1
|
Wu Y, Wang S, Xu J, Zang F, Long S, Wu Y, Wang Y, Nan Z. Simultaneous immobilization of multiple heavy metal(loid)s in contaminated water and alkaline soil inoculated Fe/Mn oxidizing bacterium. J Environ Sci (China) 2025; 147:370-381. [PMID: 39003055 DOI: 10.1016/j.jes.2023.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/10/2023] [Accepted: 11/10/2023] [Indexed: 07/15/2024]
Abstract
Two strains of Fe/Mn oxidizing bacteria tolerant to high concentrations of multiple heavy metal(loid)s and efficient decontamination for them were screened. The surface of the bio-Fe/Mn oxides produced by the oxidation of Fe(II) and Mn(II) by Pseudomonas taiwanensis (marked as P4) and Pseudomonas plecoglossicida (marked as G1) contains rich reactive oxygen functional groups, which play critical roles in the removal efficiency and immobilization of heavy metal(loid)s in co-contamination system. The isolated strains P4 and G1 can grow well in the following environments: pH 5-9, NaCl 0-4%, and temperature 20-30°C. The removal efficiencies of Fe, Pb, As, Zn, Cd, Cu, and Mn are effective after inoculation of the strains P4 and G1 in the simulated water system (the initial concentrations of heavy metal(loid) were 1 mg/L), approximately reaching 96%, 92%, 85%, 67%, 70%, 54% and 15%, respectively. The exchangeable and carbonate bound As, Cd, Pb and Cu are more inclined to convert to the Fe-Mn oxide bound fractions in P4 and G1 treated soil, thereby reducing the phytoavailability and bioaccessible of heavy metal(loid)s. This research provides alternatives method to treat water and soil containing high concentrations of multi-heavy metal(loid)s.
Collapse
Affiliation(s)
- Yi Wu
- Technology Research Center for Pollution Control and Remediation of Northwest Soil and Groundwater, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| | - Shengli Wang
- Technology Research Center for Pollution Control and Remediation of Northwest Soil and Groundwater, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China.
| | - Jun Xu
- Technology Research Center for Pollution Control and Remediation of Northwest Soil and Groundwater, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| | - Fei Zang
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Song Long
- Technology Research Center for Pollution Control and Remediation of Northwest Soil and Groundwater, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yining Wu
- Technology Research Center for Pollution Control and Remediation of Northwest Soil and Groundwater, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yuqing Wang
- Technology Research Center for Pollution Control and Remediation of Northwest Soil and Groundwater, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| | - Zhongren Nan
- Technology Research Center for Pollution Control and Remediation of Northwest Soil and Groundwater, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
2
|
Zhu X, Zhang X, Gao B, Ji L, Zhao R, Wu P. A critical review of Mnammox coupled with the NDMO for innovative nitrogen removal. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175453. [PMID: 39137844 DOI: 10.1016/j.scitotenv.2024.175453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 08/08/2024] [Accepted: 08/09/2024] [Indexed: 08/15/2024]
Abstract
In the context of increasing global nitrogen pollution, traditional biological nitrogen removal technologies like nitrification and denitrification are hindered by high energy consumption. Additionally, the deployment of anaerobic ammonium oxidation (Anammox) technology is constrained due to the slow growth rate of Anammox bacteria and there is a bottleneck in nitrogen removal efficiency. To overcome these technical bottlenecks, researchers have discovered a revolutionary nitrogen removal technology that cleverly combines the redox cycling of manganese with nitrification and denitrification reactions. In this new process, manganese dependent anaerobic ammonium oxidation (Mnammox) bacteria can convert NH4+ to N2 under anaerobic conditions, while nitrate/nitrite dependent manganese oxidation (NDMO) bacteria use NO3-/NO2- as electron acceptors to oxidize Mn2+ to Mn4+. Mn4+ acts as an electron acceptor in Mnammox reaction, thereby realizing the autotrophic nitrogen removal process. This innovative method not only simplifies the steps of biological denitrification, but also significantly reduces the consumption of oxygen and organic carbon, providing a more efficient and environmentally friendly solution to the problem of nitrogen pollution. The article initially provides a concise overview of prevalent nitrogen removal technologies and the application of manganese in these processes, and discusses the role of manganese in biogeochemical cycles, including its discovery, mechanism of action, microbial communities involved, and its impact on these key factors in the process. Subsequently, metabolic principles, benefits, advantages, and environmental considerations of Mnammox coupled with the NDMO process are analyzed in detail. Finally, this article summarizes the shortcomings of current research and looks forward to future research directions. The goal of this article is to provide a valuable reference for researchers to fully understand the application of manganese in nitrogen removal processes.
Collapse
Affiliation(s)
- Xurui Zhu
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Xiaonong Zhang
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Bo Gao
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Luomiao Ji
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Rui Zhao
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Peng Wu
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
| |
Collapse
|
3
|
He Z, Gao J, Li Q, Wei Z, Zhang D, Pan X. Enhanced oxidation of Mn(II) and As(III) by aerobic granular sludge via ferrous citrate: Key roles of colloidal iron and extracellular superoxide radical. WATER RESEARCH 2024; 268:122705. [PMID: 39486344 DOI: 10.1016/j.watres.2024.122705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 10/15/2024] [Accepted: 10/25/2024] [Indexed: 11/04/2024]
Abstract
Microbial manganese (Mn) oxidation plays a crucial role in shaping the fate of various elements, including arsenic (As). However, this process faces challenges in wastewater environments due to its inherent inefficiency and instability. In our initial research, a serendipitous discovery occurred: the addition of citrate to Fe(II)-containing wastewater stimulated the oxidation of Mn(II) by aerobic granular sludge (AGS). Subsequent experiments in four sequencing batch reactors (SBRs) over a 67-day period confirmed this stimulatory effect. The presence of Fe(II)-citrate led to a remarkable twofold increase in the oxidation of Mn(II) and As(III). The removal efficiency improved from 21±4 % to 87±7 % for Mn(II) and from 77.1 ± 1.8 % to 93.6 ± 0.2 % for As(III). The verification experiments demonstrated that the simultaneous addition of manganese-oxidizing bacteria (MnOB) and Fe(II)-citrate is an effective strategy for enhancing the oxidation and removal of Mn(II) and As(III) by AGS. Through a combination of genomic analysis, cell-free filtrate incubation, and bacterial batch cultivations (including monitoring the time-course changes of 17 substances and 2 free radicals), we elucidated a novel Mn(II) oxidation pathway in Pseudomonas, along with its stimulation method and mechanism. First, bacteria rapidly degrade citrate possibly via the citrate-Mg2+:H+ symporter (CitMHS) and the tricarboxylic acid (TCA) cycle, resulting in the formation of colloidal Fe(II), colloidal Fe(III), and biogenic iron (hydr)oxides (FeOx). Then, colloidal Fe(II) and colloidal Fe(III) stimulated extracellular proteins to produce superoxide radicals (·O2-). These radicals were responsible for oxidizing Mn(II) into Mn(III), ultimately forming biogenic manganese oxides (MnOx). Finally, MnOx effectively oxidized As(III) to the less toxic As(V). This innovative approach for bacterial Mn(II) oxidation holds promise for treating Mn(II) and As(III) in water and wastewater. Furthermore, the mechanism by which colloidal iron stimulates extracellular proteins to produce ·O2-, thereby facilitating Mn(II) oxidation, may widely occur across various engineering and natural ecosystems.
Collapse
Affiliation(s)
- Zhanfei He
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Jingxun Gao
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Qunqun Li
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Zhen Wei
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Daoyong Zhang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Xiangliang Pan
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China.
| |
Collapse
|
4
|
Li Q, Shi M, Liao Q, Li K, Huang X, Sun Z, Yang W, Si M, Yang Z. Molecular response to the influences of Cu(II) and Fe(III) on forming biogenic manganese oxides by Pseudomonas putida MnB1. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135298. [PMID: 39053055 DOI: 10.1016/j.jhazmat.2024.135298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 06/29/2024] [Accepted: 07/21/2024] [Indexed: 07/27/2024]
Abstract
The biogeochemical cycle of biogenic manganese oxides (BioMnOx) is closely associated with the environmental behavior and fate of various pollutants. It is significantly interfered by many metals, such as Cu and Fe. However, the bacterial molecular responses are not clear. Here, the effects of Cu(II) and Fe(III) on oxidation of manganese by Pseudomonas putida MnB1 and the bacterial molecular response mechanisms have been studied. The bacterial oxidation of manganese were promoted by both Fe(III) and Cu(II) and the final manganese oxidation rate of the Cu(II) group exceeded 16 % that of the Fe(III) group. The results of transcriptome indicated that Cu(II) promoted manganese oxidation by up-regulating the expression levels of multicopper oxidase (MCO) and peroxidase(POD), and by stimulating electron transfer, while Fe(III) promoted this process by accelerating the electron transfer and nitrogen cycling, and activating POD. The protein-protein interaction (PPI) network indicated that the MCO genes (mnxG and mcoA) were directly linked to the copper homeostasis proteins (cusA, cusB, czcC and cusF). Cytochrome c was closely related to the genes related to nitrogen cycling (glnA, glnL, and putA) and electrons transfer (cycO, cycD, nuoA, nuoK, and nuoL), which also promoted manganese oxidation. This study provides a molecular level insight into the oxidation of Mn(II) by Pseudomonas putida MnB1 with Cu(II) and/or Fe(III) ions.
Collapse
Affiliation(s)
- Qingzhu Li
- School of Metallurgy and Environment, Central South University, Changsha 410083, China; State Key Laboratory of Advanced Metallurgy for Non-ferrous Metals, Changsha 410083, China; National Engineering Research Centre for Control and Treatment of Heavy Metal Pollution, Central South University, Changsha 410083, China; Water Pollution Control Technology Key Lab of Hunan Province, Changsha 410083, China
| | - Miao Shi
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Qi Liao
- School of Metallurgy and Environment, Central South University, Changsha 410083, China; State Key Laboratory of Advanced Metallurgy for Non-ferrous Metals, Changsha 410083, China; National Engineering Research Centre for Control and Treatment of Heavy Metal Pollution, Central South University, Changsha 410083, China; Water Pollution Control Technology Key Lab of Hunan Province, Changsha 410083, China.
| | - Kaizhong Li
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Xiaofeng Huang
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Zhumei Sun
- School of Metallurgy and Environment, Central South University, Changsha 410083, China; School of Environmental and Safety Engineering, North University of China, Taiyuan 030051, China
| | - Weichun Yang
- School of Metallurgy and Environment, Central South University, Changsha 410083, China; State Key Laboratory of Advanced Metallurgy for Non-ferrous Metals, Changsha 410083, China; National Engineering Research Centre for Control and Treatment of Heavy Metal Pollution, Central South University, Changsha 410083, China; Water Pollution Control Technology Key Lab of Hunan Province, Changsha 410083, China
| | - Mengying Si
- School of Metallurgy and Environment, Central South University, Changsha 410083, China; State Key Laboratory of Advanced Metallurgy for Non-ferrous Metals, Changsha 410083, China; National Engineering Research Centre for Control and Treatment of Heavy Metal Pollution, Central South University, Changsha 410083, China; Water Pollution Control Technology Key Lab of Hunan Province, Changsha 410083, China
| | - Zhihui Yang
- School of Metallurgy and Environment, Central South University, Changsha 410083, China; State Key Laboratory of Advanced Metallurgy for Non-ferrous Metals, Changsha 410083, China; National Engineering Research Centre for Control and Treatment of Heavy Metal Pollution, Central South University, Changsha 410083, China; Water Pollution Control Technology Key Lab of Hunan Province, Changsha 410083, China
| |
Collapse
|
5
|
Qi J, Wang X, Lin Z, Zhao J, Hu C, Qu J. Algae promotes the biogenic oxidation of Mn(II) by accelerated extracellular superoxide production. WATER RESEARCH 2024; 261:122063. [PMID: 39003876 DOI: 10.1016/j.watres.2024.122063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/19/2024] [Accepted: 07/07/2024] [Indexed: 07/16/2024]
Abstract
Microbial manganese (Mn) oxidation, predominantly occurs within the anaerobic-aerobic interfaces, plays an important role in environmental pollution remediation. The anaerobic-aerobic transition zones, notably riparian and lakeside zones, are hotspots for algae-bacteria interactions. Here, we adopted a Mn(II)-oxidizing bacterium Pseudomonas sp. QJX-1 to investigate the impact of algae on microbial Mn(II) oxidation and verify the underlying mechanisms. Interestingly, we achieved a remarkable enhancement in bacterial Mn(II)-oxidizing activity within the algae-bacteria co-culture, despite the inability to oxidize Mn(II) for the algae used in this study. In addition, the bacterial density almost remains constant in the presence of algal cells. Therefore, the increased Mn(II) oxidation by QJX-1 in the presence of algae cannot be due to the increased biomass. Within this co-culture system, the Mn(II) oxidation rate surged to an impressive 0.23 mg/L/h, in stark contrast to 0.02 mg/L/h recorded within pure QJX-1 system. The presence of algae could inhibit the Fe-S cluster activity of QJX-1 by the produced active substance in co-culture, and result in the acceleration of extracellular superoxide production due to the impairment of electron transfer functions located in QJX-1 cell membranes. Moreover, elevated peroxidase gene expression and heightened extracellular catalase activity not only expedited Mn(II) ions oxidation but also facilitated conversion of intermediate Mn(III) ions into microbial Mn oxides, achieved through the degradation of hydrogen peroxide. Therefore, the acceleration of extracellular superoxide production and the decomposition of hydrogen peroxide are identified as the principal mechanisms behind the observed enhancement in Mn(II) oxidation within algae-bacteria co-cultures. Our findings highlight the need to consider the effect of algae on microbial Mn(II) oxidation, which plays an important role in the environmental pollution remediation.
Collapse
Affiliation(s)
- Jing Qi
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xi Wang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zemiao Lin
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jijin Zhao
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Chengzhi Hu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Jiuhui Qu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
6
|
Teng ZJ, Li J, Wang P, Li CY, Peng M, Qin QL, Chen XL, Chen Y, Fu HH, Wang N, Zhang YZ. Meta-omics analysis reveals the marine arsenic cycle driven by bacteria. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135137. [PMID: 39024770 DOI: 10.1016/j.jhazmat.2024.135137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/16/2024] [Accepted: 07/05/2024] [Indexed: 07/20/2024]
Abstract
Arsenic is a toxic element widely distributed in the Earth's crust and ranked as a class I human carcinogen. Microbial metabolism makes significant contributions to arsenic detoxification, migration and transformation. Nowadays, research on arsenic is primarily in areas affected by arsenic pollution associated with human health activities. However, the biogeochemical traits of arsenic in the global marine ecosystem remain to be explicated. In this study, we revealed that seawater environments were primarily governed by the process of arsenate reduction to arsenite, while arsenite methylation was predominant in marine sediments which may serve as significant sources of arsenic emission into the atmosphere. Significant disparities existed in the distribution patterns of the arsenic cycle between surface and deep seawaters at middle and low latitudes, whereas these situations tend to be similar in the Arctic and Antarctic oceans. Significant variations were also observed in the taxonomic diversity and core microbial community of arsenic cycling across different marine environments. Specifically, γ-proteobacteria played a pivotal role in the arsenic cycle in the whole marine environment. Temperature, dissolved oxygen and phosphate were the crucial factors that related to these differentiations in seawater environments. Overall, our study contributes to a deeper understanding of the marine arsenic cycle.
Collapse
Affiliation(s)
- Zhao-Jie Teng
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China.
| | - Jian Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Peng Wang
- MOE Key Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System & College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; Joint Research Center for Marine Microbial Science and Technology, Shandong University and Ocean University of China, Qingdao 266003, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266373, China
| | - Chun-Yang Li
- MOE Key Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System & College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; Joint Research Center for Marine Microbial Science and Technology, Shandong University and Ocean University of China, Qingdao 266003, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266373, China
| | - Ming Peng
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Qi-Long Qin
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China; Joint Research Center for Marine Microbial Science and Technology, Shandong University and Ocean University of China, Qingdao 266003, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266373, China
| | - Xiu-Lan Chen
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China; Joint Research Center for Marine Microbial Science and Technology, Shandong University and Ocean University of China, Qingdao 266003, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266373, China
| | - Yin Chen
- MOE Key Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System & College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; School of Life Sciences, The University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Hui-Hui Fu
- MOE Key Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System & College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; Joint Research Center for Marine Microbial Science and Technology, Shandong University and Ocean University of China, Qingdao 266003, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266373, China
| | - Ning Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China.
| | - Yu-Zhong Zhang
- MOE Key Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System & College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; Joint Research Center for Marine Microbial Science and Technology, Shandong University and Ocean University of China, Qingdao 266003, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266373, China; Marine Biotechnology Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China.
| |
Collapse
|
7
|
Kour D, Khan SS, Kumari S, Singh S, Khan RT, Kumari C, Kumari S, Dasila H, Kour H, Kaur M, Ramniwas S, Kumar S, Rai AK, Cheng WH, Yadav AN. Microbial nanotechnology for agriculture, food, and environmental sustainability: Current status and future perspective. Folia Microbiol (Praha) 2024; 69:491-520. [PMID: 38421484 DOI: 10.1007/s12223-024-01147-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 01/31/2024] [Indexed: 03/02/2024]
Abstract
The field of nanotechnology has the mysterious capacity to reform every subject it touches. Nanotechnology advancements have already altered a variety of scientific and industrial fields. Nanoparticles (NPs) with sizes ranging from 1 to 100 nm (nm) are of great scientific and commercial interest. Their functions and characteristics differ significantly from those of bulk metal. Commercial quantities of NPs are synthesized using chemical or physical methods. The use of the physical and chemical approaches remained popular for many years; however, the recognition of their hazardous effects on human well-being and conditions influenced serious world perspectives for the researchers. There is a growing need in this field for simple, non-toxic, clean, and environmentally safe nanoparticle production methods to reduce environmental impact and waste and increase energy productivity. Microbial nanotechnology is relatively a new field. Using various microorganisms, a wide range of nanoparticles with well-defined chemical composition, morphology, and size have been synthesized, and their applications in a wide range of cutting-edge technological areas have been investigated. Green synthesis of the nanoparticles is cost-efficient and requires low maintenance. The present review highlights the synthesis of the nanoparticles by different microbes, their characterization, and their biotechnological potential. It further deals with the applications in biomedical, food, and textile industries as well as its role in biosensing, waste recycling, and biofuel production.
Collapse
Affiliation(s)
- Divjot Kour
- Department of Microbiology, Akal College of Basic Sciences, Eternal University, Baru Sahib, Sirmaur, 173101, Himachal Pradesh, India
| | - Sofia Sharief Khan
- Department of Biotechnology, Shri Mata Vaishno Devi University, Katra, 182320, Jammu and Kashmir, India
| | - Shilpa Kumari
- Department of Physics, IEC University, Baddi, 174103, Solan, Himachal Pradesh, India
| | - Shaveta Singh
- University School of Medical and Allied Sciences, Rayat Bahra University, Mohali, Chandigarh, India
| | - Rabiya Tabbassum Khan
- Department of Biotechnology, Shri Mata Vaishno Devi University, Katra, 182320, Jammu and Kashmir, India
| | - Chandresh Kumari
- Faculty of Applied Sciences and Biotechnology, Shoolini University, Vill-Bhajhol 173229, Solan, Himachal Pradesh, India
| | - Swati Kumari
- Faculty of Applied Sciences and Biotechnology, Shoolini University, Vill-Bhajhol 173229, Solan, Himachal Pradesh, India
| | - Hemant Dasila
- Department of Microbiology, Akal College of Basic Sciences, Eternal University, Baru Sahib, Sirmaur, 173101, Himachal Pradesh, India
| | - Harpreet Kour
- Department of Botany, University of Jammu, Jammu, 180006, Jammu and Kashmir, India
| | - Manpreet Kaur
- Department of Physics, IEC University, Baddi, 174103, Solan, Himachal Pradesh, India
| | - Seema Ramniwas
- Department of Biotechnology, University Centre for Research and Development, Chandigarh University, Gharuan, 140413, Punjab, India
| | - Sanjeev Kumar
- Department of Genetics and Plant Breeding, Faculty of Agricultural Science, GLA University, Mathura, Uttar Pradesh, India
| | - Ashutosh Kumar Rai
- Department of Biochemistry, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Kingdom of Saudi Arabia
| | - Wan-Hee Cheng
- Faculty of Health and Life Sciences, INTI International University, Persiaran Perdana BBN, Putra Nilai, Nilai 71800, Negeri Sembilan, Malaysia
| | - Ajar Nath Yadav
- Department of Biotechnology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Sirmour, 173101, Himachal Pradesh, India.
| |
Collapse
|
8
|
Wang G, Feng Z, Yin X, Chen D, Zhao N, Yuan Y, Chen C, Liu C, Ao M, Chen L, Chen Z, Yang W, Li D, Morel JL, Chao Y, Wang P, Tang Y, Qiu R, Wang S. Biogenic manganese oxides promote metal(loid) remediation by shaping microbial communities in biological aqua crust. WATER RESEARCH 2024; 253:121287. [PMID: 38387264 DOI: 10.1016/j.watres.2024.121287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 02/24/2024]
Abstract
Biological aqua crust (biogenic aqua crust-BAC) is a potentially sustainable solution for metal(loid) bioremediation in global water using solar energy. However, the key geochemical factors and underlying mechanisms shaping microbial communities in BAC remain poorly understood. The current study aimed at determining the in situ metal(loid) distribution and the key geochemical factors related to microbial community structure and metal(loid)-related genes in BAC of a representative Pb/Zn tailing pond. Here we showed that abundant metal(loid)s (e.g. Pb, As) were co-distributed with Mn/Fe-rich minerals (e.g. biogenic Mn oxide, FeOOH) in BAC. Biogenic Mn oxide (i.e. Mn) was the most dominant factor in shaping microbial community structure in BAC and source tailings. Along with the fact that keystone species (e.g. Burkholderiales, Haliscomenobacter) have the potential to promote Mn ion oxidization and particle agglomeration, as well as Mn is highly associated with metal(loid)-related genes, especially genes related to As redox (e.g. arsC, aoxA), and Cd transport (e.g. zipB), biogenic Mn oxides thus effectively enhance metal(loid) remediation by accelerating the formation of organo-mineral aggregates in biofilm-rich BAC system. Our study indicated that biogenic Mn oxides may play essential roles in facilitating in situ metal(loid) bioremediation in BAC of mine drainage.
Collapse
Affiliation(s)
- Guobao Wang
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510006, PR China; College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou, 434023, PR China
| | - Zekai Feng
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Xiuran Yin
- Microbial Ecophysiology Group, University of Bremen, Bremen, Germany
| | - Daijie Chen
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Nan Zhao
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, 510650, PR China
| | - Yongqiang Yuan
- Key Laboratory of Karst Georesources and Environment, Ministry of Education, College of Resources and Environmental Engineering, Guizhou University, Guiyang, PR China
| | - Chiyu Chen
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Chong Liu
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, PR China
| | - Ming Ao
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Lei Chen
- Key Laboratory for New Technology Research of Vegetable, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, PR China
| | - Ziwu Chen
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Wenjun Yang
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Dantong Li
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Jean Louis Morel
- Laboratoire Sols et Environnement, UMR 1120, Université de Lorraine, INRAE, 54518, Vandoeuvre-lès-Nancy, France
| | - Yuanqing Chao
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Peng Wang
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Yetao Tang
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Rongliang Qiu
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510006, PR China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, PR China
| | - Shizhong Wang
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510006, PR China.
| |
Collapse
|
9
|
Zeng Y, Xu L, Su J, Liu S, Ali A, Zhang P, Cao S. Denitrification driven by additional ferrous (Fe 2+) and manganous (Mn 2+) and removal mechanism of tetracycline and cadmium (Cd 2+) by biogenic Fe-Mn oxides. ENVIRONMENTAL RESEARCH 2024; 246:118159. [PMID: 38218519 DOI: 10.1016/j.envres.2024.118159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/05/2024] [Accepted: 01/06/2024] [Indexed: 01/15/2024]
Abstract
Zoogloea sp. MFQ7 achieved excellent denitrification of 91.71% at ferrous to manganous ratio (Fe/Mn) of 3:7, pH of 6.5, nitrate concentration of 25 mg L-1 and carbon to nitrogen ratio of 1.5. As the Fe/Mn ratio increasd, the efficiency of nitrate removal gradually decreased, indicating that strain MFQ7 had a higher affinity for Mn2+ than Fe2+. In situ generated biogenic Fe-Mn oxides (BFMO) contained many iron-manganese oxides (MnO2, Mn3O4, FeO(OH), Fe2O3, and Fe3O4) as well as reactive functional groups, which play an significant part in tetracycline (TC) and cadmium (Cd2+) adsorption. The adsorption of TC and Cd2+ by BFMO can better fit the pseudo-second-order and Langmuir models. In addition, multiple characterization results of before and after adsorption indicated that the removal mechanism of BFMO on TC and Cd2+ was probably surface complexation adsorption and redox reactions.
Collapse
Affiliation(s)
- Yuxin Zeng
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Liang Xu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Junfeng Su
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
| | - Shuyu Liu
- School of Environment and Chemistry Engineering, Shanghai University, Shanghai, 200444, China.
| | - Amjad Ali
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Peng Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Shumiao Cao
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| |
Collapse
|
10
|
Younas M, Bacha AUR, Khan K, Nabi I, Ullah Z, Humayun M, Hou J. Application of manganese oxide-based materials for arsenic removal: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 918:170269. [PMID: 38266733 DOI: 10.1016/j.scitotenv.2024.170269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 01/14/2024] [Accepted: 01/16/2024] [Indexed: 01/26/2024]
Abstract
In the context of growing arsenic (As) contamination in the world, there is an urgent need for an effective treatment approach to remove As from the environment. Industrial wastewater is one of the primary sources of As contamination, which poses significant risks to both microorganisms and human health, as the presence of As can disrupt the vital processes and synthesis of crucial macromolecules in living organisms. The global apprehension regarding As presence in aquatic environments persists as a key environmental issue. This review summarizes the recent advances and progress in the design, strategy, and synthesis method of various manganese-based adsorbent materials for As removal. Occurrence, removal, oxidation mechanism of As(III), As adsorption on manganese oxide (MnOx)-based materials, and influence of co-existing solutes are also discussed. Furthermore, the existing knowledge gaps of MnOx-based adsorbent materials and future research directions are proposed. This review provides a reference for the application of MnOx-based adsorbent materials to As removal.
Collapse
Affiliation(s)
- Muhammad Younas
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China; Hubei Key Laboratory of Soil Environmental and Pollution Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Aziz Ur Rahim Bacha
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Kaleem Khan
- Institute of Environmental and Occupational Health Sciences, School of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan China
| | - Iqra Nabi
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Zahid Ullah
- State Key Laboratory of Biogeology and Environmental Geology, School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Muhammad Humayun
- Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology Wuhan, 430074, China
| | - Jingtao Hou
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China; Hubei Key Laboratory of Soil Environmental and Pollution Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China..
| |
Collapse
|
11
|
Li W, Cai Y, Li Y, Achal V. Mobility, speciation of cadmium, and bacterial community composition along soil depths during microbial carbonate precipitation under simulated acid rain. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 353:120018. [PMID: 38271885 DOI: 10.1016/j.jenvman.2024.120018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 10/07/2023] [Accepted: 01/02/2024] [Indexed: 01/27/2024]
Abstract
An overexploitation of earth resources results in acid deposition in soil, which adversely impacts soil ecosystems and biodiversity and affects conventional heavy metal remediation using immobilization. A series of column experiments was conducted in this study to compare the cadmium (Cd) retention stability through biotic and abiotic carbonate precipitation impacted by simulated acid rain (SAR), to build a comprehensive understanding of cadmium speciation and distribution along soil depth and to elucidate the biogeochemical bacteria-soil-heavy metal interfaces. The strain of Sporosarcina pasteurii DSM 33 was used to trigger the biotic carbonate precipitation and cultivated throughout the 60-day column incubation. Results of soil pH, electrical conductivity (EC), and quantitative CdCO3/CaCO3 analysis concluded that the combination of biotic and abiotic soil treatment could reinforce soil buffering capacity as a strong defense mechanism against acid rain disturbance. Up to 1.8 ± 0.04 U/mg urease enzyme activity was observed in combination soil from day 10, confirming the sustained effect of urease-mediated microbial carbonate precipitation. Cadmium speciation and distribution analyses provided new insights into the dual stimulation of carbonate-bound and Fe/Mn-bound phases of cadmium immobilization under microbially induced carbonate precipitation (MICP). As confirmed by the microbial community analysis, outsourcing urea triggered diverse microbial metabolic responses, notably carbonate precipitation and dissimilatory iron metabolism, in both oxygen-rich topsoil and oxygen-depleted subsurface layers. The overall investigation suggests the feasibility of applying MICP for soil Cd remediation under harsh environments and stratagem by selecting microbial functionality to overcome environmental challenges.
Collapse
Affiliation(s)
- Weila Li
- Department of Environmental Science and Engineering, Guangdong Technion - Israel Institute of Technology, Shantou 515063, China; Department of Civil and Environmental Engineering, University of Delaware, Newark, DE 19716, USA
| | - Yiting Cai
- Department of Environmental Science and Engineering, Guangdong Technion - Israel Institute of Technology, Shantou 515063, China
| | - Yilin Li
- Department of Environmental Science and Engineering, Guangdong Technion - Israel Institute of Technology, Shantou 515063, China
| | - Varenyam Achal
- Department of Environmental Science and Engineering, Guangdong Technion - Israel Institute of Technology, Shantou 515063, China; Technion - Israel Institute of Technology, Haifa 320003, Israel; Guangdong Provincial Key Laboratory of Materials and Technologies for Energy Conversion, Guangdong Technion - Israel Institute of Technology, Shantou 515063, China.
| |
Collapse
|
12
|
Zhao X, Xie X, Xie Z, Zhao Z, Qiu R, Zhao X, Song F, Liu Z. Manganese promotes stability of natural arsenic sinks in a groundwater system with arsenic-immobilization minerals: Natural remediation mechanism and environmental implications. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 353:120168. [PMID: 38278111 DOI: 10.1016/j.jenvman.2024.120168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/05/2024] [Accepted: 01/20/2024] [Indexed: 01/28/2024]
Abstract
Arsenic (As)-immobilizing iron (Fe)-manganese (Mn) minerals (AFMM) represent potential As sinks in As-enriched groundwater environments. The process and mechanisms governing As bio-leaching from AFMM through interaction with reducing bacteria, however, remain poorly delineated. This study examined the transformation and release of As from AFMM with varying Mn/Fe molar ratios (0:1, 1:5, 1:3, and 1:1) in the presence of As(V)-reducing bacteria specifically Shewanella putrefaciens CN32. Notably, strain CN32 significantly facilitated the bio-reduction of As(V), Fe(III), and Mn(IV) in AFMM. In systems with Mn/Fe molar ratios of 1:5, 1:3, and 1:1, As bio-reduction decreased by 28%, 34%, and 47%, respectively, compared to the system with a 0:1 ratio. This Mn-induced inhibition of Fe/As bio-reduction was linked to several concurrent factors: preferential Mn bio-reduction, reoxidation of resultant Fe(II)/As(III) due to Mn components, and As adsorption onto emergent Fe precipitates. Both the reductive dissolution of AFMM and the bio-reduction of As(V) predominantly controlled As bio-release. Structural equation models indicated that reducing bacteria destabilize natural As sinks more through As reduction than through Mn(II) release, Fe reduction, or Fe(II) release. Systems with Mn/Fe molar ratios of 1:5, 1:3, and 1:1 showed a decrease in As bio-release by 24%, 41%, and 59%, respectively, relative to the 0:1 system. The observed suppression of As bioleaching was ascribed to both the inhibition of As/Fe bio-reduction by Mn components and the immobilization of As by freshly generated Fe precipitates. These insights into the constraining effect of Mn on the biotransformation and bioleaching of As from AFMM are crucial for grasping the long-term stability of natural As sinks in groundwater, and enhance strategies for in-situ As stabilization in As-afflicted aquifers through Nature-Based Solutions.
Collapse
Affiliation(s)
- Xinxin Zhao
- State Key Laboratory of Qinba Bio-Resource and Ecological Environment, School of Chemistry & Environment Science, Shaanxi University of Technology, Hanzhong 723001, PR China; School of Environmental Studies, China University of Geosciences, Wuhan 430074, PR China
| | - Xi Xie
- School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, PR China
| | - Zuoming Xie
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, PR China.
| | - Zuoping Zhao
- State Key Laboratory of Qinba Bio-Resource and Ecological Environment, School of Chemistry & Environment Science, Shaanxi University of Technology, Hanzhong 723001, PR China
| | - Ruoqi Qiu
- State Key Laboratory of Qinba Bio-Resource and Ecological Environment, School of Chemistry & Environment Science, Shaanxi University of Technology, Hanzhong 723001, PR China
| | - Xue Zhao
- State Key Laboratory of Qinba Bio-Resource and Ecological Environment, School of Chemistry & Environment Science, Shaanxi University of Technology, Hanzhong 723001, PR China
| | - Fengmin Song
- State Key Laboratory of Qinba Bio-Resource and Ecological Environment, School of Chemistry & Environment Science, Shaanxi University of Technology, Hanzhong 723001, PR China
| | - Zhifeng Liu
- State Key Laboratory of Qinba Bio-Resource and Ecological Environment, School of Chemistry & Environment Science, Shaanxi University of Technology, Hanzhong 723001, PR China
| |
Collapse
|
13
|
Meza I, Hua H, Gagnon K, Mulchandani A, Gonzalez-Estrella J, Burns PC, Ali AMS, Spilde M, Peterson E, Lichtner P, Cerrato JM. Removal of Aqueous Uranyl and Arsenate Mixtures after Reaction with Limestone, PO 43-, and Ca 2. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:20881-20892. [PMID: 38019567 PMCID: PMC10739782 DOI: 10.1021/acs.est.3c03809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
The co-occurrence of uranyl and arsenate in contaminated water caused by natural processes and mining is a concern for impacted communities, including in Native American lands in the U.S. Southwest. We investigated the simultaneous removal of aqueous uranyl and arsenate after the reaction with limestone and precipitated hydroxyapatite (HAp, Ca10(PO4)6(OH)2). In benchtop experiments with an initial pH of 3.0 and initial concentrations of 1 mM U and As, uranyl and arsenate coprecipitated in the presence of 1 g L-1 limestone. However, related experiments initiated under circumneutral pH conditions showed that uranyl and arsenate remained soluble. Upon addition of 1 mM PO43- and 3 mM Ca2+ in solution (initial concentration of 0.05 mM U and As) resulted in the rapid removal of over 97% of U via Ca-U-P precipitation. In experiments with 2 mM PO43- and 10 mM Ca2+ at pH rising from 7.0 to 11.0, aqueous concentrations of As decreased (between 30 and 98%) circa pH 9. HAp precipitation in solids was confirmed by powder X-ray diffraction and scanning electron microscopy/energy dispersive X-ray. Electron microprobe analysis indicated U was coprecipitated with Ca and P, while As was mainly immobilized through HAp adsorption. The results indicate that natural materials, such as HAp and limestone, can effectively remove uranyl and arsenate mixtures.
Collapse
Affiliation(s)
- Isabel Meza
- Department of Civil, Construction & Environmental Engineering, University of New Mexico, Albuquerque, New Mexico 87131, United States
- Center for Water and the Environment, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Han Hua
- Department of Civil, Construction & Environmental Engineering, University of New Mexico, Albuquerque, New Mexico 87131, United States
- Center for Water and the Environment, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Kaelin Gagnon
- Department of Civil, Construction & Environmental Engineering, University of New Mexico, Albuquerque, New Mexico 87131, United States
- Center for Water and the Environment, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Anjali Mulchandani
- Department of Civil, Construction & Environmental Engineering, University of New Mexico, Albuquerque, New Mexico 87131, United States
- Center for Water and the Environment, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Jorge Gonzalez-Estrella
- School of Civil and Environmental Engineering, College of Engineering, Architecture, and Technology, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| | - Peter C Burns
- Department of Civil and Environmental Engineering and Earth Sciences and Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Abdul-Mehdi S Ali
- Department of Earth and Planetary Sciences, MSC03 2040, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Michael Spilde
- Department of Earth and Planetary Sciences, MSC03 2040, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Eric Peterson
- Department of Earth and Planetary Sciences, MSC03 2040, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Peter Lichtner
- Center for Water and the Environment, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - José M Cerrato
- Department of Civil, Construction & Environmental Engineering, University of New Mexico, Albuquerque, New Mexico 87131, United States
- Center for Water and the Environment, University of New Mexico, Albuquerque, New Mexico 87131, United States
- UNM Metals Exposure and Toxicity Assessment on Tribal Lands in the Southwest (UNM METALS) Superfund Research Program Center, Albuquerque,New Mexico 87131, United States
| |
Collapse
|
14
|
Lee SJ, Han MH, Ahn YT, Jeon BH, Choi J. Assessment of effectiveness in stabilization/solidification of arsenic-contaminated soil: long-term leaching test and geophysical measurement. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:120472-120482. [PMID: 37943433 DOI: 10.1007/s11356-023-30641-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 10/19/2023] [Indexed: 11/10/2023]
Abstract
This study focused on evaluating the effectiveness of stabilizer/binding agents in immobilizing arsenic (As) in contaminated soil using both geochemical and geophysical monitoring methods. The effluent from the stabilizer/binding agent's application and control columns was analyzed, and the status of the columns was monitored using electrical resistivity (ER) and induced polarization (IP) methods. As stabilizers/binder, acid mine drainage sludge (AMDS) and steel slag (SS) were used, which delayed As and Ca leaching time and significantly reduced As leaching amount. Determination coefficients for As and Fe leaching exhibited elevated values (control column, R2 = 0.955; AMDS column, R2 = 0.908; and SS column, R2 = 0.833). A discernible decline in the concentration of leached Fe was accompanied by a corresponding reduction in IP. The determination coefficients correlating IP and Fe leaching remained substantial (control column, R2 = 0.768; AMDS column, R2 = 0.807; and SS column, R2 = 0.818). Such IP measurements manifest as instrumental tools in monitoring and assessing the retention capacity of applied stabilizer/binding agents in As-affected soils, thereby furnishing crucial data for the enduring surveillance of stabilization/solidification locales. This research posits a swift and continuous monitoring method for solidification/stabilization locales in situ.
Collapse
Affiliation(s)
- Sun-Jae Lee
- Korea Institute of Science and Technology (KIST), Sustainable Environment Research Center, Hwarang-Ro 14, Seongbuk-Gu, Seoul, 02792, South Korea
- Green School, Korea University, Seoul, 02841, Republic of Korea
| | - Man Ho Han
- Korea Radioactive Waste Agency, 174, Gajeong-Ro, Yuseong-Gu, Daejeon, Republic of Korea
| | - Yong-Tae Ahn
- Department of Civil & Energy System Engineering, Kyonggi University, Suwon, 16227, Republic of Korea
| | - Byong-Hun Jeon
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Jaeyoung Choi
- Korea Institute of Science and Technology (KIST), Sustainable Environment Research Center, Hwarang-Ro 14, Seongbuk-Gu, Seoul, 02792, South Korea.
| |
Collapse
|
15
|
Zhang L, Yang Y, Xu X, Deng S, Xiao H, Han X, Xia F, Jiang Y. Efficient utilization of biogenic manganese oxides in bioaugmentation columns for remediation of thallium(I) contaminated groundwater. JOURNAL OF HAZARDOUS MATERIALS 2023; 452:131225. [PMID: 36958163 DOI: 10.1016/j.jhazmat.2023.131225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/26/2023] [Accepted: 03/15/2023] [Indexed: 05/03/2023]
Abstract
Little attention has been paid to the in situ-generated biogenic manganese oxides (BMnOx) for practical implementation in continuous groundwater remediation systems. The enrichment effects of manganese oxidizing bacteria (MOB) in bioaugmentation columns and the in situ-generated BMnOx for continuous thallium(I) (Tl(I)) removal from groundwater were investigated. Results indicated that Pseudomonas Putida MnB1 (strain MnB1) attached on the groundwater sediments (GS) can achieve a maximum of 97.37 % Mn(II) oxidation and generate 29.6 mg/L BMnOx, which was superior than that of traditional quartz sand (QS). The in situ-generated BMnOx in MOB_GS column effectively removed 10-100 μg/L Tl(I) under the interference of high concentrations of Fe(II) and Mn(II) in groundwater. Distinctive microbial enrichment effects occurred in the bioaugmentation columns under the competition of indigenous microbes in groundwater. The release of Mn(II) from the BMnOx inhibited with the decrease in Tl(I) removal efficiency. XAFS analysis revealed Tl(I) was effectively adsorbed by BMnOx and Mn-O octahedra with Tl-O tetrahedral coordination existed in BMnOx. This study provides an in-depth understanding of the in situ-generated BMnOx for the Tl(I) removal and contributes to the application of BMnOx in groundwater remediation.
Collapse
Affiliation(s)
- Liangjing Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Yu Yang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xiangjian Xu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Sheng Deng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Han Xiao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xu Han
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Fu Xia
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yonghai Jiang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| |
Collapse
|
16
|
Zhao J, Yang J, Yang L, Zhu X, Zhou B, Bai L, Tang X, Liang H. Effect of a Permanganate-Bearing Reactive Oxidant on Flocs in Electrocoagulation: Transformations and Interfacial Interactions. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023. [PMID: 37316474 DOI: 10.1021/acs.est.3c01793] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The electrocoagulation/ultrafiltration (ECUF) process is expected to address the issues of current wastewater increments and complex water reuse. However, the underlying mechanism associated with flocs remains unclear in the ECUF system, especially in the upgraded permanganate-bearing ECUF (PECUF) system. Herein, flocs and their formation, response to organic matter (OM), and interfacial features in the PECUF process were systematically explored. Results demonstrated that permanganate contributed to the rapid start-up of the coagulation process by forming MnO2 and blocking the ligand-metal charge transfer process between adsorbed Fe(II) and solid-phase Fe(III). The response of flocs to natural OM (NOM) exhibited obvious time- and particle size-dependent characteristics. Based on this, the optimal NOM adsorption window was found to be in the interval of 5-20 min, whereas the optimal NOM removal window was located at the 20-30 min interval. Furthermore, the extended Derjaguin-Landau-Verwey-Overbeek theory revealed the underlying principle of the PECUF module for optimizing UF performance. On the one hand, it reduced the inherent resistance of the cake layer by modifying the colloidal solution, which guaranteed a small drop (15%) in initial flux. On the other hand, it enhanced the repulsive force among suspended particles to achieve a long-term antifouling effect. This study may provide insights into the selection and performance control of on-demand assembly modules in decentralized water treatment systems.
Collapse
Affiliation(s)
- Jing Zhao
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jiaxuan Yang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Liu Yang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Xuewu Zhu
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, PR China
| | - Boyu Zhou
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Langming Bai
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Xiaobin Tang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Heng Liang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
17
|
Gan CD, Tang QX, Wang H, Yang JY, Nikitin A. Shewanella oneidensis MR-1 and oxalic acid mediated vanadium reduction and redistribution in vanadium-containing tailings. JOURNAL OF HAZARDOUS MATERIALS 2023; 451:131077. [PMID: 36871469 DOI: 10.1016/j.jhazmat.2023.131077] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 02/13/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
The microbially- and chemically-mediated redox process is critical in controlling the fate of vanadium (V) in tailing environment. Although the microbial reduction of V has been widely studied, the coupled biotic reduction mediated by beneficiation reagents and the underlying mechanism remain unclear. Herein, the reduction and redistribution of V in V-containing tailings and Fe/Mn oxide aggregates mediated by Shewanella oneidensis MR-1 and oxalic acid were explored. The dissolution of Fe-(hydr)oxides by oxalic acid promoted the microbe-mediated V release from solid-phase. After 48-day of reaction, the dissolved V concentrations in the bio-oxalic acid treatment reached maximum values of 1.72 ± 0.36 mg L-1 and 0.42 ± 0.15 mg L-1 in the tailing system and the aggregate system, respectively, significantly higher than those in control (0.63 ± 0.14 mg L-1 and 0.08 ± 0.02 mg L-1). As the electron donor, oxalic acid enhanced the electron transfer process of S. oneidensis MR-1 for V(V) reduction. The mineralogical characterization of final products indicates that S. oneidensis MR-1 and oxalic acid promoted solid-state conversion from V2O5 to NaV6O15. Collectively, this study demonstrates that microbe-mediated V release and redistribution in solid-phase were promoted by oxalic acid, suggesting that the role of organic agents for the V biogeochemical cycle in natural systems deserves greater attention.
Collapse
Affiliation(s)
- Chun-Dan Gan
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Yibin Institute of Industrial Technology, Sichuan University Yibin Park, Yibin 644000, China
| | - Qi-Xuan Tang
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Hao Wang
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, School of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Jin-Yan Yang
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Yibin Institute of Industrial Technology, Sichuan University Yibin Park, Yibin 644000, China; Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, School of Forestry, Northeast Forestry University, Harbin 150040, China.
| | - Aleksander Nikitin
- Institute of Radiobiology of the National Academy of Sciences of Belarus, Fedjuninskogo str., 4, 246007 Gomel, Belarus
| |
Collapse
|
18
|
Jiang S, Xue Y, Wang M, Wang H, Liu L, Dai Y, Liu X, Yue T, Zhao J. Sediment-seawater exchange altered adverse effects of ocean acidification towards marine microalgae. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 874:162533. [PMID: 36870492 DOI: 10.1016/j.scitotenv.2023.162533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/17/2023] [Accepted: 02/25/2023] [Indexed: 06/18/2023]
Abstract
Ocean acidification (OA) exhibits high threat to marine microalgae. However, the role of marine sediment in the OA-induced adverse effect towards microalgae is largely unknown. In this work, the effects of OA (pH 7.50) on the growth of individual and co-cultured microalgae (Emiliania huxleyi, Isochrysis galbana, Chlorella vulgaris, Phaeodactylum tricornutum, and Platymonas helgolandica tsingtaoensis) were systematically investigated in the sediment-seawater systems. OA inhibited E. huxleyi growth by 25.21 %, promoted P. helgolandica (tsingtaoensis) growth by 15.49 %, while did not cause any effect on the other three microalgal species in the absence of sediment. In the presence of the sediment, OA-induced growth inhibition of E. huxleyi was significantly mitigated, because the released chemicals (N, P and Fe) from seawater-sediment interface increased the photosynthesis and reduced oxidative stress. For P. tricornutum, C. vulgaris and P. helgolandica (tsingtaoensis), the growth was significantly increased in the presence of sediment in comparison with those under OA alone or normal seawater (pH 8.10). For I. galbana, the growth was inhibited when the sediment was introduced. Additionally, in the co-culturing system, C. vulgaris and P. tricornutum were the dominant species, while OA increased the proportions of dominant species and decreased the community stability as indicated by Shannon and Pielou's indexes. After the introduction of sediment, the community stability was recovered, but remained lower than that under normal condition. This work demonstrated the role of sediment in the biological responses to OA, and could be helpful for better understanding the impact of OA on marine ecosystems.
Collapse
Affiliation(s)
- Shiyang Jiang
- Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology (Ministry of Education), and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266100, China
| | - Yinhao Xue
- Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology (Ministry of Education), and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266100, China
| | - Meng Wang
- Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology (Ministry of Education), and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266100, China
| | - Hao Wang
- Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology (Ministry of Education), and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266100, China
| | - Lu Liu
- Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology (Ministry of Education), and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266100, China
| | - Yanhui Dai
- Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology (Ministry of Education), and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266100, China.
| | - Xia Liu
- Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology (Ministry of Education), and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266100, China
| | - Tongtao Yue
- Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology (Ministry of Education), and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266100, China
| | - Jian Zhao
- Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology (Ministry of Education), and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266100, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| |
Collapse
|
19
|
Yu J, Jin B, Ji Q, Wang H. Detoxification and metabolism of glyphosate by a Pseudomonas sp. via biogenic manganese oxidation. JOURNAL OF HAZARDOUS MATERIALS 2023; 448:130902. [PMID: 36731313 DOI: 10.1016/j.jhazmat.2023.130902] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/21/2023] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
Biogenic manganese oxides (BMO) are widely distributed in groundwater and provides promise for adsorbing and oxidizing a wide range of micropollutants, however, the continuous biodegradation and bioavailability of micropollutants via cycle biogenic Mn(II) oxidation remains to be elucidated. In this study, glyphosate was degraded and to serve as the nutrient source by a Pseudomonas sp. QJX-1. The addition of glyphosate will not affect the Mn(II) oxidation function of the strain but will affect its Mn(II) oxidation process and effect. The glyphosate degradation products could further be used as the C, N and P sources for bacterium growth. Analysis of the RNA-seq data suggested that Mn(II) oxidation driven by oxidoreductases for glyphosate degradation. The long-term column experiments using biological Mn(II) cycling to realize continuous detoxification and metabolism of glyphosate, and thus revealed the synergism effects of biological and chemical conversion on toxic micropollutants and continuous metabolism in an aquatic ecosystem.
Collapse
Affiliation(s)
- Jie Yu
- Hebei Key Laboratory of Close-to-Nature Restoration Technology of Wetlands, School of Eco-Environment, Hebei University, Baoding 071002, China
| | - Boxuan Jin
- Hebei Key Laboratory of Close-to-Nature Restoration Technology of Wetlands, School of Eco-Environment, Hebei University, Baoding 071002, China
| | - Qinghua Ji
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Hongjie Wang
- Hebei Key Laboratory of Close-to-Nature Restoration Technology of Wetlands, School of Eco-Environment, Hebei University, Baoding 071002, China; Institute of Xiong'an New Area, Hebei University, Baoding 071002, China; College of Life Science, Hebei University, Baoding 071002, China.
| |
Collapse
|
20
|
Ye T, Liu H, Qi W, Qu J. Removal of pharmaceutical in a biogenic/chemical manganese oxide system driven by manganese-oxidizing bacteria with humic acids as sole carbon source. J Environ Sci (China) 2023; 126:734-741. [PMID: 36503798 DOI: 10.1016/j.jes.2022.05.035] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/15/2022] [Accepted: 05/18/2022] [Indexed: 06/17/2023]
Abstract
Bioaugmented sand filtration has attracted considerable attention because it can effectively remove contaminants in drinking water without additional chemical reagent addition. In this study, a synthesized chemical manganese dioxide (MnO2)-coated quartz sand (MnQS) and biogenic manganese oxide (BioMnOx) composite system was proposed to simultaneously remove typical pharmaceutical contaminants and Mn2+. We demonstrated a manganese-oxidizing bacterium, Pseudomonas sp. QJX-1, could oxidize Mn2+ to generate BioMnOx using humic acids (HA) as sole carbon source. The coaction of MnQS, QJX-1, and the generated BioMnOx in simultaneously removing caffeine and Mn2+ in the presence of HA was evaluated. We found a synergistic effect between them. MnQS and BioMnOx together significantly increased the caffeine removal efficiency from 32.8% (MnQS alone) and 21.5% (BioMnOx alone) to 61.2%. Meanwhile, Mn2+ leaked from MnQS was rapidly oxidized by QJX-1 to regenerate reactive BioMnOx, which was beneficial for continuous contaminant removal and system stability. Different degradation intermediates of caffeine oxidized by MnQS and BioMnOx were detected by LC-QTOF-MS analysis, which implied that caffeine was oxidized by a different pathway. Overall, this work promotes the potential application of bioaugmented sand filtration in pharmaceutical removal in the presence of natural organic matter in drinking water.
Collapse
Affiliation(s)
- Tingming Ye
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huijuan Liu
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Weixiao Qi
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.
| | - Jiuhui Qu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| |
Collapse
|
21
|
Shan H, Mo H, Liu Y, Zeng C, Peng S, Zhan H. As(III) removal by a recyclable granular adsorbent through dopping Fe-Mn binary oxides into graphene oxide chitosan. Int J Biol Macromol 2023; 237:124184. [PMID: 36972821 DOI: 10.1016/j.ijbiomac.2023.124184] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 03/01/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023]
Abstract
Graphene oxide chitosan composite (GOCS) is recognized as an environmentally friendly composite adsorbent because of its stability and abundant functional groups to adsorb heavy metals, and Fe-Mn binary oxides (FMBO) have attracted increasing interest due to their high removal capacity of As(III). However, GOCS is often inefficient for heavy metal adsorption and FMBO suffers poor regeneration for As(III) removal. In this study, we have proposed a method of dopping FMBO into GOCS to obtain a recyclable granular adsorbent (Fe/MnGOCS) for achieving As(III) removal from aqueous solutions. Characterization of BET, SEM-EDS, XRD, FTIR, and XPS are carried out to confirm the formation of Fe/MnGOCS and As(III) removal mechanism. Batch experiments are conducted to investigate the effects of operational factors (pH, dosage, coexisting ions, etc.), as well as kinetic, isothermal, and thermodynamic processes. Results show that the removal efficiency (Re) of As(III) by Fe/MnGOCS is about 96 %, which is much higher than those of FeGOCS (66 %), MnGOCS (42 %), and GOCS (8 %), and it increases slightly with the increasing molar ratio of Mn and Fe. This is because amorphous Fe (hydro)oxides (mainly in the form of ferrihydrite) complexation with As(III) is the major mechanism to remove As(III) from aqueous solutions, and it is accompanied by As(III) oxidation mediated by Mn oxides and the complexation of As(III) with oxygen-containing functional groups of GOCS. Charge interaction plays a weaker role in As(III) adsorption, therefore Re is persistently high over a wide range of pH values of 3-10. But the coexisting PO43- can greatly decrease Re by 24.11 %. As(III) adsorption on Fe/MnGOCS is endothermic and its kinetic process is controlled by pseudo-second-order with a determination coefficient of 0.95. Fitted by the Langmuir isotherm, the maximum adsorption capacity is 108.89 mg/g at 25 °C. After four times regeneration, there is only a slight decrease of <10 % for the Re value. Column adsorption experiments show that Fe/MnGOCS can effectively reduce As(III) concentration from 10 mg/L to <10 μg/L. This study provides new insights into binary polymer composite modified by binary metal oxides to efficiently remove heavy metals from aquatic environments.
Collapse
Affiliation(s)
- Huimei Shan
- Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin 541004, China; College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China.
| | - Huinan Mo
- Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin 541004, China; College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China
| | - Yunquan Liu
- Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin 541004, China; College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China
| | - Chunya Zeng
- Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin 541004, China; College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China
| | - Sanxi Peng
- College of Earth Science, Guilin University of Technology, Guilin 541004, China
| | - Hongbin Zhan
- Department of Geology & Geophysics, Texas A&M University, College Station 77843, USA.
| |
Collapse
|
22
|
Chen M, Wu J, Qiu X, Jiang L, Wu P. The important role of the interaction between manganese minerals and metals in environmental remediation: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:39319-39337. [PMID: 36740617 DOI: 10.1007/s11356-023-25575-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 01/21/2023] [Indexed: 06/18/2023]
Abstract
With illegal discharge of wastewater containing inorganic and organic pollutants, combined pollution is common and needs urgent attention. Understanding the migration and transformation laws of pollutants in the environment has important guiding significance for environmental remediation. Due to the characteristics of adsorption, oxidation, and catalysis, manganese minerals play important role in the environment fate of pollutants. This review summarizes the forms of interaction between manganese minerals and metals, the environmental importance of the interaction between manganese minerals and metals, and the contribution of this interaction in improving performance of Mn-based composite for environmental remediation. The literatures have indicated that the interactions between manganese minerals and metals involve in surface adsorption, lattice replacement, and formation of association minerals. The interaction between manganese minerals and metals plays an important role in environmental behavior of element and environmental significance of manganese minerals. The synergistic or antagonistic effect resulted from the interaction influence the purification of heavy metal and organism pollutant. The synergistic effect benefited from the coordination of adsorption and oxidation, convenient electron transfer, abundant oxygen vacancies, and fast migration of lattice oxygen. Based on the synergy, Mn-based composites have been widely used for environmental remediation. The synthesize methods of Mn-based composites mainly include homogeneous coprecipitation, chemical etching route, hydrothermal, homogeneous chelating sol-gel, and ethylene glycol reduction strategy. This review is helpful to fully understand the migration and transformation process of pollutants in the environment, expand the resource utilization of manganese minerals for environmental remediation.
Collapse
Affiliation(s)
- Meiqing Chen
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, People's Republic of China.
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou, 510006, People's Republic of China.
| | - Jiayan Wu
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, People's Republic of China
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou, 510006, People's Republic of China
| | - Xiaoshan Qiu
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, People's Republic of China
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou, 510006, People's Republic of China
| | - Lu Jiang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, People's Republic of China
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou, 510006, People's Republic of China
| | - Pingxiao Wu
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, People's Republic of China
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou, 510006, People's Republic of China
- Guangdong Engineering and Technology Research Center for Environmental Nanomaterials, Guangzhou, 510006, People's Republic of China
| |
Collapse
|
23
|
Li Y, Liu Y, Feng L, Zhang L. A review: Manganese-driven bioprocess for simultaneous removal of nitrogen and organic contaminants from polluted waters. CHEMOSPHERE 2023; 314:137655. [PMID: 36603680 DOI: 10.1016/j.chemosphere.2022.137655] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/26/2022] [Accepted: 12/24/2022] [Indexed: 06/17/2023]
Abstract
Water pollutants, such as nitrate and organics have received much attention for their harms to ecological environment and human health. The redox transformation between Mn(Ⅱ) and Mn(Ⅳ) for nitrogen and organics removal have been recognized for a long time. Mn(Ⅱ) can act as inorganic electron donor to drive autotrophic denitrification so as to realize simultaneous removal of Mn(Ⅱ), nitrate and organic pollutants. Mn oxides (MnOx) also play an important role in the adsorption and degradation of some organic contaminants and they can change or create new oxidation pathways in the nitrogen cycle. Herein, this paper provides a comprehensive review of nitrogen and organic contaminants removal pathways through applying Mn(Ⅱ) or MnOx as forerunners. The main current knowledge, developments and applications, pollutants removal efficiency, as well as microbiology and biochemistry mechanisms are summarized. Also reviewed the effects of factors such as the carbon source, the environmental factors and operation conditions have on the process. Research gaps and application potential are further proposed and discussed. Overall, Mn-based biotechnology towards advanced wastewater treatment has a promising prospect, which can achieve simultaneous removal of nitrogen and organic contaminants, and minimize sludge production.
Collapse
Affiliation(s)
- Yingying Li
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Yongze Liu
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Li Feng
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Liqiu Zhang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
24
|
Zhang K, Guo F, Graham N, Yu W. Engineering of 3D graphene hydrogel-supported MnO 2-FeOOH nanoparticles with synergistic effect of oxidation and adsorption toward highly efficient removal of arsenic. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 317:120735. [PMID: 36464113 DOI: 10.1016/j.envpol.2022.120735] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/09/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
Iron-manganese-based adsorbent has been regarded as a promising candidate for arsenic purification from water, especially the inorganic As(III), due to its inherent advantage of low cost and large-scale producibility. However, the nanoparticle aggregation, metal leaching and insufficient removal efficiency remain the main challenges in the practical applications of the granular adsorbents. In this work, we develop a universal strategy for the fabrication of an active Fe(III) oxyhydroxide-Mn(IV) oxide/3D graphene oxide (GO) gel composite via a simple hydrothermal reaction. The successful immobilization of Fe-Mn oxyhydroxide/oxides on the interconnected GO gels was intuitively confirmed by the transmission electron microscopy and atomic force microscopy. The combinative characterizations of the X-ray absorption near edge structure and X-ray photoelectron spectroscopy clearly reveal the electron transfer from Fe atoms to Mn atoms. The optimized Fe-Mn/GO composites possess the superior performance with the removal efficiency of over 90% for As(III) at pH 7.0 and ∼97% for As(V) at pH 5.0 and the As(III, V) levels (100 μg l-1) are reduced to below the WHO guideline of 10 μg l-1. The sorption isotherm and kinetic experiments on the As removal were also carried out. The post characterizations are employed to better unveil the oxidation-adsorption mechanism. Notably, the application of Fe-Mn/GO composites in the treatment of As-simulated natural water demonstrated a stable and continuous operation for over 20 days and an effluent concentration of arsenic as low as the 10 μg l-1 in a specially designed flow reactor.
Collapse
Affiliation(s)
- Kai Zhang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Fengchen Guo
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Nigel Graham
- Department of Civil and Environmental Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Wenzheng Yu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
| |
Collapse
|
25
|
Zhang L, Yang Y, Xu X, Xiao H, Deng S, Han X, Xia F, Jiang Y. Enhanced performance of thallium(I) removal by in situ-generated manganese oxides during biogenic Mn(II) oxidation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
26
|
Hidangmayum A, Debnath A, Guru A, Singh BN, Upadhyay SK, Dwivedi P. Mechanistic and recent updates in nano-bioremediation for developing green technology to alleviate agricultural contaminants. INTERNATIONAL JOURNAL OF ENVIRONMENTAL SCIENCE AND TECHNOLOGY : IJEST 2022; 20:1-26. [PMID: 36196301 PMCID: PMC9521565 DOI: 10.1007/s13762-022-04560-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/29/2022] [Accepted: 09/17/2022] [Indexed: 05/09/2023]
Abstract
The rise in environmental pollutant levels in recent years is mostly attributable to anthropogenic activities such as industrial, agricultural and other activities. Additionally, these activities may produce excessive levels of dangerous toxicants such as heavy metals, organic pollutants including pesticide and herbicide chemicals, and sewage discharges from residential and commercial sources. With a focus on environmentally friendly, sustainable technology, new technologies such as combined process of nanotechnology and bioremediation are urgently needed to accelerate the cost-effective remediation process to alleviate toxic contaminants than the conventional remediation methods. Numerous studies have shown that nanoparticles possess special qualities including improved catalysis and adsorption as well as increased reactivity. Currently, microorganisms and their extracts are being used as promising, environmentally friendly catalysts for engineered nanomaterial. In the long term, this combination of both technologies called nano-bioremediation may significantly alter the field of environmental remediation since it is more intelligent, safe, environmentally friendly, economical and green. This review provides an overview of soil and water remediation techniques as well as the use of nano-bioremediation, which is made from various living organisms. Additionally, current developments related to the mechanism, model and kinetic studies for remediation of agricultural contaminants have been discussed.
Collapse
Affiliation(s)
- A Hidangmayum
- Department of Plant Physiology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India
| | - A Debnath
- Department of Civil Engineering, Indian Institute of Technology (BHU), Varanasi, India
| | - A Guru
- Department of Plant Physiology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India
| | - B N Singh
- Department of Plant Physiology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India
| | - S K Upadhyay
- Department of Environmental Science, V.B.S. Purvanchal University, Jaunpur, India
| | - P Dwivedi
- Department of Plant Physiology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India
| |
Collapse
|
27
|
Van Le A, Straub D, Planer-Friedrich B, Hug SJ, Kleindienst S, Kappler A. Microbial communities contribute to the elimination of As, Fe, Mn, and NH 4+ from groundwater in household sand filters. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156496. [PMID: 35667433 DOI: 10.1016/j.scitotenv.2022.156496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/01/2022] [Accepted: 06/01/2022] [Indexed: 06/15/2023]
Abstract
Household sand filters (SFs) are widely applied to remove iron (Fe), manganese (Mn), arsenic (As), and ammonium (NH4+) from groundwater in the Red River delta, Vietnam. Processes in the filters probably include a combination of biotic and abiotic reactions. However, there is limited information on the microbial communities treating varied groundwater compositions and on whether biological oxidation of Fe(II), Mn(II), As(III), and NH4+ contributes to the overall performance of SFs. We therefore analyzed the removal efficiencies, as well as the microbial communities and their potential activities, of SFs fed by groundwater with varying compositions from low (3.3 μg L-1) to high (600 μg L-1) As concentrations. The results revealed that Fe(II)-, Mn(II)-, NH4+-, and NO2--oxidizing microorganisms were prevalent and contributed to the performance of SFs. Additionally, groundwater composition was responsible for the differences among the present microbial communities. We found i) microaerophilic Fe(II) oxidation by Sideroxydans in all SFs, with the highest abundance in SFs fed by low-As and high-Fe groundwater, ii) Hyphomicropbiaceae as the main Mn(II)-oxidizers in all SFs, iii) As sequestration on formed Fe and Mn (oxyhydr)oxide minerals, iv) nitrification by ammonium-oxidizing archaea (AOA) followed by nitrite-oxidizing bacteria (NOB), and v) unexpectedly, the presence of a substantial amount of methane monooxygenase genes (pmoA), suggesting microbial methane oxidation taking place in SFs. Overall, our study revealed diverse microbial communities in SFs used for purifying arsenic-contaminated groundwater, and our data indicate an important contribution of microbial activities to the key functional processes in SFs.
Collapse
Affiliation(s)
- Anh Van Le
- Geomicrobiology, Center for Applied Geoscience, University of Tuebingen, Germany
| | - Daniel Straub
- Quantitative Biology Center (QBiC), University of Tuebingen, Germany
| | - Britta Planer-Friedrich
- Environmental Geochemistry, Bayreuth Center for Ecology and Environmental Research (BayCEER), University of Bayreuth
| | - Stephan J Hug
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| | - Sara Kleindienst
- Microbial Ecology, Center for Applied Geoscience, University of Tuebingen, Germany
| | - Andreas Kappler
- Geomicrobiology, Center for Applied Geoscience, University of Tuebingen, Germany; Cluster of Excellence: EXC 2124: Controlling Microbes to Fight Infection, Tuebingen, Germany.
| |
Collapse
|
28
|
Lin Y, Liu H, Wang X. Removal effects and potential mechanisms of bisphenol A and 17α-ethynylestradiol by Biogenic Mn oxides generated by Bacillus sp. WH4. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:57261-57276. [PMID: 35349062 DOI: 10.1007/s11356-022-19831-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 03/16/2022] [Indexed: 06/14/2023]
Abstract
Endocrine disrupting compounds (EDCs), such as bisphenol A (BPA) and 17α-ethynylestradiol (EE2), have increasingly negative effects on human and wildlife health. In this study, the biogenic Mn oxides (BMOs) generated by Bacillus sp. WH4 were characterized, and the removal effects and reaction kinetics of BPA and EE2 by BMOs under different pH values, initial organic concentrations, and dosages of BMOs were discussed. The results showed that the formation of BMOs was extracellular process, and Mn(II) was oxidized to Mn(III) and Mn(IV) with 23.56% and 76.44%, respectively. The degradation processes of BPA and EE2 by BMOs followed first-order reaction kinetics, and the removal effect decreased with increasing initial BPA/EE2 concentrations and increased with increasing dosages of BMOs. However, the removal effect of BPA by BMOs decreased and then increased with increasing pH, while the removal effect of EE2 by BMOs decreased with increasing pH. Under optimal conditions, the removal efficiency of BPA and EE2 exceeded 98.2% and 94.3%, respectively. Additionally, this study showed that BMOs degraded BPA by coupling, oxidative condensation, substitution, and elimination reactions to obtain sixteen intermediate products and EE2 by substitution and elimination reactions to obtain seven intermediate products.
Collapse
Affiliation(s)
- Yan Lin
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing, 400044, China.
- College of Environment and Ecology, Chongqing University, Chongqing, 400044, China.
| | - Hongchun Liu
- College of Environment and Ecology, Chongqing University, Chongqing, 400044, China
| | - Xiaojie Wang
- North China Municipal Engineering Design and Research Institute Co., Ltd, Tianjin, 300074, China
| |
Collapse
|
29
|
Zhang L, Yang Y, Wu S, Xia F, Han X, Xu X, Deng S, Jiang Y. Insights into the synergistic removal mechanisms of thallium(I) by biogenic manganese oxides in a wide pH range. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 831:154865. [PMID: 35351516 DOI: 10.1016/j.scitotenv.2022.154865] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 03/10/2022] [Accepted: 03/23/2022] [Indexed: 06/14/2023]
Abstract
The behavior and mechanism of thallium (Tl) adsorption by biogenic manganese oxides (BMnOx) are poorly understood. In this study, BMnOx was applied for Tl(I) removal from aqueous solution, and the adsorption interactions were systematically revealed for the first time. BMnOx was successfully prepared with high productivity by effectively oxidizing Mn(II) with a manganese oxide bacterium in an optimal Mn(II) concentration range of 4.0-28 mg/L. Compared with other adsorbents, the prepared BMnOx achieved high Tl(I) adsorption capacity over a wide pH range from 3.0 to 9.0 and high humic acid (HA) concentration (40 mg/L) interference. The experimental results were well depicted by pseudo-second-order kinetics and the Langmuir isotherm model, indicating that chemisorption played the dominant role during the adsorption process. The adsorption mechanisms were verified as synergetic interactions of oxidation-precipitation, electrostatic attraction, ion exchange and surface complexation. X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM) results suggested that 19.46% of the highly toxic Tl(I) was transformed into the much less toxic product Tl2O3 after adsorption onto BMnOx. This study provides theoretical guidance for high-concentration Tl(I) decontamination from groundwater by biogenic manganese oxides.
Collapse
Affiliation(s)
- Liangjing Zhang
- College of Water Sciences, Beijing Normal University, Beijing 100875, China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yu Yang
- State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Shuxuan Wu
- State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Fu Xia
- State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xu Han
- State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xiangjian Xu
- State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Sheng Deng
- State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Yonghai Jiang
- State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| |
Collapse
|
30
|
Yang Y, Rao X, Fu Q, Zhang X, Gao J, Wan X, Zhu J, Huang G, Hu H. The inhibiting effects of organic acids on arsenic immobilization by ferrihydrite: Gallic acid as an example. CHEMOSPHERE 2022; 299:134286. [PMID: 35304216 DOI: 10.1016/j.chemosphere.2022.134286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 03/03/2022] [Accepted: 03/07/2022] [Indexed: 06/14/2023]
Abstract
Organic acids usually compete the immobilization of As by iron (hydro)oxides, but their oxidizing effects are ignored. Therefore, the gallic acid (GA) with strong redox activity was chosen to investigate the influence of arsenite [As(III)] oxidation on As immobilization by ferrihydrite. Our results found that the As amount adsorbed on ferrihydrite decreased with the pH rising from 5 to 9 in the presence of GA, and the adsorption amount (28.8 g kg-1) at pH 9 was 45.1% lower than that in the absence of GA. Meanwhile, the As adsorption amounts in treatments of GA addition before As (Fh-GA-As(III)) were significantly lower than that in their corresponding simultaneous addition (Fh-As(III)/GA). The proportions of As(V)/Astotal on ferrihydrite and in equilibrium suspension were increased as the pH increased in the presence of GA, and the highest oxidation efficiency of As(III) by GA at pH 9 was 90.3%, which was mainly due to the contribution of hydrogen peroxide (H2O2, 52.6%) and semiquinone radicals (SQ-, 27.1%). In general, the oxidation and competition adsorption of As by GA inhibited the As immobilization by ferrihydrite, and the oxidation of As(III) by GA was strongly dependent on pH, while H2O2 and SQ- were demonstrated as the main oxidant at pH 9.
Collapse
Affiliation(s)
- Yongqiang Yang
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Xiongfei Rao
- Tobacco Research Institute of Hubei Province, Wuhan, 430030, China
| | - Qingling Fu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China.
| | - Xin Zhang
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Jieyu Gao
- Hubei Geological Survey, Wuhan, 430000, China
| | - Xiang Wan
- Hubei Geological Survey, Wuhan, 430000, China
| | - Jun Zhu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Guoyong Huang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China
| | - Hongqing Hu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| |
Collapse
|
31
|
Zhang Y, O'Loughlin EJ, Kwon MJ. Antimony redox processes in the environment: A critical review of associated oxidants and reductants. JOURNAL OF HAZARDOUS MATERIALS 2022; 431:128607. [PMID: 35359101 DOI: 10.1016/j.jhazmat.2022.128607] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/16/2022] [Accepted: 02/27/2022] [Indexed: 06/14/2023]
Abstract
The environmental behavior of antimony (Sb) has recently received greater attention due to the increasing global use of Sb in a range of industrial applications. Although present at trace levels in most natural systems, elevated Sb concentrations in aquatic and terrestrial environments may result from anthropogenic activities. The mobility and toxicity of Sb largely depend on its speciation, which is dependent to a large extent on its oxidation state. To a certain extent, our understanding of the environmental behavior of Sb has been informed by studies of the environmental behavior of arsenic (As), as Sb and As have somewhat similar chemical properties. However, recently it has become evident that the speciation of Sb and As, especially in the context of redox reactions, may be fundamentally different. Therefore, it is crucial to study the biogeochemical processes impacting Sb redox transformations to understand the behavior of Sb in natural and engineered environments. Currently, there is a growing body of literature involving the speciation, mobility, toxicity, and remediation of Sb, and several reviews on these general topics are available; however, a comprehensive review focused on Sb environmental redox chemistry is lacking. This paper provides a review of research conducted within the past two decades examining the redox chemistry of Sb in aquatic and terrestrial environments and identifies knowledge gaps that need to be addressed to develop a better understanding of Sb biogeochemistry for improved management of Sb in natural and engineered systems.
Collapse
Affiliation(s)
- Yidan Zhang
- Department of Earth and Environmental Sciences, Korea University, Seoul 02841, Republic of Korea
| | | | - Man Jae Kwon
- Department of Earth and Environmental Sciences, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
32
|
Nguyen TH, Tran HN, Nguyen TV, Vigneswaran S, Trinh VT, Nguyen TD, Ha Nguyen TH, Mai TN, Chao HP. Single-step removal of arsenite ions from water through oxidation-coupled adsorption using Mn/Mg/Fe layered double hydroxide as catalyst and adsorbent. CHEMOSPHERE 2022; 295:133370. [PMID: 34973248 DOI: 10.1016/j.chemosphere.2021.133370] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 12/12/2021] [Accepted: 12/17/2021] [Indexed: 06/14/2023]
Abstract
This study developed a layered double hydroxides (Mn/Mg/Fe-LDH) material through a simple co-precipitation method. The Mn/Mg/Fe-LDH oxidized arsenite [As(III)] ions into arsenate [As(V)] anions. The As(III) and oxidized As(V) were then adsorbed onto Mn/Mg/Fe-LDH. The adsorption process of arseniate [As(V)] oxyanions by Mn/Mg/Fe-LDH was simultaneously conducted for comparison. Characterization results indicated that (i) the best Mg/Mn/Fe molar ratio was 1/1/1, (ii) Mn/Mg/Fe-LDH structure was similar to that of hydrotalcite, (iii) Mn/Mg/Fe-LDH possessed a positively charged surface (pHIEP of 10.15) and low Brunauer-Emmett-Teller surface area (SBET = 75.2 m2/g), and (iv) Fe2+/Fe3+ and Mn2+/Mn3+/Mn4+ coexisted in Mn/Mg/Fe-LDH. The As(III) adsorption process by Mn/Mg/Fe-LDH was similar to that of As(V) under different experimental conditions (initial solutions pH, coexisting foreign anions, contact times, initial As concentrations, temperatures, and desorbing agents). The Langmuir maximum adsorption capacity of Mn/Mg/Fe-LDH to As(III) (56.1 mg/g) was higher than that of As(V) (32.2 mg/g) at pH 7.0 and 25 °C. X-ray photoelectron spectroscopy was applied to identify the oxidation states of As in laden Mn/Mg/Fe-LDH. The key removal mechanism of As(III) by Mn/Mg/Fe-LDH was oxidation-coupled adsorption, and that of As(V) was reduction-coupled adsorption. The As(V) mechanism adsorption mainly involved: (1) the inner-sphere and outer-sphere complexation with OH groups of Mn/Mg/Fe-LDH and (2) anion exchange with host anions (NO3-) in its interlayer. The primary mechanism adsorption of As(III) was the inner-sphere complexation. The redox reactions made Mn/Mg/Fe-LDH lose its original layer structure after adsorbing As(V) or As(III). The adsorption process was highly irreversible. Mn/Mg/Fe-LDH can decontaminate As from real groundwater samples from 45-92 ppb to 0.35-7.9 ppb (using 1.0 g/L). Therefore, Mn/Mg/Fe-LDH has great potential as a material for removing As.
Collapse
Affiliation(s)
- Thi Hai Nguyen
- Faculty of Engineering and IT, University of Technology Sydney (UTS), Sydney, Australia
| | - Hai Nguyen Tran
- Institute of Fundamental and Applied Sciences, Duy Tan University, Ho Chi Minh, 700000, Viet Nam; Faculty of Environmental and Chemical Engineering, Duy Tan University, Da Nang, 550000, Viet Nam.
| | - Tien Vinh Nguyen
- Faculty of Engineering and IT, University of Technology Sydney (UTS), Sydney, Australia.
| | | | - Van Tuyen Trinh
- Institute of Environmental Technology, Vietnam Academy of Science and Technology, Hanoi, Viet Nam
| | - Thanh Dong Nguyen
- Institute of Environmental Technology, Vietnam Academy of Science and Technology, Hanoi, Viet Nam
| | | | - Trong Nhuan Mai
- VNU University of Science, Vietnam National University, Hanoi, Viet Nam
| | - Huan-Ping Chao
- Department of Environmental Engineering and R&D Center for Membrane Technology, Chung Yuan Christian University, Taoyuan, 32023, Taiwan
| |
Collapse
|
33
|
Wang G, Hambly AC, Dou Y, Wang G, Tang K, Andersen HR. Polishing micropollutants in municipal wastewater, using biogenic manganese oxides in a moving bed biofilm reactor (BioMn-MBBR). JOURNAL OF HAZARDOUS MATERIALS 2022; 427:127889. [PMID: 34863559 DOI: 10.1016/j.jhazmat.2021.127889] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 11/15/2021] [Accepted: 11/21/2021] [Indexed: 06/13/2023]
Abstract
Conventional wastewater treatment plants (WWTPs) cannot remove organic micropollutants efficiently, and thus various polishing processes are increasingly being studied. One such potential process is utilising biogenic manganese oxides (BioMnOx). The present study operated two moving bed biofilm reactors (MBBRs) with synthetic sewage as feed, one reactor feed was spiked with Mn(II) which allowed the continuous formation of BioMnOx by Mn-oxidising bacteria in the suspended biofilms (i.e. BioMn-MBBR). Spiking experiments with 14 micropollutants were conducted to investigate if BioMnOx combined with MBBR could be utilised to polish micropollutants in wastewater treatment. Results show enhanced removal by BioMn-MBBR over control MBBR (without BioMnOx) for specific micropollutants, such as diclofenac (36% vs. 5%) and sulfamethoxazole (80% vs. 24%). However, diclofenac removal was significantly inhibited when municipal wastewater was fed, and a further batch experiment demonstrates the reduced removal of diclofenac could be due to (unusual) higher pH in municipal wastewater compared to synthetic sewage. A shift in bacterial community was also observe in BioMn-MBBR over long-term operation. Overall, BioMn-MBBR in this study shows great potential for practical application in removing a larger range of micropollutants, which could be applied as an efficient polishing step for typical municipal wastewater.
Collapse
Affiliation(s)
- Guochen Wang
- Department of Environmental Engineering, Technical University of Denmark, Bygningstorvet 115, 2800 Kgs Lyngby, Denmark
| | - Adam C Hambly
- Department of Environmental Engineering, Technical University of Denmark, Bygningstorvet 115, 2800 Kgs Lyngby, Denmark
| | - Yibo Dou
- Department of Environmental Engineering, Technical University of Denmark, Bygningstorvet 115, 2800 Kgs Lyngby, Denmark
| | - Guan Wang
- Department of Environmental Engineering, Technical University of Denmark, Bygningstorvet 115, 2800 Kgs Lyngby, Denmark
| | - Kai Tang
- Department of Environmental Engineering, Technical University of Denmark, Bygningstorvet 115, 2800 Kgs Lyngby, Denmark.
| | - Henrik R Andersen
- Department of Environmental Engineering, Technical University of Denmark, Bygningstorvet 115, 2800 Kgs Lyngby, Denmark
| |
Collapse
|
34
|
Bai Y, Su J, Ali A, Chang Q, Gao Z, Wang Y, Liu Y. Insights into the mechanism of Mn(II)-based autotrophic denitrification: Performance, genomic, and metabonomics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 810:151185. [PMID: 34699810 DOI: 10.1016/j.scitotenv.2021.151185] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 10/19/2021] [Accepted: 10/20/2021] [Indexed: 06/13/2023]
Abstract
The technologies for groundwater nitrate pollution treatment have drawn increasing global attention. As for autotrophic denitrification (AD), most researches aimed to the mixed microbial culture bioreactors, the mechanism of AD by purely cultured bacteria has not been fully investigated yet. Here, denitrification ability, bacterial activity, and dissolved organic matter evolution of Cupriavidus sp. HY129 in both AD and heterotrophic denitrification (HD) were studied. Genomic analysis and microbial metabolomic analysis were applied to explore the mechanism of AD and the difference and intrinsic factors in AD and HD. The results revealed that HD resulted in higher denitrification efficiency and biomass compared to AD and the bacteria preferred to synthesize humic-like proteins to maintain the progress of AD. Bacteria carry out Mn oxidation outside the bacteria cell and transfer electrons into the cell for AD. Cupriavidus sp. HY129 genome has critical metabolic pathways in both autotrophic and heterotrophic conditions, as well as the MCO gene for mediating the Mn oxidation. Energy metabolism pathways were the most significantly differences between AD and HD. Moreover, sphingolipid metabolism and mineral absorption metabolism were the most essential pathways in the autotrophic process to maintain the normal physiological activities and Mn transfer. The results explored the differences between AD and HD pathways in the same bacteria for the first time and provided new insight into understanding the metabolic characteristics of different denitrification, which provide useful information to the global nitrogen cycle and nitrate pollution treatment.
Collapse
Affiliation(s)
- Yihan Bai
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Junfeng Su
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Amjad Ali
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Qiao Chang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Zhihong Gao
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yue Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yu Liu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
35
|
Hu H, Zhang Q, Wang C, Chen M, Chen M. Mechanochemically synthesized Fe-Mn binary oxides for efficient As(III) removal: Insight into the origin of synergy action from mutual Fe and Mn doping. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127708. [PMID: 34801310 DOI: 10.1016/j.jhazmat.2021.127708] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/17/2021] [Accepted: 11/02/2021] [Indexed: 06/13/2023]
Abstract
Iron manganese oxide resources are widely derived from the geological structure, and their combinations play an important role in the migration and transformation of arsenic. Iron oxide and manganese oxide exist generally in a mixed state in Fe-Mn oxides synthesized via the well studied co-precipitation methods using potassium permanganate and manganese/iron sulfates. Herein, a newly designed Fe-Mn-O compositing oxide with Fe-MnO2, Mn-Fe2O3, (Fe0.67Mn0.33)OOH solid solution and FeOOH as the main components, simply through solvent-free mechanical ball milling pyrolusite (MnO2) and ferrihydrite (FeOOH) together has been reported. Atomic-scale integrations by doping Fe and Mn with each other were detected and an adsorption-oxidation bifunctionality was achieved, where Fe-doped MnO2 served as oxidizer for As(III) and amorphous/ground FeOOH acted as adsorbent first for As(III) and then As(V) from the oxidization. The maximal adsorption for As(III) could reach 44.99 mg/g and over 82.5% of As(III) was converted to As(V). More importantly, high removal ability of arsenic worked in a wide pH range of 2-10.5%, and 87.2% of its initial adsorption-oxidation capacity could be kept even after 5-cycles reuse for treating 20 mg/L As(III) with a dosage at 1 g/L. Together with the enhanced adsorption capacity by the milled FeOOH, surface electron transfer efficiency of the developed Fe-MnO2 surrounded with Mn-Fe2O3 has been studied for the first time to understand the oxidization effect to As(V). Besides the environment-friendliness of ball milling method, the prepared sample is quite stable without noticeable metal release into solution. Mechanism studies of arsenic removal by the as-prepared Fe-Mn-O oxide provide a new direction for improving the oxidation efficiency of MnO2 to As(III) based on the widely available cheap Mn and Fe oxides, contributing to the development of advanced oxidization process in the treatment of waste water.
Collapse
Affiliation(s)
- Huimin Hu
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Qiwu Zhang
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China; Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Wuhan 430070, China.
| | - Chao Wang
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Min Chen
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Mengfei Chen
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China
| |
Collapse
|
36
|
Zhou J, Wang D, Ju F, Hu W, Liang J, Bai Y, Liu H, Qu J. Profiling microbial removal of micropollutants in sand filters: Biotransformation pathways and associated bacteria. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:127167. [PMID: 34536843 DOI: 10.1016/j.jhazmat.2021.127167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 08/13/2021] [Accepted: 09/05/2021] [Indexed: 06/13/2023]
Abstract
Although there is growing evidence that micropollutants can be microbially converted in rapid sand filters of drinking water treatment plants (DWTPs), little is known about the biotransformation pathways and associated microbial strains in this process. Here, we constructed sand filter columns filled with manganese or quartz sand obtained from full-scale DWTPs to explore the biotransformation of eight micropollutants. Under seven different empty bed contact times (EBCTs), the column experiments showed that caffeine and atenolol were easily removed (up to 92.1% and 97.6%, respectively) with adsorption and microbial biotransformation of the filters. In contrast, the removal of other six micropollutants (i.e., naproxen, carbamazepine, atrazine, trimethoprim, sulfamethoxazole, and sulfadiazine) in the filters were less than 27.1% at shorter EBCTs, but significantly increased at EBCT = 4 h, indicating the dominant role of microbial biotransformation in these micropollutants removal. Integrated analysis of metagenomic reads and transformation products of micropollutants showed a shift in caffeine oxidation and demethylation pathways at different EBCTs, simultaneous occurrence of atrazine hydrolysis and oxidation pathways, and sulfadiazine and sulfamethoxazole oxidation in the filters. Furthermore, using genome-centric analysis, we observed previously unidentified degrading strains, e.g., Piscinibacter, Hydrogenophaga, and Rubrivivax for caffeine transformation, and Methylophilus and Methyloversatilis for atenolol transformation.
Collapse
Affiliation(s)
- Jie Zhou
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Donglin Wang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Feng Ju
- Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, 18 Shilongshan Road, Hangzhou 310024, China; Institute of Advanced Technology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, China
| | - Wanchao Hu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jinsong Liang
- School of Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen 518055, China
| | - Yaohui Bai
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Huijuan Liu
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Jiuhui Qu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
37
|
Xie X, Lu C, Xu R, Yang X, Yan L, Su C. Arsenic removal by manganese-doped mesoporous iron oxides from groundwater: Performance and mechanism. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150615. [PMID: 34592280 DOI: 10.1016/j.scitotenv.2021.150615] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 09/22/2021] [Accepted: 09/22/2021] [Indexed: 06/13/2023]
Abstract
FeMn bimetallic oxides have been widely used in catalytic adsorption due to their large pore size, large specific surface area and mesoporous structure, which have great potential for high As groundwater remediation. In this study, FeMn composite oxide was synthesized by template-free route and forming mesopores through high temperature calcination, and its efficiency and mechanism for As removal were subsequently investigated. The results showed that the different Fe/Mn molar ratios and calcination temperatures have important effect on FeMn composite oxides performance. For all synthesized materials, the largest specific surface area is 388.6 m2/g of Fe1Mn1-300. The maximum As absorption capacity was also reached by Fe1Mn1-300, which is 59.44 mg/g for As(III) and 31.68 mg/g for As(V), respectively. As removal efficiency was further evaluated through batch adsorption experiments conducted with five variables, initial As concentration, adsorption equilibrium time, pH, solid-to-liquid ratio, and competitive ions. The adsorption capacity of the material reaches to the maximum when the initial As concentration is 40 mg/L, and that for As(III) and As(V) is 74.05 and 38.09 mg/g, respectively. When the pH rises, the adsorption capacity generally shows a decreasing trend, thus acidic conditions are more conducive to the adsorption reaction. The optimum solid-to-liquid ratios for removal 10 mg/L of As(III) and As(V) are 0.3 mg/L and 1 mg/L, respectively. The order of competitive ions effects on As removal is: PO43- > HCO3- > SO42- ≈ NO3- ≈ Cl-. The adsorption mechanisms for As by FeMn composite oxides included adsorption, co-precipitation and oxidative chelation, which was a combination of physical and chemical process.
Collapse
Affiliation(s)
- Xianjun Xie
- State Key Laboratory of Biogeology and Environmental Geology, School of Environmental Studies, China University of Geosciences, 430074 Wuhan, China; State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, Ministry of Ecology and Environment, 430074 Wuhan, China.
| | - Chun Lu
- State Key Laboratory of Biogeology and Environmental Geology, School of Environmental Studies, China University of Geosciences, 430074 Wuhan, China
| | - Rui Xu
- State Key Laboratory of Biogeology and Environmental Geology, School of Environmental Studies, China University of Geosciences, 430074 Wuhan, China; State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, Ministry of Ecology and Environment, 430074 Wuhan, China
| | - Xueqian Yang
- State Key Laboratory of Biogeology and Environmental Geology, School of Environmental Studies, China University of Geosciences, 430074 Wuhan, China; State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, Ministry of Ecology and Environment, 430074 Wuhan, China
| | - Lu Yan
- State Key Laboratory of Biogeology and Environmental Geology, School of Environmental Studies, China University of Geosciences, 430074 Wuhan, China; State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, Ministry of Ecology and Environment, 430074 Wuhan, China
| | - Chunli Su
- State Key Laboratory of Biogeology and Environmental Geology, School of Environmental Studies, China University of Geosciences, 430074 Wuhan, China; State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, Ministry of Ecology and Environment, 430074 Wuhan, China
| |
Collapse
|
38
|
Liu M, Wang S, Yang M, Ning X, Nan Z. Experimental study on treatment of heavy metal-contaminated soil by manganese-oxidizing bacteria. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:5526-5540. [PMID: 34424469 DOI: 10.1007/s11356-021-15475-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 07/13/2021] [Indexed: 06/13/2023]
Abstract
There are many studies on the treatment of heavy metals by manganese-oxidizing bacteria and the reaction is good; the problem of compound pollution of heavy metals in soil has been difficult to solve. In this study, the application of manganese-oxidizing bacteria in soil was studied. The tolerance of manganese-oxidizing strains (Pseudomonas taiwanensis) to environmental conditions and the treatment effect of heavy metals As, Pb, and Cd in aqueous solution were investigated, and the effect of iron-manganese ratio on the treatment effect was discussed. The results showed that the suitable pH conditions for the growth of P. taiwanensis were 5-9, and the salt tolerance was 6% (by sodium chloride). The tolerant concentrations for heavy metals As(V) and Mn(II) were 500 mg L-1 and 120 mg L-1, respectively. The strains were enriched by nutrient broth medium. After the logarithmic phase, the bacterial suspension was mixed with ATCC#279 medium at a ratio of 1:10, and a certain amount (10 mg L-1) of Mn(II) was added. The results of As, Pb, and Cd removal in the composite polluted water phase were 22.09%, 30.75%, and 35.33%, respectively. The molar ratio of manganese and iron affected the removal efficiency of single arsenic, the highest efficiency is 68%, and the ratio of iron to manganese is 1:5. However, when the soil was treated by the same method, the results showed that not all metals were passivated, such as Cu. At the same time, for As, Pb, and Cd, the treatment effects in soil were worse than those in water, perhaps more consideration should be given to environmental conditions, such as soil moisture and temperature, when manganese-oxidizing bacteria are used to treat soil.
Collapse
Affiliation(s)
- Mengbo Liu
- College of Earth and Environmental Sciences, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, China
| | - Shengli Wang
- College of Earth and Environmental Sciences, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, China.
| | - Meng Yang
- College of Earth and Environmental Sciences, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, China
| | - Xiang Ning
- College of Earth and Environmental Sciences, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, China
| | - Zhongren Nan
- College of Earth and Environmental Sciences, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, China
| |
Collapse
|
39
|
Du Z, Zhang Y, Xu A, Pan S, Zhang Y. Biogenic metal nanoparticles with microbes and their applications in water treatment: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:3213-3229. [PMID: 34734337 DOI: 10.1007/s11356-021-17042-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 10/11/2021] [Indexed: 06/13/2023]
Abstract
Due to their unique characteristics, nanomaterials are widely used in many applications including water treatment. They are usually synthesized via physiochemical methods mostly involving toxic chemicals and extreme conditions. Recently, the biogenic metal nanoparticles (Bio-Me-NPs) with microbes have triggered extensive exploration. Besides their environmental-friendly raw materials and ambient biosynthesis conditions, Bio-Me-NPs also exhibit the unique surface properties and crystalline structures, which could eliminate various contaminants from water. Recent findings in the synthesis, morphology, composition, and structure of Bio-Me-NPs have been reviewed here, with an emphasis on the metal elements of Fe, Mn, Pd, Au, and Ag and their composites which are synthesized by bacteria, fungi, and algae. Furthermore, the mechanisms of eliminating organic and inorganic contaminants with Bio-Me-NPs are elucidated in detail, including adsorption, oxidation, reduction, and catalysis. The scale-up applicability of Bio-Me-NPs is also discussed.
Collapse
Affiliation(s)
- Zhiling Du
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing, 211800, People's Republic of China
- School of the Environment, Nanjing University, Nanjing, 210023, People's Republic of China
| | - Yunhai Zhang
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing, 211800, People's Republic of China
| | - Anlin Xu
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing, 211800, People's Republic of China
| | - Shunlong Pan
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing, 211800, People's Republic of China
| | - Yongjun Zhang
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing, 211800, People's Republic of China.
| |
Collapse
|
40
|
Bai Y, Su J, Ali A, Wen Q, Chang Q, Gao Z, Wang Y. Efficient removal of nitrate, manganese, and tetracycline in a novel loofah immobilized bioreactor: Performance, microbial diversity, and functional genes. BIORESOURCE TECHNOLOGY 2022; 344:126228. [PMID: 34732371 DOI: 10.1016/j.biortech.2021.126228] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 10/19/2021] [Accepted: 10/23/2021] [Indexed: 06/13/2023]
Abstract
The remediation of multiple pollutants in water, for instance, nitrate, heavy metals, and antibiotics is urgent and necessary for the global water resources protection. Herein, a modified loofah bioreactor was designed for simultaneous denitrification, manganese (Mn) oxidation, and tetracycline (TC) removal. The maximum removal efficiencies of NO3--N (91.97%), Mn(II) (71.25%), and TC (57.39%) were achieved at a hydraulic retention time (HRT) of 9 h, Mn(II) concentration of 20 mg L-1, and TC concentration of 1 mg L-1. SEM and XRD were carried out to characterize the bioprecipitation in the operation of bioreactor. TC addition affected the gaseous denitrification products, dissolved organic matter, as well as reduced the OTU in the bioreactor. The Zoogloea were regarded as the dominant species in the microbial community and played an essential role in the operation of bioreactor. Metagenomic analysis proved the great potential for denitrification, manganese oxidation, and antibiotic removal of loofah bioreactor.
Collapse
Affiliation(s)
- Yihan Bai
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Junfeng Su
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Amjad Ali
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Qiong Wen
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Qiao Chang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Zhihong Gao
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yue Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
41
|
Liu R, Qu J. Review on heterogeneous oxidation and adsorption for arsenic removal from drinking water. J Environ Sci (China) 2021; 110:178-188. [PMID: 34593189 DOI: 10.1016/j.jes.2021.04.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 04/11/2021] [Indexed: 06/13/2023]
Abstract
The long term exposure of arsenic via drinking water has resulted in wide occurrence of arsenisim globally, and the oxidation of the non-ionic arsenite (As(III)) to negatively-charged arsenate (As(V)) is of crucial importance for the promising removal of arsenic. The chemical oxidants of ozone, chlorine, chlorine dioxide, and potassium permanganate may achieve this goal; however, their application in developing countries is sometimes restricted by the complicate operation and high cost. This review paper focuses on the heterogeneous oxidation of As(III) by solid oxidants such as manganese oxide, and the adsorption of As(V) accordingly. Manganese oxide may be prepared by both chemical and biological methods to achieve good oxidation performance towards As(III). Additionally, manganese oxide may be combined with other metal oxides, e.g., iron oxide, to improve the adsorption capability towards As(V). Furthermore, manganese oxide may be coated onto porous materials of metal organic frameworks to develop novel adsorbents for arsenic removal. To achieve the application in engineering works, the adsorbents granulation may be achieved by drying and calcination, agglomeration, and the active components may also be in situ coated onto the porous materials to maintain the oxidation and adsorption activities as much as possible. The novel adsorbents with heterogeneous oxidation and adsorption capability may be carefully designed for the removal of arsenic in household purifiers, community-level decentralized small systems, and the large-scale drinking water treatment plants (DWTPs). This review provides insight into the fundamental studies on novel adsorbents, the development of innovative technologies, and the demonstration engineering works involved in the heterogeneous oxidation and adsorption, and may be practically valuable for the arsenic pollution control globally.
Collapse
Affiliation(s)
- Ruiping Liu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Jiuhui Qu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
42
|
Zheng Q, Tu S, Hou J, Ni C, Wang M, Ren L, Wang M, Cao M, Xiong S, Tan W. Insights into the underlying mechanisms of stability working for As(III) removal by Fe-Mn binary oxide as a highly efficient adsorbent. WATER RESEARCH 2021; 203:117558. [PMID: 34425436 DOI: 10.1016/j.watres.2021.117558] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 07/26/2021] [Accepted: 08/09/2021] [Indexed: 06/13/2023]
Abstract
Fe-Mn binary oxide has received increasing interest in treating As(III)-containing polluted groundwater due to its low cost and environmental friendliness. Although the stability of Fe-Mn binary oxide is as important as its adsorption ability, little is known about whether and why Fe-Mn binary oxide is stable during As(III) removal. In this study, five successive cycles were conducted to evaluate the stability of Fe-Mn binary oxide for As(III) removal. As(III) oxidation/adsorption kinetics and the speciation distribution of the released Fe and Mn elements within single Fe oxide, Mn oxide, and Fe-Mn binary oxide were investigated by using characterization techniques of TEM-EDS mapping, selected area electron diffraction (SAED), and XPS combined with a binary component reactor, where Fe and Mn oxides were separated by a semipermeable membrane. The results revealed that Fe-Mn binary oxide could maintain excellent stability, although As(III) oxidation/adsorption behavior was coupled with the release of Fe and Mn ions from its surface. The great stability of Fe-Mn binary oxide for As(III) removal was attributed to the rapid return of aqueous Fe(II) and Mn(II) to the solid surface, which subsequently formed new mineral phases mediated by Fe and Mn oxides, thus considerably decreasing the loss of released Mn(II) and Fe(II).
Collapse
Affiliation(s)
- Qian Zheng
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Shuxin Tu
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Jingtao Hou
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China.
| | - Chunlan Ni
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Mengqing Wang
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Lu Ren
- School of Civil Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Mingxia Wang
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Menghua Cao
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Shuanglian Xiong
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Wenfeng Tan
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
43
|
Boussouga YA, Mohankumar MB, Gopalakrishnan A, Welle A, Schäfer AI. Removal of arsenic(III) via nanofiltration: contribution of organic matter interactions. WATER RESEARCH 2021; 201:117315. [PMID: 34198199 DOI: 10.1016/j.watres.2021.117315] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 05/22/2021] [Accepted: 05/26/2021] [Indexed: 06/13/2023]
Abstract
The removal of arsenic(III) (As(III)) with nanofiltration (NF) was investigated with emphasis on the role of salinity, pH and organic matter on retention mechanisms. While no measurable impact of salinity on As(III) retention with NF membranes (NF270 and NF90) was observed, a significant increase in As(III) retention occurred from pH 9 to pH 12. This was explained by As(III) deprotonation at pH > 9 that enhanced Donnan (charge) exclusion. Of the five different organic matter types investigated at 10 mgC/L, only humic acid (HA) increased As(III) retention by up to 10%. Increasing HA concentration to 100 mgC/L enhanced As(III) retention by 40%, which was attributed to As(III)-HA complexation. Complexation was confirmed by field-flow fractionation inductively coupled plasma mass spectrometry (FFF-ICP-MS) measurements, which showed that the bound As(III) increased with HA concentration. Time-of-flight secondary ion mass spectrometry (ToF-SIMS) showed that NF90, which exhibited lower permeability reduction than NF270, has accumulated a lower amount of As(III) in the presence of HA, where As(III)-HA complex was formed in the feed solution. This finding implies that As(III) retention with NF technology can be enhanced by complexation, instead of using other methods such as oxidation or pH adjustement.
Collapse
Affiliation(s)
- Youssef-Amine Boussouga
- Institute for Advanced Membrane Technology (IAMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany.
| | - Malini Bangalore Mohankumar
- Institute for Advanced Membrane Technology (IAMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Akhil Gopalakrishnan
- Institute for Advanced Membrane Technology (IAMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Alexander Welle
- Institute of Functional Interfaces (IFG), KIT, 76344 Eggenstein-Leopoldshafen, Germany; Karlsruhe Nano Micro Facility (KNMF), KIT, 76344 Eggenstein-Leopoldshafen, Germany
| | - Andrea I Schäfer
- Institute for Advanced Membrane Technology (IAMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
44
|
Liu L, Qiao Q, Tan W, Sun X, Liu C, Dang Z, Qiu G. Arsenic detoxification by iron-manganese nodules under electrochemically controlled redox: Mechanism and application. JOURNAL OF HAZARDOUS MATERIALS 2021; 403:123912. [PMID: 33264965 DOI: 10.1016/j.jhazmat.2020.123912] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/05/2020] [Accepted: 09/07/2020] [Indexed: 06/12/2023]
Abstract
Iron-manganese binary oxides are characterized by high oxidation and adsorption capability and widely applied to arsenic (As) detoxification in contaminated waters. Despite of their lower preparation cost relative to synthesized iron-manganese binary oxides, the low adsorption capacity of natural iron-manganese oxides largely hinders their application. Here, electrochemically controlled redox was employed to improve the As(III,V) removal performance of iron-manganese nodules in a symmetric electrode system, and the removal mechanism and electrode reusability were also examined. Experimental results showed that both the electrochemical reduction and oxidation of birnessite in iron-manganese nodules contributed much to As(III,V) removal. Higher cell voltage facilitated a higher removal efficiency of total As within 0-1.2 V, which reached 94.7% at 1.2 V for actual As-containing wastewater (4068 μg L-1). The efficiency was obviously higher than that at open circuit (81.4%). Under electrode polarity reversal, the alternating reduction dissolution and oxidation recrystallization of birnessite in iron-manganese nodules promoted their contact with As, enhancing the total As removal efficiency from 75.6% to 91.8% after five times of repeated adsorption. This research clarifies the effect of electrochemical redox on As(III,V) detoxification by iron-manganese oxides, and expands the application of natural iron-manganese nodules in the treatment of As-contaminated wastewaters.
Collapse
Affiliation(s)
- Lihu Liu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Interdisciplinary Sciences Research Institute, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Qi Qiao
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Interdisciplinary Sciences Research Institute, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Wenfeng Tan
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Interdisciplinary Sciences Research Institute, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Xuecheng Sun
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Interdisciplinary Sciences Research Institute, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Chengshuai Liu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, Guizhou Province, China
| | - Zhi Dang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, Guangdong Province, China
| | - Guohong Qiu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Interdisciplinary Sciences Research Institute, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China.
| |
Collapse
|
45
|
Growth inhibition of Microcystis aeruginosa by sand-filter prevalent manganese-oxidizing bacterium. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.117808] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
46
|
Liu F, Yang W, Li W, Zhao GC. Simultaneous Oxidation and Sequestration of Arsenic(III) from Aqueous Solution by Copper Aluminate with Peroxymonosulfate: A Fast and Efficient Heterogeneous Process. ACS OMEGA 2021; 6:1477-1487. [PMID: 33490807 PMCID: PMC7818582 DOI: 10.1021/acsomega.0c05203] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 12/22/2020] [Indexed: 06/12/2023]
Abstract
The major problem in arsenic (As(III)) removal using adsorbents is that the method is time-consuming and inefficient owing to the fact that most of the adsorbents are more effective for As(V). Herein, we report a new discovery regarding the significant simultaneous oxidation and sequestration of As(III) by a heterogeneous catalytic process of copper aluminate (CuAl2O4) coupled with peroxymonosulfate (PMS). Oxidation and adsorption promote each other. With the help of the active radicals, the As(III) removal efficiency can be increased from 59.4 to 99.2% in the presence of low concentrations of PMS (50 μM) and CuAl2O4 (300 mg/L) in solution. CuAl2O4/PMS can work effectively in a wide pH range (3.0-9.0). Other substances, such as nitrate, sulfate, chloride, carbonate, and humic acid, exert an insignificant effect on As(III) removal. Based on X-ray photoelectron spectroscopy (XPS) analysis, the exposed reductive copper active sites might drive the redox reaction of Cu(II)/Cu(I), which plays a key role in the decomposition of PMS and the oxidation of As(III). The exhausted CuAl2O4 could be refreshed for cycling runs with insignificant capacity loss by the combined regeneration strategy because of the stable spinel structure. According to all results, the CuAl2O4/PMS with favorable oxidation ability and stability could be employed as a promising candidate in real As(III)-contaminated groundwater treatment.
Collapse
|
47
|
Liu F, Wu JF, Zhao GC. Synchronous oxidation and sequestration for As( iii) from aqueous solution by modified CuFe 2O 4 coupled with peroxymonosulfate: a fast and stable heterogeneous process. RSC Adv 2021; 11:4598-4609. [PMID: 35424406 PMCID: PMC8694489 DOI: 10.1039/d0ra09324f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 01/15/2021] [Indexed: 12/05/2022] Open
Abstract
Bifunctional heterogeneous catalytic processes for highly efficient removal of arsenic (As(iii)) are receiving increased attention. However, the agglomerated nature and stability of nanoparticles are major concerns. Herein, we report a new process regarding the anchoring of CuFe2O4 nanoparticles on a substrate material, a kind of Fe–Ni foam, to form porous CuFe2O4 foam (CuFe2O4-foam) by in situ synthesis. The prepared material was then applied to activate peroxymonosulfate (PMS) for fast and efficient removal of As(iii) from water. The results of removal experiments show that the complete removal of arsenic (<10 μg L−1) from 1 mg L−1 As(iii) aqueous solution can be achieved within shorter time (<10 min) using this adsorbent coupled with PMS. The maximum adsorption capability of As(iii) and As(v) on the prepared adsorbent is observed to be about 105.78 mg g−1 and 120.32 mg g−1, respectively. CuFe2O4-foam/PMS couple could work effectively in a wide pH range (3.0–9.0) and temperature range (10–60 °C), which is more beneficial to its application in actual water treatment engineering. The exhausted adsorbents can be refreshed for cyclic runs (at least 7 cycles) with insignificant capacity loss using alkaline solution as a regeneration strategy, suggesting this process has good stability. Investigation of the mechanism reveals that the route to the removal of As(iii) is synchronous oxidation and sequestration in the arsenic removal process. The large As(iii) removal capability and stability of CuFe2O4-foam/PMS show its potential as a promising candidate in real As(iii)-contaminated groundwater treatment. Bifunctional heterogeneous catalytic processes for highly efficient removal of arsenic (As(iii)) are receiving increased attention.![]()
Collapse
Affiliation(s)
- Fu Liu
- School of Ecology and Environment
- Anhui Normal University
- Wuhu 241000
- P. R. China
| | - Jian-Feng Wu
- School of Ecology and Environment
- Anhui Normal University
- Wuhu 241000
- P. R. China
| | - Guang-Chao Zhao
- School of Ecology and Environment
- Anhui Normal University
- Wuhu 241000
- P. R. China
| |
Collapse
|
48
|
Jain N, Maiti A. Arsenic adsorbent derived from the ferromanganese slag. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:3230-3242. [PMID: 32914302 DOI: 10.1007/s11356-020-10745-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 09/06/2020] [Indexed: 06/11/2023]
Abstract
Arsenic-contaminated groundwater has a severe negative impact on the health of living beings. Groundwater majorly contains arsenite (As(III)) as well as arsenate (As(V)). Among these two, the arsenite species are more carcinogenic, mobile, and lethal. Hence, it is more difficult to remove by conventional water treatment methods. Ferromanganese slag, waste generated from steel industries, has been utilized in this study for the development of arsenic adsorbent. A chemical treatment method is applied to the ferromanganese slag to prepare efficient arsenic adsorbent, and it is easy to scale up. An adsorbent with the capacity for simultaneous oxidation of As(III) and adsorption of total arsenic species can be efficient for arsenic decontamination. X-ray photoelectron spectroscopy and X-ray absorption near edge spectra techniques prove the As(III) oxidation capability of the developed material is about 70 ± 5% based on initial As(III) concentration. The adsorbent not only oxidizes the As(III) species but also adsorbs both the arsenic species. The Langmuir isotherm model estimates the maximum adsorption capacities at the equilibrium concentration of 10 μg/L are 1.010 ± 0.004 mg/g and 1.614 ± 0.006 mg/g for As(III) and As(V), respectively. The rate of adsorption of As(III) was higher compared to the As(V), which was confirmed by the pseudo-second-order kinetic model. Therefore, the treated water quality meets the World Health Organization and Indian drinking water standards.
Collapse
Affiliation(s)
- Nishant Jain
- Department of Polymer and Process Engineering, Indian Institute of Technology Roorkee, Saharanpur Campus, Saharanpur, Uttar Pradesh, 247001, India
| | - Abhijit Maiti
- Department of Polymer and Process Engineering, Indian Institute of Technology Roorkee, Saharanpur Campus, Saharanpur, Uttar Pradesh, 247001, India.
| |
Collapse
|
49
|
Mn-Fe Layered Double Hydroxide Intercalated with Ethylene-Diaminetetraacetate Anion: Synthesis and Removal of As(III) from Aqueous Solution around pH 2-11. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17249341. [PMID: 33327414 PMCID: PMC7764843 DOI: 10.3390/ijerph17249341] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/08/2020] [Accepted: 12/10/2020] [Indexed: 11/16/2022]
Abstract
A novel adsorbent Mn-Fe layered double hydroxides intercalated with ethylenediaminete-traacetic (EDTA@MF-LDHs) was synthesized by a low saturation coprecipitation method. The behavior and mechanism of As(III) removed by EDTA@MF-LDHs were investigated in detail in comparison with the carbonate intercalated Mn-Fe layered double hydroxides (CO3@MF-LDHs). The results showed that EDTA@MF-LDHs had a higher removal efficiency for As(III) than As(V) with a broader pH range than CO3@MF-LDH. The large adsorption capacity of EDTA@MF-LDHs is related to its large interlayer spacing and the high affinity of its surface hydroxyl groups. The maximum adsorption capacity for As(III) is 66.76 mg/g at pH 7. The FT-IR and XPS characterization indicated that the removal mechanism of the As(III) on EDTA@MF-LDHs include surface complexation, redox, and ion exchange.
Collapse
|
50
|
He Z, Zhu Y, Xu X, Wei Z, Wang Y, Zhang D, Pan X. Complex effects of pH and organic shocks on arsenic oxidation and removal by manganese-oxidizing aerobic granular sludge in sequencing batch reactors. CHEMOSPHERE 2020; 260:127621. [PMID: 32688320 DOI: 10.1016/j.chemosphere.2020.127621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 07/03/2020] [Accepted: 07/05/2020] [Indexed: 06/11/2023]
Abstract
Biological technologies are efficient and economical methods for removing toxic arsenic (As) from organic wastewaters. In this study, four sequencing batch reactors of manganese-oxidizing aerobic granular sludge (Mn-AGS) were operated in duplicate and imposed with acidic pH and high organic shocks. Batch experiments with different initial conditions were conducted to investigate the effects of pH and organic load on As(III) oxidation and removal. The results indicate that acidic pH shocks (influent pH decreased to 4.0/3.0) unexpectedly increased the As removal efficiency from 23.4-38.2% to 64.7-72.5%. The effects of high organic shocks were very complicated, as the results of the shocks were opposite twice. According to the results of the batch experiments, it was estimated that the suitable pH range for high performance was 5.0-8.5 in reaction liquid. Although acidic pH shocks initially inhibited As(III) oxidation and removal, they largely extended the reaction time of the suitable pH range and finally improved the As removal efficiency. There were many negative and positive factors affecting the As removal during the high organic shocks, leading to the unstable responses. Moreover, the microbial community was not largely changed by pH or organic shocks, and genus Hydrogenophaga (∼8%) might be responsible for the microbial As(III) oxidation. Finally, several operation strategies were proposed to obtain high performance, such as liquid pH control and aeration improvement.
Collapse
Affiliation(s)
- Zhanfei He
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Yinghong Zhu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Xuyang Xu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Zhen Wei
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Yanxin Wang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Daoyong Zhang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Xiangliang Pan
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China; Xinjiang Key Laboratory of Environmental Pollution and Bioremediation, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China.
| |
Collapse
|