1
|
Wang Y, Li L, Guo X, Wang A, Pan Y, Ma J, Lu S, Liu D. A comprehensive review on iron‒carbon microelectrolysis constructed wetlands: Efficiency, mechanism and prospects. WATER RESEARCH 2024; 268:122648. [PMID: 39461209 DOI: 10.1016/j.watres.2024.122648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 10/14/2024] [Accepted: 10/16/2024] [Indexed: 10/29/2024]
Abstract
The traditional constructed wetlands (CWs) face challenges such as significant seasonal fluctuations in decontamination performance and susceptibility to clogging, with the bottlenecks in advanced wastewater treatment becoming increasingly prominent. The iron‒carbon microelectrolysis coupled with constructed wetlands (ICME‒CWs) represents a promising new type of CWs, capable of removing typical and emerging pollutants in water through various mechanisms including adsorption, precipitation, oxidation‒reduction, microelectrolysis, and plant‒microbial synergy. Therefore, this review summarizes the sources, preparation, and basic properties of the ICME substrate commonly used in ICME‒CWs in recent years. It systematically outlines the decontamination mechanisms of ICME‒CWs and their removal performance for pollutants. Additionally, the potential ecological effects of ICME on wetland organisms (microorganisms and plants) are discussed. Finally, the prospects and challenges of ICME‒CWs in applications such as greenhouse gas reduction, groundwater remediation, and the removal of emerging pollutants are proposed. This review aims to advance the development of ICME‒CWs technology for efficient wastewater treatment and provide prospects and guidance for the sustainable and environmentally friendly development of CWs.
Collapse
Affiliation(s)
- Yongqiang Wang
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China; State Key Laboratory of Environmental Criteria and Risk Assessment, State Environmental Protection Key Laboratory for Lake Pollution Control, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Research Centre of Lake Environment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Linlin Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, State Environmental Protection Key Laboratory for Lake Pollution Control, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Research Centre of Lake Environment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xiaochun Guo
- State Key Laboratory of Environmental Criteria and Risk Assessment, State Environmental Protection Key Laboratory for Lake Pollution Control, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Research Centre of Lake Environment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Aiwen Wang
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yunhao Pan
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jun Ma
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Shaoyong Lu
- State Key Laboratory of Environmental Criteria and Risk Assessment, State Environmental Protection Key Laboratory for Lake Pollution Control, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Research Centre of Lake Environment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Dongmei Liu
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
2
|
Yousaf N, Sardar MF, Ishfaq M, Yu B, Zhong Y, Zaman F, Zhang F, Zou C. Insights in to iron-based nanoparticles (hematite and magnetite) improving the maize growth (Zea mays L.) and iron nutrition with low environmental impacts. CHEMOSPHERE 2024; 362:142781. [PMID: 38972262 DOI: 10.1016/j.chemosphere.2024.142781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/22/2024] [Accepted: 07/04/2024] [Indexed: 07/09/2024]
Abstract
The possible potential application of Fe-NPs on Fe nutrition, heavy metals uptake and soil microbial community needs to be investigated. In the current research, a pot experiment was used to examine the implications of Fe-NPs (α-Fe2O3 and Fe3O4) on maize growth, Fe uptake and transportation, soil microbial community, and environmental risk. Fe3O4, α-Fe2O3, FeSO4 at a rate of 800 mg Fe kg-1 were applied in soils with four replications under a completely randomized design for a period of 60 days. Results showed that Fe uptake by maize roots were increased by 107-132% than control, with obvious variations across different treatments (Fe3O4> α-Fe2O3> FeSO4> control). Similarly, plant height, leaf surface area, and biomass were increased by 40-64%, 52-91% and 38-109% respectively, with lower values by FeSO4 application. The elevated level of chlorophyll contents and carotenoids and significant effects with control on antioxidant enzymes activities (i.e., catalase, and superoxide dismutase) suggested that application of Fe-NPs improved overall biochemical processes. The differential expression of important Fe transporters (i.e., ZmYS1 and ZmFER1) as compared to control indicated the plant strategic response for efficient uptake and distribution of Fe. Importantly, Fe-NPs reduced the heavy metals uptake (i.e., chromium, cadmium, arsenic, nickel, copper) by complex formation, and showed no toxicity to the soil microbial community. In summary, the application of Fe-NPs can be a promising approach for improving crop productivity and Fe nutrition without negatively affecting soil microbial community, and fostering sustainable agricultural production.
Collapse
Affiliation(s)
- Nauman Yousaf
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, China Agricultural University, 100193 Beijing, China
| | - Muhammad Fahad Sardar
- Key Laboratory of Ecological Prewarning, Protection and Restoration of Bohai Sea, Ministry of Natural Resources, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Muhammad Ishfaq
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518061, China
| | - Baogang Yu
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, China Agricultural University, 100193 Beijing, China
| | - Yanting Zhong
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, China Agricultural University, 100193 Beijing, China
| | - Faisal Zaman
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Fusuo Zhang
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, China Agricultural University, 100193 Beijing, China
| | - Chunqin Zou
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, China Agricultural University, 100193 Beijing, China.
| |
Collapse
|
3
|
Wang YY, Cheng HX, Zheng LY, Luo LZ, Liu JZ, Zhang M, Tian GM. Synergistic promotion of microalgal growth and copper removal from synthetic wastewater by nanoscale zero-valent iron particles. ENVIRONMENTAL TECHNOLOGY 2024:1-13. [PMID: 38773903 DOI: 10.1080/09593330.2024.2354055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 05/02/2024] [Indexed: 05/24/2024]
Abstract
The increasing concentrations of heavy metals in livestock wastewater pose a serious threat to the environmental safety and human health, limiting its resource utilisation. In the present study, microalgae and nanoscale zero-valent iron were selected to construct a coupled system for copper-containing wastewater treatment. The addition of 50 mg·L-1 nanoscale zero-valent iron (50 nm) was the optimal value for the experiment, which could significantly increase the biomass of microalgae. In addition, nanoscale zero-valent iron stimulated microalgal secretion of extracellular polymeric substances, increasing the contents of binding sites, organic ligands, and functional groups on the microalgal surfaces and ultimately promoting the settling of microalgae and binding of heavy metals. The coupled system could quickly adapt to copper-containing wastewater of 10 mg·L-1, and the copper removal rate reached 94.99%. Adsorption and uptake by organisms, together with the contribution of zero-valent iron nanoparticles, are the major copper removal pathways. Overall, this work offers a novel technical solution for enhanced treatment of copper-containing livestock wastewater, which will help improve the efficiency and quality of wastewater treatment.
Collapse
Affiliation(s)
- Yang-Yan Wang
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, People's Republic of China
| | - Hai-Xiang Cheng
- College of Chemical and Material Engineering, Quzhou University, Quzhou, People's Republic of China
| | - Ling-Yi Zheng
- Ecology and Environment Science Research & Design Institute of Zhejiang Province, Hangzhou, People's Republic of China
| | - Long-Zao Luo
- School of Chemistry and Environmental Science, Shangrao Normal University, Shangrao, People's Republic of China
| | - Jun-Zhi Liu
- Zhejiang Provincial Key Laboratory of Petrochemical Pollution Control, School of Petrochemical and Environment, Zhejiang Ocean University, Zhoushan, People's Republic of China
| | - Meng Zhang
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, People's Republic of China
| | - Guang-Ming Tian
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, People's Republic of China
| |
Collapse
|
4
|
Zhao J, Qin Y, Liu Y, Shi Y, Lin Q, Cai M, Jia Z, Yu C, Shang A, Fei Y, Zhang J. Cobalt/Iron Bimetallic Biochar Composites for Lead(II) Adsorption: Mechanism and Remediation Performance. Molecules 2024; 29:1595. [PMID: 38611873 PMCID: PMC11013323 DOI: 10.3390/molecules29071595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/18/2024] [Accepted: 03/21/2024] [Indexed: 04/14/2024] Open
Abstract
The performance of nano-zero-valent iron for heavy metal remediation can be enhanced via incorporation into bimetallic carbon composites. However, few economical and green approaches are available for preparing bimetallic composite materials. In this study, novel Co/Fe bimetallic biochar composites (BC@Co/Fe-X, where X = 5 or 10 represents the CoCl2 concentration of 0.05 or 0.1 mol L-1) were prepared for the adsorption of Pb2+. The effect of the concentration of cross-linked metal ions on Pb2+ adsorption was investigated, with the composite prepared using 0.05 mol L-1 Co2+ (BC@Co/Fe-5) exhibiting the highest adsorption performance. Various factors, including the adsorption period, Pb2+ concentration, and pH, affected the adsorption of Pb2+ by BC@Co/Fe-5. Further characterisation of BC@Co/Fe-5 before and after Pb2+ adsorption using methods such as X-ray diffraction and X-ray photoelectron spectroscopy suggested that the Pb2+ adsorption mechanism involved (i) Pb2+ reduction to Pb0 by Co/Fe, (ii) Co/Fe corrosion to generate Fe2+ and fix Pb2+ in the form of PbO, and (iii) Pb2+ adsorption by Co/Fe biochar. Notably, BC@Co/Fe-5 exhibited excellent remediation performance in simulated Pb2+-contaminated water and soil with good recyclability.
Collapse
Affiliation(s)
- Jingyu Zhao
- Key Laboratory of Water Pollution Treatment & Resource Reuse of Hainan Province, Key Laboratory of Natural Polymer Function Material of Haikou City, College of Chemistry and Chemical Engineering, Hainan Normal University, No. 99 Longkunnan Road, Haikou 571158, China
| | - Yuhong Qin
- Key Laboratory of Water Pollution Treatment & Resource Reuse of Hainan Province, Key Laboratory of Natural Polymer Function Material of Haikou City, College of Chemistry and Chemical Engineering, Hainan Normal University, No. 99 Longkunnan Road, Haikou 571158, China
| | - Yue Liu
- Key Laboratory of Water Pollution Treatment & Resource Reuse of Hainan Province, Key Laboratory of Natural Polymer Function Material of Haikou City, College of Chemistry and Chemical Engineering, Hainan Normal University, No. 99 Longkunnan Road, Haikou 571158, China
| | - Yunlong Shi
- Key Laboratory of Water Pollution Treatment & Resource Reuse of Hainan Province, Key Laboratory of Natural Polymer Function Material of Haikou City, College of Chemistry and Chemical Engineering, Hainan Normal University, No. 99 Longkunnan Road, Haikou 571158, China
| | - Qiang Lin
- Key Laboratory of Water Pollution Treatment & Resource Reuse of Hainan Province, Key Laboratory of Natural Polymer Function Material of Haikou City, College of Chemistry and Chemical Engineering, Hainan Normal University, No. 99 Longkunnan Road, Haikou 571158, China
| | - Miao Cai
- Hainan Pujin Environmental Technology Co., Ltd., Haikou 570125, China
| | - Zhenya Jia
- Hainan Huantai Environmental Resources Co., Ltd., Haikou 571158, China
| | - Changjiang Yu
- Key Laboratory of Water Pollution Treatment & Resource Reuse of Hainan Province, Key Laboratory of Natural Polymer Function Material of Haikou City, College of Chemistry and Chemical Engineering, Hainan Normal University, No. 99 Longkunnan Road, Haikou 571158, China
| | - Anqi Shang
- Key Laboratory of Water Pollution Treatment & Resource Reuse of Hainan Province, Key Laboratory of Natural Polymer Function Material of Haikou City, College of Chemistry and Chemical Engineering, Hainan Normal University, No. 99 Longkunnan Road, Haikou 571158, China
| | - Yuxiao Fei
- Key Laboratory of Water Pollution Treatment & Resource Reuse of Hainan Province, Key Laboratory of Natural Polymer Function Material of Haikou City, College of Chemistry and Chemical Engineering, Hainan Normal University, No. 99 Longkunnan Road, Haikou 571158, China
| | - Jiayi Zhang
- Key Laboratory of Water Pollution Treatment & Resource Reuse of Hainan Province, Key Laboratory of Natural Polymer Function Material of Haikou City, College of Chemistry and Chemical Engineering, Hainan Normal University, No. 99 Longkunnan Road, Haikou 571158, China
| |
Collapse
|
5
|
Zhou Q, Lei P, Cheng S, Wang H, Dong W, Pan X. Recent progress in magnetic polydopamine composites for pollutant removal in wastewater treatment. Int J Biol Macromol 2024; 262:130023. [PMID: 38340929 DOI: 10.1016/j.ijbiomac.2024.130023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/08/2024] [Accepted: 02/05/2024] [Indexed: 02/12/2024]
Abstract
Various water pollution issues pose a significant threat to human water safety. Magnetic polydopamine composites (MPCs), which can be separated by magnetic fields after the adsorption process, exhibit outstanding adsorption capacity and heterogeneous catalytic properties, making them promising materials for water treatment applications. In particular, by modifying the polydopamine (PDA) coating, MPCs can acquire enhanced high reactivity, antibacterial properties, and biocompatibility. This also provides an attractive platform for further fabrication of hybrid materials with specific adsorption, catalytic, antibacterial, and water-oil separation capabilities. To systematically provide the background knowledge and recent research advances in MPCs, this paper presents a critical review of MPCs for water treatment in terms of both structure and mechanisms of effect in applications. Firstly, the impact of different PDA positions within the composite structure is investigated to summarize the optimization of properties contributed by PDA when acting as the shell, core, or bridge. The roles of various secondary modifications of magnetic materials by PDA in addressing water pollution problems are explored. It is anticipated that this work will be a stimulus for further research and development of magnetic composite materials with real-world application potential.
Collapse
Affiliation(s)
- Qinglin Zhou
- School of Chemical Engineering, Nanjing University of Science & Technology, Nanjing, 210094, China
| | - Pengli Lei
- School of Chemical Engineering, Nanjing University of Science & Technology, Nanjing, 210094, China
| | - Siyao Cheng
- School of Chemical Engineering, Nanjing University of Science & Technology, Nanjing, 210094, China
| | - Hao Wang
- School of Chemical Engineering, Nanjing University of Science & Technology, Nanjing, 210094, China
| | - Wei Dong
- School of Chemical Engineering, Nanjing University of Science & Technology, Nanjing, 210094, China.
| | - Xihao Pan
- School of Chemical Engineering, Nanjing University of Science & Technology, Nanjing, 210094, China; Zhejiang University-University of Edinburgh Institute, Zhejiang University, Hangzhou 310000, Zhejiang, China.
| |
Collapse
|
6
|
Tang C, Wang X, Zhang Y, Liu N, Hu X. Corrosion behaviors and kinetics of nanoscale zero-valent iron in water: A review. J Environ Sci (China) 2024; 135:391-406. [PMID: 37778814 DOI: 10.1016/j.jes.2022.12.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 10/03/2023]
Abstract
Knowledge on corrosion behaviors and kinetics of nanoscale zero-valent iron (nZVI) in aquatic environment is particularly significant for understanding the reactivity, longevity and stability of nZVI, as well as providing theoretical guidance for developing a cost-effective nZVI-based technology and designing large-scale applications. Herein, this review gives a holistic overview on the corrosion behaviors and kinetics of nZVI in water. Firstly, Eh-pH diagram is introduced to predict the thermodynamics trend of iron corrosion. The morphological, structural, and compositional evolution of (modified-) nZVI under different environmental conditions, assisted with microscopic and spectroscopic evidence, is then summarized. Afterwards, common analytical methods and characterization technologies are categorized to establish time-resolved corrosion kinetics of nZVI in water. Specifically, stable models for calculating the corrosion rate constant of nZVI as well as electrochemical methods for monitoring the redox reaction are discussed, emphasizing their capabilities in studying the dynamic iron corrosion processes. Finally, in the future, more efforts are encouraged to study the corrosion behaviors of nZVI in long-term practical application and further build nanoparticles with precisely tailored properties. We expect that our work can deepen the understanding of the nZVI chemistry in aquatic environment.
Collapse
Affiliation(s)
- Chenliu Tang
- Research Group of Water Pollution Control and Water Reclamation, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Xingyu Wang
- Research Group of Water Pollution Control and Water Reclamation, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yufei Zhang
- Research Group of Water Pollution Control and Water Reclamation, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Nuo Liu
- Shanghai Collaborative Innovation Centre for WEEE Recycling, School of Resources and Environmental Engineering, Shanghai Polytechnic University, Shanghai 201209, China
| | - Xiang Hu
- Research Group of Water Pollution Control and Water Reclamation, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
7
|
Zheng T, Zhou Q, Tao Z, Ouyang S. Magnetic iron-based nanoparticles biogeochemical behavior in soil-plant system: A critical review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166643. [PMID: 37647959 DOI: 10.1016/j.scitotenv.2023.166643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 07/31/2023] [Accepted: 08/26/2023] [Indexed: 09/01/2023]
Abstract
Increasing attention is being given to magnetic iron-based nanoparticles (MINPs) because of their potential environmental benefits. Owing to the earth abundance and high utilization of MINPs, as well as the significant functions of Fe in sustainable agriculture and environmental remediation, an understanding of the environmental fate of MINPs is indispensable. However, there are still knowledge gaps regarding the largely unknown environmental behaviors and fate of MINPs in soil-plant system. Thus, this review summarizes recent literature on the biogeochemical behavior (uptake, transportation, and transformation) of MINPs in soil and plants. The different possible uptake (e.g., foliar and root adsorption) and translocation (e.g., xylem, phloem, symplastic/apoplastic pathway, and endocytosis) pathways are discussed. Furthermore, drivers of MINPs uptake and transportation (e.g., soil characteristics, fertilizer treatments, copresence of inorganic and organic anions, meteorological conditions, and cell wall pores) in both soil and plant environments are summarized. This review also details the physical, chemical, and biological transformations of MINPs in soil-plant system. More importantly, a metadata analysis from the existing literature was employed to investigate the distinction between MINPs and other engineering nanoparticles biogeochemical behavior. In the future, more attention should be given to understanding the behavior of MINPs in soil-plant system and improving the capabilities of predictive models. This review thus highlights the main knowledge gaps regarding MINPs behavior and fate to provide guidance for their safe application in agrochemicals, crop production, and soil health.
Collapse
Affiliation(s)
- Tong Zheng
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Carbon Neutrality Interdisciplinary Science Center, Nankai University, Tianjin 300350, China; Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Qixing Zhou
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Carbon Neutrality Interdisciplinary Science Center, Nankai University, Tianjin 300350, China; Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Zongxin Tao
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Carbon Neutrality Interdisciplinary Science Center, Nankai University, Tianjin 300350, China; Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Shaohu Ouyang
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Carbon Neutrality Interdisciplinary Science Center, Nankai University, Tianjin 300350, China; Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
8
|
Li R, Wang X, Sun X, Li J, Shen J. Sulfide-modified nanozerovalent iron for rapid decontamination of Cu(Ⅱ) complexes in high-salinity wastewater. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 338:122710. [PMID: 37832776 DOI: 10.1016/j.envpol.2023.122710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/02/2023] [Accepted: 10/06/2023] [Indexed: 10/15/2023]
Abstract
Heavy metal complexes receive less attention, but they are more difficult to remove than the free heavy metals. Moreover, the high-salinity wastewaters from various industries hinder the removal of heavy metal complexes. Removal of the metal complexes is a top priority but a challenging task. Herein, a new strategy for removing Cu-EDTA from high-salinity wastewater with sulfide-modified nanozerovalent iron (S-NZVI) was proposed. The S-NZVI exhibited a considerable adsorption capacity for Cu-EDTA (∼83 mg Cu/g) at a high salt concentration (25 g/L NaCl). Similarly, the S-NZVI maintained excellent adsorption performance (∼83 mg Cu/g) in the presence of CaCl2, MgCl2, Na2SO4, and NaNO3 (25 g/L). The S-NZVI showed extremely high efficiency for Cu-EDTA removal; 50 mg/L of Cu-EDTA was almost completely removed in 1 min, and the kobs was approximately 1.5 g/(mg min). The S-NZVI showed an extensive pH working range, and within the pH range of 2-9, the Cu-EDTA was removed completely within 5 min. The excellent removal performance of the S-NZVI was due to the high reactivity and high affinity of NZVI for Cu, as well as the special substitution of Fe2+ and the interfacial reactions between S-NZVI and the copper complexes. Compared with other studies of Cu complex removal, removal with S-NZVI was a simpler process with higher efficiency. In brief, S-NZVI efficiently removed Cu complexes from harsh water environments and was reused many times. The process was simple and efficient and has broad application prospects.
Collapse
Affiliation(s)
- Rui Li
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225127, China.
| | - Xiaozhi Wang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225127, China.
| | - Xiuyun Sun
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Jiansheng Li
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Jinyou Shen
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| |
Collapse
|
9
|
Xue W, Liu H, Li J, Chen X, Wen S, Guo J, Shi X, Cao S, Gao Y, Wang R, Xu Y. Immobilization of cadmium in river sediments by different modified nanoscale zero-valent iron: performance, mechanisms, and Fe dissolution. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:117892-117908. [PMID: 37874516 DOI: 10.1007/s11356-023-30475-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 10/10/2023] [Indexed: 10/25/2023]
Abstract
Modified nanoscale zero-valent iron (NZVI) exhibited great potential for the remediation of heavy metal contaminated river sediments, but its mechanisms and environmental risks are still unclear. This study systematically discussed the performance and the mechanisms of modified NZVI materials, i.e., sodium alginate-coated NZVI (SNZVI), rhamnolipid-coated NZVI (RNZVI), and graphene oxide-loaded NZVI (GNZVI), for the stabilization of Cd in sediment, with the exploration of their stability to Cd at various pH values and Fe dissolution rate. Compared with the control, the toxicity characteristic leaching procedure (TCLP) leachable Cd decreased by 52.66-96.28%, and the physiologically based extraction test (PBET) extractable Cd decreased by 44.68-70.21% after 56 days of incubation with the immobilization efficiency varying according to GNZVI > RNZVI > SNZVI > NZVI. Besides, the adsorption behavior of Cd on materials was fitted with the Freundlich model and classified as an endothermic, spontaneous, and chemical adsorption process. SEM-EDX, XRD, and FTIR results verified that the stabilization mechanisms of Cd were principally based on the adsorption, complexation of Cd2+ with secondary Fe minerals (including Fe2O3, γ-Fe2O3, and γ-FeOOH) and precipitation (Cd(OH)2). From the risk assessment results, it was observed that the materials were favorable for Cd stabilization at a pH range from 7 to 11, meanwhile, the leaching concentration of Fe in the overlying water was detected below the limit value. These findings pave the way to developing an effective strategy to remediate Cd contaminated river sediments.
Collapse
Affiliation(s)
- Wenjing Xue
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Hongdou Liu
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Jun Li
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Xinyu Chen
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Siqi Wen
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Jiaming Guo
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Xiaoyu Shi
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Shan Cao
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Yang Gao
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha, 410114, People's Republic of China
| | - Rongzhong Wang
- School of Resource & Environment and Safety Engineering, University of South China, Heng Yang, 421001, People's Republic of China
| | - Yiqun Xu
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225009, People's Republic of China.
| |
Collapse
|
10
|
Mohamed A, Atta RR, Kotp AA, Abo El-Ela FI, Abd El-Raheem H, Farghali A, Alkhalifah DHM, Hozzein WN, Mahmoud R. Green synthesis and characterization of iron oxide nanoparticles for the removal of heavy metals (Cd 2+ and Ni 2+) from aqueous solutions with Antimicrobial Investigation. Sci Rep 2023; 13:7227. [PMID: 37142660 PMCID: PMC10160056 DOI: 10.1038/s41598-023-31704-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 03/16/2023] [Indexed: 05/06/2023] Open
Abstract
Clove and green Coffee (g-Coffee) extracts were used to synthesize green iron oxide nanoparticles, which were then used to sorb Cd2+ and Ni2+ ions out of an aqueous solution. Investigations with x-ray diffraction, Fourier-transform infrared spectroscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, nitrogen adsorption and desorption (BET), Zeta potential, and scanning electron microscopy were performed to know and understand more about the chemical structure and surface morphology of the produced iron oxide nanoparticles. The characterization revealed that the main component of iron nanoparticles was magnetite when the Clove extract was used as a reducing agent for Fe3+, but both magnetite and hematite were included when the g-Coffee extract was used. Sorption capacity for metal ions was studied as a function of sorbent dosage, metal ion concentration, and sorption period. The maximum Cd2+ adsorption capacity was 78 and 74 mg/g, while that of Ni2+ was 64.8 and 80 mg/g for iron nanoparticles prepared using Clove and g-Coffee, respectively. Different isotherm and kinetic adsorption models were used to fit experimental adsorption data. Adsorption of Cd2+ and Ni2+ on the iron oxide surface was found to be heterogeneous, and the mechanism of chemisorption is involved in the stage of determining the rate. The correlation coefficient R2 and error functions like RMSE, MES and MAE were used to evaluate the best fit models to the experimental adsorption data. The adsorption mechanism was explored using FTIR analysis. Antimicrobial study showed broad spectrum antibacterial activity of the tested nanomaterials against both Gram positive (S. aureus) (25923) and Gram negative (E. coli) (25913) bacteria with increased activity against Gram positive bacteria than Gram negative one and more activity for Green iron oxide nanoparticles prepared from Clove than g-Coffee one.
Collapse
Affiliation(s)
- Abdelrahman Mohamed
- Department of Chemistry, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt.
| | - R R Atta
- Department of Chemistry, Faculty of Science, Damietta University, Damietta, Egypt.
- St. Petersburg State University, 7/9 Universitetskaya Nab., St. Petersburg, 199034, Russia.
| | - Amna A Kotp
- Materials Science and Nanotechnology Department, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni-Suef, Egypt
| | - Fatma I Abo El-Ela
- Department of Pharmacology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, 62511, Egypt
| | - Hany Abd El-Raheem
- Materials Science and Nanotechnology Department, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni-Suef, Egypt
- Environmental Engineering Program, Zewail City of Science and Technology, October Gardens, 6th of October City, Giza, 12578, Egypt
| | - Ahmed Farghali
- Materials Science and Nanotechnology Department, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni-Suef, Egypt
| | - Dalal Hussien M Alkhalifah
- Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University, B.O. Box 84428, Riyadh, 11671, Saudi Arabia
| | - Wael N Hozzein
- Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Rehab Mahmoud
- Department of Chemistry, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt.
| |
Collapse
|
11
|
Li Z, Yang C, Qu G, Cui Q, Yang Y, Ren Y, Yang Y, Wang F. Chitosan-modified magnetic carbon nanomaterials with high efficiency, controlled motility, and reusability-for removal of chromium ions from real wastewater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:51271-51287. [PMID: 36809614 DOI: 10.1007/s11356-023-25302-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 01/09/2023] [Indexed: 04/16/2023]
Abstract
Hexavalent chromium Cr(VI) is one of the most hazardous oxygen-containing anions to human health and the environment. Adsorption is considered to be an effective method for the removal of Cr(VI) from aqueous solutions. Based on an environmental perspective, we used renewable biomass cellulose as carbon source and chitosan as functional material to synthesize chitosan-coated magnetic carbon (MC@CS) material. The synthesized chitosan magnetic carbons were uniform in diameter (~ 20 nm) and contain a large number of abundant hydroxyl and amino functional groups on the surface, meanwhile owning excellent magnetic separation properties. The MC@CS exhibited high adsorption capacity (83.40 mg/g) at pH 3 and excellent cycling regeneration ability when applied to Cr(VI) removal in water, removal rate of Cr(VI) (10 mg/L) was still over 70% after 10 cycles. FT-IR and XPS spectra showed that electrostatic interaction and reduction with Cr(VI) are the main mechanisms of Cr(VI) removal by MC@CS nanomaterial. This work provides an environment-friendly adsorption material that could be reused for the removal of Cr(VI) in multiple cycles.
Collapse
Affiliation(s)
- Zhishuncheng Li
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, 727 Jingmingnan Road, Kunming, 650500, Yunnan, China
- National Regional Engineering Research Center-NCW, Kunming, 650500, Yunnan, China
| | - Can Yang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, 727 Jingmingnan Road, Kunming, 650500, Yunnan, China
- National Regional Engineering Research Center-NCW, Kunming, 650500, Yunnan, China
| | - Guangfei Qu
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, 727 Jingmingnan Road, Kunming, 650500, Yunnan, China.
- National Regional Engineering Research Center-NCW, Kunming, 650500, Yunnan, China.
| | - Qingyuan Cui
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, 727 Jingmingnan Road, Kunming, 650500, Yunnan, China
- National Regional Engineering Research Center-NCW, Kunming, 650500, Yunnan, China
| | - Yixin Yang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, 727 Jingmingnan Road, Kunming, 650500, Yunnan, China
- National Regional Engineering Research Center-NCW, Kunming, 650500, Yunnan, China
| | - Yuanchuan Ren
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, 727 Jingmingnan Road, Kunming, 650500, Yunnan, China
- National Regional Engineering Research Center-NCW, Kunming, 650500, Yunnan, China
| | - Yuyi Yang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, 727 Jingmingnan Road, Kunming, 650500, Yunnan, China
- National Regional Engineering Research Center-NCW, Kunming, 650500, Yunnan, China
| | - Fang Wang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, 727 Jingmingnan Road, Kunming, 650500, Yunnan, China
- National Regional Engineering Research Center-NCW, Kunming, 650500, Yunnan, China
| |
Collapse
|
12
|
Srinivasan P, Deivasigamani P. Solid-state naked-eye sensing of Cu(II) from industrial effluents and environmental water samples using probe integrated polymeric sensor materials. Microchem J 2023. [DOI: 10.1016/j.microc.2022.108224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
13
|
Li L, Dong H, Lu Y, Zhang H, Li Y, Xiao J, Xiao S, Jin Z. In-depth exploration of toxicity mechanism of nanoscale zero-valent iron and its aging products toward Escherichia coli under aerobic and anaerobic conditions. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 313:120118. [PMID: 36087891 DOI: 10.1016/j.envpol.2022.120118] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/22/2022] [Accepted: 09/02/2022] [Indexed: 06/15/2023]
Abstract
The bacteria toxicity of nanoscale zero-valent iron (nZVI) can be changed during its application in water treatment but the toxicity mechanism is still not well understood, particularly under anaerobic conditions. Here, the toxicity of nZVI and its aging products towards Escherichia coli (E. coli) and the mechanisms of extracellular and intracellular reactive oxygen species (ROS) damage were deeply probed in the presence and absence of oxygen in ultrapure water. Under aerobic conditions, the ROS damage primarily caused by the generation of extracellular free •OH can be a major contributor to the toxicity of nZVI to E. coli. By contrast, in anaerobic nZVI treatment system, the intracellular •OH can be quenched by benzoic acid which is a cell permeable quencher and the electron spin resonance (ESR) signals of 5,5-dimethy-1-pyrroline (DMPO)- •OH were evidently observed in system with the addition of F- which could desorb the surface •OH into solution. It indicated that the intracellular •OH adsorbed on the particle surface can also play an indispensable role in inactivating cells under anaerobic conditions. Moreover, nZVI can steeply decline the membrane potential, causing severe membrane disruption and therefore resulting in the stronger toxicity in anaerobic conditions. Furthermore, the chemical composition transformation of nZVI and generation of benign iron corrosion products (e.g., Fe3O4, γ-Fe2O3, γ-FeOOH) are mainly responsible for the reduced toxicity with the increasing aging time. These results provide insights into the extracellular and intracellular ROS damage occurred in aerobic and anaerobic nZVI treatment systems, offering more perspective to the risk assessment of nZVI application.
Collapse
Affiliation(s)
- Long Li
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| | - Haoran Dong
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China.
| | - Yue Lu
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| | - Haoxuan Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| | - Yangju Li
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| | - Junyang Xiao
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| | - Shuangjie Xiao
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| | - Zilan Jin
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| |
Collapse
|
14
|
Wang H, Chen Q, Liu R, Zhang Y, Zhang Y. Synthesis and application of starch-stablized Fe-Mn/biochar composites for the removal of lead from water and soil. CHEMOSPHERE 2022; 305:135494. [PMID: 35764108 DOI: 10.1016/j.chemosphere.2022.135494] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 06/18/2022] [Accepted: 06/23/2022] [Indexed: 06/15/2023]
Abstract
Starch-stablized and Fe/Mn bimetals modified biochar derived from corn straw (SFM@CBC and SFM@CBC-350) were firstly prepared, characterized (FTIR, XRD, SEM, EDS, BET and XPS), and applied in Pb removal from water and soil. SFM@CBC and SFM@CBC-350 displayed highly effective adsorption performance of Pb2+ from wastewater with the maximum adsorption capacity of 170.91 mg g-1 and 190.17 mg g-1, respectively, which were much greater than that of FM@CBC (149.25 mg g-1) and CBC (101.10 mg g-1). Studies of adsorption kinetics, isotherms and thermodynamics indicated that the absorption of Pb2+ by SFM@CBC and SFM@CBC-350 was spontaneous and endothermic reaction, and it was controlled by monolayer chemisorption. The mechanism studies indicated that Pb2+ removal involved with multiple mechanism, including complexation (dominant process confirmed by XPS analysis), physical adsorption, electrostatic attraction, and cation exchange. The reusability test demonstrated that SFM@CBC and SFM@CBC-350 had very good stability and reusability. In addition, in order to further explore Pb removal performance of the modified biochar, SFM@CBC-350 was used in soil-ryegrass pot systems. Compared with the controls, the addition of SFM@CBC-350 reduced Pb content in soil and ryegrass, increased the biomass and total chlorophyll content, reduced the activity of antioxidant enzymes (CAT, SOD, MDA and POD) and ROS fluorescence intensity of ryegrass, thus alleviating Pb stress of ryegrass. Besides, the addition of SFM@CBC-350 could increase the richness and diversity of soil microorganisms, which was beneficial to the growth of ryegrass. Hence, SFM@CBC-350 has the potential of being used as a green, efficient and promising adsorbent in Pb removal from wastewater and soil.
Collapse
Affiliation(s)
- Hai Wang
- School of Life Science, School of Chemistry and Chemical Engineering, Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, Shaoxing University, Shaoxing, 312000, Zhejiang, PR China; Jianhu Provincial Wetland Park Management Committee, Shaoxing, 312000, Zhejiang, PR China.
| | - Qian Chen
- School of Life Science, School of Chemistry and Chemical Engineering, Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, Shaoxing University, Shaoxing, 312000, Zhejiang, PR China
| | - Renrong Liu
- School of Life Science, School of Chemistry and Chemical Engineering, Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, Shaoxing University, Shaoxing, 312000, Zhejiang, PR China
| | - Yichan Zhang
- Department of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, 224051, Jiangsu, PR China
| | - Yaohong Zhang
- School of Life Science, School of Chemistry and Chemical Engineering, Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, Shaoxing University, Shaoxing, 312000, Zhejiang, PR China.
| |
Collapse
|
15
|
Hao T, Liu K, Gao B, Hocking R, Fang L. Phase transformation of nanosized zero-valent iron modulated by As(III) determines heavy metal passivation. WATER RESEARCH 2022; 221:118804. [PMID: 35797817 DOI: 10.1016/j.watres.2022.118804] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/27/2022] [Accepted: 06/29/2022] [Indexed: 06/15/2023]
Abstract
Nanoscale zero-valent iron (nZVI) has been extensively used for the passivation of cadmium (Cd) or arsenic (As) from wastewaters, while the underlying mechanisms of nZVI reaction with coexisting Cd and As are largely overlooked. Herein, the interactions of Cd and As during the course of nZVI transformation and the corresponding effects on respective pollutant removal have been systematically investigated. Batch experiments results show that As(III) addition significantly promotes the passivation of Cd(II) by nZVI, and the removal capacity increases by 7.8 times compared to that of Cd(II) alone. However, the adsorption and oxidative transformation of As(III) are barely affected under a relatively low Cd(II) concentration. It is conducive to the adsorption of Cd(II) and As(III) using nZVI under neutral conditions. The transformation of nZVI to lepidocrocite dominates in the Cd(II) single system, while it mainly converts to amorphous Fe oxyhydroxide with the addition of As(III). As(III) notably reduces the surface charge of Fe oxyhydroxide intermediates and to form the ternary complexes with Cd (Fe-As-Cd), which is the predominant mechanism for the promoted Cd(II) passivation. This work provides new understanding of nZVI transformation coupled to Cd(II) and As(III) passivation, which are likely contributing to the heavy metalloids regulation in waters and subsurface environments.
Collapse
Affiliation(s)
- Tianwei Hao
- Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Macau, China
| | - Kai Liu
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Baolin Gao
- Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Macau, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Rosalie Hocking
- Department of Chemistry and Biotechnology and Centre for Translational Atomaterials, Swinburne University of Technology, Hawthorn, Melbourne, VIC 3122, Australia
| | - Liping Fang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China.
| |
Collapse
|
16
|
Ma Q, Teng W, Sun Y, Chen Y, Xue Y, Chen X, Zhang C, Zhang H, Fan J, Qiu Y, Fu R. Multi-component removal of Pb(II), Cd(II), and As(V) over core-shell structured nanoscale zero-valent iron@mesoporous hydrated silica. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 827:154329. [PMID: 35257767 DOI: 10.1016/j.scitotenv.2022.154329] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 02/28/2022] [Accepted: 03/02/2022] [Indexed: 06/14/2023]
Abstract
The application of nanomaterials for the removal of heavy metals has received a great deal of attention because of their high efficiencies in the environment. But it is difficult to remove multiple heavy metals simultaneously with high efficiency and stability. Herein, the core-shell structured nanoscale zero-valent iron (nZVI) encapsulated with mesoporous hydrated silica (nZVI@mSiO2) were prepared for efficient removal of heavy metals including Pb(II), Cd(II), and metalloid As(V). The material prepared uniformly with a high surface area (147.7 m2 g-1) has a nZVI core with the particle size of 20-60 nm and a modified dendritic mesoporous shell of 19 nm. 0.15 g L-1 of the optimal material exhibited an extraordinary performance on removing Cd(II) and the maximum adsorption capacity for Pb(II), Cd(II), and As(V) reached 372.2 mg g-1, 105.2 mg g-1, and 115.2 mg g-1 with a pH value at 5.0, respectively. The dissolved iron during the reaction showed that the mesoporous silica (mSiO2) played an important role in enhancing the stability of nZVI. In addition, the competitive relationship between the coexistence of two heavy metals was discussed and it was found that the removal efficiency of the material for both was improved when Cd(II) and As(V) were removed synergistically.
Collapse
Affiliation(s)
- Qian Ma
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Wei Teng
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Yu Sun
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Yanyan Chen
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Yinghao Xue
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Xiaoqian Chen
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Chuning Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Hua Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Jianwei Fan
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China.
| | - Yuping Qiu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Rongbing Fu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| |
Collapse
|
17
|
Zeng S, Zhong D, Xu Y, Zhong N. Biochar-loaded nZVI/Ni bimetallic particles for hexavalent chromium removal from aqueous solution. J DISPER SCI TECHNOL 2022. [DOI: 10.1080/01932691.2022.2052310] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Sijing Zeng
- School of Chemical Engineering, Chongqing University of Technology, Chongqing, China
| | - Dengjie Zhong
- School of Chemical Engineering, Chongqing University of Technology, Chongqing, China
| | - Yunlan Xu
- School of Chemical Engineering, Chongqing University of Technology, Chongqing, China
| | - Nianbing Zhong
- School of Electrical and Electronic Engineering, Chongqing University of Technology, Chongqing, China
| |
Collapse
|
18
|
Xie Y, Lu G, Tao X, Wen Z, Dang Z. A collaborative strategy for elevated reduction and immobilization of Cr(VI) using nano zero valent iron assisted by schwertmannite: Removal performance and mechanism. JOURNAL OF HAZARDOUS MATERIALS 2022; 422:126952. [PMID: 34449341 DOI: 10.1016/j.jhazmat.2021.126952] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 08/08/2021] [Accepted: 08/16/2021] [Indexed: 06/13/2023]
Abstract
A novel collaborative strategy for enhanced removal of Cr(VI) using nano zero valent iron (nZVI) assisted by schwertmannite (Sch) with two synthesis methods was designed. Batch experiments demonstrated that nZVI/Sch-AP (synthesized by abiotic precipitation of Fe3+ species) exhibited excellent removal performance for Cr(VI) than nZVI/Sch-CO (synthesized by chemical oxidation of Fe2+ species). The results indicated that the removal efficiencies of Cr(VI) by nZVI/Sch-AP and nZVI/Sch-CO were highly pH-dependent and achieved to be 99.99% and 98.01% under the optimal conditions of 10 mg L-1 Cr(VI) concentration, a pH of 6.3 and a Fe(0)/Cr(VI) molar ratio of 12. But nZVI/Sch-AP emerged greater k of 0.1097 min-1 than that of nZVI/Sch-CO (0.0485 min-1). Humic acid exhibited promotion effect on the Cr(VI) removal in low concentration of 1 mg L-1. Results of XRD and XPS demonstrated that α-FeOOH was the dominant products in both incubations of nZVI/Sch-AP and nZVI/Sch-CO, accompanied with FeCr2O4 and CrFe mixed (oxy)hydroxides, and γ-FeOOH was found alone in the incubations of nZVI/Sch-CO. We proposed a consecutive and simultaneous process involving surface absorption-reduction and co-precipitation/immobilization for the removal. This study provides new insights into the elimination of Cr(VI) from wastewater by nZVI/Sch, especially in acid mine drainage.
Collapse
Affiliation(s)
- Yingying Xie
- School of Chemistry and Environmental Engineering, Hanshan Normal University, Chaozhou 521041, China
| | - Guining Lu
- The Ministry of Education Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China.
| | - Xueqin Tao
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Zhen Wen
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Zhi Dang
- The Ministry of Education Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| |
Collapse
|
19
|
Chen X, Fan G, Li H, Li Y, Zhang R, Huang Y, Xu X. Nanoscale zero-valent iron particles supported on sludge-based biochar for the removal of chromium (VI) from aqueous system. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:3853-3863. [PMID: 34402012 DOI: 10.1007/s11356-021-15969-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 08/10/2021] [Indexed: 06/13/2023]
Abstract
Biochar (BC) obtained by the co-pyrolysis of municipal sewage sludge (MSS) and sunflower seed shells (SSS) was utilized to support nanoscale zero-valent iron particles (nZVI) for the synthesis of a composite material (nZVI-BC) for Cr(VI) removal from aqueous systems. A series of characterization methods confirmed successful immobilization of nZVI on the surface of biochar with no aggregation. Batch experiments showed that the initial pH, initial Cr(VI) concentration, and nZVI-BC dose all significantly affected the Cr(VI) removal using nZVI-BC. The kinetics for Cr(VI) removal via nZVI-BC could be better explained by the pseudo-second-order (PSO) adsorption model. Adsorption isotherms analysis demonstrated the superior Cr(VI) removal capability of nZVI-BC in comparison to bare nZVI and BC. nZVI-BC can be reused after the regeneration process by applying 0.1 M H2SO4 and 0.1 M NaBH4 solutions. The reaction mechanism for Cr(VI) removal might involve its chemical reduction on the nZVI-BC surface. Overall, environmentally friendly nZVI-BC was highly efficient in Cr(VI) removal from aqueous systems.
Collapse
Affiliation(s)
- Xi Chen
- School of Resources and Civil Engineering, Northeastern University, Shenyang, 110819, China
| | - Guangjian Fan
- School of Resources and Civil Engineering, Northeastern University, Shenyang, 110819, China
| | - Haibo Li
- School of Resources and Civil Engineering, Northeastern University, Shenyang, 110819, China
| | - Yinghua Li
- School of Resources and Civil Engineering, Northeastern University, Shenyang, 110819, China
| | - Ran Zhang
- School of Resources and Civil Engineering, Northeastern University, Shenyang, 110819, China
| | - Yu Huang
- School of Resources and Civil Engineering, Northeastern University, Shenyang, 110819, China
| | - Xinyang Xu
- School of Resources and Civil Engineering, Northeastern University, Shenyang, 110819, China.
| |
Collapse
|
20
|
Yang F, Tang C, Antonietti M. Natural and artificial humic substances to manage minerals, ions, water, and soil microorganisms. Chem Soc Rev 2021; 50:6221-6239. [PMID: 34027951 DOI: 10.1039/d0cs01363c] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The chemistry of humic substances (HSs) occurs hidden from our sight, but is of key importance to agriculture and the environment, and nowadays even to medicine and technology. HSs are nowadays not only natural, but extracted and engineered, and in the past 20 years such products have been widely used in soil improvement and environment governance. In this review, we collate and summarize the applications and working principles of such HSs in agriculture and environmental ecology, mainly to elaborate the multiple roles of this functional polymer along with physical chemical quantification. Then several of the latest synthesis technologies, including hydrothermal humification technology (HTH), hydrothermal carbonization technology (HTC) and hydrogen peroxide oxidation technology (HOT) are presented, which were introduced to prepare artificial humic substances (A-HSs). The availability of reproducible and tunable synthetic A-HSs is a new chemical tool, and effects such as solubilization of insoluble phosphorus minerals, recovery of phosphorus, improvement of soil fertility for crop growth and reduction of toxicity of typical pollutants, can now be analyzed in detail and quantified. As a result, we can provide an effective chemical technology for utilizing biomass side products ("biowaste") to generate A-HSs of different types, thus realizing improvement in agricultural production and control of environmental pollution by the macro-synthesis of A-HSs-.
Collapse
Affiliation(s)
- Fan Yang
- Joint Laboratory of Northeast Agricultural University and Max Planck Institute of Colloids and Interfaces (NEAU-MPICI), Harbin 150030, China. and School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin 150030, China
| | - Chunyu Tang
- Joint Laboratory of Northeast Agricultural University and Max Planck Institute of Colloids and Interfaces (NEAU-MPICI), Harbin 150030, China. and School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin 150030, China
| | - Markus Antonietti
- Max Planck Institute of Colloids and Interfaces, Department of Colloid Chemistry, 14476 Potsdam, Germany.
| |
Collapse
|
21
|
Sang L, Wang G, Liu L, Bian H, Jiang L, Wang H, Zhang Y, Zhang W, Peng C, Wang X. Immobilization of Ni (Ⅱ) at three levels of contaminated soil by rhamnolipids modified nano zero valent iron (RL@nZVI): Effects and mechanisms. CHEMOSPHERE 2021; 276:130139. [PMID: 33690039 DOI: 10.1016/j.chemosphere.2021.130139] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 02/19/2021] [Accepted: 02/25/2021] [Indexed: 06/12/2023]
Abstract
A kind of biosurfactant rhamnolipid modified zero-valent iron nanoparticles have been synthesized and applied to evaluate the immobilization efficiency of Ni (Ⅱ) contaminated soil at three concentration levels (200Ni, 600Ni and 1800Ni). The results of SEM and XRD were clearly indicative of the well-attached phenomenon of rhamnolipid on the nZVI, featuring better stability and dispersity, and FTIR analysis proposed the interactions between rhamnolipid and nZVI through monodentate chelating between carboxylate groups and nZVI or hydrogen bonding with Fe-O groups on the surface. Sequential extraction procedures (SEP) analysis illustrated that the majority of labile fractions had been transformed into less accessible fractions (Fe-Mn oxide-bound fractions and residual fractions) after 28 days of incubation. And for low-concentrations polluted soil, soil self-remediation played a dominant role, while RL@nZVI exhibited a more significant stabilizing effect for medium and high-concentrations pollution. Furthermore, XPS and XRD analyses of Ni-adsorbed RL@nZVI identified the formation of NiO, Ni(OH)2 and revealed the possible interaction mechanisms including reduction, adsorption and precipitation/co-precipitation. These results confirmed that RL@nZVI presented a promising prospect for the immobilization of Ni polluted soil.
Collapse
Affiliation(s)
- Li Sang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Gehui Wang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Lin Liu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Hao Bian
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Lingling Jiang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Huadong Wang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Yinjie Zhang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Wei Zhang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China.
| | - Cheng Peng
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Xuedong Wang
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China.
| |
Collapse
|
22
|
Wang Y, Chen S, Deng C, Shi X, Cota-Ruiz K, White JC, Zhao L, Gardea-Torresdey JL. Metabolomic analysis reveals dose-dependent alteration of maize (Zea mays L.) metabolites and mineral nutrient profiles upon exposure to zerovalent iron nanoparticles. NANOIMPACT 2021; 23:100336. [PMID: 35559837 DOI: 10.1016/j.impact.2021.100336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 05/09/2021] [Accepted: 06/14/2021] [Indexed: 05/15/2023]
Abstract
Nanoscale zero-valent iron (nZVI) has been widely applied in the environmental field to degrade organic pollutants. The potential risk posed from nZVI on crop species is not well understood and is critical for sustainable application in the future. In this study, maize (Zea mays L.) plants were cultivated in field soils mixed with nZVI at 0, 50, and 500 mg/kg soil for four weeks. Upon exposure to 500 mg/kg nZVI, ICP-MS results showed that Fe accumulated by roots and translocated to leaves was increased by 36% relative to untreated controls. At 50 mg/kg, root elongation was enhanced by 150-200%; at 500 mg/kg, pigments, lipid peroxidation, and polyphenolic levels in leaves were increased by 12, 87 and 23%, respectively, whereas the accumulation of Al, Ca, and P were decreased by 62.2%, 19.7%, and 13.3%, respectively. A gas chromatography-mass spectrometry (GC-MS) based metabolomics analysis of maize roots revealed that antioxidants and stress signaling-associated metabolites were downregulated at 50 mg/kg, but were upregulated at 500 mg/kg. At 50 mg/kg, the content of glutamate was increased by 11-fold, whereas glutamine was decreased by 99% with respect to controls. Interestingly, eight metabolic pathways were disturbed at 50 mg/kg, but none at 500 mg/kg. This metabolic reprogramming at the lower dose represented potential risks to the health of exposed plants, which could be particularly important although no phenotypic impacts were noted. Overall, metabolites analysis provides a deeper understanding at the molecular level of plant response to nZVI and is a powerful tool for full characterization of risk posed to crop species as part of food safety assessment.
Collapse
Affiliation(s)
- Yi Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China; Department of Chemistry and Biochemistry, The University of Texas at El Paso, 500 West University Avenue, El Paso, TX 79968, United States; The Connecticut Agricultural Experiment Station, New Haven, CT 06504, United States
| | - Si Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Chaoyi Deng
- Department of Chemistry and Biochemistry, The University of Texas at El Paso, 500 West University Avenue, El Paso, TX 79968, United States
| | - Xiaoxia Shi
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Keni Cota-Ruiz
- Department of Chemistry and Biochemistry, The University of Texas at El Paso, 500 West University Avenue, El Paso, TX 79968, United States
| | - Jason C White
- The Connecticut Agricultural Experiment Station, New Haven, CT 06504, United States
| | - Lijuan Zhao
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China.
| | - Jorge L Gardea-Torresdey
- Department of Chemistry and Biochemistry, The University of Texas at El Paso, 500 West University Avenue, El Paso, TX 79968, United States.
| |
Collapse
|
23
|
Li X, Li Z, Du C, Tian Z, Zhu Q, Li G, Shen Q, Li C, Li J, Li W, Zhao C, Zhang L. Bibliometric analysis of zerovalent iron particles research for environmental remediation from 2000 to 2019. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:34200-34210. [PMID: 33982253 DOI: 10.1007/s11356-021-13847-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 04/05/2021] [Indexed: 06/12/2023]
Abstract
Zerovalent iron (ZVI) has been a major focus of research and has attracted great attention during the last 2 decades by international researchers because of its excellent pollutant removal performance and several other merits in environmental remediation. Based on Web of Science Core Collection data, we present a comprehensive bibliometric analysis of ZVI research from 2000 to 2019. We analyze 4472 publications assuming three stages of growth trend of annual publication totals. We find that "The Chemical Engineering Journal" has been the most productive journal; Noubactep C is identified as the most productive author; China has been the most active country in this field and the Chinese Academy of Science the most productive institution. The timeline of keywords shows seven distinct co-citation clusters. In addition, the top 38 keywords with strong citation bursts are also detected, suggesting that the innovation of green composite synthesis of ZVI and nanoscale ZVI and its efficient removal capacity might be the prevailing research directions in the future.
Collapse
Affiliation(s)
- Xiaoguang Li
- Affiliation State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
- Affiliation State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Zhonghong Li
- Affiliation State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
- Affiliation State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Caili Du
- Affiliation State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
- Affiliation State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Zhenjun Tian
- Affiliation State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
- Affiliation State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
- Affiliation College of Water Sciences, Beijing Normal University, Beijing, 100875, China
| | - Qiuheng Zhu
- Affiliation State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
- Affiliation State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
- Affiliation College of Water Sciences, Beijing Normal University, Beijing, 100875, China
| | - Guowen Li
- Affiliation State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
- Affiliation State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Qian Shen
- Affiliation State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Caole Li
- Affiliation State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
- Affiliation State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Jiaxi Li
- Affiliation State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
- Affiliation State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Wei Li
- Affiliation State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
- Affiliation State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Chen Zhao
- Affiliation State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
- Affiliation State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Lieyu Zhang
- Affiliation State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
- Affiliation State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| |
Collapse
|
24
|
Ye Z, Xu N, Li D, Qian J, Du C, Chen M. Vitamin C mediates the activation of green tea extract to modify nanozero-valent iron composites: Enhanced transport in heterogeneous porous media and the removal of hexavalent chromium. JOURNAL OF HAZARDOUS MATERIALS 2021; 411:125042. [PMID: 33429307 DOI: 10.1016/j.jhazmat.2021.125042] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 12/29/2020] [Accepted: 01/03/2021] [Indexed: 06/12/2023]
Abstract
Both green tea (GT) extract and vitamin C (VC) were used for the reduction of Fe3+ to Fe0 using a green synthesis method. Modified nanozero-valent iron (GT-nZVI@VC nanocomposites) was successfully obtained and characterized as α-Fe0-iron oxide/VC by multiple analytical methods. The GT-nZVI@VC nanocomposites showed better transportability than nZVI, in that transport behavior was slightly dependent on various ratios of sand/soil in water-saturated heterogeneous porous media. Breakthrough curves of GT-nZVI@VC nanocomposites in paddy soil exhibited "blocking effects" and were well described using a first-order straining coefficient (k2) on site 2 obtained from a two-site kinetic attachment model. In particular, GT-nZVI@VC (VC/Fe = 0.6) showed higher Cr(VI) removal (especially reducibility) in both paddy soil and water compared to that of nZVI and VC. It is likely that the synergistic effects of VC (ascorbic acid) and tea polyphenols can increase the released free electrons into solution, favoring the high reduction of Cr(VI) into Cr(III) (i.e., FeOCr2O3, Cr(OH)3 and Cr2O3), where Cr(III) is prone to be immobilized by the nanocomposites in soil. This research highlights that VC can mediate the activation of GT extract to successfully modify nZVI, which could be beneficial for efficient transport in subsurface and remediation of Cr(VI)-contaminated soil and underground water.
Collapse
Affiliation(s)
- Zhi Ye
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China; Jiangsu Key Laboratory of Environmental Functional Materials, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Nan Xu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China; Jiangsu Key Laboratory of Environmental Functional Materials, Suzhou University of Science and Technology, Suzhou 215009, China.
| | - Duo Li
- Jiangsu Key Laboratory of Environmental Functional Materials, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Junchao Qian
- Jiangsu Key Laboratory of Environmental Functional Materials, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Changsheng Du
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China; Jiangsu Key Laboratory of Environmental Functional Materials, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Ming Chen
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China; Jiangsu Key Laboratory of Environmental Functional Materials, Suzhou University of Science and Technology, Suzhou 215009, China
| |
Collapse
|
25
|
Zhao Q, Li X, Xiao S, Peng W, Fan W. Integrated remediation of sulfate reducing bacteria and nano zero valent iron on cadmium contaminated sediments. JOURNAL OF HAZARDOUS MATERIALS 2021; 406:124680. [PMID: 33310329 DOI: 10.1016/j.jhazmat.2020.124680] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 11/04/2020] [Accepted: 11/23/2020] [Indexed: 06/12/2023]
Abstract
Integrated-remediation technologies on heavy metal polluted sediments have received much attention. In this study, Cd contaminated sediments were treated with various conditions: sulfate reducing bacteria (SRB) only and SRB combined with different dosages of nano zero valent iron (nZVI (0.5-10 mg/g)). The immobilization of Cd was found in all remediation treatments according to the decreases of mobile Cd and the increases of more stable Cd compared with control. Five typical SRBs (Desulfobulbaceae, Desulfobacteraceae, Syntrophobacteraceae, Desulfovibrionaceae and Desulfomicrobiaceae) were identified having significant influences on Cd speciation transformation and they could stabilize Cd into sulfide precipitation through dissimilatory sulfate reduction (DSR). The ANOVA results of mobilization index and Cd concentration in overlying water both demonstrated that integrated-remediation systems with 5 mg/g and 10 mg/g of nZVI (Fe5 and Fe10 systems, respectively) presented better immobilization performance than conventional SRB only system (P < 0.05). It is confirmed that nZVI could stimulate the SRB bio-immobilization possibily through providing electrons and enhancing enzyme activities during DSR. The XPS analyses and Pourbaix diagrams revealed that mackinawite may be produced in the Fe10, resulting in the possible formation of Cd-S-Fe. This study indicates that integrated-remediation of SRB and nZVI have great potential in Cd immobilization of sediments, especially with higher addition of nZVI.
Collapse
Affiliation(s)
- Qing Zhao
- Department of Environmental Science and Engineering, School of Space and Environment, Beihang University, Beijing 10191, China
| | - Xiaomin Li
- Department of Environmental Science and Engineering, School of Space and Environment, Beihang University, Beijing 10191, China.
| | - Shengtao Xiao
- Department of Environmental Science and Engineering, School of Space and Environment, Beihang University, Beijing 10191, China
| | - Weihua Peng
- National Engineering Research Center of Coal Mine Water Hazard Controlling, Suzhou University, Suzhou 234000, China
| | - Wenhong Fan
- Department of Environmental Science and Engineering, School of Space and Environment, Beihang University, Beijing 10191, China; Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing 100191, China.
| |
Collapse
|
26
|
Yang C, Ge C, Li X, Li L, Wang B, Lin A, Yang W. Does soluble starch improve the removal of Cr(VI) by nZVI loaded on biochar? ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111552. [PMID: 33396093 DOI: 10.1016/j.ecoenv.2020.111552] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 10/16/2020] [Accepted: 10/20/2020] [Indexed: 06/12/2023]
Abstract
A novel material that nano zero valent iron (nZVI) loaded on biochar with stable starch stabilization (nZVI/SS/BC) was synthesized and used for the removal of hexavalent chromium [Cr(VI)] in simulated wastewater. It was indicated that as the pyrolysis temperature of rice straw increased, the removal rate of Cr(VI) by nZVI/SS/BC first increased and then decreased. nZVI/SS/BC made from biochar pyrolyzed at 600 °C (nZVI/SS/BC600) had the highest removal efficiency and was suitable for a wide pH range (pH 2.1-10.0). The results showed that 99.67% of Cr(VI) was removed by nZVI/SS/BC600, an increase of 45.93% compared to the control group, which did not add soluble starch during synthesis. The pseudo-second-order model and the Langmuir model were more in line with reaction. The maximum adsorption capacity for Cr(VI) by nZVI/SS/BC600 was 122.86 mg·g-1. The properties of the material were analyzed by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) mapping, Brunauer-Emmett-Teller (BET), Fourier-transform infrared (FTIR), and X-ray diffraction (XRD). The results showed that the nZVI particles were uniformly supported on the biochar, and the BET surface areas of nZVI/SS/BC was 40.4837 m2·g-1, an increase of 8.79 times compared with the control group. Mechanism studies showed that soluble starch reduced the formation of metal oxides, thereby improving the reducibility of the material, and co-precipitates were formed during the reaction. All results indicated that nZVI/SS/BC was a potential repair material that can effectively overcome the limitations of nZVI and achieve efficient and rapid repair of Cr(VI).
Collapse
Affiliation(s)
- Chun Yang
- Department of Environmental Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Chazhong Ge
- Chinese Academy for Environmental Planning, Beijing 100012, China
| | - Xiaoliang Li
- Chinese Academy for Environmental Planning, Beijing 100012, China
| | - Lu Li
- Chinese Academy for Environmental Planning, Beijing 100012, China
| | - Bin Wang
- Qinhuangdao Bohai Biological Research Institute of Beijing University of Chemical Technology, Qinhuangdao, Hebei 066000, China
| | - Aijun Lin
- Department of Environmental Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China; Qinhuangdao Bohai Biological Research Institute of Beijing University of Chemical Technology, Qinhuangdao, Hebei 066000, China.
| | - Wenjie Yang
- Chinese Academy for Environmental Planning, Beijing 100012, China; College of Renewable Energy, North China Electric Power University, Beijing 102206, China.
| |
Collapse
|
27
|
Lian JJ, Yang M, Wang HL, Zhong Y, Chen B, Huang WL, Peng PA. Enhanced molybdenum(VI) removal using sulfide-modified nanoscale zerovalent iron: kinetics and influencing factors. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2021; 83:297-308. [PMID: 33504695 DOI: 10.2166/wst.2020.570] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The overall goal of this study is to investigate the effect of sulfidated nanoscale zerovalent iron (S-nZVI) on the removal of hexavalent molybdate (MoO42-) under different aquatic chemistry conditions. Surface analysis suggests that Mo(VI) is removed mainly by adsorption and co-precipitation onto the surface of S-nZVI and a small amount of Mo(VI) can be reduced to Mo(V) species. The results of batch tests show that Mo(VI) removal by S-nZVI are well described with the pseudo-second-order adsorption model. The removal rate increases with a decrease in solution pH (4.0-9.0) and is significantly affected by the S/Fe ratio of S-nZVI, with the optimal S/Fe ratio being 0.5. The presence of anions WO42- or CrO42- can reduce the Mo(VI) removal, which is likely because they compete for adsorption sites on the solid surfaces. The divalent cations Ni2+, Cu2+ and Co2+ also inhibit the removal of Mo(VI) whereas Zn2+, Ca2+ and Mg2+ enhance it. After being aged for 35 d in water, S-nZVI still exhibits high reactivity towards Mo(VI) removal (57.39%). The study demonstrates that S-nZVI can be used as an environmentally friendly material for effectively removing Mo(VI) from contaminated water.
Collapse
Affiliation(s)
- J J Lian
- College of Energy and Environment, Anhui University of Technology, Ma'anshan, Anhui 243002, China
| | - M Yang
- College of Energy and Environment, Anhui University of Technology, Ma'anshan, Anhui 243002, China
| | - H L Wang
- State Key Laboratory of Organic Geochemistry, Guangdong Provincial Key Laboratory of Environmental Protection and Resources and Utilization, Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China E-mail: ; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Y Zhong
- State Key Laboratory of Organic Geochemistry, Guangdong Provincial Key Laboratory of Environmental Protection and Resources and Utilization, Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China E-mail:
| | - B Chen
- College of Energy and Environment, Anhui University of Technology, Ma'anshan, Anhui 243002, China
| | - W L Huang
- Department of Environmental Sciences, Rutgers, The State University of New Jersey, 14 College Farm Road, New Brunswick, NJ 08901, USA
| | - P A Peng
- State Key Laboratory of Organic Geochemistry, Guangdong Provincial Key Laboratory of Environmental Protection and Resources and Utilization, Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China E-mail:
| |
Collapse
|
28
|
Shi Y, Yu C, Liu M, Lin Q, Lei M, Wang D, Yang M, Yang Y, Ma J, Jia Z. One-pot synthesis of spherical nanoscale zero-valent iron/biochar composites for efficient removal of Pb( ii). RSC Adv 2021; 11:36826-36835. [PMID: 35494362 PMCID: PMC9043637 DOI: 10.1039/d1ra07373g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 10/21/2021] [Indexed: 01/10/2023] Open
Abstract
In this study, a spherical Fe/C composite (AIBC) was successfully prepared via carbonization of Fe3+-crosslinked sodium alginate. The removal capacity and mechanism of AIBC were evaluated for the adsorption of Pb(ii) from aqueous solution and compared with that of commercial nanoscale zero-valent iron (nZVI). The effects of the initial concentration, pH of Pb(ii) solution, the contact time, coexisting anions, and aging under air were investigated. The results showed that the pH had a strong impact on the adsorption of Pb(ii) by AIBC. The adsorption data for AIBC followed the Langmuir model, while the maximum adsorption capacity at pH 5 was 1881.73 mg g−1. The AIBC had a higher adsorption capability than nZVI, especially under the condition of relatively high Pb(ii) concentrations. The oxidation–reduction reaction between Fe and Pb(ii) was the main mechanism for the adsorption of Pb(ii) onto nZVI. AIBC converted the largest amount of Pb(ii) into PbO·XH2O/Pb(OH)2 mainly by generating Fe2+. In this study, a spherical Fe/C composite (AIBC) was successfully prepared via carbonization of Fe3+-crosslinked sodium alginate.![]()
Collapse
Affiliation(s)
- Yunlong Shi
- Key Laboratory of Water Pollution Treatment & Resource Reuse of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, No. 99 Longkunnan Road, Haikou, 571158, China
- Key Laboratory of Natural Polymer Function Material of Haikou City, College of Chemistry and Chemical Engineering, Hainan Normal University, No. 99 Longkunnan Road, Haikou, 571158, China
| | - Changjiang Yu
- Key Laboratory of Water Pollution Treatment & Resource Reuse of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, No. 99 Longkunnan Road, Haikou, 571158, China
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, No. 99 Longkunnan Road, Haikou, 571158, China
- Key Laboratory of Natural Polymer Function Material of Haikou City, College of Chemistry and Chemical Engineering, Hainan Normal University, No. 99 Longkunnan Road, Haikou, 571158, China
| | - Mengying Liu
- Key Laboratory of Natural Polymer Function Material of Haikou City, College of Chemistry and Chemical Engineering, Hainan Normal University, No. 99 Longkunnan Road, Haikou, 571158, China
| | - Qiang Lin
- Key Laboratory of Water Pollution Treatment & Resource Reuse of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, No. 99 Longkunnan Road, Haikou, 571158, China
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, No. 99 Longkunnan Road, Haikou, 571158, China
- Key Laboratory of Natural Polymer Function Material of Haikou City, College of Chemistry and Chemical Engineering, Hainan Normal University, No. 99 Longkunnan Road, Haikou, 571158, China
| | - Man Lei
- Key Laboratory of Natural Polymer Function Material of Haikou City, College of Chemistry and Chemical Engineering, Hainan Normal University, No. 99 Longkunnan Road, Haikou, 571158, China
| | - Darun Wang
- Key Laboratory of Natural Polymer Function Material of Haikou City, College of Chemistry and Chemical Engineering, Hainan Normal University, No. 99 Longkunnan Road, Haikou, 571158, China
| | - Mengwei Yang
- Key Laboratory of Natural Polymer Function Material of Haikou City, College of Chemistry and Chemical Engineering, Hainan Normal University, No. 99 Longkunnan Road, Haikou, 571158, China
| | - Yuting Yang
- Key Laboratory of Natural Polymer Function Material of Haikou City, College of Chemistry and Chemical Engineering, Hainan Normal University, No. 99 Longkunnan Road, Haikou, 571158, China
| | - Jian Ma
- Key Laboratory of Water Pollution Treatment & Resource Reuse of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, No. 99 Longkunnan Road, Haikou, 571158, China
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, No. 99 Longkunnan Road, Haikou, 571158, China
- Key Laboratory of Natural Polymer Function Material of Haikou City, College of Chemistry and Chemical Engineering, Hainan Normal University, No. 99 Longkunnan Road, Haikou, 571158, China
| | - Zhengya Jia
- Hainan Huantai Inspection Technology Co. Ltd, Haikou, 571158, China
| |
Collapse
|
29
|
Slijepčević N, Pilipović DT, Kerkez Đ, Krčmar D, Bečelić-Tomin M, Beljin J, Dalmacija B. A cost effective method for immobilization of Cu and Ni polluted river sediment with nZVI synthesized from leaf extract. CHEMOSPHERE 2021; 263:127816. [PMID: 32835965 DOI: 10.1016/j.chemosphere.2020.127816] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 07/20/2020] [Accepted: 07/22/2020] [Indexed: 05/24/2023]
Abstract
This study investigates the performance of oak (OL) and mulberry (ML) leaves for synthesized of nanoscale zero-valent iron (nZVI), in immobilizing Cu and Ni in contaminated sediment. Characterization of synthesized Fe nanoparticles from oak and mulberry leaf extracts demonstrated that they are nontoxic and stabile nanomaterials for application in the sediment remediation. Effectiveness of stabilization process was performed by microwave-assisted sequential extraction procedure (MWSE) and single-step leaching tests which have been applied to evaluate the metal extraction potential. This research showed that OL-nZVI and ML-nZVI were effective in transforming available Cu and Ni to stable fraction. The maximum residual percentage of Cu increased by 76% and 73%, and for Ni 81% and 80%, respectively, with addition of 5% OL-nZVI and 5% ML-nZVI. Used single-step leaching tests (Toxicity Characteristic Leaching Procedure-TCLP and German standard test- DIN) indicated that all stabilized samples can be considered as non-hazardous waste, as all leached metal concentrations met the appropriate set criteria. Cost analysis showed that the operating cost for contaminated sediment treatment with green synthesized nZVI are 50.37 €/m3/per year. This work provides a new insight into the immobilization mechanism and environmental impact of Cu and Ni in contaminated sediment and potential way of treatment with OL-nZVI and ML-nZVI. Generally, nZVI can be an effective and versatile tool for stabilization of sediment polluted with toxic metals.
Collapse
Affiliation(s)
- Nataša Slijepčević
- University of Novi Sad, Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection, Trg Dositeja Obradovica 3, 21000, Novi Sad, Serbia
| | - Dragana Tomašević Pilipović
- University of Novi Sad, Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection, Trg Dositeja Obradovica 3, 21000, Novi Sad, Serbia.
| | - Đurđa Kerkez
- University of Novi Sad, Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection, Trg Dositeja Obradovica 3, 21000, Novi Sad, Serbia
| | - Dejan Krčmar
- University of Novi Sad, Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection, Trg Dositeja Obradovica 3, 21000, Novi Sad, Serbia
| | - Milena Bečelić-Tomin
- University of Novi Sad, Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection, Trg Dositeja Obradovica 3, 21000, Novi Sad, Serbia
| | - Jelena Beljin
- University of Novi Sad, Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection, Trg Dositeja Obradovica 3, 21000, Novi Sad, Serbia
| | - Božo Dalmacija
- University of Novi Sad, Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection, Trg Dositeja Obradovica 3, 21000, Novi Sad, Serbia
| |
Collapse
|
30
|
Li S, Yang F, Li J, Cheng K. Porous biochar-nanoscale zero-valent iron composites: Synthesis, characterization and application for lead ion removal. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 746:141037. [PMID: 32745850 DOI: 10.1016/j.scitotenv.2020.141037] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/15/2020] [Accepted: 07/15/2020] [Indexed: 06/11/2023]
Abstract
Nano-zero-valent iron has been used in combination with a variety of support carriers to remove heavy metals in solution. However, pre-treatment of the carrier can reflect a better synergistic effect and thus achieve high heavy metal removal capabilities. In this study, the hydrophilic biochar obtained by an acid ammonium persulfate oxidation has an adsorption capacity of up to 135.4 mg g-1 for Pb2+ (25 °C, pH = 6 with adsorbent amount of 10 mg and Pb2+ concentration of 50 mg L-1). Due to the strong Fe-C-O covalent bond, nZVI increases the binding force with the carbon matrix. Benefitting from the high specific surface area, porous structure and rich oxygen-containing functional groups, the resultant nZVI-HPB samples are favourable for Pb2+ diffusion and adsorption, exhibiting maximum adsorption capacity of 480.9 mg g-1 (pH = 6, 25 °C with adsorbent amount of 10 mg and Pb2+ concentration of 200 mg L-1). The multiple interaction mechanisms in the Pb2+ removal process such as the reduction reaction, complexation and co-precipitation proceed simultaneously are concluded by the analyses of Fourier-Transform Infrared Spectroscopy (FTIR), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) spectra.
Collapse
Affiliation(s)
- Shuaishuai Li
- College of Engineering, Northeast Agricultural University, Harbin 150030, China; College of Material Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| | - Fan Yang
- College of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin 150030, China.
| | - Jiangshan Li
- State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, China
| | - Kui Cheng
- College of Engineering, Northeast Agricultural University, Harbin 150030, China; College of Material Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China.
| |
Collapse
|
31
|
Zubair YO, Fuchida S, Tokoro C. Insight into the Mechanism of Arsenic(III/V) Uptake on Mesoporous Zerovalent Iron-Magnetite Nanocomposites: Adsorption and Microscopic Studies. ACS APPLIED MATERIALS & INTERFACES 2020; 12:49755-49767. [PMID: 33084324 DOI: 10.1021/acsami.0c14088] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Mesoporous zerovalent iron-magnetite nanocomposites (ZVI-MNCs) were developed to circumvent the limitations of magnetite, such as its susceptibility to phase transition in air-water interfaces. High-resolution transmission electron microscopy images revealed the presence of Fe0 and Fe3O4 in the as-prepared adsorbent. High-resolution X-ray photoelectron spectroscopy (HR-XPS) Fe 2p deconvoluted spectra showed that electron transfer between Fe0 and Fe3O4 controlled the magnetite transformation. The isotherm equilibrium data for As(III) and As(V) are described by the Sips model, which suggests single- and multilayer formation onto a heterogeneous surface with different binding sites, whereas adsorption is controlled by a pseudo-second-order kinetic model, which indicates chemisorption. The maximum sorption capacities (qm) for As(III) and As(V) are 632.6 and 1000 μmol g-1, respectively, which are larger than the qm of similar adsorbents. The greater qm for As(V) is attributed to a higher multilayer formation and a stronger bonding force compared with As(III). The arsenic uptake capacity showed that the as-prepared adsorbent was effective over a wide pH range, and an optimal uptake capacity was recorded between pH 5.0 and 9.0 for As(III) and 3.0 and 7.0 for As(V). The adsorbent exhibited a remarkable regeneration performance for As(III) and As(V) uptake. Several microscopic analytical tools, including Fourier transform infrared spectroscopy, HR-XPS, and X-ray absorption near-edge structure together with zeta potential, confirmed that the binding mode of As(III) and As(V) on ZVI-MNCs was predominantly inner-sphere coordination. Partial redox transformation occurred for As(III) and As(V) on nearly 10 nm of the adsorbent, which indicates that a surface redox mechanism contributed partially to arsenic uptake on the near surface of the ZVI-MNCs. Extended X-ray absorption fine structure spectral analysis proposed that a corner-sharing monodentate mononuclear (1V) complex occurred for As(III) with a small portion of a corner-sharing bidentate binuclear (2C) complex, whereas As(V) formed a corner-sharing bidentate binuclear (2C) complex with octahedral Fe bonding.
Collapse
Affiliation(s)
- Yusuf O Zubair
- Graduate School of Creative Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Shigeshi Fuchida
- Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Chiharu Tokoro
- Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| |
Collapse
|
32
|
Iron-assisted biological wastewater treatment: Synergistic effect between iron and microbes. Biotechnol Adv 2020; 44:107610. [DOI: 10.1016/j.biotechadv.2020.107610] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 08/06/2020] [Accepted: 08/08/2020] [Indexed: 12/21/2022]
|
33
|
Qu G, Chu R, Wang H, Wang T, Zhang Z, Qiang H, Liang D, Hu S. Simultaneous removal of chromium(VI) and tetracycline hydrochloride from simulated wastewater by nanoscale zero-valent iron/copper-activated persulfate. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:40826-40836. [PMID: 32677009 DOI: 10.1007/s11356-020-10120-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 07/13/2020] [Indexed: 06/11/2023]
Abstract
In this paper, metallic copper (Cu) was supported on nanoscale zero-valent iron (nZVI) to form a nanoscale bimetallic composite (nZVI-Cu), which was used to activate persulfate (PS) to simultaneously remove the compound contaminants Cr(VI) and tetracycline hydrochloride (TCH) in simulated wastewater. nZVI, nZVI-Cu, and nZVI-Cu-activated PS (nZVI-Cu/PS) were characterized by SEM, TEM, XRD, and XPS. The effects of the bimetallic composite on Cr(VI) and TCH removal were compared in the nZVI, nZVI-activated PS (nZVI/PS), nZVI-Cu, and nZVI-Cu/PS systems. The results showed that nZVI and Cu can form a nanobimetallic system, which can create galvanic cells; thus, the galvanic corrosion of nZVI and the transfer of electrons are accelerated. For a single contaminant, the removal efficiency of Cr(VI) and TCH is the highest when nZVI is loaded with 3 wt% and 1 wt% Cu, respectively. The ratio of nZVI-Cu with 3 wt% Cu to PS is 7:1, and the removal efficiency of Cr(VI) and TCH compound contaminants is ~ 100% after 60 min under acidic conditions, which indicates that the Cr(VI) reduction and TCH oxidation were complete in the nZVI-Cu/PS system. The mechanisms of simultaneous removal of Cr(VI) and TCH in the nZVI-Cu/PS system are proposed. The removal of Cr is because of the adsorption-reduction effects of the nZVI-Cu bimetallic material. The degradation of TCH is mainly due to the action of oxidative free radicals generated by Fe2+-activated PS. The free radical capture experiments showed that SO- 4· plays a major role in the process of TCH degradation.
Collapse
Affiliation(s)
- Guangzhou Qu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shanxi, People's Republic of China.
- Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, 712100, Shanxi, People's Republic of China.
| | - Rongjie Chu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shanxi, People's Republic of China
| | - Hui Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shanxi, People's Republic of China
| | - Tiecheng Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shanxi, People's Republic of China
- Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, 712100, Shanxi, People's Republic of China
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shanxi, People's Republic of China
- Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, 712100, Shanxi, People's Republic of China
| | - Hong Qiang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shanxi, People's Republic of China
- Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, 712100, Shanxi, People's Republic of China
| | - Dongli Liang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shanxi, People's Republic of China
- Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, 712100, Shanxi, People's Republic of China
| | - Shibin Hu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shanxi, People's Republic of China
- Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, 712100, Shanxi, People's Republic of China
| |
Collapse
|
34
|
Kumar V, Katyal D, Nayak S. Removal of heavy metals and radionuclides from water using nanomaterials: current scenario and future prospects. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:41199-41224. [PMID: 32829433 DOI: 10.1007/s11356-020-10348-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 08/03/2020] [Indexed: 06/11/2023]
Abstract
There is an increase in concern about the hazardous effects of radioactivity due to the presence of undesirable radioactive substances in our vicinity. Nuclear accidents such as Chernobyl (1986) and Fukushima (2011) have further raised concerns towards such incidents which have led to contamination of water bodies. Conventional methods of water purification are less efficient in decontamination of radioisotopes. They are usually neither cost-effective nor environmentally friendly. However, nanotechnology can play a vital role in providing practical solutions to this problem. Nano-engineered materials like metal oxides, metallic organic frameworks, and nanoparticle-impregnated membranes have proven to be highly efficient in treating contaminated water. Their unique characteristics such as high adsorption capacity, large specific surface area, high tensile strength, and excellent biocompatibility properties make them useful in the field of water purification. This review explores the present status and future prospects of nanomaterials as the next-generation water purification systems that can play an important role in the removal of heavy metals and radioactive contaminants from aqueous solutions.
Collapse
Affiliation(s)
- Vinod Kumar
- University School of Environment Management (USEM), Guru Gobind Singh Indraprastha University, Dwarka, Delhi, 110078, India
- Division of CBRN Defense, Institute of Nuclear Medicine and Allied Sciences, Timarpur, Delhi, 110054, India
| | - Deeksha Katyal
- University School of Environment Management (USEM), Guru Gobind Singh Indraprastha University, Dwarka, Delhi, 110078, India.
| | - SwayangSiddha Nayak
- Division of CBRN Defense, Institute of Nuclear Medicine and Allied Sciences, Timarpur, Delhi, 110054, India
| |
Collapse
|
35
|
Li Q, Li Y, Yang Z, Li X, Tang Z, Yang S, Zhang Y, Liu D. Remediation of iron oxide bound Pb and Pb-contaminated soils using a combination of acid washing agents and l-ascorbic acid. RSC Adv 2020; 10:37808-37817. [PMID: 35515195 PMCID: PMC9057221 DOI: 10.1039/d0ra05327a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 08/12/2020] [Indexed: 11/21/2022] Open
Abstract
Soil washing is an efficient, rapid, and cost-effective remediation technique to dissolve target pollutants from contaminated soil. Here we studied the effects of leaching agents: hydrochloric acid (HCl), ethylenediamine tetraacetic acid disodium salt (Na2EDTA) and citric acid (CA), and reductants: hydroxylamine hydrochloride (NH2OH·HCl) and l-ascorbic acid (VC) on the leaching of Pb from synthetic iron oxide; the changes in mineralogy, morphology, and occurrence of Pb were shown by XRD, SEM, and sequential extraction analyses. Although the washing efficiency of Pb follows the trend HCl (44.24%) > Na2EDTA (39.04%) > CA (28.85%), the cooperation of the leaching agent with reductant further improves the efficiency. VC is more suitable as a reductant considering the higher washing efficiency by HCl-VC (98.6%) than HCl-NH2OH·HCl (88.8%). Moreover, increasing the temperature can promote the decomposition and dehydrogenation reaction of VC with more H+. Among the mixture agents, Na2EDTA + VC is the most effective agent to remediate the two kinds of contaminated soils owing to the formation of Fe(ii)-EDTA, a powerful reducing agent so that the efficiencies can reach up to 98.03% and 92.81%, respectively. As a result, these mixture agents have a great prospect to remediate Pb-contaminated soils.
Collapse
Affiliation(s)
- Quan Li
- School of Environmental Studies, China University of Geosciences 68 Jincheng Street Wuhan 430074 P. R. China
| | - Yilian Li
- School of Environmental Studies, China University of Geosciences 68 Jincheng Street Wuhan 430074 P. R. China
| | - Zhe Yang
- School of Environmental Studies, China University of Geosciences 68 Jincheng Street Wuhan 430074 P. R. China
| | - Xiang Li
- School of Environmental Studies, China University of Geosciences 68 Jincheng Street Wuhan 430074 P. R. China
| | - Zhi Tang
- School of Environmental Studies, China University of Geosciences 68 Jincheng Street Wuhan 430074 P. R. China
| | - Sen Yang
- School of Environmental Studies, China University of Geosciences 68 Jincheng Street Wuhan 430074 P. R. China
| | - Yangyang Zhang
- School of Environmental Studies, China University of Geosciences 68 Jincheng Street Wuhan 430074 P. R. China
| | - Danqing Liu
- School of Environmental Studies, China University of Geosciences 68 Jincheng Street Wuhan 430074 P. R. China
| |
Collapse
|
36
|
Liu H, Li P, Qiu F, Zhang T, Xu J. Controllable preparation of FeOOH/CuO@WBC composite based on water bamboo cellulose applied for enhanced arsenic removal. FOOD AND BIOPRODUCTS PROCESSING 2020. [DOI: 10.1016/j.fbp.2020.06.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
37
|
Xu W, Hu X, Lou Y, Jiang X, Shi K, Tong Y, Xu X, Shen C, Hu B, Lou L. Effects of environmental factors on the removal of heavy metals by sulfide-modified nanoscale zerovalent iron. ENVIRONMENTAL RESEARCH 2020; 187:109662. [PMID: 32460094 DOI: 10.1016/j.envres.2020.109662] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/30/2020] [Accepted: 05/09/2020] [Indexed: 06/11/2023]
Abstract
Sulfide-modified nanoscale zerovalent iron (S-nZVI) has excellent reducing performance for heavy metals in water. The influence of environmental factors on the reactivity can be used to explore the practical feasibility of S-nZVI and analyze the reaction mechanism in depth. This study compared the removal effect and mechanism of Cu2+ and Ni2+ by nanoscale zerovalent iron (nZVI), S-nZVI, and carboxymethyl cellulose-modified nanoscale zerovalent iron (CMC-nZVI). The results show that the pseudo-first-order kinetic constant of Cu2+ removal by nZVI, S-nZVI, and CMC-nZVI was 1.384, 1.919, and 2.890 min-1, respectively, and the rate of Ni2+ removal was 0.304, 0.931, and 0.360 min-1, respectively. The removal mechanism of S-nZVI was similar to that of nZVI and CMC-nZVI. Specifically, Cu2+ was predominantly removed by reduction, while Ni2+ removal included adsorption and reduction. Environmental factors had a specific inhibitory effect on the removal of Cu2+ but had a negligible impact on Ni2+. The condition of low pH, the presence of Cl- and humic acid (HA) promoted the corrosion consumption of Fe0, in which H+ directly corroded Fe0 at low pH. At the same time, Cl- and HA inhibited the adsorption or binding of heavy metal ions on the particle surface, thereby reducing the electron transfer and utilization efficiency. The passivation of NO3- reduced the anaerobic corrosion of the material in water but suppressed the release of electrons, thereby reducing the reduction efficiency of the three types of materials. The anaerobic corrosion of S-nZVI was less affected by environmental factors, and it can still maintain more than 80% of the electronic utilization efficiency under different environmental factors, which illustrates that S-nZVI has broad prospects for practical applications in heavy metal polluted water.
Collapse
Affiliation(s)
- Weijian Xu
- Department of Environmental Engineering, Zhejiang University, Hangzhou, 310029, People's Republic of China
| | - Xinyi Hu
- Department of Environmental Engineering, Zhejiang University, Hangzhou, 310029, People's Republic of China
| | - Yiling Lou
- Department of Environmental Engineering, Zhejiang University, Hangzhou, 310029, People's Republic of China
| | - Xiaodong Jiang
- Environemtal Science Research & Design Institute of Zhejiang Province, Hangzhou, 310007, People's Republic of China
| | - Keke Shi
- Department of Environmental Engineering, Zhejiang University, Hangzhou, 310029, People's Republic of China
| | - Yanning Tong
- Department of Environmental Engineering, Zhejiang University, Hangzhou, 310029, People's Republic of China
| | - Xinhua Xu
- Department of Environmental Engineering, Zhejiang University, Hangzhou, 310029, People's Republic of China
| | - Chaofeng Shen
- Department of Environmental Engineering, Zhejiang University, Hangzhou, 310029, People's Republic of China; Key Laboratory of Water Pollution Control and Environmental Safety of Zhejiang Province, 310020, People's Republic of China
| | - Baolan Hu
- Department of Environmental Engineering, Zhejiang University, Hangzhou, 310029, People's Republic of China; Key Laboratory of Water Pollution Control and Environmental Safety of Zhejiang Province, 310020, People's Republic of China
| | - Liping Lou
- Department of Environmental Engineering, Zhejiang University, Hangzhou, 310029, People's Republic of China; Key Laboratory of Water Pollution Control and Environmental Safety of Zhejiang Province, 310020, People's Republic of China.
| |
Collapse
|
38
|
Liu Y, Yuan J, Ning Y, Tang Y, Luo S, Jiang B. Efficient reduction of Cr(VI) and immobilization of Cr driven by an iron-air fuel cell: Reaction mechanisms and electricity generation. CHEMOSPHERE 2020; 253:126730. [PMID: 32289599 DOI: 10.1016/j.chemosphere.2020.126730] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 01/30/2020] [Accepted: 04/05/2020] [Indexed: 06/11/2023]
Abstract
The iron-air fuel cell (IAFC) has been successfully employed for the oxidative removal of many pollutants, but its feasibility for reductive immobilization of Cr(VI) is still unknown. Herein, we developed an IAFC system consisting of an iron anode and an activated carbon-PTFE based air-cathode, and evaluated its performance for Cr(VI) removal and power generation. In this reaction system, cathodic reduction and Fe(II) reduction both contributed to the reductive removal of Cr(VI). It was found that the decrease of solution pH from 6.0 to 3.0 promoted the removal of Cr(VI) due to the enhanced yield of Fe(II) ions and cathodic reduction, accompanying the increased power generation from 1040 mW m-2 to 2880 mW m-2. Besides, the Cr(VI) removal and power generation could be also promoted by elevating Na2SO4 concentration from 0.01 M to 0.1 M. In the IAFC process, Cr(VI) was initially reduced to less soluble ionic Cr(III) homogeneously and heterogeneously and then Cr(III) was immobilized by adsorption and/or co-precipitation with the fresh Fe(III) (oxy)hydroxides. Generally, this study is of great interest for the engineering community to design the environmentally benign and cost-effective strategy for the treatment of wastewater in remote areas, where the electricity is not easily available.
Collapse
Affiliation(s)
- Yijie Liu
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266033, PR China
| | - Jingjing Yuan
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266033, PR China
| | - Yanan Ning
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266033, PR China
| | - Yizhen Tang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266033, PR China
| | - Siyi Luo
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266033, PR China
| | - Bo Jiang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266033, PR China.
| |
Collapse
|
39
|
Li P, Yu J, Huangfu Z, Chang J, Zhong C, Ding P. Applying modified biochar with nZVI/nFe 3O 4 to immobilize Pb in contaminated soil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:24495-24506. [PMID: 32307680 DOI: 10.1007/s11356-020-08458-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 03/16/2020] [Indexed: 06/11/2023]
Abstract
Lead (Pb) pollution in soil has become one of the most serious environmental problems, and it is more urgent in areas where acid rain is prevalent. Curing agents to solidify heavy metals in soil are efficiently applied to remediate Pb-contaminated soil. In this study, we prepared biochar, biochar loaded with nano-zero-valent iron (BC-nZVI), and biochar loaded with nano-ferroferric oxide (BC-nFe3O4), and investigated the Pb-immobilizing efficiency in contaminated soil in the condition of acid rain by them. The results showed that 8 g/kg is the best added dosage of curing agents for immobilizing Pb, which of the immobilizing efficiency of Pb were 19% (biochar), 42% (BC-nZVI), and 23% (BC-nFe3O4), respectively. Besides, the curing agents had positive effects on immobilizing Pb under acid rain condition, which could significantly reduce the content of acid extractable Pb, especially BC-nZVI (1.5%). And the immobilization efficiency of modified biochar was better than biochar, especially BC-nZVI (66%). BC-nZVI showed a more ideal effect on decreasing the leaching amount of Pb in the condition of acid rain. The results highlighted that biochar-loaded nano-iron-based materials, especially BC-nZVI, was promising and environmentally friendly materials for remediating Pb-contaminated soils, which provided scientific reference and theoretical basis for the treatment of Pb-contaminated soils around industrial sites particularly in acid rain area.
Collapse
Affiliation(s)
- Peirou Li
- Department of Environmental Science and Engineering, College of Architecture and Environment, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu, 610065, China
- Institute of New Energy and Low Carbon Technology, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu, 610065, People's Republic of China
| | - Jiang Yu
- Department of Environmental Science and Engineering, College of Architecture and Environment, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu, 610065, China.
- Institute of New Energy and Low Carbon Technology, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu, 610065, People's Republic of China.
| | - Zhuoxi Huangfu
- Department of Environmental Science and Engineering, College of Architecture and Environment, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu, 610065, China
- Institute of New Energy and Low Carbon Technology, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu, 610065, People's Republic of China
| | - Jiahua Chang
- Department of Environmental Science and Engineering, College of Architecture and Environment, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu, 610065, China
- Institute of New Energy and Low Carbon Technology, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu, 610065, People's Republic of China
| | - Chengwei Zhong
- Department of Environmental Science and Engineering, College of Architecture and Environment, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu, 610065, China
- Institute of New Energy and Low Carbon Technology, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu, 610065, People's Republic of China
| | - Ping Ding
- Department of Environmental Science and Engineering, College of Architecture and Environment, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu, 610065, China
- Institute of New Energy and Low Carbon Technology, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu, 610065, People's Republic of China
| |
Collapse
|
40
|
Kong X, Chen J, Tang Y, Lv Y, Chen T, Wang H. Enhanced removal of vanadium(V) from groundwater by layered double hydroxide-supported nanoscale zerovalent iron. JOURNAL OF HAZARDOUS MATERIALS 2020; 392:122392. [PMID: 32208307 DOI: 10.1016/j.jhazmat.2020.122392] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 02/10/2020] [Accepted: 02/22/2020] [Indexed: 06/10/2023]
Abstract
To reduce the toxicity of vanadium(V) [V(V)] and inhibit the desorption of adsorbed vanadium in groundwater, we synthesized nanoscale zerovalent iron (nZVI) dispersed on layered double hydroxide (LDH) composites (nZVI@LDH) to remove V(V) from simulated groundwater. We found that nZVI@LDH could reduce high-valence vanadium to low-valence vanadium, then forming vanadium-containing precipitation to reduce the toxicity and inhibiting vanadium from returning to groundwater. SEM and XRD characterizations exhibited the uniform dispersal of nZVI on the surface of LDH. nZVI@LDH with nZVI/LDH at a mass ratio of 1:2 provided the maximum adsorption capacity of 93.7 mg g-1 at pH 3.0. Coexisting anions and dissolved oxygen in groundwater have little effect on V(V) removal. nZVI@LDH performed well across a wide pH range (3.0-8.0). The surface characterizations and XPS analysis revealed that LDH as supporting materials inhibited the aggregation and passivation of nZVI. The adsorbed V(V) was reduced to V(IV) and V(III) by nZVI and spontaneously transformed into insoluble VO2 and V2O3. The DFT calculations indicated the strong complexation and better stability of the V(IV) and V(III) species with nZVI@LDH than V(V). This work suggests that nZVI@LDH has the potential to serve as an efficient material for the immobilization of V(V) in groundwater.
Collapse
Affiliation(s)
- Xiangrui Kong
- School of Environment, Tsinghua University, Beijing, 100084, PR China
| | - Jiehao Chen
- School of Environment, Tsinghua University, Beijing, 100084, PR China
| | - Yunjia Tang
- School of Environment, Tsinghua University, Beijing, 100084, PR China
| | - Yan Lv
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, PR China
| | - Tan Chen
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, PR China
| | - Hongtao Wang
- School of Environment, Tsinghua University, Beijing, 100084, PR China.
| |
Collapse
|
41
|
Novel design of Fe-Cu alloy coated cellulose nanocrystals with strong antibacterial ability and efficient Pb2+ removal. Carbohydr Polym 2020; 234:115889. [DOI: 10.1016/j.carbpol.2020.115889] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 01/08/2020] [Accepted: 01/16/2020] [Indexed: 12/28/2022]
|
42
|
Song Y, Wang L, Lv B, Chang G, Jiao W, Liu Y. Removal of trace Cr(VI) from aqueous solution by porous activated carbon balls supported by nanoscale zero-valent iron composites. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:7015-7024. [PMID: 31900773 DOI: 10.1007/s11356-019-07027-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Accepted: 11/11/2019] [Indexed: 06/10/2023]
Abstract
In this study, porous activated carbon balls supported by nanoscale zero-valent iron composites (Fe@PACB-700) were used for the first time for the removal of trace Cr(VI) from aqueous solutions. The Fe@PACB-700 composites were prepared by a facile carbothermal reduction method and then characterized by scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS), X-ray diffraction analysis (XRD), and X-ray photoelectron spectroscopy (XPS). The results show that nZVI particles have been successfully loaded onto PACBs. Fe@PACB-700 shows an excellent Cr(VI) removal efficiency of 91.2%. The maximum adsorption capacity of Fe@PACB-700 for Cr(VI) is 22.24 mg/g, which is 4.36 times that of PACB. The residual Cr(VI) concentration is below 20 ppb with the use of 0.15 g of Fe@PACB-700, which is much lower than the allowable concentration for Cr(VI) in drinking water (0.05 mg/L). The adsorption of Cr(VI) can be well described by the Langmuir isotherm model and pseudo-second-order kinetic model. Fe@PACB-700 still has a high removal efficiency of 80% after five cycles. Thus, Fe@PACB-700 has a great potential for Cr(VI) removal from aqueous solution. Graphical abstract.
Collapse
Affiliation(s)
- Yao Song
- Shanxi Province Key Laboratory of Higee-Oriented Chemical Engineering, North University of China, Taiyuan, 030051, China
| | - Liancheng Wang
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, China
| | - Baoliang Lv
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, China.
| | - Guozhang Chang
- State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, Ningxia University, Yinchuan, 750021, China
| | - Weizhou Jiao
- Shanxi Province Key Laboratory of Higee-Oriented Chemical Engineering, North University of China, Taiyuan, 030051, China.
- State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, Ningxia University, Yinchuan, 750021, China.
| | - Youzhi Liu
- Shanxi Province Key Laboratory of Higee-Oriented Chemical Engineering, North University of China, Taiyuan, 030051, China
| |
Collapse
|
43
|
Du Q, Li G, Zhang S, Song J, Zhao Y, Yang F. High-dispersion zero-valent iron particles stabilized by artificial humic acid for lead ion removal. JOURNAL OF HAZARDOUS MATERIALS 2020; 383:121170. [PMID: 31522068 DOI: 10.1016/j.jhazmat.2019.121170] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 08/24/2019] [Accepted: 09/05/2019] [Indexed: 05/29/2023]
Abstract
Nano zero-valent iron (nZVI), as a high-efficiency adsorbent for heavy metals, often suffers being oxidized and assembling together due to small size and super reactivity, further decreasing its adsorption performance and limiting application ranges. Herein, we have designed a novel adsorbent with high-dispersion nZVI stabilized by as-prepared artificial humic acid (AHA-nZVI) derived from hydrothermal humification (HTH) technology. Introduction of artificial humic acid (A-HA) can effectively reduce the oxidation and agglomeration of nZVI, leading to superior kinetic removal efficiency of Pb2+ (> 99.2%) and huge Langmuir removal capacity of 649.0 mg/g. The combination of nZVI and A-HA (contained abundant functional groups, i.e. -OH and -COOH) via C-O-Fe bonding makes nZVI have good dispersion and oxidation resistance. Multiple interaction mechanisms including reduction reaction, complexation and co-precipitation between heavy metals and AHA-nZVI samples are realized. Overall, AHA-nZVI is a promising material for high-performance heavy metal contaminated water treatment.
Collapse
Affiliation(s)
- Qing Du
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin 150030, China
| | - Guixiang Li
- Max Planck Institute of Colloids and Interfaces, Department of Colloid Chemistry, 14476 Potsdam, Germany
| | - Shuaishuai Zhang
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin 150030, China
| | - Jingpeng Song
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin 150030, China
| | - Ying Zhao
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin 150030, China
| | - Fan Yang
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
44
|
Fabrication of recyclable magnetic double-base aerogel with waste bioresource bagasse as the source of fiber for the enhanced removal of chromium ions from aqueous solution. FOOD AND BIOPRODUCTS PROCESSING 2020. [DOI: 10.1016/j.fbp.2019.11.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
45
|
Mao Q, Zhou Y, Yang Y, Zhang J, Liang L, Wang H, Luo S, Luo L, Jeyakumar P, Ok YS, Rizwan M. Experimental and theoretical aspects of biochar-supported nanoscale zero-valent iron activating H 2O 2 for ciprofloxacin removal from aqueous solution. JOURNAL OF HAZARDOUS MATERIALS 2019; 380:120848. [PMID: 31319334 DOI: 10.1016/j.jhazmat.2019.120848] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 06/23/2019] [Accepted: 06/29/2019] [Indexed: 06/10/2023]
Abstract
Ciprofloxacin has been frequently detected in water environment, and its removal has become a significant public concern. Biochar-supported nanoscale zero-valent iron (BC/nZVI) to activate hydrogen peroxide (H2O2) has many advantages on promoting the removal of organic contaminants. In this paper, the BC/nZVI activating H2O2 degradation of ciprofloxacin was systematically investigated by experimental and theoretical approaches. The morphologies and property analysis showed that nZVI particles distributed uniformly on the biochar surface, which mainly include -OH, >CO and COC and CO groups. Different reaction conditions were compared to define the optimal conditions for ciprofloxacin removal in BC/nZVI/H2O2 system. More than 70% of ciprofloxacin was removed in the optimal conditions: acidic condition (pH 3∼4), low doses of H2O2 (20 mM), and temperature of 298 K. The hydroxyl radical (•OH) oxidation was the primary pathway in BC/nZVI/H2O2 degradation of ciprofloxacin process. The theoretical calculation indicated that hydrogen atom abstraction (HAA) pathways were the dominant oxidation pathways contributing 92.3% in overall second‒order rate constants (k) of •OH and ciprofloxacin. The current results are valuable to evaluate the application of BC/nZVI activating H2O2 degradation of ciprofloxacin and other fluoroquinolone antibiotics in water treatment plants.
Collapse
Affiliation(s)
- Qiming Mao
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Yaoyu Zhou
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Yuan Yang
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Jiachao Zhang
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Lifen Liang
- School of Environmental and Chemical Engineering, Foshan University, Foshan, 528000, China
| | - Hailong Wang
- Biochar Engineering Technology Research Center of Guangdong Province, School of Environmental and Chemical Engineering, Foshan University, Foshan, Guangdong 528000, China; Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, School of Environmental and Resource Sciences, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| | - Shuang Luo
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China.
| | - Lin Luo
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China.
| | - Paramsothy Jeyakumar
- Environmental Sciences, School of Agriculture and Environment, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand
| | - Yong Sik Ok
- Korea Biochar Research Center, O-Jeong Eco-Resilience Institute (OJERI) & Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Muhammad Rizwan
- Department of Environmental Sciences and Engineering, Government College University, Allama Iqbal Road, 38000 Faisalabad, Pakistan
| |
Collapse
|
46
|
Sun C, Xie Y, Ren X, Song G, Alsaedi A, Hayat T, Chen C. Efficient removal of Cd(II) by core-shell Fe3O4@polydopamine microspheres from aqueous solution. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.111724] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
47
|
Controlled fabrication of functionalized nanoscale zero-valent iron/celluloses composite with silicon as protective layer for arsenic removal. Chem Eng Res Des 2019. [DOI: 10.1016/j.cherd.2019.09.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
48
|
Cai C, Zhao M, Yu Z, Rong H, Zhang C. Utilization of nanomaterials for in-situ remediation of heavy metal(loid) contaminated sediments: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 662:205-217. [PMID: 30690355 DOI: 10.1016/j.scitotenv.2019.01.180] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 01/14/2019] [Accepted: 01/14/2019] [Indexed: 05/09/2023]
Abstract
Heavy metal(loid)s are toxic and non-biodegradable environmental pollutants. The contamination of sediments with heavy metal(loid)s has attracted increasing attention due to the negative environmental effects of heavy metal(loid)s and the development of new remediation techniques for metal(loid) contaminated sediments. As a result of rapid nanotechnology development, nanomaterials are also being increasingly utilized for the remediation of contaminated sediments due to their excellent capacity of immobilizing/adsorbing metal(loid) ions. This review summarizes recent studies that have used various nanomaterials such as nanoscale zero-valent iron (nZVI), stabilizer-modified nZVI, nano apatite based-materials including nano-hydroxyapatite particles (nHAp) and stabilized nano-chlorapatite (nCLAP), carbon nanotubes (CNTs), and titanium dioxide nanoparticles (TiO2 NPs) for the remediation of heavy metal(loid) contaminated sediments. We also review the analysis of potential mechanisms involved in the interaction of nanomaterials with metal(loid) ions. Subsequently, we discuss the factors affecting the nanoparticle-heavy metal(loid)s interaction, the environmental impacts resulting from the application of nanomaterials, the knowledge gaps, and potential future research.
Collapse
Affiliation(s)
- Caiyuan Cai
- School of Civil Engineering, Guangzhou University, Guangzhou 510006, China
| | - Meihua Zhao
- School of Civil Engineering, Guangzhou University, Guangzhou 510006, China.
| | - Zhen Yu
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental Science & Technology, Guangzhou 510650, China
| | - Hongwei Rong
- School of Civil Engineering, Guangzhou University, Guangzhou 510006, China
| | - Chaosheng Zhang
- School of Civil Engineering, Guangzhou University, Guangzhou 510006, China
| |
Collapse
|
49
|
Xiang W, Zhou T, Wang Y, Huang M, Wu X, Mao J, Lu X, Zhang B. Catalytic oxidation of diclofenac by hydroxylamine-enhanced Cu nanoparticles and the efficient neutral heterogeneous-homogeneous reactive copper cycle. WATER RESEARCH 2019; 153:274-283. [PMID: 30735957 DOI: 10.1016/j.watres.2019.01.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 01/07/2019] [Accepted: 01/11/2019] [Indexed: 06/09/2023]
Abstract
This study has demonstrated that hydroxylamine (HA) could greatly enhance Cu nanoparticles (nCu) in activating molecular oxygen and significantly elevate the diclofenac (DCF) degradation rate about two orders of magnitude in neutral circumstances. Effects of several important parameters on the DCF degradation such as nCu loading, HA dosage, pH and reaction temperature were investigated in the nCu/HA/O2 system. Multiple examinations revealed that the reactive Cu(III) species instead of OH• would be predominant in the nCu/HA/O2 system, despite their similar DCF degradation pathways. Based on a HA-enhanced copper cycle depending on the pristine Cu0@Cu(I) (hydro)oxides core-shell structure, the heterogeneous-homogeneous reaction mechanism was proposed. It included solid-liquid interfacial and bulk reactions, e.g. heterogeneous activation of O2 by Cu(I) to produce H2O2 and homogeneous Cu(I)-catalytic generation of Cu(III) from H2O2. Further quantitative investigation of the main reactive species in the cycle revealed that the Cu(I) regeneration instead of the O2 activation would be rate-limited. Besides, nCu could be recycled to effectively degrade DCF in four consecutive cycles in the raw neural nCu/HA/O2 system. It suggested that the nCu/HA/O2 system with a more efficient copper cycle would be a good alternative Fenton-like system in treating neutral recalcitrant organic wastewaters.
Collapse
Affiliation(s)
- Wei Xiang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, PR China; Key Laboratory of Water and Wastewater Treatment (HUST), MOHURD, Wuhan, 430074, PR China
| | - Tao Zhou
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, PR China.
| | - Yifan Wang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, PR China; Key Laboratory of Water and Wastewater Treatment (HUST), MOHURD, Wuhan, 430074, PR China
| | - Mingjie Huang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, PR China
| | - Xiaohui Wu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, PR China; Key Laboratory of Water and Wastewater Treatment (HUST), MOHURD, Wuhan, 430074, PR China
| | - Juan Mao
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, PR China; Key Laboratory of Water and Wastewater Treatment (HUST), MOHURD, Wuhan, 430074, PR China
| | - Xiejuan Lu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, PR China; Key Laboratory of Water and Wastewater Treatment (HUST), MOHURD, Wuhan, 430074, PR China.
| | - Beiping Zhang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, PR China; Key Laboratory of Water and Wastewater Treatment (HUST), MOHURD, Wuhan, 430074, PR China
| |
Collapse
|
50
|
Zhao Z, Xu C, Zhang X, Song X. Addition of iron materials for improving the removal efficiencies of multiple contaminants from wastewater with a low C/N ratio in constructed wetlands at low temperatures. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:11988-11997. [PMID: 30827018 DOI: 10.1007/s11356-019-04648-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 02/19/2019] [Indexed: 06/09/2023]
Abstract
Constructed wetlands (CWs) are widely used in wastewater treatment. Wastewater generally contains multiple contaminants. In this study, CWs were applied to treat wastewater with a low COD/TN ratio and containing heavy metals. Iron-based material was added in CWs to enhance the treatment efficiency. The contaminant removal efficiency was positively correlated with the dosage of iron-based material. Considering the operation cost, we added 1 g of iron-based material in CW and realized the multi-contaminant removal efficiency after 4-day treatment at low temperature: 99.51% of Cu(II), 87.22% of Cr(VI), 65.62% of TN, and 60.23% of COD. Microbial community analysis and kinetic analysis predicted that the removal mechanism involved ion exchange and microbial denitrification. Specific bacteria were found in CWs with iron-based material, such as Thiobacillus spp. and Thauera spp., indicating that the nitrate removal in the denitrification process was triggered by carbon sources and that Fe2+ worked as both the electron donor and the adjuster of the abundances of specific bacteria. The addition of iron-based material into CWs was a green option to improve the pollutant removal performance.
Collapse
Affiliation(s)
- Zhimiao Zhao
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, China
- Engineering Research Center for Water Environment Ecology in Shanghai, Shanghai, 201306, China
| | - Chenglong Xu
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, China
- Engineering Research Center for Water Environment Ecology in Shanghai, Shanghai, 201306, China
| | - Xiao Zhang
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, China
- Engineering Research Center for Water Environment Ecology in Shanghai, Shanghai, 201306, China
| | - Xinshan Song
- Engineering Research Center for Water Environment Ecology in Shanghai, Shanghai, 201306, China.
- State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China.
| |
Collapse
|