1
|
Kazmi SAR, Husnain SM, Khan AR, Qureshi TM, Lemaoui T, AlNashef IM, Arafat HA, Shahzad F. Removal of nickel ions from industrial wastewater using tms-EDTA-functionalized Ti 3C 2T x: Experimental and statistical physics modeling. JOURNAL OF HAZARDOUS MATERIALS 2025; 490:137667. [PMID: 40022919 DOI: 10.1016/j.jhazmat.2025.137667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 01/27/2025] [Accepted: 02/17/2025] [Indexed: 03/04/2025]
Abstract
This study investigates the surface modification of Ti3C2Tx MXene using tms-EDTA (EDTA@MXene) to develop an efficient adsorbent for divalent heavy metal cations, such as Cd²⁺, Cu²⁺, Ni²⁺, Pb²⁺, and Zn²⁺, from contaminated water. EDTA@MXene showed significantly enhanced adsorption capacities for these ions compared to pristine MXene. Using nickel ion (Ni²⁺) as a model adsorbate, EDTA@MXene demonstrated remarkable removal efficiency, reaching a maximum adsorption capacity of 249.5 mg/g as compared to the 61.4 mg/g of pristine MXene with fast kinetics and attaining equilibrium within 30 min. The results indicated that Ni²⁺ adsorption followed a pseudo-second-order kinetic model, with equilibrium data fitting both Langmuir and Freundlich isotherm models. As the classical adsorption models remained inconclusive on the underlying adsorption mechanisms, advanced statistical physics models were subsequently applied for deeper investigation. The findings revealed that Ni²⁺ ions adsorbed onto the surface in a non-parallel orientation. The adsorption process was reversible, endothermic, and driven mainly by physical interactions, with higher temperatures favoring greater adsorption capacity. EDTA@MXene demonstrated excellent reusability, maintaining high (>80 %) regeneration efficiency after five regeneration cycles. It also exhibited a high adsorption capacity for Ni²⁺ ions from nickel electroplating wastewater, highlighting its potential for real application in the treatment of metal-contaminated industrial wastewater.
Collapse
Affiliation(s)
- Syed Asad Raza Kazmi
- Department of Metallurgy and Materials Engineering, Pakistan Institute of Engineering and Applied Sciences, P. O. Nilore, Islamabad 45650, Pakistan
| | - Syed Muhammad Husnain
- Chemistry Division, Directorate of Science, Pakistan Institute of Nuclear Science and Technology (PINSTECH), Islamabad 45650, Pakistan
| | - Abdul Rehman Khan
- Department of Metallurgy and Materials Engineering, Pakistan Institute of Engineering and Applied Sciences, P. O. Nilore, Islamabad 45650, Pakistan
| | - Tariq M Qureshi
- Chemistry Division, Directorate of Science, Pakistan Institute of Nuclear Science and Technology (PINSTECH), Islamabad 45650, Pakistan
| | - Tarek Lemaoui
- Department of Chemical and Petroleum Engineering, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates; Research and Innovation Center for Graphene and 2D Materials (RIC2D), Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates; Center for Membranes and Advanced Water Technology (CMAT), Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Inas M AlNashef
- Department of Chemical and Petroleum Engineering, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates; Research and Innovation Center for Graphene and 2D Materials (RIC2D), Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates; Center for Membranes and Advanced Water Technology (CMAT), Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Hassan A Arafat
- Department of Chemical and Petroleum Engineering, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates; Research and Innovation Center for Graphene and 2D Materials (RIC2D), Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Faisal Shahzad
- Research and Innovation Center for Graphene and 2D Materials (RIC2D), Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
2
|
Elkholy AEA, Poon K, Singh G, Giansiracusa M, Callaghan KL, Boskovic C, Ellis AV, Kingshott P. Electrosynthesis of Silane-Modified Magnetic Nanoparticles for Efficient Lead Ion Removal. CHEMSUSCHEM 2025:e202402098. [PMID: 39824771 DOI: 10.1002/cssc.202402098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 12/25/2024] [Accepted: 01/15/2025] [Indexed: 01/20/2025]
Abstract
The removal of heavy metal ions, such as lead (Pb2+), from aqueous systems is critical due to their high toxicity and bioaccumulation in living organisms. This study presents a straightforward approach for the synthesis and surface modification of iron oxide nanoparticles (IONPs) for the magnetic removal of Pb2+ ions. IONPs were produced via electrosynthesis at varying voltages (10-40 V), with optimal magnetic properties achieved at 40 V resulting in highly crystalline and magnetic IONPs in the gamma-maghemite (γ-Fe2O3) phase. IONPs were characterized using various techniques including X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, vibrating sample magnetometry (VSM), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). A novel electrochemical method was developed for the silanization of IONPs using tetraethoxysilane (TEOS), (3-mercaptopropyl)trimethoxysilane (MPTMS) and (3-aminopropyl)triethoxysilane (APTES). The resulting silane-modified IONPs were evaluated for the magnetic removal of Pb2+ ions, with TEOS-modified IONPs demonstrating superior performance. This material exhibited a high adsorption capacity of 519 mg/g at a Pb2+ ion concentration of 300 ppm, and high removal efficiency across a range of Pb2+ ion concentrations, attributed to its Fe2O3@SiO2 core-shell structure. This study highlights the potential of the electrochemical synthesis and silanization of nanoparticles for heavy metal remediation in water.
Collapse
Affiliation(s)
- Ayman E Ahmed Elkholy
- Department of Chemistry and Biotechnology, Swinburne University of Technology, Hawthorn, 3122, VIC, Australia
| | - Kingsley Poon
- School of Biomedical Engineering and Sydney Nano Institute, The University of Sydney, Sydney, 2006, NSW, Australia
| | - Gurvinder Singh
- School of Biomedical Engineering and Sydney Nano Institute, The University of Sydney, Sydney, 2006, NSW, Australia
| | - Marcus Giansiracusa
- School of Chemistry, The University of Melbourne, Parkville, 3010, VIC, Australia
| | - Kimberley L Callaghan
- Department of Chemical Engineering, The University of Melbourne, Parkville, 3010, VIC, Australia
| | - Colette Boskovic
- School of Chemistry, The University of Melbourne, Parkville, 3010, VIC, Australia
| | - Amanda V Ellis
- Department of Chemical Engineering, The University of Melbourne, Parkville, 3010, VIC, Australia
| | - Peter Kingshott
- Department of Chemistry and Biotechnology, Swinburne University of Technology, Hawthorn, 3122, VIC, Australia
- Australian Research Council (ARC) Training Centre in Surface Engineering for Advanced Materials (SEAM), Swinburne University of Technology, Hawthorn, 3122, VIC, Australia
| |
Collapse
|
3
|
Anggakusuma R, Utama GL, Zain MK, Megasari K. Reducing the Radioactive Surface Contamination Level of Cobalt-60-Contaminated Material with PVA-Glycerol-EDTA Combination Gel. Gels 2025; 11:56. [PMID: 39852028 PMCID: PMC11765102 DOI: 10.3390/gels11010056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/07/2025] [Accepted: 01/08/2025] [Indexed: 01/26/2025] Open
Abstract
Decommissioning of nuclear facilities can be performed in stages. One of the stages and processes in decontamination is the decontamination process before dismantling or facility area recovery activities. Decontamination can be performed using various methods, primarily physical and chemical. One chemical method involves using a gel made of polymers for decontamination. In this study, a gel consisting of a mixture of 15 g polyvinyl alcohol (PVA), 15 mL of glycerol, and 2 g Na-EDTA was dissolved in 100 mL. The three materials were dissolved in hot conditions until they dissolved, and a gel was formed. The formed gel was applied to the material contaminated by Co-60 with a radioactivity of 81 µCi, as much as 5 µL. The decontamination radioactive efficiency test results range from 53% to 98%, with the highest decontamination efficiency observed on glass media. This study also showed that higher EDTA concentrations can increase the ability of the PVA-glycerol gel to absorb and bind Co. This study also found that decontamination efficiency was influenced by the type of contaminated material and the concentration of EDTA. It can be concluded that gels with a composition of PVA, glycerol, and EDTA can reduce the level of contamination on the surface of materials made of glass, ceramics, and metal plates.
Collapse
Affiliation(s)
- Rezky Anggakusuma
- Doctoral Program on Environmental Sciences, Graduate School, Universitas Padjadjaran, Jl. Dipati Ukur No. 35, Bandung 40132, West Java, Indonesia;
- Directorate of Laboratory Management, Research Facilities, and Science and Technology Park—BRIN, Jl. Sangkuriang No. 1–5, Bandung 40135, West Java, Indonesia
| | - Gemilang Lara Utama
- Doctoral Program on Environmental Sciences, Graduate School, Universitas Padjadjaran, Jl. Dipati Ukur No. 35, Bandung 40132, West Java, Indonesia;
- Center for Environment and Sustainability Science, Universitas Padjadjaran, Jalan Sekeloa Selatan 1 No. 1, Bandung 40132, West Java, Indonesia
| | - Muhammad Khoirul Zain
- Nuclear Chemical Engineering Study Program, Polytechnic Institute of Nuclear Technology—BRIN, Yogyakarta 55281, Central Java, Indonesia
| | - Kartini Megasari
- Nuclear Chemical Engineering Study Program, Polytechnic Institute of Nuclear Technology—BRIN, Yogyakarta 55281, Central Java, Indonesia
| |
Collapse
|
4
|
Esmaeili Chermahini M, Ghiaci M, Najafi Chermahini A, Shirvani M. Fabrication of a novel magnetic carbon nanotube coated with polydopamine modified with EDTA for removing Cd 2+ and Pb 2+ ions from an aqueous solution. Heliyon 2024; 10:e38780. [PMID: 39430445 PMCID: PMC11489850 DOI: 10.1016/j.heliyon.2024.e38780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 09/25/2024] [Accepted: 09/30/2024] [Indexed: 10/22/2024] Open
Abstract
This work demonstrates the preparation of a new, effective, and reusable magnetic adsorbent by functionalizing dopamine with ethylenediaminetetraacetic dianhydride and polymerizing it on the surface of magnetic carbon nanotubes (EDTA@PD-CNT/Fe3O4). The adsorbent was analyzed using XRD, FT-IR, Zeta potential, FE-SEM, EDX, BET, TGA, DTA, and VSM. The synthesized adsorbent was used to remove lead and cadmium ions from aqueous solution. The adsorption process was improved by optimizing key parameters such as pH, adsorbent dosage, contact time, and ion concentration. For both ions, the thermodynamic data of the processes and adsorption kinetics were examined. Analyzing the experimental data revealed that the Langmuir isotherm was the most appropriate model, and the examination of adsorption kinetics showed a pseudo-second-order equation. The adsorption process by the EDTA@PD-CNT/Fe3O4 adsorbent was spontaneous and endothermic, according to the thermodynamic data, for Cd2+ and Pb2+, the highest adsorption capacities were found to be 204.54 mg g-1 and 376.48 mg g-1, respectively.
Collapse
Affiliation(s)
| | - Mehran Ghiaci
- Department of Chemistry, Isfahan University of Technology, Isfahan, 8415683111, Iran
| | | | - Mehran Shirvani
- Department of Agriculture, Isfahan University of Technology, Isfahan, 8415683111, Iran
| |
Collapse
|
5
|
Huang X, Song W, Yang Z, Wu Z, Chen L, Liang Q, Li J, Tu C, Zheng G, Zhou W, Zhang X. The important role of EPS in mediated biosynthesis of CdS QDs: Comparative study of EPS-intact and EPS-free. JOURNAL OF HAZARDOUS MATERIALS 2024; 474:134760. [PMID: 38820746 DOI: 10.1016/j.jhazmat.2024.134760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 05/11/2024] [Accepted: 05/28/2024] [Indexed: 06/02/2024]
Abstract
In this study, we investigated the adsorption of Cd(II) and the biosynthesis of CdS quantum dots (QDs) mediated by cells of sulfate-reducing bacteria before and after the removal of EPS to determine whether EPS or the cell wall plays a major role. Potentiometric titration revealed that the concentration of proton-active binding sites on cells with EPS (EPS-intact) was notably higher than that on cells without EPS (EPS-free) and that the sites were predominantly carboxyl, phosphoryl, hydroxyl, and amine groups. The protein content in EPS-intact cells was higher, and thus the Cd(II) adsorption capacity was stronger. The CdS QDs biosynthesized using EPS-intact possessed better properties, including uniform size distribution, good crystallinity, small particle size, high fluorescence, and strong antimicrobial activity, and the yields were significantly higher than those of EPS-free by a factor of about 1.5-3.7. Further studies revealed that alkaline amino acids in EPS play a major role and serve as templates in the biosynthesis of QDs, whereas they were rarely detected in the cell wall. This study emphasizes the important role of EPS in the bacterial binding of metals and efficient recycling of hazardous waste in water.
Collapse
Affiliation(s)
- Xiangwu Huang
- School of Environmental Science and Engineering of Guangdong University of Technology, Guangzhou, Guangdong 510006, China
| | - Weifeng Song
- School of Environmental Science and Engineering of Guangdong University of Technology, Guangzhou, Guangdong 510006, China.
| | - Zuoyi Yang
- School of Environmental Science and Engineering of Guangdong University of Technology, Guangzhou, Guangdong 510006, China.
| | - Zhixin Wu
- School of Environmental Science and Engineering of Guangdong University of Technology, Guangzhou, Guangdong 510006, China
| | - Liyao Chen
- School of Environmental Science and Engineering of Guangdong University of Technology, Guangzhou, Guangdong 510006, China
| | - Qiantong Liang
- School of Environmental Science and Engineering of Guangdong University of Technology, Guangzhou, Guangdong 510006, China
| | - Jinfu Li
- School of Environmental Science and Engineering of Guangdong University of Technology, Guangzhou, Guangdong 510006, China
| | - Chuanying Tu
- School of Environmental Science and Engineering of Guangdong University of Technology, Guangzhou, Guangdong 510006, China
| | - Guangwen Zheng
- School of Environmental Science and Engineering of Guangdong University of Technology, Guangzhou, Guangdong 510006, China
| | - Wenbin Zhou
- School of Environmental Science and Engineering of Guangdong University of Technology, Guangzhou, Guangdong 510006, China
| | - Xiangdan Zhang
- School of Environmental Science and Engineering of Guangdong University of Technology, Guangzhou, Guangdong 510006, China
| |
Collapse
|
6
|
Abbas N, Husnain SM, Asim U, Shahzad F, Abbas Y. A novel green synthesis of MnO 2-Coal composite for rapid removal of silver and lead from wastewater. WATER RESEARCH 2024; 256:121526. [PMID: 38583333 DOI: 10.1016/j.watres.2024.121526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 03/19/2024] [Accepted: 03/25/2024] [Indexed: 04/09/2024]
Abstract
The presence of Ag(I) and Pb(II) ions in wastewater poses a significant threat to human health in contemporary times. This study aims to explore the development of a novel and economical adsorbent by grafting MnO2 particles onto low-rank coal, providing an innovative solution for the remediation of water contaminated with silver and lead. The synthesized nanocomposites, referred to as MnO2-Coal, underwent thorough characterization using FTIR, XRD, BET, and SEM to highlight the feasibility of in-situ surface modification of coal with MnO2 nanoparticles. The adsorption of Ag(I) and Pb(II) from their respective aqueous solution onto MnO2-Coal was systematically investigated, with optimization of key parameters such as pH, temperature, initial concentration, contact time, ionic strength, and competing ions. Remarkably adsorption equilibrium was achieved within a 10 min, resulting in impressive removal rates of 80-90 % for both Ag(I) and Pb(II) at pH 6. The experimental data were evaluated using Langmuir, Freundlich, and Temkin isotherm models. The Langmuir isotherm model proved to be more accurate in representing the adsorption of Ag(I) and Pb(II) ions onto MnO2-Coal, exhibiting high regression coefficients (R2 = 0.99) and maximum adsorption capacities of 93.57 and 61.98 mg/g, along with partition coefficients of 4.53 and 71.92 L/g for Ag(I) and Pb(II), respectively, at 293 K. Kinetic assessments employing PFO, PSO, Elovich, and IPD models indicated that the PFO and PSO models were most suitable for adsorption mechanism of Pb(II) and Ag(I) on MnO2-Coal composites, respectively. Moreover, thermodynamic evaluation revealed the spontaneous and endothermic adsorption process for Ag(I), while exothermic behavior for adsorption of Pb(II). Importantly, this approach not only demonstrates cost-effectiveness but also environmental friendliness in treating heavy metal-contamination in water. The research suggests the potential of MnO2-Coal composites as efficient and sustainable adsorbents for water purification applications.
Collapse
Affiliation(s)
- Naseem Abbas
- Institute of Chemical Sciences Bahauddin Zakariya University, Multan 60800, Punjab Pakistan
| | - Syed M Husnain
- Chemistry Division, Directorate of Science, Pakistan Institute of Nuclear Science and Technology (PINSTECH), Islamabad, 45650 Pakistan.
| | - Umar Asim
- Institute of Chemical Sciences Bahauddin Zakariya University, Multan 60800, Punjab Pakistan; Department of Chemistry, Institute of Southern Punjab, Multan, 60750, Pakistan.
| | - Faisal Shahzad
- Research and Innovation Center for Graphene and 2D Materials (RIC2D), Khalifa University, 127788, Abu Dhabi, United Arab Emirates; Department of Metallurgy and Materials Engineering, Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, 45650, Pakistan
| | - Yawar Abbas
- Research Scientist, Department of Physics, Khalifa University, 127788, Abu Dhabi, United Arab Emirates
| |
Collapse
|
7
|
Liu X, Wang Y, Wu X, Wang Y, Fan G, Huang Y, Zhang L. Preparation of magnetic DTPA-modified chitosan composite microspheres for enhanced adsorption of Pb(II) from aqueous solution. Int J Biol Macromol 2024; 264:130410. [PMID: 38417751 DOI: 10.1016/j.ijbiomac.2024.130410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/06/2024] [Accepted: 02/21/2024] [Indexed: 03/01/2024]
Abstract
In this study, magnetic DTPA-modified chitosan composite microspheres (MDCM) were prepared by reverse emulsion-double crosslinking method (carbodiimide followed by glutaraldehyde) for removal of Pb(II) from aqueous solution. The obtained magnetic adsorbents were characterized by FTIR, SEM, XRD, VSM, BET, and 13C NMR. The effects of the pH, contact time, initial concentration, and competitive metal cations (Na(I), Ca(II), or Mg(II)) on Pb(II) adsorption were investigated. The results revealed that MDCM exhibited high removal performance over a wide pH range and in the presence of competitive metal cations. The maximum adsorption capacity of MDCM for Pb(II) is 214.63 mg g-1 at pH 3, which is higher than most recently reported magnetic adsorbents. Adsorption kinetics and isotherms can be described by the pseudo-second-order model and Langmuir model, respectively. In addition, MDCM is easy to regenerate and can be reused five cycles with high adsorption capacity. Finally, the adsorption mechanism was further revealed by FTIR and XPS analysis. Overall, MDCM has practical application potential in removing Pb(II) from contaminated wastewater due to its high adsorption efficiency, good reusability, and convenient magnetic separation.
Collapse
Affiliation(s)
- Xueling Liu
- School of Chemistry and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Yajing Wang
- Hubei Provincial Academy of Eco-environmental Sciences, Wuhan 430072, PR China
| | - Xiaofen Wu
- School of Chemistry and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Yi Wang
- School of Chemistry and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Guozhi Fan
- School of Chemistry and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Yanjun Huang
- School of Chemistry and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China.
| | - Lei Zhang
- School of Chemistry and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China.
| |
Collapse
|
8
|
Liu T, Yuan X, Luo K, Xie C, Zhou L. Molecular engineering of a new method for effective removal of cadmium from water. WATER RESEARCH 2024; 253:121326. [PMID: 38377928 DOI: 10.1016/j.watres.2024.121326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/04/2024] [Accepted: 02/14/2024] [Indexed: 02/22/2024]
Abstract
Cadmium (Cd) is a widespread and highly toxic environmental pollutant, seriously threatening animal and plant growth. Therefore, monitoring and employing robust tools to enrich and remove Cd from the environment is a major challenge. In this work, by conjugating a fluorescent indicator (CCP) with a functionalized glass slide, a special composite material (CCPB) was constructed to enrich, remove, and monitor Cd2+ in water rapidly. Then Cd2+ could be effectively eluted by immersing the Cd-enriched CCPB in an ethylenediaminetetraacetic acid (EDTA) solution. With this, the CCPB was continuously reused. Its recovery of Cd2+was above and below 100 % after multiple uses by flame atomic absorption spectrometry (FAAS), which was excellent for practical use in enriching and removing Cd2+ in real aqueous samples. Therefore, CCPB is an ideal material for monitoring, enriching, and removing Cd2+ in wastewater, providing a robust tool for future practical applications of Cd enrichment and removal in the environment.
Collapse
Affiliation(s)
- Ting Liu
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Xiaomin Yuan
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Kun Luo
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Can Xie
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Liyi Zhou
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China.
| |
Collapse
|
9
|
Zhang S, Cao J, Yang P, Xie Y, Wang H, Mao Y, Ning K, Zhang Q. Adsorption and aggregation of Cu 2+ on carboxymethylated sugarcane bagasse: Adsorption behavior and mechanism. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133297. [PMID: 38141295 DOI: 10.1016/j.jhazmat.2023.133297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/13/2023] [Accepted: 12/14/2023] [Indexed: 12/25/2023]
Abstract
Abundant biomass resources provide us with sufficient material basis, while a large amount of bio-waste is also produced and the high-value utilization of bio-waste is still highly desirable. Herein, we reported a facile one-pot fabrication approach towards efficient utilization of sugarcane bagasse via carboxymethylation to adsorb and recycle Cu2+ ions. The modified sugarcane bagasse possessed outstanding adsorption efficiency, with a maximum capacity of 263.7 mg g-1, owing to the functional groups such as carboxyl and hydroxyl groups, as well as aromatic structure. It was noted that the carboxymethylated sugarcane bagasse (MSB40) swelled rapidly when suffering Cu2+ ions solution, and more adsorption sites were available since the physical diffusion barrier was removed, thereby enhancing the absorption capacity. Interestingly, Cu2+ ions could induce the aggregation of MSB40 due to the Cu2+ ions compress colloid double layer, neutralizes surface charges, which benefited the following separation process. Ultimately, copper oxide was recovered and the purity reached 97.9%. Additionally, in the presence of both Ca2+ and Mg2+ ions, MSB40 exhibited excellent selectivity for the adsorption of Cu2+ ions. This strategy offers a facile and novel clue for the high-value utilization of bio-waste and the recovery of copper for biomaterial and environmental applications.
Collapse
Affiliation(s)
- Shiping Zhang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, PR China; National-Regional Engineering Center for Recovery of Waste Gases from Metallurgical and Chemical Industries, Kunming University of Science and Technology, Kunming 650500, PR China
| | - Jinyan Cao
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, PR China; National-Regional Engineering Center for Recovery of Waste Gases from Metallurgical and Chemical Industries, Kunming University of Science and Technology, Kunming 650500, PR China
| | - Peng Yang
- Department of Health Products Technical Research and Development Center, Yunnan Baiyao Group Co. Ltd, Kunming 650500, PR China
| | - Yu Xie
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, PR China; National-Regional Engineering Center for Recovery of Waste Gases from Metallurgical and Chemical Industries, Kunming University of Science and Technology, Kunming 650500, PR China
| | - Huiming Wang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, PR China; National-Regional Engineering Center for Recovery of Waste Gases from Metallurgical and Chemical Industries, Kunming University of Science and Technology, Kunming 650500, PR China
| | - Yufeng Mao
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, PR China; National-Regional Engineering Center for Recovery of Waste Gases from Metallurgical and Chemical Industries, Kunming University of Science and Technology, Kunming 650500, PR China
| | - Kegong Ning
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, PR China; Department of Health Products Technical Research and Development Center, Yunnan Baiyao Group Co. Ltd, Kunming 650500, PR China.
| | - Qiulin Zhang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, PR China; National-Regional Engineering Center for Recovery of Waste Gases from Metallurgical and Chemical Industries, Kunming University of Science and Technology, Kunming 650500, PR China.
| |
Collapse
|
10
|
Einafshar N, Amiri Farmad H, Moshirian Farahi SM, Einafshar E. Nanocomposite with high adsorption activity developed using stabilized silver modified alumina and TiO 2-NPs incorporated into β-cyclodextrin-graphene oxide. Heliyon 2023; 9:e18162. [PMID: 37496914 PMCID: PMC10366481 DOI: 10.1016/j.heliyon.2023.e18162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 07/01/2023] [Accepted: 07/10/2023] [Indexed: 07/28/2023] Open
Abstract
Multifunctional nanocomposites Ag/Al2O3/TiO2@β-cyclodextrin-graphene oxide (AATG) incorporating graphene oxide sheets, TiO2, and Ag/Al2O3 nanoparticles were prepared in two steps. We benefited from the inherent properties of β-cyclodextrin to create a stable aqueous graphene solution capable of self-assembling in situ grown TiO2 nanoparticles on graphene nanosheets. Ag/Al2O3 catalysts with a high surface-to-volume ratio were prepared by a combustion technique in solution with urea as a new fuel. The synthesized nanoparticles were also characterized by X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET) surface analysis, and BJH pore analysis. FE-SEM was used to evaluate the morphology of β-cyclodextrin-graphene oxide, Ag/Al2O3 and AATG nanoplatforms. This research examined the use of AATG as a novel nanocomposite for removing methylene blue from water and compared its effectiveness with that of TiO2@β-cyclodextrin-graphene oxide (TG) as an intermediate material to assess the impact of the final composite and its components on absorption. The effect of pH, temperature, time, and dye concentration on the reaction rate was investigated. The results showed that at pH above 4, the adsorption rate of MB by AATG gradually increased to about 98%. The results also show that methylene blue is more effectively removed at higher temperatures, implying that the adsorption is temperature dependent and the elimination process is endothermic. The adsorption kinetics, isothermal studies, and thermodynamic analysis were also evaluated. The adsorption data showed excellent agreement with pseudo-second order models (R2 > 0.99) and the Langmuir isotherm. The AATG nanocomposites showed excellent adsorption activity, making them potential candidates for water treatment.
Collapse
Affiliation(s)
- Nafiseh Einafshar
- Faculty of Civil Engineering, Quchan University of Technology, Quchan, Iran
| | - Hamed Amiri Farmad
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Elham Einafshar
- Department of Pharmacology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
11
|
Rafie N, Khodadadi M, Zamani M, Zarepour A, Zarrabi A. Magnetic silica nanoparticles adorned with a metal-organic framework; a novel nanosorbent for elimination of aqueous Pb ions contaminant. ENVIRONMENTAL RESEARCH 2023; 226:115694. [PMID: 36933638 DOI: 10.1016/j.envres.2023.115694] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/11/2023] [Accepted: 03/14/2023] [Indexed: 06/18/2023]
Abstract
The annual growth of water pollution resulting from the uncontrolled entry of heavy metals, like Pb2+ ions, is one of the most critical global concerns due to its direct and indirect effects on human life. The absorption of this component by the body could affect the nervous system via oxidative stress production or disturbing cellular biological mechanism. So, it is important to find an effective method for purifying the existing waters. This study aims to fabricate and compare the effect of two new nano-adsorbents (Fe3O4@ZIF-8 and Fe3O4@SiO2@ZIF-8) on removing Pb2+ ions from the aqueous solution. Accordingly, iron oxide nanoparticles were synthesized via co-precipitation method at first and then coated with a silica shell through the sol-gel method. Both nanoparticles were coated with a layer of metal-organic framework (MOF), ZIF-8, and analyzed with different physicochemical tests. In the following parts, the Pb2+ ion removal capability of the nano-adsorbents was evaluated in the presence of different parameters, including nanosorbent concentrations, contact time, pH, and pollutant concentrations. Results confirmed preparation of nanoparticles with a mean size of about 110 ± 10 nm and 80 ± 10 nm for Fe3O4@ZIF-8 and Fe3O4@SiO2@ZIF-8, respectively. Both nanoparticles showed the highest amount of pollutants removal (near 90% for both nanoparticles) at pH = 6 within 15 min of contact in the presence of 100 ppm Pb2+ ions. Besides, in the case of real samples, with a concentration of about 150 ppm of Pb2+ ions, they showed maximum adsorption of about 93.61% and 99.2% for Fe3O4@ZIF-8 and Fe3O4@SiO2@ZIF-8, respectively. The presence of iron oxide nanoparticles in the structure of this adsorbent makes it easy to separate them in a user-friendly method. A brief comparison between these nanosorbents indicates that Fe3O4@SiO2@ZIF-8 nanoparticles have better performance due to their higher porosity and surface area ratio and so it could be used as a cost-effective ideal nanosorbent candidate for easy removal of heavy metals from water.
Collapse
Affiliation(s)
- Niloofar Rafie
- Department of Biotechnology, Nour Danesh Institute of Higher Education, Meymeh, Isfahan, Iran
| | - Mohammad Khodadadi
- Core Research Facilities (CRF), Isfahan University of Medical Sciences, Isfahan 81746 73461, Iran
| | | | - Atefeh Zarepour
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Sariyer, 34396, Istanbul, Turkey
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Sariyer, 34396, Istanbul, Turkey.
| |
Collapse
|
12
|
Mondal P, Nandan A, Ajithkumar S, Siddiqui NA, Raja S, Kola AK, Balakrishnan D. Sustainable application of nanoparticles in wastewater treatment: Fate, current trend & paradigm shift. ENVIRONMENTAL RESEARCH 2023:116071. [PMID: 37209979 DOI: 10.1016/j.envres.2023.116071] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 05/03/2023] [Accepted: 05/04/2023] [Indexed: 05/22/2023]
Abstract
Existing water and wastewater treatment techniques are becoming increasingly difficult to employ due to the discovery of new toxins, the rapid development of population and industrial activities, and the limited quantity of water resources. Treatment of wastewater is a critical need in modern civilization due to a scarcity of water resources and rising industrial activity. Some of the techniques utilized include adsorption, flocculation, filtration, and others, although they are only used for primary wastewater treatment. However, the development and deployment of modern wastewater management with high efficiency and low capitalization are critical in terms of mitigating the environmental consequences of waste. The employment of different nanomaterials in the treatment of wastewater has opened up a world of possibilities for heavy metal and pesticide removal, as well as the treatment of microbes and organic contaminants in wastewater. Nanotechnology is a rapidly evolving technology because of certain nanoparticle's outstanding physiochemical and biological capabilities as contrasted to bulk counterparts. Secondly, it has been established that this is a cost-effective treatment strategy with significant potential in wastewater management, transcending the limitations imposed by currently existing technology. Advances in nanotechnology to reduce water contamination have been presented in this review, including the use of various nanomaterials such as nanocatalysts, nanoadsorbents, and nanomembranes in the treatment of wastewater containing organic contaminants, hazardous metals, and virulent pathogens.
Collapse
Affiliation(s)
- Prasenjit Mondal
- Centre of Excellence in Occupational Health, Safety, Fire and Environment, GD Goenka University, Sohna, Gurgaon, India
| | - Abhishek Nandan
- School of Engineering, University of Petroleum and Energy Studies, Dehradun, India.
| | - Sarath Ajithkumar
- School of Engineering, University of Petroleum and Energy Studies, Dehradun, India
| | - Nihal Anwar Siddiqui
- Centre of Excellence in Occupational Health, Safety, Fire and Environment, GD Goenka University, Sohna, Gurgaon, India
| | - Sivashankar Raja
- Department of Chemical Engineering, National Institute of Technology Warangal, India
| | - Anand Kishore Kola
- Department of Chemical Engineering, National Institute of Technology Warangal, India
| | | |
Collapse
|
13
|
Zhang L, Liu H, Zhu J, Liu X, Li L, Huang Y, Fu B, Fan G, Wang Y. Effective Removal of Fe (III) from Strongly Acidic Wastewater by Pyridine-Modified Chitosan: Synthesis, Efficiency, and Mechanism. Molecules 2023; 28:molecules28083445. [PMID: 37110678 PMCID: PMC10143584 DOI: 10.3390/molecules28083445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
A novel pyridine-modified chitosan (PYCS) adsorbent was prepared in a multistep procedure including the successive grafting of 2-(chloromethyl) pyridine hydrochloride and crosslinking with glutaraldehyde. Then, the as-prepared materials were used as adsorbents for the removal of metal ions from acidic wastewater. Batch adsorption experiments were carried out to study the impact of various factors such as solution pH value, contact time, temperature, and Fe (III) concentration. The results showed that the absorbent exhibited a high capacity of Fe (III) and the maximum adsorption capacity was up to 66.20 mg/g under optimal experimental conditions (the adsorption time = 12 h, pH = 2.5, and T = 303 K). Adsorption kinetics and isotherm data were accurately described by the pseudo-second-order kinetic model and Sips model, respectively. Thermodynamic studies confirmed that the adsorption was a spontaneous endothermic process. Moreover, the adsorption mechanism was investigated using Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). The results revealed the pyridine group forms a stable chelate with iron (III) ions. Therefore, this acid-resistant adsorbent exhibited excellent adsorption performance for heavy metal ions from acidic wastewater compared to the conventional adsorbents, helping realize direct decontamination and secondary utilization.
Collapse
Affiliation(s)
- Lei Zhang
- School of Chemistry and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Heng Liu
- School of Chemistry and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Jiaqi Zhu
- School of Chemistry and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Xueling Liu
- School of Chemistry and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Likun Li
- China-Ukraine Institute of Welding, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Yanjun Huang
- School of Chemistry and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Benquan Fu
- R & D Center of Wuhan Iron and Steel Company, Wuhan 430080, China
| | - Guozhi Fan
- School of Chemistry and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Yi Wang
- School of Chemistry and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| |
Collapse
|
14
|
Yang H, Li F, Xue T, Khan MR, Xia X, Busquets R, Gao H, Dong Y, Zhou W, Deng R. Csm6-DNAzyme Tandem Assay for One-Pot and Sensitive Analysis of Lead Pollution and Bioaccumulation in Mice. Anal Chem 2022; 94:16953-16959. [DOI: 10.1021/acs.analchem.2c04589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- Hao Yang
- College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Feng Li
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Analytical & Testing Center, Sichuan University, Chengdu, Sichuan 610065, China
| | - Ting Xue
- College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Mohammad Rizwan Khan
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Xuhan Xia
- College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Rosa Busquets
- School of Life Sciences, Pharmacy and Chemistry, Kingston University London, Penrhyn Road, KT1 2EE Kingston Upon Thames, United Kingdom
| | - Hong Gao
- College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Yi Dong
- College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Wenhu Zhou
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China
| | - Ruijie Deng
- College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| |
Collapse
|
15
|
Fang L, Zhu H, Geng Y, Zhang G, Zhang H, Shi T, Wu X, Li QX, Hua R. Resistance properties and adaptation mechanism of cadmium in an enriched strain, Cupriavidus nantongensis X1 T. JOURNAL OF HAZARDOUS MATERIALS 2022; 434:128935. [PMID: 35461001 DOI: 10.1016/j.jhazmat.2022.128935] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/12/2022] [Accepted: 04/12/2022] [Indexed: 06/14/2023]
Abstract
Bacterial adaption to heavy metal stress is a complex and comprehensive process of multi-response regulation. However, the mechanism is largely unexplored. In this study, cadmium (Cd) resistance and adaptation mechanism in Cupriavidus nantongensis X1T were investigated. Strain X1T could resist the stress of 307 mg/L Cd2+ and remove 70% Cd2+ in 48 h. Spectroscopic analyses suggested interactions between Cd2+ with C-N, -COOH, and -NH ligands of extracellular polymeric substances. Whole-genome sequencing found that the resistance of Cd2+ in strain X1T was caused by the joint action of Czc and Cad systems. Cd2+ at 20 mg/L elicited differential expression of 1157 genes in strain X1T. In addition to the reported effects of uptake, adsorption, effluxion, and accumulation system, the oxidative stress system, Type-VI secretory protein system, Fe-S protein synthesis, and cysteine synthesis system in strain X1T were involved in the Cd2+ resistance and accumulation. The intracellular accumulation content of Cd2+ in strain X1T was higher than the extracellular adsorption content made strain X1T to be an important resource strain in the bioremediation of Cd-contaminated sewage. The results provide a theoretical network for understanding the complex regulatory system of bacterial resistance and adaptation of Cd against stressful environments.
Collapse
Affiliation(s)
- Liancheng Fang
- Anhui Provincial Key Laboratory for Quality and Safety of Agri-Products, School of Resource & Environment, Anhui Agricultural University, Hefei, Anhui 230036, China; Institute for Green Development, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Hao Zhu
- Anhui Provincial Key Laboratory for Quality and Safety of Agri-Products, School of Resource & Environment, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Yuehan Geng
- Anhui Provincial Key Laboratory for Quality and Safety of Agri-Products, School of Resource & Environment, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Genrong Zhang
- Anhui Provincial Key Laboratory for Quality and Safety of Agri-Products, School of Resource & Environment, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Houpu Zhang
- Anhui Provincial Key Laboratory for Quality and Safety of Agri-Products, School of Resource & Environment, Anhui Agricultural University, Hefei, Anhui 230036, China; Institute for Green Development, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Taozhong Shi
- Anhui Provincial Key Laboratory for Quality and Safety of Agri-Products, School of Resource & Environment, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Xiangwei Wu
- Anhui Provincial Key Laboratory for Quality and Safety of Agri-Products, School of Resource & Environment, Anhui Agricultural University, Hefei, Anhui 230036, China; Institute for Green Development, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Qing X Li
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, 1955 East-West Road, Honolulu, HI 96822, United States
| | - Rimao Hua
- Anhui Provincial Key Laboratory for Quality and Safety of Agri-Products, School of Resource & Environment, Anhui Agricultural University, Hefei, Anhui 230036, China; Institute for Green Development, Anhui Agricultural University, Hefei, Anhui 230036, China.
| |
Collapse
|
16
|
Safari M, Rezaee R, Soltani RDC, Asgari E. Dual immobilization of magnetite nanoparticles and biosilica within alginate matrix for the adsorption of Cd(II) from aquatic phase. Sci Rep 2022; 12:11473. [PMID: 35794461 PMCID: PMC9259746 DOI: 10.1038/s41598-022-15844-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 06/30/2022] [Indexed: 12/07/2022] Open
Abstract
The adsorption of cadmium ions by magnetite (Fe3O4)@biosilica/alginate (MBA nano-hybrid) was the main aim of the present investigation. Herein, MBA nano-hybrid was synthesized via chemical precipitation technique. As-synthesized MBA nano-hybrid was characterized using FT-IR, FESEM and XRD analyzes. Based on the results, the maximum adsorption capacity of the adsorbent for the removal of Cd(II) was obtained at the initial pH of 7.0. At the initial Cd(II) concentration of 40 mg/L, increasing the reaction time to 180 min led to the Cd adsorption of 35.36 mg/g. Since the removal of Cd(II) after the reaction time of 60 min was insignificant, the reaction time of 60 min was considered as optimum reaction time for performing the experimental runs. According to the results, Langmuir isotherm and pseudo-second order kinetic models were the best fitted models with high correlation coefficients (R2 > 0.99). The results of thermodynamic study indicated exothermic (positive ΔH°) and spontaneous nature (negative ΔG°) of the adsorption of Cd(II) on the surface of MBA nano-hybrid. Negligible reduction in the adsorption capacity of the nano-hybrid was observed (16.57%) after fifth experimental runs, indicating high reusability potential of the as-synthesized nano-hybrid adsorbent.
Collapse
Affiliation(s)
- Mahdi Safari
- Environmental Health Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
- Department of Environmental Health Engineering, Faculty of Health, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Reza Rezaee
- Environmental Health Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
- Department of Environmental Health Engineering, Faculty of Health, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | | | - Esrafil Asgari
- Department of Environmental Health Engineering, School of Public Health, Khoy University of Medical Sciences, Khoy, Iran.
| |
Collapse
|
17
|
Hosseinzadeh M, Mirzaei M. Synthesized Copolymer Derivative of Poly(Styrene-alt-Maleic Anhydride) as a New Chelating Resin to Remove Heavy Metal Ions from Aqueous Solution. CHEMISTRY & CHEMICAL TECHNOLOGY 2022. [DOI: 10.23939/chcht16.02.203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Chelating resin as a new copolymer for metal ions removal was prepared using 3-(4-hydroxyphenyl) cyclopropane-1,1,2,2-tetracarboxylic acid and 1,2-diaminoethane on the poly(styrene-alt-maleic anhydride). Parameters of sorption behavior were investigated under various conditions. Kinetics studies revealed that the adsorption process confirmed the pseudo-second-order kinetics and adsorption data were well fitted to Langmuir isotherm.
Collapse
|
18
|
Al-Anazi A. Iron-based magnetic nanomaterials in environmental and energy applications: a short review. Curr Opin Chem Eng 2022. [DOI: 10.1016/j.coche.2022.100794] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
19
|
Yuan B, Li H, Hong H, Wang Q, Tian Y, Lu H, Liu J, Lin L, Wu G, Yan C. Immobilization of lead(Ⅱ) and zinc(Ⅱ) onto glomalin-related soil protein (GRSP): Adsorption properties and interaction mechanisms. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 236:113489. [PMID: 35390691 DOI: 10.1016/j.ecoenv.2022.113489] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 03/19/2022] [Accepted: 03/31/2022] [Indexed: 06/14/2023]
Abstract
Glomalin-related soil protein (GRSP), a microbial product that can be used as a bioflocculant, is critical to metal sequestration in the ecosystem. However, the relationship between GRSP and heavy metal has not been well explored. In this study, the adsorption behaviors and mechanisms of Pb(II) and Zn(II) ions on GRSP were investigated. Results reveal that the Pb(II) and Zn(II) adsorption closely conform to the pseudo second-order model, which indicates that the chemisorption of GRSP occurred after intra-particle diffusion. The adsorption process is influenced by the degree of pollution, pH value, GRSP content in the environment. In addition, scanning electron microscopy coupled with microanalysis (SEM-EDX) reveals that the surface structure of GRSP is irregularly blocky or flaky and metal ions are uniformly distributed on the surface of GRSP. Fourier transform infrared (FT-IR), X-ray photoelectron spectroscopy (XPS), and X-ray diffraction (XRD) analysis show that the carboxyl and nitro groups on GRSP act as ligands to form complexes with two divalent metal ions. The interaction between GRSP and the metals is mainly surface complexation. This research further reveals the dynamic response of its structural components when GRSP sequestrates heavy metals in mangrove sediment and aqueous ecosystems, demonstrating a new perspective for the transport and transformation of heavy metals onto GRSP.
Collapse
Affiliation(s)
- Bo Yuan
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, Fujian, China.
| | - Hanyi Li
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, Fujian, China.
| | - Hualong Hong
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, Fujian, China.
| | - Qiang Wang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, Fujian, China; State Key Laboratory of Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China.
| | - Yuan Tian
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, Fujian, China.
| | - Haoliang Lu
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, Fujian, China.
| | - Jingchun Liu
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, Fujian, China.
| | - Lujian Lin
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, Fujian, China.
| | - Guirong Wu
- College of Food and Biological Engineering, Hezhou University, Hezhou 542899, China.
| | - Chongling Yan
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, Fujian, China; State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, Fujian, China.
| |
Collapse
|
20
|
Pi C, He Z, Wang Y, Li C, Wang W, Yang Y, Li W. Efficient removal of Congo red from wastewater by gas-assisted low-gradient magnetic separation. J DISPER SCI TECHNOL 2022. [DOI: 10.1080/01932691.2022.2053704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Chenqi Pi
- College of Chemical Engineering, Xiangtan University, Hunan, China
| | - Zhipeng He
- College of Chemical Engineering, Xiangtan University, Hunan, China
| | - Yuelong Wang
- College of Chemical Engineering, Xiangtan University, Hunan, China
| | - Caiyun Li
- College of Chemical Engineering, Xiangtan University, Hunan, China
| | - Weiyan Wang
- College of Chemical Engineering, Xiangtan University, Hunan, China
| | - Yunquan Yang
- College of Chemical Engineering, Xiangtan University, Hunan, China
| | - Wensong Li
- College of Chemical Engineering, Xiangtan University, Hunan, China
| |
Collapse
|
21
|
Punia P, Bharti MK, Dhar R, Thakur P, Thakur A. Recent Advances in Detection and Removal of Heavy Metals from Contaminated Water. CHEMBIOENG REVIEWS 2022. [DOI: 10.1002/cben.202100053] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Pinki Punia
- Guru Jambheshwar University of Science and Technology Department of Physics 125001 Hisar Haryana India
| | - Manish Kumar Bharti
- Amity University Haryana Department of Aerospace Engineering 122413 Gurugram Haryana India
| | - Rakesh Dhar
- Guru Jambheshwar University of Science and Technology Department of Physics 125001 Hisar Haryana India
| | - Preeti Thakur
- Amity University Haryana Department of Physics 122413 Gurugram Haryana India
| | - Atul Thakur
- Amity University Haryana Amity Institute of Nanotechnology 122413 Gurugram Haryana India
| |
Collapse
|
22
|
Das C, Singh S, Bhakta S, Mishra P, Biswas G. Bio-modified magnetic nanoparticles with Terminalia arjuna bark extract for the removal of methylene blue and lead (II) from simulated wastewater. CHEMOSPHERE 2022; 291:132673. [PMID: 34736943 DOI: 10.1016/j.chemosphere.2021.132673] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 10/06/2021] [Accepted: 10/23/2021] [Indexed: 06/13/2023]
Abstract
This study reports a greener, cheaper and convenient approach to synthesize Terminalia arjuna bark extract coated magnetite nanoparticles (TA@MNPs) using the co-precipitation method and efficient removal of methylene blue (MB) and lead ions [Pb(II)] from simulated wastewater. The synthesized nanoparticles (NPs) were characterized by various techniques such as DLS, XRD, FTIR, HRTEM, AGM, and TGA. From TGA analysis, TA@MNPs was found to be stable even after 500 °C. Using the batch method, maximum removal was achieved at pH 9.0 for MB and pH 3.0 for Pb(II) solutions, respectively. Adsorption study showed that TA@MNPs followed pseudo-second-order kinetics by both adsorbates while isotherm modeling towards adsorption of Pb(II) and MB exhibited Langmuir and Freundlich isotherm respectively. The maximum adsorption capacity for Pb(II) on TA@MNPs was 210.5 mg g-1. The thermodynamic study proved the spontaneity of the physisorption process. Regeneration studies were also performed using five different eluents for the two adsorbents. Overall, TA@MNPs effectively removed pollutants from wastewater and thus could be potentially useful in providing clean water in a cheaper way.
Collapse
Affiliation(s)
- Chanchal Das
- Department of Chemistry, Cooch Behar Panchanan Barma University, Cooch Behar, West Bengal, 736101, India
| | - Sanjay Singh
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, 110016, India
| | - Snehasis Bhakta
- Department of Chemistry, Cooch Behar College, Cooch Behar, West Bengal, 736101, India
| | - Prashant Mishra
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, 110016, India.
| | - Goutam Biswas
- Department of Chemistry, Cooch Behar Panchanan Barma University, Cooch Behar, West Bengal, 736101, India.
| |
Collapse
|
23
|
Liu B, Lu H, Wu S, Wang Z, Feng L, Zheng H. Octopus tentacle-like molecular chains in magnetic flocculant enhances the removal of Cu(II) and malachite green in water. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
24
|
Lee S, Lee S, Jho EH, Shin S, Park CM. Fe(III)-doped activated biochar sorbents trigger mitochondrial dysfunction with oxidative stress on Daphnia magna. CHEMOSPHERE 2022; 288:132608. [PMID: 34678343 DOI: 10.1016/j.chemosphere.2021.132608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/28/2021] [Accepted: 10/17/2021] [Indexed: 06/13/2023]
Abstract
This study investigates the ecotoxicological effects of the synthesized Fe(III)-doped activated biochar (FeAB) sorbents using Daphnia magna and elucidates the underline mechanism of potential oxidative stress that may be induced by the sorbent. The EC50 value was determined to be 68.8 mg L-1. The superoxide dismutase (SOD) activity of D. magna was generally inhibited and the glutathione (GSH) level was significantly reduced even at the lowest FeAB concentration used (i.e., 0.12 mg L-1). This means that the antioxidant system of D. magna can be significantly inhibited by exposure to even a small amount of FeAB. While the higher reactive oxygen species (ROS)/reactive nitrogen species (RNS) levels in the exposed samples than the control at low FeAB concentrations (i.e., <15.63 mg L-1) suggest the failure of the anti-oxidation mechanism of SOD and GSH, the lower average levels of ROS/RNS in the exposed samples than the control at relatively high concentrations (i.e., 31.25-1000 mg L-1) can be explained by the reduced ROS/RNS production due to cell damage. Furthermore, the mitochondrial complex III activities were significantly inhibited in a FeAB concentration-dependent manner. Overall, the FeAB sorbent down-regulates the antioxidant mechanism, and this, together with the inefficient mitochondria, increases the ROS generation, leading to mitochondrial dysfunction again. The potential oxidative stress of FeAB on D. manga observed in this study suggests that the environmental application of FeAB needs to adopt a method that can minimize the direct contact between FeAB and organisms.
Collapse
Affiliation(s)
- Songhee Lee
- Interdisciplinary Program of Bioenergy and Biomaterials Graduate School, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, South Korea
| | - Sungjong Lee
- Department of Environmental Science, Hankuk University of Foreign Studies, 81 Oedae-ro, Mohyeon-eup, Cheoin-gu, Yongin-si, Gyeonggi-do, 17035, South Korea
| | - Eun Hea Jho
- Department of Agricultural and Biological Chemistry, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, South Korea.
| | - Sooim Shin
- Interdisciplinary Program of Bioenergy and Biomaterials Graduate School, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, South Korea; Department of Biotechnology and Bioengineering, College of Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, South Korea.
| | - Chang Min Park
- Department of Environmental Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu, 41566, South Korea
| |
Collapse
|
25
|
SiO2 based nanocomposite for simultaneous magnetic removal and discrimination of small pollutants in water. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2021.127905] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
26
|
Interaction Effect of EDTA, Salinity, and Oxide Nanoparticles on Alga Chlamydomonas reinhardtii and Chlamydomonas euryale. PLANTS 2021; 10:plants10102118. [PMID: 34685927 PMCID: PMC8541132 DOI: 10.3390/plants10102118] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/01/2021] [Accepted: 10/02/2021] [Indexed: 11/16/2022]
Abstract
The interaction effects of organic ligand ethylene diamine tetra-acetic acid (EDTA) and oxide nanoparticles (magnetite Fe3O4-NPs and copper CuO-NPs) were investigated during a 72 h period on two green algal species-Chlamydomonas reinhardtii under freshwater conditions and Chlamydomonas euryale under saltwater conditions. Fe3O4-NPs had larger agglomerates and very low solubility. CuO-NPs, having smaller agglomerates and higher solubility, were more toxic than Fe3O4-NPs in freshwater conditions for similar mass-based concentrations, especially at 72 h under 100 mg L-1. Furthermore, the effect of EDTA increased nanoparticle solubility, and the salinity caused a decrease in their solubility. Our results on C. euryale showed that the increase in salinity to 32 g L-1 caused the formation of larger nanoparticle agglomerates, leading to a decrease in the toxicity impact on algal cells. In addition, EDTA treatments induced a toxicity effect on both freshwater and saltwater Chlamydomonas species, by altering the nutrient uptake of algal cells. However, C. euryale was more resistant to EDTA toxicity than C. reinhardtii. Moreover, nanoparticle treatments caused a reduction in EDTA toxicity, especially for CuO-NPs. Therefore, the toxicity impact caused by these environmental factors should be considered in risk assessment for metallic nanoparticles.
Collapse
|
27
|
Mensah MB, Lewis DJ, Boadi NO, Awudza JAM. Heavy metal pollution and the role of inorganic nanomaterials in environmental remediation. ROYAL SOCIETY OPEN SCIENCE 2021; 8:201485. [PMID: 34671482 PMCID: PMC8524323 DOI: 10.1098/rsos.201485] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 09/14/2021] [Indexed: 05/28/2023]
Abstract
Contamination of water and soil with toxic heavy metals is a major threat to human health. Although extensive work has been performed on reporting heavy metal pollutions globally, there are limited review articles on addressing this pernicious phenomenon. This paper reviews inorganic nanoparticles and provides a framework for their qualities required as good nanoadsorbents for efficient removal of heavy metals from water. Different inorganic nanoparticles including metals, metal oxides and metal sulfides nanoparticles have been applied as nanoadsorbents to successfully treat water with high contaminations of heavy metals at concentrations greater than 100 mg l-1, achieving high adsorption capacities up to 3449 mg g-1. It has been identified that the synthesis method, selectivity, stability, regeneration and reusability, and adsorbent separation from solution are critical parameters in deciding on the quality of inorganic nanoadsorbents. Surface functionalized nanoadsorbents were found to possess high selectivity and capacity for heavy metals removal from water even at a very low adsorbent dosage of less than 2 g l-1, which makes them better than conventional adsorbents in environmental remediation.
Collapse
Affiliation(s)
- Michael B. Mensah
- Department of Chemistry, Kwame Nkrumah University of Science and Technology, PMB, Kumasi, Ghana
| | - David J. Lewis
- Department of Materials, University of Manchester, Oxford Road, M13 9PL, UK
| | - Nathaniel O. Boadi
- Department of Chemistry, Kwame Nkrumah University of Science and Technology, PMB, Kumasi, Ghana
| | - Johannes A. M. Awudza
- Department of Chemistry, Kwame Nkrumah University of Science and Technology, PMB, Kumasi, Ghana
| |
Collapse
|
28
|
Habibi H, Dalali N, Ramazani A. Decoration of maleic/acrylic acid onto CoFe 2O 4 as a high-performance nanosorbent for the removal of lead(II) and cadmium(II) from environmental samples. SEP SCI TECHNOL 2021. [DOI: 10.1080/01496395.2020.1811333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Hadi Habibi
- Phase Separation & FIA Lab., Department of Chemistry, Faculty of Science, University of Zanjan, Zanjan, Iran
| | - Nasser Dalali
- Phase Separation & FIA Lab., Department of Chemistry, Faculty of Science, University of Zanjan, Zanjan, Iran
| | - Ali Ramazani
- Department of Chemistry, Faculty of Science, University of Zanjan, Zanjan, Iran
| |
Collapse
|
29
|
Recent Advances of Nanoremediation Technologies for Soil and Groundwater Remediation: A Review. WATER 2021. [DOI: 10.3390/w13162186] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Nanotechnology has been widely used in many fields including in soil and groundwater remediation. Nanoremediation has emerged as an effective, rapid, and efficient technology for soil and groundwater contaminated with petroleum pollutants and heavy metals. This review provides an overview of the application of nanomaterials for environmental cleanup, such as soil and groundwater remediation. Four types of nanomaterials, namely nanoscale zero-valent iron (nZVI), carbon nanotubes (CNTs), and metallic and magnetic nanoparticles (MNPs), are presented and discussed. In addition, the potential environmental risks of the nanomaterial application in soil remediation are highlighted. Moreover, this review provides insight into the combination of nanoremediation with other remediation technologies. The study demonstrates that nZVI had been widely studied for high-efficiency environmental remediation due to its high reactivity and excellent contaminant immobilization capability. CNTs have received more attention for remediation of organic and inorganic contaminants because of their unique adsorption characteristics. Environmental remediations using metal and MNPs are also favorable due to their facile magnetic separation and unique metal-ion adsorption. The modified nZVI showed less toxicity towards soil bacteria than bare nZVI; thus, modifying or coating nZVI could reduce its ecotoxicity. The combination of nanoremediation with other remediation technology is shown to be a valuable soil remediation technique as the synergetic effects may increase the sustainability of the applied process towards green technology for soil remediation.
Collapse
|
30
|
Li S, Li Y, Fu Z, Lu L, Cheng J, Fei Y. A 'top modification' strategy for enhancing the ability of a chitosan aerogel to efficiently capture heavy metal ions. J Colloid Interface Sci 2021; 594:141-149. [PMID: 33756362 DOI: 10.1016/j.jcis.2021.03.029] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 03/04/2021] [Accepted: 03/05/2021] [Indexed: 12/15/2022]
Abstract
Chitosan is a promising substitute for heavy metal ion adsorbents. However, traditional pure chitosan adsorbents have certain disadvantages that limit their application. In this paper, a 'top modification' strategy was used to enhance the capturing ability of chitosan adsorbents. A chitosan aerogel was prepared via physical crosslinking and then enhanced by immersion in ethylenediamine tetraacetic anhydride solution. Finally, an enhanced chitosan aerogel was obtained, and analyses were used to describe its structure, adsorption properties and mechanism. Results showed that both the porous structure and the combined complexations dramatically improved the capturing ability of the chitosan aerogel for heavy metal ions. The theoretical adsorption capacities of the enhanced aerogel for Cu2+, Pb2+ and Cd2+ reached 108.14, 143.73 and 84.62 mg/g, respectively. Due to their environmental friendliness, good adsorption performance, easy separation and reusability, enhanced aerogels have become viable solutions to removing heavy metal pollutants from aquatic systems.
Collapse
Affiliation(s)
- Shize Li
- Special Glass Key Lab of Hainan Province, School of Materials Science and Engineering, Hainan University, Haikou 570228, China
| | - Yaping Li
- Special Glass Key Lab of Hainan Province, School of Materials Science and Engineering, Hainan University, Haikou 570228, China
| | - Zi Fu
- Special Glass Key Lab of Hainan Province, School of Materials Science and Engineering, Hainan University, Haikou 570228, China
| | - Lingbin Lu
- Special Glass Key Lab of Hainan Province, School of Materials Science and Engineering, Hainan University, Haikou 570228, China.
| | - Jingru Cheng
- Special Glass Key Lab of Hainan Province, School of Materials Science and Engineering, Hainan University, Haikou 570228, China
| | - Yongsheng Fei
- Special Glass Key Lab of Hainan Province, School of Materials Science and Engineering, Hainan University, Haikou 570228, China
| |
Collapse
|
31
|
Investigating the adsorption behavior and mechanisms of insoluble Humic acid/starch composite microspheres for metal ions from water. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2020.125672] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
32
|
Green synthesis of reusable super-paramagnetic diatomite for aqueous nickel (II) removal. J Colloid Interface Sci 2021; 582:1179-1190. [PMID: 32950834 DOI: 10.1016/j.jcis.2020.08.119] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/20/2020] [Accepted: 08/28/2020] [Indexed: 01/25/2023]
Abstract
Adsorption is an effective method for treating wastewater containing nickel due to its minimal equipment requirements and flexible operation. Therefore, an environmental friendly, inexpensive, efficient and recyclable adsorbent is needed. In this work, a reusable dual-functional super-paramagnetic adsorbent was prepared by combining APTES (3-Aminopropyltriethoxysilane) and EDTA (ethylenediaminetetraacetic acid disodium) with magnetic diatomite for the removal of Ni2+. It is named diatomite/CoFe2O4@APTES-EDTA (DECFASEs). The synthetic material was characterized and studied by XRD (X-ray Powder Diffractometer), FTIR (Fourier Transform Infrared Spectrometer), SEM (Scanning Electron Microscope), TEM (Transmission Electron Microscope), EDS (Energy Dispersive Spectrometer), VSM (Vibrating-Sample Magnetometer), BET (Brunauer-Emmett-Teller) method, Zeta potential analyzer and XPS (X-ray Photoelectron Spectroscopy), respectively. The performance of adsorption Ni2+ by DECFASEs was studied on effect of pH, reaction time and initial concentrations. The adsorption and desorption capacity and recyclability of the adsorbent material were estimated. A adsorption kinetic data had a significant correlation with the pseudo second-order kinetic and also adsorption isotherm data corresponded well with Freundlich adsorption isotherm. The maximum adsorption capacity of the adsorbent material was 19.22 mg/g. The Ni2+ adsorption capacity of DECFASEs decreased slightly from 9.11 to 8.25 mg/g after 4 recycles. The XPS results of DECFASEs before and after Ni2+ uptake showed N and O participated in the complexation of Ni2+ in the adsorption process, which verified the chemical interaction between Ni2+ and DECFASEs. Modified-diatomite is a promising adsorbent for aqueous Ni2+ removal.
Collapse
|
33
|
Rehman AU, Nazir S, Irshad R, Tahir K, ur Rehman K, Islam RU, Wahab Z. Toxicity of heavy metals in plants and animals and their uptake by magnetic iron oxide nanoparticles. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.114455] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
34
|
Pfeifer A, Škerget M, Čolnik M. Removal of iron, copper, and lead from aqueous solutions with zeolite, bentonite, and steel slag. SEP SCI TECHNOL 2020. [DOI: 10.1080/01496395.2020.1866607] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Anja Pfeifer
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Maribor, Slovenia
| | - Mojca Škerget
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Maribor, Slovenia
| | - Maja Čolnik
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Maribor, Slovenia
| |
Collapse
|
35
|
Mn-Fe Layered Double Hydroxide Intercalated with Ethylene-Diaminetetraacetate Anion: Synthesis and Removal of As(III) from Aqueous Solution around pH 2-11. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17249341. [PMID: 33327414 PMCID: PMC7764843 DOI: 10.3390/ijerph17249341] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/08/2020] [Accepted: 12/10/2020] [Indexed: 11/16/2022]
Abstract
A novel adsorbent Mn-Fe layered double hydroxides intercalated with ethylenediaminete-traacetic (EDTA@MF-LDHs) was synthesized by a low saturation coprecipitation method. The behavior and mechanism of As(III) removed by EDTA@MF-LDHs were investigated in detail in comparison with the carbonate intercalated Mn-Fe layered double hydroxides (CO3@MF-LDHs). The results showed that EDTA@MF-LDHs had a higher removal efficiency for As(III) than As(V) with a broader pH range than CO3@MF-LDH. The large adsorption capacity of EDTA@MF-LDHs is related to its large interlayer spacing and the high affinity of its surface hydroxyl groups. The maximum adsorption capacity for As(III) is 66.76 mg/g at pH 7. The FT-IR and XPS characterization indicated that the removal mechanism of the As(III) on EDTA@MF-LDHs include surface complexation, redox, and ion exchange.
Collapse
|
36
|
Chi Y, Huang Y, Wang J, Chen X, Chu S, Hayat K, Xu Z, Xu H, Zhou P, Zhang D. Two plant growth promoting bacterial Bacillus strains possess different mechanisms in adsorption and resistance to cadmium. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 741:140422. [PMID: 32615431 DOI: 10.1016/j.scitotenv.2020.140422] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 06/15/2020] [Accepted: 06/20/2020] [Indexed: 06/11/2023]
Abstract
Microorganisms are promising biosorbents for decontaminating cadmium-polluted soil or water systems, but the underlying remediation mechanisms are still unclear. In this study, the cadmium biosorption mechanisms and capabilities of plant growth-promoting microorganisms (Bacillus megaterium NCT-2 and Bacillus paranthracis NT1) were investigated. Batch biosorption experiments showed that the optimal biosorption conditions for B. megaterium NCT-2 and B. paranthracis NT1 were pH 6.0, a biomass dosage of 1.0 g L-1, and an initial Cd2+ concentration of 10 mg L-1, and pH 8.0, a biomass dosage of 1.0 g L-1, and an initial Cd2+ concentration of 10 mg L-1, respectively. The biosorption processes of both biosorbents were well described by the pseudo-second order kinetic model, which indicated that the biosorption of Cd2+ was mainly chemisorption. The intracellular accumulation portion of adsorbed Cd2+ in B. megaterium NCT-2 was much higher than in B. paranthracis NT1 (43.11% and 3.25%, respectively), which resulted in the lower cadmium tolerance (14 mg L-1 and 280 mg L-1, respectively) and higher cadmium removal efficiency (46.79% and 20.45%, respectively) of B. megaterium NCT-2 compared to B. paranthracis NT1. SEM-EDS and FTIR analysis suggested the probable interactions of Cd2+ with the biosorbent surface ligands, such as -OH, -NH, -SO3, CO and -COOH during surface adsorption. Results of qRT-PCR illustrated that the difference in cadmium resistant mechanism and adsorption performance between B. megaterium NCT-2 and B. paranthracis NT1 may be regulated by the genes cadA, zitB, khtT, and bshA and cadA, trkA, czcD, and bshA, respectively. Our results revealed that these two biosorbents have the potential for further use in the development of cadmium remediation technologies and could provide insight into the mechanisms of cadmium biosorption.
Collapse
Affiliation(s)
- Yaowei Chi
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China; School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Areas, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yueyuan Huang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Juncai Wang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Areas, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xunfeng Chen
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Areas, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shaohua Chu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Areas, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Kashif Hayat
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Areas, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zheng Xu
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Hong Xu
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Pei Zhou
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Areas, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Dan Zhang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Areas, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
37
|
Al-Saad K, Issa AA, Idoudi S, Shomar B, Al-Ghouti MA, Al-Hashimi N, El-Azazy M. Smart Synthesis of Trimethyl Ethoxysilane (TMS) Functionalized Core-Shell Magnetic Nanosorbents Fe 3O 4@SiO 2: Process Optimization and Application for Extraction of Pesticides. Molecules 2020; 25:molecules25204827. [PMID: 33092200 PMCID: PMC7587953 DOI: 10.3390/molecules25204827] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 10/14/2020] [Accepted: 10/15/2020] [Indexed: 01/14/2023] Open
Abstract
In the current study, a smart approach for synthesizing trimethyl ethoxysilane–decorated magnetic-core silica-nanoparticles (TMS-mcSNPs) and its effectiveness as nanosorbents have been exploited. While the magnetite core was synthesized using the modified Mössbauer method, Stöber method was employed to coat the magnetic particles. The objective of this work is to maximize the magnetic properties and to minimize both particle size (PS) and particle size distribution (PSD). Using a full factorial design (2k-FFD), the influences of four factors on the coating process was assessed by optimizing the three responses (magnetic properties, PS, and PSD). These four factors were: (1) concentration of tetraethyl-orthosilicate (TEOS); (2) concentration of ammonia; (3) dose of magnetite (Fe3O4); and (4) addition mode. Magnetic properties were calculated as the attraction weight. Scanning electron microscopy (SEM) was used to determine PS, and standard deviation (±SD) was calculated to determine the PSD. Composite desirability function (D) was used to consolidate the multiple responses into a single performance characteristic. Pareto chart of standardized effects together with analysis of variance (ANOVA) at 95.0 confidence interval (CI) were used to determine statistically significant variable(s). Trimethyl ethoxysilane–functionalized mcSNPs were further applied as nanosorbents for magnetic solid phase extraction (TMS-MSPE) of organophosphorus and carbamate pesticides.
Collapse
Affiliation(s)
- Khalid Al-Saad
- Department of Chemistry and Earth Sciences, College of Arts and Sciences, Qatar University, Doha 2713, Qatar; (K.A.-S.); (A.A.I.); (S.I.); (N.A.-H.)
| | - Ahmed A. Issa
- Department of Chemistry and Earth Sciences, College of Arts and Sciences, Qatar University, Doha 2713, Qatar; (K.A.-S.); (A.A.I.); (S.I.); (N.A.-H.)
| | - Sourour Idoudi
- Department of Chemistry and Earth Sciences, College of Arts and Sciences, Qatar University, Doha 2713, Qatar; (K.A.-S.); (A.A.I.); (S.I.); (N.A.-H.)
| | - Basem Shomar
- Qatar Environment and Energy Research Institute (QEERI), Hamad Bin Khalifa University, Doha 2713, Qatar;
| | - Mohammad A. Al-Ghouti
- Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha 2713, Qatar;
| | - Nessreen Al-Hashimi
- Department of Chemistry and Earth Sciences, College of Arts and Sciences, Qatar University, Doha 2713, Qatar; (K.A.-S.); (A.A.I.); (S.I.); (N.A.-H.)
| | - Marwa El-Azazy
- Department of Chemistry and Earth Sciences, College of Arts and Sciences, Qatar University, Doha 2713, Qatar; (K.A.-S.); (A.A.I.); (S.I.); (N.A.-H.)
- Correspondence: ; Tel.: +974-44034675
| |
Collapse
|
38
|
Enhancing U(VI) adsorptive removal via amidoximed polyacrylonitrile nanofibers with hierarchical porous structure. Colloid Polym Sci 2020. [DOI: 10.1007/s00396-020-04764-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
39
|
Huang Y, Keller AA. Remediation of heavy metal contamination of sediments and soils using ligand-coated dense nanoparticles. PLoS One 2020; 15:e0239137. [PMID: 32997670 PMCID: PMC7526897 DOI: 10.1371/journal.pone.0239137] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 08/31/2020] [Indexed: 11/28/2022] Open
Abstract
Sediment and soil contamination with toxic heavy metals, including cadmium (Cd2+) and lead (Pb2+), represents a major long-term remediation challenge. Resuspension of contaminated sediments into the water column, or the uptake of toxic metals from top soil, can lead to exposure of aquatic or terrestrial organisms, followed by bioconcentration, bioaccumulation and biomagnification, which may pose a threat to public health. We have developed a novel nanoscale engineered material, namely ligand-coated dense nanoparticles (Ligand DNPs), which contain a dense WO3 nanoparticle core and a shell functionalized with a metal-binding organic ligand (EDTA), to effectively sequester heavy metal ions deeper into the soil and sediments. We demonstrate that one application of Ligand DNPs can remove from 60% to almost 80% of the Cd and Pb in two different soil matrices, driving these metal ions deeper into the sediment or soil column via gravity, and making them less bioavailable. Ligand DNPs can provide a relatively fast, convenient, and efficient in-situ approach for the remediation of sediments and soils contaminated with heavy metals.
Collapse
Affiliation(s)
- Yuxiong Huang
- Bren School of Environmental Science and Management, University of California at Santa Barbara, CA, United States of America
- Shenzhen Environmental Science and New Energy Technology Engineering Laboratory, Tsinghua-Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Shenzhen, PR China
| | - Arturo A. Keller
- Bren School of Environmental Science and Management, University of California at Santa Barbara, CA, United States of America
- * E-mail:
| |
Collapse
|
40
|
Hamdy A, Ismail SH, Ebnalwaled AA, Mohamed GG. Characterization of Superparamagnetic/Monodisperse PEG-Coated Magnetite Nanoparticles Sonochemically Prepared from the Hematite Ore for Cd(II) Removal from Aqueous Solutions. J Inorg Organomet Polym Mater 2020. [DOI: 10.1007/s10904-020-01741-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
41
|
Zhang Q, Li J, Lin Q, Fang C. A stiff ZnO/carbon foam composite with second-level macroporous structure filled ZnO particles for heavy metal ions removal. ENVIRONMENTAL RESEARCH 2020; 188:109698. [PMID: 32504849 DOI: 10.1016/j.envres.2020.109698] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 05/16/2020] [Accepted: 05/17/2020] [Indexed: 06/11/2023]
Abstract
A stiff zinc oxide/carbon foam (ZnO/CF) composite as a desirable adsorbent for heavy metal ions was innovatively designed and fabricated by loading ZnO particles into a carbon foam with capsule-like second-level macropores. The features of the resulting composite were characterized by FESEM, XRD, BET, FTIR, and XPS. The effects of adsorption parameters on the Pb(II), Cr(III), and Cu(II) ions removal were studied through batch experiments. Results show that the ZnO/CF composite possesses a second-level macroporous structure filled ZnO particles, which has both mesoporous structure and Zn-O-C bond with the strongly synergistic effect. And meanwhile, it has a relatively high compression strength of 2.18 MPa at a density of 0.18 g cm-3. The experimental maximum adsorption capacities for Pb(II), Cr(III), and Cu(II) ions reach 170.85 mg g-1, 168.74 mg g-1, and 104.61 mg g-1 with relatively high partition coefficients of 5.803 mg g-1 μM-1, 1.169 mg g-1 μM-1, and 0.648 mg g-1 μM-1, respectively. The experimental data are in accordance with Langmuir isotherm and pseudo-second-order kinetic model. Moreover, the composite still exhibits a good adsorption performance even after five cycles.
Collapse
Affiliation(s)
- Qiyun Zhang
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350116, PR China
| | - Jiaqi Li
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350116, PR China
| | - Qilang Lin
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350116, PR China.
| | - Changqing Fang
- Faculty of Printing, Packing Engineering and Digital Media Technology, Xi'an University of Technology, Xi'an, 710048, PR China.
| |
Collapse
|
42
|
PFEIFER A, ŠKERGET M. A review: a comparison of different adsorbents for removal of Cr (VI), Cd (II) and Ni (II). Turk J Chem 2020; 44:859-883. [PMID: 33488199 PMCID: PMC7751917 DOI: 10.3906/kim-2002-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 06/07/2020] [Indexed: 01/19/2023] Open
Abstract
A review of the studies dealing with the removal of chromium, cadmium, and nickel ions with different adsorbents published in the literature between 2014 and 2018 is given in tabular form, along with the adsorption conditions, adsorption isotherm, and kinetic models applied by the authors to model the experimental data and adsorption capacities. The review focuses on the efficiency of ion removal.
Collapse
Affiliation(s)
- Anja PFEIFER
- Faculty of Chemistry and Chemical Engineering, University of Maribor, MariborSlovenia
| | - Mojca ŠKERGET
- Faculty of Chemistry and Chemical Engineering, University of Maribor, MariborSlovenia
| |
Collapse
|
43
|
Khan FSA, Mubarak NM, Khalid M, Walvekar R, Abdullah EC, Mazari SA, Nizamuddin S, Karri RR. Magnetic nanoadsorbents' potential route for heavy metals removal-a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:24342-24356. [PMID: 32306264 DOI: 10.1007/s11356-020-08711-6] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 04/01/2020] [Indexed: 06/11/2023]
Abstract
Due to the rapid growth in the heavy metal-based industries, their effluent and local dumping have created significant environmental issues. In the past, typically, removal of heavy metals was handled by reverse osmosis and ion exchange techniques, but these methods have many disadvantages. Therefore, extensive work into the development of improved techniques has increased, especially for heavy metal removal. Many countries are currently researching new materials and techniques based on nanotechnology for various applications that involve extracting heavy metals from different water sources such as wastewater, groundwater, drinking water and surface water. Nanotechnology provides the possibility of enhancing existing techniques to tackle problems more efficiently. The development in nanotechnology has led to the discovery of many new materials such as magnetic nanoparticles. These nanoparticles demonstrate excellent properties such as surface-volume ratio, higher surface area, low toxicity and easy separation. Besides, magnetic nanoparticles can be easily and efficiently recovered after adsorption compared with other typical adsorbents. This review mainly emphasises on the efficiency of heavy metal removal using magnetic nanoadsorbent from aqueous solution. In addition, an in-depth analysis of the synthesis, characterisation and modification approaches of magnetic nanoparticles is systematically presented. Furthermore, future opportunities and challenges of using magnetic particles as an adsorbent for the removal of heavy metals are also discussed.
Collapse
Affiliation(s)
- Fahad Saleem Ahmed Khan
- Department of Chemical Engineering, Faculty of Engineering and Science, Curtin University, 98009, Miri, Sarawak, Malaysia
| | - Nabisab Mujawar Mubarak
- Department of Chemical Engineering, Faculty of Engineering and Science, Curtin University, 98009, Miri, Sarawak, Malaysia.
| | - Mohammad Khalid
- Graphene & Advanced 2D Materials Research Group (GAMRG), School of Science and Technology, Sunway University, No. 5, Jalan Universiti, Bandar Sunway, 47500, Subang Jaya, Selangor, Malaysia
| | - Rashmi Walvekar
- Department of Chemical Engineering, School of Energy and Chemical Engineering, Xiamen University Malaysia, Jalan Sunsuria, Bandar Sunsuria, 43900, Sepang, Selangor, Malaysia
| | - Ezzat Chan Abdullah
- Department of Chemical Process Engineering, Malaysia-Japan International Institute of Technology (MJIIT), Universiti Teknologi Malaysia (UTM), Jalan Sultan Yahya Petra, 54100, Kuala Lumpur, Malaysia
| | - Shaukat A Mazari
- Department of Chemical Engineering, Dawood University of Engineering and Technology, Karachi, Pakistan
| | | | - Rama Rao Karri
- Petroleum, and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Bandar Seri Begawan, Brunei Darussalam
| |
Collapse
|
44
|
Nawaz T, Zulfiqar S, Sarwar MI, Iqbal M. Synthesis of diglycolic acid functionalized core-shell silica coated Fe 3O 4 nanomaterials for magnetic extraction of Pb(II) and Cr(VI) ions. Sci Rep 2020; 10:10076. [PMID: 32572117 PMCID: PMC7308298 DOI: 10.1038/s41598-020-67168-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Accepted: 06/03/2020] [Indexed: 11/08/2022] Open
Abstract
Amine-terminated core-shell silica coated magnetite nanoparticles were functionalized with diglycolic acid for the first time to create acid moiety on the surface of the nanoparticles. The formation of magnetite nanoparticles was scrutinised through XRD, SEM, EDS, TEM, VSM and FTIR spectroscopy. The BET surface area of nano-sorbent was found to be 4.04 m2/g with pore size 23.68 nm. These nanomaterials were then utilized to remove the Pb(II) and Cr(VI) ions from their aqueous media and uptake of metal ions was determined by atomic absorption spectroscopy (AAS). A batch adsorption technique was applied to remove both ions at optimised pH and contact time with maximum adsorption efficiency for Pb(II) ions at pH 7 while for Cr(VI) ions at pH 3. Adsorption mechanism was studied using Langmuir and Freundlich isotherms and equilibrium data fitted well for both the isotherms, showing complex nature of adsorption comprising both chemisorption as well as physio-sorption phenomena. The nanosorbents exhibited facile separation by applying external magnetic field due to the ferrimagnetic behaviour with 31.65 emu/g saturation magnetization. These nanosorbents were also found to be used multiple times after regeneration.
Collapse
Affiliation(s)
- Tehreema Nawaz
- Department of Chemistry, School of Natural Sciences, National University of Sciences and Technology, H-12, Islamabad, 44000, Pakistan
| | - Sonia Zulfiqar
- Department of Chemistry, School of Sciences & Engineering, The American University in Cairo, New Cairo, 11835, Egypt
| | | | - Mudassir Iqbal
- Department of Chemistry, School of Natural Sciences, National University of Sciences and Technology, H-12, Islamabad, 44000, Pakistan
| |
Collapse
|
45
|
Simonescu CM, Lavric V, Musina A, Antonescu OM, Culita DC, Marinescu V, Tardei C, Oprea O, Pandele AM. Experimental and modeling of cadmium ions removal by chelating resins. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.112973] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
46
|
Zhu N, Zhang B, Yu Q. Genetic Engineering-Facilitated Coassembly of Synthetic Bacterial Cells and Magnetic Nanoparticles for Efficient Heavy Metal Removal. ACS APPLIED MATERIALS & INTERFACES 2020; 12:22948-22957. [PMID: 32338492 DOI: 10.1021/acsami.0c04512] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Heavy-metal pollution is becoming a worldwide problem severely threatening our health and ecosystem. In this study, we constructed a genetic-engineering-driven coassembly of synthetic bacterial cells and magnetic nanoparticles (MNPs) for capturing heavy metals. The Escherichia coli cells were genetically engineered by introducing a de novo synthetic heavy-metal-capturing gene (encoding a protein SynHMB containing a six-histidine tag, two cystine-rich peptides, and a metallothionein sequence) and a synthetic type VI secretory system (T6SS) cluster of Pseudomonas putida, endowing the synthetic cells (SynEc2) with high ability of displaying the heavy-metal-capturing SynHMB on cell surface. MNPs were synthesized by a coprecipitation method and further modified by polyethylenimine (PEI) and diethylenetriaminepentaacetic acid (DTPA). Owing to the surface exposure of six-histidine tag on the synthetic bacteria and carboxyl groups on the modified MNPs (MNP@SiO2-PEI-DTPA), the synthetic bacterial cells and MNPs coassembled to form biotic/abiotic complex exhibiting a self-developing characteristic. In the culture medium containing both Cd2+ and Pb2+, the coassemblies captured these heavy metals with high removal efficiency (>90% even at 50 mg/L of Cd2+ and 50 mg/L of Pb2+) and were conveniently recycled by artificial magnetic fields. Moreover, the coassemblies realized coremoval of organic carbon pollutants with the removal efficiency of >80%. This study builds a novel biotic/abiotic coassembling platform facilitated by genetic engineering and sheds light on development of artificial magnetic biological systems for efficient treatment of environmental pollution.
Collapse
Affiliation(s)
- Nali Zhu
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, P. R. China
| | - Bing Zhang
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Qilin Yu
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, P. R. China
| |
Collapse
|
47
|
Advanced core-shell EDTA-functionalized magnetite nanoparticles for rapid and efficient magnetic solid phase extraction of heavy metals from water samples prior to the multi-element determination by ICP-OES. Mikrochim Acta 2020; 187:289. [DOI: 10.1007/s00604-020-04231-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 03/23/2020] [Indexed: 12/16/2022]
|
48
|
Zhou ZQ, Liao YP, Yang J, Huang S, Xiao Q, Yang LY, Liu Y. Rapid ratiometric detection of Cd 2+ based on the formation of ZnSe/CdS quantum dots. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 228:117795. [PMID: 31753647 DOI: 10.1016/j.saa.2019.117795] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 11/10/2019] [Accepted: 11/11/2019] [Indexed: 06/10/2023]
Abstract
Developing simple and sensitive non-aggregation strategy for detecting Cd2+ is necessary for improving the selectivity and sensitivity of probe. Here, we establish a simple, rapid and ratiometric strategy for the recognition of Cd2+ based on the formation of core-shell ZnSe/CdS structure using ZnSe quantum dots (QDs). The transformation from binary ZnSe QDs to core-shell ZnSe/CdS QDs both change the elemental composition and structure of ZnSe QDs, leading to the changes in band gap of ZnSe QDs, which could be observed in the UV-vis spectra. In the detection process, ZnSe QDs only possess absorption peak at 343 nm, the formation of ZnSe/CdS after the addition of Cd2+ leads to the appearance of the new peak at 397 nm, while other heavy metal ions could not cause the appearance of new absorption peak. Therefore, this strategy shows good selectivity for Cd2+ detection. Based on this strategy, the limit of detection (LOD) for Cd2+ is 11 nM by UV-vis spectroscopy with a desirable relation of linearity (R2 = 0.999) between A397/A343 and Cd2+ contents, which is superior to the LOD of most reported nanomaterials. The response time for Cd2+ detection is as short as 60 s, which is suitable for rapid detection. This ratiometric probe has also been applied to the detection of Cd2+ in tap water samples, the recovery of Cd2+ was between 94.9% and 105.6% for tap water samples, indicating the high accuracy of our ratiometric assay. Our strategy not only provided a new method for detecting Cd2+, but also put forward an implication that the band energy changes of QDs caused by heavy metal ions can be applied in the selective and sensitive detection of heavy metal ions.
Collapse
Affiliation(s)
- Zhi-Qiang Zhou
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, PR China; Key Laboratory of Analytical Chemistry for Biology and Medicine (MOE), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, PR China
| | - Yuan-Ping Liao
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, PR China
| | - Jing Yang
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, PR China
| | - Shan Huang
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, PR China
| | - Qi Xiao
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, PR China
| | - Li-Yun Yang
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, PR China.
| | - Yi Liu
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, PR China; Key Laboratory of Analytical Chemistry for Biology and Medicine (MOE), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, PR China; Hubei Province Key Laboratory of Coal Conversion and New Type of Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, PR China.
| |
Collapse
|
49
|
Wang L, Shi C, Wang L, Pan L, Zhang X, Zou JJ. Rational design, synthesis, adsorption principles and applications of metal oxide adsorbents: a review. NANOSCALE 2020; 12:4790-4815. [PMID: 32073021 DOI: 10.1039/c9nr09274a] [Citation(s) in RCA: 128] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The shortage of water resources and increasingly serious water pollution have driven the development of high-efficiency water treatment technology. Among a variety of technologies, adsorption is widely used in environmental remediation. As a class of typical adsorbents, metal oxides have been developed for a long time and continued to attract widespread attention, since they have unique physicochemical properties, including abundant surface active sites, high chemical stability, and adjustable shape and size. In this review, the basic principles of the adsorption process will be first elucidated, including affecting factors, evaluation index, adsorption mechanisms, and common kinetic and isotherm models. Then, the adsorption properties of several typical metal oxides, and key parameters affecting the adsorption performance such as particle/pore size, morphology, functionalization and modification, supports and calcination temperature will be discussed, as well as their application in the removal of various inorganic and organic contaminants. In addition, desorption and recycling of the spent adsorbent are summarized. Finally, the future development of metal oxide based adsorbents is also discussed.
Collapse
Affiliation(s)
- Li Wang
- Key Laboratory for Green Chemical Technology of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| | - Chengxiang Shi
- Key Laboratory for Green Chemical Technology of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| | - Li Wang
- Key Laboratory for Green Chemical Technology of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China. and Collaborative Innovative Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Lun Pan
- Key Laboratory for Green Chemical Technology of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China. and Collaborative Innovative Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Xiangwen Zhang
- Key Laboratory for Green Chemical Technology of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China. and Collaborative Innovative Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Ji-Jun Zou
- Key Laboratory for Green Chemical Technology of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China. and Collaborative Innovative Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| |
Collapse
|
50
|
Gong T, Tang Y. Preparation of multifunctional nanocomposites Fe 3O 4@SiO 2-EDTA and its adsorption of heavy metal ions in water solution. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2020; 81:170-177. [PMID: 32293600 DOI: 10.2166/wst.2020.099] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Novel magnetic Fe3O4@SiO2-ethylenediamine tetraacetic acid (adsorbent) CMS-COOH-modified magnetic materials, CMS was prepared by surface modification of amino-functionalized Fe3O4@SiO2 (-NH2-modified magnetic materials, NMS) with EDTA using water-soluble carbodiimide as the cross-linker in deionized water solution. The phase structure, infrared spectra, thermal analysis and magnetic properties of were characterized by X-ray diffraction, Fourier-transform infrared spectroscopy, thermogravimetric analysis, and vibrating sample magnetometry and its properties for removal of heavy metal ions under varied experimental conditions were also investigated. The results revealed that CMS had good tolerance to low pH and exhibited good removal efficiency for the metal ions. The maximum adsorption capacities of CMS were found to be 0.11 mmol g-1 for Cu(II) at pH5.0 (30 °C) and 0.14 mmol g-1 for Pb(II) ions at pH2.0 (30 °C).
Collapse
Affiliation(s)
- Tao Gong
- College of Materials Science and Engineering, Sichuan University, Chengdu 610000, China E-mail:
| | - Yongbai Tang
- College of Materials Science and Engineering, Sichuan University, Chengdu 610000, China E-mail:
| |
Collapse
|