1
|
Liu S, Zhang J, Hou X, Bu W, Lu S, Song X, Zhou C, Wang Q, Xin S, Liu G, Xin Y, Yan Q. Insights into the efficient removal and mechanism of NiFeAl-LDH with abundant hydroxyl to activate peroxymonosulfate for sulfamethoxazole wastewater. J Colloid Interface Sci 2025; 678:920-936. [PMID: 39226833 DOI: 10.1016/j.jcis.2024.08.171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 08/21/2024] [Accepted: 08/22/2024] [Indexed: 09/05/2024]
Abstract
Layered double hydroxide (LDH) material with abundant OH was successfully prepared by co-precipitation method, and a water purification system of Ni2Fe0.25Al0.75-LDH activated peroxymonosulfate (PMS) was constructed to rapidly degrade sulfamethoxazole (SMX) pollutants. The optimal conditions for the degradation of SMX in the system were as follows: 0.30 g/L Ni2Fe0.25Al0.75-LDH, 0.30 mM PMS, pH = 7 and 90 % SMX was removed in 10 min and almost completely in 40 min, which was consistent with the predicted results of response surface methodology (RSM) analysis. The abundant OH in Ni2Fe0.25Al0.75-LDH could form M(O)OSO3 complexes with PMS, accelerating the generation of reactive oxygen species (ROS) and promoting the removal of SMX. Quenching experiments and electron paramagnetic resonance (EPR) spectra showed that SO4-, OH, O2- and 1O2 also existed in the system. The surface-bound SO4- and O2- contributed greatly to the removal of SMX and the electron transfer between metals was also conducive to the production of active substances. The possible degradation pathways and intermediates of SMX were proposed. The toxicity assessment software tool (T.E.S.T) and total organic carbon (TOC) results indicated that the Ni2Fe0.25Al0.75-LDH/PMS system could reduce the overall environmental risk of SMX to some extent. This study provided a new strategy for the practical application of heterogeneous catalysts in sewage treatment.
Collapse
Affiliation(s)
- Siqi Liu
- Qingdao Engineering Research Center for Rural Environment, College of Resources and Environment, Qingdao Agricultural University, Qingdao 266109, PR China
| | - Jiajia Zhang
- Qingdao Engineering Research Center for Rural Environment, College of Resources and Environment, Qingdao Agricultural University, Qingdao 266109, PR China
| | - Xiangting Hou
- Qingdao Engineering Research Center for Rural Environment, College of Resources and Environment, Qingdao Agricultural University, Qingdao 266109, PR China
| | - Wenqi Bu
- Qingdao Engineering Research Center for Rural Environment, College of Resources and Environment, Qingdao Agricultural University, Qingdao 266109, PR China
| | - Shixu Lu
- Qingdao Engineering Research Center for Rural Environment, College of Resources and Environment, Qingdao Agricultural University, Qingdao 266109, PR China
| | - Xiaozhe Song
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
| | - Chengzhi Zhou
- Qingdao Engineering Research Center for Rural Environment, College of Resources and Environment, Qingdao Agricultural University, Qingdao 266109, PR China
| | - Qianwen Wang
- Qingdao Engineering Research Center for Rural Environment, College of Resources and Environment, Qingdao Agricultural University, Qingdao 266109, PR China
| | - Shuaishuai Xin
- Qingdao Engineering Research Center for Rural Environment, College of Resources and Environment, Qingdao Agricultural University, Qingdao 266109, PR China
| | - Guocheng Liu
- Qingdao Engineering Research Center for Rural Environment, College of Resources and Environment, Qingdao Agricultural University, Qingdao 266109, PR China
| | - Yanjun Xin
- Qingdao Engineering Research Center for Rural Environment, College of Resources and Environment, Qingdao Agricultural University, Qingdao 266109, PR China; National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, College of Resources and Environment, Qingdao Agricultural University, Qingdao 266109, PR China
| | - Qinghua Yan
- Qingdao Engineering Research Center for Rural Environment, College of Resources and Environment, Qingdao Agricultural University, Qingdao 266109, PR China.
| |
Collapse
|
2
|
Liu X, Zhang J, Richnow HH, Imfeld G. Novel stable isotope concepts to track antibiotics in wetland systems. J Environ Sci (China) 2024; 146:298-303. [PMID: 38969458 DOI: 10.1016/j.jes.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/08/2024] [Accepted: 02/08/2024] [Indexed: 07/07/2024]
Abstract
Antibiotics, their transformation products, and the translocation of antibiotic-resistant genes in the environment pose significant health risks to humans, animals, and ecosystems, aligning with the One Health concept. Constructed wetlands hold substantial yet underutilized potential for treating wastewater from agricultural, domestic sewage, or contaminated effluents from wastewater treatment plants, with the goal of eliminating antibiotics. However, the comprehensive understanding of the distribution, persistence, and dissipation processes of antibiotics within constructed wetlands remains largely unexplored. In this context, we provide an overview of the current application of stable isotope analysis at natural abundance to antibiotics. We explore the opportunities of an advanced multiple stable isotope approach, where isotope concepts could be effectively applied to examine the fate of antibiotics in wetlands. The development of a conceptual framework to study antibiotics in wetlands using multi-element stable isotopes introduces a new paradigm, offering enhanced insights into the identification and quantification of natural attenuation of antibiotics within wetland systems. This perspective has the potential to inspire the general public, governmental bodies, and the broader research community, fostering an emphasis on the utilization of stable isotope analysis for studying antibiotics and other emerging micropollutants in wetland systems.
Collapse
Affiliation(s)
- Xiao Liu
- Institut Terre et Environnement de Strasbourg (ITES), Université de Strasbourg/EOST/ENGEES, CNRS UMR 7063, F-67084 Strasbourg, France
| | - Junya Zhang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Hans Hermann Richnow
- Department of Technical Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, Permoserstraße 15, 04318 Leipzig, Germany; Isodetect GmbH, Deutscher Platz 5b, 04103 Leipzig, Germany
| | - Gwenaël Imfeld
- Institut Terre et Environnement de Strasbourg (ITES), Université de Strasbourg/EOST/ENGEES, CNRS UMR 7063, F-67084 Strasbourg, France.
| |
Collapse
|
3
|
Zhuang Y, Spahr S, Lutze HV, Reith CJ, Hagemann N, Paul A, Haderlein SB. Persulfate activation by biochar and iron: Effect of chloride on formation of reactive species and transformation of N,N-diethyl-m-toluamide (DEET). WATER RESEARCH 2024; 265:122267. [PMID: 39178590 DOI: 10.1016/j.watres.2024.122267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 07/23/2024] [Accepted: 08/12/2024] [Indexed: 08/26/2024]
Abstract
Fenton-like processes using persulfate for oxidative water treatment and contaminant removal can be enhanced by the addition of redox-active biochar, which accelerates the reduction of Fe(III) to Fe(II) and increases the yield of reactive species that react with organic contaminants. However, available data on the formation of non-radical or radical species in the biochar/Fe(III)/persulfate system are inconsistent, which limits the evaluation of treatment efficiency and applicability in different water matrices. Based on competition kinetics calculations, we employed different scavengers and probe compounds to systematically evaluate the effect of chloride in presence of organic matter on the formation of major reactive species in the biochar/Fe(III)/persulfate system for the transformation of the model compound N,N‑diethyl-m-toluamide (DEET) at pH 2.5. We show that the transformation of methyl phenyl sulfoxide (PMSO) to methyl phenyl sulfone (PMSO2) cannot serve as a reliable indicator for Fe(IV), as previously suggested, because sulfate radicals also induce PMSO2 formation. Although the formation of Fe(IV) cannot be completely excluded, sulfate radicals were identified as the major reactive species in the biochar/Fe(III)/persulfate system in pure water. In the presence of dissolved organic matter, low chloride concentrations (0.1 mM) shifted the major reactive species likely to hydroxyl radicals. Higher chloride concentrations (1 mM), as present in a mining-impacted acidic surface water, resulted in the formation of another reactive species, possibly Cl2•-, and efficient DEET degradation. To tailor the application of this oxidation process, the water matrix must be considered as a decisive factor for reactive species formation and contaminant removal.
Collapse
Affiliation(s)
- Yiling Zhuang
- Department of Ecohydrology and Biogeochemistry, Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Müggelseedamm 301, 12587 Berlin, Germany; Department of Geosciences, Environmental Mineralogy and Chemistry, Eberhard Karls University of Tübingen, Schnarrenbergstr. 94-96, 72076 Tübingen, Germany
| | - Stephanie Spahr
- Department of Ecohydrology and Biogeochemistry, Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Müggelseedamm 301, 12587 Berlin, Germany; Department of Geosciences, Environmental Mineralogy and Chemistry, Eberhard Karls University of Tübingen, Schnarrenbergstr. 94-96, 72076 Tübingen, Germany.
| | - Holger V Lutze
- Institute IWAR, Chair of Environmental Analytics and Pollutants, Technical University of Darmstadt, Franziska-Braun-Straße 7, 64287 Darmstadt, Germany; IWW Water Centre, Moritzstraße 26, 45476 Mülheim an der Ruhr, Germany; Centre for Water and Environmental Research (ZWU), University of Duisburg-Essen, Universitätsstraße 2, 45141 Essen, Germany
| | - Christoph J Reith
- Department of Ecohydrology and Biogeochemistry, Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Müggelseedamm 301, 12587 Berlin, Germany; Department of Geosciences, Environmental Mineralogy and Chemistry, Eberhard Karls University of Tübingen, Schnarrenbergstr. 94-96, 72076 Tübingen, Germany
| | - Nikolas Hagemann
- Environmental Analytics, Agroscope, Reckenholzstrasse 191, 8046 Zürich, Switzerland; Ithaka Institut gGmbH, Altmutterweg 21, 63773 Goldbach, Germany
| | - Andrea Paul
- BAM Federal Institute of Materials Research and Testing, Richard-Willstaetter-Str. 11, 12489 Berlin, Germany
| | - Stefan B Haderlein
- Department of Geosciences, Environmental Mineralogy and Chemistry, Eberhard Karls University of Tübingen, Schnarrenbergstr. 94-96, 72076 Tübingen, Germany
| |
Collapse
|
4
|
Dou Q, Canavan A, Fu Y, Xiang L, Wang Y, Wang X, Jiang X, Dirr C, Wang F, Elsner M. Nitrogen stable isotope analysis of sulfonamides by derivatization-gas chromatography-isotope ratio mass spectrometry. Anal Bioanal Chem 2024; 416:4237-4247. [PMID: 38849528 PMCID: PMC11525405 DOI: 10.1007/s00216-024-05361-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/15/2024] [Accepted: 05/16/2024] [Indexed: 06/09/2024]
Abstract
The continuous introduction of micropollutants into the environment through livestock farming, agricultural practices, and wastewater treatment is a major concern. Among these pollutants are synthetic sulfonamide antibiotics such as sulfamethoxazole, which are not always fully degraded and pose a risk of fostering antimicrobial resistance. It is challenging to assess the degradation of sulfonamides with conventional concentration measurements. This study introduces compound-specific isotope analysis of nitrogen isotope ratios at natural abundances by derivatization-gas chromatography hyphenated with isotope ratio mass spectrometry (derivatization-GC-IRMS) as a new and more precise method for tracing the origin and degradation of sulfonamides. Here, sulfamethoxazole was used as a model compound to develop and optimize the derivatization conditions using (trimethylsilyl)diazomethane as a derivatization reagent. With the optimized conditions, accurate and reproducible δ15N analysis of sulfamethoxazole by derivatization-GC-IRMS was achieved in two different laboratories with a limit for precise isotope analysis of 3 nmol N on column, corresponding to 0.253 µg non-derivatized SMX. Application of the method to four further sulfonamides, sulfadiazine, sulfadimethoxine, sulfadimidine, and sulfathiazole, shows the versatility of the developed method. Its benefit was demonstrated in a first application, highlighting the possibility of distinguishing sulfamethoxazole from different suppliers and pharmaceutical products.
Collapse
Affiliation(s)
- Qingyuan Dou
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, No. 71 East Beijing Road, Nanjing, 210008, China
- University of Chinese Academy of Science, Beijing, 100049, China
| | - Aoife Canavan
- Chair of Analytical Chemistry and Water Chemistry, School of Natural Sciences, Department of Chemistry, Technical University of Munich, Lichtenbergstr. 4, 85748, Garching, Germany
| | - Yuhao Fu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, No. 71 East Beijing Road, Nanjing, 210008, China
- University of Chinese Academy of Science, Beijing, 100049, China
| | - Leilei Xiang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, No. 71 East Beijing Road, Nanjing, 210008, China
- University of Chinese Academy of Science, Beijing, 100049, China
| | - Yu Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, No. 71 East Beijing Road, Nanjing, 210008, China
- University of Chinese Academy of Science, Beijing, 100049, China
| | - Xi Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, No. 71 East Beijing Road, Nanjing, 210008, China
- University of Chinese Academy of Science, Beijing, 100049, China
| | - Xin Jiang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, No. 71 East Beijing Road, Nanjing, 210008, China
- University of Chinese Academy of Science, Beijing, 100049, China
| | - Christopher Dirr
- Chair of Analytical Chemistry and Water Chemistry, School of Natural Sciences, Department of Chemistry, Technical University of Munich, Lichtenbergstr. 4, 85748, Garching, Germany
| | - Fang Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, No. 71 East Beijing Road, Nanjing, 210008, China.
- University of Chinese Academy of Science, Beijing, 100049, China.
| | - Martin Elsner
- Chair of Analytical Chemistry and Water Chemistry, School of Natural Sciences, Department of Chemistry, Technical University of Munich, Lichtenbergstr. 4, 85748, Garching, Germany.
| |
Collapse
|
5
|
Ottosen CF, Bjerg PL, Kümmel S, Richnow HH, Middeldorp P, Draborg H, Lemaire GG, Broholm MM. Natural attenuation of sulfonamides and metabolites in contaminated groundwater - Review, advantages and challenges of current documentation techniques. WATER RESEARCH 2024; 254:121416. [PMID: 38489851 DOI: 10.1016/j.watres.2024.121416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/01/2024] [Accepted: 03/04/2024] [Indexed: 03/17/2024]
Abstract
Sulfonamides are applied worldwide as antibiotics. They are emerging contaminants of concern, as their presence in the environment may lead to the spread of antibiotic resistance genes. Sulfonamides are present in groundwater systems, which suggest their persistence under certain conditions, highlighting the importance of understanding natural attenuation processes in groundwater. Biodegradation is an essential process, as degradation of sulfonamides reduces the risk of antibiotic resistance spreading. In this review, natural attenuation, and in particular assessment of biodegradation, is evaluated for sulfonamides in groundwater systems. The current knowledge level on biodegradation is reviewed, and a scientific foundation is built based on sulfonamide degradation processes, pathways, metabolites and toxicity. An overview of bacterial species and related metabolites is provided. The main research effort has focused on aerobic conditions while investigations under anaerobic conditions are lacking. The level of implementation in research is laboratory scale; here we strived to bridge towards field application and assessment, by assessing approaches commonly used in monitored natural attenuation. Methods to document contaminant mass loss are assessed to be applicable for sulfonamides, while the approach is limited by a lack of reference standards for metabolites. Furthermore, additional information is required on relevant metabolites in order to improve risk assessments. Based on the current knowledge on biodegradation, it is suggested to use the presence of substituent-containing metabolites from breakage of the sulfonamide bridge as specific indicators of degradation. Microbial approaches are currently available for assessment of microbial community's capacities, however, more knowledge is required on indigenous bacteria capable of degrading sulfonamides and on the impact of environmental conditions on biodegradation. Compound specific stable isotope analysis shows great potential as an additional in situ method, but further developments are required to analyse for sulfonamides at environmentally relevant levels. Finally, in a monitored natural attenuation scheme it is assessed that approaches are available that can uncover some processes related to the fate of sulfonamides in groundwater systems. Nevertheless, there are still unknowns related to relevant bacteria and metabolites for risk assessment as well as the effect of environmental settings such as redox conditions. Alongside, uncovering the fate of sulfonamides in future research, the applicability of the natural attenuation documentation approaches will advance, and provide a step towards in situ remedial concepts for the frequently detected sulfonamides.
Collapse
Affiliation(s)
- Cecilie F Ottosen
- Department of Environmental and Resource Engineering, Technical University of Denmark (DTU), Bygningstorvet, building 115, 2800 Kgs. Lyngby, Denmark.
| | - Poul L Bjerg
- Department of Environmental and Resource Engineering, Technical University of Denmark (DTU), Bygningstorvet, building 115, 2800 Kgs. Lyngby, Denmark
| | - Steffen Kümmel
- Department Technical Biogeochemistry, Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, Leipzig 04318, Germany
| | - Hans H Richnow
- Department Technical Biogeochemistry, Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, Leipzig 04318, Germany
| | | | | | - Gregory G Lemaire
- Department of Environmental and Resource Engineering, Technical University of Denmark (DTU), Bygningstorvet, building 115, 2800 Kgs. Lyngby, Denmark
| | - Mette M Broholm
- Department of Environmental and Resource Engineering, Technical University of Denmark (DTU), Bygningstorvet, building 115, 2800 Kgs. Lyngby, Denmark
| |
Collapse
|
6
|
Li S, Yang J, Zheng K, He S, Liu Z, Song S, Zeng T. Effective Activation of Peroxymonosulfate by Oxygen Vacancy Induced Musa Basjoo Biochar to Degrade Sulfamethoxazole: Efficiency and Mechanism. TOXICS 2024; 12:283. [PMID: 38668506 PMCID: PMC11054925 DOI: 10.3390/toxics12040283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/05/2024] [Accepted: 04/10/2024] [Indexed: 04/29/2024]
Abstract
Biochar materials have garnered attention as potential catalysts for peroxymonosulfate (PMS) activation due to their cost-effectiveness, notable specific surface area, and advantageous structural properties. In this study, a suite of plantain-derived biochar (MBB-400, MBB-600, and MBB-800), possessing a well-defined pore structure and a substantial number of uniformly distributed active sites (oxygen vacancy, OVs), was synthesized through a facile calcination process at varying temperatures (400, 600, and 800 °C). These materials were designed for the activation of PMS in the degradation of sulfamethoxazole (SMX). Experimental investigations revealed that OVs not only functioned as enriched sites for pollutants, enhancing the opportunities for free radicals (•OH/SO4•-) and surface-bound radicals (SBRs) to attack pollutants, but also served as channels for intramolecular charge transfer leaps. This role contributed to a reduction in interfacial charge transfer resistance, expediting electron transfer rates with PMS, thereby accelerating the decomposition of pollutants. Capitalizing on these merits, the MBB-800/PMS system displayed a 61-fold enhancement in the conversion rate for SMX degradation compared to inactivated MBB/PMS system. Furthermore, the MBB-800 exhibited less cytotoxicity towards rat pheochromocytoma (PC12) cells. Hence, the straightforward calcination synthesis of MBB-800 emerges as a promising biochar catalyst with vast potential for sustainable and efficient wastewater treatment and environmental remediation.
Collapse
Affiliation(s)
- Shuqi Li
- School of Environment and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China; (S.L.); (S.H.)
- Ecology and Health Institute, Hangzhou Vocational & Technical College, Hangzhou 310000, China; (J.Y.); (K.Z.)
| | - Jian Yang
- Ecology and Health Institute, Hangzhou Vocational & Technical College, Hangzhou 310000, China; (J.Y.); (K.Z.)
| | - Kaiwen Zheng
- Ecology and Health Institute, Hangzhou Vocational & Technical College, Hangzhou 310000, China; (J.Y.); (K.Z.)
| | - Shilong He
- School of Environment and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China; (S.L.); (S.H.)
| | - Zhigang Liu
- Ningbo Water & Environment Group, Ningbo 315100, China
| | - Shuang Song
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310032, China;
| | - Tao Zeng
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310032, China;
| |
Collapse
|
7
|
Su R, Gao Y, Chen L, Chen Y, Li N, Liu W, Gao B, Li Q. Utilizing the oxygen-atom trapping effect of Co 3O 4 with oxygen vacancies to promote chlorite activation for water decontamination. Proc Natl Acad Sci U S A 2024; 121:e2319427121. [PMID: 38442175 PMCID: PMC10945781 DOI: 10.1073/pnas.2319427121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 01/30/2024] [Indexed: 03/07/2024] Open
Abstract
Heterogeneous high-valent cobalt-oxo [≡Co(IV)=O] is a widely focused reactive species in oxidant activation; however, the relationship between the catalyst interfacial defects and ≡Co(IV)=O formation remains poorly understood. Herein, photoexcited oxygen vacancies (OVs) were introduced into Co3O4 (OV-Co3O4) by a UV-induced modification method to facilitate chlorite (ClO2-) activation. Density functional theory calculations indicate that OVs result in low-coordinated Co atom, which can directionally anchor chlorite under the oxygen-atom trapping effect. Chlorite first undergoes homolytic O-Cl cleavage and transfers the dissociated O atom to the low-coordinated Co atom to form reactive ≡Co(IV)=O with a higher spin state. The reactive ≡Co(IV)=O rapidly extracts one electron from ClO2- to form chlorine dioxide (ClO2), accompanied by the Co atom returning a lower spin state. As a result of the oxygen-atom trapping effect, the OV-Co3O4/chlorite system achieved a 3.5 times higher efficiency of sulfamethoxazole degradation (~0.1331 min-1) than the pristine Co3O4/chlorite system. Besides, the refiled OVs can be easily restored by re-exposure to UV light, indicating the sustainability of the oxygen atom trap. The OV-Co3O4 was further fabricated on a polyacrylonitrile membrane for back-end water purification, achieving continuous flow degradation of pollutants with low cobalt leakage. This work presents an enhancement strategy for constructing OV as an oxygen-atom trapping site in heterogeneous advanced oxidation processes and provides insight into modulating the formation of ≡Co(IV)=O via defect engineering.
Collapse
Affiliation(s)
- Ruidian Su
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong266237, People’s Republic of China
| | - Yixuan Gao
- College of Environmental Sciences and Engineering, State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Peking University, Beijing100871, People’s Republic of China
| | - Long Chen
- College of Environmental Sciences and Engineering, State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Peking University, Beijing100871, People’s Republic of China
| | - Yi Chen
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong266237, People’s Republic of China
| | - Nan Li
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, Shandong266042, People’s Republic of China
| | - Wen Liu
- College of Environmental Sciences and Engineering, State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Peking University, Beijing100871, People’s Republic of China
| | - Baoyu Gao
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong266237, People’s Republic of China
| | - Qian Li
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong266237, People’s Republic of China
| |
Collapse
|
8
|
Sun Z, Chen Z, Chung Lan Mow MC, Liao X, Wei X, Ma G, Wang X, Yu H. Chloramine Disinfection of Levofloxacin and Sulfaphenazole: Unraveling Novel Disinfection Byproducts and Elucidating Formation Mechanisms for an Enhanced Understanding of Water Treatment. Molecules 2024; 29:396. [PMID: 38257310 PMCID: PMC10820186 DOI: 10.3390/molecules29020396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/03/2024] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
The unrestricted utilization of antibiotics poses a critical challenge to global public health and safety. Levofloxacin (LEV) and sulfaphenazole (SPN), widely employed broad-spectrum antimicrobials, are frequently detected at the terminal stage of water treatment, raising concerns regarding their potential conversion into detrimental disinfection byproducts (DBPs). However, current knowledge is deficient in identifying the potential DBPs and elucidating the precise transformation pathways and influencing factors during the chloramine disinfection process of these two antibiotics. This study conducts a comprehensive analysis of reaction pathways, encompassing piperazine ring opening/oxidation, Cl-substitution, OH-substitution, desulfurization, and S-N bond cleavage, during chloramine disinfection. Twelve new DBPs were identified in this study, exhibiting stability and persistence even after 24 h of disinfection. Additionally, an examination of DBP generation under varying disinfectant concentrations and pH values revealed peak levels at a molar ratio of 25 for LEV and SPN to chloramine, with LEV contributing 11.5% and SPN 23.8% to the relative abundance of DBPs. Remarkably, this research underscores a substantial increase in DBP formation within the molar ratio range of 1:1 to 1:10 compared to 1:10 to 1:25. Furthermore, a pronounced elevation in DBP generation was observed in the pH range of 7 to 8. These findings present critical insights into the impact of the disinfection process on these antibiotics, emphasizing the innovation and significance of this research in assessing associated health risks.
Collapse
Affiliation(s)
| | | | | | | | - Xiaoxuan Wei
- College of Geography and Environmental Sciences, Zhejiang Normal University, Yingbin Avenue 688, Jinhua 321004, China; (Z.S.); (M.C.C.L.M.)
| | | | | | - Haiying Yu
- College of Geography and Environmental Sciences, Zhejiang Normal University, Yingbin Avenue 688, Jinhua 321004, China; (Z.S.); (M.C.C.L.M.)
| |
Collapse
|
9
|
Houska J, Stocco L, Hofstetter TB, Gunten UV. Hydrogen Peroxide Formation during Ozonation of Olefins and Phenol: Mechanistic Insights from Oxygen Isotope Signatures. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:18950-18959. [PMID: 37155568 PMCID: PMC10690717 DOI: 10.1021/acs.est.3c00788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/12/2023] [Accepted: 04/13/2023] [Indexed: 05/10/2023]
Abstract
Mitigation of undesired byproducts from ozonation of dissolved organic matter (DOM) such as aldehydes and ketones is currently hampered by limited knowledge of their precursors and formation pathways. Here, the stable oxygen isotope composition of H2O2 formed simultaneously with these byproducts was studied to determine if it can reveal this missing information. A newly developed procedure, which quantitatively transforms H2O2 to O2 for subsequent 18O/16O ratio analysis, was used to determine the δ18O of H2O2 generated from ozonated model compounds (olefins and phenol, pH 3-8). A constant enrichment of 18O in H2O2 with a δ18O value of ∼59‰ implies that 16O-16O bonds are cleaved preferentially in the intermediate Criegee ozonide, which is commonly formed from olefins. H2O2 from the ozonation of acrylic acid and phenol at pH 7 resulted in lower 18O enrichment (δ18O = 47-49‰). For acrylic acid, enhancement of one of the two pathways followed by a carbonyl-H2O2 equilibrium was responsible for the smaller δ18O of H2O2. During phenol ozonation at pH 7, various competing reactions leading to H2O2 via an intermediate ozone adduct are hypothesized to cause lower δ18O in H2O2. These insights provide a first step toward supporting pH-dependent H2O2 precursor elucidation in DOM.
Collapse
Affiliation(s)
- Joanna Houska
- Eawag
Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
- School
of Architecture, Civil, and Environmental Engineering, École Polytechnique Fédérale
de Lausanne, 1015 Lausanne, Switzerland
| | - Laura Stocco
- Eawag
Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
- School
of Architecture, Civil, and Environmental Engineering, École Polytechnique Fédérale
de Lausanne, 1015 Lausanne, Switzerland
| | - Thomas B. Hofstetter
- Eawag
Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
- Department
of Environmental System Science, ETH Zurich, 8092 Zurich, Switzerland
| | - Urs von Gunten
- Eawag
Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
- School
of Architecture, Civil, and Environmental Engineering, École Polytechnique Fédérale
de Lausanne, 1015 Lausanne, Switzerland
- Department
of Environmental System Science, ETH Zurich, 8092 Zurich, Switzerland
| |
Collapse
|
10
|
Yu X, Jin X, Li M, Yu Y, Liu H, Zhou R, Yin A, Shi J, Sun J, Zhu L. Mechanism and security of UV driven sodium percarbonate for sulfamethoxazole degradation using DFT and metabolomic analysis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 323:121352. [PMID: 36841421 DOI: 10.1016/j.envpol.2023.121352] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 01/08/2023] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Abstract
Recently, sodium percarbonate (SPC) as a solid substitute for H2O2 has aroused extensive attention in advanced oxidation processes. In current work, the degradation kinetics and mechanisms of antibiotic sulfamethoxazole (SMX) by ultraviolet (UV) driven SPC system were explored. The removal efficiency of SMX was enhanced as the increasing dosage of SPC. Moreover, hydroxyl radical (•OH), carbonate radical (CO3•-) and superoxide radical (O2•-) were verified to be presented by scavenger experiments and •OH, CO3•- exhibited a significant role in SMX degradation. Reactions mediated by these radicals were affected by anions and natural organic matters, implying that an incomplete mineralization of SMX would be ubiquitous. The screening four intermediates and transformation patterns of SMX were verified by DFT analysis. Metabolomic analysis demonstrated that a decreasing negative effect in E. coli after 24 h exposure was induced by intermediates products. In detail, SMX interfered in some key functional metabolic pathways including carbohydrate metabolism, pentose and glucuronate metabolism, nucleotide metabolism, arginine and proline metabolism, sphingolipid metabolism, which were mitigated after UV/SPC oxidation treatment, suggesting a declining environmental risk of SMX. This work provided new insights into biological impacts of SMX and its transformation products and vital guidance for SMX pollution control using UV/SPC technology.
Collapse
Affiliation(s)
- Xiaolong Yu
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, Guangdong, China
| | - Xu Jin
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Meng Li
- Department of Chemical and Biological Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong Special Administrative Region
| | - Yuanyuan Yu
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, Guangdong, China
| | - Hang Liu
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, Guangdong, China
| | - Rujin Zhou
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, Guangdong, China
| | - Aiguo Yin
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, Guangdong, China
| | - Junyi Shi
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, Guangdong, China
| | - Jianteng Sun
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, Guangdong, China.
| | - Lizhong Zhu
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| |
Collapse
|
11
|
Sierra-Olea M, Kölle S, Bein E, Reemtsma T, Lechtenfeld OJ, Hübner U. Isotopically labeled ozone: A new approach to elucidate the formation of ozonation products. WATER RESEARCH 2023; 233:119740. [PMID: 36822109 DOI: 10.1016/j.watres.2023.119740] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 02/03/2023] [Accepted: 02/11/2023] [Indexed: 06/18/2023]
Abstract
As ozonation becomes a widespread treatment for removal of chemicals of emerging concern from wastewater treatment plant effluents, there are increasing concerns regarding the formation of ozonation products (OPs), and their possible impacts on the aquatic environment and eventually human health. In this study, a novel method was developed that utilizes heavy oxygen (18O2) for the production of heavy ozone ([18O1]O2, [18O2]O1, [18O3]) to actively label OPs from oxygen transfer reactions. To establish and validate this new approach, venlafaxine with a well-described oxygen transfer reaction (tertiary amine -> N-oxide) was chosen as a model compound. Observed 18O/16O ratios in the major OP venlafaxine N-oxide (NOV) correlated with expected 18O purities based on tracer experiments. These results confirmed the successful labeling with heavy oxygen and furthermore demonstrate the potential to monitor NOV as an indicator of 18O/16O ratios during ozonation. As a next step, 18O/16O ratios were used to elucidate the formation mechanism of previously described OPs from sulfamethoxazole (SMX). Seven OPs were detected including the frequently described nitro-SMX, which was formed with a maximum yield of 3.2% (of initial SMX). With the successful labeling of six of the seven OPs from sulfamethoxazole, it was possible to confirm their previously proposed formation pathways, and to distinguish oxygen transfer from electron transfer reactions. 18O/16O ratios in OPs indicate that hydroxylation of the aromatic ring and formation of nitro-groups mostly follows oxygen transfer reactions, while electron transfer reactions initiate the formation of hydroxylamine and the abstraction of NH2 leading to catechol.
Collapse
Affiliation(s)
- Millaray Sierra-Olea
- Chair of Urban Water Systems Engineering, Technical University of Munich, Am Coulombwall 3, Garching D-85748, Germany
| | - Simon Kölle
- Chair of Urban Water Systems Engineering, Technical University of Munich, Am Coulombwall 3, Garching D-85748, Germany
| | - Emil Bein
- Chair of Urban Water Systems Engineering, Technical University of Munich, Am Coulombwall 3, Garching D-85748, Germany
| | - Thorsten Reemtsma
- Department of Analytical Chemistry, Helmholtz Centre for Environmental Research - UFZ, Permoserstrasse 15, Leipzig 04318, Germany; Institute of Analytical Chemistry, University of Leipzig, Linnéstrasse 3, Leipzig 04103, Germany
| | - Oliver J Lechtenfeld
- Department of Analytical Chemistry, Helmholtz Centre for Environmental Research - UFZ, Permoserstrasse 15, Leipzig 04318, Germany; ProVIS-Centre for Chemical Microscopy, Helmholtz Centre for Environmental Research-UFZ, Permoserstrasse 15, Leipzig 04318, Germany
| | - Uwe Hübner
- Chair of Urban Water Systems Engineering, Technical University of Munich, Am Coulombwall 3, Garching D-85748, Germany.
| |
Collapse
|
12
|
Wang J, Wang M, Kang J, Tang Y, Xu Z, Dong Q, Ma T, Zhu J. Sulfamethoxazole degradation by Ni2+ doped Fe2O3 on a nickel foam in peroxymonosulfate assisting photoelectrochemical oxidation system: Performance, mechanism and degradation pathway. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
|
13
|
Ouyang WY, Kümmel S, Adrian L, Zhu YG, Richnow HH. Carbon and hydrogen stable isotope fractionation of sulfamethoxazole during anaerobic transformation catalyzed by Desulfovibrio vulgaris Hildenborough. CHEMOSPHERE 2023; 311:136923. [PMID: 36349587 DOI: 10.1016/j.chemosphere.2022.136923] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 10/11/2022] [Accepted: 10/16/2022] [Indexed: 06/16/2023]
Abstract
The fate of antibiotics in aquatic environments is of high concern and approaches are needed to assess the transformation of antibiotics in wastewater treatment plants. Here we used the model organism Desulfovibrio vulgaris Hildenborough to analyze compound specific isotope fractionation associated with anaerobic transformation of the antibiotic sulfamethoxazole (SMX). The results show that the rearrangement of the isoxazole ring in SMX is leading to significant carbon and hydrogen isotopic fractionation (εC = -5.8 ± 0.7‰, εH = -34 ± 9‰) during anaerobic transformation. The observed carbon isotopic fractionation is significantly higher than the values reported for aerobic degradation (εC = -0.6 ± 0.1‰) or abiotic reactions (εC = -0.8 to -4.8‰ for photolysis, εC = -0.8 to -2.2‰ for advanced oxidation). This indicates that carbon isotope fractionation can be used as a parameter to differentiate reaction mechanisms of SMX transformation. The corresponding apparent kinetic isotope effect (AKIEC) for anaerobic transformation of SMX was 1.029 ± 0.003, suggesting that the mechanism for anaerobic transformation is distinct from the mechanism reported for microbial aerobic degradation (AKIEC = 1.006 ± 0.001). In addition, dual-element (C-H) isotope analysis of SMX was performed in the present study, which was achieved by utilizing gas chromatography (GC) as the separation method instead of routine liquid chromatography. This dual-element isotope analysis resulted in a Λ value of 4.5 ± 2.2. Overall, compound specific isotope analysis can be a feasible tool to monitor the mitigation of SMX in wastewater treatment plants.
Collapse
Affiliation(s)
- Wei-Ying Ouyang
- Helmholtz Centre for Environmental Research - UFZ, Isotope Biogeochemistry, Leipzig, Germany; Chair of Geobiotechnology, Technische Universität Berlin, Berlin, Germany
| | - Steffen Kümmel
- Helmholtz Centre for Environmental Research - UFZ, Isotope Biogeochemistry, Leipzig, Germany
| | - Lorenz Adrian
- Chair of Geobiotechnology, Technische Universität Berlin, Berlin, Germany; Helmholtz Centre for Environmental Research - UFZ, Environmental Biotechnology, Leipzig, Germany
| | - Yong-Guan Zhu
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
| | - Hans H Richnow
- Helmholtz Centre for Environmental Research - UFZ, Isotope Biogeochemistry, Leipzig, Germany; Isodetect GmbH, Leipzig, Germany.
| |
Collapse
|
14
|
Blessing M, Baran N. A review on environmental isotope analysis of aquatic micropollutants: Recent advances, pitfalls and perspectives. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
15
|
Betsholtz A, Juárez R, Svahn O, Davidsson Å, Cimbritz M, Falås P. Ozonation of 14C-labeled micropollutants - mineralization of labeled moieties and adsorption of transformation products to activated carbon. WATER RESEARCH 2022; 221:118738. [PMID: 35738061 DOI: 10.1016/j.watres.2022.118738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 06/01/2022] [Accepted: 06/10/2022] [Indexed: 06/15/2023]
Abstract
Ozonation transformation products (OTPs) are largely unknown compounds that are formed during the ozonation of micropollutants, and it is uncertain to which extent these compounds can be removed by subsequent adsorption to activated carbon. Thus, 14C-labeled micropollutants were ozonated to generate 14C-labeled OTPs, for which the adsorption of the sum of all 14C-labeled OTPs to activated carbon could be determined, based on the adsorption of the labeled carbon. Further, 14CO2 traps were used to examine the mineralization of 14C-labeled moieties during ozonation. 14CO2-formation revealed a partial mineralization of the 14C-labeled moieties in all compounds except for propyl-labeled bisphenol A and O-methyl-labeled naproxen. A similar degree of mineralization was noted for different compounds labeled at the same moiety, including the carboxylic carbon in diclofenac and ibuprofen (∼40% at 1 g O3/g DOC) and the aniline ring in sulfamethoxazole and sulfadiazine (∼30% at 1 g O3/g DOC). Aromatic ring cleavage was also confirmed for bisphenol A, sulfamethoxazole, and sulfadiazine through the formation of 14CO2. The adsorption experiments demonstrated increased adsorption of micropollutants to powdered activated carbon after ozonation, which was connected to a decreased adsorption of dissolved organic matter (DOM). Conversely, the OTPs showed a substantial and successive decline in adsorption at increased ozone doses for all compounds, likely due to decreased hydrophobicity and aromaticity of the OTPs. These findings indicate that adsorption to activated carbon alone is not a viable removal method for a wide range of ozonation transformation products.
Collapse
Affiliation(s)
- Alexander Betsholtz
- Department of Chemical Engineering, Lund University, Lund SE-221 00, Sweden.
| | - Rubén Juárez
- Department of Chemical Engineering, Lund University, Lund SE-221 00, Sweden; Sweden Water Research AB, Ideon Science Park, Scheelevägen 15, Lund SE-223 70, Sweden
| | - Ola Svahn
- Department of Environmental Science and Bioscience, Kristianstad University, Kristianstad SE-291 88, Sweden
| | - Åsa Davidsson
- Department of Chemical Engineering, Lund University, Lund SE-221 00, Sweden
| | - Michael Cimbritz
- Department of Chemical Engineering, Lund University, Lund SE-221 00, Sweden
| | - Per Falås
- Department of Chemical Engineering, Lund University, Lund SE-221 00, Sweden
| |
Collapse
|
16
|
Tang Y, Wang M, Liu J, Li S, Kang J, Wang J, Xu Z. Electro-enhanced sulfamethoxazole degradation efficiency via carbon embedding iron growing on nickel foam cathode activating peroxymonosulfate: Mechanism and degradation pathway. J Colloid Interface Sci 2022; 624:24-39. [PMID: 35660892 DOI: 10.1016/j.jcis.2022.05.141] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 05/23/2022] [Accepted: 05/23/2022] [Indexed: 02/05/2023]
Abstract
The combination of peroxymonosulfate (PMS) activation by hetero-catalysis and electrolysis (EC) attracted incremental concerns as an efficient antibiotics degradation method. In this work, carbon embedding iron (C@Fe) catalysts growing on nickel foam (NF) composite cathode (C@Fe/NF) was prepared via in-situsolvothermal growth and carbonization method and used to activate PMS toward sulfamethoxazole (SMX) degradation. The EC-[C@Fe/NF(II)]-PMS system exhibited an excellent PMS activation, with 100% SMX removal efficiency achieving within 30 min. Reactive oxygen species (ROS) generation and their roles in SMX degradation were confirmed by quenching experiments and electron paramagnetic resonance. It was found that singlet oxygen (1O2) and surface-bound radicals were responsible for SMX degradation, and 1O2 contributed the most. Furthermore, the possible SMX degradation pathways were proposed on the base of the detected degradation intermediates and density functional theory (DFT) calculation. Toxicity changes were also assessed by the Ecological Structure Activity Relationships (ESAR). This work provides a practicable strategy for synergistically enhancing PMS activation efficiency and promoting antibiotics removal.
Collapse
Affiliation(s)
- Yiwu Tang
- School of Mechanical Engineering and Automation, Northeastern University, Shenyang 110011, PR China
| | - Min Wang
- School of Mechanical Engineering and Automation, Northeastern University, Shenyang 110011, PR China.
| | - Jiayun Liu
- School of Mechanical Engineering and Automation, Northeastern University, Shenyang 110011, PR China
| | - Siyan Li
- School of Mechanical Engineering and Automation, Northeastern University, Shenyang 110011, PR China
| | - Jin Kang
- School of Mechanical Engineering and Automation, Northeastern University, Shenyang 110011, PR China
| | - Jiadian Wang
- School of Mechanical Engineering and Automation, Northeastern University, Shenyang 110011, PR China
| | - Zhenqi Xu
- School of Mechanical Engineering and Automation, Northeastern University, Shenyang 110011, PR China
| |
Collapse
|
17
|
Song X, Ni J, Liu D, Shi W, Yuan Y, Cui F, Tian J, Wang W. Molybdenum disulfide as excellent Co-catalyst boosting catalytic degradation of sulfamethoxazole by nZVI/PDS process. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120398] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
18
|
Lou X, Liu Z, Fang C, Tang Y, Guan J, Guo Y, Zhang X, Shi Y, Huang D, Cai Y. Fate of sulfamethoxazole and potential formation of haloacetic acids during chlorine disinfection process in aquaculture water. ENVIRONMENTAL RESEARCH 2022; 204:111958. [PMID: 34478721 DOI: 10.1016/j.envres.2021.111958] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 07/30/2021] [Accepted: 08/22/2021] [Indexed: 06/13/2023]
Abstract
There exist two common processes in fishery culture, i.e. antibiotic addition to reduce disease in fishery, and chlorination disinfection to inhibit infectious pathogenic microorganisms. However, antibiotic residues might play important reverse side roles for both aquaculture water pollution and potential formation of chlorination side products. Herein, the transformation behaviour, intermediates analyses and conversion pathway of antibiotic sulfamethoxazole (SMX), and potential generation of halogenated acetic acids (HAAs) in the process of chlorination in fishery water were examined, and the results revealed that the decomposing of SMX satisfied a pseudo first-order kinetic equation. Both the addition of available chlorine and high temperature had affirmative influences on the decontamination of SMX and production of HAAs, and the near-neutral pHs promoted the removal of SMX and generation of HAAs. Br- was favorable for the removal of SMX and yields of brominated acetic acids (Br-AAs). Based on the identified intermediate products, the transformation path of SMX in chlorination process was propounded, to wit, the C-S and S-N bonds in the SMX molecules were firstly cracked, and the primeval intermediate groups are then transformed to form chloroanilines, chlorophenols, etc., and subsequently, chlorophenols were chlorinated and ring-opened to generate toxic HAAs. This study might be meaningful to evaluate the effective removal of sulfonamide antibiotic residues and the potential generation of halogenated DBPs (H-DBPs) when chlorinated in aquaculture water.
Collapse
Affiliation(s)
- Xiaoyi Lou
- Laboratory of Quality Safety and Processing for Aquatic Product, East Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, 200090, China
| | - Zhiyuan Liu
- Laboratory of Quality Safety and Processing for Aquatic Product, East Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, 200090, China; School of Resources and Environmental Engineering, Shanghai Polytechnic University, Shanghai, 201209, China
| | - Changling Fang
- Laboratory of Quality Safety and Processing for Aquatic Product, East Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, 200090, China
| | - Yunyu Tang
- Laboratory of Quality Safety and Processing for Aquatic Product, East Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, 200090, China
| | - Jie Guan
- School of Resources and Environmental Engineering, Shanghai Polytechnic University, Shanghai, 201209, China
| | - Yaoguang Guo
- School of Resources and Environmental Engineering, Shanghai Polytechnic University, Shanghai, 201209, China.
| | - Xuan Zhang
- Laboratory of Quality Safety and Processing for Aquatic Product, East Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, 200090, China
| | - Yongfu Shi
- Laboratory of Quality Safety and Processing for Aquatic Product, East Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, 200090, China
| | - Dongmei Huang
- Laboratory of Quality Safety and Processing for Aquatic Product, East Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, 200090, China.
| | - Youqiong Cai
- Laboratory of Quality Safety and Processing for Aquatic Product, East Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, 200090, China
| |
Collapse
|
19
|
Terhalle J, Nikutta SE, Krzeciesa DL, Lutze HV, Jochmann MA, Schmidt TC. Linking reaction rate constants and isotope fractionation of ozonation reactions using phenols as probes. WATER RESEARCH 2022; 210:117931. [PMID: 34996014 DOI: 10.1016/j.watres.2021.117931] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 11/08/2021] [Accepted: 11/30/2021] [Indexed: 06/14/2023]
Abstract
Ozonation is nowadays a widely used method in drinking water treatment for disinfection and pollutant control. However, transformation products of ozonation can be more toxic than their parent compounds. Therefore, the knowledge of the reaction mechanisms and product formation is essential for a safe application. Different analytical methods such as high-resolution mass spectrometry (HRMS) and compound-specific isotope analysis (CSIA) can be applied to elucidate products and primary attack positions of oxidation agents such as ozone. During the investigation of the ozonation of phenolic compounds in water by CSIA, a reaction rate depending carbon isotope fractionation was observed. The fractionation strongly depends on the phenol speciation. With decreasing pH values and reaction rates <105 M-1 s-1, the isotope enrichment factor ε increases (ε is between -5.2 and -1.0‰). For faster reactions (>105 M-1 s-1), the carbon isotope enrichment was not significant anymore (ε is between -1.0 and 0‰). Based on these data a concept to correlate isotope enrichment factors with kinetic data for aromatic compounds is proposed. The additional investigation of aliphatic double and triple bonds did not fit this correlation suggesting different rate-limiting steps. However, double and triple bond showed a similar enrichment factor, which implies the same rate-limiting step in the reaction with ozone, the monodentate addition of ozone.
Collapse
Affiliation(s)
- Jens Terhalle
- Faculty of Chemistry, Instrumental Analytical Chemistry, University of Duisburg-Essen, Universitätsstraße 5, Essen D-45141, Germany
| | - Simon E Nikutta
- Faculty of Chemistry, Instrumental Analytical Chemistry, University of Duisburg-Essen, Universitätsstraße 5, Essen D-45141, Germany
| | - Dawid L Krzeciesa
- Faculty of Chemistry, Instrumental Analytical Chemistry, University of Duisburg-Essen, Universitätsstraße 5, Essen D-45141, Germany
| | - Holger V Lutze
- Faculty of Chemistry, Instrumental Analytical Chemistry, University of Duisburg-Essen, Universitätsstraße 5, Essen D-45141, Germany; Department of Civil and Environmental Engineering, Institute IWAR, Chair of Environmental Analytics and Pollutants, Technical University of Darmstadt, Franziska-Braun-Straße 7, 64287 Darmstadt, Germany; IWW Water Centre, Moritzstraße 26, Mülheim an der Ruhr D-4547, Germany; Centre for Water and Environmental Research (ZWU), Universitätsstraße 5, Essen D-45141, Germany.
| | - Maik A Jochmann
- Faculty of Chemistry, Instrumental Analytical Chemistry, University of Duisburg-Essen, Universitätsstraße 5, Essen D-45141, Germany; Centre for Water and Environmental Research (ZWU), Universitätsstraße 5, Essen D-45141, Germany
| | - Torsten C Schmidt
- Faculty of Chemistry, Instrumental Analytical Chemistry, University of Duisburg-Essen, Universitätsstraße 5, Essen D-45141, Germany; IWW Water Centre, Moritzstraße 26, Mülheim an der Ruhr D-4547, Germany; Centre for Water and Environmental Research (ZWU), Universitätsstraße 5, Essen D-45141, Germany.
| |
Collapse
|
20
|
Hu J, Li X, Liu F, Fu W, Lin L, Li B. Comparison of chemical and biological degradation of sulfonamides: Solving the mystery of sulfonamide transformation. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127661. [PMID: 34763922 DOI: 10.1016/j.jhazmat.2021.127661] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/13/2021] [Accepted: 10/28/2021] [Indexed: 06/13/2023]
Abstract
Sulfonamides (SAs) are widespread in aquatic environments and pose serious environmental risks. The removal efficiencies and degradation mechanisms of SAs in both chemical and biological degradation systems were comprehensively reviewed. Density functional theory (DFT) was utilized to decipher the reaction types and reactive sites of both degradation mechanisms at the electron level. In chemical degradation, the rate of the reactive oxidants to degrade SAs follows the order SO4•- ≈ •OH > O3 > 1O2 > ClO2 ≈ Fe(VI) ≈ HOCl > peroxymonosulfate. pH affects the oxidation-reduction potentials of oxidants, the reactivity of SAs, and the intermolecular force between oxidants and SAs, thereby affecting the chemical degradation efficiencies and mechanisms. In biological degradation, oxidoreductase produced by bacteria, fungi, algae, and plants can degrade SAs. The catalytic activity of the enzyme is affected by the enzyme system, reaction conditions, and type of SAs. Despite the different reaction modes and removal efficiencies of SAs in chemical degradation and biological degradation, the transformation pathways and products show commonalities. Modification of the amino (N1H2-) moiety and destruction of sulfonamide bridge (-SO2-N11H-) moiety are the main pathways for both chemical and biological degradation of SAs. Most oxidants or enzymes can react with the N1H2- moiety. Reactions of the -SO2-N11H- moiety are mainly initiated by the cleavage of S-N bonds for five-membered heterocyclic ring-substituted SAs, and by SO2 extrusion for six-membered heterocyclic ring-substituted SAs. Chlorine substitution and coupling on the N1H2- moiety, hydroxylation of the benzene moiety, oxidation of methyl, and isomerization of the R substituents are the transformation pathways unique to chemical degradation. Formylation/acetylation, glycosylation, pterin conjugation, and deamination of the N1H2- moiety are the transformation pathways unique to biological degradation. DFT studies revealed the same reaction types and the same reactive sites of SAs in chemical and biological degradation. Electrophiles are mostly prone to attack the N1 atom on the amino moiety of neutral SAs and the N11 atom on the sulfonamide bridge moiety of anionic SAs, leading to nitration or electrophilic substitution of the amino moiety and the cleavage of S-N bonds or SO2 extrusion of the sulfonamide bridge moiety. Reactions on the -SO2-N11H- moiety eliminate antibacterial activity in the SA degradation process. This review elucidated SA transformation by comparing the chemical and biological degradation of SAs. This could provide theoretical guidance for the development of more efficient and economical treatment technologies for SAs.
Collapse
Affiliation(s)
- Jiahui Hu
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; School of Environment, Tsinghua University, Beijing 100084, China
| | - Xiaoyan Li
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; Shenzhen Environmental Science and New Energy Laboratory, Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen 518055, China
| | - Feifei Liu
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; School of Environment, Tsinghua University, Beijing 100084, China
| | - Wenjie Fu
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Lin Lin
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Bing Li
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China.
| |
Collapse
|
21
|
Gulde R, Clerc B, Rutsch M, Helbing J, Salhi E, McArdell CS, von Gunten U. Oxidation of 51 micropollutants during drinking water ozonation: Formation of transformation products and their fate during biological post-filtration. WATER RESEARCH 2021; 207:117812. [PMID: 34839057 DOI: 10.1016/j.watres.2021.117812] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 10/19/2021] [Accepted: 10/22/2021] [Indexed: 06/13/2023]
Abstract
Micropollutants (MP) with varying ozone-reactive moieties were spiked to lake water in the influent of a drinking water pilot plant consisting of an ozonation followed by a biological sand filtration. During ozonation, 227 transformation products (OTPs) from 39 of the spiked 51 MPs were detected after solid phase extraction by liquid chromatography high-resolution mass spectrometry (LC-HRMS/MS). Based on the MS/MS data, tentative molecular structures are proposed. Reaction mechanisms for the formation of a large number of OTPs are suggested by combination of the kinetics of formation and abatement and state-of-the-art knowledge on ozone and hydroxyl radical chemistry. OTPs forming as primary or higher generation products from the oxidation of MPs could be differentiated. However, some expected products from the reactions of ozone with activated aromatic compounds and olefins were not detected with the applied analytical procedure. 187 OTPs were present in the sand filtration in sufficiently high concentrations to elucidate their fate in this treatment step. 35 of these OTPs (19%) were abated in the sand filtration step, most likely due to biodegradation. Only 24 (13%) of the OTPs were abated more efficiently than the parent compounds, with a dependency on the functional group of the parent MPs and OTPs. Overall, this study provides evidence, that the common assumption that OTPs are easily abated in biological post-treatment is not generally valid. Nevertheless, it is unknown how the OTPs, which escaped detection, would have behaved in the biological post-treatment.
Collapse
Affiliation(s)
- Rebekka Gulde
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, CH-8600 Switzerland
| | - Baptiste Clerc
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, CH-8600 Switzerland
| | - Moreno Rutsch
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, CH-8600 Switzerland
| | | | - Elisabeth Salhi
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, CH-8600 Switzerland
| | - Christa S McArdell
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, CH-8600 Switzerland
| | - Urs von Gunten
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, CH-8600 Switzerland; School of Architecture, Civil and Environmental Engineering (ENAC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, CH-1015 Switzerland; Institute of Biogeochemistry and Pollutant Dynamics (IBP), ETH Zurich, Zurich, CH-8092, Switzerland.
| |
Collapse
|
22
|
Fu W, Xia GJ, Zhang Y, Hu J, Wang YG, Li J, Li X, Li B. Using general computational chemistry strategy to unravel the reactivity of emerging pollutants: An example of sulfonamide chlorination. WATER RESEARCH 2021; 202:117391. [PMID: 34233248 DOI: 10.1016/j.watres.2021.117391] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/22/2021] [Accepted: 06/24/2021] [Indexed: 06/13/2023]
Abstract
Increasing number of emerging pollutants in environments requires an effective approach which can facilitate the prediction of reactivity and provide insights into the reaction mechanisms. Computational chemistry is exactly the tool to fulfill this demand with its good performance in theoretical investigation of chemical reactions at molecular level. In this study, chlorination of sulfonamide antibiotics is used as an illustration to present a systematic strategy demonstrating how computational chemistry can be applied to investigate the reaction behavior of emerging pollutants. Sulfonamides is a class of micropollutants that contain the common structure of 4-aminobenzenesulfonmaide while differ in their heterocycles. Based on the calculated conceptual DFT indices, the reactive sites of sulfonamide are successfully predicted, which locate on their common structure of 4-aminobenzenesulfonmaide. Therefore, all sulfonamides follow the similar reaction pathway. Product identification by LTQ-Orbitrap MS further verifies the in silico prediction. Three critical pathways are discovered, i.e., S-N bond cleavage, Cl-substitution onto aniline-N, and the following rearrangement to lose -SO2- group, among which Cl-substitution is the key step due to its lowest free energy barrier. Heterocycles impact the reaction rate by affecting the electronic density of aniline group. In general, the more electron-donating the heterocycle is, the more readily sulfonamides to be chlorinated.
Collapse
Affiliation(s)
- Wenjie Fu
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Guang-Jie Xia
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Yixiang Zhang
- Theoretical Chemistry Center, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Jiahui Hu
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Yang-Gang Wang
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Jun Li
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China; Theoretical Chemistry Center, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Xiaoyan Li
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; Shenzhen Environmental Science and New Energy Laboratory, Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen 518055, China
| | - Bing Li
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China.
| |
Collapse
|
23
|
Gulde R, Rutsch M, Clerc B, Schollée JE, von Gunten U, McArdell CS. Formation of transformation products during ozonation of secondary wastewater effluent and their fate in post-treatment: From laboratory- to full-scale. WATER RESEARCH 2021; 200:117200. [PMID: 34051461 DOI: 10.1016/j.watres.2021.117200] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/21/2021] [Accepted: 04/27/2021] [Indexed: 06/12/2023]
Abstract
Ozonation is increasingly applied in water and wastewater treatment for the abatement of micropollutants (MPs). However, the transformation products formed during ozonation (OTPs) and their fate in biological or sorptive post-treatments is largely unknown. In this project, a high-throughput approach, combining laboratory ozonation experiments and detection by liquid chromatography high-resolution mass spectrometry (LC-HR-MS/MS), was developed and applied to identify OTPs formed during ozonation of wastewater effluent for a large number of relevant MPs (total 87). For the laboratory ozonation experiments, a simplified experimental solution, consisting of surrogate organic matter (methanol and acetate), was created, which produced ozonation conditions similar to realistic conditions in terms of ozone and hydroxyl radical exposures. The 87 selected parent MPs were divided into 19 mixtures, which enabled the identification of OTPs with an optimized number of experiments. The following two approaches were considered to identify OTPs. (1) A screening of LC-HR-MS signal formation in these experiments was performed and revealed a list of 1749 potential OTP candidate signals associated to 70 parent MPs. This list can be used in future suspect screening studies. (2) A screening was performed for signals that were formed in both batch experiments and in samples of wastewater treatment plants (WWTPs). This second approach was ultimately more time-efficient and was applied to four different WWTPs with ozonation (specific ozone doses in the range 0.23-0.55 gO3/gDOC), leading to the identification of 84 relevant OTPs of 40 parent MPs in wastewater effluent. Chemical structures could be proposed for 83 OTPs through the interpretation of MS/MS spectra and expert knowledge in ozone chemistry. Forty-eight OTPs (58%) have not been reported previously. The fate of the verified OTPs was studied in different post-treatment steps. During sand filtration, 87-89% of the OTPs were stable. In granular activated carbon (GAC) filters, OTPs were abated with decreasing efficiency with increasing run times of the filters. For example, in a GAC filter with 16,000 bed volumes, 53% of the OTPs were abated, while in a GAC filter with 35,000 bed volumes, 40% of the OTPs were abated. The highest abatement (87% of OTPs) was observed when 13 mg/L powdered activated carbon (PAC) was dosed onto a sand filter.
Collapse
Affiliation(s)
- Rebekka Gulde
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, CH-8600 Dübendorf, Switzerland
| | - Moreno Rutsch
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, CH-8600 Dübendorf, Switzerland
| | - Baptiste Clerc
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, CH-8600 Dübendorf, Switzerland
| | - Jennifer E Schollée
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, CH-8600 Dübendorf, Switzerland
| | - Urs von Gunten
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, CH-8600 Dübendorf, Switzerland; School of Architecture, Civil and Environmental Engineering (ENAC), Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland; Institute of Biogeochemistry and Pollutant Dynamics (IBP), ETH Zurich, CH-8092 Zurich, Switzerland
| | - Christa S McArdell
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, CH-8600 Dübendorf, Switzerland.
| |
Collapse
|
24
|
Peng J, Zhou P, Zhou H, Liu W, Zhang H, Zhou C, Lai L, Ao Z, Su S, Lai B. Insights into the Electron-Transfer Mechanism of Permanganate Activation by Graphite for Enhanced Oxidation of Sulfamethoxazole. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:9189-9198. [PMID: 34048222 DOI: 10.1021/acs.est.1c00020] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Many reagents as electron sacrificers have been recently investigated to induce decomposition of permanganate (KMnO4) to produce highly reactive intermediate Mn species toward oxidation of organic contaminants; however, this strategy meanwhile causes low KMnO4 utilization efficiency. This study surprisingly found that graphite can mediate direct electron transfer from organics (e.g., sulfamethoxazole (SMX)) to KMnO4, resulting in high KMnO4 utilization efficiency, rather than reductive sites of graphite-induced conversion of KMnO4 to highly reactive intermediate Mn species. The galvanic oxidation process (GOP) and comparative experiments of different organic contaminants prove that the KMnO4/graphite system mainly extracts electrons from organic contaminants via a one-electron pathway instead of a two-electron pathway. More importantly, the KMnO4/graphite system has superior reusability, graphite can keep a long-lasting reactivity, and the KMnO4 utilization efficiency elevates significantly after each cycle of graphite. The transformation of SMX in the KMnO4/graphite system mainly includes self-coupling, hydroxylation, oxidation, and hydrolytic reaction. The work will improve insights into the electron-transfer mechanism and unveil the advantages of efficient KMnO4 utilization in the KMnO4-based technologies in environmental remediation.
Collapse
Affiliation(s)
- Jiali Peng
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
- Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Peng Zhou
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
- Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Hongyu Zhou
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
- Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Wen Liu
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China
| | - Heng Zhang
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
- Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Chenying Zhou
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
- Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Leiduo Lai
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
- Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Zhimin Ao
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 51006, China
| | - Shijun Su
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Bo Lai
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
- Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| |
Collapse
|
25
|
Wang T, Huang T, Jiang H, Ma R. Electrochemical degradation of atrazine by BDD anode: Evidence from compound-specific stable isotope analysis and DFT simulations. CHEMOSPHERE 2021; 273:129754. [PMID: 33524760 DOI: 10.1016/j.chemosphere.2021.129754] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 01/16/2021] [Accepted: 01/18/2021] [Indexed: 06/12/2023]
Abstract
Direct charge transfer (DCT) and •OH attack played important roles in contaminant degradation by BDD electrochemical oxidation. Their separate contributions and potential bond-cleavage processes were required but lacking. Here, we carried out promising compound-specific isotope fractionation analysis (CSIA) to explore 13C and 2H isotope fractionation of atrazine (ATZ), followed by assessing the reaction pathway by BDD anode. The correlation of 2H and 13C fractionation allows to remarkably differentiate DCT process and •OH attack, with Λ values of 18.99 and 53.60, respectively. Radical quenching identified that •OH accounted for 79.0%-88.5% in the whole reaction. While CSIA methods provided biased results, which suggested that ATZ degradation exhibited two stages with •OH contributions of 24.6% and 84.3% respectively, confirming CSIA was more sensitive and provided more possibilities to estimate degradation processes. Combined with Fukui index and intermediate products identification, we deduced that dechlorination-hydroxylation mainly occurred in the first 30 min by DCT reaction. While lateral chain oxidation with C-N broken was the governing route once •OH was largely generated, with the production of DEA (m/z 188), DIA (m/z 174), DEIA (m/z 146) and DEIHA (m/z 128). Our results demonstrated that isotope fractionation can offer "isotopic footprints" for identifying the rate-limiting steps and bond breakage process, and opens new avenues for degradation pathways of contaminants.
Collapse
Affiliation(s)
- Ting Wang
- College of Environmental Sciences and Engineering, Peking University, The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing, 100871, China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Beijing, 100871, China.
| | - Taobo Huang
- College of Environmental Sciences and Engineering, Peking University, The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing, 100871, China
| | - Huan Jiang
- College of Environmental Sciences and Engineering, Peking University, The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing, 100871, China
| | - Ruoqi Ma
- College of Environmental Sciences and Engineering, Peking University, The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing, 100871, China
| |
Collapse
|
26
|
Wirzberger V, Klein M, Woermann M, Lutze HV, Sures B, Schmidt TC. Matrix composition during ozonation of N-containing substances may influence the acute toxicity towards Daphnia magna. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 765:142727. [PMID: 33129546 DOI: 10.1016/j.scitotenv.2020.142727] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/01/2020] [Accepted: 09/22/2020] [Indexed: 06/11/2023]
Abstract
Micropollutants reach the aquatic environment through wastewater treatment plant effluents. Ozonation, applied in wastewater treatment for micropollutants abatement, can yield transformation products (TP), which might be of ecotoxicological concern. Previous studies on TP formation were mostly performed in ultrapure water. However, the water matrix can have a substantial influence and lead to unpredictable yields of TPs with toxicological potential. In this study the acute toxicity (immobilization) of the parent substances (isoproturon and metoprolol) and also of available TPs of isoproturon, metoprolol and diclofenac towards Daphnia magna (D. magna) were investigated. Further, the acute toxicity of TP mixtures, formed during ozonation of isoproturon, metoprolol and diclofenac was evaluated in the following systems: in the presence of radical scavengers (tert-butanol and dimethyl sulfoxide) and in the presence of hypobromous acid (HOBr), a secondary oxidant in ozonation. For all tested substances and TP standards, except 2,6-dichloroaniline (EC50 1.02 mg/L (48 h)), no immobilization of D. magna was detected. Ozonated pure water and wastewater did not show an immobilization effect either. After ozonation of diclofenac in the presence of dimethyl sulfoxide 95% (48 h) of the daphnids were immobile. Ozonation of parent substances, after the reaction with HOBr, showed no effect for isoproturon but a high effect on D. magna for diclofenac (95% immobilization (48 h)) and an even higher effect for metoprolol (100% immobilization (48 h)). These results emphasize that complex water matrices can influence the toxicity of TPs as shown in this study for D. magna.
Collapse
Affiliation(s)
- Vanessa Wirzberger
- Instrumental Analytical Chemistry, University of Duisburg-Essen, Universitätsstr. 5, 45141 Essen, Germany; Centre for Water and Environmental Research (ZWU), University of Duisburg-Essen, Universitätsstr. 2, 45141 Essen, Germany
| | - Michelle Klein
- Instrumental Analytical Chemistry, University of Duisburg-Essen, Universitätsstr. 5, 45141 Essen, Germany
| | - Marion Woermann
- Centre for Water and Environmental Research (ZWU), University of Duisburg-Essen, Universitätsstr. 2, 45141 Essen, Germany; Aquatic Ecology, University of Duisburg-Essen, Universitätsstr. 5, 45141 Essen, Germany
| | - Holger V Lutze
- Instrumental Analytical Chemistry, University of Duisburg-Essen, Universitätsstr. 5, 45141 Essen, Germany; Centre for Water and Environmental Research (ZWU), University of Duisburg-Essen, Universitätsstr. 2, 45141 Essen, Germany; Technical University Darmstadt, Franziska-Braun-Straße 3, 64287 Darmstadt, Germany; IWW Water Centre, Moritzstraße 26, 45476, Mülheim an der Ruhr, Germany.
| | - Bernd Sures
- Centre for Water and Environmental Research (ZWU), University of Duisburg-Essen, Universitätsstr. 2, 45141 Essen, Germany; Aquatic Ecology, University of Duisburg-Essen, Universitätsstr. 5, 45141 Essen, Germany
| | - Torsten C Schmidt
- Instrumental Analytical Chemistry, University of Duisburg-Essen, Universitätsstr. 5, 45141 Essen, Germany; Centre for Water and Environmental Research (ZWU), University of Duisburg-Essen, Universitätsstr. 2, 45141 Essen, Germany; IWW Water Centre, Moritzstraße 26, 45476, Mülheim an der Ruhr, Germany.
| |
Collapse
|
27
|
Chen H, Wang J. Degradation of sulfamethoxazole by ozonation combined with ionizing radiation. JOURNAL OF HAZARDOUS MATERIALS 2021; 407:124377. [PMID: 33191028 DOI: 10.1016/j.jhazmat.2020.124377] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/22/2020] [Accepted: 10/22/2020] [Indexed: 06/11/2023]
Abstract
In this study, the degradation and mineralization of sulfamethoxazole (SMX) by ozonation and ionizing radiation were investigated respectively, and the performance of the combined process of ozonation and ionizing radiation was evaluated. Results showed that complete degradation of SMX could be obtained by ozonation in 12 min or by ionizing radiation with the absorbed dose of 1.5 kGy. However, the mineralization of SMX was very limited in ozonation and ionizing radiation system, TOC removal efficiency was less than 15% and 27% in single-ozonation and single-radiation process, respectively. The combination of ozonation and radiation process obviously enhanced the mineralization of SMX, TOC removal efficiency increased to 65.7%. Moreover, the ozonation-radiation process also exhibited good performance in the mineralization of sulfamethazine (SMT) and sulfanilamide (SM), suggesting a good application prospect of the combined process in treating wastewater contaminated with antibiotics. In addition, some different intermediate products were identified during SMX degradation in ozonation process and ionizing radiation process by a high-performance liquid chromatography-mass spectrometry (LC-MS), and possible pathways of SMX degradation by ozonation and radiation were proposed.
Collapse
Affiliation(s)
- Hai Chen
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing 100084, China
| | - Jianlong Wang
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing 100084, China; Beijing Key Laboratory of Radioactive Waste Treatment, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
28
|
Zhang J, Liu S, Gui J, Li X, Qi G. Compound-Specific Chlorine Isotope Analysis of Organochlorine Pesticides by Gas Chromatography-Negative Chemical Ionization Mass Spectrometry. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2021; 2021:8874679. [PMID: 33575062 PMCID: PMC7861914 DOI: 10.1155/2021/8874679] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 12/08/2020] [Accepted: 01/09/2021] [Indexed: 06/12/2023]
Abstract
Compound-specific stable chlorine isotope analysis (CSIA-Cl) is an important method for identifying sources of organochlorine contaminants and helping assess their quantification of transformation processes. However, the present CSIA-Cl is challenged by either redundant conversion pretreatment or complicated mathematical correction. To overcome the mentioned problems, a novel method has been developed for the CSIA-Cl of eight organochlorine pesticides using gas chromatography-negative chemical ionization mass spectrometry (GC-NCI-qMS) in this study. The instrument parameters, acquisition mode, and required injection amounts were optimized in terms of the precision of GC-NCI-qMS. An ionization energy of 90 eV and emission current of 90 μA were selected, and the precisions for eight organochlorine pesticides were in the range of 0.37‰-2.15‰ in single ion monitoring (SIM) mode when the injected amount was 0.50 mg L-1 (viz. 0.5 ng on column). Furthermore, when standards from Supelco and O2si were calibrated using standards from AccuStandard regarded as external isotope standard, chlorine isotope composition of α-hexachlorocyclohexane (α-HCH) and 2, 2-dichloro-1, 1-bis (4-chlorophenyl) ethylene (p, p'-DDE) in Supelco and O2si was confidently differentiated. The provenance identification method was validated by three organochlorine contaminated groundwater samples and showed a prospect in identifying the source of organochlorine pesticides.
Collapse
Affiliation(s)
- Jing Zhang
- Key Laboratory of Groundwater Sciences and Engineering, Ministry of Natural Resources, Institute of Hydrogeology and Environmental Geology, CAGS, Shijiazhuang 050061, China
| | - Shenghua Liu
- Key Laboratory of Groundwater Remediation of Hebei Province and China Geological Survey, Shijiazhuang 050061, China
- School of Earth Sciences and Resources, China University of Geosciences (Beijing), Beijing 100083, China
| | - Jianye Gui
- Key Laboratory of Groundwater Sciences and Engineering, Ministry of Natural Resources, Institute of Hydrogeology and Environmental Geology, CAGS, Shijiazhuang 050061, China
| | - Xiaoya Li
- Key Laboratory of Groundwater Sciences and Engineering, Ministry of Natural Resources, Institute of Hydrogeology and Environmental Geology, CAGS, Shijiazhuang 050061, China
| | - Guochen Qi
- Key Laboratory of Groundwater Sciences and Engineering, Ministry of Natural Resources, Institute of Hydrogeology and Environmental Geology, CAGS, Shijiazhuang 050061, China
| |
Collapse
|
29
|
Zhang B, Shan C, Wang S, Fang Z, Pan B. Unveiling the transformation of dissolved organic matter during ozonation of municipal secondary effluent based on FT-ICR-MS and spectral analysis. WATER RESEARCH 2021; 188:116484. [PMID: 33045637 DOI: 10.1016/j.watres.2020.116484] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/26/2020] [Accepted: 09/29/2020] [Indexed: 06/11/2023]
Abstract
Ozonation is a well-recognized process in advanced treatment of municipal secondary effluent for water reclamation. However, the transformation of dissolved effluent organic matter (dEfOM) during ozonation of real effluents, particularly at molecular level, has been scarcely reported. In this study, we performed ozonation treatments on real secondary effluents from two municipal wastewater treatment plants, and used Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) and various spectroscopic techniques to probe the transformation of dEfOM at four ozone dosage levels (0.28, 0.61, 0.89, and 1.21 mg O3/mg DOC). Most of the precursors were unsaturated and reduced compounds (positive double bond equivalent minus oxygen per carbon ((DBE-O)/C) and negative nominal oxidation state of carbon (NOSC)), whereas the products were mainly the saturated and oxidized ones (negative (DBE-O)/C and positive NOSC). As the ozone dosage increased, the relative abundance of O8-19 species gradually increased in the ozonated samples, whereas an opposite trend was observed for O5-7S1 species. Further, we employed 18 types of reactions to represent the ozonation process, and found that the oxygenation reaction (+3O) possessed the largest number of possible precursor-product pairs, and CHON compounds possessed the highest reactivity. Besides the dominant oxygenation reactions, decyclopropyl (-C3H4) was relatively common reaction for CHON compounds, while it was oxidative desulfonation (-SH2) for CHOS ones. In addition, the transformation of precursors to products accompanied with the drop of (DBE-O)/C, and the increase of NOSC and the O/C ratio. The precursors with aromaticity and fluorescence were mainly correlated with the compounds featuring higher (DBE-O)/C and lower NOSC values. This study is believed to help better understand and improve the application of ozonation process in advanced treatment of real wastewater.
Collapse
Affiliation(s)
- Bingliang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Chao Shan
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China; Research Center for Environmental Nanotechnology (ReCENT), Nanjing University, Nanjing 210023, China
| | - Shu Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Zhuoyao Fang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Bingcai Pan
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China; Research Center for Environmental Nanotechnology (ReCENT), Nanjing University, Nanjing 210023, China.
| |
Collapse
|
30
|
Activation of persulfate by graphitized biochar for sulfamethoxazole removal: The roles of graphitic carbon structure and carbonyl group. J Colloid Interface Sci 2020; 577:419-430. [DOI: 10.1016/j.jcis.2020.05.096] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 05/22/2020] [Accepted: 05/24/2020] [Indexed: 12/11/2022]
|
31
|
Song Y, Huang L, Zhang X, Zhang H, Wang L, Zhang H, Liu Y. Synergistic effect of persulfate and g-C 3N 4 under simulated solar light irradiation: Implication for the degradation of sulfamethoxazole. JOURNAL OF HAZARDOUS MATERIALS 2020; 393:122379. [PMID: 32120217 DOI: 10.1016/j.jhazmat.2020.122379] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 02/21/2020] [Accepted: 02/21/2020] [Indexed: 06/10/2023]
Abstract
A method combining g-C3N4 and potassium peroxydisulfate (PDS) under simulated sunlight was put forward to effectively degrade sulfamethoxazole (SMX). The SMX removal efficiency was substantially improved compared with the processes involving only g-C3N4 or PDS. The kinetic constants for the g-C3N4, PDS and g-C3N4/PDS systems were 0.0023, 0.0239 and 0.068 min-1, respectively. The g-C3N4/PDS process reached an SMX removal rate of 98.4 % after 60 min of simulated sunlight; in addition, the proposed system showed desirable efficiency for SMX degradation in two different actual water samples as well. The reaction mechanism was illustrated by trapping experiments, which showed that g-C3N4 can promote S2O82- to transfer SO4-, S2O82- favored the generation of O2-, and O2-, SO4- and holes (h+) were the main oxidative species for the SMX degradation in the combined reaction process under simulated sunlight. Then, to further explore this mechanism, the intermediates generated during the combined reaction process were analyzed by LC/MS and possible degradation pathways were proposed. The result showed that the breaking of the SN and C-S bonds, the hydroxylation of the benzene ring and the oxidation of the amino group were identified as the main pathways in the SMX degradation process by the g-C3N4/PDS system under simulated sunlight.
Collapse
Affiliation(s)
- Yali Song
- Department of Material and Chemical Engineering, Henan Collaborative Innovation Centre of Environmental Pollution Control and Ecological Restoration, Zhengzhou University of Light Industry, Zhengzhou, 450001, PR China.
| | - Long Huang
- School of Water Conservancy Engineering, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Xiaojing Zhang
- Department of Material and Chemical Engineering, Henan Collaborative Innovation Centre of Environmental Pollution Control and Ecological Restoration, Zhengzhou University of Light Industry, Zhengzhou, 450001, PR China
| | - Hongzhong Zhang
- Department of Material and Chemical Engineering, Henan Collaborative Innovation Centre of Environmental Pollution Control and Ecological Restoration, Zhengzhou University of Light Industry, Zhengzhou, 450001, PR China.
| | - Lan Wang
- Department of Material and Chemical Engineering, Henan Collaborative Innovation Centre of Environmental Pollution Control and Ecological Restoration, Zhengzhou University of Light Industry, Zhengzhou, 450001, PR China
| | - Huan Zhang
- Department of Material and Chemical Engineering, Henan Collaborative Innovation Centre of Environmental Pollution Control and Ecological Restoration, Zhengzhou University of Light Industry, Zhengzhou, 450001, PR China
| | - Yali Liu
- School of Civil Engineering, Nanjing Forestry University, Nanjing, 210037, PR China
| |
Collapse
|
32
|
Willach S, Lutze HV, Somnitz H, Terhalle J, Stojanovic N, Lüling M, Jochmann MA, Hofstetter TB, Schmidt TC. Carbon Isotope Fractionation of Substituted Benzene Analogs during Oxidation with Ozone and Hydroxyl Radicals: How Should Experimental Data Be Interpreted? ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:6713-6722. [PMID: 32383866 DOI: 10.1021/acs.est.0c00620] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Oxidative processes frequently contribute to organic pollutant degradation in natural and engineered systems, such as during the remediation of contaminated sites and in water treatment processes. Because a systematic characterization of abiotic reactions of organic pollutants with oxidants such as ozone or hydroxyl radicals by compound-specific stable isotope analysis (CSIA) is lacking, stable isotope-based approaches have rarely been applied for the elucidation of mechanisms of such transformations. Here, we investigated the carbon isotope fractionation associated with the oxidation of benzene and several methylated and methoxylated analogs, namely, toluene, three xylene isomers, mesitylene, and anisole, and determined their carbon isotope enrichments factors (εC) for reactions with ozone (εC = -3.6 to -4.6 ‰) and hydroxyl radicals (εC = 0.0 to -1.2‰). The differences in isotope fractionation can be used to elucidate the contribution of the reactions with ozone or hydroxyl radicals to overall transformation. Derivation of apparent kinetic isotope effects (AKIEs) for the reaction with ozone, however, was nontrivial due to challenges in assigning reactive positions in the probe compounds for the monodentate attack leading to an ozone adduct. We present several options for this step and compare the outcome to quantum chemical characterizations of ozone adducts. Our data show that a general assignment of reactive positions for reactions of ozone with aromatic carbons in ortho-, meta-, or para-positions is not feasible and that AKIEs of this reaction should be derived on a compound-by-compound basis.
Collapse
Affiliation(s)
- Sarah Willach
- Faculty of Chemistry, Instrumental Analytical Chemistry, University of Duisburg-Essen, Universitätsstrasse 5, D-45141 Essen, Germany
| | - Holger V Lutze
- Faculty of Chemistry, Instrumental Analytical Chemistry, University of Duisburg-Essen, Universitätsstrasse 5, D-45141 Essen, Germany
- IWW Water Centre, Moritzstrasse 26, D-45476 Mülheim an der Ruhr, Germany
- Centre for Water and Environmental Research (ZWU), University of Duisburg-Essen, Universitätsstrasse 5, D-45141 Essen, Germany
| | - Holger Somnitz
- Faculty of Chemistry, Theoretical Chemistry, University of Duisburg-Essen, Universitätsstrasse 5, D-45141 Essen, Germany
| | - Jens Terhalle
- Faculty of Chemistry, Instrumental Analytical Chemistry, University of Duisburg-Essen, Universitätsstrasse 5, D-45141 Essen, Germany
| | - Nenad Stojanovic
- Faculty of Chemistry, Instrumental Analytical Chemistry, University of Duisburg-Essen, Universitätsstrasse 5, D-45141 Essen, Germany
| | - Michelle Lüling
- Faculty of Chemistry, Instrumental Analytical Chemistry, University of Duisburg-Essen, Universitätsstrasse 5, D-45141 Essen, Germany
| | - Maik A Jochmann
- Faculty of Chemistry, Instrumental Analytical Chemistry, University of Duisburg-Essen, Universitätsstrasse 5, D-45141 Essen, Germany
- Centre for Water and Environmental Research (ZWU), University of Duisburg-Essen, Universitätsstrasse 5, D-45141 Essen, Germany
| | - Thomas B Hofstetter
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, CH-8600 Dübendorf, Switzerland
- Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich, Universitätstrasse 16, CH-8092 Zürich, Switzerland
| | - Torsten C Schmidt
- Faculty of Chemistry, Instrumental Analytical Chemistry, University of Duisburg-Essen, Universitätsstrasse 5, D-45141 Essen, Germany
- IWW Water Centre, Moritzstrasse 26, D-45476 Mülheim an der Ruhr, Germany
- Centre for Water and Environmental Research (ZWU), University of Duisburg-Essen, Universitätsstrasse 5, D-45141 Essen, Germany
| |
Collapse
|
33
|
Freeling F, Scheurer M, Sandholzer A, Armbruster D, Nödler K, Schulz M, Ternes TA, Wick A. Under the radar - Exceptionally high environmental concentrations of the high production volume chemical sulfamic acid in the urban water cycle. WATER RESEARCH 2020; 175:115706. [PMID: 32199185 DOI: 10.1016/j.watres.2020.115706] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 02/24/2020] [Accepted: 03/08/2020] [Indexed: 06/10/2023]
Abstract
Elevated concentrations of sulfamate, the anion of sulfamic acid, were found in surface waters and finished drinking water in Germany with concentrations up to 580 μg/L and 140 μg/L, respectively. Wastewater treatment plant (WWTP) effluent was identified as the dominant source of sulfamate in the urban water cycle, as sulfamate concentrations correlated positively (0.77 > r < 0.99) with concentrations of the wastewater tracer carbamazepine in samples from different waterbodies. Ozonation and activated sludge experiments proved that sulfamate can be formed from chemical and biological degradation of various precursors. Molar sulfamate yields were highly compound-specific and ranged from 2% to 56%. However, the transformation of precursors to sulfamate in WWTPs and wastewater-impacted waterbodies was found to be quantitatively irrelevant, since concentrations of sulfamate in these compartments are already high, presumably due to its primary use as an acidic cleaning agent. Sulfamate concentrations in the influent and effluent of studied WWTPs ranged from 520 μg/L to 1900 μg/L and from 490 μg/L to 1600 μg/L, respectively. Laboratory batch experiments were performed to assess the recalcitrance of sulfamate for chemical oxidation. In combination with the results from sampling conducted at full-scale waterworks, it was shown that common drinking water treatment techniques, including ozonation and filtration with activated carbon, are not capable to remove sulfamate. The results of biodegradation tests and from the analysis of samples taken at four bank filtration sites indicate that sulfamate is attenuated in the sediment/water interface of aquatic systems and during aquifer passage under aerobic and anaerobic conditions. Sulfamate concentrations decreased by between 62% and 99% during aquifer passage at the bank filtration sites. Considering the few data on short term ecotoxicity, about 30% of the presented sulfamate levels in ground and surface water samples did exceed the predicted no-effect concentration (PNEC) of sulfamate, and thus effects of sulfamate on the aquatic ecosystem of wastewater-impacted waterbodies in Germany cannot be excluded so far. Toxicological estimations suggest that no risk to human health is expected by concentrations of sulfamate typically encountered in tap water.
Collapse
Affiliation(s)
- Finnian Freeling
- TZW: DVGW-Technologiezentrum Wasser (German Water Centre), Karlsruher Str. 84, 76139, Karlsruhe, Germany
| | - Marco Scheurer
- TZW: DVGW-Technologiezentrum Wasser (German Water Centre), Karlsruher Str. 84, 76139, Karlsruhe, Germany
| | - Anna Sandholzer
- TZW: DVGW-Technologiezentrum Wasser (German Water Centre), Karlsruher Str. 84, 76139, Karlsruhe, Germany
| | - Dominic Armbruster
- TZW: DVGW-Technologiezentrum Wasser (German Water Centre), Karlsruher Str. 84, 76139, Karlsruhe, Germany
| | - Karsten Nödler
- TZW: DVGW-Technologiezentrum Wasser (German Water Centre), Karlsruher Str. 84, 76139, Karlsruhe, Germany
| | - Manoj Schulz
- Federal Institute of Hydrology (BfG), Am Mainzer Tor 1, 56068, Koblenz, Germany
| | - Thomas A Ternes
- Federal Institute of Hydrology (BfG), Am Mainzer Tor 1, 56068, Koblenz, Germany
| | - Arne Wick
- Federal Institute of Hydrology (BfG), Am Mainzer Tor 1, 56068, Koblenz, Germany.
| |
Collapse
|
34
|
García-Espinoza JD, Nacheva PM. Degradation of pharmaceutical compounds in water by oxygenated electrochemical oxidation: Parametric optimization, kinetic studies and toxicity assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 691:417-429. [PMID: 31323587 DOI: 10.1016/j.scitotenv.2019.07.118] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 06/17/2019] [Accepted: 07/08/2019] [Indexed: 05/20/2023]
Abstract
The pharmaceutical compounds sulfamethoxazole (SMX), propranolol (PRO) and carbamazepine (CBZ) are biorecalcitrant and frequently detected in waters causing negative impacts on human health and aquatic organisms. Electrochemical oxidation appears as an effective option for the removal of recalcitrant compounds and its enhancement is an important issue for the removal of emerging compounds in water. The contribution of this research lies in the comprehensive analysis of the oxygenated electro chemical oxidation of CBZ, SMX and PRO using Nb/BDD mesh anode. The effect of treatment time, current, pH and oxygen injection on the SMX, PRO and CBZ degradation was assessed using Na2SO4 as electrolyte, process optimization was performed, by-products were identified, kinetic and toxicity tests were carried out using different electrolytes. Finally, the process effectiveness was tested using real secondary effluent spiked with the mixture of the pharmaceutical compounds and the acute toxicity was determined. The obtained results indicated that the oxygenated electrochemical oxidation allows effective simultaneous SMX, PRO and CBZ degradation, which showed a significant dependence of treatment time, current and oxygen injection in Na2SO4 electrolyte. At 90 min of electrolysis the parent compounds were detected as well as eight by-products. At 150 min of treatment, further to the already determined by-products and the parent compounds, appeared phenol and p-benzoquinone. Based on the identified compounds, degradation pathways were explained as a result of two main mechanisms: transformation (hydroxylation, deamination, desulfunation) and bond rupture. The kinetic study indicated an increase of the first-order kinetic constant in the oxygenated electrochemical oxidation process using Na2SO4 and NaBr as electrolyte, nevertheless the constant decreased in the presence of NaCl. In the assays with secondary effluent spiked with SMX, PRO and CBZ, the oxygenation did not enhance the performance of the process, however; pharmaceuticals were degraded with a higher removal rates compared with the ones determined in the Na2SO4 synthetic solutions assays; the oxygenation enhanced the TOC and COD removal. The acute toxicity of spiked secondary effluent was reduced from the first few minutes of the electrochemical oxidation process.
Collapse
Affiliation(s)
- Josué Daniel García-Espinoza
- National Autonomous University of Mexico (UNAM, Campus IMTA), Paseo Cuauhnahuac 8532, Progreso, Jiutepec, Morelos 62550, Mexico
| | - Petia Mijaylova Nacheva
- Mexican Institute of Water Technology (IMTA), Paseo Cuauhnahuac 8532, Progreso, Jiutepec, Morelos 62550, Mexico.
| |
Collapse
|
35
|
Bartolomeu M, Neves MGPMS, Faustino MAF, Almeida A. Wastewater chemical contaminants: remediation by advanced oxidation processes. Photochem Photobiol Sci 2018; 17:1573-1598. [PMID: 30328883 DOI: 10.1039/c8pp00249e] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Approximately 70% of the terrestrial area is covered with water, but only a small water fraction is compatible with terrestrial life forms. Due to the increment in human consumption, the need for water resources is increasing, and it is estimated that more than 40% of the population worldwide will face water stress/scarcity within the next few decades. Water recycling and reuse may offer the opportunity to expand water resources. For that, the wastewater treatment paradigm should be changed and adequately treated wastewater should be seen as a valuable resource instead of a waste product. It is easily understandable that the exact composition and constituent concentration of wastewater vary according to its different sources (industrial, agricultural, urban usage of water). Consequently, a variety of known and emerging pollutants like heavy metals, antibiotics, pesticides, phthalates, polyaromatic hydrocarbons, halogenated compounds and endocrine disruptors have been found in natural water reservoirs, due to the limited effectiveness of conventional wastewater treatment. The conventional approach consists of a combination of physical, chemical and biological processes, aiming at the removal of large sediments such as heavier solids, scum and grease and of organic content in order to avoid the growth of microorganisms and eutrophication of the receiving water bodies. However, this approach is not sufficient to reduce the chemical pollutants and much less the emerging chemical pollutants. In this review, after some considerations concerning chemical pollutants and the problematic efficiency of their removal by conventional methods, an update is presented on the successes and challenges of novel approaches for wastewater remediation based on advanced oxidation processes. An insight into wastewater remediation involving the photodynamic approach mediated by tetrapyrrolic derivatives will be underlined.
Collapse
Affiliation(s)
- M Bartolomeu
- Department of Biology and CESAM, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - M G P M S Neves
- Department of Chemistry and QOPNA, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - M A F Faustino
- Department of Chemistry and QOPNA, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - A Almeida
- Department of Biology and CESAM, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
36
|
Feng Y, Zhang WJ, Liu YW, Xue JM, Zhang SQ, Li ZJ. A Simple, Sensitive, and Reliable Method for the Simultaneous Determination of Multiple Antibiotics in Vegetables through SPE-HPLC-MS/MS. Molecules 2018; 23:molecules23081953. [PMID: 30082580 PMCID: PMC6222851 DOI: 10.3390/molecules23081953] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Revised: 06/25/2018] [Accepted: 06/28/2018] [Indexed: 11/16/2022] Open
Abstract
Antibiotics, widely used in livestock breeding, enter the environment through animal manure because of incomplete absorption in animals, especially the farmland ecosystem. Therefore, antibiotics may be adsorbed by plants and even become hazardous to human health through the food chain. In this study, a simple, sensitive, and reliable method was developed for the simultaneous determination of eleven antibiotics, including four sulfonamides, two tetracyclines, three fluoroquinolones, tylosin, and chloramphenicol in different vegetable samples using SPE-HPLC-MS/MS. Vegetable samples were extracted by acetonitrile added with hydrochloric acid (125:4, v/v). The extracts were enriched by circumrotating evaporation, and then cleaned through SPE on a hydrophilic-lipophilic balance (HLB) cartridge. All compounds were determined on a C18 reverse phase column through HPLC-MS/MS. The mean recoveries of 11 antibiotics from spiked samples of vegetables ranged from 71.4% to 104.0%. The limits of detection and quantification were 0.06⁻1.88 μg/kg and 0.20⁻6.25 μg/kg, respectively. The applicability of this technique demonstrated its good selectivity, high efficiency, and convenience by the analysis of 35 vegetable samples available from a vegetable greenhouse. Antibiotic residues in vegetables have aroused wide concern from the public. Therefore, standards should be established for antibiotic residues in vegetables to ensure food safety and human health.
Collapse
Affiliation(s)
- Yao Feng
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
- China-New Zealand Joint Laboratory for Soil Molecular Ecology, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
- Beijing Key Laboratory of Detection and Control of Spoilage microorganisms and Pesticide Residues in Agricultural Products, Beijing University of Agriculture, Beijing 102206, China.
| | - Wen-Juan Zhang
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Yuan-Wang Liu
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
- China-New Zealand Joint Laboratory for Soil Molecular Ecology, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Jian-Ming Xue
- Scion, Private Bag 29237, Christchurch 8440, New Zealand.
| | - Shu-Qing Zhang
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Zhao-Jun Li
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
- China-New Zealand Joint Laboratory for Soil Molecular Ecology, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
37
|
von Gunten U. Oxidation Processes in Water Treatment: Are We on Track? ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:5062-5075. [PMID: 29672032 DOI: 10.1021/acs.est.8b00586] [Citation(s) in RCA: 306] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Chemical oxidants have been applied in water treatment for more than a century, first as disinfectants and later to abate inorganic and organic contaminants. The challenge of oxidative abatement of organic micropollutants is the formation of transformation products with unknown (eco)toxicological consequences. Four aspects need to be considered for oxidative micropollutant abatement: (i) Reaction kinetics, controlling the efficiency of the process, (ii) mechanisms of transformation product formation, (iii) extent of formation of disinfection byproducts from the matrix, (iv) oxidation induced biological effects, resulting from transformation products and/or disinfection byproducts. It is impossible to test all the thousands of organic micropollutants in the urban water cycle experimentally to assess potential adverse outcomes of an oxidation. Rather, we need multidisciplinary and automated knowledge-based systems, which couple predictions of kinetics, transformation and disinfection byproducts and their toxicological consequences to assess the overall benefits of oxidation processes. A wide range of oxidation processes has been developed in the last decades with a recent focus on novel electricity-driven oxidation processes. To evaluate these processes, they have to be compared to established benchmark ozone- and UV-based oxidation processes by considering the energy demands, economics, the feasibilty, and the integration into future water treatment systems.
Collapse
Affiliation(s)
- Urs von Gunten
- Eawag , Swiss Federal Institute of Aquatic Science and Technology , Ueberlandstrasse 133 , 8600 Duebendorf , Switzerland
- School of Architecture, Civil and Environmental Engineering (ENAC) , École Polytechnique Fédérale de Lausanne (EPFL) , 1015 , Lausanne , Switzerland
- Institute of Biogeochemistry and Pollutant Dynamics , ETH Zurich , 8092 Zurich , Switzerland
| |
Collapse
|
38
|
Willach S, Lutze HV, Eckey K, Löppenberg K, Lüling M, Wolbert JB, Kujawinski DM, Jochmann MA, Karst U, Schmidt TC. Direct Photolysis of Sulfamethoxazole Using Various Irradiation Sources and Wavelength Ranges-Insights from Degradation Product Analysis and Compound-Specific Stable Isotope Analysis. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:1225-1233. [PMID: 29303258 DOI: 10.1021/acs.est.7b04744] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The environmental micropollutant sulfamethoxazole (SMX) is susceptible to phototransformation by sunlight and UV-C light which is used for water disinfection. Depending on the environmental pH conditions SMX may be present as neutral or anionic species. This study systematically investigates the phototransformation of these two relevant SMX species using four different irradiation scenarios, i.e., a low, medium, and high pressure Hg lamp and simulated sunlight. The observed phototransformation kinetics are complemented by data from compound-specific stable isotope and transformation product analysis using isotope-ratio and high-resolution mass spectrometry (HRMS). Observed phototransformation kinetics were faster for the neutral than for the anionic SMX species (from 3.4 (LP lamp) up to 6.6 (HP lamp) times). Furthermore, four phototransformation products (with m/z 189, 202, 242, and 260) were detected by HRMS that have not yet been described for direct photolysis of SMX. Isotopic fractionation occurred only if UV-B and UV-A wavelengths prevailed in the emitted irradiation and was most pronounced for the neutral species with simulated sunlight (εC = -4.8 ± 0.1 ‰). Phototransformation of SMX with UV-C light did not cause significant isotopic fractionation. Consequently, it was possible to differentiate sunlight and UV-C light induced phototransformation of SMX. Thus, CSIA might be implemented to trace back wastewater point sources or to assess natural attenuation of SMX by sunlight photolysis. In contrast to the wavelength range, pH-dependent speciation of SMX hardly impacted isotopic fractionation.
Collapse
Affiliation(s)
- Sarah Willach
- University of Duisburg-Essen , Faculty of Chemistry, Instrumental Analytical Chemistry, Universitaetsstraße 5 D-45141 Essen, Germany
| | - Holger V Lutze
- University of Duisburg-Essen , Faculty of Chemistry, Instrumental Analytical Chemistry, Universitaetsstraße 5 D-45141 Essen, Germany
- IWW Water Centre , Moritzstraße 26, D-45476 Muelheim an der Ruhr, Germany
- University of Duisburg-Essen , Centre for Water and Environmental Research (ZWU), Universitaetsstraße 5 D-45141 Essen, Germany
| | - Kevin Eckey
- University of Muenster , Institute of Inorganic and Analytical Chemistry, Corrensstraße 28-30 D-48149, Muenster, Germany
| | - Katja Löppenberg
- University of Duisburg-Essen , Faculty of Chemistry, Instrumental Analytical Chemistry, Universitaetsstraße 5 D-45141 Essen, Germany
| | - Michelle Lüling
- University of Duisburg-Essen , Faculty of Chemistry, Instrumental Analytical Chemistry, Universitaetsstraße 5 D-45141 Essen, Germany
| | - Jens-Benjamin Wolbert
- University of Duisburg-Essen , Faculty of Chemistry, Instrumental Analytical Chemistry, Universitaetsstraße 5 D-45141 Essen, Germany
| | - Dorothea M Kujawinski
- University of Duisburg-Essen , Faculty of Chemistry, Instrumental Analytical Chemistry, Universitaetsstraße 5 D-45141 Essen, Germany
| | - Maik A Jochmann
- University of Duisburg-Essen , Faculty of Chemistry, Instrumental Analytical Chemistry, Universitaetsstraße 5 D-45141 Essen, Germany
- University of Duisburg-Essen , Centre for Water and Environmental Research (ZWU), Universitaetsstraße 5 D-45141 Essen, Germany
| | - Uwe Karst
- University of Muenster , Institute of Inorganic and Analytical Chemistry, Corrensstraße 28-30 D-48149, Muenster, Germany
| | - Torsten C Schmidt
- University of Duisburg-Essen , Faculty of Chemistry, Instrumental Analytical Chemistry, Universitaetsstraße 5 D-45141 Essen, Germany
- IWW Water Centre , Moritzstraße 26, D-45476 Muelheim an der Ruhr, Germany
- University of Duisburg-Essen , Centre for Water and Environmental Research (ZWU), Universitaetsstraße 5 D-45141 Essen, Germany
| |
Collapse
|
39
|
Yu X, Liu H, Pu C, Chen J, Sun Y, Hu L. Determination of multiple antibiotics in leafy vegetables using QuEChERS-UHPLC-MS/MS. J Sep Sci 2017; 41:713-722. [DOI: 10.1002/jssc.201700798] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 11/03/2017] [Accepted: 11/06/2017] [Indexed: 11/09/2022]
Affiliation(s)
- Xiaolu Yu
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation; College of Resources and Environmental Science; China Agricultural University; Beijing P. R. China
| | - Hang Liu
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation; College of Resources and Environmental Science; China Agricultural University; Beijing P. R. China
| | - Chengjun Pu
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation; College of Resources and Environmental Science; China Agricultural University; Beijing P. R. China
| | - Junhao Chen
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation; College of Resources and Environmental Science; China Agricultural University; Beijing P. R. China
| | - Ying Sun
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation; College of Resources and Environmental Science; China Agricultural University; Beijing P. R. China
| | - Lin Hu
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation; College of Resources and Environmental Science; China Agricultural University; Beijing P. R. China
| |
Collapse
|