1
|
Zhao R, Chew YMJ, Hofman JAMH, Lutze HV, Wenk J. UV-induced reactive species dynamics and product formation by chlorite. WATER RESEARCH 2024; 264:122218. [PMID: 39121819 DOI: 10.1016/j.watres.2024.122218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 08/01/2024] [Accepted: 08/03/2024] [Indexed: 08/12/2024]
Abstract
Chlorite (ClO2-) is a regulated byproduct of chlorine dioxide water treatment processes. The transformation of chlorite under UV irradiation into chloride (Cl-) and chlorate (ClO3-) involves reactive species chain reactions that could enhance chlorine dioxide water treatment efficiency while reducing residual chlorite levels. This study conducted a mechanistic investigation of chlorite phototransformation by analyzing reaction intermediates and stable end products, including chlorine dioxide (ClO2), free chlorine (HOCl/OCl-), hydroxyl‑radical (•OH), Cl-, and ClO3- through combined experimental and modeling approaches. Experiments were performed at UV254 irradiation in pure buffered water within the pH range of 6 to 8. Results indicated that the apparent quantum yields for chlorite phototransformation increased from 0.86 to 1.45, and steady-state •OH concentrations at 1 mM initial chlorite concentration rose from 8.16 × 10-14 M - 16.1 × 10-14 M with decreasing pH values. It was observed that under UV irradiation, chlorite acts as both a significant producer and consumer of reactive species through three distinct reaction pathways. The developed kinetic model, which incorporates optimized intrinsic chlorite quantum yields Φchloritein ranging from 0.33 to 0.39, effectively simulated the loss of oxidants and the formation of major products. It also accurately predicted steady-state concentrations of various species, including •OH, •ClO, Cl• and O3. For the first time, this study provides a comprehensive transformation pathway scheme for chlorite phototransformation. The findings offer important insights into the mechanistic aspects of product and oxidizing species formation during chlorite phototransformation.
Collapse
Affiliation(s)
- Ranran Zhao
- Department of Chemical Engineering, University of Bath, Bath, BA2 7AY, UK; Water Innovation and Research Centre, University of Bath, BA2 7AY, UK
| | - Y M John Chew
- Department of Chemical Engineering, University of Bath, Bath, BA2 7AY, UK
| | - Jan A M H Hofman
- Department of Chemical Engineering, University of Bath, Bath, BA2 7AY, UK; Water Innovation and Research Centre, University of Bath, BA2 7AY, UK
| | - Holger V Lutze
- Civil- and Environmental Engineering, Institute IWAR, Technical University of Darmstadt, 64287 Darmstadt, Germany; IWW Water Centre, Moritzstrasse 26, 45476, Mülheim an der Ruhr, Germany; Centre for Water and Environmental Research (ZWU), Universitätsstrasse 5, 45141, Essen, Germany.
| | - Jannis Wenk
- Department of Chemical Engineering, University of Bath, Bath, BA2 7AY, UK; Water Innovation and Research Centre, University of Bath, BA2 7AY, UK.
| |
Collapse
|
2
|
Hu X, Zhu M. Were Persulfate-Based Advanced Oxidation Processes Really Understood? Basic Concepts, Cognitive Biases, and Experimental Details. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:10415-10444. [PMID: 38848315 DOI: 10.1021/acs.est.3c10898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2024]
Abstract
Persulfate (PS)-based advanced oxidation processes (AOPs) for pollutant removal have attracted extensive interest, but some controversies about the identification of reactive species were usually observed. This critical review aims to comprehensively introduce basic concepts and rectify cognitive biases and appeals to pay more attention to experimental details in PS-AOPs, so as to accurately explore reaction mechanisms. The review scientifically summarizes the character, generation, and identification of different reactive species. It then highlights the complexities about the analysis of electron paramagnetic resonance, the uncertainties about the use of probes and scavengers, and the necessities about the determination of scavenger concentration. The importance of the choice of buffer solution, operating mode, terminator, and filter membrane is also emphasized. Finally, we discuss current challenges and future perspectives to alleviate the misinterpretations toward reactive species and reaction mechanisms in PS-AOPs.
Collapse
Affiliation(s)
- Xiaonan Hu
- Guangdong Key Laboratory of Environmental Pollution and Health, College of Environment and Climate, Jinan University, Guangzhou 511443, PR China
- International Joint Laboratory of Catalytic Chemistry, State Key Laboratory of Advanced Special Steel, Innovation Institute of Carbon Neutrality, Research Center of Nano Science and Technology, Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, PR China
| | - Mingshan Zhu
- Guangdong Key Laboratory of Environmental Pollution and Health, College of Environment and Climate, Jinan University, Guangzhou 511443, PR China
| |
Collapse
|
3
|
Kong FX, Chen YX, Wang YK, Chen JF. Simultaneous electrocoagulation and E-peroxone coupled with ultrafiltration membrane for shale gas produced water treatment. CHEMOSPHERE 2024; 355:141834. [PMID: 38565376 DOI: 10.1016/j.chemosphere.2024.141834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/16/2024] [Accepted: 03/26/2024] [Indexed: 04/04/2024]
Abstract
Membrane fouling caused by the organics-coated particles was the main obstacle for the highly efficient shale gas produced water (SGPW) treatment and recycling. In this study, a novel hybrid electrocoagulation (EC) and E-peroxone process coupled with UF (ECP-UF) process was proposed to examine the efficacy and elucidate the mechanism for UF fouling mitigation in assisting SGPW reuse. Compared to the TMP (transmembrane pressure) increase of -15 kPa in the EC-UF process, TMP in ECP-UF system marginally increased to -1.4 kPa for 3 filtration cycles under the current density of 15 mA/cm2. Both the total fouling index and hydraulically irreversible fouling index of the ECP-UF process were significantly lower than those of EC-UF process. According to the extended Derjaguin-Landau-Verwey-Overbeek theory, the potential barriers was the highest for ECP-UF processes due to the substantial increase of the acid-base interaction energy in ECP-UF process, which was well consistent with the TMP and SEM results. Turbidity and TOC of ECP-UF process were 63.6% and 45.8% lower than those of EC-UF process, respectively. According to the MW distribution, the variations of compounds and their relative contents were probably due to the oxidation and decomposing products of the macromolecular organics. The number of aromatic compound decreased, while the number of open-chain compounds (i.e., alkenes, alkanes and alcohols) increased in the permeate of ECP-UF process. Notably, the substantial decrease in the relative abundance of di-phthalate compounds was attributed to the high reactivity of these compounds with ·OH. Mechanism study indicated that ECP could realize the simultaneous coagulation, H2O2 generation and activation by O3, facilitating the enhancement of ·OH and Alb production and therefore beneficial for the improved water quality and UF fouling mitigation. Therefore, the ECP-UF process emerges as a high-efficient and space-saving approach, yielding a synergistic effect in mitigating UF fouling for SGPW recycling.
Collapse
Affiliation(s)
- Fan-Xin Kong
- State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Oil & Gas Pollution Control, China University of Petroleum, Beijing, 102249, China.
| | - Yu-Xuan Chen
- State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Oil & Gas Pollution Control, China University of Petroleum, Beijing, 102249, China
| | - Yu-Kun Wang
- State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Oil & Gas Pollution Control, China University of Petroleum, Beijing, 102249, China
| | - Jin-Fu Chen
- State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Oil & Gas Pollution Control, China University of Petroleum, Beijing, 102249, China
| |
Collapse
|
4
|
Mortazavi M, Garg S, Waite TD. Kinetic modelling assisted balancing of organic pollutant removal and bromate formation during peroxone treatment of bromide-containing waters. JOURNAL OF HAZARDOUS MATERIALS 2024; 468:133736. [PMID: 38377900 DOI: 10.1016/j.jhazmat.2024.133736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/25/2024] [Accepted: 02/04/2024] [Indexed: 02/22/2024]
Abstract
The peroxone process (O3/H2O2) is reported to be a more effective process than the ozonation process due to an increased rate of generation of hydroxyl radicals (•OH) and inhibition of bromate (BrO3-) formation which is otherwise formed on ozonation of bromide containing waters. However, the trade-off between the H2O2 dosage required for minimization of BrO3- formation and effective pollutant removal has not been clearly delineated. In this study, employing experimental investigations as well as chemical modelling, we show that the concentration of H2O2 required to achieve maximum pollutant removal may not be the same as that required for minimization of BrO3- formation. At the H2O2 dosage required to minimize BrO3- formation (<10 µg/L), only pollutants with high to moderate reactivity towards O3 and •OH are effectively removed. For pollutants with low reactivity towards O3/•OH, high O3 (O3:DOC>>1 g/g) and high H2O2 dosages (O3:H2O2 ∼1 (g/g)) are required for minimizing BrO3- formation along with effective pollutant removal which may result in a very high residual of H2O2 in the effluent, causing secondary pollution. On balance, we conclude that the peroxone process is not effective for the removal of low reactivity micropollutants if minimization of BrO3- formation is also required.
Collapse
Affiliation(s)
- Mahshid Mortazavi
- UNSW Water Research Centre, School of Civil and Environmental Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Shikha Garg
- UNSW Water Research Centre, School of Civil and Environmental Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| | - T David Waite
- UNSW Water Research Centre, School of Civil and Environmental Engineering, The University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
5
|
Zou J, Liu Y, Han Q, Tian Y, Shen F, Kang L, Feng L, Ma J, Zhang L, Du Z. Importance of Chain Length in Propagation Reaction on •OH Formation during Ozonation of Wastewater Effluent. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:18811-18824. [PMID: 37428486 DOI: 10.1021/acs.est.3c00827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
During the ozonation of wastewater, hydroxyl radicals (•OH) induced by the reactions of ozone (O3) with effluent organic matters (EfOMs) play an essential role in degrading ozone-refractory micropollutants. The •OH yield provides the absolute •OH formation during ozonation. However, the conventional "tert-Butanol (t-BuOH) assay" cannot accurately determine the •OH yield since the propagation reactions are inhibited, and there have been few studies on •OH production induced by EfOM fractions during ozonation. Alternatively, a "competitive method", which added trace amounts of the •OH probe compound to compete with the water matrix and took initiation reactions and propagation reactions into account, was used to determine the actual •OH yields (Φ) compared with that obtained by the "t-BuOH assay" (φ). The Φ were significantly higher than φ, indicating that the propagation reactions played important roles in •OH formation. The chain propagation reactions facilitation of EfOMs and fractions can be expressed by the chain length (n). The study found significant differences in Φ for EfOMs and fractions, precisely because they have different n. The actual •OH yield can be calculated by n and φ as Φ = φ (1 + n)/(nφ + 1), which can be used to accurately predict the removal of micropollutants during ozonation of wastewater.
Collapse
Affiliation(s)
- Jinru Zou
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
- Engineering Research Center for Water Pollution Source Control and Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Yongze Liu
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
- Engineering Research Center for Water Pollution Source Control and Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Qi Han
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
- Engineering Research Center for Water Pollution Source Control and Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Yajun Tian
- College of Environment, Zhejiang University of Technology, Chaowang Road 18, Hangzhou 310014, China
| | - Fangfang Shen
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
- Engineering Research Center for Water Pollution Source Control and Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Longfei Kang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
- Engineering Research Center for Water Pollution Source Control and Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Li Feng
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
- Engineering Research Center for Water Pollution Source Control and Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Liqiu Zhang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
- Engineering Research Center for Water Pollution Source Control and Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Ziwen Du
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
- Engineering Research Center for Water Pollution Source Control and Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
6
|
Dong Y, Shen Y, Yuan H, Ge D, Zhu N. Roles of catalytic ozonation by bimetallic Fe/Ce loading sludge-derived biochar in amelioration of sludge dewaterability: Performance and implementation mechanisms. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 344:118430. [PMID: 37348300 DOI: 10.1016/j.jenvman.2023.118430] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/02/2023] [Accepted: 06/14/2023] [Indexed: 06/24/2023]
Abstract
In this study, an environmentally friendly alternative was developed using catalytic ozonation by sludge-derived biochar loaded with bimetallic Fe/Ce (O3/SBC-FeCe) for enhanced sludge dewatering. The results indicated that the lowest capillary suction time (CST) of 20.9 s and water content of dewatered sludge cake (Wc) of 64.09% were achieved under the dosage of 40 mg O3/g dry solids (DS) and 0.4 g SBC-FeCe/g DS which were considered as the optimum condition. In view of excellent electron exchanging capacity of SBC-FeCe with rich Lewis acid sites and conversions of valence sates of Fe and Ce, more O3 were decomposed into reactive oxygen species under the catalytic action of SBC-FeCe, which strengthened oxidizing capacity. Enhanced oxidation rendered sludge cells inactivation and compact network structure rupture releasing intracellular water and organic substances. Subsequently, hydrophilic organic matters were attacked and eliminated lessening sludge viscosity and colloidal forces and intensifying hydrophobicity and flowability. In addition, changes of sludge morphology suggested that sludge roughness was alleviated, structural strength and compressibility were raised and porous and retiform structure was constructed providing channels for water outflow by adding skeleton builder of SBC-FeCe. Overall, the synergistic interaction of strengthened oxidation and skeleton construction improved sludge dewaterability.
Collapse
Affiliation(s)
- Yanting Dong
- Shanghai Engineering Research Center of Solid Waste Treatment and Resource Recovery, School of Environmental Science and Engineering, Shanghai Jiao Tong University, No.800 Dongchuan Road, Shanghai, 200240, China
| | - Yanwen Shen
- Shanghai Engineering Research Center of Solid Waste Treatment and Resource Recovery, School of Environmental Science and Engineering, Shanghai Jiao Tong University, No.800 Dongchuan Road, Shanghai, 200240, China
| | - Haiping Yuan
- Shanghai Engineering Research Center of Solid Waste Treatment and Resource Recovery, School of Environmental Science and Engineering, Shanghai Jiao Tong University, No.800 Dongchuan Road, Shanghai, 200240, China
| | - Dongdong Ge
- Shanghai Engineering Research Center of Solid Waste Treatment and Resource Recovery, School of Environmental Science and Engineering, Shanghai Jiao Tong University, No.800 Dongchuan Road, Shanghai, 200240, China
| | - Nanwen Zhu
- Shanghai Engineering Research Center of Solid Waste Treatment and Resource Recovery, School of Environmental Science and Engineering, Shanghai Jiao Tong University, No.800 Dongchuan Road, Shanghai, 200240, China.
| |
Collapse
|
7
|
Song Y, Peng J, Li K, Feng S, Qin W, Jiang J, Ma J. Control of N-nitrosodimethylamine (NDMA) formation from N,N-dimethylhydrazine compounds by ozone-based advanced oxidation processes. JOURNAL OF HAZARDOUS MATERIALS 2023; 452:131374. [PMID: 37030232 DOI: 10.1016/j.jhazmat.2023.131374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/26/2023] [Accepted: 04/04/2023] [Indexed: 06/19/2023]
Abstract
N-nitrosodimethylamine (NDMA) is formed during ozonation of model compounds with dimethylhydrazine groups, such as daminozide (DMZ) and 2-furaldehyde 2,2-dimethylhydrazone (2-F-DMH) at pH 7 with yields of 100 % and 87 %, respectively. In this study, ozone/hydrogen peroxide (O3/H2O2) and ozone/peroxymonosulfate (O3/PMS) were investigated to control NDMA formation, and O3/PMS (50-65 %) was more effective than O3/H2O2 (10-25 %) with a ratio of H2O2 or PMS to O3 of 8:1. The reaction of PMS or H2O2 to decompose ozone could not compete with the ozonation of model compound because of the high second-order rate constants of the ozonation of DMZ (5 ×105 M-1 s-1) or 2-F-DMH (1.6 ×107 M-1 s-1). The Rct value of the sulfate radical (SO4•-) showed a linear relationship with NDMA formation, indicating that SO4•- significantly contributed to its control. NDMA formation could be further controlled by injecting small quantities of ozone numerous times to minimize the dissolved ozone concentration. The effects of tannic acid, bromide and bicarbonate on NDMA formation were also investigated during ozonation, O3/H2O2, and O3/PMS processes. Bromate formation was more pronounced in the O3/PMS process than in the O3/H2O2 process. Therefore, in practical applications of O3/H2O2 or O3/PMS processes, the generation of NDMA and bromate should be detected.
Collapse
Affiliation(s)
- Yang Song
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, Guangdong, China
| | - Jianshan Peng
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, Guangdong, China
| | - Kai Li
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, Guangdong, China
| | - Sha Feng
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, Guangdong, China
| | - Wen Qin
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, Guangdong, China.
| | - Jin Jiang
- Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, Guangdong 510006, China.
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
8
|
Lee W, Choi S, Kim H, Lee W, Lee M, Son H, Lee C, Cho M, Lee Y. Efficiency of ozonation and O 3/H 2O 2 as enhanced wastewater treatment processes for micropollutant abatement and disinfection with minimized byproduct formation. JOURNAL OF HAZARDOUS MATERIALS 2023; 454:131436. [PMID: 37146328 DOI: 10.1016/j.jhazmat.2023.131436] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 03/21/2023] [Accepted: 04/15/2023] [Indexed: 05/07/2023]
Abstract
Ozonation, a viable option for improving wastewater effluent quality, requires process optimization to ensure the organic micropollutants (OMPs) elimination and disinfection under minimized byproduct formation. This study assessed and compared the efficiencies of ozonation (O3) and ozone with hydrogen peroxide (O3/H2O2) for 70 OMPs elimination, inactivation of three bacteria and three viruses, and formation of bromate and biodegradable organics during the bench-scale O3 and O3/H2O2 treatment of municipal wastewater effluent. 39 OMPs were fully eliminated, and 22 OMPs were considerably eliminated (54 ± 14%) at an ozone dosage of 0.5 gO3/gDOC for their high reactivity to ozone or •OH. The chemical kinetics approach accurately predicted the OMP elimination levels based on the rate constants and exposures of ozone and •OH, where the quantum chemical calculation and group contribution method successfully predicted the ozone and •OH rate constants, respectively. Microbial inactivation levels increased with increasing ozone dosage up to ∼3.1 (bacteria) and ∼2.6 (virus) log10 reductions at 0.7 gO3/gDOC. O3/H2O2 minimized bromate formation but significantly decreased bacteria/virus inactivation, whereas its impact on OMP elimination was insignificant. Ozonation produced biodegradable organics that were removed by a post-biodegradation treatment, achieving up to 24% DOM mineralization. These results can be useful for optimizing O3 and O3/H2O2 processes for enhanced wastewater treatment.
Collapse
Affiliation(s)
- Woongbae Lee
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 500-712, Republic of Korea
| | - Sangki Choi
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 500-712, Republic of Korea
| | - Hyunjin Kim
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 500-712, Republic of Korea
| | - Woorim Lee
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 500-712, Republic of Korea; Busan Water Quality Institute, Gimhae, Gyeongsangnam 621-813, Republic of Korea
| | - Minju Lee
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 500-712, Republic of Korea
| | - Heejong Son
- Busan Water Quality Institute, Gimhae, Gyeongsangnam 621-813, Republic of Korea
| | - Changha Lee
- School of Chemical and Biological Engineering, Institute of Chemical Process (ICP), Seoul National University, Seoul 08826, Republic of Korea
| | - Min Cho
- SELS Center, Division of Biotechnology, College of Environmental & Bioresource Sciences, Chonbuk National University, Iksan 54596, Republic of Korea.
| | - Yunho Lee
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 500-712, Republic of Korea.
| |
Collapse
|
9
|
Chen L, Wei L, Ru Y, Weng M, Wang L, Dai Q. A mini-review of the electro-peroxone technology for wastewaters: Characteristics, mechanism and prospect. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
10
|
Guo Y, Zhang X, Zhang D, Li S, Wang H, Peng Y, Bian Z. Catalysts containing Fe and Mn from dewatered sludge showing enhanced electrocatalytic degradation of triclosan. ENVIRONMENTAL RESEARCH 2022; 214:114065. [PMID: 35964666 DOI: 10.1016/j.envres.2022.114065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 07/26/2022] [Accepted: 08/04/2022] [Indexed: 06/15/2023]
Abstract
The present work demonstrates a simple one-step pyrolysis method for the synthesis of a catalytic sludge-based carbon (SBC) biochar containing Fe and Mn from dehydrated sludge with added KMnO4 and Fe(II). The electrocatalytic degradation of triclosan (TCS) in water was evaluated using an Fe/Mn-SBC cathode to promote a heterogeneous Fenton-like reaction. The catalyst generated at 500 °C exhibited an abundant porous structure and a relatively high surface area, and produced an electrode with better conductivity and electron diffusion. The presence of metal oxides changed the surface structure defects of this biochar and enhanced its catalytic performance while increasing the electrochemically active surface area by 72.68 mF/cm2 compared with plain SBC. TCS was degraded (91.3%) within 180 min by oxygen species generated in situ on an Fe/Mn-SBC cathode because the activation energy for oxygen reduction was lowered by 4.62 kJ/mol. The degradation of TCS followed pseudo first-order kinetics and was controlled by TCS diffusion and interfacial chemical reactions between adsorbed TCS and the electrode. Possible TCS degradation pathways were devised based on the main intermediates, and 1O2 was found to be more important than •OH radicals. Through toxicity test and prediction, the toxicity of degradation was gradually reduced. This study demonstrates a simple and ecofriendly method for the electrocatalytic degradation of organic pollutants.
Collapse
Affiliation(s)
- Yajie Guo
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, PR China
| | - Xinyu Zhang
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, PR China
| | - Dandan Zhang
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, PR China
| | - Shunlin Li
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, PR China
| | - Hui Wang
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, PR China.
| | - Yiyin Peng
- College of Water Sciences, Beijing Normal University, Beijing, 100875, PR China
| | - Zhaoyong Bian
- College of Water Sciences, Beijing Normal University, Beijing, 100875, PR China.
| |
Collapse
|
11
|
Jiang F, Feng X, Jiang X, Wang P. Enhanced dewaterability of lake dredged sediments by electrochemical oxidation of peroxydisulfate on BDD anode. CHEMOSPHERE 2022; 307:135832. [PMID: 35963373 DOI: 10.1016/j.chemosphere.2022.135832] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 07/21/2022] [Accepted: 07/22/2022] [Indexed: 06/15/2023]
Abstract
Dredged sediments, as a product of mitigating endogenous pollution of rivers and lakes, cause severe environmental pollution without suitable disposal. To reduce dredged sediments, the electrochemical oxidation (EO) of peroxydisulfate (PS) on a boron-doped diamond (BDD) anode (EO/BDD-PS) was utilized to enhance the dewaterability of the dredged sediments. The soluble chemical oxygen demand increased in the EO/BDD-PS system, and more than 70.0% of the specific resistance to filtration was reduced by EO/BDD-PS within 20 min. The optimal conditions were determined to be as follows: current density, 30 mA cm-2; PS dosage 4 g L-1; and initial pH, 6.96. After treatment with EO/BDD-PS, the electronegativity of the sludge flocs was alleviated and the particle size increased from 7.61 to 10.64 μm. Furthermore, proteins and polysaccharides were degraded, and tightly bound extracellular polymeric substances (TB-EPS) and loosely bound EPS (LB-EPS) were effectively transported to soluble EPS (S-EPS). Furthermore, humification of organic matter occurred in S-EPS and LB-EPS when the dredged sediment was treated with EO/BDD-PS. Dominant hydroxyl radicals (•OH) and sulfate radicals (SO4•-) were generated in the EO/BDD-PS system. Moreover, the efficiency of the filtrate as an electrolyte decreased slightly after recycling five times. Therefore, this method may be economical for enhancing the dewaterability of dredged sediments.
Collapse
Affiliation(s)
- Feng Jiang
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Key Laboratory for Lake Pollution Control, Chinese Research Academy of Environmental Sciences, Anwai, Beiyuan, Beijing 100012, China
| | - Xianlu Feng
- Beijing Key Lab for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Xia Jiang
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Key Laboratory for Lake Pollution Control, Chinese Research Academy of Environmental Sciences, Anwai, Beiyuan, Beijing 100012, China.
| | - Pengfei Wang
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Key Laboratory for Lake Pollution Control, Chinese Research Academy of Environmental Sciences, Anwai, Beiyuan, Beijing 100012, China.
| |
Collapse
|
12
|
Pan J, Qian M, Li Y, Wang H, Guan B. Catalytic ozonation of aqueous 4-methylquinoline by fluorinated ceramic honeycomb. CHEMOSPHERE 2022; 307:135678. [PMID: 35850216 DOI: 10.1016/j.chemosphere.2022.135678] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 07/08/2022] [Accepted: 07/09/2022] [Indexed: 06/15/2023]
Abstract
Metal-free catalysts for catalytic ozonation have attracted more and more attentions to eliminate the risk of secondary pollution of heavy metals in water or wastewater treatment. Herein we prepared fluorinated ceramic honeycomb (FCH) with the dip-calcination method using NH4F as the modifier over ceramic honeycomb (CH) to catalyze the ozonation of 4-methylquinoline (4-Meq), a typical harmful quinoline derivate discharged from coal or petroleum industries. The ozonation degraded 54.9% of 4-Meq and removed 14.4% of chemical oxygen demand (COD) in 30 min, while the FCH catalytic ozonation degraded 77.8% of 4-Meq and removed 29.2% of COD. In addition, FCH has a stable catalytic performance and can effectively remove 4-Meq as well as COD in real coal gasification wastewater. The fluorination endows the surface of the FCH with abundant Si-F groups as active acid sites and aluminum-attached hydroxyl groups, and then enhance the ozone decomposition to generate free reactive oxygen species (ROS). Those ROS includes free hydroxyl radicals, free superoxide radicals as well as singlet oxygen, and the free hydroxyl radical plays a major role in the degradation and COD removal of 4-Meq. The degradation of 4-Meq follows two pathways of the demethylation, benzene ring opening and the pyridine ring-opening. This work demonstrates an efficient catalyst for ozonation to root out the risk of the heavy metals pollution from catalysts, and provides an insightful understanding of the FCH catalytic ozonation.
Collapse
Affiliation(s)
- Jian Pan
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Mengqian Qian
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yu Li
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Haiqiang Wang
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Baohong Guan
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
13
|
Lee W, Shin J, Lee M, Choi Y, Son H, Lee Y. Elimination efficiency of synthetic musks during the treatment of drinking water with ozonation and UV-based advanced oxidation processes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 844:156915. [PMID: 35772529 DOI: 10.1016/j.scitotenv.2022.156915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/02/2022] [Accepted: 06/19/2022] [Indexed: 06/15/2023]
Abstract
This study investigated the reaction kinetics and elimination efficiency of eleven synthetic musks during ozonation and UV254nm-based, advanced oxidation processes. The synthetic musks containing olefin moieties with electron-donating alkyl substituents such as octahydro tetramethyl naphthalenyl ethanone (OTNE) and ambrettolide (AMBT) showed high reactivity toward ozone (k ≥ 3.7 × 105 M-1 s-1) and free available chlorine (FAC) (k = 9.2 - 88 M-1 s-1), while all other synthetic musks were less ozone reactive (k = 0.3 - 560 M-1 s-1) and FAC-refractory. All synthetic musks showed high •OH reactivity (k > 5 × 109 M-1 s-1), except musk ketone (MK) (k = 2.3 × 109 M-1 s-1). In concordance with the kinetic information, OTNE and AMBT were efficiently eliminated (>97%) in simulated ozone treatments of drinking water at a specific ozone dose of 0.5 gO3/gDOC. The elimination levels of the other synthetic musks were below 50% at 0.5 gO3/gDOC. The fluence-based UV photolysis rate constant of the synthetic musks was determined to be (0.2 - 2.7) × 10-3 cm2/mJ. The elimination levels of synthetic musks during UV alone treatment ranged from 7 to 81% at a UV fluence of 500 mJ/cm2. The addition of 10 mg/L H2O2 (UV/H2O2) significantly enhanced the elimination of most synthetic musks (achieving >90% elimination at 500 mJ/cm2), indicating that the •OH reaction was mainly responsible for their elimination. The addition of 10 mg/L FAC (UV/FAC) also significantly enhanced the elimination of olefinic and aromatic synthetic musks (>90%), for which the reaction with ClO• was mainly responsible. For MK and two alkyl synthetic musks, their elimination during UV/FAC treatment was still limited (28 - 64%) and was mainly achieved by UV photolysis or reaction with •OH. In summary, this study substantiates the chemical kinetics approach as a helpful tool for predicting or interpreting the elimination of micropollutants during oxidative water treatment.
Collapse
Affiliation(s)
- Woorim Lee
- Busan Water Quality Institute, Busan, South Korea; Environment & Energy Research Laboratory, Research Institute of Industrial Science and Technology (RIST), Pohang, South Korea
| | - Jaedon Shin
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, South Korea; Department of Environmental Engineering, Kunsan National University, Gunsan, South Korea
| | - Minju Lee
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, South Korea
| | - Yegyun Choi
- Busan Water Quality Institute, Busan, South Korea; School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, South Korea
| | - Heejong Son
- Busan Water Quality Institute, Busan, South Korea.
| | - Yunho Lee
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, South Korea.
| |
Collapse
|
14
|
Lu Q, Liu Y, Li B, Feng L, Du Z, Zhang L. Reaction kinetics of dissolved black carbon with hydroxyl radical, sulfate radical and reactive chlorine radicals. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 828:153984. [PMID: 35202700 DOI: 10.1016/j.scitotenv.2022.153984] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/14/2022] [Accepted: 02/14/2022] [Indexed: 06/14/2023]
Abstract
As an important component of dissolved organic matter (DOM), dissolved black carbon (DBC) which is characterized of abundant aromatic and oxygen-containing functional groups, is widely distributed in aquatic environments. Its presence may hinder the oxidation of organic micro-pollutants during advanced oxidation processes (AOPs) via free radicals scavenging effect. However, the second-order reaction rate constants of DBC with different free radicals including hydroxyl radical (OH•), sulfate radical (SO4•-), reactive chlorine radicals (RCR) are unknown and the relationship between the chemical composition of DBC and the second-order reaction rate constants during different AOPs (UV/H2O2, UV/PDS, UV/Chlorine) is also unclear. In this study, a plant-derived DBC was extracted from wheat biochar and fractionated according to molecular weight (i.e., <10 k, <3 k, and < 1 k Da). The second order rate constants of DBC reaction with different free radicals were determined by competitive kinetic method. Besides, the chemical composition of DBC was revealed by ultraviolet-visible (UV-Vis) spectroscopy, fluorescence excitation-emission-matrix (EEM) spectroscopy Fourier Transform Infrared (FTIR), X-ray photoelectron spectroscopy (XPS), and Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) combined with statistical analysis. The results showed that the second-order rate constants decreased as the molecular weight increased. For the <1 k Da DBC, the kDBC-OH•, kDBC-SO4•--, kDBC-RCR were (1.83 ± 0.06) × 104, (7.60 ± 0.21) × 103, and (1.71 ± 0.13) × 104 L·mgC-1·s-1, which were 1.98, 2.19, 1.43 times of that for the <10 k Da fraction and 1.38, 1.36, 1.24 times of that for the <3 k Da fraction in UV/H2O2, UV/PDS and UV/Chlorine processes. In addition, the results of chemical composition analysis showed that DBC mainly contained humic substances and was rich in O-containing functional groups such as CO. The second order reaction rate constants of DBC with different free radicals decreased with increasing the molecular weight of DBC due to the more aggregated structure of the small molecules that the inner carbon of DBC was not easily exposed to free radicals.
Collapse
Affiliation(s)
- Qi Lu
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, Beijing Forestry University, Beijing 100083, China
| | - Yongze Liu
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, Beijing Forestry University, Beijing 100083, China
| | - Benhang Li
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, Beijing Forestry University, Beijing 100083, China
| | - Li Feng
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, Beijing Forestry University, Beijing 100083, China
| | - Ziwen Du
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, Beijing Forestry University, Beijing 100083, China
| | - Liqiu Zhang
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
15
|
Song Y, Feng S, Qin W, Li J, Guan C, Zhou Y, Gao Y, Zhang Z, Jiang J. Formation mechanism and control strategies of N-nitrosodimethylamine (NDMA) formation during ozonation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 823:153679. [PMID: 35131246 DOI: 10.1016/j.scitotenv.2022.153679] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 01/06/2022] [Accepted: 01/31/2022] [Indexed: 06/14/2023]
Abstract
This review summarizes major findings over the last decade related to N-nitrosodimethylamine (NDMA) formed upon ozonation, which was regarded as highly toxic and carcinogenic disinfection by-products. The reaction kinetics, chemical yields and mechanisms were assessed for the ozonation of potential precursors including dimethylamine (DMA), N,N-dimethylsulfamide, hydrazines, N-containing water and wastewater polymers, dyes containing a dimethylamino function, N-functionalized carbon nanotubes, guanidine, and phenylurea. The effects of bromide on the NDMA formation during ozonation of different types of precursors were also discussed. The mechanism for NDMA formation during ozonation of DMA was re-summarized and new perspectives were proposed to assess on this mechanism. Effect of hydroxyl radicals (•OH) on NDMA formation during ozonation was also discussed due to the noticeable oxidation of NDMA by •OH. Surrogate parameters including nitrate formation and UV254 after ozonation may be useful parameters to estimate NDMA formation for practical application. The strategies for NDMA formation control were proposed through improving the ozonation process such as ozone/hydrogen peroxide, ozone/peroxymonosulfate and catalytic ozonation process based on membrane pores aeration (MEMBRO3X).
Collapse
Affiliation(s)
- Yang Song
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, Guangdong, China
| | - Sha Feng
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, Guangdong, China
| | - Wen Qin
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, Guangdong, China
| | - Juan Li
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Chaoting Guan
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Yang Zhou
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Yuan Gao
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Zhong Zhang
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Jin Jiang
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China.
| |
Collapse
|
16
|
Du J, Wang C, Zhao Z, Liu J, Deng X, Cui F. Mineralization, characteristics variation, and removal mechanism of algal extracellular organic matter during vacuum ultraviolet/ozone process. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 820:153298. [PMID: 35066049 DOI: 10.1016/j.scitotenv.2022.153298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/26/2021] [Accepted: 01/17/2022] [Indexed: 06/14/2023]
Abstract
Extracellular organic matter (EOM) produced by algal blooms in source water is detrimental to drinking water treatment processes and supplied water quality. Ozonation has been used to treat algal EOM, but it could not mineralize EOM effectively. In this study, mineralization and characteristics variation of EOM by vacuum ultraviolet/ozone (VUV/O3) and its sub-processes were comprehensively investigated. Results showed that EOM removal in different processes followed the order of VUV/O3 > UV/O3 > O3 > VUV > UV. For VUV/O3 process, removal efficiencies of dissolved organic carbon (DOC), UV254, protein, and polysaccharide at 50 min were 75.6%, 80.8%, 80.1%, and 78.0%, respectively, and fluorescence components received very high removal rates (≥92.8%, at 10 min). The yield of trichloromethane dropped from 102.0 to 30.1 μg/L after treating for 50 min by VUV/O3. Besides, effects of O3 dosage, initial pH, and water matrices on EOM removal in VUV/O3 process were investigated. Moreover, fluorescent molecular probe experiments confirmed that hydroxyl radical and superoxide radical were the main reactive oxygen species (ROS) in VUV/O3 process, and the transformation of ROS was proposed. The mechanism of EOM removal by VUV/O3 included VUV photolysis, direct O3 oxidation, and ROS oxidation. Furthermore, the removal of EOM in filtered water by VUV/O3 was satisfactory. All results indicated that VUV/O3 process had great application potential in treating EOM-rich filtered water.
Collapse
Affiliation(s)
- Jinying Du
- College of Environmental and Ecology, Chongqing University, Chongqing 400045, China
| | - Chuang Wang
- College of Environmental and Ecology, Chongqing University, Chongqing 400045, China
| | - Zhiwei Zhao
- College of Environmental and Ecology, Chongqing University, Chongqing 400045, China.
| | - Jie Liu
- Department of Military Facilities, Army Logistics University, Chongqing 401311, China
| | - Xiaoyong Deng
- College of Environmental and Ecology, Chongqing University, Chongqing 400045, China
| | - Fuyi Cui
- College of Environmental and Ecology, Chongqing University, Chongqing 400045, China
| |
Collapse
|
17
|
Zhang J, Liu P, Ren Y, Du Y, Geng C, Ma J, Zhao F. Treatment of shale gas produced water by magnetic CuFe 2O 4/TNTs hybrid heterogeneous catalyzed ozone: Efficiency and mechanisms. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:127124. [PMID: 34523472 DOI: 10.1016/j.jhazmat.2021.127124] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 09/01/2021] [Accepted: 09/01/2021] [Indexed: 06/13/2023]
Abstract
Magnetic spinel ferrite (CuFe2O4) has been applied to catalyze ozone for treating the practical shale gas produced water (PW) in our previous study. In this work, CuFe2O4/titanium nanotubes (TNTs) catalyst was successfully prepared by an impregnation-calcination method. Characterization results revealed that the crystal form of CuFe2O4 was bound to the surface of TNTs, the particle size is much smaller than the pure CuFe2O4 crystal particle, which could weaken the influence of the internal diffusion process on its catalytic efficiency. The experimental results showed that the removal ratio of CODCr in the CuFe2O4/TNTs/O3 system was approximately 14% higher than that of the CuFe2O4/O3 system. The dissolution of metal elements decreased to one-third that of the CuFe2O4/O3 system. The inhibition ratio of PW on the growth of E. coli K12 decreased 68% after the CuFe2O4/TNTs catalytic oxidation process. Experimental results of complete capture experiments illustrated that the yield of HO• of the CuFe2O4/TNTs/O3 system was 10-19% higher than that of the CuFe2O4/O3 system. The elemental valence analysis revealed that the transition of Cu(II)-Cu(III) and Fe(II)-Fe(III) coexisted in the catalytic system. Besides, the surface hydroxyl groups promoted the electron transfer process and enhanced the ozone adsorption affinity. The proposed catalytic mechanisms of the CuFe2O4/TNTs/O3 system were proposed via the above analysis.
Collapse
Affiliation(s)
- Jiaming Zhang
- College of Material Science and Chemical Engineering, Harbin Engineering University, Harbin, PR China, 150001
| | - Pingxin Liu
- School of Environment, Harbin Institute of Technology, Harbin, PR China, 150001.
| | - Yueming Ren
- College of Material Science and Chemical Engineering, Harbin Engineering University, Harbin, PR China, 150001
| | - Yunchen Du
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin PR China, 150001
| | - Chengbao Geng
- College of Material Science and Chemical Engineering, Harbin Engineering University, Harbin, PR China, 150001
| | - Jun Ma
- School of Environment, Harbin Institute of Technology, Harbin, PR China, 150001.
| | - Fangbo Zhao
- College of Material Science and Chemical Engineering, Harbin Engineering University, Harbin, PR China, 150001.
| |
Collapse
|
18
|
Khuntia S, Mohan G. A comparative study of the catalytic and non-catalytic ozone based processes for simultaneous of SO2 and NOX removal. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2021.10.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
19
|
Yang ZW, Wang WL, Lee MY, Wu QY, Guan YT. Synergistic effects of ozone/peroxymonosulfate for isothiazolinone biocides degradation: Kinetics, synergistic performance and influencing factors. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 294:118626. [PMID: 34864102 DOI: 10.1016/j.envpol.2021.118626] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 11/14/2021] [Accepted: 12/01/2021] [Indexed: 06/13/2023]
Abstract
Synergistic effects of ozone (O3) and peroxymonosulfate (PMS, HSO5-) for isothiazolinone biocides degradation was studied. The synergistic ozonation process (O3/PMS) increased the efficiency of methyl-isothiazolinone (MIT) and chloro-methyl-isothiazolinone (CMIT) degradation to 91.0% and 81.8%, respectively, within 90 s at pH 7.0. This is 30.6% and 62.5% higher than the corresponding ozonation efficiency, respectively. Total radical formation value (Rct,R) for the O3/PMS process was 24.6 times that of ozonation alone. Calculated second-order rate constants for the reactions between isothiazolinone biocides and (kSO4-,MIT and kSO4-,CMIT) were 8.15 × 109 and 4.49 × 109 M-1 s-1, respectively. Relative contributions of O3, hydroxyl radical (OH) and oxidation to MIT and CMIT removal were estimated, which were 15%, 45%, and 40% for O3, OH and oxidation to MIT, and 1%, 67%, and 32% for O3, OH and oxidation to CMIT at pH 7.0, respectively. Factors influencing the O3/PMS process, namely the solution pH, chloride ions (Cl-), and bicarbonate (HCO3-), were evaluated. Increasing the solution pH markedly accelerated O3 decay and OH and formation, thus weakening the relative contribution of O3 oxidation while enhancing that of OH and . Cl- had a negligible effect on MIT and CMIT degradation. Under the dual effect of bicarbonate (HCO3-) as inhibitor and promoter, low concentrations (1-2 mM) of bicarbonate weakly promoted MIT and CMIT degradation, while high concentrations (10-20 mM) induced strong inhibition. Lastly, oxidation performance of O3 and O3/PMS processes for MIT and CMIT degradation in different water matrices was compared.
Collapse
Affiliation(s)
- Zheng-Wei Yang
- Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Wen-Long Wang
- Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Min-Yong Lee
- Department of Environmental Resources Research, National Institute of Environmental Research, Seogu, Incheon, 22689, Republic of Korea
| | - Qian-Yuan Wu
- Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China.
| | - Yun-Tao Guan
- Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| |
Collapse
|
20
|
Wu QY, Yang ZW, Du Y, Ouyang WY, Wang WL. The promotions on radical formation and micropollutant degradation by the synergies between ozone and chemical reagents (synergistic ozonation): A review. JOURNAL OF HAZARDOUS MATERIALS 2021; 418:126327. [PMID: 34116271 DOI: 10.1016/j.jhazmat.2021.126327] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 05/28/2021] [Accepted: 06/02/2021] [Indexed: 06/12/2023]
Abstract
The combination of ozone (O3) and chemical reagents (such as H2O2) shows synergies on the radical formation and micropollutant degradation. The promoting performance was associated with various parameters including chemical reagents, micropollutants, solution pH, and the water matrix. In this review, we summarized existing knowledge on radical formation pathways, radical yields, and radical oxidation for different synergistic ozonation processes in various water matrices (such as groundwater, surface water, and wastewater). The increase of radical yields by synergistic ozonation processes was positively related to the increase of O3-decay, with the increase being 1.1-4.4 folds than ozonation alone (0.2). Thus, synergistic ozonation can promote the degradation rate and efficiency of O3-resistant micropollutants (second order rate constant, kP,O3 < 200 M-1 s-1), but only slightly affects or even minorly inhibits the degradation of O3-reactive micropollutants (kP,O3 > 200 M-1 s-1). The water matrices, such as the dissolved organic matters, negatively suppressed the degradation of micropollutant by quenching O3-oxidation and radical oxidation (i.e. maximum promoting was decreased by 1.3 times), but may positively extend the promoting effects of synergistic ozonation to micropollutants that are more reactive to O3 (i.e. kP,O3 was extended from <200 to <2000 M-1 s-1). The formation of bromate would be increased through increasing radical oxidation by synergistic ozonation, but can be depressed by relative higher H2O2 as the reducing agent of HOBr/OBr- intermediate. The increase in bromate formation by O3/permononsulfate is a considerable concern due to permononsulfate cannot reduce the HOBr/OBr- intermediate.
Collapse
Affiliation(s)
- Qian-Yuan Wu
- Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Shenzhen 518055, China
| | - Zheng-Wei Yang
- Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Shenzhen 518055, China
| | - Ye Du
- College of Architecture & Environment, Sichuan University, Chengdu 610000, China
| | - Wan-Yue Ouyang
- Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Shenzhen 518055, China
| | - Wen-Long Wang
- Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Shenzhen 518055, China.
| |
Collapse
|
21
|
Gao Z, Zhang D, Jun YS. Does Tert-Butyl Alcohol Really Terminate the Oxidative Activity of •OH in Inorganic Redox Chemistry? ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:10442-10450. [PMID: 34292702 DOI: 10.1021/acs.est.1c01578] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The hydroxyl radical, •OH, is one of the most reactive free radicals and plays significant roles in the oxidative degradation of organic pollutants and the electron transfer of inorganic ions in natural and engineered environmental processes. To quantitatively determine the contribution of •OH to oxidative reactions, a specific scavenger, such as tert-butyl alcohol (TBA), is usually added to eliminate •OH effects. Although TBA is commonly assumed to transform •OH into oxidatively inert products, this study demonstrates that utilizing TBA as an •OH scavenger generates the secondary peroxyl radical (ROO•), influencing the oxidation of transition metals, such as Mn. Although ROO• is less reactive than •OH, it has an extended half-life and a longer diffusion distance that enables more redox reactions, such as the oxidation of Mn2+(aq) to MnIV oxide solids. In addition to promoting Mn2+(aq) oxidation kinetics, TBA can also affect the crystalline phases, oxidation states, and morphologies of Mn oxide solids. Thus, the oxidative roles of •OH in aqueous redox reactions cannot be examined simply by adding TBA: the effects of secondary ROO• must also be considered. This study urges a closer look at the potential formation of secondary radicals during scavenged oxidative reactions in environmental systems.
Collapse
Affiliation(s)
- Zhenwei Gao
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Dandan Zhang
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Young-Shin Jun
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| |
Collapse
|
22
|
Li H, Zhao Z, Qian J, Pan B. Are Free Radicals the Primary Reactive Species in Co(II)-Mediated Activation of Peroxymonosulfate? New Evidence for the Role of the Co(II)-Peroxymonosulfate Complex. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:6397-6406. [PMID: 33882668 DOI: 10.1021/acs.est.1c02015] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The catalytic activation of peroxymonosulfate (PMS) is under intensive investigation with potentials as an alternative advanced oxidation process (AOP) in wastewater treatment. Among all catalysts examined, Co(II) exhibits the highest reactivity for the activation of PMS, following the conventional Fenton-like mechanism, in which free radicals (i.e., sulfate radicals and hydroxyl radicals) are reckoned as the reactive species. Herein, we report that the primary reactive species (PRS) is proposed to be a Co(II)-PMS complex (Co(II)-OOSO3-), while free radicals and Co(III) species act as the secondary reactive species (SRS) that play a minor role in the Co(II)/PMS process. This Co(II)-OOSO3- exhibits several intriguing properties including ability to conduct both one-electron-transfer and oxygen-atom-transfer reactions with selected molecules, both nucleophilic and electrophilic in nature, and strongly pH-dependent reactivity. This study provides novel insights into the chemical nature of the Co(II)-catalyzed PMS activation process.
Collapse
Affiliation(s)
- Hongchao Li
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei, Nanjing 210094, China
| | - Zihao Zhao
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei, Nanjing 210094, China
| | - Jieshu Qian
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei, Nanjing 210094, China
- Research Center for Environmental Nanotechnology (ReCENT), State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Bingcai Pan
- Research Center for Environmental Nanotechnology (ReCENT), State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| |
Collapse
|
23
|
Cao Y, Qiu W, Li J, Zhao Y, Jiang J, Pang S. Sulfite enhanced transformation of iopamidol by UV photolysis in the presence of oxygen: Role of oxysulfur radicals. WATER RESEARCH 2021; 189:116625. [PMID: 33227612 DOI: 10.1016/j.watres.2020.116625] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 10/09/2020] [Accepted: 11/07/2020] [Indexed: 06/11/2023]
Abstract
UV/sulfite process in the absence of oxygen was previously applied as an advanced reduction process for the removal of many halogenated organics and inorganics in water and wastewater. Here, it was found that UV/sulfite process in the presence of oxygen could act as an advanced oxidation process. Specifically, the oxysulfur radicals (including sulfate radical (SO4·-) and sulfite/peroxomonosulfate radicals (SO3·-/SO5·-)) played important roles on the degradation of iopamidol (IPM) as a typical iodinated contrast media (ICM). Furthermore, the contribution of SO4·- on IPM removal gradually increased as pH increased from 5 to 7 and that of SO3·-/SO5·- decreased. Besides, all water quality parameters (i.e., chloride (Cl-), iodide (I-) and natural organic matter (NOM)) investigated here exhibited inhibitory effect on IPM removal. Three inorganic iodine species (i.e., I-, reactive iodine species and iodate (IO3-)) were detected in UV/sulfite process in the presence of oxygen, while only I- was detected in that without oxygen. During UV/sulfite/ethanol, UV photolysis and UV/peroxydisulfate (PDS)/tert-butyl alcohol (TBA) processes, thirteen transformation products including eleven deiodinated products of IPM were identified by ultra HPLC quadrupole time of flight-mass spectrometry (UPLC-Q-TOF-MS). Besides, these products generated by direct UV photolysis, SO4·- and SO3·-/SO5·- were further distinguished. The acute toxicity assay of Vibrio fischeri indicated that transformation products by UV/sulfite under aerobic conditions were less toxic than that by direct UV photolysis.
Collapse
Affiliation(s)
- Ying Cao
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Wei Qiu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Juan Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yumeng Zhao
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jin Jiang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China; Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 510006, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China.
| | - Suyan Pang
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, School of Municipal and Environmental Engineering, Jilin Jianzhu University, Changchun, 130118, China
| |
Collapse
|
24
|
Nidheesh PV, Couras C, Karim AV, Nadais H. A review of integrated advanced oxidation processes and biological processes for organic pollutant removal. CHEM ENG COMMUN 2021. [DOI: 10.1080/00986445.2020.1864626] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
| | - Catia Couras
- Department of Environment and Planning & CESAM-Centre for Environmental and Marine Studies, University of Aveiro, Aveiro, Portugal
| | - Ansaf V. Karim
- Environmental Science and Engineering Department, Indian Institute of Technology, Bombay, India
| | - Helena Nadais
- Department of Environment and Planning & CESAM-Centre for Environmental and Marine Studies, University of Aveiro, Aveiro, Portugal
| |
Collapse
|
25
|
Wang YK, Kong FX, Yang DM, Liu Q, Lin XF, Chen JF, Zhang Y. The synergistic effect of electrocoagulation coupled with E-peroxone process for shale gas fracturing flowback water treatment. CHEMOSPHERE 2021; 262:127968. [PMID: 33182104 DOI: 10.1016/j.chemosphere.2020.127968] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 08/05/2020] [Accepted: 08/06/2020] [Indexed: 06/11/2023]
Abstract
Electrocoagulation (EC) coupled with E-peroxone process (ECP) was a promising and cost-effective integrated technology for shale gas fracturing flowback water (SGFFW) treatment. In this study, the ECP process was comprehensively compared with two sequential processes (EC followed by E-peroxone (EC-E-peroxone) and E-peroxone followed by EC (E-peroxone-EC)) to elucidate the synergistic effect of this coupled process. In EC-E-peroxone process, COD decreased by 89.2%, while COD decreased by 82.5% for 180 min in E-peroxone-EC process. However, COD removal efficiency was 82.4% in ECP for only 90 min. Average current efficiency of the ECP process was 29.9%, which was twice than that of the sequential processes. The enhancement factor was calculated to be 1.63, demonstrating the substantial significant synergistic effects for ECP. Only low MW components could be observed for the EC-E-peroxone (average MW = 533 Da with PD ≈ 1) and ECP process (MW = 538 Da with PD ≈ 1). These results suggested that EC-E-peroxone and ECP process had much stronger oxidation ability, demonstrating the enhancement of OH production induced by the Al-based coagulants might be responsible for the significant enhancement of COD removal. These results indicated there could be a synergistic effect between EC and ozone in addition to EC and E-peroxone reactions. Compared to the two sequential processes, ECP was a high efficiency and space-saving electrochemical system with simultaneous coagulation and enhanced OH generation by the products of anode and the cathode.
Collapse
Affiliation(s)
- Yu-Kun Wang
- Key Laboratory of Shale Gas Exploration, Ministry of Natural Resources, Chongqing Institute of Geology and Mineral Resources, 401120, China; State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Oil & Gas Pollution Control, China University of Petroleum, Beijing, 102249, China
| | - Fan-Xin Kong
- State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Oil & Gas Pollution Control, China University of Petroleum, Beijing, 102249, China.
| | - De-Min Yang
- Key Laboratory of Shale Gas Exploration, Ministry of Natural Resources, Chongqing Institute of Geology and Mineral Resources, 401120, China; National and Local Joint Engineering Research Center of Shale Gas Exploration and Development, Chongqing Institute of Geology and Mineral Resources, Chongqing, 400042, China
| | - Qian Liu
- State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Oil & Gas Pollution Control, China University of Petroleum, Beijing, 102249, China
| | - Xiao-Feng Lin
- State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Oil & Gas Pollution Control, China University of Petroleum, Beijing, 102249, China
| | - Jin-Fu Chen
- State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Oil & Gas Pollution Control, China University of Petroleum, Beijing, 102249, China
| | - Yi Zhang
- Key Laboratory of Shale Gas Exploration, Ministry of Natural Resources, Chongqing Institute of Geology and Mineral Resources, 401120, China
| |
Collapse
|
26
|
Li J, Jiang J, Pang SY, Yang Y, Sun S, Wang L, Wang P. Transformation of X-ray contrast media by conventional and advanced oxidation processes during water treatment: Efficiency, oxidation intermediates, and formation of iodinated byproducts. WATER RESEARCH 2020; 185:116234. [PMID: 32736280 DOI: 10.1016/j.watres.2020.116234] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/23/2020] [Accepted: 07/24/2020] [Indexed: 06/11/2023]
Abstract
X-ray contrast media (ICM), as the most widely used intravascular pharmaceuticals, have been frequently detected in various environmental compartments. ICM have attracted increasingly scientific interest owing to their role as an iodine contributor, resulting in the high risk of forming toxic iodinated byproducts (I-BPs) during water treatment. In this review, we present the state-of-the-art findings relating to the removal efficiency as well as oxidation intermediates of ICM by conventional and advanced oxidation processes. Moreover, formation of specific small-molecular I-BPs (e.g., iodoacetic acid and iodoform) during these processes is also summarized. Conventional oxidants and disinfectants including chlorine (HOCl) and chloramine (NH2Cl) have low reactivities towards ICM with HOCl being more reactive. Iodinated/deiodinated intermediates are generated from reactions of HOCl/NH2Cl with ICM, and they can be further transformed into small-molecular I-BPs. Types of disinfectants and ICM as well as solution conditions (e.g., presence of bromide (Br-) and natural organic matters (NOM)) display significant impact on formation of I-BPs during chlor(am)ination of ICM. Uncatalyzed advanced oxidation process (AOPs) involving ozone (O3) and ferrate (Fe(VI)) exhibit slow to mild reactivities towards ICM, usually leading to their incomplete removal under typical water treatment conditions. In contrast, UV photolysis and catalyzed AOPs including hydroxyl radical (HO•) and/or sulfate radical (SO4.-) based AOPs (e.g., UV/hydrogen peroxide, UV/persulfate, UV/peroxymonosulfate (PMS), and CuO/PMS) and reactive chlorine species (RCS) involved AOPs (e.g., UV/HOCl and UV/NH2Cl) can effectively eliminate ICM under various conditions. Components of water matrix (e.g., chloride (Cl-), Br-, bicarbonate (HCO3-), and NOM) have great impact on oxidation efficiency of ICM by catalyzed AOPs. Generally, similar intermediates are formed from ICM oxidation by UV photolysis and AOPs, mainly resulting from a series reactions of the side chain and/or C-I groups (e.g. cleavage, dealkylation, oxidation, and rearrange). Further oxidation or disinfection of these intermediates leads to formation of small-molecular I-BPs. Pre-oxidation of ICM-containing waters by AOPs tends to increase formation of I-BPs during post-disinfection process, while this trend also depends on the oxidation processes applied and solution conditions. This review summarizes the latest research findings relating to ICM transformation and (by)products formation during disinfection and AOPs in water treatment, which has great implications for the practical applications of these technologies.
Collapse
Affiliation(s)
- Juan Li
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China; Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou511458, China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin150090, China
| | - Jin Jiang
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China; Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou511458, China.
| | - Su-Yan Pang
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, School of Municipal and Environmental Engineering, Jilin Jianzhu University, Changchun130118, China
| | - Yi Yang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin150090, China
| | - Shaofang Sun
- School of Civil Engineering and Architecture, University of Jinan, Jinan250022, China
| | - Lihong Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin150090, China
| | - Panxin Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin150090, China
| |
Collapse
|
27
|
Olmez-Hanci T, Dogruel S, Emek ADA, Yılmazer CE, Çınar S, Kiraz O, Citil E, Orhon AK, Siltu E, Gucver SM, Ozgun OK, Tanik A, Yetis U. Performance of ozone and peroxone on the removal of endocrine disrupting chemicals (EDCs) coupled with cost analysis. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2020; 82:640-650. [PMID: 32970617 DOI: 10.2166/wst.2020.339] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Micropollutants such as endocrine disruptors are one of the most important groups of chemicals polluting water resources. Conventional treatment systems may not be effective for the removal of endocrine disrupting chemicals (EDCs), and the fate of these chemicals should be carefully monitored in the effluent of wastewater treatment plants (WWTPs). Additional treatment methods such as advanced oxidation processes can be used for the removal of endocrine disruptors. This study presents the existence of endocrine disruptors in 4 different effluents: (i) municipal WWTP effluent, (ii) textile industry WWTP effluent, (iii) organized industrial zone (OIZ) WWTP effluent and (iv) pharmaceutical industry discharge and also presents their removal efficiencies by ozonation and peroxone oxidation. A broad spectrum of removal efficiencies was observed for the EDCs present in the samples since the oxidation efficiency of wastewaters containing EDCs mainly depends on the wastewater matrix and on the type of the EDCs. Ozonation was found to be a lower-cost option than peroxone oxidation at the investigated conditions.
Collapse
Affiliation(s)
- T Olmez-Hanci
- Civil Engineering Faculty, Environmental Engineering Department, Istanbul Technical University, 34469, Maslak, Istanbul, Turkey E-mail:
| | - S Dogruel
- Civil Engineering Faculty, Environmental Engineering Department, Istanbul Technical University, 34469, Maslak, Istanbul, Turkey E-mail:
| | - A D Allar Emek
- ITUNOVA Technology Inc., Istanbul Technical University, Ayazaga Campus, 34469, Maslak, Istanbul, Turkey
| | - C Eropak Yılmazer
- ITUNOVA Technology Inc., Istanbul Technical University, Ayazaga Campus, 34469, Maslak, Istanbul, Turkey
| | - S Çınar
- ITUNOVA Technology Inc., Istanbul Technical University, Ayazaga Campus, 34469, Maslak, Istanbul, Turkey
| | - O Kiraz
- ITUNOVA Technology Inc., Istanbul Technical University, Ayazaga Campus, 34469, Maslak, Istanbul, Turkey
| | - E Citil
- ITUNOVA Technology Inc., Istanbul Technical University, Ayazaga Campus, 34469, Maslak, Istanbul, Turkey
| | - A Koc Orhon
- General Directorate of Water Management, Republic of Turkey Ministry of Agriculture and Forestry, 06560, Yenimahalle, Ankara, Turkey
| | - E Siltu
- General Directorate of Water Management, Republic of Turkey Ministry of Agriculture and Forestry, 06560, Yenimahalle, Ankara, Turkey
| | - S M Gucver
- General Directorate of Water Management, Republic of Turkey Ministry of Agriculture and Forestry, 06560, Yenimahalle, Ankara, Turkey
| | - O Karahan Ozgun
- Civil Engineering Faculty, Environmental Engineering Department, Istanbul Technical University, 34469, Maslak, Istanbul, Turkey E-mail:
| | - A Tanik
- Civil Engineering Faculty, Environmental Engineering Department, Istanbul Technical University, 34469, Maslak, Istanbul, Turkey E-mail:
| | - U Yetis
- Environmental Engineering Department, Middle East Technical University, 06800 Çankaya, Ankara, Turkey
| |
Collapse
|
28
|
Jin X, Xie X, Liu Y, Wang Y, Wang R, Jin P, Yang C, Shi X, Wang XC, Xu H. The role of synergistic effects between ozone and coagulants (SOC) in the electro-hybrid ozonation-coagulation process. WATER RESEARCH 2020; 177:115800. [PMID: 32315900 DOI: 10.1016/j.watres.2020.115800] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 03/23/2020] [Accepted: 04/04/2020] [Indexed: 06/11/2023]
Abstract
In order to improve the dissolved organic matter removal efficiency, an electro-hybrid ozonation-coagulation (E-HOC) system was developed in this study, in which the electro-coagulation (EC) and ozonation occurred simultaneously in one integrated unit. Higher removal efficiency was observed for the E-HOC process compared with those of EC, ozonation and pre-ozonation-EC process for the treatment of wastewater treatment plant (WWTP) effluent and ibuprofen (IBP). 58.6% dissolved organic carbon (DOC) removal efficiency was achieved in the E-HOC process for the treatment of WWTP effluent at optimal operational condition (current density 15 mA/cm2, initial pH 5 and ozone dosage 1.5 mg O3/mg DOC). Based on the reactive oxygen species (ROS) detection and reactions on the electrodes, the synergistic effects between ozone and coagulants (SOC) were found to be involved in the E-HOC process. According to pseudo-first-order rate constant analyses, the contribution of five possible organic removal pathways was quantified. It was revealed that the peroxone and SOC effects exhibited almost equal contribution to IBP removal at initial pH 5 under different current densities, both of which played the dominant role in the E-HOC process. However, the contribution of the SOC effects decreased significantly when the initial pH increased to 7 and 9. As an important pathway for organic removal in the E-HOC process at initial pH 5, the mechanism of the SOC effects was analysed at initial pH 5. It was revealed the SOC effects can further improve hydroxyl radicals (•OH) generation, and the surface hydroxyl groups of the hydrolysed Al species generated from anode electrolysis were determined to be the active sites to generate ROS in the SOC effects.
Collapse
Affiliation(s)
- Xin Jin
- Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Xinyue Xie
- Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Yuguo Liu
- Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Yong Wang
- Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Rui Wang
- Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Pengkang Jin
- Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
| | - Chao Yang
- Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Xuan Shi
- Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Xiaochang C Wang
- Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Huining Xu
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| |
Collapse
|
29
|
Chen W, Li Q. Elimination of UV-quenching substances from MBR- and SAARB-treated mature landfill leachates in an ozonation process: A comparative study. CHEMOSPHERE 2020; 242:125256. [PMID: 31704524 DOI: 10.1016/j.chemosphere.2019.125256] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 10/18/2019] [Accepted: 10/28/2019] [Indexed: 06/10/2023]
Abstract
Ultraviolet-quenching substances (UVQS), recently identified pollutants in landfill leachate, can interfere with ultraviolet disinfection when landfill leachate is co-treated with municipal sewage. This study investigated the elimination of UVQS in mature landfill leachates through a membrane bioreactor (MBR) and a semi-aerobic aged refuse biofilter (SAARB). Humus (i.e., fulvic and humic acids) was the main component of organic matter in both MBR- and SAARB-treated landfill leachates, while there was a more stable chemical structure of humus in the MBR-treated leachate. The concentration of UVQS in MBR-treated mature landfill leachate was higher than that of SAARB-treated leachate. Ozonation can degrade UVQS effectively, especially for landfill leachate containing a high concentration UVQS (i.e., MBR-treated landfill leachate). However, a large accumulation of small molecule acid might be caused by ozonation for highly concentrated UVQS in landfill leachate, leading to the delayed degradation of total organic carbon. Moreover, ozonation degraded both fulvic acid and humic acid; and degraded humic acid more effectively. For instance, 88.0% removal (MBR-CP2) and 96.0% removal (SAARB-CP2) of humic acid was higher than those (83.3% for MBR-CP1 and 92.3% for SAARB-CP1) of fulvic acid. The destruction of UV-quenching functional groups of organics (such as CC) by ozone was the main UVQS degradation mechanism of ozonation applied to MBR- and SAARB-treated landfill leachates. Therefore, the ozonation process can efficiently decrease UV absorption intensity in both MBR- and SAARB-treated landfill leachates.
Collapse
Affiliation(s)
- Weiming Chen
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, 611756, China
| | - Qibin Li
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, 611756, China.
| |
Collapse
|
30
|
Kozari A, Paloglou A, Voutsa D. Formation potential of emerging disinfection by-products during ozonation and chlorination of sewage effluents. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 700:134449. [PMID: 31639540 DOI: 10.1016/j.scitotenv.2019.134449] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 09/12/2019] [Accepted: 09/12/2019] [Indexed: 06/10/2023]
Abstract
This study investigates the formation potential of emerging DBPs (haloacetonitriles, halonitromethanes and halopropanones) during ozonation and ozonation/hydrogen peroxide treatment and subsequent chlorination of sewage effluent under various experimental conditions. Estimation of possible risk due to DBPs by calculation of cytotoxicity and genotoxicity was attempted. The studied DBPs showed different formation behavior during chlorination, with maximum yields within 0.5-48 h. Maximum cytotoxicity and genotoxicity was observed after 4 h of chlorination with dibromoacetonitrile being the major contributor. Ozonation and O3/H2O2 treatment resulted in increase of trichloronitromethane followed by a decline at higher doses, and reduction of haloacetonitriles. High ozone doses reduced cytotoxicity and genotoxicity of treated effluents. The presence of bromide shifted to bromo-DBPs formation and enhanced both cytotoxicity and genotoxicity. Particulate fraction in effluents significantly contributed to the formation of DBPs and consequently to the their toxicity.
Collapse
Affiliation(s)
- A Kozari
- Environmental Pollution Control Laboratory, Department of Chemistry, Aristotle University, 541 24 Thessaloniki, Greece
| | - A Paloglou
- Environmental Pollution Control Laboratory, Department of Chemistry, Aristotle University, 541 24 Thessaloniki, Greece
| | - D Voutsa
- Environmental Pollution Control Laboratory, Department of Chemistry, Aristotle University, 541 24 Thessaloniki, Greece.
| |
Collapse
|
31
|
Ding Y, Bao H, Qian R, Shen T, Tong S. N-Graphene-CeO2 nanocomposite enriched with Ce (III) sites to improve the efficiency of peroxone reaction under acidic conditions. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2019.05.065] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
32
|
Seo C, Shin J, Lee M, Lee W, Yoom H, Son H, Jang S, Lee Y. Elimination efficiency of organic UV filters during ozonation and UV/H 2O 2 treatment of drinking water and wastewater effluent. CHEMOSPHERE 2019; 230:248-257. [PMID: 31103871 DOI: 10.1016/j.chemosphere.2019.05.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 05/01/2019] [Accepted: 05/03/2019] [Indexed: 06/09/2023]
Abstract
The efficiency of elimination of organic UV filters by ozonation and UV254nm/H2O2 processes was assessed and predicted in simulated treatments of sewage-impaired drinking water and wastewater effluent in bench-scale experiments. Second-order rate constants (k) for the reactions of the eight UV filters with ozone and OH were determined by quantum chemical calculations and competition kinetics methods, respectively. The UV filters containing phenolic (ethylhexyl-salicylate, homosalate, and benzophenone-3) and olefinic moieties (4-methylbenzylidene-camphor, benzyl-cinnamate, and 2-ethylhexyl-4-methoxycinnamate) showed high ozone reactivity (k ≥ 8 × 104 M-1s-1 at pH 7), while those without such electron-rich moieties (isoamyl-benzoate and benzophenone) were ozone-refractory. All the UV filters showed high OH reactivity (k ≥ 6.2 × 109 M-1s-1). In concordance with the rate constant information, the phenolic and olefinic UV filters were efficiently eliminated by ozone treatment, requiring specific ozone doses of <0.5 mgO3/mgDOC for ∼100% elimination. The UV filters were eliminated by ≤ 38% at a UV fluence of 1500 mJ/cm2 in the UV254nm-only treatment. Rapid photoisomerisation between the E and Z geometric isomers was observed for the olefinic UV filter, benzyl-cinnamate. The addition of H2O2 (10 mg/L) greatly enhanced the elimination of all UV filters, indicating that OH was the main contributor to their elimination in the UV254nm/H2O2 treatment. A chemical kinetics approach developed previously for ozonation and UV/H2O2 processes was shown to predict the elimination of the UV filters in the tested water matrices reasonably well, demonstrating that the chemical kinetics method can be used for a priori prediction of micropollutant elimination in oxidative treatment processes for potable reuse of municipal wastewater effluents.
Collapse
Affiliation(s)
- Changdong Seo
- Busan Water Quality Institute, Busan, Republic of Korea; Department of Bioenvironmental Energy, Pusan National University, Pusan, Republic of Korea
| | - Jaedon Shin
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Minju Lee
- Department of Chemistry, University of Washington, Seattle, WA, USA
| | - Woongbae Lee
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Hoonsik Yoom
- Busan Water Quality Institute, Busan, Republic of Korea
| | - Heejong Son
- Busan Water Quality Institute, Busan, Republic of Korea
| | - Seongho Jang
- Department of Bioenvironmental Energy, Pusan National University, Pusan, Republic of Korea
| | - Yunho Lee
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea.
| |
Collapse
|
33
|
Liu ZQ, You L, Xiong X, Wang Q, Yan Y, Tu J, Cui YH, Li XY, Wen G, Wu X. Potential of the integration of coagulation and ozonation as a pretreatment of reverse osmosis concentrate from coal gasification wastewater reclamation. CHEMOSPHERE 2019; 222:696-704. [PMID: 30738312 DOI: 10.1016/j.chemosphere.2019.01.187] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 01/27/2019] [Accepted: 01/30/2019] [Indexed: 06/09/2023]
Abstract
Combination of coagulation and ozonation was used to treat brine derived from a three-stage reverse osmosis (RO) process during coal gasification wastewater reclamation. Effects of operating parameters on the removals of total organic carbon (TOC), color and UV absorbance at 254 nm (A254) were investigated during coagulation and ozonation. All the removal efficiencies of TOC, A254 and color of FeCl3 coagulant are about twice those of AlCl3 coagulant at the same molar dose since almost all the molecular weight fractions of RO concentrate (ROC) could be removed effectively by FeCl3 coagulant while only the fractions of molecular weight > 3 k Da could be removed effectively by AlCl3 coagulant. The TOC removal increases with the increasing of ozone dose and reaction temperature during ozonation of ROC after coagulation pretreatment. TOC and color of ROC after pretreated by coagulation could be further removed effectively during ozonation since ozonation can significant reduce the fluorescence response of all the fractions of effluent organic matter in ROC. It is unexpectedly found that the increase of A254 is observed after ozonation, this is because the intensity of absorbance at 254 nm by the low molecular weight transformation products (<2 k Da) increases significantly with the reaction time after 30 min. The coagulation coupling with ozonation is efficient in the removals of both TOC and color of ROC.
Collapse
Affiliation(s)
- Zheng-Qian Liu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China; Key Laboratory of Water and Wastewater Treatment (HUST), MOHURD, Wuhan 430074, PR China.
| | - Lihua You
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China; Key Laboratory of Water and Wastewater Treatment (HUST), MOHURD, Wuhan 430074, PR China
| | - Xuejun Xiong
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China; Key Laboratory of Water and Wastewater Treatment (HUST), MOHURD, Wuhan 430074, PR China
| | - Qun Wang
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 610031, PR China
| | - Yahui Yan
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China; Key Laboratory of Water and Wastewater Treatment (HUST), MOHURD, Wuhan 430074, PR China
| | - Jialing Tu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China; Key Laboratory of Water and Wastewater Treatment (HUST), MOHURD, Wuhan 430074, PR China
| | - Yu-Hong Cui
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China.
| | - Xue-Yan Li
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Gang Wen
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Xiaohui Wu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China; Key Laboratory of Water and Wastewater Treatment (HUST), MOHURD, Wuhan 430074, PR China
| |
Collapse
|
34
|
Ren G, Zhou M, Su P, Yang W, Lu X, Zhang Y. Simultaneous sulfadiazines degradation and disinfection from municipal secondary effluent by a flow-through electro-Fenton process with graphene-modified cathode. JOURNAL OF HAZARDOUS MATERIALS 2019; 368:830-839. [PMID: 30743230 DOI: 10.1016/j.jhazmat.2019.01.109] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 01/29/2019] [Accepted: 01/30/2019] [Indexed: 06/09/2023]
Abstract
Conventionally the deep treatment and disinfection are fulfilled by different processes for municipal wastewater treatment, this work verified a breakthrough by one process of novel flow-through electro-Fenton (EF) with graphene-modified cathode, which is usually seemed to be ineffective. This process was firstly confirmed to be cost-effective for simultaneous sulfadiazines (SDZs) degradation and disinfection from municipal secondary effluent with a very low electrical energy consumption (EEC) of 0.21 kW h/m3, attributed to the high H2O2 production of 4.41 mg/h/cm2 on the novel graphite felt cathode modified by electrochemically exfoliated graphene (EEGr) with a low EEC of 3.08 kW h/(kg H2O2). Compared with the ineffective SDZs degradation by the conventional flow EF, this process was more cost-effective and overcame the harsh requirements on electrolyte concentration. It also showed good effectiveness in the degradation of different antibiotics, and the graphene-modified cathode still kept stable performance after eight consecutive runs. Account for the combined action of OH and active chlorine, the formation of hydroxylated and chlorine containing by-products was confirmed, and a possible degradation mechanism for SDZs was proposed. This flow-through EF process provided an alternative method for the disinfection and antibiotics degradation by one process for the treatment and reuse of municipal secondary effluent.
Collapse
Affiliation(s)
- Gengbo Ren
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; Tianjin Key Laboratory of Urban Ecology Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Advanced Water Treatment Technology International Joint Research Center, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, Nankai University, Tianjin, 300350, China
| | - Minghua Zhou
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; Tianjin Key Laboratory of Urban Ecology Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Advanced Water Treatment Technology International Joint Research Center, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, Nankai University, Tianjin, 300350, China.
| | - Pei Su
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; Tianjin Key Laboratory of Urban Ecology Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Advanced Water Treatment Technology International Joint Research Center, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, Nankai University, Tianjin, 300350, China
| | - Weilu Yang
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; Tianjin Key Laboratory of Urban Ecology Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Advanced Water Treatment Technology International Joint Research Center, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, Nankai University, Tianjin, 300350, China
| | - Xiaoye Lu
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; Tianjin Key Laboratory of Urban Ecology Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Advanced Water Treatment Technology International Joint Research Center, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, Nankai University, Tianjin, 300350, China
| | - Yinqiao Zhang
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; Tianjin Key Laboratory of Urban Ecology Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Advanced Water Treatment Technology International Joint Research Center, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, Nankai University, Tianjin, 300350, China
| |
Collapse
|
35
|
Chen S, Cai M, Liu Y, Zhang L, Feng L. Effects of water matrices on the degradation of naproxen by reactive radicals in the UV/peracetic acid process. WATER RESEARCH 2019; 150:153-161. [PMID: 30508712 DOI: 10.1016/j.watres.2018.11.044] [Citation(s) in RCA: 130] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 11/12/2018] [Accepted: 11/17/2018] [Indexed: 06/09/2023]
Abstract
The UV/peracetic acid (UV/PAA) process as a novel advanced oxidation process has been reported to produce carbon-centered radicals (RC•) for Naproxen (NAP) degradation, which is a representative of naphthyl structure substances. Real water matrices, such as carbonate and bicarbonate ions (CO32-/HCO3-), humic acid (HA), and chloride ion (Cl-), may react with these reactive radicals and change their contributions to NAP degradation. The results showed that RC• contributed 60.8% and •OH contributed 39.2% to NAP degradation in pure water by a competition method. CO32-/HCO3- (0-20 mM) showed minimal effect on NAP degradation in the UV/PAA process, meanwhile, it has observable inhibition effect on NAP degradation in the UV/H2O2 process (mainly of •OH) and minimal effect in the UV/PAA process with tert-butanol (TBA) (mainly of RC•). Results suggested that CO32-/HCO3- could react with •OH yielding CO3•- with low reactivity to NAP, CO3•- could further react with PAA to produce RC•. This speculation was confirmed by the increased contribution of RC• to NAP degradation with the increase of CO32-/HCO3- concentration through the competition method. HA (0-5 mg/L) had a higher scavenging capacity for RC• than •OH because HA with naphthyl structure was likely to be attacked by RC•. Cl- (0-200 mM) had little effect on NAP degradation in the UV/PAA and UV/H2O2 processes, while exerted an observable inhibition on NAP degradation in the UV/PAA process with TBA. This finding suggested that Cl- could react with RC• to produce Cl•, which could further convert into HOCl•-, and then excess •OH was formed. The new knowledge on the conversion of reactive radicals obtained in this study provides an important basis for facilitating further research on the UV/PAA advanced oxidation.
Collapse
Affiliation(s)
- Siao Chen
- Beijing Key Laboratory for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, PR China
| | - Meiquan Cai
- Beijing Key Laboratory for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, PR China
| | - Yongze Liu
- Beijing Key Laboratory for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, PR China
| | - Liqiu Zhang
- Beijing Key Laboratory for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, PR China
| | - Li Feng
- Beijing Key Laboratory for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, PR China.
| |
Collapse
|
36
|
Tan C, Xu Q, Zhang H, Liu Z, Ren S, Li H. Enhanced removal of coumarin by a novel O 3/SPC system: Kinetic and mechanism. CHEMOSPHERE 2019; 219:100-108. [PMID: 30537583 DOI: 10.1016/j.chemosphere.2018.11.194] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 11/12/2018] [Accepted: 11/28/2018] [Indexed: 06/09/2023]
Abstract
A high-efficient, eco-friendly and applicable oxidant of percarbonate (SPC, Na2CO3·1.5H2O2) is applied as oxidant in ozonation (O3) process. In this work, coumarin (COU) decomposition by O3 and O3/SPC was proposed in terms of diverse parameters, including ozone concentration, SPC dosage and pH, with regard to the pseudo-first-order kinetic model. About 96.5% of 25 mg L-1 COU was removed by 209.3 mg L-1 SPC and 2.08 mg L-1 O3 within 30 min, whereas 49.8% of COU was exhausted in O3 system alone. High ozone concentration and pH could enhance COU removal, and overdose SPC has an inhibition effect as CO32- could react with ·OH. Furtherly, the generation of hydroxyl radicals (OH) via a chain reaction in O3 was ascertained based on indirect alcohols quenching tests and direct electron spin resonance (ESR) spin-trapping tests, though high initial SPC concentration led to no trapping of OH by 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) in O3/SPC. According to the concentration of dissolved ozone and prior study, a fast reaction kinetic model was estimated firstly for O3/SPC system and well fitted with different condition. The hydroxylated intermediates of 7-hydroxylcoumarin and 6,7-hydroxylcoumarin were recognized and the degradation pathways were proposed. The findings of the study can broaden the research direction of SPC and provide a new application information for SPC in environmental pollution control.
Collapse
Affiliation(s)
- Chaoqun Tan
- School of Civil Engineering, Southeast University, Nanjing, 210096, China; Key Laboratory of Concrete and Prestressed Concrete Structures of the Ministry of Education, Southeast University, Nanjing, 210096, China.
| | - Qinglong Xu
- School of Civil Engineering, Southeast University, Nanjing, 210096, China
| | - Haochen Zhang
- School of Civil Engineering, Southeast University, Nanjing, 210096, China
| | - Zheming Liu
- School of Civil Engineering, Southeast University, Nanjing, 210096, China
| | - Shuxin Ren
- School of Civil Engineering, Southeast University, Nanjing, 210096, China
| | - He Li
- School of Civil Engineering, Southeast University, Nanjing, 210096, China; Key Laboratory of Concrete and Prestressed Concrete Structures of the Ministry of Education, Southeast University, Nanjing, 210096, China
| |
Collapse
|
37
|
Wang D, Xu H, Ma J, Giannakis S, Lu X, Chi H, Song S, Qi J. Enhanced mineralization of atrazine by surface induced hydroxyl radicals over light-weight granular mixed-quartz sands with ozone. WATER RESEARCH 2019; 149:136-148. [PMID: 30439577 DOI: 10.1016/j.watres.2018.11.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 10/28/2018] [Accepted: 11/01/2018] [Indexed: 06/09/2023]
Abstract
A light-weight granular mixed-quartz sand (denoted as L-GQS) combined with stirring-assisted bubble column reactor was firstly applied in catalytic ozonation of atrazine. The L-GQS, with a density of 2.36 g cm-3 and average diameter of ca. of 4 mm, was readily churned up and uniformly distributed within the solution in the reactor. The introduction of L-GQS was found to exhibit enhanced catalytic ozonation of atrazine, with the increase in degradation rate and the dissolved organic carbon (DOC) removal being more than 2-fold for the catalytic process (L-GQS dosage = 5 g L-1, [atrazine]0 = 50 μM, [O3] = 25 mg L-1, gas flow = 0.2 L min-1, at pH 7.0 and 293 K). The L-GQS settled at the bottom of the reactor after experimentation, allowing its easy separation from the solution. A complete characterization of the material (XRD, XPS, FTIR, FE-SEM/EDS, BET and pHpzc) revealed that L-GQS consisted of α-quartz, β-cristobalite, anorthoclase and small amount of iron oxy-hydroxides. Hydroxyl groups, Bronsted acid sites and Lewis acid sites on the surface of L-GQS all contributed to the atrazine adsorption, ozone decomposition and ·OH generation. The L-GQS catalyzed ozonation exhibited superior atrazine degradation and mineralization rates in a wide range of pH (3.0-9.0) and reaction temperatures (278 K-293 K). Also, an enhancement of DOC abatement was observed both in presence of natural organic matter isolates and natural water matrices (river water) when L-GQS was used. Finally, the degradation mechanism was proposed, based on the intermediates and by-products formation analyzed by LC-QTOF-MS/MS and ionic chromatography. Our results indicate that the L-GQS combined with stirring-assisted bubble column reactor could be utilized as an enhancement of ozone-based advanced oxidation processes.
Collapse
Affiliation(s)
- Da Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China; School of Basic Sciences (SB), Institute of Chemical Science and Engineering (ISIC), Group of Advanced Oxidation Processes (GPAO), École polytechnique fédérale de Lausanne (EPFL), Station 6, CH-1015, Lausanne, Switzerland
| | - Haodan Xu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| | - Stefanos Giannakis
- School of Basic Sciences (SB), Institute of Chemical Science and Engineering (ISIC), Group of Advanced Oxidation Processes (GPAO), École polytechnique fédérale de Lausanne (EPFL), Station 6, CH-1015, Lausanne, Switzerland
| | - Xiaohui Lu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Huizhong Chi
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Shuang Song
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Jingyao Qi
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| |
Collapse
|
38
|
Yang Y, Cao Y, Jiang J, Lu X, Ma J, Pang S, Li J, Liu Y, Zhou Y, Guan C. Comparative study on degradation of propranolol and formation of oxidation products by UV/H 2O 2 and UV/persulfate (PDS). WATER RESEARCH 2019; 149:543-552. [PMID: 30502740 DOI: 10.1016/j.watres.2018.08.074] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 07/22/2018] [Accepted: 08/31/2018] [Indexed: 06/09/2023]
Abstract
The frequent detection of propranolol, a widely used β-blocker, in wastewater effluents and surface waters has raised serious concern, due to its adverse effects on organisms. UV/hydrogen peroxide (UV/H2O2) and UV/persulfate (UV/PDS) processes are efficient in eliminating propranolol in various waters, but the formation of oxidation products in these processes, as well as the assessment of their toxicity, has not been systematically addressed. In this study, we identified and compared transformation products of propranolol produced by hydroxyl radical (•OH) and sulfate radical (SO4•-). The electrostatic attraction enhances the reaction between SO4•- and the protonated form of propranolol, while •OH shows non-selectivity toward both protonated and neutral propranolol species. The hydroxylation of propranolol by •OH occurs at either amine moiety or naphthalene group while SO4•- favors the oxidation of the electron-rich naphthalene group. Further oxidation by •OH and SO4•- results in ring-opening products. Bicarbonate and chloride exert no effect on propranolol degradation. The generation of CO3•- and Cl-containing radicals is favorable to oxidizing naphthalene group. The acute toxicity assay of Vibrio fischeri suggests that SO4•- generates more toxic products than •OH, while CO3•- and Cl-containing radicals produce similar toxicity as SO4•-. High concentrations of bicarbonate in UV/H2O2 increase the toxicity of treated solution.
Collapse
Affiliation(s)
- Yi Yang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Ying Cao
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Jin Jiang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China.
| | - Xinglin Lu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China.
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Suyan Pang
- School of Municipal and Environmental Engineering, Jilin Jianzhu University, Changchun, 130118, China
| | - Juan Li
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Yongze Liu
- School of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Yang Zhou
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Chaoting Guan
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| |
Collapse
|
39
|
Chen W, Gu Z, Wen P, Li Q. Degradation of refractory organic contaminants in membrane concentrates from landfill leachate by a combined coagulation-ozonation process. CHEMOSPHERE 2019; 217:411-422. [PMID: 30423520 DOI: 10.1016/j.chemosphere.2018.11.002] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 10/30/2018] [Accepted: 11/01/2018] [Indexed: 05/21/2023]
Abstract
Landfill leachate is a typical refractory wastewater for which research into rapid and efficient treatment methods has become very topical. In this study, a coagulation-ozonation process was developed to treat the concentrate arising from membrane treatment of landfill leachate. The effect of coagulant type and initial pH on treatment efficiencies was investigated. Results showed that many of organics were effectively removed in the coagulation process. Thereafter, ozone was applied to further treat the coagulation-resistant organic substances. Our results revealed that the degradation rate of these coagulation-resistant substances followed the trend (color number) CN > (light absorbance at 254 nm) UV254 > (chemical oxygen demand) COD, and the residual coagulation-resistant substances were oxidized rapidly in the ozone process. Ozone first destroyed the molecular structure of fulvic acid and the by-products generated, such as protein-like substances. In addition, the molecular weight, organic condensation degree, and concentration of benzene ring compounds were considerably decreased. Moreover, the macro molecular organics (i.e., humic acid and fulvic acid) within the size range 1-100 kDa were effectively degraded and partially transformed into bicarbonate. Overall, the combined coagulation-ozonation process reduced COD, UV254, and CN in the landfill leachate concentrate by 88.32%, 94.37%, and 98.83%, respectively, and thus the biodegradability of the treated leachate also was significantly improved. This excellent performance proved the feasibility of the combined coagulation-ozonation process for the removal of recalcitrant organic substances contained in landfill leachate concentrate, benefiting subsequent biological treatment.
Collapse
Affiliation(s)
- Weiming Chen
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, 611756, China
| | - Zhepei Gu
- Key Laboratory of Special Wastewater Treatment of Sichuan Province Higher Education System, College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610066, China
| | - Peng Wen
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, 611756, China
| | - Qibin Li
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, 611756, China; Key Laboratory of Special Wastewater Treatment of Sichuan Province Higher Education System, College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610066, China.
| |
Collapse
|
40
|
Liu T, Wang D, Liu H, Zhao W, Wang W, Shao L. Rotating packed bed as a novel disinfection contactor for the inactivation of E. coli by ozone. CHEMOSPHERE 2019; 214:695-701. [PMID: 30292052 DOI: 10.1016/j.chemosphere.2018.09.149] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 09/18/2018] [Accepted: 09/25/2018] [Indexed: 06/08/2023]
Abstract
The intensification of mass transfer and mixing in ozone-based disinfection processes is very important in order to achieve a certain disinfection effect at a reasonable cost. This study employed rotating packed bed (RPB), an efficient process intensification device, as an ozone-disinfection contactor, and its performance on disinfection and mass transfer was evaluated by the inactivation of Escherichia coli (E. coli) and mass transfer coefficient (kLa). The ozone exposure (Ct value) and the log inactivation of E. coli in the RPB reached 0.0008-0.0014 min mg L-1 and 6.8-7.3 in phosphate buffered saline buffer, respectively. And the kLa in RPB rose from 0.030 to 0.186 s-1 with the increase of liquid flow rate from 10 to 60 L h-1. The increase of rotation speed of the RPB enhanced the log inactivation and kLa simultaneously. It was also noted that a higher gaseous ozone concentration at the identical applied ozone dosage is favorable for the inactivation of E. coli. The calculation of Hatta number indicated that the inactivation of E. coli in RPB is a diffusion-controlled process for which RPB is well suited. Compared to the conventional bubble reactor, the achievement of high disinfection efficacy at a low Ct value in RPB revealed that RPB is an efficient ozone disinfection contactor for the inactivation of microorganisms in water.
Collapse
Affiliation(s)
- Taoran Liu
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China; Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Dan Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China; Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Han Liu
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China; Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Wei Zhao
- Beijing Yanjing Beer Co. Ltd., Beijing, 101300, China
| | - Wei Wang
- Beijing Water Business Doctor Co. Ltd., Beijing, 100875, China.
| | - Lei Shao
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China; Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing, 100029, China.
| |
Collapse
|
41
|
Leifeld V, Dos Santos TPM, Zelinski DW, Igarashi-Mafra L. Ferrous ions reused as catalysts in Fenton-like reactions for remediation of agro-food industrial wastewater. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2018; 222:284-292. [PMID: 29860122 DOI: 10.1016/j.jenvman.2018.05.087] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 05/21/2018] [Accepted: 05/26/2018] [Indexed: 06/08/2023]
Abstract
Cassava is the most important tuberous root in tropical and subtropical regions of the world, being the third largest source of carbohydrates. The root processing is related to the production of starch, an important industrial input, which releases a highly toxic liquid wastewater due to its complex composition, which inhibits high performances of conventional effluent treatments. This study aims to evaluate Fenton-like and photo-Fenton-like reactions for treatment of cassava wastewater, reusing ferrous ions from the preliminary coagulation stage. Pre-treated cassava wastewater was submitted to oxidation in three variations of hydrogen peroxide concentrations, with more relevant analytical responses verified in color, turbidity, COD (Chemical Oxygen Demand), and acute toxicity in Artemia salina, besides the action of radicals during Fenton-like reactions. At higher peroxide concentrations, a decrease of 68% in turbidity and 70% in COD on the photo-Fenton-like system was observed, even at slow reaction rates (fastest rate constant k = 2 × 10-4 min-1). Inclusion of UV increases the viability of the Fenton-like reactions by supplementing the reaction medium with hydroxyl radicals, verified by the tert-butanol tests. The oxidation process leads to high EC50 values in 24 h of incubation in Fenton-like reactions and 48 h in photo-Fenton-like reactions. Final COD and turbidity suggests that the reuse of iron, which remains in the preliminary treatment step shows a great potential as a catalyst for Fenton-like advanced oxidation processes. Tertiary treatment can be less expensive and harmful to the environment, reducing production of residual sludge and metal content in the final effluent, which reduces polluting potential of the effluent regarding solid waste.
Collapse
Affiliation(s)
- Vanessa Leifeld
- Post-Graduate Program in Food Engineering, Federal University of Parana (UFPR), Francisco H. dos Santos St., Curitiba, PR, 81531-990, Brazil.
| | - Tâmisa Pires Machado Dos Santos
- Post-Graduate Program in Food Engineering, Federal University of Parana (UFPR), Francisco H. dos Santos St., Curitiba, PR, 81531-990, Brazil.
| | - Danielle Wisniewski Zelinski
- Post-Graduate Program in Food Engineering, Federal University of Parana (UFPR), Francisco H. dos Santos St., Curitiba, PR, 81531-990, Brazil.
| | - Luciana Igarashi-Mafra
- Post-Graduate Program in Food Engineering, Federal University of Parana (UFPR), Francisco H. dos Santos St., Curitiba, PR, 81531-990, Brazil.
| |
Collapse
|
42
|
Lu LW, Peng YP, Chang CN. Applying an activated carbon/silver catalyst to the decomposition of the aqueous solutions of tetramethyl ammonium hydroxide. J Taiwan Inst Chem Eng 2018. [DOI: 10.1016/j.jtice.2018.03.044] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
43
|
Li J, Li X, Li K, Tao T. Plasmas ozone inactivation of Legionella in deionized water and wastewater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:9697-9707. [PMID: 29368197 DOI: 10.1007/s11356-018-1233-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Accepted: 01/05/2018] [Indexed: 06/07/2023]
Abstract
The results show that ozone concentration determination using ultraviolet spectrophotometry (UV-2450) at 258 nm is easier than using indigo method at 600 nm. A strong linear relationship was found between purge time and O3 concentration in deionized water. Ozone concentration can be predicted in deionized water. A higher O3 flow rate or lower temperature led to a higher O3 concentration. Ozone concentration was stable in 60 min, so that ozone self-decomposition could be ignored at ozone concentrations below 0.4 mg L-1. A higher temperature led to a higher inactivation efficiency and rate, and that a lower temperature led to a lower ozone decay rate and inactivation efficiency even if ozone solubility increased when temperature decreased. The fastest inactivation rate occurred before c0t = 165 μg L-1 s, but the inactivation rate decreased after c0t = 165 μg L-1 s with tail phenomena. The tail phenomena were clearly observed and may be caused by oxidization of lipopolysaccharides (LPS), cell membrane, etc. The activation energy Ea = 55,404 ± 0.3 J mol-1 were obtained for Legionella inactivation with ozone in deionized water. Ozone maximum decay rate was positively proportional to COD concentration. COD impacted on ozone concentration seriously. Higher COD concentration resulted in higher ozone decay rate. COD could result in ozone concentration decrement rapidly to a steady value in 5 s. Higher initial ozone concentration resulted in higher germ inactivation rate. Higher initial COD concentration resulted in lower Legionella inactivation efficiency. COD was easier to react with ozone than Legionella. The relationship among the initial COD concentrations COD0, the initial O3 concentration c0, and the O3 contact time t necessary for a 99.999% reduction of Legionella in wastewater can be expressed in some equations. O3 disinfection time t necessary for a 99.999% reduction of Legionella can be predicted by Eqs. (10) and (11). Graphical abstract ᅟ.
Collapse
Affiliation(s)
- Jun Li
- School of Environmental Science and Engineering, Zhejiang Gongshang University, 18 Xuezheng Street, Xiasha Gaojiaoyuan District, Zhejiang, Hangzhou, 310018, China.
| | - Xuebin Li
- Department of Management and Information Technology, Nantong Shipping College, 185 Tongsheng Road, Nantong, Jiangsu, 226010, China
| | - Kunquan Li
- College of Engineering, Nanjing Agricultural University, 40 Dianjiangtai Road, Pukou District, Nanjing, Jiangsu, 210031, China
| | - Tao Tao
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei, 430074, China
| |
Collapse
|
44
|
Li J, Li K, Zhou Y, Li X, Tao T. Kinetic analysis of Legionella inactivation using ozone in wastewater. CHEMOSPHERE 2017; 168:630-637. [PMID: 27836266 DOI: 10.1016/j.chemosphere.2016.11.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 11/03/2016] [Accepted: 11/03/2016] [Indexed: 06/06/2023]
Abstract
Legionella inactivation using ozone was studied in wastewater using kinetic analysis and modeling. The experimental results indicate that the relationship between the ozone concentration, germ concentration, and chemical oxygen demand (COD) can be used to predict variations in germ and COD concentrations. The ozone reaction with COD and inactivation of Legionella occurred simultaneously, but the reaction with COD likely occurred at a higher rate than the inactivation, as COD is more easily oxidized by ozone than Legionella. Higher initial COD concentrations resulted in a lower inactivation rate and higher lnN/N0. Higher temperature led to a higher inactivation efficiency. The relationship of the initial O3 concentration and Legionella inactivation rate was not linear, and thus, the Ct value required for a 99.99% reduction was not constant. The initial O3 concentration was more important than the contact time, and a reduction of the initial O3 concentration could not be compensated by increasing the contact time. The Ct values were compared over a narrow range of initial concentrations; the Ct values could only be contrasted when the initial O3 concentrations were very similar. A higher initial O3 concentration led to a higher inflection point value for the lnN/N0 vs C0t curve. Energy consumption using a plasma corona was lower than when using boron-doped diamond electrodes.
Collapse
Affiliation(s)
- Jun Li
- School of Environmental Science and Engineering, Zhejiang Gongshang University, 18 Xuezheng Street, Xiasha Gaojiaoyuan District, Hangzhou, Zhejiang, 310018, China.
| | - Kunquan Li
- College of Engineering, Nanjing Agricultural University, 40 Dianjiangtai Road, Pukou District, Nanjing, Jiangsu, 210031, China
| | - Yan Zhou
- Department of Road Traffic and Engineering Planning, Zhejiang Urban & Rural Planning Design Institute, 238 Baochu Road, Xihu District, Hangzhou, Zhejiang, 310007, China
| | - Xuebin Li
- Department of Management and Information Technology, Nantong Shipping College, 185 Tongsheng Road, Nantong, Jiangsu, 226010, China
| | - Tao Tao
- School of Environmental Science and Engineering, Huazhong University of Science & Technology, 1037 Luoyu Road, Wuhan, Hubei, 430074, China
| |
Collapse
|
45
|
Li X, Li J, Bai J, Dong Y, Li L, Zhou B. The Inhibition Effect of Tert-Butyl Alcohol on the TiO 2 Nano Assays Photoelectrocatalytic Degradation of Different Organics and Its Mechanism. NANO-MICRO LETTERS 2016; 8:221-231. [PMID: 30474033 PMCID: PMC6225928 DOI: 10.1007/s40820-015-0080-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 12/07/2015] [Indexed: 05/06/2023]
Abstract
The inhibition effect of tert-butyl alcohol (TBA), identified as the •OH radical inhibitor, on the TiO2 nano assays (TNA) photoelectrocatalytic oxidation of different organics such as glucose and phthalate was reported. The adsorption performance of these organics on the TNA photoelectrode was investigated by using the instantaneous photocurrent value, and the degradation property was examined by using the exhausted reaction. The results showed that glucose exhibited the poor adsorption and easy degradation performance, phthalate showed the strong adsorption and hard-degradation, but TBA showed the weak adsorption and was the most difficult to be degraded. The degradation of both glucose and phthalate could be inhibited evidently by TBA. But the effect on glucose was more obvious. The different inhibition effects of TBA on different organics could be attributed to the differences in the adsorption and the degradation property. For instance, phthalate of the strong adsorption property could avoid from the capture of •OH radicals by TBA in TNA photoelectrocatalytic process.
Collapse
Affiliation(s)
- Xuejin Li
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, No. 800 Dongchuan Rd, Shanghai, 200240 People’s Republic of China
| | - Jinhua Li
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, No. 800 Dongchuan Rd, Shanghai, 200240 People’s Republic of China
| | - Jing Bai
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, No. 800 Dongchuan Rd, Shanghai, 200240 People’s Republic of China
| | - Yifan Dong
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, No. 800 Dongchuan Rd, Shanghai, 200240 People’s Republic of China
| | - Linsen Li
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, No. 800 Dongchuan Rd, Shanghai, 200240 People’s Republic of China
| | - Baoxue Zhou
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, No. 800 Dongchuan Rd, Shanghai, 200240 People’s Republic of China
- Key Laboratory for Thin Film and Microfabrication of the Ministry of
Education, Shanghai, 200240 People’s Republic of China
| |
Collapse
|
46
|
Yao W, Wang X, Yang H, Yu G, Deng S, Huang J, Wang B, Wang Y. Removal of pharmaceuticals from secondary effluents by an electro-peroxone process. WATER RESEARCH 2016; 88:826-835. [PMID: 26610192 DOI: 10.1016/j.watres.2015.11.024] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Revised: 11/06/2015] [Accepted: 11/08/2015] [Indexed: 06/05/2023]
Abstract
This study compared the removal of pharmaceuticals from secondary effluents of wastewater treatment plants (WWTPs) by conventional ozonation and the electro-peroxone (E-peroxone) process, which involves electrochemically generating H2O2 in-situ from O2 in sparged O2 and O3 gas mixture (i.e., ozone generator effluent) during ozonation. Several pharmaceuticals with kO3 ranging from <0.1 to 6.8 × 10(5) M(-1) s(-1) were spiked into four secondary effluents collected from different WWTPs, and then treated by ozonation and the E-peroxone process. Results show that both processes can rapidly remove ozone reactive pharmaceuticals (diclofenac and gemfibrozil), while the E-peroxone process can considerably accelerate the removal of ozone-refractory pharmaceuticals (e.g., ibuprofen and clofibric acid) via indirect oxidation with OH generated from the reaction of sparged O3 with electro-generated H2O2. Compared with ozonation, the E-peroxone process enhanced the removal kinetics of ozone-refractory pharmaceuticals in the four secondary effluents by ∼40-170%, and the enhancement was more pronounced in secondary effluents that had relatively lower effluent organic matter (EfOM). Due to its higher efficiency for removing ozone-refractory pharmaceuticals, the E-peroxone process reduced the reaction time and electrical energy consumption required to remove ≥90% of all spiked pharmaceuticals from the secondary effluents as compared to ozonation. These results indicate that the E-peroxone process may provide a simple and effective way to improve existing ozonation system for pharmaceutical removal from secondary effluents.
Collapse
Affiliation(s)
- Weikun Yao
- School of Environment, Beijing Key Laboratory for Emerging Organic Contaminants Control, State Key Joint Laboratory of Environmental Simulation and Pollution Control, Tsinghua University, Beijing 100084, China
| | - Xiaofeng Wang
- School of Environment, Beijing Key Laboratory for Emerging Organic Contaminants Control, State Key Joint Laboratory of Environmental Simulation and Pollution Control, Tsinghua University, Beijing 100084, China
| | - Hongwei Yang
- School of Environment, Beijing Key Laboratory for Emerging Organic Contaminants Control, State Key Joint Laboratory of Environmental Simulation and Pollution Control, Tsinghua University, Beijing 100084, China
| | - Gang Yu
- School of Environment, Beijing Key Laboratory for Emerging Organic Contaminants Control, State Key Joint Laboratory of Environmental Simulation and Pollution Control, Tsinghua University, Beijing 100084, China
| | - Shubo Deng
- School of Environment, Beijing Key Laboratory for Emerging Organic Contaminants Control, State Key Joint Laboratory of Environmental Simulation and Pollution Control, Tsinghua University, Beijing 100084, China
| | - Jun Huang
- School of Environment, Beijing Key Laboratory for Emerging Organic Contaminants Control, State Key Joint Laboratory of Environmental Simulation and Pollution Control, Tsinghua University, Beijing 100084, China
| | - Bin Wang
- School of Environment, Beijing Key Laboratory for Emerging Organic Contaminants Control, State Key Joint Laboratory of Environmental Simulation and Pollution Control, Tsinghua University, Beijing 100084, China
| | - Yujue Wang
- School of Environment, Beijing Key Laboratory for Emerging Organic Contaminants Control, State Key Joint Laboratory of Environmental Simulation and Pollution Control, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
47
|
Fischbacher A, Löppenberg K, von Sonntag C, Schmidt TC. A New Reaction Pathway for Bromite to Bromate in the Ozonation of Bromide. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:11714-11720. [PMID: 26371826 DOI: 10.1021/acs.est.5b02634] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Ozone is often used in the treatment of drinking water. This may cause problems if the water to be treated contains bromide as its reaction with ozone leads to the formation of bromate, which is considered to be carcinogenic. Bromate formation is a multistep process resulting from the reaction of ozone with bromite. Although this process seemed to be established, it has been shown that ozone reacts with bromite not by the previously assumed mechanism via O transfer but via electron transfer. Besides bromate, the electron-transfer reaction also yields O3(•-), the precursor of OH radicals. The experiments were set up in such a way that OH radicals are not produced from ozone self-decomposition but solely by the electron-transfer reaction. This study shows that hydroxyl radicals are indeed generated by using tBuOH as the OH radical scavenger and measuring its product, formaldehyde. HOBr and bromate yields were measured in systems with and without tBuOH. As OH radicals contribute to bromate formation, higher bromate and HOBr yields were observed in the absence of tBuOH than in its presence, where all OH radicals are scavenged. On the basis of the results presented here, a pathway from bromide to bromate, revised in the last step, was suggested.
Collapse
Affiliation(s)
- Alexandra Fischbacher
- Instrumental Analytical Chemistry, University of Duisburg-Essen , Universitätsstraße 5, 45141 Essen, Germany
| | - Katja Löppenberg
- Instrumental Analytical Chemistry, University of Duisburg-Essen , Universitätsstraße 5, 45141 Essen, Germany
| | - Clemens von Sonntag
- Instrumental Analytical Chemistry, University of Duisburg-Essen , Universitätsstraße 5, 45141 Essen, Germany
- Max-Planck-Institut für Bioanorganische Chemie , Stiftstr. 34-36, 45413 Mülheim an der Ruhr, Germany
| | - Torsten C Schmidt
- Instrumental Analytical Chemistry, University of Duisburg-Essen , Universitätsstraße 5, 45141 Essen, Germany
- Centre for Water and Environmental Research (ZWU), University of Duisburg-Essen , Universitätsstraße 2, 45141 Essen, Germany
| |
Collapse
|
48
|
Luo C, Ma J, Jiang J, Liu Y, Song Y, Yang Y, Guan Y, Wu D. Simulation and comparative study on the oxidation kinetics of atrazine by UV/H₂O₂, UV/HSO₅⁻ and UV/S₂O₈²⁻. WATER RESEARCH 2015; 80:99-108. [PMID: 25996757 DOI: 10.1016/j.watres.2015.05.019] [Citation(s) in RCA: 174] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 05/05/2015] [Accepted: 05/08/2015] [Indexed: 06/04/2023]
Abstract
This study comparatively investigated atrazine (ATZ) degradation by irradiation at the wavelength of 254 nm in the presence of peroxides including hydrogen peroxide (H2O2), peroxymonosulfate (HSO5(-)), and persulfate (S2O8(2-)) at various initial ATZ concentrations and oxidant dosages. The effects of water matrix, such as carbonate/bicarbonate (HCO3(-)/CO3(2-)), chloride ions (Cl(-)), and natural organic matter (NOM), were evaluated on these three advanced oxidation processes. A simple steady-state kinetic model was developed based on the initial rates of ATZ destruction, which could well describe the apparent pseudo-first-order rate constants (k(app), s(-1)) of ATZ degradation in these three processes. The specific roles of reactive species (i.e., HO·, SO4(-·), CO3(-·), and Cl2(-·)) under various experimental conditions were quantitatively evaluated based on their steady-state concentrations obtained from this model. Modeling results showed that the steady-state concentrations of HO· and SO4(-·) decreased with the increase of CO3(2-)/HCO3(-) concentration, and the relative contribution of HO· to ATZ degradation significantly decreased in UV/H2O2 and UV/HSO5(-) systems. On the other hand, the scavenging effect of HCO3(-)/CO3(2-) on the relative contribution of SO4(-·) to ATZ degradation was lower than that on HO·. The presence of Cl(-) (0.5-10 mM) significantly scavenged SO4(-·) but had slightly scavenging effect on HO· at the present experimental pH, resulting in greater decrease of k(app) in the UV/S2O8(2-) than UV/H2O2 and UV/HSO5(-) systems. Higher levels of Cl2(-·) were generated in the UV/S2O8(2-) than those in the UV/H2O2 and UV/HSO5(-) systems at the same Cl(-) concentrations. NOM significantly decreased k(app) due to its effects of competitive UV absorption and radical scavenging with the latter one being dominant. These results improve the understanding of the effects of water constituents for ATZ degradation in the UV-based oxidation processes.
Collapse
Affiliation(s)
- Congwei Luo
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China.
| | - Jin Jiang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China.
| | - Yongze Liu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Yang Song
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Yi Yang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Yinghong Guan
- School of Water Conservancy & Civil Engineering, Northeast Agricultural University, Harbin, 150030, China
| | - Daoji Wu
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250010, China
| |
Collapse
|