1
|
Chen H, Tang M, He L, Xiao X, Yang F, He Q, Sun S, Gao Y, Zhou L, Li Y, Sun J, Zhang W. Exploring the impact of fulvic acid on electrochemical hydrogen-driven autotrophic denitrification system: Performance, microbial characteristics and mechanism. BIORESOURCE TECHNOLOGY 2024; 412:131432. [PMID: 39236909 DOI: 10.1016/j.biortech.2024.131432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/02/2024] [Accepted: 09/02/2024] [Indexed: 09/07/2024]
Abstract
In this study, the effect of modulating fulvic acid (FA) concentrations (0, 25 and 50 mg/L) on nitrogen removal in a bioelectrochemical hydrogen autotrophic denitrification system (BHDS) was investigated. Results showed that FA increased the nitrate (NO3--N) removal rate of the BHDSs from 37.8 to 46.2 and 45.2 mg N/(L·d) with a current intensity of 40 mA. The metagenomic analysis revealed that R2 (25 mg/L) was predominantly populated by autotrophic denitrifying microorganisms, which enhanced denitrification performance by facilitating electron transfer. Conversely, R3 (50 mg/L) exhibited an increase in genes related to the heterotrophic process, which improved the denitrification performance through the collaborative action of both autotrophic and heterotrophic denitrification pathways. Besides, the study also identified a potential for nitrogen removal in Serpentinimonas, which have been rarely studied. The interesting set of findings provide valuable reference for optimizing BHDS for nitrogen removal and promoting specific denitrifying genera within the system.
Collapse
Affiliation(s)
- Haolin Chen
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology/Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha 410114, China
| | - Meiyi Tang
- China West Construction Hunan Group Co. Ltd., Changsha 410114, China
| | - Liang He
- Hunan Hengyong Expressway Construction and Development Co. Ltd., Hengyang 421600, China
| | - Xinxin Xiao
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology/Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha 410114, China
| | - Fei Yang
- Hunan Hengyong Expressway Construction and Development Co. Ltd., Hengyang 421600, China
| | - Qiulai He
- Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Department of Water Engineering and Science, College of Civil Engineering, Hunan University, Changsha, 410082, China
| | - Shiquan Sun
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology/Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha 410114, China
| | - Yang Gao
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology/Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha 410114, China
| | - Lean Zhou
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology/Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha 410114, China
| | - Yifu Li
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology/Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha 410114, China
| | - Julong Sun
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology/Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha 410114, China
| | - Wei Zhang
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology/Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha 410114, China.
| |
Collapse
|
2
|
Nguyen TN, Takaoka M, Kusakabe T. Exploring relationships among landfill leachate parameters through multivariate analysis for monitoring purposes. WASTE MANAGEMENT & RESEARCH : THE JOURNAL OF THE INTERNATIONAL SOLID WASTES AND PUBLIC CLEANSING ASSOCIATION, ISWA 2024:734242X241265062. [PMID: 39068524 DOI: 10.1177/0734242x241265062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Elucidating the properties of landfill leachate and the relationships among leachate parameters is crucial for efforts to determine appropriate landfill leachate monitoring activity and management strategies. This study investigated the physical, chemical and optical parameters of leachate in an old Japanese landfill over a 13-month period. The parameters were explored based on their relationships with the maximum fluorescence (Fmax) of three components (microbial humic-like C1, terrestrial humic-like C2 and protein-like C3) deconvoluted from excitation-emission matrix fluorescence spectroscopy coupled with parallel factor analysis. Dissolved organic carbon (DOC), chemical oxygen demand (COD), Cl- and SO42- concentrations and pH ranged from 2.6 to 38.2 mg C L-1, 9 to 324 mg L-1, 14 to 972 mg L-1, 26 to 1554 mg L-1 and 6.9 to 11.6, respectively. Linear regression analysis suggested that the Fmax values of C2 and C3 represented DOC, whereas the Fmax value of C2 alone could serve as a COD indicator. Hierarchical cluster analysis and principal component analysis were employed to successfully categorise leachate samples based on their locations. Higher dissolved organic matter levels were observed in leachate within the old disposal area, whereas elevated levels of inorganic components such as SO42- and Cl- were found in leachate collected from the extended disposal area and at a treatment facility. Statistical analysis provides crucial tools for assessing and managing various areas of a landfill, supporting targeted and effective waste management strategies.
Collapse
Affiliation(s)
- Thi Ngoc Nguyen
- Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Masaki Takaoka
- Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Taketoshi Kusakabe
- Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, Kyoto, Japan
- Department of Environmental Engineering, Faculty of Engineering, Osaka Institute of Technology, Osaka, Japan
| |
Collapse
|
3
|
Nguyen TN, Kusakabe T, Takaoka M. Characterization and spatiotemporal variations of fluorescent dissolved organic matter in leachate from old landfill-derived incineration residues and incombustible waste. PLoS One 2024; 19:e0304188. [PMID: 38924014 PMCID: PMC11207158 DOI: 10.1371/journal.pone.0304188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 05/07/2024] [Indexed: 06/28/2024] Open
Abstract
Dissolved organic matter (DOM) influences the bioavailability and behavior of trace metals and other pollutants in landfill leachate. This research characterized fluorescent dissolved organic matter (FDOM) in leachate from an old landfill in Japan during a 13-month investigation. We employed excitation-emission matrix (EEM) fluorescence spectroscopy with parallel factor analysis (PARAFAC) to deconvolute the FDOM complex mixture into three fluorophores: microbial humic-like (C1), terrestrial humic-like (C2), and tryptophan-like fluorophores (C3). These FDOM components were compared with findings from other studies of leachate in landfills with different waste compositions. The correlations among EEM-PARAFAC components, dissolved organic carbon (DOC) concentration, and ultraviolet-visible and fluorescence indices were evaluated. The FDOM in leachate varied spatially among old and extended leachate collected in the landfill and leachate treatment facility. The FDOM changed temporally and decreased markedly in August 2019, November 2019, and April 2020. The strong positive correlation between HIX and %C2 (r = 0.87, ρ = 0.91, p < 0.001)) implies that HIX may indicate the relative contribution of terrestrial humic-like components in landfill leachate. The Fmax of C1, C2, and C3 and the DOC concentration showed strong correlations among each other (r > 0.72, ρ > 0.78, p < 0.001) and positive correlations with leachate level (r > 0.41, p < 0.001), suggesting the importance of hydrological effects and leachate pump operation on FDOM.
Collapse
Affiliation(s)
- Thi Ngoc Nguyen
- Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, C-cluster, Katsura Campus, Kyoto, Japan
| | - Taketoshi Kusakabe
- Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, C-cluster, Katsura Campus, Kyoto, Japan
| | - Masaki Takaoka
- Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, C-cluster, Katsura Campus, Kyoto, Japan
| |
Collapse
|
4
|
Ishaq A, Said MIM, Azman SB, Dandajeh AA, Lemar GS, Jagun ZT. Utilization of microbial fuel cells as a dual approach for landfill leachate treatment and power production: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:41683-41733. [PMID: 38012494 PMCID: PMC11219420 DOI: 10.1007/s11356-023-30841-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 10/26/2023] [Indexed: 11/29/2023]
Abstract
Landfill leachate, which is a complicated organic sewage water, presents substantial dangers to human health and the environment if not properly handled. Electrochemical technology has arisen as a promising strategy for effectively mitigating contaminants in landfill leachate. In this comprehensive review, we explore various theoretical and practical aspects of methods for treating landfill leachate. This exploration includes examining their performance, mechanisms, applications, associated challenges, existing issues, and potential strategies for enhancement, particularly in terms of cost-effectiveness. In addition, this critique provides a comparative investigation between these treatment approaches and the utilization of diverse kinds of microbial fuel cells (MFCs) in terms of their effectiveness in treating landfill leachate and generating power. The examination of these technologies also extends to their use in diverse global contexts, providing insights into operational parameters and regional variations. This extensive assessment serves the primary goal of assisting researchers in understanding the optimal methods for treating landfill leachate and comparing them to different types of MFCs. It offers a valuable resource for the large-scale design and implementation of processes that ensure both the safe treatment of landfill leachate and the generation of electricity. The review not only provides an overview of the current state of landfill leachate treatment but also identifies key challenges and sets the stage for future research directions, ultimately contributing to more sustainable and effective solutions in the management of this critical environmental issue.
Collapse
Affiliation(s)
- Aliyu Ishaq
- Department of Water and Environmental Engineering, School of Civil Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81300, Johor Bahru, Malaysia
- Department of Water Resources and Environmental Engineering, Ahmadu Bello University, Zaria, Kaduna, Nigeria
| | - Mohd Ismid Mohd Said
- Department of Water and Environmental Engineering, School of Civil Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81300, Johor Bahru, Malaysia
| | - Shamila Binti Azman
- Department of Water and Environmental Engineering, School of Civil Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81300, Johor Bahru, Malaysia
| | - Aliyu Adamu Dandajeh
- Department of Water Resources and Environmental Engineering, Ahmadu Bello University, Zaria, Kaduna, Nigeria
| | - Gul Sanga Lemar
- Department of Biology, Faculty of Science, Kabul University, Jamal Mina, Kabul, Afghanistan
- Faculty of Biology, Department of Botany, Kabul University, Kart-e-Char, Kabul, Afghanistan
| | - Zainab Toyin Jagun
- Department of Real Estate, School of Built Environment Engineering and Computing, Leeds Beckett University, City Campus, Leeds, UK.
| |
Collapse
|
5
|
Aftab B, Yin G, Maqbool T, Hur J, Wang J. Enhanced landfill leachate treatment performance by adsorption-assisted membrane distillation. WATER RESEARCH 2024; 250:121036. [PMID: 38134858 DOI: 10.1016/j.watres.2023.121036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 11/30/2023] [Accepted: 12/18/2023] [Indexed: 12/24/2023]
Abstract
Membrane fouling and high-strength membrane concentrate production are two limitations of membrane distillation (MD) for landfill leachate treatment. In this study, activated carbon- and biochar-based adsorption processes were integrated into a conventional MD system to overcome these limitations. The organic matter fractionations of the leachate were thoroughly investigated during the treatment. Membrane-reversible and irreversible foulants differed remarkably from the inlet leachate in the non-assisted MD system. Specifically, reversible foulants were characterized by a high abundance of humic-like fluorescent components, high-molecular-weight humic-size constituents, peptides, and unsaturated compounds. In contrast, irreversible foulants were enriched with fulvic-like fluorescent components, low-molecular-weight neutrals, unsaturated compounds, and polyphenols. The adsorption-based pre-treatment effectively removed foulant precursors from landfill leachate, with a relatively higher (20%) adsorption performance for specific biochar used in this study than for activated carbon. Compared with the non-assisted MD system, the biochar-assisted MD system showed improved performance, achieving 40% overall membrane flux recovery, 42% higher filtration fluxes, and 53% lower concentrate production. In addition, a 15% higher removal of irreversible foulants was observed as compared to the reversible foulants, which can potentially increase the membrane lifespan. This study demonstrates the effectiveness of an adsorption-assisted MD system supported by increased filtration, membrane fouling alleviation, and low-strength leachate concentrate generation.
Collapse
Affiliation(s)
- Bilal Aftab
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, No. 1088, Xueyuan Rd., Nanshan District, Shenzhen, Guangdong 518055, China
| | - Gege Yin
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, No. 1088, Xueyuan Rd., Nanshan District, Shenzhen, Guangdong 518055, China
| | - Tahir Maqbool
- Department of Civil, Construction and Environmental Engineering, University of Alabama, Tuscaloosa, AL 35487, USA
| | - Jin Hur
- Department of Environment and Energy, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul 05006, South Korea
| | - Junjian Wang
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, No. 1088, Xueyuan Rd., Nanshan District, Shenzhen, Guangdong 518055, China.
| |
Collapse
|
6
|
Bai X, Mu S, Song B, Xie M. Combination of coagulation, Fe 0/H 2O 2 and ultra-high lime aluminium processes for the treatment of residual pollutants in biologically-treated landfill leachate. ENVIRONMENTAL TECHNOLOGY 2024; 45:667-680. [PMID: 36039399 DOI: 10.1080/09593330.2022.2119608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 08/24/2022] [Indexed: 06/15/2023]
Abstract
Refractory substances (humus) and salts (chloride (Cl-) and sulphate (SO42-) ions) remain in the biotreated landfill leachate treatment, and it is necessary to carry out further treatments by a suitable method before discharge. In this study, the effect and operational mechanism of a combination of the coagulation Fe0/H2O2 and ultra-high lime aluminium (UHLA) processes for the treatment of refractory organic substances and salts in the leachate effluent of a semi-aerobic aged refuse biofilter (SAARB) were investigated. The results showed that polyferric sulphate is a relatively efficient coagulant comparing to FeCl3, Al2(SO)4, and polyaluminium chloride. The Fe0/H2O2 process further removed refractory organics from wastewater, achieving 49.8% of total organic carbon removed. Further treatment by the UHLA process was carried. The results demonstrated that the amount of precipitant, reaction duration, and temperature had a significant impact on the Cl- and SO42- removals. After three treatments, the cumulative SO42- and Cl- removal efficiencies were 98% and 80%, respectively. The SO42- and Cl- were removed in the form of precipitates such as UHLA, specific components of which included calcium alumina, Fremy's salt of calcium, aluminium chloride, and calcium hydroxide. Overall, the UV254, CN, Cl-, and SO42- removal efficiencies from the SAARB effluent were 94.08%, 98.73%, 79.96%, and 98.44%, respectively, for the combined coagulation Fe0/H2O2 and UHLA processes. Therefore, the combined processes could effectively remove residual pollutants in the biologically-treated landfill leachate, and the study provides a useful reference for the removal of refractory organic matter and salts in landfill leachate.HighlightsCoagulation-Fe0/H2O2-UHLA process is effective to SAARB effluent treatment.Refractory organics are substantially degraded by the coagulation-Fenton-like stage.Both Cl- and SO42- in SAARB effluent are greatly removed by UHLA process.
Collapse
Affiliation(s)
- Xue Bai
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, People's Republic of China
| | - Shiqi Mu
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, People's Republic of China
| | - Bowen Song
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, People's Republic of China
| | - Mingde Xie
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, People's Republic of China
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, People's Republic of China
| |
Collapse
|
7
|
Liu L, Du L, Lu S, Yang B, Zhao X, Wu D, Fei X, He H, Wang D. Molecular insight into DOM fate using EEM-PARAFAC and FT-ICR MS and concomitant heavy metal behaviors in biologically treated landfill leachate during coagulation: Al speciation dependence. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132374. [PMID: 37683350 DOI: 10.1016/j.jhazmat.2023.132374] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/27/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023]
Abstract
Various combined processes with pre-coagulation have been developed for biologically treated landfill leachate, but the microscopic-level processes occurring during coagulation remain largely unknown. Herein, dissolved organic matter (DOM) fate using fluorescence excitation emission matrix spectroscopy combined with parallel factor analysis and electrospray ionization coupled Fourier transform-ion cyclotron resonance mass spectrometry and concomitant heavy metal (HM) behaviors were explored at the molecular level. In addition, AlCl3 and two polyaluminum chloride (PACl) species (dominated by [AlO4Al12(OH)24(H2O)12]7+ and [(AlO4)2Al28(OH)56(H2O)26]18+, respectively) were used. The results show that all coagulants are efficient at removing DOM. PACl was found to be advantageous over AlCl3 in overcoming pH fluctuation, which is ascribed to the different dominant mechanisms, namely, entrapment and sweep flocculation for AlCl3 and charge neutralization for PACl. Consequently, PACl was more effective at removing humic substances, usually high-molecular-weight, oxygen-rich and unsaturated, than protein substances. For HM removal, PACl was likewise better and more stable, where As, Cu, Ni, Co and Hg were removed predominantly via adsorption, and Cr, Zn, Pb, Cd and Mn were removed via coprecipitation. Correlation analysis showed that humic substances tended to complex with HMs and be removed synergistically due to the ubiquitous occurrences of aromatic structures and oxygen-containing functional groups.
Collapse
Affiliation(s)
- Libing Liu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Lei Du
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Sen Lu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Shenzhen, Guangdong 518055, China
| | - Bo Yang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Xu Zhao
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Deli Wu
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science & Engineering, Tongji University, Shanghai 200092, China
| | - Xunchang Fei
- School of Civil and Environmental Engineering, Nanyang Technological University, 639798, Singapore
| | - Hongping He
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China.
| | - Dongsheng Wang
- College of Environmental and Resource Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| |
Collapse
|
8
|
Siddique MS, Lu H, Xiong X, Fareed H, Graham N, Yu W. Exploring impacts of water-extractable organic matter on pre-ozonation followed by nanofiltration process: Insights from pH variations on DBPs formation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 876:162695. [PMID: 36898544 DOI: 10.1016/j.scitotenv.2023.162695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 03/03/2023] [Accepted: 03/03/2023] [Indexed: 06/18/2023]
Abstract
This study investigated the influence of pH (4-10) on the treatment of water-extractable organic matter (WEOM), and the associated disinfection by-products (DBPs) formation potential (FP), during the pre-ozonation/nanofiltration treatment process. At alkaline pH (9-10), a rapid decline in water flux (> 50 %) and higher membrane rejection was observed, as a consequence of the increased electrostatic repulsion forces between the membrane surface and organic species. Parallel factor analysis (PARAFAC) modeling and size exclusion chromatography (SEC) provides detailed insights into the WEOM compositional behavior at different pH levels. Ozonation at higher pH significantly reduced the apparent molecular weight (MW) of WEOM in the 4000-7000 Da range by transforming the large MW (humic-like) substances into small hydrophilic fractions. Fluorescence components C1 (humic-like) and C2 (fulvic-like) exhibited a predominant increase/decrease in concentration for all pH conditions during pre-ozonation and nanofiltration treatment process, however, the C3 (protein-like) component was found highly associated with the reversible and irreversible membrane foulants. The ratio C1/C2 provided a strong correlation with the formation of total trihalomethanes (THMs) (R2 = 0.9277) and total haloacetic acids (HAAs) (R2 = 0.5796). The formation potential of THMs increased, and HAAs decreased, with the increase of feed water pH. Ozonation markedly reduced the formation of THMs by up to 40 % at higher pH levels, but increased the formation of brominated-HAAs by shifting the formation potential of DBPs towards brominated precursors.
Collapse
Affiliation(s)
- Muhammad Saboor Siddique
- State Key Laboratory of Environmental Aquatic Chemistry, Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, People's Republic of China; University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Hongbo Lu
- Power China Huadong Engineering Corporation Limited, Hangzhou, Zhejiang 311122, People's Republic of China.
| | - Xuejun Xiong
- State Key Laboratory of Environmental Aquatic Chemistry, Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, People's Republic of China
| | - Hasan Fareed
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Nigel Graham
- Department of Civil and Environmental Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK.
| | - Wenzheng Yu
- State Key Laboratory of Environmental Aquatic Chemistry, Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, People's Republic of China.
| |
Collapse
|
9
|
Yang H, Liu Q, Shu X, Yu H, Rong H, Qu F, Liang H. Simultaneous ammonium and water recovery from landfill leachate using an integrated two-stage membrane distillation. WATER RESEARCH 2023; 240:120080. [PMID: 37257292 DOI: 10.1016/j.watres.2023.120080] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/24/2023] [Accepted: 05/12/2023] [Indexed: 06/02/2023]
Abstract
Resources recovery from landfill leachate (LFL) has been attracting growing attention instead of merely purifying the wastewater. An integrated two-stage membrane distillation (ITMD) was proposed to simultaneously purify LFL and recover ammonia in this study. The results showed that organics could be always effectively rejected by the ITMD regardless of varying feed pH, with COD removal higher than 99%. With feed pH increased from 8.64 to 12, the ammonia migration (50-100%) and capture (36-75%) in LFL were considerably enhanced, boosting the separated ammonia enrichment to 1.3-1.7 times due to the improved ammonium diffusion. However, the corresponding membrane flux of the first MD stage decreased from 13.7 to 10.5 L/m2·h. Elevating feed pH caused the deprotonation of NOM and its binding with inorganic ions, constituting a complex fouling layer on the membrane surface in the first MD stage. In contrast, the membrane permeability and fouling of the second MD were not affected by feed pH adjustment because only volatiles passed through the first MD. More importantly, it was estimated that ITMD could obtain high-quality water and recover high-purity ammonium from LFL with relatively low ammonium concentration at an input cost of $ 2-3/m3, which was very competitive with existing techniques. These results demonstrated that the ITMD can be a valuable candidate strategy for simultaneous water purification and nutrient recovery from landfill leachate.
Collapse
Affiliation(s)
- Haiyang Yang
- School of Civil Engineering, Guangzhou University, Guangzhou 510006, China
| | - Qinsen Liu
- School of Civil Engineering, Guangzhou University, Guangzhou 510006, China
| | - Xinying Shu
- School of Civil Engineering, Guangzhou University, Guangzhou 510006, China
| | - Huarong Yu
- School of Civil Engineering, Guangzhou University, Guangzhou 510006, China.
| | - Hongwei Rong
- School of Civil Engineering, Guangzhou University, Guangzhou 510006, China; Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Guangzhou University, Guangzhou 510006, China
| | - Fangshu Qu
- School of Civil Engineering, Guangzhou University, Guangzhou 510006, China; Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Guangzhou University, Guangzhou 510006, China.
| | - Heng Liang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
10
|
Bai X, Yang G. Treatment of refractory organics in biologically treated landfill leachate by a zero valent iron enhanced Peroxone process: Degradation efficiency and mechanism study. WASTE MANAGEMENT & RESEARCH : THE JOURNAL OF THE INTERNATIONAL SOLID WASTES AND PUBLIC CLEANSING ASSOCIATION, ISWA 2023; 41:594-607. [PMID: 36169147 DOI: 10.1177/0734242x221126390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
A zero valent iron (ZVI) enhanced Peroxone process (ZVI/Peroxone) was used to treat biologically treated landfill leachate (BTL). The treatment efficiency of the ZVI/Peroxone process was compared to single (ZVI, O3 and H2O2) and dual (ZVI/H2O2, Fe0/O3 and Peroxone) processes. The results showed that ZVI can greatly enhance the treatment capability of the Peroxone process, and the color number (CN), absorbance at 254 nm (UV254), and total organic carbon (TOC) removal efficiencies were 98.82, 84.30 and 66.38%, respectively. In the ZVI/Peroxone process, higher O3 and ZVI dosages improved organics removal, and H2O2 could promote organics removal within a certain dosage range. However, too much H2O2 decreased treatment efficiency. The best treatment performance by the ZVI/Peroxone process was obtained under acidic conditions. The three-dimensional excitation and emission matrix analysis showed that BTL mainly contained two fluorescent substances, which were fulvic-like substances in the ultraviolet region (Ex/Em = 235-255 nm/410-450 nm) and fulvic-like substances in the visible light region (Ex/Em = 310-360 nm/370-450 nm). Fluorescent substances could be substantially degraded by the ZVI/Peroxone process during the early stages of the reaction. An analysis of ZVI morphology and element valency changes showed that the micro Fe0 particles used in this study remained highly reactive during the process. The ZVI enhanced the homogenous Fenton, heterogeneous Fenton, and coagulation-flocculation effects during the Peroxone process.
Collapse
Affiliation(s)
- Xue Bai
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, China
- Southwest Municipal Engineering Design & Research Institute of China, Chengdu, China
| | - Guangxu Yang
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, China
| |
Collapse
|
11
|
Gu Z, Bao M, He C, Chen W. Transformation of dissolved organic matter in landfill leachate during a membrane bioreactor treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:159066. [PMID: 36174682 DOI: 10.1016/j.scitotenv.2022.159066] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/01/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
In this study, a cutting-edge mass spectrometry (MS) technique, Orbitrap fusion MS with ultrahigh resolution, was used to analyze the molecular composition, chemical properties, formation mechanism, and environmental impact of refractory dissolved organic matter (rDOM) in leachate. The results showed that the bioavailable DOM (bDOM) and rDOM constituents varied substantially during the biological treatment of landfill leachate. Compared with bDOM, the rDOM in leachate had a higher degree of unsaturation, aromaticity, and oxidation, and a larger molecular weight, and contained more organic matter with benzene ring and biphenyl structures. Using high-throughput 16S rRNA sequencing, metagenomics, the Kendrick mass defect (KMD), and a mass difference network (MDiN), it was found that rDOM in leachate is generated through carboxylation (+COO), dehydro-oligomerization (-H2), and chain scission (-CH2) pathways due to the activity of microbes such as Patescibacteria, Chloroflexi, and Proteobacteria. Compared with Suwannee River fulvic acid (SRFA), the rDOM in leachate contained more organics with nitrogen, sulfur, benzene rings, and biphenyls. If the rDOM in leachate enters the environment it will affect the composition of the original organic matter, and its biogeochemical transformation and environmental fate will then need to be monitored and may require special attention.
Collapse
Affiliation(s)
- Zhepei Gu
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 611756, China
| | - Min Bao
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 611756, China
| | - Chen He
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China
| | - Weiming Chen
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 611756, China.
| |
Collapse
|
12
|
Gu Z, Chen W, He C, Li Q. Molecular insights into the transformation of refractory organic matter in landfill leachate nanofiltration concentrates during a flocculation and O 3/H 2O 2 treatment. JOURNAL OF HAZARDOUS MATERIALS 2022; 435:128973. [PMID: 35650737 DOI: 10.1016/j.jhazmat.2022.128973] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 03/23/2022] [Accepted: 04/17/2022] [Indexed: 06/15/2023]
Abstract
During leachate treatment, molecular information regarding the completely removed, partially removed, less-reactive, increased, and produced parts of dissolved organic matter (DOM) remains unknown. This study applied ESI FT-ICR MS to investigate the transformation characteristics of leachate nanofiltration concentrate (NFC) DOM during a combined flocculation-O3/H2O2 process. The NFC contained 5069 compounds in four main classes (CHO, CHON, CHOS, and CHONS compounds). The DOM number decreased to 4489 during flocculation and to 2903 after the O3/H2O2 process. During flocculation, the completely and partially removed DOM was mainly low-oxygen unsaturated and phenolic compounds. Saturated DOM was produced and remained in the flocculated effluent. During the O3/H2O2 process, the completely and partially removed DOM were mainly low-oxygen unsaturated and phenolic compounds that were mainly in a reduced state. Flocculation can remove many (condensed) aromatic compounds, and methylation and hydrogenation reactions occurred during flocculation. In the O3/H2O2 process, dearomatization, demethylation, carboxylation, and carbonylation reactions further achieved the degradation of DOM that was resistant to flocculation. Overall, the combined flocculation-O3/H2O2 process collectively eliminated a broader range of DOM than the single processes could achieve. The results of this study provide an in-depth understanding of DOM transformation in an NFC treatment.
Collapse
Affiliation(s)
- Zhepei Gu
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, 611756, China
| | - Weiming Chen
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, 611756, China
| | - Chen He
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China
| | - Qibin Li
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, 611756, China.
| |
Collapse
|
13
|
Aftab B, Truong HB, Cho J, Hur J. Enhanced performance of a direct contact membrane distillation system via in-situ thermally activated H2O2 oxidation for the treatment of landfill leachate. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
14
|
Xi J, Zhou Z, Yuan Y, Xiao K, Qin Y, Wang K, An Y, Ye J, Wu Z. Enhanced nutrient removal from stormwater runoff by a compact on-site treatment system. CHEMOSPHERE 2022; 290:133314. [PMID: 34919910 DOI: 10.1016/j.chemosphere.2021.133314] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/26/2021] [Accepted: 12/13/2021] [Indexed: 06/14/2023]
Abstract
Efficient and space-saving technologies for on-site treatment of stormwater runoff are required to control water pollution in the urban surface. The intermittent nature of stormwater runoff and extremely limited land available greatly hindered the application of current wastewater treatment technologies, and thus synchronous removal of multiple contaminants (especially for nutrient) efficiently was failed by current processes. In this study, a new compact CFFA treatment system, consisting of coagulation, flocculation, filtration and ammonium ion exchange units, was constructed for on-site treatment of stormwater runoff based on batch test optimization and pilot-scale test verification. The coagulation process effectively aggregated particles and precipitated phosphorus by dosing Al2(SO4)3, while flocculation using anionic polyacrylamide further enlarged particle size for efficient micromesh filtration. The dynamic micromesh filtration obtained turbidity and phosphorus removal efficiencies comparable to 30 min gravity settling with greatly smaller footprint. Ion exchange by zeolite showed higher exchange capacity owing to lower initial ammonium nitrogen concentration in the stormwater runoff. The pilot-scale experiments with treatment capacity of 1 L/s showed that the CFFA treatment system achieved synchronous removal of particles (97.2%), nitrogen (79.7%), phosphorus (95.0%) and organic matters (83.3%) efficiently within short hydraulic retention time of 0.35 h, yielding effluent with chemical oxygen demand, suspended solids, total phosphorus and total nitrogen of 38.7, 7.80, 0.22 and 2.80 mg/L, respectively. The CFFA treatment system had the highest pollutant removal loads compared to reported runoff treatment processes in literatures, and was well suited to on-site treatment of stormwater runoff with high space utilization efficiency.
Collapse
Affiliation(s)
- Jiafu Xi
- Shanghai Engineering Research Center of Energy - Saving in Heat Exchange Systems, Shanghai University of Electric Power, Shanghai, 200090, China
| | - Zhen Zhou
- Shanghai Engineering Research Center of Energy - Saving in Heat Exchange Systems, Shanghai University of Electric Power, Shanghai, 200090, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China.
| | - Yao Yuan
- Shanghai Engineering Research Center of Energy - Saving in Heat Exchange Systems, Shanghai University of Electric Power, Shanghai, 200090, China
| | - Kaiqi Xiao
- Shanghai Engineering Research Center of Energy - Saving in Heat Exchange Systems, Shanghai University of Electric Power, Shanghai, 200090, China
| | - Yangjie Qin
- Shanghai Engineering Research Center of Energy - Saving in Heat Exchange Systems, Shanghai University of Electric Power, Shanghai, 200090, China
| | - Kaichong Wang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Ying An
- Shanghai Engineering Research Center of Energy - Saving in Heat Exchange Systems, Shanghai University of Electric Power, Shanghai, 200090, China
| | - Jianfeng Ye
- Shanghai Academy of Environmental Sciences, Shanghai, 200233, China
| | - Zhichao Wu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| |
Collapse
|
15
|
Yang X, De Buyck PJ, Zhang R, Manhaeghe D, Wang H, Chen L, Zhao Y, Demeestere K, Van Hulle SWH. Enhanced removal of refractory humic- and fulvic-like organics from biotreated landfill leachate by ozonation in packed bubble columns. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 807:150762. [PMID: 34619182 DOI: 10.1016/j.scitotenv.2021.150762] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/29/2021] [Accepted: 09/30/2021] [Indexed: 06/13/2023]
Abstract
Biotreated landfill leachate contains much refractory organics such as humic and fulvic acids, which can be degraded by O3. However, the low O3 mass transfer and high energy cost limit its wide application in landfill leachate treatment. Previous studies proved that packed bubble columns could enhance the O3 mass transfer and increase the synthetic humic acids wastewater degradation, but the performance of packed bubble columns in real wastewater treatment has not been investigated. Therefore, this study aims to evaluate the feasibility of application of packed bubble column in the real biotreated landfill leachates treatment and provide insights into the transformation of organic matters in leachates during ozonation. Packed bubble columns with lava rocks or metal pall rings (LBC or MBC) were applied and compared with a non-packed bubble column (BC). At an applied O3 dose of 8.35 mg/(Lwater sample min), the initial COD (400 mg/L) was only removed for 26% in BC and 32% in MBC while this was 46% in LBC, indicating LBC has the best performance. GC-MS analysis shows that raw biotreated leachate contains potential endocrine disruptors such as di(2-ethylhexyl) phthalate (DEHP). 61% of DEHP was removed in LBC and the least intermediate oxidation products from humic- and fulvic-like organics was detected in LBC. The highest O3 utilization efficiency (89%) and hydroxyl radical (OH) exposure rate (3.0 × 10-10 M s) were observed in LBC with lowest energy consumption (EEO) for COD removal of 18 kWh/m3. The enhanced ozonation efficiency in LBC and MBC was attributed to the improved O3 mass transfer. Besides, LBC had additional adsorptive and catalytic activity that promoted the decomposition of O3 to generate OH. This study demonstrates that a packed bubble column increases removal and decreases energy use when treating landfill leachate, thus promoting the application of ozonation.
Collapse
Affiliation(s)
- Xuetong Yang
- Research Group LIWET, Department of Green Chemistry and Technology, Ghent University, Campus Kortrijk, Graaf Karel De Goedelaan 5, B-8500 Kortrijk, Belgium.
| | - Pieter-Jan De Buyck
- Research Group LIWET, Department of Green Chemistry and Technology, Ghent University, Campus Kortrijk, Graaf Karel De Goedelaan 5, B-8500 Kortrijk, Belgium
| | - Rui Zhang
- Research Group LIWET, Department of Green Chemistry and Technology, Ghent University, Campus Kortrijk, Graaf Karel De Goedelaan 5, B-8500 Kortrijk, Belgium
| | - Dave Manhaeghe
- Research Group LIWET, Department of Green Chemistry and Technology, Ghent University, Campus Kortrijk, Graaf Karel De Goedelaan 5, B-8500 Kortrijk, Belgium
| | - Hao Wang
- Research Group LIWET, Department of Green Chemistry and Technology, Ghent University, Campus Kortrijk, Graaf Karel De Goedelaan 5, B-8500 Kortrijk, Belgium; School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China
| | - Licai Chen
- School of Resources and Environmental Engineering, Wuhan University of Technology, 122 Luoshi Road, Wuhan, Hubei 430070, China
| | - Yunliang Zhao
- School of Resources and Environmental Engineering, Wuhan University of Technology, 122 Luoshi Road, Wuhan, Hubei 430070, China
| | - Kristof Demeestere
- Research Group EnVOC, Department of Green Chemistry and Technology, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium
| | - Stijn W H Van Hulle
- Research Group LIWET, Department of Green Chemistry and Technology, Ghent University, Campus Kortrijk, Graaf Karel De Goedelaan 5, B-8500 Kortrijk, Belgium
| |
Collapse
|
16
|
Li H, Li Z, Song B, Gu Z. Microbial community response of the full-scale MBR system for mixed leachates treatment. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2021; 94:e1677. [PMID: 34897880 DOI: 10.1002/wer.1677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/29/2021] [Accepted: 12/04/2021] [Indexed: 06/14/2023]
Abstract
In practice, mature landfill leachate and incineration (young) leachate are mixed to improve the biodegradability and enhance biological treatment performance. However, the ratio of mature-to-young leachates greatly influences MBR treatment efficiency and microbial community structure. This study investigated the treatment efficiency and microbial community structure of full-scale MBR systems operated under two mix ratios, mature leachate: young leachate = 7:3 (v/v, denoted as LL) and 3:7 (v/v, denoted as IL). LL group showed lower Cl- and COD concentrations but a higher aromatic organic content comparing to IL group, and the COD and UV254 removals for LL were significantly lower than those for IL by MBR treatment. Microbial community structures were similar in both groups at phylum level, with dominant phyla being Proteobacteria (23.8%-32.3%), Bacteroidetes (15.25%-20.7%), Chloroflexi (10.5%-23.1%), and Patescibacteria (9.9%-13.2%). However, the richness and diversity of LL group were lower, and differences were observed at lower taxonomy levels. Results indicated that salinity mainly changed the structure of microbial community, resulting in greater abundance of salt-tolerant microbials, while refractory organics affected microbial community structure, and also led to decreased diversity and metabolic activity. Therefore, in mixed leachates biological treatment, a higher young leachate ratio is recommended for better organics removal performance. PRACTITIONER POINTS: The trade-off between refractory organics and salinity in mixed leachate treatment should be paid attention. Refractory organics reduced alpha and functional diversities of microorganisms. Mixed leachate with a higher young leachate ratio reached a better organic removal.
Collapse
Affiliation(s)
- Huan Li
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, China
| | - Zhiheng Li
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, China
| | - Bowen Song
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, China
| | - Zhepei Gu
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, China
| |
Collapse
|
17
|
Gomes AI, Souza-Chaves BM, Park M, Silva TFCV, Boaventura RAR, Vilar VJP. How does the pre-treatment of landfill leachate impact the performance of O 3 and O 3/UVC processes? CHEMOSPHERE 2021; 278:130389. [PMID: 33845438 DOI: 10.1016/j.chemosphere.2021.130389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 03/15/2021] [Accepted: 03/23/2021] [Indexed: 06/12/2023]
Abstract
In this study, O3 and O3/UVC processes were evaluated for the treatment of landfill leachate after biological nitrification/denitrification, coagulation, or their combinations. The O3-driven stage efficiency was assessed by the removal of color, organic matter (dissolved organic carbon (DOC) and chemical oxygen demand (COD)), and biodegradability increase (Zahn-Wellens test). Also, fluorescence excitation-emission matrix (EEM) and size exclusion chromatography coupled with OC detector (SEC-OCD) analysis were carried out for each strategy. The bio-nitrified-leachate (LN) was not efficiently mineralized during the O3-driven processes since the high nitrites content consumed ozone rapidly. In turn, carbonate/bicarbonate ions impaired the oxidation of the bio-denitrified-leachate (LD), scavenging hydroxyl radicals (HO•) and inhibiting the O3 decomposition. For both bio-leachates, only O3/UVC significantly enhanced the effluent biodegradability (>70%), but COD legal compliance was not reached. EEM and SEC-OCD results revealed differences in the organic matter composition between the nitrified-coagulated-leachate (LNC) and denitrified-coagulated-leachate (LDC). Nonetheless, the amount of DOC and COD removed per gram of ozone was similar for both. Cost estimation indicates the O3-driven stage as the costliest among the treatment processes, while coagulation substantially reduced the cost of the following ozonation. Thus, the best treatment train strategy comprised LDC (with methanol addition for denitrification and coagulated with 300 mg Al3+/L, without pH adjustment), followed by O3/UVC (transferred ozone dose of 2.1 g O3/L and 12.2 kJUVC/L) and final biological oxidation, allowed legal compliance for direct discharge (for organic and nitrogen parameters) with an estimated cost of 8.9 €/m3 (O3/UVC stage counting for 6.9 €/m3).
Collapse
Affiliation(s)
- Ana I Gomes
- Laboratory of Separation and Reaction Engineering-Laboratory of Catalysis and Materials (LSRE-LCM), Departamento de Engenharia Química, Faculdade de Engenharia da Universidade Do Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal.
| | - Bianca M Souza-Chaves
- Department of Chemical & Environmental Engineering, University of Arizona, 1133 E James E Rogers Way, Harshbarger 108, Tucson, AZ, 85721-0011, USA
| | - Minkyu Park
- Department of Chemical & Environmental Engineering, University of Arizona, 1133 E James E Rogers Way, Harshbarger 108, Tucson, AZ, 85721-0011, USA
| | - Tânia F C V Silva
- Laboratory of Separation and Reaction Engineering-Laboratory of Catalysis and Materials (LSRE-LCM), Departamento de Engenharia Química, Faculdade de Engenharia da Universidade Do Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
| | - Rui A R Boaventura
- Laboratory of Separation and Reaction Engineering-Laboratory of Catalysis and Materials (LSRE-LCM), Departamento de Engenharia Química, Faculdade de Engenharia da Universidade Do Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
| | - Vítor J P Vilar
- Laboratory of Separation and Reaction Engineering-Laboratory of Catalysis and Materials (LSRE-LCM), Departamento de Engenharia Química, Faculdade de Engenharia da Universidade Do Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal.
| |
Collapse
|
18
|
Martínez-Cruz A, Rojas Valencia MN, Araiza-Aguilar JA, Nájera-Aguilar HA, Gutiérrez-Hernández RF. Leachate treatment: comparison of a bio-coagulant ( Opuntia ficus mucilage) and conventional coagulants using multi-criteria decision analysis. Heliyon 2021; 7:e07510. [PMID: 34337175 PMCID: PMC8318867 DOI: 10.1016/j.heliyon.2021.e07510] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 03/26/2021] [Accepted: 07/05/2021] [Indexed: 12/05/2022] Open
Abstract
The main aim of this research was to compare a bio-coagulant, organic coagulant, and a conventional coagulant applied to the treatment of leachates. Coagulant options were Stage 1 FeCl3, Stage 2 Polyamine, and Stage 3 Opuntia ficus mucilage (OFM). Optimal conditions for maximum chemical oxygen demand (COD) removal were determined by experimental data and Response Surface Methodology. The application of Multiple Criteria Decision Analysis using Multi-Criteria Matrix (MCM) was explored by evaluating the Coagulation–Flocculation processes. Maximum COD removal (%) and the best MCM scores (on a scale from 0 to 100) were: Stage 1: 69.2±0.9 and 48.50, Stage 2: 37.8±1.1 and 79.0, and Stage 3: 71.1±1.7, and 81.5. Maximum COD removal using FeCl3 and OFM was not statistically different (p 0.15 < 0.05). OFM extraction process was evaluated (yield 0.70 ± 1.17%, carbohydrate content 32.6 ± 1.18%). MCM allows the evaluation of additional technical aspects, besides oxygen COD removal, as well as economic aspects, permitting a more comprehensive analysis. Significant COD removals indicate that the use of OFM as a coagulant in the treatment of stabilized leachate was effective. Opuntia ficus cladodes, a residue, were used to treat another residue (leachates).
Collapse
Affiliation(s)
- Alfredo Martínez-Cruz
- National Autonomous University of Mexico, Institute of Engineering, External Circuit, University City, Mayoralty Coyoacan, Mexico City, Mexico
| | - María Neftalí Rojas Valencia
- National Autonomous University of Mexico, Institute of Engineering, External Circuit, University City, Mayoralty Coyoacan, Mexico City, Mexico
| | - Juan A Araiza-Aguilar
- University of Science and Arts of Chiapas, School of Environmental Engineering, North beltway 1150, Lajas Maciel, 29039, Tuxtla Gutierrez, Chiapas, Mexico
| | - Hugo A Nájera-Aguilar
- University of Science and Arts of Chiapas, School of Environmental Engineering, North beltway 1150, Lajas Maciel, 29039, Tuxtla Gutierrez, Chiapas, Mexico
| | - Rubén F Gutiérrez-Hernández
- National Technology of Mexico, Technological Institute of Tapachula, Department of Chemical and Biochemical Engineering, Km 2, Highway to Puerto Madero, Tapachula, Chiapas, 30700, Mexico
| |
Collapse
|
19
|
Chen Y, Li H, Pang W, Zhou B, Li T, Zhang J, Dong B. Pilot Study on the Combination of Different Pre-Treatments with Nanofiltration for Efficiently Restraining Membrane Fouling While Providing High-Quality Drinking Water. MEMBRANES 2021; 11:membranes11060380. [PMID: 34073651 PMCID: PMC8224806 DOI: 10.3390/membranes11060380] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 05/14/2021] [Accepted: 05/17/2021] [Indexed: 11/16/2022]
Abstract
Nanofiltration (NF) is a promising post-treatment technology for providing high-quality drinking water. However, membrane fouling remains a challenge to long-term NF in providing high-quality drinking water. Herein, we found that coupling pre-treatments (sand filtration (SF) and ozone-biological activated carbon (O3-BAC)) and NF is a potent tactic against membrane fouling while achieving high-quality drinking water. The pilot results showed that using SF+O3-BAC pre-treated water as the feed water resulted in a lower but a slowly rising transmembrane pressure (TMP) in NF post-treatment, whereas an opposite observation was found when using SF pre-treated water as the feed water. High-performance size-exclusion chromatography (HPSEC) and three-dimensional excitation-emission matrix (3D-EEM) fluorescence spectroscopy determined that the O3-BAC process changed the characteristic of dissolved organic matter (DOM), probably by removing the DOM of lower apparent molecular weight (LMW) and decreasing the biodegradability of water. Moreover, amino acids and tyrosine-like substances which were significantly related to medium and small molecule organics were found as the key foulants to membrane fouling. In addition, the accumulation of powdered activated carbon in O3-BAC pre-treated water on the membrane surface could be the key reason protecting the NF membrane from fouling.
Collapse
Affiliation(s)
- Yan Chen
- School of the Environment and Municipal Administration, Lanzhou Jiaotong University, Lanzhou 730070, China; (H.L.); (J.Z.)
- Key Laboratory of Yellow River Water Environment in Gansu Province, Lanzhou Jiaotong University, Lanzhou 730070, China
- Correspondence:
| | - Huiping Li
- School of the Environment and Municipal Administration, Lanzhou Jiaotong University, Lanzhou 730070, China; (H.L.); (J.Z.)
- Key Laboratory of Yellow River Water Environment in Gansu Province, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Weihai Pang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; (W.P.); (T.L.); (B.D.)
| | - Baiqin Zhou
- School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China;
| | - Tian Li
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; (W.P.); (T.L.); (B.D.)
| | - Jian Zhang
- School of the Environment and Municipal Administration, Lanzhou Jiaotong University, Lanzhou 730070, China; (H.L.); (J.Z.)
- Key Laboratory of Yellow River Water Environment in Gansu Province, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Bingzhi Dong
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; (W.P.); (T.L.); (B.D.)
| |
Collapse
|
20
|
Aftab B, Cho J, Hur J. UV/H2O2-assisted forward osmosis system for extended filtration, alleviated fouling, and low-strength landfill leachate concentrate. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119055] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
21
|
Chen W, Gu Z, Ran G, Li Q. Application of membrane separation technology in the treatment of leachate in China: A review. WASTE MANAGEMENT (NEW YORK, N.Y.) 2021; 121:127-140. [PMID: 33360812 DOI: 10.1016/j.wasman.2020.12.002] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 10/16/2020] [Accepted: 12/01/2020] [Indexed: 06/12/2023]
Abstract
To comprehensively investigate the application of membrane separation technology in the treatment of landfill leachate in China, the performance of nearly 200 waste management enterprises of different sizes in China were analyzed, with an emphasis on their scale, regional features, processes, and economic characteristics. It was found that membrane separation technologies, mainly nanofiltration (NF), reverse osmosis (RO), and NF + RO, have been used in China since 2004. The treatment capacity of the two most dominant membrane separation technologies, i.e., NF and RO, were both almost 60,000 m3/d in 2018, and both technologies are widely used in landfills and incineration plants. Their distribution is mainly concentrated in eastern and southwestern China, where the amount of municipal solid waste (MSW) is relatively high and the economy is developing rapidly. Membrane separation technology is the preferred technique for the advanced treatment of leachate because more contaminants can be effectively removed by the technology than by other advanced processes. However, the membrane retentate that is produced using this technology-commonly known as leachate concentrate-is heavily contaminated due to the enrichment of almost all the inorganic anions, heavy metals, and organic matter that remain after bioprocessing. An economic cost analysis revealed that the operating cost of membrane separation technology has stabilized and is between 1.77 USD/m3 and 4.90 USD/m3; electricity consumption is the most expensive cost component. This review describes the current problems with the use of membrane separation technology and recommends strategies and solutions for its future use.
Collapse
Affiliation(s)
- Weiming Chen
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 611756, China
| | - Zhepei Gu
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 611756, China
| | - Gang Ran
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 611756, China
| | - Qibin Li
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 611756, China.
| |
Collapse
|
22
|
Chen W, Yu HQ. Advances in the characterization and monitoring of natural organic matter using spectroscopic approaches. WATER RESEARCH 2021; 190:116759. [PMID: 33360618 DOI: 10.1016/j.watres.2020.116759] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/16/2020] [Accepted: 12/16/2020] [Indexed: 06/12/2023]
Abstract
Natural organic matter (NOM) is ubiquitous in environment and plays a fundamental role in the geochemical cycling of elements. It is involved in a wide range of environmental processes and can significantly affect the environmental fates of exogenous contaminants. Understanding the properties and environmental behaviors of NOM is critical to advance water treatment technologies and environmental remediation strategies. NOM is composed of characteristic light-absorbing/emitting functional groups, which are the "identification card" of NOM and susceptive to ambient physiochemical changes. These groups and their variations can be captured through optical sensing. Therefore, spectroscopic techniques are elegant tools to track the sources, features, and environmental behaviors of NOM. In this work, the most recent advances in molecular spectroscopic techniques, including UV-Vis, fluorescence, infrared, and Raman spectroscopy, for the characterization, measurement, and monitoring of NOM are reviewed, and the state-of-the-art innovations are highlighted. Furthermore, the limitations of current spectroscopic approaches for the exploration of NOM-related environmental processesand how these weaknesses/drawbacks can be addressed are explored. Finally, suggestions and directions are proposed to advance the development of spectroscopic methods in analyzing and elucidating the properties and behaviors of NOM in natural and engineered environments.
Collapse
Affiliation(s)
- Wei Chen
- School of Metallurgy and Environment, Central South University, Changsha410083, China
| | - Han-Qing Yu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei230026, China.
| |
Collapse
|
23
|
Wu C, Li Q. Characteristics of organic matter removed from highly saline mature landfill leachate by an emergency disk tube-reverse osmosis treatment system. CHEMOSPHERE 2021; 263:128347. [PMID: 33297272 DOI: 10.1016/j.chemosphere.2020.128347] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 09/10/2020] [Accepted: 09/12/2020] [Indexed: 06/12/2023]
Abstract
Some sanitary landfills in China are required to treat aging landfill leachate that is highly saline. In this study, the effectiveness of an emergency disk tube-reverse osmosis (DTRO) treatment system for such a refractory mature landfill leachate was evaluated. A molecular-level analysis was then applied to reveal the changes of the characteristics of leachate organic matter (OM). The DTRO system achieved >83% water recovery rate, reduced the electrical conductivity of effluent to 0.15-0.22 ms/cm, and reduced carbonaceous and nitrogenous pollutants to a level suitable for discharge. Furthermore, the vast majority of salts (e.g., chloride and sulfate ions), as well as refractory OM (e.g., humic- and fulvic-like substances), were effectively removed. The DTRO system can effectively remove a large number of macromolecular dissolved organic compounds with carbon number >23, as well as highly unsaturated compounds with DBE >12. Additionally, > 80% of the molecules assigned to the dissolved OM (DOM) were removed; even CHONS compounds with complex molecular structures were completely removed. The constitution of DOM in the DTRO effluent was simple, mainly comprising anti-sludge agents (e.g., small molecule alcohol and alkyl benzene sulfonic acid, etc.). However, the DOM in the resulting membrane concentrates was very similar to that in raw landfill leachate and the concentration was much higher. Therefore, an effective and feasible method should be developed to treat DTRO membrane concentrates because they pose high environmental risk.
Collapse
Affiliation(s)
- Chuanwei Wu
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, 611756, China
| | - Qibin Li
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, 611756, China.
| |
Collapse
|
24
|
Wang F, Huang Y, Wen P, Li Q. Transformation mechanisms of refractory organic matter in mature landfill leachate treated using an Fe 0-participated O 3/H 2O 2 process. CHEMOSPHERE 2021; 263:128198. [PMID: 33297163 DOI: 10.1016/j.chemosphere.2020.128198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 08/24/2020] [Accepted: 08/27/2020] [Indexed: 06/12/2023]
Abstract
An Fe0-participated O3/H2O2 (Fe0-O3/H2O2) process was applied to remove refractory organic matter (OM) in semi-aerobic aged refuse biofilter (SAARB) leachate arising from treating mature landfill leachate. The degradation and transformation characteristics of refractory OM were revealed at molecular level. Removal efficiencies of aromatic substances were 63.55% by the Fe0-O3/H2O2 process (much higher than in other single or binary processes), and fulvic- and humic-like substances were more effectively degraded by this process than by other treatments. According to Fourier transform-ion cyclotron resonance mass spectrometry (FT-ICR MS), 6645 categories of OM in SAARB leachate were identified. Although there was little difference in number of OM categories after treatment using the single-O3 and Fe0-O3/H2O2 processes, Fe0-O3/H2O2 process can better reduce OM relative abundance. It is noteworthy that the Fe0-O3/H2O2 process more effectively degraded CHONS compounds than the single-O3 process, while also producing more CHO compounds having higher bio-availability. The enhanced degradation efficiency of the Fe0-O3/H2O2 process were attributed to the formation of the Fenton process initiated by leached Fe2+ and H2O2. The heterogeneous catalytic effect from iron (hydro) oxides for O3/H2O2 also increased the treatment capacity of the Fe0-O3/H2O2 process, resulting in better total organic carbon removal. The Fe0-O3/H2O2 process is an efficient method for removing refractory OM in SAARB leachate.
Collapse
Affiliation(s)
- Fan Wang
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, 611756, China
| | - Yuyu Huang
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, 611756, China
| | - Peng Wen
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, 611756, China
| | - Qibin Li
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, 611756, China.
| |
Collapse
|
25
|
Yu H, Qu F, Wu Z, He J, Rong H, Liang H. Front-face fluorescence excitation-emission matrix (FF-EEM) for direct analysis of flocculated suspension without sample preparation in coagulation-ultrafiltration for wastewater reclamation. WATER RESEARCH 2020; 187:116452. [PMID: 33002775 DOI: 10.1016/j.watres.2020.116452] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 09/12/2020] [Accepted: 09/22/2020] [Indexed: 06/11/2023]
Abstract
Fluorescence spectroscopy has been suggested as a promising online monitoring technique in water and wastewater treatment processes due to its high sensitivity and selectivity. However, a pre-filtration is still indispensable in fluorescence measurement for removing ubiquitous particles and flocs in real samples to eliminate the strong light scattering that could attenuate fluorescence detection significantly. This study proposed a front-face fluorescence spectroscopy, which could characterize the liquid sample with suspended solids directly without pre-filtration. Front-face excitation-emission matrix (FF-EEM) coupled with parallel factor (PARAFAC) analysis was used for analyzing fluorescence components and to probe coagulation of secondary effluent and fouling in the subsequent ultrafiltration (UF), and conventional right-angle fluorescence EEM (RA-EEM) was also compared. The results showed that FF-EEM was less susceptible to turbidity (induced by standard particles) in the secondary effluent compared to RA-EEM. FF-EEM could successfully measure dissolved fluorophores in coagulated suspension without pre-filtration, while conventional RA-EEM was undermined significantly due to the existing flocs. FF-EEM coupled with PARAFAC could accurately probe dissolved organic matter and fouling in coagulation- UF wastewater reclamation processes. Therefore, it was demonstrated that this front-face fluorescence without any sample preparation step might be highly promising in real-time online fluorescence monitoring in multi water and wastewater treatment processes.
Collapse
Affiliation(s)
- Huarong Yu
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Guangzhou University, Guangzhou, 510006, China; School of Civil Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Fangshu Qu
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Guangzhou University, Guangzhou, 510006, China; School of Civil Engineering, Guangzhou University, Guangzhou, 510006, China.
| | - Zijian Wu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Junguo He
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Guangzhou University, Guangzhou, 510006, China; School of Civil Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Hongwei Rong
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Guangzhou University, Guangzhou, 510006, China; School of Civil Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Heng Liang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| |
Collapse
|
26
|
Lee YK, Murphy KR, Hur J. Fluorescence Signatures of Dissolved Organic Matter Leached from Microplastics: Polymers and Additives. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:11905-11914. [PMID: 32852946 DOI: 10.1021/acs.est.0c00942] [Citation(s) in RCA: 153] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Despite the numerous studies that have investigated the occurrence and fate of plastic particles in the environment, only a limited effort has been devoted toward exploring the characteristics of dissolved organic matter (DOM) leached from microplastics. In this study, using excitation emission matrix-parallel factor analysis (EEM-PARAFAC), we explored the fluorescence signatures of plastic-derived DOM from commonly used plastic materials, which included two polymers (polyvinyl chloride (PVC) and polystyrene (PS)), two additives (diethylhexyl phthalate (DEHP) and bisphenol A (BPA)), and two commercial plastics. The exposure of the selected plastics to UV light facilitated the leaching of DOM measured in terms of dissolved organic carbon and fluorescence intensity. Four fluorescent components were identified, which included three protein/phenol-like components (C1, C3, and C4) and one humic-like component (C2). The C1 and C4 components were highly correlated with the amounts of DOM leached from DEHP and BPA, respectively, under both leaching conditions, while both C2 and C4 presented good correlations with the DOM leached from polymers under UV light. The C4 may serve as a good fluorescence proxy for DOM leached from BPA or BPA-containing plastics. This study highlights the overlooked issue of plastic-derived DOM leaching into the aquatic environment through optical characterization.
Collapse
Affiliation(s)
- Yun Kyung Lee
- Department of Environment and Energy, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul 05006, South Korea
| | - Kathleen R Murphy
- Architecture and Civil Engineering, Chalmers University of Technology, Gothenburg 41296, Sweden
| | - Jin Hur
- Department of Environment and Energy, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul 05006, South Korea
| |
Collapse
|