1
|
Murata Y, Sakai H, Kosaka K. Degrading surface-water-based natural organic matter and mitigating haloacetonitrile formation during chlorination: Comparison of UV/persulfate and UV/hydrogen peroxide pre-treatments. CHEMOSPHERE 2024; 354:141717. [PMID: 38490617 DOI: 10.1016/j.chemosphere.2024.141717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/11/2024] [Accepted: 03/12/2024] [Indexed: 03/17/2024]
Abstract
Haloacetonitriles (HANs) are unregulated disinfection by-products that are more toxic than regulated species. Therefore, efficient decomposition of HAN precursors prior to disinfection is crucial for allaying the potential HAN-induced health risks. This study investigated the key roles of ultraviolet-activated persulfate (UV/PS) treatment in alleviating HAN formation. The effects of UV/PS treatment were evaluated by correlating with the characteristics of organic matter in surface water and comparing with conventional UV/H2O2 treatment. Upon irradiating raw water samples and a Suwannee River humic acid solution spiked with 10 mM PS or H2O2 with 254 nm UV light, UV/PS treatment was found to be more potent than UV/H2O2 in mitigating the HAN production and degrading organic substances; moreover, UV/PS treatment effectively decreased the dissolved organic nitrogen (DON) content. In contrast, UV/H2O2 treatment did not induce any noticeable reduction in DON level. Furthermore, both UV/PS and UV/H2O2 treatments reduced the dichloroacetonitrile (DCAN) formation potential (FP), leading to strong correlations with the degradation of aromatic and humic-acid-like compounds. Notably, UV/PS treatment efficiently decreased the FP of bromochloroacetonitrile (BCAN) and dramatically reduced that of dibromoacetonitrile (DBAN) after a sharp increase; however, UV/H2O2 treatment gradually increased the DBAN-FP. Bromide was activated by sulfate radicals during UV/PS treatment, negatively correlating with the BCAN-FP and DBAN-FP, indicating that the formation of reactive bromine species increased the DBAN-FP; however, excessive oxidation possibly led to the recovery of inorganic bromine for decreasing the BCAN-FP and DBAN-FP. Additionally, UV/PS treatment effectively suppressed toxicity owing to its high reduction rate for brominated HANs; in contrast, UV/H2O2 treatment resulted in less significant BCAN and DBAN reductions, leading to minimal net reduction in toxicity. Overall, UV/PS treatment was remarkably effective at diminishing the toxicity of brominated HANs, underscoring its potential to mitigate drinking-water-related health risks.
Collapse
Affiliation(s)
- Yuichiro Murata
- Department of Civil and Environmental Engineering, Tokyo Metropolitan University, 1-1 Minami-osawa, Hachioji-city, Tokyo, 1920397, Japan
| | - Hiroshi Sakai
- Department of Civil and Environmental Engineering, Tokyo Metropolitan University, 1-1 Minami-osawa, Hachioji-city, Tokyo, 1920397, Japan.
| | - Koji Kosaka
- Department of Environmental Health, National Institute of Public Health, 2-3-6 Minami, Wako-city, Saitama, 3510197, Japan
| |
Collapse
|
2
|
Li J, Zhang Z, Xiang Y, Jiang J, Yin R. Role of UV-based advanced oxidation processes on NOM alteration and DBP formation in drinking water treatment: A state-of-the-art review. CHEMOSPHERE 2023; 311:136870. [PMID: 36252895 DOI: 10.1016/j.chemosphere.2022.136870] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/07/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
Oxidative treatment of drinking water has been practiced for more than a century. UV-based advanced oxidation processes (UV-AOPs) have emerged as promising oxidative treatment technologies to eliminate recalcitrant chemicals and biological contaminants in drinking water. UV-AOPs inevitably alter the properties of natural organic matter (NOM) and affect the disinfection byproduct (DBP) formation in the post-disinfection. This paper provides a state-of-the-art review on the effects of UV-AOPs on the changes of NOM properties and the consequent impacts on DBP formation in the post-chlorination process. A tutorial review to the connotations of NOM properties (e.g., bulk properties, fractional constituents, and molecular structures) and the associated state-of-the-art analytical methods are firstly presented. The impacts of different radical-based AOPs on the changes of NOM properties together with the underlying NOM-radical reaction mechanisms are discussed. The impacts of alteration of NOM properties on DBP formation in the post-chlorination process are then reviewed. The current knowledge gaps and future research needs are finally presented, with emphases on the needs to strengthen the comparability of research data in literature, the accuracy in quantifying the reactive moieties of NOM, and the awareness of unknown DBPs in oxidative water treatment processes. The review and discussion improve the fundamental understanding of NOM-radical and NOM-chlorine chemistry. They also provide useful implications on the engineering design and operation of next-generation drinking water treatment plants.
Collapse
Affiliation(s)
- Juan Li
- Advanced Interdisciplinary Institute of Environment and Ecology, Beijing Normal University, Zhu Hai 519087, PR China; Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999066, Hong Kong, PR China.
| | - Zhong Zhang
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Yingying Xiang
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999066, Hong Kong, PR China
| | - Jin Jiang
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Ran Yin
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999066, Hong Kong, PR China.
| |
Collapse
|
3
|
Yang X, Rosario-Ortiz FL, Lei Y, Pan Y, Lei X, Westerhoff P. Multiple Roles of Dissolved Organic Matter in Advanced Oxidation Processes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:11111-11131. [PMID: 35797184 DOI: 10.1021/acs.est.2c01017] [Citation(s) in RCA: 101] [Impact Index Per Article: 50.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Advanced oxidation processes (AOPs) can degrade a wide range of trace organic contaminants (TrOCs) to improve the quality of potable water or discharged wastewater effluents. Their effectiveness is impacted, however, by the dissolved organic matter (DOM) that is ubiquitous in all water sources. During the application of an AOP, DOM can scavenge radicals and/or block light penetration, therefore impacting their effectiveness toward contaminant transformation. The multiple ways in which different types or sources of DOM can impact oxidative water purification processes are critically reviewed. DOM can inhibit the degradation of TrOCs, but it can also enhance the formation and reactivity of useful radicals for contaminants elimination and alter the transformation pathways of contaminants. An in-depth analysis highlights the inhibitory effect of DOM on the degradation efficiency of TrOCs based on DOM's structure and optical properties and its reactivity toward oxidants as well as the synergistic contribution of DOM to the transformation of TrOCs from the analysis of DOM's redox properties and DOM's transient intermediates. AOPs can alter DOM structure properties as well as and influence types, mechanisms, and extent of oxidation byproducts formation. Research needs are proposed to advance practical understanding of how DOM can be exploited to improve oxidative water purification.
Collapse
Affiliation(s)
- Xin Yang
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Fernando L Rosario-Ortiz
- Department of Civil, Environmental and Architectural Engineering, University of Colorado, Boulder, Colorado 80309, United States
| | - Yu Lei
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Yanheng Pan
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Xin Lei
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Paul Westerhoff
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona 85287-3005, United States
| |
Collapse
|
4
|
Fang Y, Sakai H. Use of an ultraviolet light-activated persulfate process to degrade humic substances: effects of wavelength and persulfate dose. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:9923-9931. [PMID: 34508318 DOI: 10.1007/s11356-021-15392-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 07/07/2021] [Indexed: 06/13/2023]
Abstract
Natural organic matter (NOM), commonly found in surface and ground waters, form disinfection by-products in drinking water. Generally, advanced oxidation processes (AOPs) featuring hydrogen peroxide are used to treat water; however, sulfate radical recently has been used to treat recalcitrant organics, because it is associated with a higher oxidation potential and more effective removal than hydroxyl radicals. Hence, in this research, we evaluated persulfate oxidation efficiency in terms of reductions in humic substance levels and investigated the degradation mechanism. The results showed that ultraviolet-activated persulfate effectively treated humic substances compared with hydrogen peroxide and direct irradiation. Treatment was dose and wavelength dependent; higher persulfate concentrations or shorter UV wavelengths were more effective for treating humic substances as high concentration sulfate radicals were created. The degradation mechanism was similar to that of hydrogen peroxide. Aromatic and chromophore components were more susceptible to degradation than were lower molecular weight components, being initially decomposed into the latter, reducing UV254 absorbance and the SUVA254. Lower molecular weight materials were eventually degraded to end products: NPOC levels fell. And we also treated the inflow of a drinking water treatment plant with persulfate, and humic substances were effectively removed.
Collapse
Affiliation(s)
- Yiming Fang
- Department of Civil and Environmental Engineering, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, 1-1, Minami-osawa, Hachioji City, Tokyo, 192-0397, Japan
| | - Hiroshi Sakai
- Department of Civil and Environmental Engineering, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, 1-1, Minami-osawa, Hachioji City, Tokyo, 192-0397, Japan.
| |
Collapse
|
5
|
He H, Li T, He C, Chen J, Chu H, Dong B. Removal of natural organic matter in full-scale conventional and advanced water treatment plants: Assimilable organic carbon and its precursors. CHEMICAL ENGINEERING JOURNAL ADVANCES 2021. [DOI: 10.1016/j.ceja.2021.100183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
6
|
Venkiteshwaran K, Kennedy E, Graeber C, Mallick SP, McNamara PJ, Mayer BK. Conversion of soluble recalcitrant phosphorus to recoverable orthophosphate form using UV/H 2O 2. CHEMOSPHERE 2021; 278:130391. [PMID: 33838419 DOI: 10.1016/j.chemosphere.2021.130391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 03/12/2021] [Accepted: 03/25/2021] [Indexed: 06/12/2023]
Abstract
Soluble non-reactive phosphorus (sNRP), such as inorganic polyphosphates and organic P, is not effectively removed by conventional physicochemical processes. This can impede water resource reclamation facilities' ability to meet stringent total P regulations. This study investigated a UV/H2O2 advanced oxidation process (AOP) for converting sNRP to the more readily removable/recoverable soluble reactive P (sRP), or orthophosphate, form. Synthetic water spiked with four sNRP compounds (beta-glycerol phosphate, phytic acid, triphosphate, and hexa-meta phosphate) at varying H2O2 concentration, UV fluence, pH, and temperature was initially tested. These compounds represent simple, complex, organic, and inorganic forms of sNRP potentially found in wastewater. The efficiency of sNRP to sRP conversion depended on whether the sNRP compound was organic or inorganic and the complexity of its chemical structure. Using 1 mM H2O2 and 0.43 J/cm2 (pH 7.5, 22 °C), conversion of the simple organic beta-glycerol phosphate to sRP was 38.1 ± 2.9%, which significantly exceeded the conversion of the other sNRP compounds. Although conversion was achieved, the electrical energy per order (EEO) was very high at 5.2 × 103 ± 5.2 × 102 kWh/m3. Actual municipal wastewater secondary effluent, with sNRP accounting for 15% of total P, was also treated using UV/H2O2. No wastewater sNRP to sRP conversion was observed, ostensibly due to interference from wastewater constituents. Wastewater utilities that have difficulty meeting stringent P levels might be able to target simple organic sNRP compounds, though alternative processes beyond UV/H2O2 need to be explored to overcome interference from wastewater constituents and target more complex organic and inorganic sNRP compounds.
Collapse
Affiliation(s)
- Kaushik Venkiteshwaran
- Department of Civil, Construction and Environmental Engineering, Marquette University, 1637 W. Wisconsin Ave., Milwaukee, WI, 53233, USA
| | - Eileen Kennedy
- Department of Civil, Construction and Environmental Engineering, Marquette University, 1637 W. Wisconsin Ave., Milwaukee, WI, 53233, USA
| | - Caitlin Graeber
- Department of Civil, Construction and Environmental Engineering, Marquette University, 1637 W. Wisconsin Ave., Milwaukee, WI, 53233, USA
| | - Synthia P Mallick
- Department of Civil, Construction and Environmental Engineering, Marquette University, 1637 W. Wisconsin Ave., Milwaukee, WI, 53233, USA
| | - Patrick J McNamara
- Department of Civil, Construction and Environmental Engineering, Marquette University, 1637 W. Wisconsin Ave., Milwaukee, WI, 53233, USA
| | - Brooke K Mayer
- Department of Civil, Construction and Environmental Engineering, Marquette University, 1637 W. Wisconsin Ave., Milwaukee, WI, 53233, USA.
| |
Collapse
|
7
|
Amiri Z, Moussavi G, Mohammadi S, Giannakis S. Development of a VUV-UVC/peroxymonosulfate, continuous-flow Advanced Oxidation Process for surface water disinfection and Natural Organic Matter elimination: Application and mechanistic aspects. JOURNAL OF HAZARDOUS MATERIALS 2021; 408:124634. [PMID: 33261977 DOI: 10.1016/j.jhazmat.2020.124634] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 11/04/2020] [Accepted: 11/17/2020] [Indexed: 06/12/2023]
Abstract
Surface waters are often charged with high amounts of natural organic matter (NOM), organic contaminants and pathogens. In this work, a Vacuum UV/PMS process (VUV-UVC/PMS) was employed for treating river water, assessing the simultaneous NOM mineralization and bacterial disinfection. The VUV-UVC process (without PMS) decreased TOC concentration from 3.83 to 0.15 mg/L within 20 min, achieving complete disinfection. Adding 5 mg/L PMS increased the rate of TOC removal by 80%; complete removal of TOC was achieved in 15 min and disinfection was attained twice as fast. The mechanism of NOM mineralization was scrutinized; aeration played a considerable role due to oxygen supply, mixing, and inducing in-situ H2O2 production. HO• and SO4•- were the main radical species involved, alongside an important contribution of the matrix; sulfate enhanced TOC removal, due to the formation of additional radicals, underlining its importance. Furthermore, over 99% TOC reduction and complete disinfection was achieved in the VUV-UVC/PMS process operated under continuous-flow mode with a 2-min hydraulic retention time. Finally, the use of Atrazine (ATZ) as a probe compound and a series of scavenging tests led to an integrated proposal for the mineralization of NOM. Accordingly, the VUV-UVC/PMS process is evaluated as an efficient and promising technology for surface water treatment.
Collapse
Affiliation(s)
- Zahra Amiri
- Department of Environmental Health Engineering, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Gholamreza Moussavi
- Department of Environmental Health Engineering, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Samira Mohammadi
- Department of Environmental Health Engineering, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran; Universidad Politécnica de Madrid, E.T.S. Ingenieros de Caminos, Canales y Puertos, Departamento de Ingeniería Civil: Hidráulica, Energía y Medio Ambiente, Unidad docente Ingeniería Sanitaria, c/ Profesor Aranguren, s/n, ES-28040 Madrid, Spain
| | - Stefanos Giannakis
- Universidad Politécnica de Madrid, E.T.S. Ingenieros de Caminos, Canales y Puertos, Departamento de Ingeniería Civil: Hidráulica, Energía y Medio Ambiente, Unidad docente Ingeniería Sanitaria, c/ Profesor Aranguren, s/n, ES-28040 Madrid, Spain.
| |
Collapse
|
8
|
Remucal CK, Salhi E, Walpen N, von Gunten U. Molecular-Level Transformation of Dissolved Organic Matter during Oxidation by Ozone and Hydroxyl Radical. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:10351-10360. [PMID: 32697081 DOI: 10.1021/acs.est.0c03052] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Ozonation of drinking and wastewater relies on ozone (O3) and hydroxyl radical (•OH) as oxidants. Both oxidants react with dissolved organic matter (DOM) and alter its composition, but the selectivity of the two oxidants and mechanisms of reactivity with DOM moieties are largely unknown. The reactions of O3 and •OH with two DOM isolates were studied by varying specific ozone doses (0.1-1.3 mg-O3/mg-C) at pH 7. Additionally, conditions that favor O3 (i.e., addition of an •OH scavenger) or •OH (i.e., pH 11) were investigated. Ozonation decreases aromaticity, apparent molecular weight, and electron donating capacity (EDC) of DOM with large changes observed when O3 is the main oxidant (e.g., EDC decreases 63-77% for 1.3 mg-O3/mg-C). Both O3 and •OH react with highly aromatic, reduced formulas detected using high-resolution mass spectrometry (O:C = 0.48 ± 0.12; H:C = 1.06 ± 0.23), while •OH also oxidizes more saturated formulas (H:C = 1.64 ± 0.26). Established reactions between model compounds and O3 (e.g., addition of one to two oxygen atoms) or •OH (e.g., addition of one oxygen atom and decarboxylation) are observed and produce highly oxidized DOM (O:C > 1.0). This study provides molecular-level evidence for the selectivity of O3 as an oxidant within DOM.
Collapse
Affiliation(s)
- Christina K Remucal
- Environmental Chemistry and Technology Program,University of Wisconsin-Madison,Madison, Wisconsin 53706, United States
- Department of Civil and Environmental Engineering,University of Wisconsin-Madison,Madison, Wisconsin 53706, United States
| | - Elisabeth Salhi
- Swiss Federal Institute of Aquatic Science and Technology (Eawag),8600 Dübendorf, Switzerland
| | - Nicolas Walpen
- Swiss Federal Institute of Aquatic Science and Technology (Eawag),8600 Dübendorf, Switzerland
| | - Urs von Gunten
- Swiss Federal Institute of Aquatic Science and Technology (Eawag),8600 Dübendorf, Switzerland
- School of Architecture, Civil and Environmental Engineering (ENAC), École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| |
Collapse
|
9
|
Ding S, Wang F, Chu W, Fang C, Pan Y, Lu S, Gao N. Using UV/H 2O 2 pre-oxidation combined with an optimised disinfection scenario to control CX 3R-type disinfection by-product formation. WATER RESEARCH 2019; 167:115096. [PMID: 31577966 DOI: 10.1016/j.watres.2019.115096] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 08/22/2019] [Accepted: 09/14/2019] [Indexed: 06/10/2023]
Abstract
The effects of UV/H2O2 pre-oxidation or disinfection methods on the formation of partial disinfection by-products (DBPs) have been studied previously. This study assessed the effect of UV/H2O2 pre-oxidation combined with optimisation of the disinfection method on the formation of six classes of CX3R-type DBPs, including trihalomethanes (THMs), haloacetic acids (HAAs), haloacetaldehydes (HALs), haloacetonitriles (HANs), halonitromethanes (HNMs), and haloacetamides (HAMs). Experimental results showed that a simulated distribution system (SDS) in-situ chloramination or pre-chlorination followed by chloramination effectively decreased total CX3R-type DBP formation by 51.1-63.5% compared to SDS chlorination, but little reduction in DBP-associated toxicity was observed. The dominant contributors to the calculated toxicity were HANs and HALs. UV/H2O2 pre-oxidation was able to destroy the aromatic and dissolved organic nitrogen components of natural organic matter. As a consequence, THM, HAA, and HAL formations increased by 49.5-55.0%, 47.8-61.9%, and 42.0-67.1%, respectively, whereas HAN, HNM, and HAM formations significantly decreased by 52.1-83.6%, 42.9-87.3%, and 74.1-100.0%. UV/H2O2 pre-oxidation increased total CX3R-type DBP formation, during SDS chlorination, whereas SDS in-situ chloramination or pre-chlorination followed by chloramination of UV/H2O2-treated water produced lower total CX3R-type DBPs than water without UV/H2O2 pre-oxidation. Nevertheless, the DBP-associated toxicity of water with UV/H2O2 pre-oxidation was substantially lower than the toxicity for water without UV/H2O2 pre-oxidation, decreased by 24.1-82.7%. HALs followed by HANs contribute to major toxic potencies in UV/H2O2 treated water. The best DBP concentration and DBP-associated toxicity abatement results were achieved for water treated by UV/H2O2 coupled with in-situ chloramination treatment.
Collapse
Affiliation(s)
- Shunke Ding
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai, 200092, China
| | - Feifei Wang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Wenhai Chu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai, 200092, China.
| | - Chao Fang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai, 200092, China
| | - Yang Pan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu province, China
| | - Shan Lu
- China Institute of Building Standard Design & Research co., LTD, Beijing, 100048, China
| | - Naiyun Gao
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| |
Collapse
|
10
|
Kim HC, Park SH, Noh JH, Choi J, Lee S, Maeng SK. Comparison of pre-oxidation between O 3 and O 3/H 2O 2 for subsequent managed aquifer recharge using laboratory-scale columns. JOURNAL OF HAZARDOUS MATERIALS 2019; 377:290-298. [PMID: 31173978 DOI: 10.1016/j.jhazmat.2019.05.099] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 05/20/2019] [Accepted: 05/29/2019] [Indexed: 06/09/2023]
Abstract
A hybrid process of managed aquifer recharge with pre-oxidation was investigated as part of a multiple-barrier approach for safe water production. This study evaluated O3 and O3/H2O2 for the pre-oxidation of urban surface water prior to managed aquifer recharge (MAR) and compared their effectiveness with respect to trace organic contaminants (TrOCs), biostability, and trihalomethane formation potential. The combination of pre-oxidation and MAR was performed using long-term column studies, and the results confirmed the removal of 64 and 56% dissolved organic carbon by using O3 and O3/H2O2, respectively. MAR combined with O3 and O3/H2O2 achieved >50% removal of dissolved organic carbon with the first 5 days of residence time. O3 alone showed better performance in alleviating trihalomethane formation potential during chlorination compared to using O3/H2O2. The pre-oxidation of urban surface water was effective in attenuating selected TrOCs (35 - >99% removal), and subsequent MAR achieved >99% removal of selected TrOCs within the first 5 days, regardless of pretreatment methods examined in this study. The results of this study provide an understanding of the effects of O3 and O3/H2O2 as pre-oxidation processes on urban surface water prior to MAR, as well as the resulting impact on MAR.
Collapse
Affiliation(s)
- Hyun-Chul Kim
- Research Institute for Advanced Industrial Technology, College of Science and Technology, Korea University, 2511 Sejong-ro, Sejong, 30019, Republic of Korea
| | - Se Hee Park
- Department of Civil and Environmental Engineering, Sejong University, 209 Neungdongro, Gwangjin-gu, Seoul, 05006, Republic of Korea
| | - Jin Hyung Noh
- Department of Civil and Environmental Engineering, Sejong University, 209 Neungdongro, Gwangjin-gu, Seoul, 05006, Republic of Korea
| | - Jaewon Choi
- Water Quality & Safety Research Center, K-water Institute, Shintanjin-Ro 200, Daeduck-Gu, Daejeon, 34350, Republic of Korea
| | - Seunghak Lee
- Water Cycle Research Center, National Agenda Research Division, Korea Institute of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Sung Kyu Maeng
- Department of Civil and Environmental Engineering, Sejong University, 209 Neungdongro, Gwangjin-gu, Seoul, 05006, Republic of Korea.
| |
Collapse
|
11
|
Safford HR, Bischel HN. Flow cytometry applications in water treatment, distribution, and reuse: A review. WATER RESEARCH 2019; 151:110-133. [PMID: 30594081 DOI: 10.1016/j.watres.2018.12.016] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 11/30/2018] [Accepted: 12/01/2018] [Indexed: 06/09/2023]
Abstract
Ensuring safe and effective water treatment, distribution, and reuse requires robust methods for characterizing and monitoring waterborne microbes. Methods widely used today can be limited by low sensitivity, high labor and time requirements, susceptibility to interference from inhibitory compounds, and difficulties in distinguishing between viable and non-viable cells. Flow cytometry (FCM) has recently gained attention as an alternative approach that can overcome many of these challenges. This article critically and systematically reviews for the first time recent literature on applications of FCM in water treatment, distribution, and reuse. In the review, we identify and examine nearly 300 studies published from 2000 to 2018 that illustrate the benefits and challenges of using FCM for assessing source-water quality and impacts of treatment-plant discharge on receiving waters, wastewater treatment, drinking water treatment, and drinking water distribution. We then discuss options for combining FCM with other indicators of water quality and address several topics that cut across nearly all applications reviewed. Finally, we identify priority areas in which more work is needed to realize the full potential of this approach. These include optimizing protocols for FCM-based analysis of waterborne viruses, optimizing protocols for specifically detecting target pathogens, automating sample handling and preparation to enable real-time FCM, developing computational tools to assist data analysis, and improving standards for instrumentation, methods, and reporting requirements. We conclude that while more work is needed to realize the full potential of FCM in water treatment, distribution, and reuse, substantial progress has been made over the past two decades. There is now a sufficiently large body of research documenting successful applications of FCM that the approach could reasonably and realistically see widespread adoption as a routine method for water quality assessment.
Collapse
Affiliation(s)
- Hannah R Safford
- Department of Civil and Environmental Engineering, University of California Davis, 2001 Ghausi Hall, 480 Bainer Hall Drive, 95616, Davis, CA, United States
| | - Heather N Bischel
- Department of Civil and Environmental Engineering, University of California Davis, 2001 Ghausi Hall, 480 Bainer Hall Drive, 95616, Davis, CA, United States.
| |
Collapse
|
12
|
Tak S, Vellanki BP. Natural organic matter as precursor to disinfection byproducts and its removal using conventional and advanced processes: state of the art review. JOURNAL OF WATER AND HEALTH 2018; 16:681-703. [PMID: 30285951 DOI: 10.2166/wh.2018.032] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Natural organic matter (NOM) is ubiquitous in the aquatic environment and if present can cause varied drinking water quality issues, the major one being disinfection byproduct (DBP) formation. Trihalomethanes (THMs) are major classes of DBP that are formed during chlorination of NOM. The best way to remove DBPs is to target the precursors (NOM) directly. The main aim of this review is to study conventional as well as advanced ways of treating NOM, with a broad focus on NOM removal using advanced oxidation processes (AOPs) and biofiltration. The first part of the paper focuses on THM formation and removal using conventional processes and the second part focuses on the studies carried out during the years 2000-2018, specifically on NOM removal using AOPs and AOP-biofiltration. Considering the proven carcinogenic nature of THMs and their diverse health effects, it becomes important for any drinking water treatment industry to ameliorate the current water treatment practices and focus on techniques like AOP or synergy of AOP-biofiltration which showed up to 50-60% NOM reduction. The use of AOP alone provides a cost barrier which can be compensated by the use of biofiltration along with AOP with low energy inputs, making it a techno-economically feasible option for NOM removal.
Collapse
Affiliation(s)
- Surbhi Tak
- Environmental Engineering Laboratory, Department of Civil Engineering, Indian Institute of Technology, Roorkee, Uttrakhand 247667, India E-mail:
| | - Bhanu Prakash Vellanki
- Environmental Engineering Laboratory, Department of Civil Engineering, Indian Institute of Technology, Roorkee, Uttrakhand 247667, India E-mail:
| |
Collapse
|
13
|
Wang WL, Wu QY, Huang N, Xu ZB, Lee MY, Hu HY. Potential risks from UV/H 2O 2 oxidation and UV photocatalysis: A review of toxic, assimilable, and sensory-unpleasant transformation products. WATER RESEARCH 2018; 141:109-125. [PMID: 29783164 DOI: 10.1016/j.watres.2018.05.005] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 05/04/2018] [Accepted: 05/05/2018] [Indexed: 06/08/2023]
Abstract
UV based advanced oxidation processes (UV-AOPs) that efficiently eliminate organic pollutants during water treatment have been the subject of numerous investigations. Most organic pollutants are not completely mineralized during UV-AOPs but are partially oxidized into transformation products (TPs), thereby adding complexity to the treated water and posing risks to humans, ecological systems, and the environment. While the degradation kinetics and mechanisms of pollutants have been widely documented, there is little information about the risks associated with TPs. In this review, we have collated recent knowledge about the harmful TPs that are generated in UV/H2O2 and UV photocatalysis, two UV-AOPs that have been studied extensively. Toxic and assimilable TPs were ubiquitously observed in more than 80% of UV-AOPs of organic pollutants, of which the toxicity and assimilability levels changed with variations in the reaction conditions, such as the UV fluence and oxidant dosage. Previous studies and modeling assessments showed that toxic and assimilable TPs may be generated during hydroxylation, dealkylation, decarboxylation, and deamination. Among various reactions, TPs generated from dealkylation and decarboxylation were generally less and more toxic than the parent pollutants, respectively; TPs generated from decarboxylation and deamination were generally less and more assimilable than the parent pollutants, respectively. There is also potential concern about the sensory-unpleasant TPs generated by oxidations and subsequent metabolism of microorganisms. In this overview, we stress the need to include both the concentrations of organic pollutants and the evaluations of the risks from TPs for the quality assessments of the water treated by UV-AOPs.
Collapse
Affiliation(s)
- Wen-Long Wang
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), and School of Environment, Tsinghua University, Beijing 100084, PR China; Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, PR China
| | - Qian-Yuan Wu
- Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, PR China.
| | - Nan Huang
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), and School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Zi-Bin Xu
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), and School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Min-Yong Lee
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), and School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Hong-Ying Hu
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), and School of Environment, Tsinghua University, Beijing 100084, PR China; Shenzhen Environmental Science and New Energy Technology Engineering Laboratory, Tsinghua-Berkeley Shenzhen Institute, Shenzhen 518055, PR China.
| |
Collapse
|
14
|
Wang W, Sha J, Lu Z, Shao S, Sun P, Hu Q, Zhang X. Implementation of UV-based advanced oxidation processes in algal medium recycling. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 634:243-250. [PMID: 29627547 DOI: 10.1016/j.scitotenv.2018.03.342] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Revised: 03/07/2018] [Accepted: 03/27/2018] [Indexed: 06/08/2023]
Abstract
Algae show great potential as sustainable feedstock for numerous bioproducts. However, large volume of water consumption during algal biomass production makes that the culture media recycling is a necessity due to economic and environmental concern. To avoid the negative effect of enriched organic matters in the harvested culture media, pre-treatment prior to medium replenishment and reuse is required. In this study, degradation of algenitic organic matters (AOM) in the culture media by UV-based photolysis processes (i.e., direct UV, UV/peroxydisulfate (PDS), UV/H2O2, and UV/NH2Cl) was explored. The results showed that UV, UV/PDS, UV/H2O2 and UV/NH2Cl caused a decrease of SUVA for 29.9%, 35.4%, 40.45%, and 22.6%, respectively, though the organic matter was almost not mineralized. Fluorescence excitation-emission matrix combined with parallel factor analysis indicated that UV/PDS and UV/H2O2 degraded 47.26%-56.31% of the fulvic-like and humic-like fractions in AOM. Powder activated carbon absorption and growth evaluation for the AOPs-treated media indicated that UV/PDS and UV/H2O2 processes not only could remove the growth inhibitors in the media, but were also beneficial to the algae growth. These results suggested that UV/PDS and UV/H2O2 could effectively degrade the hydrophobic components in AOM and converted the growth inhibition fraction of AOM in the recycled media into nutrient source for algal growth. Different from the general application of UV-based AOP in the wastewater treatment, this study provided an innovative idea about how to pre-treat AOM in the media recycling: utilization rather than removal, which was a more sustainable and environment-friendly technology.
Collapse
Affiliation(s)
- Wenxuan Wang
- Center for Microalgal Biotechnology and Biofuels, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; Nicholas School of the Environment, Duke University Marine Laboratory, Beaufort, NC 28516, USA
| | - Jun Sha
- Center for Microalgal Biotechnology and Biofuels, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiying Lu
- Center for Microalgal Biotechnology and Biofuels, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; Nicholas School of the Environment, Duke University Marine Laboratory, Beaufort, NC 28516, USA; State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| | - Senlin Shao
- School of Civil Engineering, Wuhan University, Wuhan, Hubei 430072, PR China
| | - Peizhe Sun
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Qiang Hu
- Center for Microalgal Biotechnology and Biofuels, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; Microalgal Biotechnology and Biofuels Center, State Development and Investment Corporation, Sanhe, 065200, China
| | - Xuezhi Zhang
- Center for Microalgal Biotechnology and Biofuels, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| |
Collapse
|
15
|
Sillanpää M, Ncibi MC, Matilainen A. Advanced oxidation processes for the removal of natural organic matter from drinking water sources: A comprehensive review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2018; 208:56-76. [PMID: 29248788 DOI: 10.1016/j.jenvman.2017.12.009] [Citation(s) in RCA: 136] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 11/10/2017] [Accepted: 12/05/2017] [Indexed: 05/19/2023]
Abstract
Natural organic matter (NOM), a key component in aquatic environments, is a complex matrix of organic substances characterized by its fluctuating amounts in water and variable molecular and chemical properties, leading to various interaction schemes with the biogeosphere and hydrologic cycle. These factors, along with the increasing amounts of NOM in surface and ground waters, make the effort of removing naturally-occurring organics from drinking water supplies, and also from municipal wastewater effluents, a challenging task requiring the development of highly efficient and versatile water treatment technologies. Advanced oxidation processes (AOPs) received an increasing amount of attention from researchers around the world, especially during the last decade. The related processes were frequently reported to be among the most suitable water treatment technologies to remove NOM from drinking water supplies and mitigate the formation of disinfection by products (DBPs). Thus, the present work overviews recent research and development studies conducted on the application of AOPs to degrade NOM including UV and/or ozone-based applications, different Fenton processes and various heterogeneous catalytic and photocatalytic oxidative processes. Other non-conventional AOPs such as ultrasonication, ionizing radiation and plasma technologies were also reported. Furthermore, since AOPs are unlikely to achieve complete oxidation of NOM, integration schemes with other water treatment technologies were presented including membrane filtration, adsorption and others processes.
Collapse
Affiliation(s)
- Mika Sillanpää
- Laboratory of Green Chemistry, School of Engineering Science, Lappeenranta University of Technology, Sammonkatu 12, 50130, Mikkeli, Finland; Department of Civil and Environmental Engineering, Florida International University, Miami, FL, 33174, USA
| | - Mohamed Chaker Ncibi
- Laboratory of Green Chemistry, School of Engineering Science, Lappeenranta University of Technology, Sammonkatu 12, 50130, Mikkeli, Finland.
| | - Anu Matilainen
- Finnish Safety and Chemicals Agency (Tukes), Kalevantie 2, 33100, Tampere, Finland
| |
Collapse
|
16
|
Liao X, Zou R, Chen C, Yuan B, Zhou Z, Zhang X. Evaluating the biosafety of conventional and O 3-BAC process and its relationship with NOM characteristics. ENVIRONMENTAL TECHNOLOGY 2018; 39:221-230. [PMID: 28274190 DOI: 10.1080/09593330.2017.1297850] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 02/15/2017] [Indexed: 06/06/2023]
Abstract
It is the priority to guarantee biosafety for drinking water treatment. The objective of this study was to evaluate the impact of widely applied conventional and ozone-biological activated carbon (O3-BAC) advanced treatment technology on biosafety of drinking water. The items, including assimilable organic carbon (AOC), biodegradable dissolved organic carbon (BDOC), heterotrophic plate counts (HPCs) and the microorganism community structures, were used to evaluate the biosafety. Moreover, their relationships with molecular weights (MWs) and fluorescence intensity of dissolved organic matter were investigated. The results indicated that the technology provided a considerable gain in potable water quality by decreasing dissolved organic carbon (DOC, from 5.05 to 1.71 mg/L), AOC (from 298 to 131 μg/L), BDOC (from 1.39 to 0.24 mg/L) and HPCs (from 275 to 10 CFU/mL). Ozone brought an increase in DOC with low MW <1 kDa, which accompanies with an increase in AOC/BDOC concentration, which could be reduced effectively by subsequent BAC process. The formation of AOC/BDOC was closely related to DOC with low MWs and aromatic protein. Bacteria could be released from BAC filter, resulting in an increase in HPC and the presence of pathogenic bacteria in effluent, while the post sand filter could further guarantee the biosafety of finished water.
Collapse
Affiliation(s)
- Xiaobin Liao
- a Institute of Municipal and Environmental Engineering, College of Civil Engineering , Huaqiao University , Xiamen , People's Republic of China
- b State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment , Tsinghua University , Beijing , People's Republic of China
| | - Rusen Zou
- a Institute of Municipal and Environmental Engineering, College of Civil Engineering , Huaqiao University , Xiamen , People's Republic of China
| | - Chao Chen
- b State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment , Tsinghua University , Beijing , People's Republic of China
| | - Baoling Yuan
- a Institute of Municipal and Environmental Engineering, College of Civil Engineering , Huaqiao University , Xiamen , People's Republic of China
| | - Zhenming Zhou
- a Institute of Municipal and Environmental Engineering, College of Civil Engineering , Huaqiao University , Xiamen , People's Republic of China
| | - Xiaojian Zhang
- b State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment , Tsinghua University , Beijing , People's Republic of China
| |
Collapse
|
17
|
Wang WL, Zhang X, Wu QY, Du Y, Hu HY. Degradation of natural organic matter by UV/chlorine oxidation: Molecular decomposition, formation of oxidation byproducts and cytotoxicity. WATER RESEARCH 2017; 124:251-258. [PMID: 28763641 DOI: 10.1016/j.watres.2017.07.029] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 06/12/2017] [Accepted: 07/13/2017] [Indexed: 06/07/2023]
Abstract
The degradation of natural organic matters (NOMs) by the combination of UV and chlorine (UV/chlorine) was investigated in this study. UV/chlorine oxidation can effectively degrade NOMs, with the degradation of chromophores (∼80%) and fluorophores (76.4-80.8%) being more efficient than that of DOC (15.1-18.6%). This effect was attributed to the chromophores and fluorophores (double bonds, aromatic groups and phenolic groups) being preferentially degraded by UV/chlorine oxidation, particularly reactive groups with high electron donating capacity. Radical species •OH and •Cl were generated during UV/chlorine oxidation, with the contribution of •OH 1.4 times as high as that of •Cl. The degradation kinetics of different molecular weight (MW) fractions suggests that UV/chlorine oxidation degrades high MW fractions into low MW fractions, with the degradation rates of high MW fractions (>3000 Da) 4.5 times of those of medium MW fractions (1000-3000 Da). In comparison with chlorination alone, UV/chlorine oxidation did not increase the formation (30 min) and formation potential (24 h) of trihalomethanes, but instead promoted the formation and formation potential of haloacetic acids and chloral hydrate. Adsorbable organic halogen (AOX) formed from UV/chlorine oxidation of NOM were 0.8 times higher than those formed from chlorination. Cytotoxicity studies indicated that the cytotoxicity of NOM increased after both chlorination and UV/chlorine oxidation, which may be due to the formation of AOX.
Collapse
Affiliation(s)
- Wen-Long Wang
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, China; Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China
| | - Xue Zhang
- Collaborative Innovation Center for Advanced Nuclear Energy Technology, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, PR China
| | - Qian-Yuan Wu
- Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China.
| | - Ye Du
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, China; Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China
| | - Hong-Ying Hu
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, China; Shenzhen Environmental Science and New Energy Technology Engineering Laboratory, Tsinghua-Berkeley Shenzhen Institute, Shenzhen 518055, PR China.
| |
Collapse
|
18
|
Li GQ, Yu T, Wu QY, Lu Y, Hu HY. Development of an ATP luminescence-based method for assimilable organic carbon determination in reclaimed water. WATER RESEARCH 2017; 123:345-352. [PMID: 28683375 DOI: 10.1016/j.watres.2017.06.082] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 06/26/2017] [Accepted: 06/28/2017] [Indexed: 06/07/2023]
Abstract
Assimilable organic carbon (AOC) is an important indicator of the biological stability of reclaimed water. In this study, a new rapid and more stable method for AOC measurement in reclaimed water was proposed. Indigenous microbial culture from secondary effluent was used as the inoculum, and bacterial growth was determined by the quantity of adenosine triphosphate (ATP) in the form of luminescence instead of plate count. ATP luminescence had a high correlation with biogrowth both in pure acetate solutions and reclaimed waters. ATP luminescence analysis could be determined in 5 min. Three days of 10000 cells/mL inoculum incubated at 25 °C were enough for the bacteria to reach the stationary phase. The good correlations between ATP luminescence and the added acetate-C concentration illustrated the applicability of monitoring AOC level by luminescence method. And in reclaimed water samples, indigenous microbial culture produces the highest AOC results compared with the pure strains. This indicated that the integrity of indigenous microbial culture ensured the full utilization of matrix carbons, which demonstrated the advantage of indigenous microbial culture compared with the selected pure bacteria in the traditional AOC test. The average ATP content per cell of 3.95 × 10-10 nmol/cell was derived, and this value was stable in both the acetate solutions and reclaimed waters. Furthermore, the average yield coefficient of 1.5 × 105 RLU/μg acetate-C (4.1 × 10-3 nmol ATP/μg acetate-C) was obtained from different indigenous cultures. Additionally, the indigenous microbial cultures from different secondary effluents would produce the similar AOC results for the same water sample, indicating the consistency of this assay. The ATP luminescence-AOC assay provides a faster, more stable and accurate approach for monitoring the biological stability of reclaimed waters.
Collapse
Affiliation(s)
- Guo-Qiang Li
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Tong Yu
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Qian-Yuan Wu
- Shenzhen Laboratory of Microorganism Application and Risk Control, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, PR China
| | - Yun Lu
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, PR China.
| | - Hong-Ying Hu
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, PR China; Shenzhen Environmental Science and New Energy Technology Engineering Laboratory, Tsinghua-Berkeley Shenzhen Institute, Shenzhen 518055, PR China.
| |
Collapse
|
19
|
Ahn Y, Lee D, Kwon M, Choi IH, Nam SN, Kang JW. Characteristics and fate of natural organic matter during UV oxidation processes. CHEMOSPHERE 2017; 184:960-968. [PMID: 28655115 DOI: 10.1016/j.chemosphere.2017.06.079] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 05/19/2017] [Accepted: 06/17/2017] [Indexed: 06/07/2023]
Abstract
Advanced oxidation processes (AOPs) are widely used in water treatments. During oxidation processes, natural organic matter (NOM) is modified and broken down into smaller compounds that affect the characteristics of the oxidized NOM by AOPs. In this study, NOM was characterized and monitored in the UV/hydrogen peroxide (H2O2) and UV/persulfate (PS) processes using a liquid chromatography-organic carbon detector (LC-OCD) technique, and a combination of excitation-emission matrices (EEM) and parallel factor analysis (PARAFAC). The percentages of mineralization of NOM in the UV/H2O2 and UV/PS processes were 20.5 and 83.3%, respectively, with a 10 mM oxidant dose and a contact time of 174 s (UV dose: approximately 30,000 mJ). Low-pressure, Hg UV lamp (254 nm) was applied in this experiment. The steady-state concentration of SO4- was 38-fold higher than that of OH at an oxidant dose of 10 mM. With para-chlorobenzoic acid (pCBA) as a radical probe compound, we experimentally determined the rate constants of Suwannee River NOM (SRNOM) with OH (kOH/NOM = 3.3 × 108 M-1s-1) and SO4- (kSO4-/NOM = 4.55 × 106 M-1s-1). The hydroxyl radical and sulfate radical showed different mineralization pathways of NOM, which have been verified by the use of LC-OCD and EEM/PARAFAC. Consequently, higher steady-state concentrations of SO4-, and different reaction preferences of OH and SO4- with the NOM constituent had an effect on the mineralization efficiency.
Collapse
Affiliation(s)
- Yongtae Ahn
- Department of Environmental Engineering, Yonsei University, Wonju, Kangwon-do, 26493, South Korea
| | - Doorae Lee
- Department of Environmental Engineering, Yonsei University, Wonju, Kangwon-do, 26493, South Korea
| | - Minhwan Kwon
- Department of Environmental Engineering, Yonsei University, Wonju, Kangwon-do, 26493, South Korea
| | - Il-Hwan Choi
- Water Analysis and Research Center, Korea Institute of Water and Environment, 34350, Korea Water Resources Corp., South Korea
| | - Seong-Nam Nam
- Department of Civil and Environmental Engineering, Chung-Ang University, 84, Heukseok-ro, Dongjak-gu, Seoul, 06974, South Korea
| | - Joon-Wun Kang
- Department of Environmental Engineering, Yonsei University, Wonju, Kangwon-do, 26493, South Korea.
| |
Collapse
|
20
|
Duca C, Imoberdorf G, Mohseni M. Effects of inorganics on the degradation of micropollutants with vacuum UV (VUV) advanced oxidation. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2017; 52:524-532. [PMID: 28276889 DOI: 10.1080/10934529.2017.1282770] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
This research focused on the effects of inorganic water constituents on the efficiency of vacuum UV (VUV) for the degradation of micropollutants in surface water supplies. Atrazine was used as a model miropollutant, and bicarbonate, sulphate, and nitrate were used as the most common inorganic constituents in the water matrix. First, the absorbance of radiation at 254 and 185 nm was measured in the presence of different ions. At 254 nm, only nitrate showed a measurable absorption coefficient of [Formula: see text] = 3.51 M[Formula: see text] cm[Formula: see text], and all other ions showed a molar absorption coefficient below the detection limit. However, at 185 nm, all the ions showed high absorption coefficients, with nitrate giving the highest absorption coefficient of [Formula: see text] = 5568 M[Formula: see text] cm[Formula: see text]. Second, the hydroxyl radical (HO[Formula: see text]) scavenging effects of the same inorganic ions were evaluated; nitrate and bicarbonate showed a negative effect during the UV/H2O2 and VUV advanced oxidation processes. Sulfate was photolyzed with 185 nm UV to form HO[Formula: see text], and for this reason, it assisted the degradation of the target micropollutant, as demonstrated by increases in the degradation rate constant. An additional component of this work involved developing a method for measuring the quantum yield of atrazine at 185 nm. This made it possible to distinguish the contribution of OH radical attach from that of direct photolysis towards the degradation of atrazine.
Collapse
Affiliation(s)
- Clara Duca
- a Department of Chemical and Biological Engineering , University of British Columbia , Vancouver , British Columbia , Canada
| | - Gustavo Imoberdorf
- a Department of Chemical and Biological Engineering , University of British Columbia , Vancouver , British Columbia , Canada
| | - Madjid Mohseni
- a Department of Chemical and Biological Engineering , University of British Columbia , Vancouver , British Columbia , Canada
| |
Collapse
|
21
|
Zhang S, Gitungo SW, Axe L, Raczko RF, Dyksen JE. Biologically active filters - An advanced water treatment process for contaminants of emerging concern. WATER RESEARCH 2017; 114:31-41. [PMID: 28226247 DOI: 10.1016/j.watres.2017.02.014] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 02/04/2017] [Accepted: 02/06/2017] [Indexed: 06/06/2023]
Abstract
With the increasing concern of contaminants of emerging concern (CECs) in source water, this study examines the hypothesis that existing filters in water treatment plants can be converted to biologically active filters (BAFs) to treat these compounds. Removals through bench-scale BAFs were evaluated as a function of media, granular activated carbon (GAC) and dual media, empty bed contact time (EBCT), and pre-ozonation. For GAC BAFs, greater oxygen consumption, increased pH drop, and greater dissolved organic carbon removal normalized to adenosine triphosphate (ATP) were observed indicating increased microbial activity as compared to anthracite/sand dual media BAFs. ATP concentrations in the upper portion of the BAFs were as much as four times greater than the middle and lower portions of the dual media and 1.5 times greater in GAC. Sixteen CECs were spiked in the source water. At an EBCT of 18 min (min), GAC BAFs were highly effective with overall removals greater than 80% without pre-ozonation; exceptions included tri(2-chloroethyl) phosphate and iopromide. With a 10 min EBCT, the degree of CECs removal was reduced with less than half of the compounds removed at greater than 80%. The dual media BAFs showed limited CECs removal with only four compounds removed at greater than 80%, and 10 compounds were reduced by less than 50% with either EBCT. This study demonstrated that GAC BAFs with and without pre-ozonation are an effective and advanced technology for treating emerging contaminants. On the other hand, pre-ozonation is needed for dual media BAFs to remove CECs. The most cost effective operating conditions for dual media BAFs were a 10 min EBCT with the application of pre-ozonation.
Collapse
Affiliation(s)
- Shuangyi Zhang
- Department of Civil & Environmental Engineering, New Jersey Institute of Technology, Newark, NJ 07102, United States.
| | - Stephen W Gitungo
- Department of Civil & Environmental Engineering, New Jersey Institute of Technology, Newark, NJ 07102, United States
| | - Lisa Axe
- Department of Civil & Environmental Engineering, New Jersey Institute of Technology, Newark, NJ 07102, United States
| | | | - John E Dyksen
- SUEZ North America, Paramus, NJ 07652, United States
| |
Collapse
|
22
|
Yen HY, Kang SF. Effect of organic molecular weight on mineralization and energy consumption of humic acid by H2O2/UV oxidation. ENVIRONMENTAL TECHNOLOGY 2016; 37:2199-2205. [PMID: 26824686 DOI: 10.1080/09593330.2016.1146337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2015] [Accepted: 01/20/2016] [Indexed: 06/05/2023]
Abstract
In this study, the effect of molecular weights (MWs) on mineralization, energy consumption, kinetic reaction, and trihalomethane formation potential (THMFP) of humic acid was evaluated by the process of H2O2/UV oxidation. Three ranges of MWs of 100 k-10 kDa (sample A), 10 k-1 kDa (sample B), and less than 1 kDa (sample C) were investigated. The results showed that the reaction constant k increased with either increased UV intensity or increased H2O2 dose; the order of k was kA > kB > kC, for all UV intensities from 16 to 64 W and H2O2 dose from 25 to 100 mg L(-1). In terms of EEO and EEM, the energy consumption decreased as the H2O2 dose increased with the descending order of sample C > sample B > sample A. The three samples had an initial dissolved organic carbon (DOC) of 20 mg L(-1) with the related values of THMFP of 325, 359, and 468 μg L(-1) for samples A, B, and C, respectively. After H2O2/UV oxidation, the combination of a higher UV power with a shorter time was a better treatment condition for samples A and B as residual DOC and THMFP were smaller.
Collapse
Affiliation(s)
- Hsing Yuan Yen
- a Department of Chemical and Biochemical Engineering , Kao Yuan University , Kaohsiung City , Taiwan (ROC)
| | - Shyh Fang Kang
- b Department of Water Resources and Environmental Engineering , Tamkang University , New Taipei City , Taiwan (ROC)
| |
Collapse
|
23
|
Ou TY, Wang GS. Comparative study on DBPs formation profiles of intermediate organics from hydroxyl radicals oxidation of microbial cells. CHEMOSPHERE 2016; 150:109-115. [PMID: 26894677 DOI: 10.1016/j.chemosphere.2016.01.124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 01/29/2016] [Accepted: 01/31/2016] [Indexed: 06/05/2023]
Abstract
This study assessed the characteristics of disinfection byproducts (DBPs) formation from intermediate organics during UV/H2O2 treatment of activated sludge and algae cells under various reaction conditions. The DBPs including trihalomethanes (THMs), haloacetic acids (HAAs), haloketones (HKs) and haloacetonitriles (HANs) in UV/H2O2-treated and chlorinated water were measured. The results showed that both dissolved organic carbon (DOC) and dissolved organic nitrogen (DON) increased during the initial stage of UV/H2O2 treatment due to the lysis of sludge and algae cells, which enhanced the formation of both C- and N-DBPs; however, both DOC and DON decreased after longer reaction times. During the UV/H2O2 treatments, THMs formation potential (THMFP) peaked earlier than did HAAs formation potential (HAAFP). This shows that the dissolved organics released from lysis of microbial cells in the early stages of oxidation favor the production of THMs over HAAs; however, HAAs precursors increased with the oxidation time. Chlorination with bromide increased the formation of THMs and HAAs but less HKs and HANs were produced. Comparisons of normalized DBP formation potential (DBPFP) of samples collected during UV/H2O2 treatments of four different types of organic matter showed that the highest DBPFP occurred in filtered treated wastewater effluent, followed by samples of activated sludge, filtered eutrophicated pond water, and samples of algae cells. With increasing oxidation time, the dominant DBP species shifted from THMs to HAAs in the samples of activated sludge and algae cells. The DBPFP tests also showed that more HAAs were formed in biologically treated wastewater effluent, while the eutrophicated source water produced more THMs.
Collapse
Affiliation(s)
- Tai-You Ou
- Institute of Environmental Health, National Taiwan University, Taipei City, Taiwan
| | - Gen-Shuh Wang
- Institute of Environmental Health, National Taiwan University, Taipei City, Taiwan.
| |
Collapse
|
24
|
Jin P, Jin X, Bjerkelund VA, Østerhus SW, Wang XC, Yang L. A study on the reactivity characteristics of dissolved effluent organic matter (EfOM) from municipal wastewater treatment plant during ozonation. WATER RESEARCH 2016; 88:643-652. [PMID: 26575473 DOI: 10.1016/j.watres.2015.10.060] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 10/29/2015] [Accepted: 10/30/2015] [Indexed: 06/05/2023]
Abstract
The reactivity of dissolved effluent organic matter (EfOM) in the process of ozonation was examined. Under different ozone dosages (0.42 ± 0.09, 0.98 ± 0.11 and 2.24 ± 0.17 mgO3/mg DOC), the EfOM before and after ozonation could be classified into four fractions according to their hydrophobicities. By ozonation, the hydrophobic fractions, especially hydrophobic acid (HOA) and hydrophobic neutral (HON), were found to undergo a process of transformation into hydrophilic fractions (HI), of which the HOA were first transformed into HON, and then the majority of the HON fraction was later converted to HI by further ozonation. It was noticeable that after ozonation, the fluorescence intensity in the humic-like and protein-like regions decreased as indicated by the excitation and emission matrix (EEM) spectra for the hydrophobic fractions. By coupling the EEM spectra with the molecular size analysis using high performance size exclusion chromatography (HPSEC), the difference between the characteristic distributions of the humic-like and protein-like fluorophores were further revealed. It could thus be extrapolated that ozone might have preferentially reacted with the protein-like hydrophobic fraction with molecular weight (MW) less than 100 kDa. Moreover, by X-ray photoelectron spectroscopy (XPS) analysis, it was identified that with increasing ozone dosage (from 0 to 2.24 ± 0.17 mgO3/mg DOC), the aromaticity of HON decreased dramatically, while aliphatics and ketones increased especially at the low ozone dose (0.42 ± 0.09 mgO3/mg DOC). Of the EfOM fractions, the HON fraction would have a higher content of electron enriched aromatics which could preferentially react with ozone rather than the HOA fraction.
Collapse
Affiliation(s)
- Pengkang Jin
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi Province, 710055, China.
| | - Xin Jin
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi Province, 710055, China.
| | - Viggo A Bjerkelund
- Department of Hydraulic and Environmental Engineering, Norwegian University of Science and Technology (NTNU), Trondheim, N-7491, Norway
| | - Stein W Østerhus
- Department of Hydraulic and Environmental Engineering, Norwegian University of Science and Technology (NTNU), Trondheim, N-7491, Norway
| | - Xiaochang C Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi Province, 710055, China
| | - Lei Yang
- Department of Chemistry-Ångström Laboratory, Uppsala University, Uppsala, 75120, Sweden
| |
Collapse
|
25
|
Agbaba J, Jazić JM, Tubić A, Watson M, Maletić S, Isakovski MK, Dalmacija B. Oxidation of natural organic matter with processes involving O3, H2O2and UV light: formation of oxidation and disinfection by-products. RSC Adv 2016. [DOI: 10.1039/c6ra18072h] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
This study investigates the effects of UV photolysis, ozonation and different advanced oxidation processes (O3/UV, H2O2/UV and O3/H2O2/UV) on the oxidation of groundwater natural organic matter (NOM) and by-product formation.
Collapse
Affiliation(s)
- Jasmina Agbaba
- University of Novi Sad
- Faculty of Sciences
- Department of Chemistry
- Biochemistry and Environmental Protection
- Republic of Serbia
| | - Jelena Molnar Jazić
- University of Novi Sad
- Faculty of Sciences
- Department of Chemistry
- Biochemistry and Environmental Protection
- Republic of Serbia
| | - Aleksandra Tubić
- University of Novi Sad
- Faculty of Sciences
- Department of Chemistry
- Biochemistry and Environmental Protection
- Republic of Serbia
| | - Malcolm Watson
- University of Novi Sad
- Faculty of Sciences
- Department of Chemistry
- Biochemistry and Environmental Protection
- Republic of Serbia
| | - Snežana Maletić
- University of Novi Sad
- Faculty of Sciences
- Department of Chemistry
- Biochemistry and Environmental Protection
- Republic of Serbia
| | - Marijana Kragulj Isakovski
- University of Novi Sad
- Faculty of Sciences
- Department of Chemistry
- Biochemistry and Environmental Protection
- Republic of Serbia
| | - Božo Dalmacija
- University of Novi Sad
- Faculty of Sciences
- Department of Chemistry
- Biochemistry and Environmental Protection
- Republic of Serbia
| |
Collapse
|
26
|
Minakata D, Mezyk SP, Jones JW, Daws BR, Crittenden JC. Development of linear free energy relationships for aqueous phase radical-involved chemical reactions. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:13925-13932. [PMID: 25368975 DOI: 10.1021/es504491z] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Aqueous phase advanced oxidation processes (AOPs) produce hydroxyl radicals (HO•) which can completely oxidize electron rich organic compounds. The proper design and operation of AOPs require that we predict the formation and fate of the byproducts and their associated toxicity. Accordingly, there is a need to develop a first-principles kinetic model that can predict the dominant reaction pathways that potentially produce toxic byproducts. We have published some of our efforts on predicting the elementary reaction pathways and the HO• rate constants. Here we develop linear free energy relationships (LFERs) that predict the rate constants for aqueous phase radical reactions. The LFERs relate experimentally obtained kinetic rate constants to quantum mechanically calculated aqueous phase free energies of activation. The LFERs have been applied to 101 reactions, including (1) HO• addition to 15 aromatic compounds; (2) addition of molecular oxygen to 65 carbon-centered aliphatic and cyclohexadienyl radicals; (3) disproportionation of 10 peroxyl radicals, and (4) unimolecular decay of nine peroxyl radicals. The LFERs correlations predict the rate constants within a factor of 2 from the experimental values for HO• reactions and molecular oxygen addition, and a factor of 5 for peroxyl radical reactions. The LFERs and the elementary reaction pathways will enable us to predict the formation and initial fate of the byproducts in AOPs. Furthermore, our methodology can be applied to other environmental processes in which aqueous phase radical-involved reactions occur.
Collapse
Affiliation(s)
- Daisuke Minakata
- Department of Civil and Environmental Engineering, Michigan Technological University, 1400 Townsend Drive, Houghton, Michigan 49931, United States.
| | | | | | | | | |
Collapse
|
27
|
Chu W, Gao N, Yin D, Krasner SW, Mitch WA. Impact of UV/H2O2 pre-oxidation on the formation of haloacetamides and other nitrogenous disinfection byproducts during chlorination. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:12190-8. [PMID: 25251305 DOI: 10.1021/es502115x] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Haloacetamides (HAcAms), an emerging class of nitrogen-based disinfection byproducts (N-DBPs) of health concern in drinking water, have been found in drinking waters at μg/L levels. However, there is a limited understanding about the formation, speciation, and control of halogenated HAcAms. Higher ultraviolet (UV) doses and UV advanced oxidation (UV/H2O2) processes (AOPs) are under consideration for the treatment of trace organic pollutants. The objective of this study was to examine the potential of pretreatment with UV irradiation, H2O2 oxidation, and a UV/H2O2 AOP for minimizing the formation of HAcAms, as well as other emerging N-DBPs, during postchlorination. We investigated changes in HAcAm formation and speciation attributed to UV, H2O2 or UV/H2O2 followed by the application of free chlorine to quench any excess hydrogen peroxide and to provide residual disinfection. The results showed that low-pressure UV irradiation alone (19.5-585 mJ/cm(2)) and H2O2 preoxidation alone (2-20 mg/L) did not significantly change total HAcAm formation during subsequent chlorination. However, H2O2 preoxidation alone resulted in diiodoacetamide formation in two iodide-containing waters and increased bromine utilization. Alternatively, UV/H2O2 preoxidation using UV (585 mJ/cm(2)) and H2O2 (10 mg/L) doses typically employed for trace contaminant removal controlled the formation of HAcAms and several other N-DBPs in drinking water.
Collapse
Affiliation(s)
- Wenhai Chu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University , Shanghai, 200092, China
| | | | | | | | | |
Collapse
|
28
|
Sindelar HR, Brown MT, Boyer TH. Evaluating UV/H₂O₂, UV/percarbonate, and UV/perborate for natural organic matter reduction from alternative water sources. CHEMOSPHERE 2014; 105:112-118. [PMID: 24405969 DOI: 10.1016/j.chemosphere.2013.12.040] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Revised: 12/06/2013] [Accepted: 12/11/2013] [Indexed: 06/03/2023]
Abstract
Natural organic matter (NOM) continues to increase in drinking water sources due to many factors, including changes in land use and global climate. Water treatment facilities will need to evaluate the best treatment options to account for these higher NOM levels. The UV/H₂O₂ advanced oxidation process (AOP) is one treatment option that has shown success at reducing high levels of NOM. As a result, this study evaluated the UV/H₂O₂ for the reduction of NOM in a high NOM water matrix, the Florida Everglades. In addition to liquid H₂O₂, sodium percarbonate and sodium perborate were used as oxidants to evaluate their performance as alternatives to liquid H₂O₂. Results showed that all three oxidants were able to reduce aromatic carbon (UV₂₅₄) by 46-66% and dissolved organic carbon (DOC) by 11-19% at UV fluences of 2.6-2.7 J cm(-2) and an H₂O₂ dose of 100 mg L(-1). When the UV fluences were increased to 21.8-26.1 J cm(-2) at an H₂O₂ dose of 100 mg L(-1), UV₂₅₄ reduction increased to 79-97% and DOC to 42-82% for all three oxidants. All three oxidants performed statistically similar for UV₂₅₄ reduction. However, for DOC reduction, H₂O₂ performed statically better than both percarbonate and perborate, and perborate performed statistically better than percarbonate. While the UV/H₂O₂ AOP is effective for NOM reduction in high NOM waters, advances in electrical efficiency are needed to make it economically feasible.
Collapse
Affiliation(s)
- Hugo R Sindelar
- Department of Environmental Engineering Sciences, University of Florida, P.O. Box 116450, Gainesville, FL 32611-6450, USA
| | - Mark T Brown
- Department of Environmental Engineering Sciences, University of Florida, P.O. Box 116450, Gainesville, FL 32611-6450, USA
| | - Treavor H Boyer
- Department of Environmental Engineering Sciences, University of Florida, P.O. Box 116450, Gainesville, FL 32611-6450, USA.
| |
Collapse
|
29
|
Rezaee R, Maleki A, Jafari A, Mazloomi S, Zandsalimi Y, Mahvi AH. Application of response surface methodology for optimization of natural organic matter degradation by UV/H2O2 advanced oxidation process. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE AND ENGINEERING 2014; 12:67. [PMID: 24735555 PMCID: PMC3999503 DOI: 10.1186/2052-336x-12-67] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2013] [Accepted: 03/16/2014] [Indexed: 12/07/2022]
Abstract
BACKGROUND In this research, the removal of natural organic matter from aqueous solutions using advanced oxidation processes (UV/H2O2) was evaluated. Therefore, the response surface methodology and Box-Behnken design matrix were employed to design the experiments and to determine the optimal conditions. The effects of various parameters such as initial concentration of H2O2 (100-180 mg/L), pH (3-11), time (10-30 min) and initial total organic carbon (TOC) concentration (4-10 mg/L) were studied. RESULTS Analysis of variance (ANOVA), revealed a good agreement between experimental data and proposed quadratic polynomial model (R(2) = 0.98). Experimental results showed that with increasing H2O2 concentration, time and decreasing in initial TOC concentration, TOC removal efficiency was increased. Neutral and nearly acidic pH values also improved the TOC removal. Accordingly, the TOC removal efficiency of 78.02% in terms of the independent variables including H2O2 concentration (100 mg/L), pH (6.12), time (22.42 min) and initial TOC concentration (4 mg/L) were optimized. Further confirmation tests under optimal conditions showed a 76.50% of TOC removal and confirmed that the model is accordance with the experiments. In addition TOC removal for natural water based on response surface methodology optimum condition was 62.15%. CONCLUSIONS This study showed that response surface methodology based on Box-Behnken method is a useful tool for optimizing the operating parameters for TOC removal using UV/H2O2 process.
Collapse
Affiliation(s)
- Reza Rezaee
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran ; Kurdistan Environmental Health Research Center, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Afshin Maleki
- Kurdistan Environmental Health Research Center, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Ali Jafari
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Sajad Mazloomi
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Yahya Zandsalimi
- Kurdistan Environmental Health Research Center, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Amir H Mahvi
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran ; Center for Solid Waste Research, Institute for Environmental Research, Tehran University of Medical Sciences, Tehran, Iran ; National Institute of Health Research, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|