforming organic waste into stable carbon by composting is an eco-friendly way. However, the complex environment, huge microbial community and complicated metabolic of composting have limited the directional transformation of organic carbon, which is also not conducive to the fixation of organic carbon. Therefore, this review is based on the formation of humus, a stable by-product of composting, to expound how to promote carbon fixation by increasing the yield of humus. Firstly, we have clarified the transformation regularity of organic matter during composting. Meanwhile, the microhabitat factors affecting microbial catabolism and anabolism were deeply analyzed, in order to provide a theoretical basis for the micro habitat regulation of directional transformation of organic matter during composting. Given that, a method to adjust the directional humification and stabilization of organic carbon has been proposed. Hoping the rapid reduction and efficient stabilization of organic waste can be realized according to this method.
Collapse
Affiliation(s)
- Zimin Wei
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Taha Ahmed Mohamed
- College of Life Science, Northeast Agricultural University, Harbin 150030, China; Soil, Water and Environment Research Institute, Agricultural Research Center, Giza, Egypt
| | - Li Zhao
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Zechen Zhu
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Yue Zhao
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Junqiu Wu
- College of Life Science, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
44
|
Wang B, Wang Y, Wei Y, Chen W, Ding G, Zhan Y, Liu Y, Xu T, Xiao J, Li J. Impact of inoculation and turning for full-scale composting on core bacterial community and their co-occurrence compared by network analysis. BIORESOURCE TECHNOLOGY 2022; 345:126417. [PMID: 34838979 DOI: 10.1016/j.biortech.2021.126417] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/19/2021] [Accepted: 11/20/2021] [Indexed: 06/13/2023]
Abstract
Window composting with inoculation or frequent turning is a superior way to improve traditional composting efficiency. However, the relationship between the innocent treatment in composting with inoculation or turning and microbial dynamics is unclear. Here, the impact of inoculation and turning for full scale composting on core bacterial community and their co-occurrence network as well as harmless level were compared by network analysis. Results showed that composts with both inoculation and turning had 46% increase of total organic carbon degradation compared to traditional composting and decreased the abundance of potential pathogens. The relative abundance of thermophilic bacteria and Galbibacter, Methylocaldum, Steroidobacter, etc. increased during composting with turning and inoculation. Luteimonas, Sphaerobacter, Turicibacter and Flavobacterium as core bacteria had significant difference between control and composting with enhanced innocent treatment efficiency. Network analysis suggested that turning increased the number of indigenous core bacteria and inoculation enhanced the interaction among key bacterial network.
Collapse
Affiliation(s)
- Bo Wang
- College of Resources and Environmental Sciences, China Agricultural University, Yuanmingyuan West Road No.2, Haidian District, 100193 Beijing, PR China
| | - Yue Wang
- College of Resources and Environmental Sciences, China Agricultural University, Yuanmingyuan West Road No.2, Haidian District, 100193 Beijing, PR China
| | - Yuquan Wei
- College of Resources and Environmental Sciences, China Agricultural University, Yuanmingyuan West Road No.2, Haidian District, 100193 Beijing, PR China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District 215128, Jiangsu Province, PR China
| | - Wenjie Chen
- College of Resources and Environmental Sciences, China Agricultural University, Yuanmingyuan West Road No.2, Haidian District, 100193 Beijing, PR China
| | - Guochun Ding
- College of Resources and Environmental Sciences, China Agricultural University, Yuanmingyuan West Road No.2, Haidian District, 100193 Beijing, PR China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District 215128, Jiangsu Province, PR China
| | - Yabin Zhan
- College of Resources and Environmental Sciences, China Agricultural University, Yuanmingyuan West Road No.2, Haidian District, 100193 Beijing, PR China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District 215128, Jiangsu Province, PR China
| | - Yongdi Liu
- Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District 215128, Jiangsu Province, PR China
| | - Ting Xu
- College of Resources and Environmental Sciences, China Agricultural University, Yuanmingyuan West Road No.2, Haidian District, 100193 Beijing, PR China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District 215128, Jiangsu Province, PR China
| | - Jianjun Xiao
- Service Center for Rural Revitalization (Pingyuan County), 253100 Shandong Province, PR China
| | - Ji Li
- College of Resources and Environmental Sciences, China Agricultural University, Yuanmingyuan West Road No.2, Haidian District, 100193 Beijing, PR China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District 215128, Jiangsu Province, PR China.
| |
Collapse
|
45
|
Ma H, Beadham I, Ruan W, Zhang C, Deng Y. Enhancing rice straw compost with an amino acid-derived ionic liquid as additive. BIORESOURCE TECHNOLOGY 2022; 345:126387. [PMID: 34838960 DOI: 10.1016/j.biortech.2021.126387] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 06/13/2023]
Abstract
To improve the quality of lignocellulose compost, the effect of a potential new-generation additive-amino acid-derived ionic liquid-on a compost pile comprising 50% rice straw was studied preliminarily. The addition of 1% 1-carboxymethanaminium chloride (glycine hydrochloride [Gly][Cl]) caused observably positive changes in the physical, chemical, and microbiological properties of the compost. After 30 days of composting, the humus and total nitrogen concentrations were 130.85 and 28.8 g/kg, showing an increase of 93.28% and 67.44%, respectively, compared with the concentrations in the beginning of composting; these concentrations were 76.97% and 41.69%, respectively, for the control group (without [Gly][Cl]). Thus, amino acid-derived ionic liquids can be promising additives for enhancing the quality of composts for which straw is used as the primary component.
Collapse
Affiliation(s)
- Huanhuan Ma
- School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Wuxi 214122, China
| | - Ian Beadham
- School of Pharmacy and Chemistry, Kingston University, Kingston Upon Thames KT1 2EE, UK
| | - Wenquan Ruan
- School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Wuxi 214122, China
| | - Changbo Zhang
- Agro-environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Yun Deng
- School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Wuxi 214122, China.
| |
Collapse
|
46
|
Zhou Y, Sun Y, Liu J, Ren X, Zhang Z, Wang Q. Effects of microplastics on humification and fungal community during cow manure composting. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 803:150029. [PMID: 34525714 DOI: 10.1016/j.scitotenv.2021.150029] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 08/08/2021] [Accepted: 08/26/2021] [Indexed: 06/13/2023]
Abstract
The effect of microplastics (MPs) on the biological treatment of organic waste has been extensively studied, but little is known about the influence of different MPs on composting humification and the fungal community. In this study, PE, PVC, and PHA MPs were individually mixed with cow dung and sawdust and then composted. The results showed that different MPs had various influences on humification, and the humic acid to fulvic acid ratio of all MP-added treatments (0.44-0.83) was lower than that of the control (0.91). During the composting process, Ascomycota (26.32-89.14%) and Basidiomycota (0.47-4.78%) are the dominant phyla in all treatments and all microplastics decreased the diversity and richness of the fungal community at the thermophilic stage of composting. Exposure to MPs had an obvious effect on the fungal community at the genus level, and the addition of PHA and PE MPs increased the relative abundance of phytopathogenic fungi. LEfSe and network analysis indicated that MPs reduced the number of biomarkers and led to a simpler and more unstable fungal community structure compared to the control. This study has important implications for assessing microplastic pollution and organic waste disposal.
Collapse
Affiliation(s)
- Yanting Zhou
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Yue Sun
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Jili Liu
- College of Ecology and Environment, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Xiuna Ren
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Quan Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China; Key Laboratory of Plant Nutrition and the Agrienvironment in Northwest China, Ministry of Agriculture, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
47
|
Xu Z, Li R, Wu S, He Q, Ling Z, Liu T, Wang Q, Zhang Z, Quan F. Cattle manure compost humification process by inoculation ammonia-oxidizing bacteria. BIORESOURCE TECHNOLOGY 2022; 344:126314. [PMID: 34822983 DOI: 10.1016/j.biortech.2021.126314] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/03/2021] [Accepted: 11/08/2021] [Indexed: 06/13/2023]
Abstract
The effectiveness of newly isolated ammonia-oxidizing bacteria (AOBs; T-AOB-2, M-AOB-4 and MT-AOB-2-4) in promoting organic matter degradation and humification of cattle manure compost was explored. The results show that, compared with the control, the inoculation of AOBs (5%, v/w) promoted the humification process, particularly in the MT-AOB-2-4, which showed the lowest total organic carbon (19.13%) and dissolved organic carbon (2.61%), whereby humic substances (CEX) and humic acid (CHA) increased to 89.84 g/kg and 85.20 g/kg, and fulvic acid (CFA) decreased to 4.63 g/kg. The high-throughput sequencing and quantitative PCR showed that the abundance of Bacillaceae, amoA and nirS had a significant correlation with humification factors. Among the treatments, the inoculation of MT-AOB-2-4 provided the driving force for the composting process by enhancing the bacterial activity and had the most significant effect on the formation of humic substances and the efficiency of organic matter decomposition.
Collapse
Affiliation(s)
- Zhiming Xu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Ronghua Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Shenghui Wu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Qifu He
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Zimeng Ling
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Tao Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Quan Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Fusheng Quan
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China.
| |
Collapse
|
48
|
Zhou W, Chen X, Wang Y, Tuersun N, Ismail M, Cheng C, Li Z, Song Q, Wang Y, Ma C. Anaerobic co-digestion of textile dyeing sludge: Digestion efficiency and heavy metal stability. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 801:149722. [PMID: 34425439 DOI: 10.1016/j.scitotenv.2021.149722] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/13/2021] [Accepted: 08/13/2021] [Indexed: 05/21/2023]
Abstract
Anaerobic co-digestion (AcoD) has become an important mean for the stabilization and recycling of textile dyeing sludge (TDS). Using the soybean okara byproduct (SOB) as a co-digestion substrate, the effects on AcoD performance and heavy metal stability were studied. The results indicated that the optimal mixing ratio was 1:1 (calculated by total sloid). Under this condition, the SCOD removal efficiency was 64% (that of TDS alone and SOB alone were 47% and 48%, respectively) and the cumulative methane production field was 503 L CH4/kg VS (that of TDS alone and SOB alone were 435 L CH4/kg VS and 408 L CH4/kg VS, respectively). At the same time, the addition of SOB could also enhance the stability of heavy metals (Zn, Cu, Cr and Ni) in TDS. Remarkably, that could increase the steady state content nickel from 47.98% to 57.21%, while anaerobic digestion of TDS caused no increase but a decrease (only 42.13%). According to the risk assessment code analyses, the AcoD of TDS by SOB can significantly reduce the ecotoxicity risk caused by Ni, Zn and Cr.
Collapse
Affiliation(s)
- Weizhu Zhou
- College of Environmental Science and Engineering, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University, Shanghai 201620, China
| | - Xiaoguang Chen
- College of Environmental Science and Engineering, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University, Shanghai 201620, China,.
| | - Yu Wang
- College of Environmental Science and Engineering, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University, Shanghai 201620, China
| | - Nurmangul Tuersun
- Xinjiang Biomass Solid Waste Resources Technology and Engineering Center, Kashgar University, Kashgar 844006, China
| | - Muhammad Ismail
- College of Environmental Science and Engineering, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University, Shanghai 201620, China
| | - Chen Cheng
- College of Environmental Science and Engineering, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University, Shanghai 201620, China
| | - Zenan Li
- College of Environmental Science and Engineering, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University, Shanghai 201620, China
| | - Qi Song
- College of Environmental Science and Engineering, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University, Shanghai 201620, China
| | - Yiqi Wang
- College of Environmental Science and Engineering, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University, Shanghai 201620, China
| | - Chengyu Ma
- College of Environmental Science and Engineering, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University, Shanghai 201620, China,; Xinjiang Biomass Solid Waste Resources Technology and Engineering Center, Kashgar University, Kashgar 844006, China
| |
Collapse
|
49
|
Zhu N, Zhu Y, Kan Z, Li B, Cao Y, Jin H. Effects of two-stage microbial inoculation on organic carbon turnover and fungal community succession during co-composting of cattle manure and rice straw. BIORESOURCE TECHNOLOGY 2021; 341:125842. [PMID: 34469819 DOI: 10.1016/j.biortech.2021.125842] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/18/2021] [Accepted: 08/21/2021] [Indexed: 06/13/2023]
Abstract
This study explored the effects of single-stage inoculation (SSI) versus two-stage inoculation (TSI) on organic carbon components, product quality and fungal community during co-composting of cattle manure and rice straw. Both inoculation methods accelerated the temperature increase and elevated the composting temperature. TSI resulted in a second fermentation stage and extended the thermophilic stage from 22 to 29 days. Compared with SSI, TSI promoted the degradation degree of cellulose, hemicellulose and lignin by 25.9%, 16.5% and 47.4%, and increased the content of total nutrients and humus carbon by 5.9% and 10.5% in final products, respectively. TSI significantly increased the relative abundance of Aspergillus, Trichoderma, Neurospora, Mycothermus, Malbranchea and Gloeophyllum in the second fermentation stage. Spearman correlation analysis indicated that Aspergillus, Neurospora, Trichoderma and Gloeophyllum were the key fungi for lignocellulose degradation and humification. Redundancy analysis showed that temperature was the major environmental factor affecting fungal community succession in TSI.
Collapse
Affiliation(s)
- Ning Zhu
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, PR China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing 210095, PR China
| | - Yanyun Zhu
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, PR China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing 210095, PR China
| | - Zexin Kan
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Bingqing Li
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yaoyao Cao
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, PR China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing 210095, PR China
| | - Hongmei Jin
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, PR China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing 210095, PR China.
| |
Collapse
|
50
|
Avdalović J, Miletić S, Božović O, Šolević Knudsen T, Stanković D, Lugonja N, Spasić S, Joksimović K, Dragičević I, Vrvić MM. Study on the assessment of humification processes during biodegradation of heavy residual fuel oil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 797:149099. [PMID: 34303984 DOI: 10.1016/j.scitotenv.2021.149099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 07/09/2021] [Accepted: 07/13/2021] [Indexed: 06/13/2023]
Abstract
The aim of this study was to investigate the creation of humic substances during biodegradation of heavy residual fuel oil, because there are indications that substances similar to humic substances are generated during biodegradation of polycyclic aromatic hydrocarbons. In the study, which lasted for 110 days, biodegradation of heavy residual fuel oil was carried out in a layer of artificial soil substrate. The initial concentration of the total petroleum hydrocarbon in the prepared artificial soil substrate (biopile) was 23.1 g kg-1 dry weight (d.w.). At the end of the process, the total petroleum hydrocarbons were reduced to 8.1 g kg-1 d.w. in the inoculated biopile, while the content of humic acids increased during bioremediation from 3.15 g kg-1 d.w. to 4.95 g kg-1 d.w. The humic acids extracted from biopile during the biodegradation process were characterized by various chemical techniques (elemental analysis, spectrofluorimetric analysis, electrochemical measurements, and size exclusion chromatography). The results showed that levels of C, H and the H/C ratio decreased as the biodegradation process progressed. This indicated that humic acids aromatization process took place and this was confirmed by the spectrofluorimetric analysis. The increase of oxygen percentage and the O/C ratio in the humic acids after the biodegradation treatment indicated an increase in functional oxygen groups. Additional analyses of humic acids from the inoculated biopile showed that they were transformed during the bioremediation process. They had greater redox and buffering capacities and a larger portion of the fractions had high molecular mass. Also, the humification parameters (the CHAs/CFAs ratio and CHAs/Corg ratio) increased during the biodegradation. This is one of the few studies that describes the generation of humic substances during the biodegradation of oil compounds.
Collapse
Affiliation(s)
- Jelena Avdalović
- University of Belgrade-Institute of Chemistry, Technology and Metallurgy, Department of Chemistry, Njegoševa 12, 11000 Belgrade, Serbia.
| | - Srđan Miletić
- University of Belgrade-Institute of Chemistry, Technology and Metallurgy, Department of Chemistry, Njegoševa 12, 11000 Belgrade, Serbia
| | - Olga Božović
- University of Zurich, Institute of Physical Chemistry, 8057 Zürich, Winterthurerstrasse 190, Switzerland
| | - Tatjana Šolević Knudsen
- University of Belgrade-Institute of Chemistry, Technology and Metallurgy, Department of Chemistry, Njegoševa 12, 11000 Belgrade, Serbia
| | - Dalibor Stanković
- University of Belgrade, Faculty of Chemistry, Studentski trg 12-16, 11000 Belgrade, Serbia; University of Belgrade, Vinča Institute of Nuclear Sciences, Mike Petrovića Alasa 12-14, 11351 Vinča, Belgrade, Serbia
| | - Nikoleta Lugonja
- University of Belgrade-Institute of Chemistry, Technology and Metallurgy, Department of Chemistry, Njegoševa 12, 11000 Belgrade, Serbia
| | - Snežana Spasić
- University of Belgrade-Institute of Chemistry, Technology and Metallurgy, Department of Chemistry, Njegoševa 12, 11000 Belgrade, Serbia
| | - Kristina Joksimović
- University of Belgrade-Institute of Chemistry, Technology and Metallurgy, Department of Chemistry, Njegoševa 12, 11000 Belgrade, Serbia
| | - Igor Dragičević
- Public Health Institute, Jovana Cvijića 1, 15000 Šabac, Serbia
| | | |
Collapse
|