1
|
Wang X, Zhang H, Liu X, Liu X, Ma B, Wu G, Huang T, Chen Z. Monitoring of potential microbial sources of taste and odor in drinking water systems: A novel actinobacterial medium development and application. WATER RESEARCH 2025; 281:123573. [PMID: 40179731 DOI: 10.1016/j.watres.2025.123573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 03/24/2025] [Accepted: 03/28/2025] [Indexed: 04/05/2025]
Abstract
Taste and odor (T&O) issues are pervasive challenges in water supply systems, significantly compromising water quality and safety. Actinobacteria are a major source of T&O issues in drinking water reservoirs, particularly during periods devoid of algal blooms. However, conventional culture media fail to cultivate actinobacteria efficiently, limiting our ability to assess their role in T&O events accurately. In this study, we first evaluated several traditional media for their capacity to cultivate actinobacteria and then developed a novel actinobacterial enrichment culture medium (AECM) designed to improve cultivation efficiency. The results indicated that although the Gause No. 1 medium achieved higher cultivation efficiency, it only recovered approximately one-quarter of the actinobacterial genera present in water samples. In contrast, AECM, formulated based on the metabolic activity of actinobacteria, demonstrated a 30 % improvement in cultivation efficiency compared to conventional media and successfully isolated two odor-producing non-Streptomyces genera. This approach provides a new method for identifying microbial sources of T&O in drinking water systems and offers valuable insights into the odor-producing mechanisms of actinobacteria, ultimately enhancing the safety and palatability of drinking water.
Collapse
Affiliation(s)
- Xiaolong Wang
- Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an, China; Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountain, Xi'an University of Architecture and Technology, Xi'an, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, China
| | - Haihan Zhang
- Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an, China; Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountain, Xi'an University of Architecture and Technology, Xi'an, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, China.
| | - Xiang Liu
- Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an, China; Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountain, Xi'an University of Architecture and Technology, Xi'an, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, China
| | - Xiaoyan Liu
- Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an, China; Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountain, Xi'an University of Architecture and Technology, Xi'an, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, China
| | - Ben Ma
- Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an, China; Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountain, Xi'an University of Architecture and Technology, Xi'an, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, China
| | - Guilin Wu
- Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an, China; Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountain, Xi'an University of Architecture and Technology, Xi'an, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, China
| | - Tinglin Huang
- Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an, China; Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountain, Xi'an University of Architecture and Technology, Xi'an, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, China
| | - Zhongbing Chen
- Department of Applied Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Praha - Suchdol, Czech Republic
| |
Collapse
|
2
|
Zambrano-Alvarado JI, Uyaguari-Diaz MI. Insights into water insecurity in Indigenous communities in Canada: assessing microbial risks and innovative solutions, a multifaceted review. PeerJ 2024; 12:e18277. [PMID: 39434791 PMCID: PMC11493031 DOI: 10.7717/peerj.18277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 09/18/2024] [Indexed: 10/23/2024] Open
Abstract
Canada is considered a freshwater-rich country, despite this, several Indigenous reserves struggle with household water insecurity. In fact, some of these communities have lacked access to safe water for almost 30 years. Water quality in Canadian Indigenous reserves is influenced by several factors including source water quality, drinking water treatments applied, water distribution systems, and water storage tanks when piped water is unavailable. The objective of this multifaceted review is to spot the challenges and consequences of inadequate drinking water systems (DWS) and the available technical and microbiological alternatives to address water sanitation coverage in Indigenous reserves of Canada, North America (also known as Turtle Island). A comprehensive literature review was conducted using national web portals from both federal and provincial governments, as well as academic databases to identify the following topics: The status of water insecurity in Indigenous communities across Canada; Microbiological, chemical, and natural causes contributing to water insecurity; Limitations of applying urban-style drinking water systems in Indigenous reserves in Canada and the management of DWS for Indigenous communities in other high-income countries; and the importance of determining the microbiome inhabiting drinking water systems along with the cutting-edge technology available for its analysis. A total of 169 scientific articles matched the inclusion criteria. The major themes discussed include: The status of water insecurity and water advisories in Canada; the risks of pathogenic microorganisms (i.e., Escherichia coli and total coliforms) and other chemicals (i.e., disinfection by-products) found in water storage tanks; the most common technologies available for water treatment including coagulation, high- and low-pressure membrane filtration procedures, ozone, ion exchange, and biological ion exchange and their limitations when applying them in remote Indigenous communities. Furthermore, we reviewed the benefits and drawbacks that high throughput tools such as metagenomics (the study of genomes of microbial communities), culturomics (a high-efficiency culture approach), and microfluidics devices (microminiaturized instruments) and what they could represent for water monitoring in Indigenous reserves. This multifaceted review demonstrates that water insecurity in Canada is a reflection of the institutional structures of marginalization that persist in the country and other parts of Turtle Island. DWS on Indigenous reserves are in urgent need of upgrades. Source water protection, and drinking water monitoring plus a comprehensive design of culturally adapted, and sustainable water services are required. Collaborative efforts between First Nations authorities and federal, provincial, and territorial governments are imperative to ensure equitable access to safe drinking water in Indigenous reserves.
Collapse
Affiliation(s)
| | - Miguel I. Uyaguari-Diaz
- Department of Microbiology, Faculty of Science, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
3
|
Fouad MS, Mustafa EF, Hellal MS, Mwaheb MA. A comprehensive assessment of water quality in Fayoum depression, Egypt: identifying contaminants, antibiotic pollution, and adsorption treatability study for remediation. Sci Rep 2024; 14:18849. [PMID: 39143112 PMCID: PMC11324722 DOI: 10.1038/s41598-024-68990-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 07/30/2024] [Indexed: 08/16/2024] Open
Abstract
This study aimed to assess the current water quality status across various regions within the Fayoum depression by examining water canals, drains, and potential contaminants impacting public health and the local ecosystem. Additionally, an adsorption treatability investigation was conducted on various antibiotics identified during the assessment. Fifteen sampling points were selected across the Fayoum depression, covering surface water bodies and agricultural drainage systems during both winter and summer seasons. Physico-chemical, microbiological, and antibiotic analyses were performed on collected water samples. The water quality parameters investigated included pH, electrical conductivity, total dissolved solids (TDS), total coliforms, fecal coliforms, and concentrations of antibiotics such as ciprofloxacin and tetracycline. The findings revealed significant variations in water quality parameters among different water sources, categorizing them into three types: irrigation canals, polluted canals, and drains. High contamination levels were observed in certain water canals and drains due to untreated sewage and agricultural drainage discharge. Notably, elevated TDS levels (exceeding 1200 mg/L), microbial indicators count (with total coliforms reaching up to 2.3 × 106 CFU/100 mL), and antibiotics (with concentrations of ciprofloxacin and tetracycline exceeding 4.6 µg/L) were detected. To mitigate antibiotic contamination, a Phyto-adsorption treatability study using magnetite nanoparticles prepared with Phragmites australis plant extract demonstrated promising results, achieving complete removal of high antibiotic concentrations with an adsorption capacity of up to 67 mg/g. This study provides updated insights into water quality in the Fayoum depression and proposes a novel approach for addressing antibiotic contamination, potentially safeguarding human and environmental health.
Collapse
Affiliation(s)
- Mai Sayed Fouad
- Botany Department, Faculty of Science, Fayoum University, Fayoum, 63514, Egypt
| | - Emad Fawzy Mustafa
- Water Management Research Institute, National Water Research Center NWRC, Shubra El Kheima, Egypt
| | - Mohamed Saad Hellal
- Water Pollution Research Department, National Research Centre, Cairo, 12622, Egypt.
| | - Mai Ali Mwaheb
- Botany Department, Faculty of Science, Fayoum University, Fayoum, 63514, Egypt.
| |
Collapse
|
4
|
Rangel-Muñoz EJ, Valdivia-Flores AG, Cruz-Vázquez C, de-Luna-López MC, Hernández-Valdivia E, Vitela-Mendoza I, Medina-Esparza L, Quezada-Tristán T. Increased Dissemination of Aflatoxin- and Zearalenone-Producing Aspergillus spp. and Fusarium spp. during Wet Season via Houseflies on Dairy Farms in Aguascalientes, Mexico. Toxins (Basel) 2024; 16:302. [PMID: 39057942 PMCID: PMC11281273 DOI: 10.3390/toxins16070302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024] Open
Abstract
Crops contamination with aflatoxins (AFs) and zearalenone (ZEA) threaten human and animal health; these mycotoxins are produced by several species of Aspergillus and Fusarium. The objective was to evaluate under field conditions the influence of the wet season on the dissemination of AF- and ZEA-producing fungi via houseflies collected from dairy farms. Ten dairy farms distributed in the semi-arid Central Mexican Plateau were selected. Flies were collected in wet and dry seasons at seven points on each farm using entomological traps. Fungi were isolated from fly carcasses via direct seeding with serial dilutions and wet chamber methods. The production of AFs and ZEA from pure isolates was quantified using indirect competitive ELISA. A total of 693 Aspergillus spp. and 1274 Fusarium spp. isolates were obtained, of which 58.6% produced AFs and 50.0% produced ZEA (491 ± 122; 2521 ± 1295 µg/kg). Houseflies and both fungal genera were invariably present, but compared to the dry season, there was a higher abundance of flies as well as AF- and ZEA-producing fungi in the wet season (p < 0.001; 45.3/231 flies/trap; 8.6/29.6% contaminated flies). These results suggest that rainy-weather conditions on dairy farms increase the spread of AF- and ZEA-producing Aspergillus spp. and Fusarium spp. through houseflies and the incorporation of their mycotoxins into the food chain.
Collapse
Affiliation(s)
- Erika Janet Rangel-Muñoz
- Departamento de Ciencias Veterinarias, Centro de Ciencias Agropecuarias, Universidad Autónoma de Aguascalientes, Aguascalientes 20131, Mexico; (E.J.R.-M.); (M.C.d.-L.-L.); (E.H.-V.); (T.Q.-T.)
| | - Arturo Gerardo Valdivia-Flores
- Departamento de Ciencias Veterinarias, Centro de Ciencias Agropecuarias, Universidad Autónoma de Aguascalientes, Aguascalientes 20131, Mexico; (E.J.R.-M.); (M.C.d.-L.-L.); (E.H.-V.); (T.Q.-T.)
| | - Carlos Cruz-Vázquez
- División de Estudios de Posgrado e Investigación, Tecnológico Nacional de México, Instituto Tecnológico El Llano Aguascalientes, km 18 carretera Aguascalientes—San Luis Potosí, El Llano, Aguascalientes 20330, Mexico; (C.C.-V.); (I.V.-M.)
| | - María Carolina de-Luna-López
- Departamento de Ciencias Veterinarias, Centro de Ciencias Agropecuarias, Universidad Autónoma de Aguascalientes, Aguascalientes 20131, Mexico; (E.J.R.-M.); (M.C.d.-L.-L.); (E.H.-V.); (T.Q.-T.)
| | - Emmanuel Hernández-Valdivia
- Departamento de Ciencias Veterinarias, Centro de Ciencias Agropecuarias, Universidad Autónoma de Aguascalientes, Aguascalientes 20131, Mexico; (E.J.R.-M.); (M.C.d.-L.-L.); (E.H.-V.); (T.Q.-T.)
| | - Irene Vitela-Mendoza
- División de Estudios de Posgrado e Investigación, Tecnológico Nacional de México, Instituto Tecnológico El Llano Aguascalientes, km 18 carretera Aguascalientes—San Luis Potosí, El Llano, Aguascalientes 20330, Mexico; (C.C.-V.); (I.V.-M.)
| | - Leticia Medina-Esparza
- División de Estudios de Posgrado e Investigación, Tecnológico Nacional de México, Instituto Tecnológico El Llano Aguascalientes, km 18 carretera Aguascalientes—San Luis Potosí, El Llano, Aguascalientes 20330, Mexico; (C.C.-V.); (I.V.-M.)
| | - Teódulo Quezada-Tristán
- Departamento de Ciencias Veterinarias, Centro de Ciencias Agropecuarias, Universidad Autónoma de Aguascalientes, Aguascalientes 20131, Mexico; (E.J.R.-M.); (M.C.d.-L.-L.); (E.H.-V.); (T.Q.-T.)
| |
Collapse
|
5
|
Grandhay C, Prétot E, Klaba V, Celle H, Normand AC, Bertrand X, Grenouillet F. Yeast Biodiversity of Karst Waters: Interest of Four Culture Media and an Improved MALDI-TOF MS Database. MICROBIAL ECOLOGY 2024; 87:26. [PMID: 38175217 PMCID: PMC10766713 DOI: 10.1007/s00248-023-02336-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 12/22/2023] [Indexed: 01/05/2024]
Abstract
Karst aquifers are a significant source of drinking water and highly vulnerable to pollution and microbial contamination. Microbiological regulations for the quality of drinking water mostly focus on bacterial levels and lack guidance concerning fungal contamination. Moreover, there is no standardised microbial analysis methodology for identifying fungi in water. Our main objective was to establish the most effective culture and identification methodology to examine yeast diversity in karst waters. We assessed the comparative efficacy of four culture media (CHROMagar Candida, dichloran glycerol 18% [DG18], dichloran rose Bengal chloramphenicol [DRBC], and SYMPHONY agar) for yeast isolation from karst water samples. Furthermore, we investigated the comprehensiveness of databases used in MALDI-TOF mass spectrometry (MALDI-TOF MS) for identifying environmental yeast species. In total, we analysed 162 water samples, allowing the identification of 2479 yeast isolates. We demonstrate that a combination of four culture media, each with distinct specifications, more efficiently covers a wide range of yeast species in karst water than a combination of only two or three. Supplementation of a MALDI-TOF MS database is also critical for analysing environmental microbial samples and improved the identification of yeast biodiversity. This study is an initial step towards standardising the analysis of fungal biodiversity in karst waters, enabling a better understanding of the significance of this environmental reservoir in relation to public health.
Collapse
Affiliation(s)
- Clément Grandhay
- Université de Franche-Comté, CHU Besançon, CNRS, Chrono-environnement, F-25000, Besançon, France
| | - Emma Prétot
- Université de Franche-Comté, CHU Besançon, CNRS, Chrono-environnement, F-25000, Besançon, France
| | - Victor Klaba
- Université de Franche-Comté, CNRS, Chrono-environnement, F-25000, Besançon, France
| | - Hélène Celle
- Université de Franche-Comté, CNRS, Chrono-environnement, F-25000, Besançon, France
| | - Anne-Cécile Normand
- AP-HP, Groupe Hospitalier La Pitié-Salpêtrière, Service de Parasitologie Mycologie, 75013, Paris, France
| | - Xavier Bertrand
- Université de Franche-Comté, CHU Besançon, CNRS, Chrono-environnement, F-25000, Besançon, France
- Université de Franche-Comté, CNRS, Chrono-environnement, F-25000, Besançon, France
| | - Frédéric Grenouillet
- Université de Franche-Comté, CHU Besançon, CNRS, Chrono-environnement, F-25000, Besançon, France.
- Université de Franche-Comté, CNRS, Chrono-environnement, F-25000, Besançon, France.
| |
Collapse
|
6
|
Wang Y, Ma B, Zhao J, Tang Z, Li W, He C, Xia D, Linden KG, Yin R. Rapid Inactivation of Fungal Spores in Drinking Water by Far-UVC Photolysis of Free Chlorine. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:21876-21887. [PMID: 37978925 DOI: 10.1021/acs.est.3c05703] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Effective and affordable disinfection technology is one key to achieving Sustainable Development Goal 6. In this work, we develop a process by integrating Far-UVC irradiation at 222 nm with free chlorine (UV222/chlorine) for rapid inactivation of the chlorine-resistant and opportunistic Aspergillus niger spores in drinking water. The UV222/chlorine process achieves a 5.0-log inactivation of the A. niger spores at a chlorine dosage of 3.0 mg L-1 and a UV fluence of 30 mJ cm-2 in deionized water, tap water, and surface water. The inactivation rate constant of the spores by the UV222/chlorine process is 0.55 min-1, which is 4.6-fold, 5.5-fold, and 1.8-fold, respectively, higher than those of the UV222 alone, chlorination alone, and the conventional UV254/chlorine process under comparable conditions. The more efficient inactivation by the UV222/chlorine process is mainly attributed to the enhanced generation of reactive chlorine species (e.g., 6.7 × 10-15 M of Cl•) instead of hydroxyl radicals from UV222 photolysis of chlorine, which is verified through both experiments and a kinetic model. We further demonstrate that UV222 photolysis damages the membrane integrity and benefits the penetration of chlorine and radicals into cells for inactivation. The merits of the UV222/chlorine process over the UV254/chlorine process also include the more effective inhibition of the photoreactivation of the spores after disinfection and the lower formation of chlorinated disinfection byproducts and toxicity.
Collapse
Affiliation(s)
- Yongyi Wang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong
| | - Ben Ma
- Department of Civil, Environmental, and Architectural Engineering, University of Colorado Boulder, Boulder, Colorado 80303, United States
| | - Jing Zhao
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong
| | - Zhuoyun Tang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Wanxin Li
- Department of Health and Environmental Sciences, Xi'an Jiaotong-Liverpool University, Suzhou 215000, China
| | - Chun He
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Dehua Xia
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Karl G Linden
- Department of Civil, Environmental, and Architectural Engineering, University of Colorado Boulder, Boulder, Colorado 80303, United States
| | - Ran Yin
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong
| |
Collapse
|
7
|
Zhang H, Li H, Ma M, Ma B, Liu H, Niu L, Zhao D, Ni T, Yang W, Yang Y. Nitrogen reduction by aerobic denitrifying fungi isolated from reservoirs using biodegradation materials for electron donor: Capability and adaptability in the lower C/N raw water treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 864:161064. [PMID: 36565869 DOI: 10.1016/j.scitotenv.2022.161064] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/13/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
Biological denitrification was considered an efficient and environmentally friendly way to remove the nitrogen in the water body. However, biological denitrification showed poor nitrogen removal performance due to the lack of electron donors in the low C/N water. In this study, three novel aerobic denitrifying fungi (Trichoderma sp., Penicillium sp., and Fusarium sp.) were isolated and enhanced the performance of aerobic denitrification of fungi in low C/N water bodies combined with polylactic acid/polybutylene adipate-co-terephthalate (PLA/PBAT). In this work, the aerobic denitrifying fungi seed were added to denitrifying liquid medium and mixed with PLA/PBAT. The result showed that Trichoderma sp., Penicillium sp., and Fusarium sp. could reduce 89.93 %, 89.20 %, and 87.76 % nitrate. Meanwhile, the nitrate removal efficiency adding PLA/PBAT exceeded 1.40, 1.68, and 1.46 times that of none. The results of material characterization suggested that aerobic denitrifying fungi have different abilities to secrete proteases or lipases to catalyze ester bonds in PLA/PBAT and utilize it as nutrients in denitrification, especially in Penicillium brasiliensis D6. Besides, the electron transport system activity and the intracellular ATP concentration were increased significantly after adding PLA/PBAT, especially in Penicillium brasiliensis D6. Finally, the highest removal efficiency of total nitrogen in landscape water by fungi combined with PLA/PBAT was >80 %. The findings of this work provide new insight into the possibility of nitrogen removal by fungi in low C/N and the recycling of degradable resources.
Collapse
Affiliation(s)
- Haihan Zhang
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Haiyun Li
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; An De College, Xi'an University of Architecture and Technology, Xi'an 710311, China
| | - Manli Ma
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Ben Ma
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Hanyan Liu
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Limin Niu
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Daijuan Zhao
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Tongchao Ni
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Wanqiu Yang
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yansong Yang
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
8
|
Wan Q, Wen G, Cui Y, Cao R, Xu X, Wu G, Wang J, Huang T. Occurrence and control of fungi in water: New challenges in biological risk and safety assurance. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 860:160536. [PMID: 36574558 DOI: 10.1016/j.scitotenv.2022.160536] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/03/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
Recently, the contamination of fungi in water has aroused widespread concern, which will pose a threat to water quality and safety, and raise diseases risk in the immunocompromised individuals. In this review, the characteristics and different physiological state of fungi in water are summarized. A comprehensive evaluation of the control efficiency and mechanism of waterborne fungi by the commonly used disinfection methods is provided as well. During the disinfection processes of chlorine, chlorine dioxide, chloramine and advanced disinfection processes (ADPs) such as O3-based ADPs and UV-based ADPs, the fungal spores firstly lost their culturability, followed by membrane integrity, and the intracellular reactive oxygen species level increased at the same time, eventually the fungal spores were completely inactivated. The security strategies of drinking water against the contamination of fungi are also discussed in terms of water sources, water treatment plants and pipe network. Finally, future researches need to be explored are proposed: the rapid detection methods, the production laws and control of mycotoxin, and the outbreak conditions of fungi in water. Specifically, exploring efficient, safe and economical technologies, especially ADPs, is still the main direction in the disinfection of fungi in future studies. This review can offer a comprehensive understanding on the occurrence and control of fungi in water to fill the knowledge gap and provide guidance for the future research.
Collapse
Affiliation(s)
- Qiqi Wan
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Gang Wen
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, PR China.
| | - Yuhong Cui
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Hongshan District, Wuhan 430074, PR China
| | - Ruihua Cao
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Xiangqian Xu
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Gehui Wu
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Jingyi Wang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Tinglin Huang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| |
Collapse
|
9
|
Zhao Z, Yang H, Feng Z, Huo Y, Fu L, Zhou D. Role of naphthaleneacetic acid in the degradation of bisphenol A and wastewater treatment by microalgae: Enhancement and signaling. CHEMOSPHERE 2022; 307:135829. [PMID: 35948092 DOI: 10.1016/j.chemosphere.2022.135829] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/07/2022] [Accepted: 07/22/2022] [Indexed: 06/15/2023]
Abstract
Coupling microalgae cultivation with wastewater treatment is a promising environmentally sustainable development strategy. However, toxics such as Bisphenol A (BPA) in wastewater damage microalgae cells and reduces bioresources production. Phytohormone regulation has the potential to solve this issue. However, phytohormone research is still in its infancy. In this work, 0.2 μM naphthyl acetic acid (NAA) significantly enhanced Chlorella vulgaris BPA detoxification by 127.3% and Chlorella biomass production by 46.4%. NAA helps Chlorella convert bisphenol A into small non-toxic intermediates by enhancing the expression of associated enzymes. Simultaneously, NAA promoted carbon fixation and photosynthetic metabolism. Activation of the mitogen-activated protein kinase (MAPK) pathway strengthened the downstream antioxidant system while improving photosynthesis and intracellular starch and lipid synthesis. Carbohydrates, pigment, and lipid production was significantly enhanced by 20.0%, 46.9%, and 21.8%, respectively. A new insight is provided into how phytohormones may increase microalgae in wastewater's bioresource transformation and toxicity resistance.
Collapse
Affiliation(s)
- Zhenhao Zhao
- Engineering Lab for Water Pollution Control and Resources Recovery of Jilin Province, School of Environment, Northeast Normal University, Changchun, 130117, China
| | - Huiwen Yang
- Engineering Lab for Water Pollution Control and Resources Recovery of Jilin Province, School of Environment, Northeast Normal University, Changchun, 130117, China
| | - Zhixuan Feng
- Engineering Lab for Water Pollution Control and Resources Recovery of Jilin Province, School of Environment, Northeast Normal University, Changchun, 130117, China
| | - Yang Huo
- College of Physics, Northeast Normal University, Changchun, 130117, China
| | - Liang Fu
- Engineering Lab for Water Pollution Control and Resources Recovery of Jilin Province, School of Environment, Northeast Normal University, Changchun, 130117, China.
| | - Dandan Zhou
- Engineering Lab for Water Pollution Control and Resources Recovery of Jilin Province, School of Environment, Northeast Normal University, Changchun, 130117, China.
| |
Collapse
|
10
|
Torres-Garcia D, Gené J, García D. New and interesting species of Penicillium (Eurotiomycetes, Aspergillaceae) in freshwater sediments from Spain. MycoKeys 2022; 86:103-145. [PMID: 35145339 PMCID: PMC8825427 DOI: 10.3897/mycokeys.86.73861] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 01/10/2022] [Indexed: 11/12/2022] Open
Abstract
Penicillium species are common fungi found worldwide from diverse substrates, including soil, plant debris, food products and air. Their diversity in aquatic environments is still underexplored. With the aim to explore the fungal diversity in Spanish freshwater sediments, numerous Penicillium strains were isolated using various culture-dependent techniques. A preliminary sequence analysis of the β-tubulin (tub2) gene marker allowed us to identify several interesting species of Penicillium, which were later characterized phylogenetically with the barcodes recommended for species delimitation in the genus. Based on the multi-locus phylogeny of the internal transcribed spacer region (ITS) of the ribosomal DNA, and partial fragments of tub2, calmodulin (cmdA), and the RNA polymerase II largest subunit (rpb2) genes, in combination with phenotypic analyses, five novel species are described. These are P.ausonanum in sectionLanata-Divaricata, P.guarroi in sect.Gracilenta, P.irregulare in sect.Canescentia, P.sicoris in sect.Paradoxa and P.submersum in sect.Robsamsonia. The study of several isolates from samples collected in different locations resulted in the reinstatement of P.vaccaeorum into sectionCitrina. Finally, P.heteromorphum (sect.Exilicaulis) and P.tardochrysogenum (sect.Chrysogena) are reported, previously only known from Antarctica and China, respectively.
Collapse
Affiliation(s)
- Daniel Torres-Garcia
- Universitat Rovira i Virgili, Unitat de Micologia, Facultat de Medicina i Ciències de la Salut and IISPV, 43201-Reus, SpainUniversitat Rovira i VirgiliReusSpain
| | - Josepa Gené
- Universitat Rovira i Virgili, Unitat de Micologia, Facultat de Medicina i Ciències de la Salut and IISPV, 43201-Reus, SpainUniversitat Rovira i VirgiliReusSpain
| | - Dania García
- Universitat Rovira i Virgili, Unitat de Micologia, Facultat de Medicina i Ciències de la Salut and IISPV, 43201-Reus, SpainUniversitat Rovira i VirgiliReusSpain
| |
Collapse
|
11
|
Towards a Novel Combined Treatment Approach Using Light-Emitting Diodes and Photocatalytic Ceramic Membranes. WATER 2022. [DOI: 10.3390/w14030292] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Natural disasters (such as earthquakes, floods, heatwaves and landslides), isolation and war affect the water access of millions of people worldwide. Developments in the areas of membrane filtration, photolysis and photocatalysis are important for safe water production and water re-use applications. This work aimed to test alternative ways to ensure effective disinfection of wastewater effluents: light-emitting diodes that emit at different wavelengths, photocatalytic membranes, and the combination of the two solutions. The different treatment processes were tested at the laboratory scale to assess their performance in the removal and inactivation of water quality indicator bacteria and fungi present in wastewater effluents. The membranes were found to be effective to retain the microorganisms (rejection values higher than 96%), while three small ultraviolet C light-emitting diodes that emitted light at 255 and 265 nm showed an excellent performance for inactivation (higher than 2.5-log inactivation of total coliforms and Escherichia coli after 10 min of exposure in real wastewater effluents). When photocatalytic membranes are used, ultraviolet A light-emitting diodes ensured effective treatment of the retentate (higher than 65%). The combination of these two processes is extremely promising since it ensures not only the production of a high quality permeate that can be reused, but also the treatment of the retentate.
Collapse
|
12
|
Liang Z, Xu X, Cao R, Wan Q, Xu H, Wang J, Lin Y, Huang T, Wen G. Synergistic effect of ozone and chlorine on inactivating fungal spores: Influencing factors and mechanisms. JOURNAL OF HAZARDOUS MATERIALS 2021; 420:126610. [PMID: 34271445 DOI: 10.1016/j.jhazmat.2021.126610] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/18/2021] [Accepted: 07/07/2021] [Indexed: 06/13/2023]
Abstract
Effective control of fungal contamination in water is vital to provide healthy and safe drinking water for human beings. Although ozone was highly effective in inactivating fungi in water, it was limited by a lack of continuous disinfection ability in water supply system. In present study, the inactivation of fungal spores by combining ozone and chlorine was investigated. The synergistic effects of Aspergillus niger and Trichoderma harzianum spores reached 0.47- and 0.55-log within 10 min, respectively. The inactivation efficiency and the synergistic effect would be affected by disinfectant concentration, pH, and temperature. The combined inactivation caused more violent oxidative stimulation and more severe damage to the fungal spores than the individual inactivation based on the flow cytometry analysis and the scanning electron microscopy observation. The synergistic effect during the combined inactivation process was attributed to the generation of hydroxyl radicals by the reaction between ozone and chlorine and the promotion of chlorine penetration by the destruction of cell wall by ozone. The combined inactivation efficiency in natural water samples was reduced by 26.4-43.8% compared with that in PBS. The results of this study provided an efficient and feasible disinfection method for the control of fungi in drinking water.
Collapse
Affiliation(s)
- Zhiting Liang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Xiangqian Xu
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Ruihua Cao
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Qiqi Wan
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Huining Xu
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Jingyi Wang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Yingzi Lin
- School of Municipal and Environmental Engineering, Jilin Jianzhu University, Changchun 130118, PR China
| | - Tinglin Huang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Gang Wen
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China.
| |
Collapse
|
13
|
Zhao Z, Xue R, Fu L, Chen C, Ndayisenga F, Zhou D. Carbon dots enhance the recovery of microalgae bioresources from wastewater containing amoxicillin. BIORESOURCE TECHNOLOGY 2021; 335:125258. [PMID: 34029866 DOI: 10.1016/j.biortech.2021.125258] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 04/30/2021] [Accepted: 05/03/2021] [Indexed: 06/12/2023]
Abstract
The cultivation of microalgae using wastewater could bring some major economic benefits; however, the toxics in wastewater typically lead to a reduction in bioresource production. In this study, carbon dots (CDs) could enhance the photosynthetic activity of Chlorella under antibiotic stress because they might optimize photoluminescence by red-shifting incident light. Adding of 1 mg/L CDs increased the specific growth rate of Chlorella by 36.0% (day 8-13) and 52.7% (day 14-18) and significantly increased photosystems II activity. This treatment also increased amoxicillin removal by 18.6%. Thus, the toxicity of residuals was significantly eliminated (P < 0.05). The removal of nitrogen and phosphorous was increased by 14.6% and 9.9%, respectively. The production of pigments, lipids and proteins was increased by 16.6%, 19.5% and 24.8%, respectively. This work provided a new strategy of using CDs to mediate the coupling of microalgal bioresources production and toxic wastewater purification.
Collapse
Affiliation(s)
- Zhenhao Zhao
- Engineering Lab for Water Pollution Control and Resources Recovery of Jilin Province, School of Environment, Northeast Normal University, Changchun 130117, China
| | - Ren Xue
- Shanxi Taigang Engineering Technology Co. Ltd., Taiyuan 030000, China
| | - Liang Fu
- Engineering Lab for Water Pollution Control and Resources Recovery of Jilin Province, School of Environment, Northeast Normal University, Changchun 130117, China
| | - Congli Chen
- Engineering Lab for Water Pollution Control and Resources Recovery of Jilin Province, School of Environment, Northeast Normal University, Changchun 130117, China
| | - Fabrice Ndayisenga
- College of Resources and Environment, University of Chinese Academy of Sciences, 19 A Yuquan Road, Beijing 100049, PR China
| | - Dandan Zhou
- Engineering Lab for Water Pollution Control and Resources Recovery of Jilin Province, School of Environment, Northeast Normal University, Changchun 130117, China.
| |
Collapse
|
14
|
Wen G, Tan L, Cao R, Wan Q, Xu X, Wu G, Wang J, Huang T. Inactivation of waterborne fungal spores by 1-bromo-3-chloro-5,5-dimethylhydantoin: Kinetics, influencing factors and mechanisms. CHEMOSPHERE 2021; 274:129764. [PMID: 33545590 DOI: 10.1016/j.chemosphere.2021.129764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 01/19/2021] [Accepted: 01/21/2021] [Indexed: 06/12/2023]
Abstract
Fungal contamination in drinking water source has become a problem worth studying, as waterborne fungi may cause deterioration of water quality and outbreak of diseases. Various disinfection methods have been explored to control fungal spores in drinking water, such as chlor(am)ination, ozonation, chlorine dioxide treatment, but these methods are not appropriate for remote areas, owing to the difficulties in preparation, carriage and storage. In this study, a powdery disinfectant of 1-bromo-3-chloro-5,5-dimethylhydantoin (BCDMH), which facilitated transportation and preservation, was firstly chosen to inactivate opportunistic pathogens of Aspergillus niger (A. niger) and Penicillium polonicum (P. polonicum). The results revealed that the inactivation kinetics of fungal spores by BCDMH fitted to Chick-Watson model well, with the inactivation rate constant of 0.011 and 0.034 L mg-1 min-1 for A. niger and P. polonicum, respectively. Acidic condition and high temperature promoted the inactivation by BCDMH. Compared with chlorine, BCDMH showed relative weaker ability on inactivation of fungal spores. However, it was demonstrated that the inactivation efficiency of BCDMH was obviously enhanced by adding halide ions, with 11 or 36 folds for A. niger and 4 or 15 folds for P. polonicum by adding 40 μM Br- or I-. The inactivation mechanisms were detected by flow cytometry and scanning electron microscope. Fungal spores lost their culturability firstly, then membrane integrity was damaged. Meanwhile, the esterase activity and intracellular reactive oxygen species level changed, and finally intracellular adenosine triphosphate released.
Collapse
Affiliation(s)
- Gang Wen
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China.
| | - Lili Tan
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China
| | - Ruihua Cao
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China
| | - Qiqi Wan
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China
| | - Xiangqian Xu
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China
| | - Gehui Wu
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China
| | - Jingyi Wang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China
| | - Tinglin Huang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China
| |
Collapse
|
15
|
Agro and industrial residues: Potential raw materials for photocatalyst development. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2021.113184] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
16
|
Gémes B, Takács E, Gádoros P, Barócsi A, Kocsányi L, Lenk S, Csákányi A, Kautny S, Domján L, Szarvas G, Adányi N, Nabok A, Mörtl M, Székács A. Development of an Immunofluorescence Assay Module for Determination of the Mycotoxin Zearalenone in Water. Toxins (Basel) 2021; 13:182. [PMID: 33801263 PMCID: PMC8000975 DOI: 10.3390/toxins13030182] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 02/23/2021] [Accepted: 02/24/2021] [Indexed: 01/12/2023] Open
Abstract
Project Aquafluosense is designed to develop prototypes for a fluorescence-based instrumentation setup for in situ measurements of several characteristic parameters of water quality. In the scope of the project an enzyme-linked fluorescent immunoassay (ELFIA) method has been developed for the detection of several environmental xenobiotics, including mycotoxin zearalenone (ZON). ZON, produced by several plant pathogenic Fusarium species, has recently been identified as an emerging pollutant in surface water, presenting a hazard to aquatic ecosystems. Due to its physico-chemical properties, detection of ZON at low concentrations in surface water is a challenging task. The 96-well microplate-based fluorescence instrument is capable of detecting ZON in the concentration range of 0.09-400 ng/mL. The sensitivity and accuracy of the analytical method has been demonstrated by a comparative assessment with detection by high-performance liquid chromatography and by total internal reflection ellipsometry. The limit of detection of the method, 0.09 ng/mL, falls in the low range compared to the other reported immunoassays, but the main advantage of this ELFIA method is its efficacy in combined in situ applications for determination of various important water quality parameters detectable by induced fluorimerty-e.g., total organic carbon content, algal density or the level of other organic micropollutants detectable by immunofluorimetry. In addition, the immunofluorescence module can readily be expanded to other target analytes if proper antibodies are available for detection.
Collapse
Affiliation(s)
- Borbála Gémes
- Agro-Environmental Research Centre, Institute of Environmental Sciences, Hungarian University of Agriculture and Life Sciences, Herman O. út 15, H-1022 Budapest, Hungary; (B.G.); (E.T.); (M.M.)
| | - Eszter Takács
- Agro-Environmental Research Centre, Institute of Environmental Sciences, Hungarian University of Agriculture and Life Sciences, Herman O. út 15, H-1022 Budapest, Hungary; (B.G.); (E.T.); (M.M.)
| | - Patrik Gádoros
- Department of Atomic Physics, Budapest University of Technology and Economics, Műegyetem rkp. 3, H-1111 Budapest, Hungary; (P.G.); (A.B.); (L.K.); (S.L.)
| | - Attila Barócsi
- Department of Atomic Physics, Budapest University of Technology and Economics, Műegyetem rkp. 3, H-1111 Budapest, Hungary; (P.G.); (A.B.); (L.K.); (S.L.)
| | - László Kocsányi
- Department of Atomic Physics, Budapest University of Technology and Economics, Műegyetem rkp. 3, H-1111 Budapest, Hungary; (P.G.); (A.B.); (L.K.); (S.L.)
| | - Sándor Lenk
- Department of Atomic Physics, Budapest University of Technology and Economics, Műegyetem rkp. 3, H-1111 Budapest, Hungary; (P.G.); (A.B.); (L.K.); (S.L.)
| | - Attila Csákányi
- Optimal Optik Ltd., Dayka Gábor u. 6/B, H-1118 Budapest, Hungary; (A.C.); (S.K.); (L.D.); (G.S.)
| | - Szabolcs Kautny
- Optimal Optik Ltd., Dayka Gábor u. 6/B, H-1118 Budapest, Hungary; (A.C.); (S.K.); (L.D.); (G.S.)
| | - László Domján
- Optimal Optik Ltd., Dayka Gábor u. 6/B, H-1118 Budapest, Hungary; (A.C.); (S.K.); (L.D.); (G.S.)
| | - Gábor Szarvas
- Optimal Optik Ltd., Dayka Gábor u. 6/B, H-1118 Budapest, Hungary; (A.C.); (S.K.); (L.D.); (G.S.)
| | - Nóra Adányi
- Food Science Research Centre, Institute of Food Sciences, Hungarian University of Agriculture and Life Sciences, Herman O. út 15, H-1022 Budapest, Hungary;
| | - Alexei Nabok
- Materials and Engineering Research Institute, Sheffield Hallam University, Howard Street, Sheffield S1 1WB, UK;
| | - Mária Mörtl
- Agro-Environmental Research Centre, Institute of Environmental Sciences, Hungarian University of Agriculture and Life Sciences, Herman O. út 15, H-1022 Budapest, Hungary; (B.G.); (E.T.); (M.M.)
| | - András Székács
- Agro-Environmental Research Centre, Institute of Environmental Sciences, Hungarian University of Agriculture and Life Sciences, Herman O. út 15, H-1022 Budapest, Hungary; (B.G.); (E.T.); (M.M.)
| |
Collapse
|
17
|
Novak Babič M, Gunde-Cimerman N. Water-Transmitted Fungi are Involved in Degradation of Concrete Drinking Water Storage Tanks. Microorganisms 2021; 9:microorganisms9010160. [PMID: 33445679 PMCID: PMC7828128 DOI: 10.3390/microorganisms9010160] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 01/07/2021] [Accepted: 01/11/2021] [Indexed: 11/16/2022] Open
Abstract
Global warming, globalization, industrialization, and the rapidly growing population at present increasingly affect the production of safe drinking water. In combination with sustainable bio-based or recycled materials, used for water distribution systems, these factors promote emerging pathogens, including fungi. They can proliferate in oligotrophic water systems, affect the disinfection process, degrade building materials, and cause diseases in humans. In this study, we explored fungal-based degradation of modern concrete water storage tanks and the presence of fungi in chlorinated drinking water at the entrance and exit of the tanks. The degradation potential of isolated 52 fungal strains and their growth at different oligotrophic conditions was tested in vitro. Forty percent of strains grew at extremely oligotrophic conditions, and 50% classified as aerophilic. Two-thirds of tested strains produced acids, with Penicillium strains as the best producers. Only 29.7% of the strains were able to grow at 37 °C, and none of them was isolated from drinking water at consumers' taps. Although not yet part of the guidelines for building materials in contact with drinking water, fungi should be taken into consideration in case of visible degradation. Their number of consumers' endpoints should be checked to exclude possible health risks for consumers.
Collapse
|
18
|
Yan L, Hui N, Simpanen S, Tudeer L, Romantschuk M. Simulation of Microbial Response to Accidental Diesel Spills in Basins Containing Brackish Sea Water and Sediment. Front Microbiol 2020; 11:593232. [PMID: 33424796 PMCID: PMC7785775 DOI: 10.3389/fmicb.2020.593232] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 12/02/2020] [Indexed: 11/26/2022] Open
Abstract
The brackish Baltic Sea is under diesel oil pollution risk due to heavy ship traffic. The situation is exasperated by densely distributed marinas and a vigorous although seasonal recreational boating. The seasonality and physical environmental variations hamper the monitoring of microbial communities in response to diesel oil spills. Hence, an 8-week simulation experiment was established in metal basins (containing 265 L sea water and 18 kg quartz sand or natural shore sand as the littoral sediment) to study the effect of accidental diesel oil spills on microbial communities. Our results demonstrated that microbial communities in the surface water responded to diesel oil contamination, whereas those in the littoral sediment did not, indicating that diesel oil degradation mainly happened in the water. Diesel oil decreased the abundance of bacteria and fungi, but increased bacterial diversity in the water. Time was the predominant driver of microbial succession, attributable to the adaption strategies of microbes. Bacteria were more sensitive to diesel oil contamination than fungi and archaea. Diesel oil increased relative abundances of bacterial phyla, Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, Flavobacteriia and Cytophagia, and fungal phylum Ascomycota in the surface water. Overall, this study improves the understanding of the immediate ecological impact of accidental diesel oil contamination, providing insights into risk management at the coastal area.
Collapse
Affiliation(s)
- Lijuan Yan
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- Faculty of Biological and Environmental Sciences, University of Helsinki, Lahti, Finland
| | - Nan Hui
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- Faculty of Biological and Environmental Sciences, University of Helsinki, Lahti, Finland
| | - Suvi Simpanen
- Faculty of Biological and Environmental Sciences, University of Helsinki, Lahti, Finland
| | - Laura Tudeer
- Faculty of Biological and Environmental Sciences, University of Helsinki, Lahti, Finland
| | - Martin Romantschuk
- Faculty of Biological and Environmental Sciences, University of Helsinki, Lahti, Finland
| |
Collapse
|
19
|
Afonso TB, Simões LC, Lima N. Occurrence of filamentous fungi in drinking water: their role on fungal-bacterial biofilm formation. Res Microbiol 2020; 172:103791. [PMID: 33197515 DOI: 10.1016/j.resmic.2020.11.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 11/05/2020] [Accepted: 11/09/2020] [Indexed: 12/17/2022]
Abstract
Water is indispensable to life and safe and accessible supply must be available to all. The presence of microorganisms is a threat to this commitment. Biofilms are the main reservoir of microorganisms inside water distribution systems and they are extremely ecologically diverse. Filamentous fungi and bacteria can coexist inside these systems forming inter-kingdom biofilms. This review has the goal of summarizing the most relevant and recent reports on the occurrence of filamentous fungi in water distribution systems along with the current knowledge and gaps about filamentous fungal biofilm formation. Special focus is given on fungal-bacterial interactions in water biofilms.
Collapse
Affiliation(s)
| | | | - Nelson Lima
- CEB, Centre of Biological Engineering, University of Minho, Braga, Portugal.
| |
Collapse
|
20
|
Caggiano G, Diella G, Triggiano F, Bartolomeo N, Apollonio F, Campanale C, Lopuzzo M, Montagna MT. Occurrence of Fungi in the Potable Water of Hospitals: A Public Health Threat. Pathogens 2020; 9:E783. [PMID: 32987845 PMCID: PMC7601515 DOI: 10.3390/pathogens9100783] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/18/2020] [Accepted: 09/22/2020] [Indexed: 01/24/2023] Open
Abstract
Since the last decade, attention towards the occurrence of fungi in potable water has increased. Commensal and saprophytic microorganisms widely distributed in nature are also responsible for causing public health problems. Fungi can contaminate hospital environments, surviving and proliferating in moist and unsterile conditions. According to Italian regulations, the absence of fungi is not a mandatory parameter to define potable water, as a threshold value for the fungal occurrence has not been defined. This study evaluated the occurrence of fungi in potable water distribution systems in hospitals. The frequency of samples positive for the presence of fungi was 56.9%; among them, filamentous fungi and yeasts were isolated from 94.2% and 9.2% of the samples, respectively. The intensive care unit (87.1%) had the highest frequency of positive samples. Multivariable model (p < 0.0001), the variables of the period of the year (p < 0.0001) and type of department (p = 0.0002) were found to be statistically significant, suggesting a high distribution of filamentous fungi in the potable water of hospitals. Further studies are necessary to validate these results and identify the threshold values of fungi levels for different types of water used for various purposes to ensure the water is safe for consumption and protect public health.
Collapse
Affiliation(s)
- Giuseppina Caggiano
- Department of Biomedical Science and Human Oncology-Hygiene Section, University of Bari Aldo Moro, Piazza G. Cesare 11, 70124 Bari, Italy; (G.D.); (F.T.); (N.B.); (F.A.); (C.C.); (M.L.); (M.T.M.)
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Zhang C, Dong S, Chen C, Zhang Q, Zhou D. Co-substrate addition accelerated amoxicillin degradation and detoxification by up-regulating degradation related enzymes and promoting cell resistance. JOURNAL OF HAZARDOUS MATERIALS 2020; 394:122574. [PMID: 32278124 DOI: 10.1016/j.jhazmat.2020.122574] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/06/2020] [Accepted: 03/20/2020] [Indexed: 06/11/2023]
Abstract
β-Lactam antibiotics are the most commonly used antibiotics, and are difficult to remove by conventional biological treatments because of their persistent and toxic nature. The addition of co-substrates has been successfully employed to improve the removal of refractory pollutants. So, we hypothesized that the co-substrate strategy would increase antibiotic degradation and benefit microbial survival. In this work, we reported that co-substrate (acetate) addition up-regulated key degrading enzymes and resistance related genes in a model bacteria strain (L. aquatilis) when being treated with 0.055 mM amoxicillin (AMO). β-Lactamase, amidases, transaminase, and amide C-N hydrolase showed increased activation. As a result, AMO removal reached ∼95 %, a ∼60 % increase over the control. Furthermore, the addition of acetate drove the down-stream TCA cycle, which accelerated the detoxification of the intermediates and reduced the microbial inhibition by the antibiotic products to as low as ∼15 %. Besides, the expression levels of genes encoding the efflux pump, penicillin binding proteins, and β-Lactamase were up-regulated, and the inhibition of peptidoglycan biosynthesis was down-regulated. The cell density was enhanced by ∼170 % and showed improved DNA replication. In conclusion, the addition of the co-substrate accelerated AMO degradation and detoxification by up-regulating degrading enzymes and promoting cell resistance.
Collapse
Affiliation(s)
- Chongjun Zhang
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun, 130021, China; Engineering Lab for Water Pollution Control and Resources Recovery of Jilin Province, School of Environment, Northeast Normal University, Changchun, 130117, China
| | - Shuangshi Dong
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun, 130021, China
| | - Congli Chen
- Engineering Lab for Water Pollution Control and Resources Recovery of Jilin Province, School of Environment, Northeast Normal University, Changchun, 130117, China
| | - Qifeng Zhang
- Engineering Lab for Water Pollution Control and Resources Recovery of Jilin Province, School of Environment, Northeast Normal University, Changchun, 130117, China
| | - Dandan Zhou
- Engineering Lab for Water Pollution Control and Resources Recovery of Jilin Province, School of Environment, Northeast Normal University, Changchun, 130117, China.
| |
Collapse
|
22
|
Arroyo MG, Ferreira AM, Frota OP, Brizzotti-Mazuchi NS, Peresi JTM, Rigotti MA, Macedo CE, de Sousa AFL, de Andrade D, de Almeida MTG. Broad Diversity of Fungi in Hospital Water. ScientificWorldJournal 2020; 2020:9358542. [PMID: 32694957 PMCID: PMC7355380 DOI: 10.1155/2020/9358542] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 06/15/2020] [Indexed: 11/18/2022] Open
Abstract
INTRODUCTION Some studies have reported the occurrence of microorganisms isolated from water. Considering these microorganisms, fungi are known to occur ubiquitously in the environment, including water, and some are pathogenic and may cause health problems, especially in immunocompromised individuals. The aim of this study was to identify fungi in hospital water samples and to correlate their presence with the concentration of free residual chlorine. METHODS Water samples (100 mL) were collected from taps (n = 74) and water purifiers (n = 14) in different locations in a university hospital. Samples were filtered through a nitrocellulose membrane and placed on Sabouraud dextrose agar and incubated for 24 hours at 30°C. Fungi were identified according to established methods based on macroscopic and microscopic characteristics (filamentous) and physiological tests (yeasts). Free chlorine residual content was measured at the time of sample collection. RESULTS Seventy species of fungi were identified in the water samples and about 56% of the water samples contained culturable fungi. Cladosporium oxysporum, Penicillium spinulosum, and Aspergillus fumigatus were the most common filamentous fungi. Aureobasidium pullulans and Candida parapsilosis were the most common yeasts. Chemical analyses revealed that free residual chlorine was present in 81.8% of the samples within recommended concentrations. Among samples from water purifiers, 92.9% showed low levels of free residual chlorine (<0.2 mg/L). There was no significant association between chlorine concentrations (either within or outside the recommended range) and the presence of filamentous fungi and yeasts. CONCLUSIONS This study showed that hospital water can be a reservoir for fungi, some of which are potentially harmful to immunocompromised patients. Free residual chlorine was ineffective in some samples.
Collapse
Affiliation(s)
- Máira Gazzola Arroyo
- Postgraduate Program in Microbiology, São Paulo State University, Sreet Cristóvão Colombo, 2265 Garden Nazareth, São José do Rio Preto, SP 15054-000, Brazil
| | - Adriano Menis Ferreira
- Postgraduate Program Nursing and Medical Course, Federal University of Mato Grosso do Sul, Três Lagoas, MS 79600-080, Brazil
| | - Oleci Pereira Frota
- Postgraduate Program in Nursing Course, Federal University of Mato Grosso do Sul, Campo Grande, MS 79070-900, Brazil
| | - Natalia Seron Brizzotti-Mazuchi
- Department of Infectious and Parasitic Diseases, School of Medicine of São José Do Rio Preto, São José do Rio Preto, SP 15090-000, Brazil
| | | | | | - Carlos Eduardo Macedo
- Postgraduate Program in Health and Development in the Midwest, Federal University of Mato Grosso do Sul, Três Lagoas, MS 79600-080, Brazil
| | - Alvaro Francisco Lopes de Sousa
- Department of General and Specialized Nursing, University of São Paulo, Ribeirão Preto School of Nursing, Ribeirão Preto, SP 14049-900, Brazil
| | - Denise de Andrade
- Department of General and Specialized Nursing, University of São Paulo, Ribeirão Preto School of Nursing, Ribeirão Preto, SP 14049-900, Brazil
| | | |
Collapse
|
23
|
Monapathi ME, Bezuidenhout CC, James Rhode OH. Aquatic yeasts: diversity, characteristics and potential health implications. JOURNAL OF WATER AND HEALTH 2020; 18:91-105. [PMID: 32300084 DOI: 10.2166/wh.2020.270] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
There has been a rising interest in the levels, diversity and potential impacts of yeasts in aquatic environments. Some of the species isolated from such niches are known pathogens or have pathogenic and antifungal resistance features. This deems it necessary to understand the characteristics and potential health implications of such environmental yeasts species. Studies on these subjects are limited. Most studies on aquatic yeasts have linked them to water pollution. However, the current gold standards to determine microbial pollution of water use bacteria as the main indicator organisms. Including yeasts in water quality standards may provide a different dimension on the quality of water when determining its fit-for-use properties. Pathogenic yeasts cause superficial infections or life-threatening infections, especially in immunocompromised people. Some of the yeast species isolated in recent studies were resistant to commonly used antifungal agents of clinical and veterinary relevance. With the high prevalence rate of HIV in sub-Saharan Africa, particularly in South Africa, antifungal resistance is a public concern as it poses serious medical and economic challenges. Most available studies are concerned with clinical environments only. There is, thus, a need to review the literature that also focuses on aquatic environments.
Collapse
Affiliation(s)
- Mzimkhulu Ephraim Monapathi
- Unit for Environmental Science and Management - Microbiology, North-West University, Potchefstroom, South Africa E-mail: ; Faculty of Applied and Computer Science - Chemistry, Vaal University of Technology, Vanderbijlpark Park, South Africa
| | - Carlos Cornelius Bezuidenhout
- Unit for Environmental Science and Management - Microbiology, North-West University, Potchefstroom, South Africa E-mail:
| | | |
Collapse
|
24
|
Wen G, Cao R, Wan Q, Tan L, Xu X, Wang J, Huang T. Development of fungal spore staining methods for flow cytometric quantification and their application in chlorine-based disinfection. CHEMOSPHERE 2020; 243:125453. [PMID: 31995893 DOI: 10.1016/j.chemosphere.2019.125453] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 11/22/2019] [Accepted: 11/22/2019] [Indexed: 06/10/2023]
Abstract
Fungal contamination in drinking water has been becoming a hot topic. The routine enumeration method of fungal spores is heterotrophic plate counts (HPC). However, this method is time-consuming and labor-intensive and there is also the difficulty of enumerating viable but non-culturable cells. In this study, a rapid, simple and accurate method for quantifying fungal spores and discriminating their viability in water was established using flow cytometry (FCM) combined with fluorescence dyes. The optimal staining conditions are as follows: spores suspensions are sonicated at 495 W for 5 min as pretreatment, and then 10 μL of SYBR Green I (100×) and 30 mM Ethylene diamine tetraacetic acid are added to a 500 μL water sample, which incubate at 35 °C for 20 min in dark. The concentration of fungal spores measured by FCM was highly correlated with HPC results and microscope observations, with correlation coefficient of 0.996 and 0.988, respectively. This staining method can be widely applied to the enumeration and viability evaluation of fungal spores. In addition, chlorine-based inactivation of three genera of fungal spores was assessed by plating and FCM. The result showed that all three genera of fungal spores lost culturability firstly and then membrane integrity decreased, preliminarily revealing the inactivation mechanism. The inactivation rate constants of membrane damage varied in the following order: chlorine dioxide > chlorine > chloramine. This study concluded that FCM is an appropriate and alternative tool to detect fungal spores' viability and can be used for evaluating the fungal inactivation by disinfectants.
Collapse
Affiliation(s)
- Gang Wen
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China.
| | - Ruihua Cao
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China
| | - Qiqi Wan
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China
| | - Lili Tan
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China
| | - Xiangqian Xu
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China
| | - Jingyi Wang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China
| | - Tinglin Huang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China.
| |
Collapse
|
25
|
Muraro PCL, Mortari SR, Vizzotto BS, Chuy G, Dos Santos C, Brum LFW, da Silva WL. Iron oxide nanocatalyst with titanium and silver nanoparticles: Synthesis, characterization and photocatalytic activity on the degradation of Rhodamine B dye. Sci Rep 2020; 10:3055. [PMID: 32080290 PMCID: PMC7033158 DOI: 10.1038/s41598-020-59987-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Accepted: 02/06/2020] [Indexed: 01/09/2023] Open
Abstract
Nowadays, there is a growing concern about the environmental impacts of colored wastewater. Thus, the present work aims the synthesis, characterization and determination of photocatalytic activity of iron oxide (Fe2O3) nanocatalyst, evaluating the effect of hybridization with titanium (TiNPs-Fe2O3) and silver (AgNPs-Fe2O3) nanoparticles, on the degradation of Rhodamine B dye (RhB). Nanocatalysts were characterized by XRD, SEM, TEM, FTIR, N2 porosimetry (BET/BJH method), zeta potential and DRS. Photocatalytic tests were performed in a slurry reactor, with the nanocatalyst in suspension, using RhB as a target molecule, under ultraviolet (UV) and visible radiation. Therefore, the photocatalytic activity of the nanocatalysts (non-doped and hybridized) was evaluated in these ideal conditions, where the AgNPs-Fe2O3 sample showed the best photocatalytic activity with a degradation of 94.1% (k = 0.0222 min−1, under UV) and 58.36% (k = 0.007 min−1, under visible), while under the same conditions, the TiO2-P25 commercial catalyst showed a degradation of 61.5% (k = 0.0078 min−1) and 44.5% (k = 0.0044 min−1), respectively. According with the ideal conditions determined, reusability of the AgNPs-Fe2O3 nanocatalyst was measured, showing a short reduction (about 8%) of its photocatalytic activity after 5 cycles. Thus, the Fe2O3 nanocatalyst can be considered a promising catalyst in the heterogeneous photocatalysis for application in the degradation of organic dyes in aqueous solution.
Collapse
Affiliation(s)
- Pâmela Cristine Ladwig Muraro
- Universidade Franciscana - Programa de Pós-Graduação em Nanociências Rua Silva Jardim no 1323, Santa Maria, RS, 97010-491, Brasil
| | - Sérgio Roberto Mortari
- Universidade Franciscana - Programa de Pós-Graduação em Nanociências Rua Silva Jardim no 1323, Santa Maria, RS, 97010-491, Brasil
| | - Bruno Stefanello Vizzotto
- Universidade Franciscana - Programa de Pós-Graduação em Nanociências Rua Silva Jardim no 1323, Santa Maria, RS, 97010-491, Brasil
| | - Gabriela Chuy
- Universidade Franciscana - Programa de Pós-Graduação em Nanociências Rua Silva Jardim no 1323, Santa Maria, RS, 97010-491, Brasil
| | - Cristiane Dos Santos
- Instituto de Química - Universidade Federal do Rio Grande do Sul Av. Bento Gonçalves no 9500, Porto Alegre, RS, 91501-970, Brasil
| | - Luís Fernando Wentz Brum
- Instituto de Química - Universidade Federal do Rio Grande do Sul Av. Bento Gonçalves no 9500, Porto Alegre, RS, 91501-970, Brasil
| | - William Leonardo da Silva
- Universidade Franciscana - Programa de Pós-Graduação em Nanociências Rua Silva Jardim no 1323, Santa Maria, RS, 97010-491, Brasil.
| |
Collapse
|
26
|
Xu H, Ma R, Zhu Y, Du M, Zhang H, Jiao Z. A systematic study of the antimicrobial mechanisms of cold atmospheric-pressure plasma for water disinfection. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 703:134965. [PMID: 31740060 DOI: 10.1016/j.scitotenv.2019.134965] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 10/11/2019] [Accepted: 10/11/2019] [Indexed: 06/10/2023]
Abstract
Waterborne diseases caused by pathogenic microorganisms pose a severe threat to human health. Cold atmospheric-pressure plasma (CAP) has recently gained much interest as a promising fast, effective, economical and eco-friendly method for water disinfection. However, the antimicrobial mechanism of CAP in aqueous environments is still not clearly understood. Herein, we investigate the role of several short-lived reactive oxygen species (ROS) and cellular responses in the CAP inactivation of yeast cells in water. The results show that singlet oxygen (1O2), hydroxyl radical (OH) and superoxide anion (O2-) are generated in this plasma-water system, and O2- served as the precursor of OH. The 5-min plasma treatment resulted in the effective inactivation (more than 2-log reduction) of yeast cells in water. The ROS scavengers significantly increased the survival ratio in the following order: water < D-Man (scavenging OH) < SOD (scavenging O2-) < L-His (scavenging 1O2), indicating that 1O2 contributes the most to the yeast inactivation. In addition, the acidic pH had a synergetic antimicrobial effect with ROS against the yeast cells. During the CAP inactivation process, yeast cells underwent apoptosis in the first 3 min due to the accumulation of intracellular ROS, mitochondrial dysfunction and intracellular acidification, later followed by necrosis under longer exposure times, attributed to the destruction of the cell membrane. Additionally, L-His could switch the cell fate from necrosis to apoptosis through mitigating plasma-induced oxidative stress, indicating that the level of oxidative stress is a critical factor for cell death fate determination. These findings provide comprehensive insights into the antimicrobial mechanism of CAP, which can promote the development of CAP as an alternative water disinfection strategy.
Collapse
Affiliation(s)
- Hangbo Xu
- Henan Key Laboratory of Ion-beam Bioengineering, College of Agricultural Science, Zhengzhou University, Zhengzhou 450052, PR China
| | - Ruonan Ma
- Henan Key Laboratory of Ion-beam Bioengineering, College of Agricultural Science, Zhengzhou University, Zhengzhou 450052, PR China.
| | - Yupan Zhu
- Henan Key Laboratory of Ion-beam Bioengineering, College of Agricultural Science, Zhengzhou University, Zhengzhou 450052, PR China
| | - Mengru Du
- Henan Key Laboratory of Ion-beam Bioengineering, College of Agricultural Science, Zhengzhou University, Zhengzhou 450052, PR China
| | - Hua Zhang
- Henan Key Laboratory of Ion-beam Bioengineering, College of Agricultural Science, Zhengzhou University, Zhengzhou 450052, PR China; School of Food and Bioengineering, Henan University of Animal Husbandry and Economy, Zhengzhou 450000, PR China
| | - Zhen Jiao
- Henan Key Laboratory of Ion-beam Bioengineering, College of Agricultural Science, Zhengzhou University, Zhengzhou 450052, PR China.
| |
Collapse
|
27
|
Wasinpiyamongkol L, Kanchanaphum P. Isolating and identifying fungi to determine whether their biological properties have the potential to control the population density of mosquitoes. Heliyon 2019; 5:e02331. [PMID: 31508522 PMCID: PMC6726841 DOI: 10.1016/j.heliyon.2019.e02331] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 05/24/2019] [Accepted: 08/15/2019] [Indexed: 01/24/2023] Open
Abstract
Mosquitoes transmit diseases such as dengue, chikungunya, Zika, and yellow fever to humans. Biological control methods are required for these insects because they can be environmentally friendlier, safer, and more cost-effective than chemical or physical methods currently available. The aim of this research is to identify fungi found in mosquito breeding containers that have the potential to control the population density of mosquitoes. For the identification, water samples were taken from mosquito breeding containers situated in seven districts of Bangkok to obtain pure cultures. Deoxyribonucleic acid (DNA) was extracted from the cultures then sent for sequencing and analyzing. The results show that fourteen strains of fungi were isolated. The most common strain found was Aspergillus spp., which was present in 31 of the 78 fungi samples. The strains Metarhizium anisopliae and Penicilium citrinum were found to be interesting because they may have the potential to act as entomopathogenic fungi. The biological properties of these strains should be further investigated because they could help in the fight against mosquito-borne diseases.
Collapse
Affiliation(s)
| | - Panan Kanchanaphum
- Biochemistry Unit, Faculty of Science, Rangsit University, Pathumthani, Thailand
| |
Collapse
|
28
|
Mhlongo NT, Tekere M, Sibanda T. Prevalence and public health implications of mycotoxigenic fungi in treated drinking water systems. JOURNAL OF WATER AND HEALTH 2019; 17:517-531. [PMID: 31313991 DOI: 10.2166/wh.2019.122] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Insufficient potable water resources and poorly treated drinking water quality are the world's number one cause for preventable morbidity and mortality from water-related pathogenic microorganisms. Pathogenic microorganisms, including mycotoxigenic fungi, have been identified in treated drinking water. This paper presents a review of mycotoxigenic fungi as a health risk to the public as these fungi are responsible for allergies, cancers and opportunistic infections mainly to immunocompromised patients. The exacerbating factors contributing to fungal presence in water distribution systems, factors that lead to fungi being resistant to water treatment and treated drinking water quality legislations are also discussed. This paper provides a review on the prevalence of mycotoxigenic fungi and their implications to public health in treated drinking water, and the need for inclusion in treated drinking water quality regulations.
Collapse
Affiliation(s)
- Ntombie Thandazile Mhlongo
- Department of Environmental Sciences, College of Agriculture and Environmental Sciences, University of South Africa, P.O. Box X6, Florida 1710, Johannesburg, South Africa E-mail:
| | - Memory Tekere
- Department of Environmental Sciences, College of Agriculture and Environmental Sciences, University of South Africa, P.O. Box X6, Florida 1710, Johannesburg, South Africa E-mail:
| | - Timothy Sibanda
- Department of Biological Sciences, University of Namibia, Private Bag 13301, Windhoek, Namibia
| |
Collapse
|
29
|
Ganuza M, Pastor N, Boccolini M, Erazo J, Palacios S, Oddino C, Reynoso MM, Rovera M, Torres AM. Evaluating the impact of the biocontrol agent Trichoderma harzianum ITEM 3636 on indigenous microbial communities from field soils. J Appl Microbiol 2018; 126:608-623. [PMID: 30382616 DOI: 10.1111/jam.14147] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 10/09/2018] [Accepted: 10/22/2018] [Indexed: 11/30/2022]
Abstract
AIM To investigate the impact of inoculating peanut seeds with the biocontrol agent Trichoderma harzianum ITEM 3636 on the structure of bacterial and fungal communities from agricultural soils. METHODS AND RESULTS Polymerase chain reaction (PCR)-denaturing gradient gel electrophoresis (PCR-DGGE) and next-generation sequencing (NGS) of amplicons (or marker gene amplification metagenomics) were performed to investigate potential changes in the structure of microbial communities from fields located in a peanut-producing area in the province of Córdoba, Argentina. Fields had history of peanut smut (caused by Thecaphora frezii) incidence. The Shannon indexes (H'), which estimate diversity, obtained from the PCR-DGGE assays did not show significant differences neither for bacterial nor for fungal communities between control and inoculation treatments. On the other hand, the number of operational taxonomic units obtained after NGS was similar between all the analysed samples. Moreover, results of alpha and beta diversity showed that there were no significant variations between the relative abundances of the most representative bacterial and fungal phyla and genera, in both fields. CONCLUSIONS Trichoderma harzianum ITEM 3636 decreases the incidence and severity of agriculturally relevant diseases without causing significant changes in the microbial communities of agricultural soils. SIGNIFICANCE AND IMPACT OF THE STUDY Our investigations provide information on the structure of bacterial and fungal communities in peanut-producing fields after inoculation of seeds with a biocontrol agent.
Collapse
Affiliation(s)
- M Ganuza
- Departamento de Microbiología e Inmunología, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba, Argentina.,UNRC-CONICET, Río Cuarto, Argentina
| | - N Pastor
- Departamento de Microbiología e Inmunología, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba, Argentina.,UNRC-CONICET, Río Cuarto, Argentina
| | - M Boccolini
- INTA EEA - Instituto Nacional de Tecnología Agropecuaria Estación Experimental Marcos Juárez, Marcos Juárez, Córdoba, Argentina
| | - J Erazo
- Departamento de Microbiología e Inmunología, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba, Argentina.,UNRC-CONICET, Río Cuarto, Argentina
| | - S Palacios
- Departamento de Microbiología e Inmunología, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba, Argentina.,UNRC-CONICET, Río Cuarto, Argentina
| | - C Oddino
- Facultad de Agronomía y Veterinaria, UNRC, Río Cuarto, Córdoba, Argentina
| | - M M Reynoso
- Departamento de Microbiología e Inmunología, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba, Argentina.,UNRC-CONICET, Río Cuarto, Argentina
| | - M Rovera
- Departamento de Microbiología e Inmunología, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba, Argentina
| | - A M Torres
- Departamento de Microbiología e Inmunología, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba, Argentina.,UNRC-CONICET, Río Cuarto, Argentina
| |
Collapse
|
30
|
Nawaz A, Purahong W, Lehmann R, Herrmann M, Totsche KU, Küsel K, Wubet T, Buscot F. First insights into the living groundwater mycobiome of the terrestrial biogeosphere. WATER RESEARCH 2018; 145:50-61. [PMID: 30118976 DOI: 10.1016/j.watres.2018.07.067] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 06/02/2018] [Accepted: 07/27/2018] [Indexed: 05/15/2023]
Abstract
Although fungi play important roles in biogeochemical cycling in aquatic ecosystems and have received a great deal of attention, much remains unknown about the living fractions of fungal communities in aquifers of the terrestrial subsurface in terms of diversity, community dynamics, functional roles, the impact of environmental factors and presence of fungal pathogens. Here we address this gap in knowledge by using RNA-based high throughput pair-end illumina sequencing analysis of fungal internal transcribed spacer (ITS) gene markers, to target the living fractions of groundwater fungal communities from fractured alternating carbonate-/siliciclastic-rock aquifers of the Hainich Critical Zone Exploratory. The probed levels of the hillslope multi-storey aquifer system differ primarily in their oxygen and nitrogen content due to their different connections to the surface. We discovered highly diverse living fungal communities (384 Operational Taxonomic Units, OTUs) with different taxonomic affiliations and ecological functions. The observed fungal communities primarily belonged to three phyla: Ascomycota, Basidiomycota and Chytridiomycota. Perceived dynamics in the composition of living fungal communities were significantly shaped by the concentration of ammonium in the moderately agriculturally impacted aquifer system. Apart from fungal saprotrophs, we also detected living plant and animal pathogens for the first time in this aquifer system. This work also demonstrates that the RNA-based high throughput pair-end illumina sequencing method can be used in future for water quality monitoring in terms of living fungal load and subsequent risk assessments. In general, this study contributes towards the growing knowledge of aquatic fungi in terrestrial subsurface biogeosphere.
Collapse
Affiliation(s)
- Ali Nawaz
- Helmholtz Centre for Environmental Research - UFZ, Department of Soil Ecology, Halle (Saale), Germany; Helmholtz Centre for Environmental Research - UFZ, Department of Community Ecology, Halle (Saale), Germany; Department of Biology, University of Leipzig, Leipzig, Germany.
| | - Witoon Purahong
- Helmholtz Centre for Environmental Research - UFZ, Department of Soil Ecology, Halle (Saale), Germany
| | - Robert Lehmann
- Institute of Geosciences, Friedrich Schiller University Jena, Burgweg 11, 07749, Jena, Germany
| | - Martina Herrmann
- Institute of Biodiversity, Friedrich Schiller University Jena, Dornburger Straße 159, 07743, Jena, Germany; German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103, Leipzig, Germany
| | - Kai Uwe Totsche
- Institute of Geosciences, Friedrich Schiller University Jena, Burgweg 11, 07749, Jena, Germany
| | - Kirsten Küsel
- Institute of Biodiversity, Friedrich Schiller University Jena, Dornburger Straße 159, 07743, Jena, Germany; German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103, Leipzig, Germany
| | - Tesfaye Wubet
- Helmholtz Centre for Environmental Research - UFZ, Department of Soil Ecology, Halle (Saale), Germany; Helmholtz Centre for Environmental Research - UFZ, Department of Community Ecology, Halle (Saale), Germany; German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103, Leipzig, Germany
| | - François Buscot
- Helmholtz Centre for Environmental Research - UFZ, Department of Soil Ecology, Halle (Saale), Germany; German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103, Leipzig, Germany
| |
Collapse
|
31
|
Douterelo I, Fish KE, Boxall JB. Succession of bacterial and fungal communities within biofilms of a chlorinated drinking water distribution system. WATER RESEARCH 2018; 141:74-85. [PMID: 29778067 DOI: 10.1016/j.watres.2018.04.058] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 04/05/2018] [Accepted: 04/25/2018] [Indexed: 06/08/2023]
Abstract
Understanding the temporal dynamics of multi-species biofilms in Drinking Water Distribution Systems (DWDS) is essential to ensure safe, high quality water reaches consumers after it passes through these high surface area reactors. This research studied the succession characteristics of fungal and bacterial communities under controlled environmental conditions fully representative of operational DWDS. Microbial communities were observed to increase in complexity after one month of biofilm development but they did not reach stability after three months. Changes in cell numbers were faster at the start of biofilm formation and tended to decrease over time, despite the continuing changes in bacterial community composition. Fungal diversity was markedly less than bacterial diversity and had a lag in responding to temporal dynamics. A core-mixed community of bacteria including Pseudomonas, Massillia and Sphingomonas and the fungi Acremonium and Neocosmopora were present constantly and consistently in the biofilms over time and conditions studied. Monitoring and managing biofilms and such ubiquitous core microbial communities are key control strategies to ensuring the delivery of safe drinking water via the current ageing DWDS infrastructure.
Collapse
Affiliation(s)
- I Douterelo
- Pennine Water Group, Department of Civil and Structural Engineering, Mappin Street, University of Sheffield, Sheffield, S1 3JD, UK.
| | - K E Fish
- Pennine Water Group, Department of Civil and Structural Engineering, Mappin Street, University of Sheffield, Sheffield, S1 3JD, UK
| | - J B Boxall
- Pennine Water Group, Department of Civil and Structural Engineering, Mappin Street, University of Sheffield, Sheffield, S1 3JD, UK
| |
Collapse
|
32
|
Opportunistic Water-Borne Human Pathogenic Filamentous Fungi Unreported from Food. Microorganisms 2018; 6:microorganisms6030079. [PMID: 30081519 PMCID: PMC6164083 DOI: 10.3390/microorganisms6030079] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 08/02/2018] [Accepted: 08/02/2018] [Indexed: 12/29/2022] Open
Abstract
Clean drinking water and sanitation are fundamental human rights recognized by the United Nations (UN) General Assembly and the Human Rights Council in 2010 (Resolution 64/292). In modern societies, water is not related only to drinking, it is also widely used for personal and home hygiene, and leisure. Ongoing human population and subsequent environmental stressors challenge the current standards on safe drinking and recreational water, requiring regular updating. Also, a changing Earth and its increasingly frequent extreme weather events and climatic changes underpin the necessity to adjust regulation to a risk-based approach. Although fungi were never introduced to water quality regulations, the incidence of fungal infections worldwide is growing, and changes in antimicrobial resistance patterns are taking place. The presence of fungi in different types of water has been thoroughly investigated during the past 30 years only in Europe, and more than 400 different species were reported from ground-, surface-, and tap-water. The most frequently reported fungi, however, were not waterborne, but are frequently related to soil, air, and food. This review focuses on waterborne filamentous fungi, unreported from food, that offer a pathogenic potential.
Collapse
|
33
|
De Marchi R, Koss M, Ziegler D, De Respinis S, Petrini O. Fungi in water samples of a full-scale water work. Mycol Prog 2018. [DOI: 10.1007/s11557-017-1372-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
34
|
Aguas Y, Hincapie M, Fernández-Ibáñez P, Polo-López MI. Solar photocatalytic disinfection of agricultural pathogenic fungi (Curvularia sp.) in real urban wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 607-608:1213-1224. [PMID: 28732400 DOI: 10.1016/j.scitotenv.2017.07.085] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 07/10/2017] [Accepted: 07/10/2017] [Indexed: 06/07/2023]
Abstract
The interest in developing alternative water disinfection methods that increase the access to irrigation water free of pathogens for agricultural purposes is increasing in the last decades. Advanced Oxidation Processes (AOPs) have been demonstrated to be very efficient for the abatement of several kind of pathogens in contaminated water. The purpose of the current study was to evaluate and compare the capability of several solar AOPs for the inactivation of resistant spores of agricultural fungi. Solar photoassisted H2O2, solar photo-Fenton at acid and near-neutral pH, and solar heterogeneous photocatalysis using TiO2, with and without H2O2, have been studied for the inactivation of spores of Curvularia sp., a phytopathogenic fungi worldwide found in soils and crops. Different concentrations of reagents and catalysts were evaluated at bench scale (solar vessel reactors, 200mL) and at pilot plant scale (solar Compound Parabolic Collector-CPC reactor, 20L) under natural solar radiation using distilled water (DW) and real secondary effluents (SE) from a municipal wastewater treatment plant. Inactivation order of Curvularia sp. in distilled water was determined, i.e. TiO2/H2O2/sunlight (100/50mgL-1)>H2O2/sunlight (40mgL-1)>TiO2/sunlight (100mgL-1)>photo-Fenton with 5/10mgL-1 of Fe2+/H2O2 at pH3 and near-neutral pH. For the case of SE, at near neutral pH, the most efficient solar process was H2O2/Solar (60mgL-1); nevertheless, the best Curvularia sp. inactivation rate was obtained with photo-Fenton (10/20mgL-1 of Fe2+/H2O2) requiring a previous water adicification to pH3, within 300 and 210min of solar treatment, respectively. These results show the efficiency of solar AOPs as a feasible option for the inactivation of resistant pathogens in water for crops irrigation, even in the presence of organic matter (average Dissolved Organic Carbon (DOC): 24mgL-1), and open a window for future wastewater reclamation and irrigation use.
Collapse
Affiliation(s)
- Yelitza Aguas
- Universidad de Sucre, School of Engineering, Cra 28 No 5-268, Sincelejo, Colombia; Universidad de Medellin, School of Engineering, Cra 87 No 30-65, Medellín, Colombia.
| | - Margarita Hincapie
- Universidad de Medellin, School of Engineering, Cra 87 No 30-65, Medellín, Colombia.
| | - Pilar Fernández-Ibáñez
- Nanotechnology and Integrated BioEngineering Centre, School of Engineering, University of Ulster, Newtownabbey, Northern Ireland BT37 0QB, United Kingdom.
| | | |
Collapse
|
35
|
Wen G, Xu X, Huang T, Zhu H, Ma J. Inactivation of three genera of dominant fungal spores in groundwater using chlorine dioxide: Effectiveness, influencing factors, and mechanisms. WATER RESEARCH 2017; 125:132-140. [PMID: 28843153 DOI: 10.1016/j.watres.2017.08.038] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 08/16/2017] [Accepted: 08/17/2017] [Indexed: 06/07/2023]
Abstract
Fungi in aquatic environments received more attention recently; therefore, the characteristics of inactivation of fungal spores by widely used disinfectants are quite important. Nonetheless, the inactivation efficacy of fungal spores by chlorine dioxide is poorly known. In this study, the effectiveness of chlorine dioxide at inactivation of three dominant genera of fungal spores isolated from drinking groundwater and the effects of pH, temperature, chlorine dioxide concentration, and humic acid were evaluated. The inactivation mechanisms were explored by analyzing the leakage of intracellular substances, the increase in extracellular adenosine triphosphate (ATP), deoxyribonucleic acid (DNA), and proteins as well as the changes in spore morphology. The kinetics of inactivation by chlorine dioxide fitted the Chick-Watson model, and different fungal species showed different resistance to chlorine dioxide inactivation, which was in the following order: Cladosporium sp.>Trichoderma sp. >Penicillium sp., which are much more resistant than Escherichia coli. Regarding the three genera of fungal spores used in this study, chlorine dioxide was more effective at inactivation of fungal spores than chlorine. The effect of disinfectant concentration and temperature was positive, and the impact of pH levels (6.0 and 7.0) was insignificant, whereas the influence of water matrices on the inactivation efficiency was negative. The increased concentration of characteristic extracellular substances and changes of spore morphology were observed after inactivation with chlorine dioxide and were due to cell wall and cell membrane damage in fungal spores, causing the leakage of intracellular substances and death of a fungal spore.
Collapse
Affiliation(s)
- Gang Wen
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China.
| | - Xiangqian Xu
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China
| | - Tinglin Huang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China.
| | - Hong Zhu
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| |
Collapse
|
36
|
Přikrylová K, Polievková E, Drbohlavová J, Veselá M, Hubálek J. Nanostructured titania decorated with silver nanoparticles for photocatalytic water disinfection. MONATSHEFTE FUR CHEMIE 2017. [DOI: 10.1007/s00706-017-2046-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
37
|
Fungal Contaminants in Drinking Water Regulation? A Tale of Ecology, Exposure, Purification and Clinical Relevance. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2017. [PMCID: PMC5486322 DOI: 10.3390/ijerph14060636] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Microbiological drinking water safety is traditionally monitored mainly by bacterial parameters that indicate faecal contamination. These parameters correlate with gastro-intestinal illness, despite the fact that viral agents, resulting from faecal contamination, are usually the cause. This leaves behind microbes that can cause illness other than gastro-intestinal and several emerging pathogens, disregarding non-endemic microbial contaminants and those with recent pathogenic activity reported. This white paper focuses on one group of contaminants known to cause allergies, opportunistic infections and intoxications: Fungi. It presents a review on their occurrence, ecology and physiology. Additionally, factors contributing to their presence in water distribution systems, as well as their effect on water quality are discussed. Presence of opportunistic and pathogenic fungi in drinking water can pose a health risk to consumers due to daily contact with water, via several exposure points, such as drinking and showering. The clinical relevance and influence on human health of the most common fungal contaminants in drinking water is discussed. Our goal with this paper is to place fungal contaminants on the roadmap of evidence based and emerging threats for drinking water quality safety regulations.
Collapse
|
38
|
Magwaza NM, Nxumalo EN, Mamba BB, Msagati TAM. The Occurrence and Diversity of Waterborne Fungi in African Aquatic Systems: Their Impact on Water Quality and Human Health. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2017; 14:ijerph14050546. [PMID: 28531124 PMCID: PMC5451996 DOI: 10.3390/ijerph14050546] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 05/15/2017] [Accepted: 05/16/2017] [Indexed: 11/16/2022]
Abstract
Currently, there is a worldwide growing interest in the occurrence and diversity of fungi and their secondary metabolites in aquatic systems, especially concerning their role in water quality and human health. However, this concern is hampered by the scant information that is available in the literature about aquatic fungi and how they affect water quality. There are only few published reports that link certain species of aquatic fungi to human health. The common aquatic fungal species that have been reported so far in African aquatic systems belong to the hyphomycetes kingdom. This paper thus aims to survey the information about the occurrence and factors that control the distribution of different species of fungi in African aquatic systems, as well as their effect on water quality and the possible metabolic pathways that lead to the formation of toxic secondary metabolites that are responsible for the deterioration of water quality. This review will also investigate the analytical and bioanalytical procedures that have been reported for the identification of different species of waterborne fungi and their secondary metabolites.
Collapse
Affiliation(s)
- Nontokozo M Magwaza
- Nanotechnology and Water Sustainability Research Unit, College of Science Engineering and Technology, University of South Africa, Roodepoort, 1710 Johannesburg, South Africa.
| | - Edward N Nxumalo
- Nanotechnology and Water Sustainability Research Unit, College of Science Engineering and Technology, University of South Africa, Roodepoort, 1710 Johannesburg, South Africa.
| | - Bhekie B Mamba
- Nanotechnology and Water Sustainability Research Unit, College of Science Engineering and Technology, University of South Africa, Roodepoort, 1710 Johannesburg, South Africa.
| | - Titus A M Msagati
- Nanotechnology and Water Sustainability Research Unit, College of Science Engineering and Technology, University of South Africa, Roodepoort, 1710 Johannesburg, South Africa.
| |
Collapse
|
39
|
Wang F, Li W, Zhang J, Qi W, Zhou Y, Xiang Y, Shi N. Characterization of suspended bacteria from processing units in an advanced drinking water treatment plant of China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:12176-12184. [PMID: 28353100 DOI: 10.1007/s11356-017-8874-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 03/20/2017] [Indexed: 06/06/2023]
Abstract
For the drinking water treatment plant (DWTP), the organic pollutant removal was the primary focus, while the suspended bacterial was always neglected. In this study, the suspended bacteria from each processing unit in a DWTP employing an ozone-biological activated carbon process was mainly characterized by using heterotrophic plate counts (HPCs), a flow cytometer, and 454-pyrosequencing methods. The results showed that an adverse changing tendency of HPC and total cell counts was observed in the sand filtration tank (SFT), where the cultivability of suspended bacteria increased to 34%. However, the cultivability level of other units stayed below 3% except for ozone contact tank (OCT, 13.5%) and activated carbon filtration tank (ACFT, 34.39%). It meant that filtration processes promoted the increase in cultivability of suspended bacteria remarkably, which indicated biodegrading capability. In the unit of OCT, microbial diversity indexes declined drastically, and the dominant bacteria were affiliated to Proteobacteria phylum (99.9%) and Betaproteobacteria class (86.3%), which were also the dominant bacteria in the effluent of other units. Besides, the primary genus was Limnohabitans in the effluents of SFT (17.4%) as well as ACFT (25.6%), which was inferred to be the crucial contributors for the biodegradable function in the filtration units. Overall, this paper provided an overview of community composition of each processing units in a DWTP as well as reference for better developing microbial function for drinking water treatment in the future.
Collapse
Affiliation(s)
- Feng Wang
- State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, 1239 Siping Road, Shanghai, 200092, P. R. China
- College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, P. R. China
| | - Weiying Li
- State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, 1239 Siping Road, Shanghai, 200092, P. R. China.
- Key Laboratory of Yangtze Aquatic Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, P. R. China.
| | - Junpeng Zhang
- College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, P. R. China
- Key Laboratory of Yangtze Aquatic Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, P. R. China
| | - Wanqi Qi
- State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, 1239 Siping Road, Shanghai, 200092, P. R. China
- College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, P. R. China
| | - Yanyan Zhou
- College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, P. R. China
- Key Laboratory of Yangtze Aquatic Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, P. R. China
| | - Yuan Xiang
- State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, 1239 Siping Road, Shanghai, 200092, P. R. China
- College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, P. R. China
| | - Nuo Shi
- College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, P. R. China
- Key Laboratory of Yangtze Aquatic Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, P. R. China
| |
Collapse
|
40
|
Kadaifciler DG, Demirel R. Fungal biodiversity and mycotoxigenic fungi in cooling-tower water systems in Istanbul, Turkey. JOURNAL OF WATER AND HEALTH 2017; 15:308-320. [PMID: 28362312 DOI: 10.2166/wh.2017.274] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
This is the first study to assess fungal diversity and mycotoxigenic fungi in open recirculating cooling-tower (CT) water systems (biofilm and water phase). The production capability of mycotoxin from fungal isolates was also examined. The mean fungal count in 21 different water and biofilm samples was determined as 234 CFU/100 mL and 4 CFU/cm2. A total of 32 species were identified by internal transcribed spacer (ITS) sequencing. The most common isolated fungi belonged to the genera Aspergillus and Penicillium, of which the most prevalent fungi were Aspergillus versicolor, Aspergillus niger, and Penicillium dipodomyicola. From 42% of the surveyed CTs, aflatoxigenic A. flavus isolates were identified. The detection of opportunistic pathogens and/or allergen species suggests that open recirculating CTs are a possible source of fungal infection for both the public and for occupational workers via the inhalation of aerosols and/or skin contact.
Collapse
Affiliation(s)
- Duygu Göksay Kadaifciler
- Faculty of Science, Department of Biology, Istanbul University, 34314 Vezneciler, Istanbul, Turkey E-mail:
| | - Rasime Demirel
- Faculty of Science, Department of Biology, Anadolu University, 26470 Tepebaşı, Eskişehir, Turkey
| |
Collapse
|
41
|
Fungi from a Groundwater-Fed Drinking Water Supply System in Brazil. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2016; 13:ijerph13030304. [PMID: 27005653 PMCID: PMC4808967 DOI: 10.3390/ijerph13030304] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 02/28/2016] [Accepted: 03/04/2016] [Indexed: 01/10/2023]
Abstract
Filamentous fungi in drinking water distribution systems are known to (a) block water pipes; (b) cause organoleptic biodeterioration; (c) act as pathogens or allergens and (d) cause mycotoxin contamination. Yeasts might also cause problems. This study describes the occurrence of several fungal species in a water distribution system supplied by groundwater in Recife—Pernambuco, Brazil. Water samples were collected from four sampling sites from which fungi were recovered by membrane filtration. The numbers in all sampling sites ranged from 5 to 207 colony forming units (CFU)/100 mL with a mean value of 53 CFU/100 mL. In total, 859 isolates were identified morphologically, with Aspergillus and Penicillium the most representative genera (37% and 25% respectively), followed by Trichoderma and Fusarium (9% each), Curvularia (5%) and finally the species Pestalotiopsis karstenii (2%). Ramichloridium and Leptodontium were isolated and are black yeasts, a group that include emergent pathogens. The drinking water system in Recife may play a role in fungal dissemination, including opportunistic pathogens.
Collapse
|
42
|
Graça MG, van der Heijden IM, Perdigão L, Taira C, Costa SF, Levin AS. Evaluation of two methods for direct detection of Fusarium spp. in water. J Microbiol Methods 2016; 123:39-43. [PMID: 26844885 DOI: 10.1016/j.mimet.2016.01.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 01/28/2016] [Accepted: 01/29/2016] [Indexed: 12/14/2022]
Abstract
Fusarium is a waterborne fungus that causes severe infections especially in patients with prolonged neutropenia. Traditionally, the detection of Fusarium in water is done by culturing which is difficult and time consuming. A faster method is necessary to prevent exposure of susceptible patients to contaminated water. The objective of this study was to develop a molecular technique for direct detection of Fusarium in water. A direct DNA extraction method from water was developed and coupled to a genus-specific PCR, to detect 3 species of Fusarium (verticillioides, oxysporum and solani). The detection limits were 10 cells/L and 1 cell/L for the molecular and culture methods, respectively. To our knowledge, this is the first method developed to detect Fusarium directly from water.
Collapse
Affiliation(s)
- Mariana G Graça
- Department of Infectious Diseases, Faculty of Medicine, University of São Paulo, Brazil; LIM 54, Institute of Tropical Medicine of the University of São Paulo, Brazil.
| | | | - Lauro Perdigão
- Department of Infectious Diseases, Faculty of Medicine, University of São Paulo, Brazil; LIM 54, Institute of Tropical Medicine of the University of São Paulo, Brazil.
| | - Cleison Taira
- Laboratory of Pathogenic Dimorphic Fungi - Institute of Biomedical Sciences, University of São Paulo, Brazil; Laboratory of Medical Investigation 53, Faculty of Medicine, University of São Paulo, Brazil.
| | - Silvia F Costa
- Department of Infectious Diseases, Faculty of Medicine, University of São Paulo, Brazil; LIM 54, Institute of Tropical Medicine of the University of São Paulo, Brazil.
| | - Anna S Levin
- Department of Infectious Diseases, Faculty of Medicine, University of São Paulo, Brazil; LIM 54, Institute of Tropical Medicine of the University of São Paulo, Brazil.
| |
Collapse
|
43
|
da Silva WL, Lansarin MA, dos Santos JHZ. Industrial and agroindustrial wastes: an echotechnological approach to the production of supported photocatalysts. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2016; 73:28-38. [PMID: 26744932 DOI: 10.2166/wst.2015.263] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Agroindustrial wastes (rice husk, exhausted bark acacia, and tobacco dust) and foundry sands from the iron foundry industry were employed as a support source for photocatalysts. TiCl4 was used as the titanium precursor in the preparation of the supported photocatalysts. The solids were characterized by scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDX), diffuse reflectance spectroscopy over the ultraviolet range (DRS-UV), X-ray diffraction (XRD), small-angle X-ray scattering (SAXS), nitrogen adsorption-desorption at -196 °C and zeta potential (ZP) measurements. The systems were evaluated for the photodegradation of rhodamine B (RhB). Among the tested systems, the highest percentage of dye degradation was reached by the catalyst prepared with foundry sand supports, with values of 65% under ultraviolet and 39% under visible radiation, whereas under the same conditions, the catalyst prepared with rice husk showed the best photocatalytic performance among the samples prepared with agroindustrial wastes with values of 43% under ultraviolet and 38% under visible radiation. Strong Spearman's correlations among the photocatalytic activity, the zeta potential (ζp>0.900) and the band gap energy (ζp>0.895) were observed. Exploratory tests with tap water samples revealed that the system may be sensitive to other analytes present in these environmental samples.
Collapse
Affiliation(s)
- William Leonardo da Silva
- Departamento de Engenharia Química, Universidade Federal do Rio Grande do Sul, Rua Eng. Luis Englert s/n, 90040-040 Porto Alegre, RS, Brazil
| | - Marla Azário Lansarin
- Departamento de Engenharia Química, Universidade Federal do Rio Grande do Sul, Rua Eng. Luis Englert s/n, 90040-040 Porto Alegre, RS, Brazil
| | - João H Z dos Santos
- Instituto de Química, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves n° 9500, 91501-970 Porto Alegre, Brazil E-mail:
| |
Collapse
|
44
|
Rodolfi M, Longa CMO, Pertot I, Tosi S, Savino E, Guglielminetti M, Altobelli E, Del Frate G, Picco AM. Fungal biodiversity in the periglacial soil of Dosdè Glacier (Valtellina, Northern Italy). J Basic Microbiol 2015; 56:263-74. [PMID: 26575579 DOI: 10.1002/jobm.201500392] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 10/18/2015] [Indexed: 11/09/2022]
Abstract
Periglacial areas are one of the least studied habitats on Earth, especially in terms of their fungal communities. In this work, both molecular and culture-dependent methods have been used to analyse the microfungi in soils sampled on the front of the East Dosdè Glacier (Valtellina, Northern Italy). Although this survey revealed a community that was rich in fungal species, a distinct group of psychrophilic microfungi has not been detected. Most of the isolated microfungi were mesophiles, which are well adapted to the sensitive climatic changes that occur in this alpine environment. A discrepancy in the results that were obtained by means of the two diagnostic approaches suggests that the used molecular methods cannot entirely replace traditional culture-dependent methods, and vice versa.
Collapse
Affiliation(s)
- Marinella Rodolfi
- Dipartimento di Scienze della Terra e dell'Ambiente, Università degli Studi di Pavia, Pavia, Italy
| | - Claudia Maria Oliveira Longa
- Dipartimento Agroecosistemi Sostenibile e Biorisorse, Fondazione Edmund Mach, Centro Ricerca e Innovazione, San Michele all'Adige (TN), Italy
| | - Ilaria Pertot
- Dipartimento Agroecosistemi Sostenibile e Biorisorse, Fondazione Edmund Mach, Centro Ricerca e Innovazione, San Michele all'Adige (TN), Italy
| | - Solveig Tosi
- Dipartimento di Scienze della Terra e dell'Ambiente, Università degli Studi di Pavia, Pavia, Italy
| | - Elena Savino
- Dipartimento di Scienze della Terra e dell'Ambiente, Università degli Studi di Pavia, Pavia, Italy
| | - Maria Guglielminetti
- Dipartimento di Scienze della Terra e dell'Ambiente, Università degli Studi di Pavia, Pavia, Italy
| | - Elisa Altobelli
- Dipartimento di Scienze della Terra e dell'Ambiente, Università degli Studi di Pavia, Pavia, Italy
| | - Giuseppe Del Frate
- Dipartimento di Scienze della Terra e dell'Ambiente, Università degli Studi di Pavia, Pavia, Italy
| | - Anna Maria Picco
- Dipartimento di Scienze della Terra e dell'Ambiente, Università degli Studi di Pavia, Pavia, Italy
| |
Collapse
|
45
|
Liu J, Yu Y, Cai Z, Bartlam M, Wang Y. Comparison of ITS and 18S rDNA for estimating fungal diversity using PCR-DGGE. World J Microbiol Biotechnol 2015; 31:1387-95. [PMID: 26081603 DOI: 10.1007/s11274-015-1890-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 06/11/2015] [Indexed: 10/23/2022]
Abstract
Both the internal transcribed spacer (ITS) region and 18S rRNA genes are broadly applied in molecular fingerprinting studies of fungi. However, the differences in those two ribosomal RNA regions are still largely unknown. In the current study, three sets of most suitable subunit ribosomes in ITS and 18S rRNA were compared using denaturing gradient gel electrophoresis (DGGE) under the optimum experimental conditions. Ten samples from both aquatic and soil environments were tested. The results revealed that the ITS region produced range-weighted richness in the range 36-361, which was significantly higher than that produced by 18S rDNA. There was a similar tendency in terms of the Shannon-Weaver diversity index and community dynamics in both water and soil samples. Samples from water and soil were better separated using ITS than 18S rDNA in principal component analysis of DGGE bands. Our study suggests that the ITS region is more precise and has more potential than 18S rRNA genes in fungal community analysis.
Collapse
Affiliation(s)
- Jie Liu
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China
| | | | | | | | | |
Collapse
|
46
|
Liu J, Wang J, Gao G, Bartlam MG, Wang Y. Distribution and diversity of fungi in freshwater sediments on a river catchment scale. Front Microbiol 2015; 6:329. [PMID: 25954259 PMCID: PMC4404825 DOI: 10.3389/fmicb.2015.00329] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 04/01/2015] [Indexed: 11/16/2022] Open
Abstract
Fungal communities perform essential functions in biogeochemical cycles. However, knowledge of fungal community structural changes in river ecosystems is still very limited. In the present study, we combined culture-dependent and culture-independent methods to investigate fungal distribution and diversity in sediment on a regional scale in the Songhua River catchment, located in North-East Asia. A total of 147 samples over the whole river catchment were analyzed. The results showed that compared to the mainstream, the tributaries have a higher fungal community organization and culturable fungal concentration, but possess lower community dynamics as assessed by denaturing gradient gel electrophoresis (DGGE). Furthermore, phylogenetic analysis of DGGE bands showed that Ascomycota and Basidiomycota were the predominant community in the Songhua River catchment. Redundancy analysis revealed that longitude was the primary factor determining the variation of fungal community structure, and fungal biomass was mainly related to the total nutrient content. Our findings provide new insights into the characteristics of fungal community distribution in a temperate zone river at a regional scale, and demonstrate that fungal dispersal is restricted by geographical barriers in a whole river catchment.
Collapse
Affiliation(s)
- Jie Liu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University Tianjin, China
| | - Jianan Wang
- Department of Environmental Science and Engineering, Nankai University Binhai College Tianjin, China
| | - Guanghai Gao
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University Tianjin, China
| | - Mark G Bartlam
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University Tianjin, China
| | - Yingying Wang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University Tianjin, China
| |
Collapse
|
47
|
Ma X, Baron JL, Vikram A, Stout JE, Bibby K. Fungal diversity and presence of potentially pathogenic fungi in a hospital hot water system treated with on-site monochloramine. WATER RESEARCH 2015; 71:197-206. [PMID: 25618520 DOI: 10.1016/j.watres.2014.12.052] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 12/09/2014] [Accepted: 12/30/2014] [Indexed: 06/04/2023]
Abstract
Currently, our knowledge of fungal ecology in engineered drinking water systems is limited, despite the potential for these systems to serve as a reservoir for opportunistic pathogens. In this study, hot water samples were collected both prior to and following the addition of monochloramine as an on-site disinfectant in a hospital hot water system. Fungal ecology was then analyzed by high throughput sequencing of the fungal ITS1 region. The results demonstrate that the genera Penicillium, Aspergillus, Peniophora, Cladosporium and Rhodosporidium comprised the core fungal biome of the hospital hot water system. Penicillium dominated the fungal community with an average relative abundance of 88.89% (±6.37%). ITS1 sequences of fungal genera containing potential pathogens such as Aspergillus, Candida, and Fusarium were also detected in this study. No significant change in fungal community structure was observed before and after the initiation of on-site monochloramine water treatment. This work represents the first report of the effects of on-site secondary water disinfection on fungal ecology in premise plumbing system, and demonstrates the necessity of considering opportunistic fungal pathogens during the evaluation of secondary premise plumbing disinfection systems.
Collapse
Affiliation(s)
- Xiao Ma
- Department of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Julianne L Baron
- Department of Infectious Diseases and Microbiology, University of Pittsburgh, Graduate School of Public Health, Pittsburgh, PA 15261, USA; Special Pathogens Laboratory, Pittsburgh, PA 15219, USA
| | - Amit Vikram
- Department of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Janet E Stout
- Department of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, PA 15261, USA; Special Pathogens Laboratory, Pittsburgh, PA 15219, USA
| | - Kyle Bibby
- Department of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, PA 15261, USA; Department of Computational and Systems Biology, University of Pittsburgh Medical School, Pittsburgh, PA 15261, USA.
| |
Collapse
|
48
|
Candida and Fusarium species known as opportunistic human pathogens from customer-accessible parts of residential washing machines. Fungal Biol 2015; 119:95-113. [PMID: 25749362 DOI: 10.1016/j.funbio.2014.10.007] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 10/22/2014] [Accepted: 10/24/2014] [Indexed: 11/22/2022]
Abstract
Energy constraints have altered consumer practice regarding the use of household washing machines. Washing machines were developed that use lower washing temperatures, smaller amounts of water and biodegradable detergents. These conditions may favour the enrichment of opportunistic human pathogenic fungi. We focused on the isolation of fungi from two user-accessible parts of washing machines that often contain microbial biofilms: drawers for detergents and rubber door seals. Out of 70 residential washing machines sampled in Slovenia, 79% were positive for fungi. In total, 72 strains belonging to 12 genera and 26 species were isolated. Among these, members of the Fusarium oxysporum and Fusarium solani species complexes, Candida parapsilosis and Exophiala phaeomuriformis represented 44% of fungi detected. These species are known as opportunistic human pathogens and can cause skin, nail or eye infections also in healthy humans. A machine learning analysis revealed that presence of detergents and softeners followed by washing temperature, represent most critical factors for fungal colonization. Three washing machines with persisting malodour that resulted in bad smelling laundry were analysed for the presence of fungi and bacteria. In these cases, fungi were isolated in low numbers (7.5 %), while bacteria Micrococcus luteus, Pseudomonas aeruginosa, and Sphingomonas species prevailed.
Collapse
|
49
|
Douterelo I, Boxall JB, Deines P, Sekar R, Fish KE, Biggs CA. Methodological approaches for studying the microbial ecology of drinking water distribution systems. WATER RESEARCH 2014; 65:134-156. [PMID: 25105587 DOI: 10.1016/j.watres.2014.07.008] [Citation(s) in RCA: 130] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 06/08/2014] [Accepted: 07/04/2014] [Indexed: 06/03/2023]
Abstract
The study of the microbial ecology of drinking water distribution systems (DWDS) has traditionally been based on culturing organisms from bulk water samples. The development and application of molecular methods has supplied new tools for examining the microbial diversity and activity of environmental samples, yielding new insights into the microbial community and its diversity within these engineered ecosystems. In this review, the currently available methods and emerging approaches for characterising microbial communities, including both planktonic and biofilm ways of life, are critically evaluated. The study of biofilms is considered particularly important as it plays a critical role in the processes and interactions occurring at the pipe wall and bulk water interface. The advantages, limitations and usefulness of methods that can be used to detect and assess microbial abundance, community composition and function are discussed in a DWDS context. This review will assist hydraulic engineers and microbial ecologists in choosing the most appropriate tools to assess drinking water microbiology and related aspects.
Collapse
Affiliation(s)
- Isabel Douterelo
- Pennine Water Group, Department of Civil and Structural Engineering, The University of Sheffield, UK.
| | - Joby B Boxall
- Pennine Water Group, Department of Civil and Structural Engineering, The University of Sheffield, UK
| | - Peter Deines
- Institute of Natural and Mathematical Sciences, Massey University, New Zealand
| | - Raju Sekar
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, China
| | - Katherine E Fish
- Pennine Water Group, Department of Civil and Structural Engineering, The University of Sheffield, UK
| | - Catherine A Biggs
- Department of Chemical and Biological Engineering, The University of Sheffield, UK
| |
Collapse
|
50
|
García-Muñoz P, Carbajo J, Faraldos M, Bahamonde A. Photocatalytic degradation of phenol and isoproturon: Effect of adding an activated carbon to titania catalyst. J Photochem Photobiol A Chem 2014. [DOI: 10.1016/j.jphotochem.2014.05.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|