1
|
Hu Y, Zhou Z, Shen C. Microbial community acclimation during anaerobic digestion of high-oil food waste. Sci Rep 2024; 14:25364. [PMID: 39455737 PMCID: PMC11511842 DOI: 10.1038/s41598-024-77136-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 10/21/2024] [Indexed: 10/28/2024] Open
Abstract
Anaerobic digestion is one of the most promising options for the disposal of biodegradable food waste. However, the relatively high content of oil in food waste inhibits the conversion efficiency of anaerobic digestion because of the accumulation of long-chain fatty acids (LCFAs). In this study, activated anaerobic sludge was acclimated to accommodate high-oil conditions. The methane yield of high-oil food waste digested by the acclimated sludge increased by 24.9% compared to that digested by the raw sludge. To determine the internal changes in the acclimated sludge, the shifts in the microbial communities during the acclimation period were investigated via high-throughput sequencing (HTS) based on the 16 S rRNA gene. The results indicated that Bacteroidetes, Firmicutes, Chloroflexi and Proteobacteria were the dominant bacteria at the phylum level. The acclimation time allows some functional bacterial taxa to proliferate, such as Clostridium and Longilinea, which are able to degrade LCFAs and turn them into small organic molecules that also have nutrient value for other bacteria. Among the archaeal communities, the hydrogenotrophic methanogen Methanobacterium nearly supplanted the acetotrophic methanogen Methanosaeta. The time profiles of volatile fatty acids (VFAs) and pH during this period provided additional evidence for the success of the acclimation. This study demonstrated the effectiveness of acclimation and the dynamic of microbial communities, which further contributed to the management and resource utilization of high-oil food waste.
Collapse
Affiliation(s)
- Yangqing Hu
- Fair Friend Institute of Intelligent Manufacturing, Hangzhou Vocational and Technical College, Hangzhou, 310018, China.
- Hangzhou Huaxin Mechanical and Electrical Engineering Co., Ltd, Hangzhou, 310030, China.
- College of Electronic Information and Optical Engineering, Nankai University, Tianjin, 300350, China.
| | - Zhaozhi Zhou
- Zhejiang Development & Planning Institute, Hangzhou, 310012, China
| | - Ce Shen
- Hangzhou Huaxin Mechanical and Electrical Engineering Co., Ltd, Hangzhou, 310030, China
| |
Collapse
|
2
|
Wang L, Ducoste JJ, de los Reyes FL. Perturbations to common gardens of anaerobic co-digesters reveal relationships between functional resilience and microbial community composition. Appl Environ Microbiol 2024; 90:e0029824. [PMID: 39189736 PMCID: PMC11409718 DOI: 10.1128/aem.00298-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 08/06/2024] [Indexed: 08/28/2024] Open
Abstract
We report the relationship between enrichment of adapted populations and enhancement of community functional resilience in methanogenic bioreactors. Although previous studies have shown the positive effects of acclimation, this work directly investigated the relationships between microbiome dynamics and performance of anaerobic co-digesting reactors in response to different levels of an environmental perturbation (loading of grease interceptor waste [GIW]). Using the methanogenic microbiome from a full-scale digester, we developed eight sets of microbial communities in triplicate using different feed sources. These substrate-specific microbiomes were then exposed to three independent disturbance events of low-, mid- and high-GIW loading rates. This approach allowed us to directly attribute differences in community responses to differences in community composition. Despite identical inocula, environment (digester operation, substrate loading rate, and feeding patterns) and general whole-community function (methane production and effluent quality) during the cultivation period, different substrates led to different microbial community assemblies. Lipid pre-acclimation led to enrichment of a pool of specialized populations, along with thriving of sub-dominant communities. The enrichment of these populations improved functional resilience and process performance when exposed to a low level of lipid-rich perturbation compared with less-acclimated communities. At higher levels of perturbation, the communities were not able to recover methanogenesis, indicating a loading limit to the resilience response. This study extends our current understanding of environmental perturbations, feed-specific adaptation, and functional resilience in methanogenic bioreactors.IMPORTANCEThis study demonstrates, for the first time for GIW co-digestion, how applying similar perturbations to different microbial communities was used to directly identify the causal relationships between microbial community, function, and environment in triplicate anaerobic microbiomes. We evaluated the impact of feed-specific adaptation on methanogenic microbiomes and demonstrated how microbiomes can be influenced to improve their functional (methanogenic) resilience to GIW inhibition. These findings demonstrate how an ecological framework can help improve a biological engineering application, and more specifically, increase the potential of anaerobic co-digestion for converting wastes to energy.
Collapse
Affiliation(s)
- Ling Wang
- Department of Civil Construction, and Environmental Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | - Joel J. Ducoste
- Department of Civil Construction, and Environmental Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | - Francis L. de los Reyes
- Department of Civil Construction, and Environmental Engineering, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
3
|
Zhong L, Lin F, Wo D, Yang X, Sun Y, Feng X, Li L. The dominant-substrate driven the enhanced performance in co-digestion of Pennisetum hybrid and livestock waste. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 366:121700. [PMID: 38996599 DOI: 10.1016/j.jenvman.2024.121700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 06/26/2024] [Accepted: 07/02/2024] [Indexed: 07/14/2024]
Abstract
Co-digestion has been considered a promising method to improve methane yield. The effect of the proportion of dominant substrate on the performance and microbial community of anaerobic digestion of Pennisetum hybrid (PH) and livestock waste (LW) was investigated. An obvious synergistic effect was obtained with an increase of 15.20%-17.45% in specific methane yield compared to the predicted value. Meanwhile, the dominant substrate influenced the relational model between methane yield enhancement rate and mixture ratio. For the LW-dominant systems, a parabolic model between enhancement rate and mixture ratio was observed with a highest value of 392.16 mL/g VS achieved at a PH:LW ratio of 2:8. While a linear pattern appeared for PH-dominant systems with the highest methane yield of 307.59 mL/g VS. Co-digestion selectively enriched the relative abundance of Clostridium_sensu_stricto_1, Terrisporobacter, Syntrophomonas, Methanosarcina and Methanobacterium, which boosted the performance of hydrolysis, acidogenesis, acetogenesis and methanogenesis processes.
Collapse
Affiliation(s)
- Lintong Zhong
- School of Energy Science and Engineering, University of Science and Technology of China, Hefei, 230026, PR China; Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, PR China
| | - Fan Lin
- School of Energy Science and Engineering, University of Science and Technology of China, Hefei, 230026, PR China; Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, PR China
| | - Defang Wo
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, PR China; Laboratory of Biomass Bio-Chemical Conversion, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, PR China
| | - Xin Yang
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, PR China; College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, PR China
| | - Yongming Sun
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, PR China; Laboratory of Biomass Bio-Chemical Conversion, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, PR China; Guangdong Key Laboratory of New and Renewable Energy Research and Development, Guangzhou, 510640, PR China
| | - Xidan Feng
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, PR China
| | - Lianhua Li
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, PR China; Laboratory of Biomass Bio-Chemical Conversion, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, PR China; Guangdong Key Laboratory of New and Renewable Energy Research and Development, Guangzhou, 510640, PR China.
| |
Collapse
|
4
|
Kozłowski M, Igwegbe CA, Tarczyńska A, Białowiec A. Revealing the Adverse Impact of Additive Carbon Material on Microorganisms and Its Implications for Biogas Yields: A Critical Review. MATERIALS (BASEL, SWITZERLAND) 2023; 16:7250. [PMID: 38067995 PMCID: PMC10707503 DOI: 10.3390/ma16237250] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 11/10/2023] [Accepted: 11/16/2023] [Indexed: 09/16/2024]
Abstract
Biochar could be a brilliant additive supporting the anaerobic fermentation process. However, it should be taken into account that in some cases it could also be harmful to microorganisms responsible for biogas production. The negative impact of carbon materials could be a result of an overdose of biochar, high biochar pH, increased arsenic mobility in the methane fermentation solution caused by the carbon material, and low porosity of some carbon materials for microorganisms. Moreover, when biochar is affected by an anaerobic digest solution, it could reduce the biodiversity of microorganisms. The purpose of the article is not to reject the idea of biochar additives to increase the efficiency of biogas production, but to draw attention to the properties and ways of adding these materials that could reduce biogas production. These findings have practical relevance for organizations seeking to implement such systems in industrial or local-scale biogas plants and provide valuable insights for future research. Needless to say, this study will also support the implementation of biogas technologies and waste management in implementing the idea of a circular economy, further emphasizing the significance of the research.
Collapse
Affiliation(s)
- Michał Kozłowski
- Department of Applied Bioeconomy, Wrocław University of Environmental and Life Sciences, 51-630 Wrocław, Poland; (M.K.); or (C.A.I.); (A.T.)
| | - Chinenye Adaobi Igwegbe
- Department of Applied Bioeconomy, Wrocław University of Environmental and Life Sciences, 51-630 Wrocław, Poland; (M.K.); or (C.A.I.); (A.T.)
- Department of Chemical Engineering, Nnamdi Azikiwe University, P.M.B. 5025, Awka 420218, Nigeria
| | - Agata Tarczyńska
- Department of Applied Bioeconomy, Wrocław University of Environmental and Life Sciences, 51-630 Wrocław, Poland; (M.K.); or (C.A.I.); (A.T.)
| | - Andrzej Białowiec
- Department of Applied Bioeconomy, Wrocław University of Environmental and Life Sciences, 51-630 Wrocław, Poland; (M.K.); or (C.A.I.); (A.T.)
| |
Collapse
|
5
|
Ma R, Wang J, Liu Y, Wang G, Yang Y, Liu Y, Kong Y, Lin J, Li Q, Li G, Yuan J. Dynamics of antibiotic resistance genes and bacterial community during pig manure, kitchen waste, and sewage sludge composting. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 345:118651. [PMID: 37499413 DOI: 10.1016/j.jenvman.2023.118651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 07/04/2023] [Accepted: 07/15/2023] [Indexed: 07/29/2023]
Abstract
Organic solid wastes (OSWs) are important reservoirs for antibiotic resistance genes (ARGs). Aerobic composting transforms OSWs into fertilizers. In this study, we investigated ARGs dynamics and their driving mechanisms in three OSW composts: pig manure (PM), kitchen waste (KC), and sewage sludge (SG). The dominant ARGs were different in each OSW, namely tetracycline, aminoglycoside, and macrolide resistance (PM); tetracyclines and aminoglycosides (KC); and sulfonamides (SG). ARGs abundance decreased in PM (71%) but increased in KC (5.9-fold) and SG (1.3-fold). Interestingly, the ARGs abundance was generally similar in all final composts, which was contributed to the similar bacterial community in final composts. In particular, sulfonamide and β-lactam resistant genes removed (100%) in PM, while sulfonamide in KC (38-fold) and tetracycline in SG (5-fold) increased the most. Additionally, ARGs abundance rebounded during the maturation period in all treatments. Firmicutes, Proteobacteria, and Actinobacteria were the main ARGs hosts. Several persistent and high-risk genes included tetW, aadA, aadE, tetX, strB, tetA, mefA, intl1, and intl2. The structural equation models showed ARGs removal was mainly affected by physicochemical parameters and bacterial communities in PM, the ARGs enrichment in KC composting correlated with increased mobile genetic elements (MGEs). In general, thermophilic aerobic composting can inhibit the vertical gene transfer (VGT) of pig manure and horizontal gene transfer (HGT) of sludge, but it increases the HGT of kitchen waste, resulting in a dramatic increase of ARGs in KC compost. More attention should be paid to the ARGs risk of kitchen waste composting.
Collapse
Affiliation(s)
- Ruonan Ma
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agriculture University, Beijing, 100193, China
| | - Jiani Wang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agriculture University, Beijing, 100193, China
| | - Yan Liu
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agriculture University, Beijing, 100193, China
| | - Guoying Wang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agriculture University, Beijing, 100193, China
| | - Yan Yang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agriculture University, Beijing, 100193, China
| | - Ying Liu
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agriculture University, Beijing, 100193, China
| | - Yilin Kong
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agriculture University, Beijing, 100193, China
| | - Jiacong Lin
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, 571101, China
| | - Qinfen Li
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, 571101, China
| | - Guoxue Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agriculture University, Beijing, 100193, China
| | - Jing Yuan
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agriculture University, Beijing, 100193, China.
| |
Collapse
|
6
|
Shrestha S, Pandey R, Aryal N, Lohani SP. Recent advances in co-digestion conjugates for anaerobic digestion of food waste. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 345:118785. [PMID: 37611516 DOI: 10.1016/j.jenvman.2023.118785] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 06/07/2023] [Accepted: 08/09/2023] [Indexed: 08/25/2023]
Abstract
Anaerobic digestion (AD) is a biological process that breaks down organic waste materials, such as food waste (FW) that produces biogas and digestate. The biogas can be utilized as biofuel, and digestate could be applied as fertilizer. However, AD of FW alone has limitations on optimal degradation, digester stability and biogas yield. Co-digestion of FW along with other organic wastes such as animal manure, agricultural residue, sewage sludge and industrial organic waste, has shown substantial improvement in degradation process with increased biogas yield. The inadequacies in FW for optimum AD, like low carbon-to-nitrogen ratio (C/N ratio), lack of trace elements and irregular particle sizes, can be nullified by adding appropriate co-digestion conjugates. This review aims to describe the characteristic inadequacies of FW and examines the effect on mesophilic co-digestion of FW with animal manure, waste sludge and agricultural wastes for biogas production optimization. A critical review on the impact of pretreatment and co-digestion to enrich the methane (CH4) content in biogas has been performed. The review also examines the microbial community shift due to co-digestion, which is critical for the stability of an anaerobic digester. Finally, it discusses the prospects and challenges for the widespread application of the co-digestion technique as an effective organic waste management practice.
Collapse
Affiliation(s)
- Sujesh Shrestha
- Department of Process, Energy and Environmental Technology, University of South-Eastern Norway, Campus Porsgrunn, Norway; Department of Environmental Science and Engineering, Kathmandu University, Nepal
| | - Rajeev Pandey
- Renewable and Sustainable Energy Laboratory, Department of Mechanical Engineering, Kathmandu University, Nepal
| | - Nabin Aryal
- Department of Process, Energy and Environmental Technology, University of South-Eastern Norway, Campus Porsgrunn, Norway.
| | - Sunil Prasad Lohani
- Renewable and Sustainable Energy Laboratory, Department of Mechanical Engineering, Kathmandu University, Nepal.
| |
Collapse
|
7
|
Hu T, Zhang H, Liao L, Zeng P, Qin A, Wei J, Wang H. Enhanced removal organic compounds and particles from cooking fume using activated sludge scrubber filled loofah: From performance to the mechanism. ENVIRONMENTAL RESEARCH 2023; 233:116445. [PMID: 37356523 DOI: 10.1016/j.envres.2023.116445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 05/29/2023] [Accepted: 06/16/2023] [Indexed: 06/27/2023]
Abstract
The catering industry's growth has resulted in cooking fume pollution becoming a major concern in people's lives. As a result, its removal has become a core research focus. Natural loofah is an ideal biofilm carrier, providing a conducive environment for microorganisms to grow. This study utilized natural loofah to fill domesticated activated sludge in a bioscrubber, forming biofilms that enhance the ability to purify cooking fume. This study found that the biomass of loofah biofilms per gram is 104.56 mg. The research also determined the removal efficiencies for oils, Non-methane total hydrocarbons (NMHC), PM2.5, and PM10 from cooking fumes, which were 91.53%, 67.53%, 75.25%, and 82.23%, respectively. The maximum elimination capacity for cooking fumes was found to be 20.7 g/(m3·h). Additionally, the study determined the kinetic parameters for the biodegradation of oils (Kc and Vmax) to be 4.69 mg L-1 and 0.026 h-1, respectively, while the enzyme activities of lipase and catalase stabilized at 75.50 U/mgprots and 67.95 U/mgprots. The microbial consortium identified in the biofilms belonged to the phylum Proteobacteria and consisted mainly of Sphingomonas, Mycobacterium, and Lactobacillus, among others.
Collapse
Affiliation(s)
- Tianlong Hu
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China; Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China
| | - Huan Zhang
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China; Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China
| | - Lei Liao
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China; Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China.
| | - Peng Zeng
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China; Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China
| | - Aimiao Qin
- College of Materials Science and Engineering, Guilin University of Technology, Guilin, 541004, China
| | - Jianwen Wei
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China; Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China
| | - Hongqiang Wang
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China; Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China
| |
Collapse
|
8
|
Wang B, Zhang L, Shi J, Su Y, Wu D, Xie B. Genome-centric metagenomics revealed functional traits in high-solids anaerobic co-digestion of restaurant food waste, household food waste and rice straw. BIORESOURCE TECHNOLOGY 2023; 376:128926. [PMID: 36940870 DOI: 10.1016/j.biortech.2023.128926] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 03/13/2023] [Accepted: 03/16/2023] [Indexed: 06/18/2023]
Abstract
High-solids anaerobic co-digestion (HS-AcoD) of food waste (FW) and other organic wastes is an effective option to improve the biogas production and system stability compared to mono-digestion. However, the clean and sustainable HS-AcoD strategy for FW and associated microbial functional traits have not been well explored. Here, HS-AcoD of restaurant food waste (RFW), household food waste (HFW) and rice straw (RS) were performed. Results showed that the maximum synergy index (SI) of 1.28 were achieved when the volatile solids ratio of RFW, HFW and RS was 0.45:0.45:0.1. HS-AcoD alleviated the acidification process by regulating metabolism associated with hydrolysis and volatile fatty acids formation. The synergistic relationship between syntrophic bacteria and Methanothrix sp., and the enhanced metabolic capacity associated with the acetotrophic and hydrogenotrophic pathways dominated by Methanothrix sp., provided a further explanation of the synergistic mechanism. These findings advance the knowledge about microbial mechanisms underlying the synergistic effect of HS-AcoD.
Collapse
Affiliation(s)
- Binghan Wang
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Science, East China Normal University, Shanghai 200241, PR China
| | - Liangmao Zhang
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Science, East China Normal University, Shanghai 200241, PR China
| | - Jianhong Shi
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Science, East China Normal University, Shanghai 200241, PR China
| | - Yinglong Su
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Science, East China Normal University, Shanghai 200241, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Dong Wu
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Science, East China Normal University, Shanghai 200241, PR China
| | - Bing Xie
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Science, East China Normal University, Shanghai 200241, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China.
| |
Collapse
|
9
|
Liu J, Yun S, Wang K, Liu L, An J, Ke T, Gao Y, Zhang X. Enhanced methane production in microbial electrolysis cell coupled anaerobic digestion system with MXene accelerants. BIORESOURCE TECHNOLOGY 2023; 380:129089. [PMID: 37116623 DOI: 10.1016/j.biortech.2023.129089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/17/2023] [Accepted: 04/21/2023] [Indexed: 05/09/2023]
Abstract
Accelerants can improve the anaerobic performance of a microbial electrolysis cell coupled anaerobic digestion (MEC-AD). MAX phase titanium aluminum carbide (MAX), multilayer Ti3C2TX MXene (ML-MXene) and few-layer Ti3C2TX MXene (FL-MXene) were utilized as accelerants for MEC-AD to promote CH4 production and CO2 reduction at a voltage of 0.6 V. The highest CH4 yield (358.7 mL/g VS) and the lowest CO2 yield (57.4 mL/g VS) relative to the control group (170.6 and 125.1 mL/g VS) were obtained in MEC-AD with ML-MXene (0.035 wt%). The digestates of MEC-AD with 0.035 wt% ML-MXene have superior thermal stability (40.9%) and total nutrient content (42.1 g/kg). The ML-MXene enhanced the abundances of Methanosarcina and Methanobacterium. This work highlights the possible role of MXene in promoting methanogenesis. These important findings provide a novel avenue for the development of MXene accelerants for MEC-AD systems.
Collapse
Affiliation(s)
- Jiayu Liu
- Functional Materials Laboratory (FML), School of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055, China
| | - Sining Yun
- Functional Materials Laboratory (FML), School of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055, China; Qinghai Building and Materials Research Academy Co., Ltd, the Key Lab of Plateau Building and Eco-community in Qinghai, Xining, Qinghai 810000, China.
| | - Kaijun Wang
- Functional Materials Laboratory (FML), School of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055, China
| | - Lijianan Liu
- Functional Materials Laboratory (FML), School of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055, China
| | - Jinhang An
- Functional Materials Laboratory (FML), School of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055, China
| | - Teng Ke
- Functional Materials Laboratory (FML), School of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055, China
| | - Yangyang Gao
- Functional Materials Laboratory (FML), School of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055, China
| | - Xiaoxue Zhang
- Functional Materials Laboratory (FML), School of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055, China
| |
Collapse
|
10
|
Al Hasani Z, Kumar Nayak J, Alhimali H, Al-Mamun A. Enhancing methane production of co-digested food waste with granular activated carbon coated with nano zero-valent iron in an anaerobic digester. BIORESOURCE TECHNOLOGY 2022; 363:127832. [PMID: 36029986 DOI: 10.1016/j.biortech.2022.127832] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/18/2022] [Accepted: 08/21/2022] [Indexed: 06/15/2023]
Abstract
Anaerobic digestion (AD) possesses dual benefits of waste treatment and energy generation. The use of conductive additives in AD matrix has potential to improve process yield. Hence, the study aimed to investigate a thermophilic AD (TAD) inserted by granular activated carbon coated with nano zero-valent iron (GAC/nZVI) in the matrix and was operated for mono-digestion and co-digestion of cow manure with food wastes (rice and bread) to check the bioprocess improvement. The results were compared with the control TAD without conductive additives. Biogas production increased by 11 folds upon using GAC/nZVI addition compared to the control TAD. Moreover, the addition of GAC/nZVI increased the methane in biogas by 20.7 folds compared to control one. With GAC/nZVI, the maximum COD removal of 78.29% and 85.21% were noticed for co-digestion and mono digestion, respectively. Such improvement of TAD performance was due to easy bacterial communication and electron exchange through the conductive particles.
Collapse
Affiliation(s)
- Zahra Al Hasani
- Department of Civil and Architectural Engineering, Sultan Qaboos University, P.O. Box 33, Al-Khoud 123, Muscat, Oman
| | - Jagdeep Kumar Nayak
- Department of Civil and Architectural Engineering, Sultan Qaboos University, P.O. Box 33, Al-Khoud 123, Muscat, Oman
| | - Halima Alhimali
- Department of Civil and Architectural Engineering, Sultan Qaboos University, P.O. Box 33, Al-Khoud 123, Muscat, Oman
| | - Abdullah Al-Mamun
- Department of Civil and Architectural Engineering, Sultan Qaboos University, P.O. Box 33, Al-Khoud 123, Muscat, Oman.
| |
Collapse
|
11
|
Wu L, Wei W, Liu X, Wang D, Ni BJ. Potentiality of recovering bioresource from food waste through multi-stage Co-digestion with enzymatic pretreatment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 319:115777. [PMID: 35982572 DOI: 10.1016/j.jenvman.2022.115777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 07/15/2022] [Accepted: 07/15/2022] [Indexed: 06/15/2023]
Abstract
Food waste (FW) is not only a major social, nutritional and environmental issue, but also an underutilized resource with significant energy, which has not been fully explored currently. Considering co-digestion can adjust carbon to nitrogen ratio (C/N) of the feedstock and improve the synergetic interactions among microorganisms, anaerobic co-digestion (AnCoD) is then becoming an emerging approach to achieve higher energy recovery from FW while ensuring the stability of the system. To obtain higher economic gain from such biodegradable wastes, increasing attention has been paid on optimizing the system configuration or applying enzymatic hydrolysis before digesting FW. A better understanding on the potentiality of correlating enzymatic pretreatment and AnCoD operated in various system configuration would enhance the bioresource recovery from FW and increase revenue through treating this organic waste. Specifically, the biobased chemicals outputs from FW-related co-digestion system with different configuration were firstly compared in this review. A deep discussion concerning the challenges for achieving bioresources recovery from FW co-digestion systems with enzymatic pretreatment was then given. Recommendations for future studies regarding FW co-digestion were then proposed at last.
Collapse
Affiliation(s)
- Lan Wu
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Wei Wei
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Xuran Liu
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Dongbo Wang
- Key Laboratory of Environmental Biology and Pollution Control, College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China.
| | - Bing-Jie Ni
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia.
| |
Collapse
|
12
|
Zhang N, Wu C, Zhang J, Han S, Peng Y, Song X. Impacts of lipids on the performance of anaerobic membrane bioreactors for food wastewater treatment. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
13
|
Berninghaus AE, Radniecki TS. Anaerobic digester microbiome dynamics in response to moderate and failure-inducing shock loads of fats, oils and greases. BIORESOURCE TECHNOLOGY 2022; 359:127400. [PMID: 35654324 DOI: 10.1016/j.biortech.2022.127400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/26/2022] [Accepted: 05/28/2022] [Indexed: 06/15/2023]
Abstract
Accidental organic overloading (shock loading) is common during the anaerobic co-digestion of fats, oils and greases (FOG) and may lead to decreased performance or reactor failure due to the effects on the microbiome. Here, adapted and non-adapted lab-scale anaerobic digesters were exposed to FOG shocks of varying organic strengths. The microbiome was sequenced during the recovery periods employed between each shock event. Non-failure-inducing shocks resulted in enrichment of fermentative bacteria, and acetoclastic and methylotrophic methanogens. However, sub-dominant bacterial populations were largely responsible for increased biogas production observed after adaptation. Following failure events, early recovery communities were dominated by Pseudomonas and Methanosaeta while late recovery communities shifted toward sub-dominant bacterial taxa and Methanosarcina. Generally, the recovered microbiome structure diverged from that of both the initial and optimized microbiomes. Thus, while non-failure-inducing FOG shocks can be beneficial, the adaptations gained are lost after a failure event and adaptation must begin again.
Collapse
Affiliation(s)
- Ashley E Berninghaus
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, OR 97331 USA
| | - Tyler S Radniecki
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, OR 97331 USA.
| |
Collapse
|
14
|
Novel Long-Chain Fatty Acid (LCFA)-Degrading Bacteria and Pathways in Anaerobic Digestion Promoted by Hydrochar as Revealed by Genome-Centric Metatranscriptomics Analysis. Appl Environ Microbiol 2022; 88:e0104222. [PMID: 35938788 PMCID: PMC9397102 DOI: 10.1128/aem.01042-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A large amount of long-chain fatty acids (LCFA) are generated after lipids hydrolysis in anaerobic digestion (AD), and LCFA are difficult to be biodegraded. This study showed that hydrochar (HC), which was produced during the hydrothermal liquefaction of organic wastes, significantly increased the methane production rate (by 56.9%) of oleate, a typical refractory model LCFA. Genomic-centric metatranscriptomics analysis revealed that three novel microbes (Bin138 Spirochaetota sp., Bin35 Smithellaceae sp., and Bin54 Desulfomonilia sp.) that were capable of degrading LCFA were enriched by HC, which played an important role in the degradation of oleate. LCFA was degraded to acetate through the well-known LCFA β-oxidation pathway and the combined β-oxidation and butyrate oxidation pathway. In addition, it was found that HC promoted the direct interspecies electron transfer (DIET) between Methanothrix sp. and Bin54 Desulfomonilia sp. The enriched new types of LCFA-degrading bacteria and the promotion of DIET contributed to the improved methane production rate of oleate by HC. IMPORTANCE Long-chain fatty acids (LCFA) are difficult to be degraded in anaerobic digestion (AD), and the known LCFA degrading bacteria are only limited to the families Syntrophomonadaceae and Syntrophaceae. Here, we found that hydrochar effectively promoted AD of LCFA, and the new LCFA-degrading bacteria and a new metabolic pathway were also revealed based on genomic-centric metatranscriptomic analysis. This study provided a new method for enhancing the AD of organic wastes with high content of LCFA and increased the understanding of the microbes and their metabolic pathways involved in AD of LCFA.
Collapse
|
15
|
Shaping an Open Microbiome for Butanol Production through Process Control. FERMENTATION 2022. [DOI: 10.3390/fermentation8070333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The growing awareness of limited resource availability has driven production systems towards greater efficiencies, and motivated the transition of wastewater treatment plants to water resource recovery facilities. Open microbiome fermentation offers a robust platform for resource recovery, due to its higher metabolic versatility, which is capable of dealing with even dilute residual liquid streams. Organic matter, e.g., fatty acids, lost in these streams can potentially be recovered into higher value chemicals such as alcohols. This study aims to shape an open microbiome towards butanol production from butyrate and hydrogen through pH control and continuous hydrogen supply. Two sets of experiments were conducted in Scott bottles (1 L) and a lab-fermenter (3 L). The open microbiome produced up to 4.4 mM butanol in 1 L bottles. More promising conversions were obtained when up-scaling to a lab-fermenter with pH control and an increased hydrogen partial pressure of 2 bar; results included a butanol concentration of 10.9 mM and an average volumetric productivity of 0.68 mmol L−1 d−1 after 16 days. This corresponds to 2.98- and 4.65-fold increases, respectively, over previously reported values. Thermodynamic calculations revealed that product formation from butyrate was unfeasible, but energetically favorable from bicarbonate present in the inoculum. For the first time, this study provides insights regarding the community structure of an open microbiome producing butanol from butyrate and hydrogen. DNA sequencing combined with 16S rRNA gene amplicon analysis showed high correlation between Mesotoga spp. and butanol formation. Microbial diversity can also explain the formation of by-products from non-butyrate carbon sources.
Collapse
|
16
|
Logan M, Tan LC, Nzeteu CO, Lens PNL. Enhanced anaerobic digestion of dairy wastewater in a granular activated carbon amended sequential batch reactor. GLOBAL CHANGE BIOLOGY. BIOENERGY 2022; 14:840-857. [PMID: 35915605 PMCID: PMC9324911 DOI: 10.1111/gcbb.12947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 02/21/2022] [Accepted: 03/29/2022] [Indexed: 06/15/2023]
Abstract
This study investigated the potential of granular activated carbon (GAC) supplementation to enhance anaerobic degradation of dairy wastewater. Two sequential batch reactors (SBRs; 0.8 L working volume), one control and another amended with GAC, were operated at 37°C and 1.5-1.6 m/h upflow velocity for a total of 120 days (four cycles of 30 days each). The methane production at the end of each cycle run increased by about 68%, 503%, 110%, and 125% in the GAC-amended SBR, compared with the Control SBR. Lipid degradation was faster in the presence of GAC. Conversely, the organic compounds, especially lipids, accumulated in the absence of the conductive material. In addition, a reduction in lag phase duration by 46%-100% was observed at all four cycles in the GAC-amended SBR. The peak methane yield rate was at least 2 folds higher with GAC addition in all cycles. RNA-based bacterial analysis revealed enrichment of Synergistes (0.8% to 29.2%) and Geobacter (0.4% to 11.3%) in the GAC-amended SBR. Methanolinea (85.8%) was the dominant archaea in the biofilm grown on GAC, followed by Methanosaeta (11.3%), at RNA level. Overall, this study revealed that GAC supplementation in anaerobic digesters treating dairy wastewater can promote stable and efficient methane production, accelerate lipid degradation and might promote the activity of electroactive microorganisms.
Collapse
Affiliation(s)
| | - Lea Chua Tan
- National University of Ireland, GalwayGalwayIreland
| | | | | |
Collapse
|
17
|
Chen L, Meng X, Zhou G, Zhou Z, Zheng T, Bai Y, Yuan H, Huhe T. Effects of organic loading rates on the anaerobic co-digestion of fresh vinegar residue and pig manure: Focus on the performance and microbial communities. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108441] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
18
|
Holohan BC, Duarte MS, Szabo-Corbacho MA, Cavaleiro AJ, Salvador AF, Pereira MA, Ziels RM, Frijters CTMJ, Pacheco-Ruiz S, Carballa M, Sousa DZ, Stams AJM, O'Flaherty V, van Lier JB, Alves MM. Principles, Advances, and Perspectives of Anaerobic Digestion of Lipids. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:4749-4775. [PMID: 35357187 DOI: 10.1021/acs.est.1c08722] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Several problems associated with the presence of lipids in wastewater treatment plants are usually overcome by removing them ahead of the biological treatment. However, because of their high energy content, waste lipids are interesting yet challenging pollutants in anaerobic wastewater treatment and codigestion processes. The maximal amount of waste lipids that can be sustainably accommodated, and effectively converted to methane in anaerobic reactors, is limited by several problems including adsorption, sludge flotation, washout, and inhibition. These difficulties can be circumvented by appropriate feeding, mixing, and solids separation strategies, provided by suitable reactor technology and operation. In recent years, membrane bioreactors and flotation-based bioreactors have been developed to treat lipid-rich wastewater. In parallel, the increasing knowledge on the diversity of complex microbial communities in anaerobic sludge, and on interspecies microbial interactions, contributed to extend the knowledge and to understand more precisely the limits and constraints influencing the anaerobic biodegradation of lipids in anaerobic reactors. This critical review discusses the most important principles underpinning the degradation process and recent key discoveries and outlines the current knowledge coupling fundamental and applied aspects. A critical assessment of knowledge gaps in the field is also presented by integrating sectorial perspectives of academic researchers and of prominent developers of anaerobic technology.
Collapse
Affiliation(s)
- B Conall Holohan
- Microbial Ecology Laboratory, Microbiology, School of Natural Sciences and Ryan Institute, National University of Ireland, Galway H91 TK33, Ireland
- NVP Energy Ltd., IDA Technology and Business Park, Mervue, Galway H91 TK33, Ireland
| | - M Salomé Duarte
- CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- LABBELS - Associate Laboratory, 4710-057 Braga, Guimarães, Portugal
| | - M Alejandra Szabo-Corbacho
- Department of Environmental Engineering and Water Technology, IHE Delft Institute for Water Education, Westvest 7, 2611 AX Delft, The Netherlands
| | - Ana J Cavaleiro
- CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- LABBELS - Associate Laboratory, 4710-057 Braga, Guimarães, Portugal
| | - Andreia F Salvador
- CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- LABBELS - Associate Laboratory, 4710-057 Braga, Guimarães, Portugal
| | - M Alcina Pereira
- CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- LABBELS - Associate Laboratory, 4710-057 Braga, Guimarães, Portugal
| | - Ryan M Ziels
- Department of Civil Engineering, The University of British Columbia, 6250 Applied Science Lane, Vancouver, BC V6T 1Z 4, Canada
| | | | - Santiago Pacheco-Ruiz
- Biothane, Veolia Water Technologies, Tanthofdreef 21, 2623 EW Delft, The Netherlands
| | - Marta Carballa
- CRETUS, Department of Chemical Engineering, Universidad de Santiago de Compostela, 15705 Santiago de Compostela, Spain
| | - Diana Z Sousa
- Laboratory of Microbiology, Wageningen University and Research, 6708 WE, Wageningen, The Netherlands
| | - Alfons J M Stams
- Laboratory of Microbiology, Wageningen University and Research, 6708 WE, Wageningen, The Netherlands
| | - Vincent O'Flaherty
- Microbial Ecology Laboratory, Microbiology, School of Natural Sciences and Ryan Institute, National University of Ireland, Galway H91 TK33, Ireland
| | - Jules B van Lier
- Department of Environmental Engineering and Water Technology, IHE Delft Institute for Water Education, Westvest 7, 2611 AX Delft, The Netherlands
- Section Sanitary Engineering, CEG Faculty, Delft University of Technology, 2628 CN, Delft, The Netherlands
| | - M Madalena Alves
- CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- LABBELS - Associate Laboratory, 4710-057 Braga, Guimarães, Portugal
| |
Collapse
|
19
|
Feng L, Zhao W, Liu Y, Chen Y, He S, Ding J, Zhao Q, Wei L. Inhibition mechanisms of ammonia and sulfate in high-solids anaerobic digesters for food waste treatment: Microbial community and element distributions responses. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.04.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
20
|
Zhu X, Yellezuome D, Liu R, Wang Z, Liu X. Effects of co-digestion of food waste, corn straw and chicken manure in two-stage anaerobic digestion on trace element bioavailability and microbial community composition. BIORESOURCE TECHNOLOGY 2022; 346:126625. [PMID: 34958901 DOI: 10.1016/j.biortech.2021.126625] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 12/17/2021] [Accepted: 12/20/2021] [Indexed: 06/14/2023]
Abstract
Co-digestion is known to effectively alleviate trace elements (TEs) deficiency in mono-substrates; however, the bioavailability of TEs is crucial for the stability of anaerobic digestion. Therefore, this study investigated the effects of co-digestion of food waste (FW), corn straw (CS) and chicken manure (CM) in two-stage anaerobic digestion on TEs bioavailability and microbial community composition. Various VSFW:(VSCS:VSCM) ratios of 8:2, 7:3, 4:6, and 2:8 were evaluated in two-stage (group A, B, C, D) anaerobic digestion in which the VSCS:VSCM ratio was fixed at 3:1. Results showed that the highest hydrogen production of 106 mL/g VS and methane production co-efficiency of 125.3% was obtained in group A. Group A has a high close range of easily bioavailable TEs (32-64%) compared to other groups, especially the mono-substrate, where almost all TEs ranged between 10 and 36%. The increased relative abundance of the obligate hydrogenotrophic methanogens reflected a positive two-stage methane co-digestion efficiency.
Collapse
Affiliation(s)
- Xianpu Zhu
- Biomass Energy Engineering Research Centre, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China; Key Laboratory of Urban Agriculture (South), Ministry of Agriculture and Rural Affairs, 800 Dongchuan Road, Shanghai 200240, PR China
| | - Dominic Yellezuome
- Biomass Energy Engineering Research Centre, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China; Key Laboratory of Urban Agriculture (South), Ministry of Agriculture and Rural Affairs, 800 Dongchuan Road, Shanghai 200240, PR China
| | - Ronghou Liu
- Biomass Energy Engineering Research Centre, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China; Key Laboratory of Urban Agriculture (South), Ministry of Agriculture and Rural Affairs, 800 Dongchuan Road, Shanghai 200240, PR China.
| | - Zengzhen Wang
- Biomass Energy Engineering Research Centre, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China; Key Laboratory of Urban Agriculture (South), Ministry of Agriculture and Rural Affairs, 800 Dongchuan Road, Shanghai 200240, PR China
| | - Xin Liu
- Biomass Energy Engineering Research Centre, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China; Key Laboratory of Urban Agriculture (South), Ministry of Agriculture and Rural Affairs, 800 Dongchuan Road, Shanghai 200240, PR China
| |
Collapse
|
21
|
A Simple Analysis Method of Specific Anammox Activity Using a Respirometer. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12031121] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Anaerobic ammonium oxidation (anammox) is a biological nitrogen removal process with attractive prospects, such as no carbon addition, less aeration, lower greenhouse gas generation, and lower sludge production. However, it is difficult to maintain a stable anammox process since the anammox bacteria have a slow growth rate and high sensitivity to many factors. Therefore, it is very important to analyze and maintain the anammox activity as a process indicator for its successful operation. The conventional method for measuring the concentration of nitrogen compounds, such as ammonium, nitrite, or nitrogen gas is inconvenient during the reaction time for specific anammox activity (SAA) analysis, which can result in an inaccurately determined SAA due to the substrate loss and temperature change. In this study, a respirometer was utilized to analyze the SAA. The SAA values from a respirometer (rSAA) showed a similar pattern to the SAA values (mSAA) from the conventional method. All of the SAA analyses showed the highest value at 35 °C with a granule size of <1 mm. Statistical analysis showed no significant differences regardless of the analysis method, since the p-values for the t-test and Wilcoxon rank-sum test were >0.05. Therefore, the respirometer can be used as a simple and efficient tool for SAA analysis. Moreover, the operating maintenance and management of the anammox process can be improved due to the simple SAA analysis in the field.
Collapse
|
22
|
Ban Q, Zhang L, Li J. Correlating bacterial and archaeal community with efficiency of a coking wastewater treatment plant employing anaerobic-anoxic-oxic process in coal industry. CHEMOSPHERE 2022; 286:131724. [PMID: 34388873 DOI: 10.1016/j.chemosphere.2021.131724] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 07/24/2021] [Accepted: 07/28/2021] [Indexed: 06/13/2023]
Abstract
Coking wastewater (CWW) contains various complex pollutants, and biological treatment processes are frequently applied in the coking wastewater treatment plants (CWWTPs). The present work is to evaluate the contaminants removal of a full-scale CWWTP with an anaerobic-anoxic-oxic process (A/A/O), to reveal function of bacterial and archaeal community involved in different bioreactors, and to clarify the relationship between the performance and microbial community. Illumina Miseq sequencing of bacteria showed that β-proteobacteria dominated in three bioreactors with relative abundance of 60.2%~81.7%. 75.2% of sequences were assigned to Petrobacter in the bioreactor A1, while Thiobacillus dominated in A2 and O with relative abundance of 31.8% and 38.7%, respectively. Illumina Miseq sequencing of archaea revealed a high diversity of methanogens existed in A1 and A2 activated sludge. Moreover, Halostagnicola was the dominant archaea in A1 and A2 activated sludge with relative abundance of 41.8% and 66.5%, respectively. Function predicted analysis explored that function of bacteria was similar to that of archaea but the relative abundance differed from each other. A putative biodegradation model of CWW treatment in A/A/O process indicated that A1 and A2 activated sludge mainly reduced carbohydrate, protein, TN, phenol and cyanide, as well as methane production. Bacteria in the bioreactor O were responsible for aerobic biotransformation of residual carbohydrates, refractory organics and nitrification. The redundancy analysis (RDA) further revealed that removal of COD, TN, and NO3--N, phenol and cyanides were highly correlated with some anaerobic bacteria and archaea, whereas the transformation of NH4+-N was positively correlated with some aerobic bacteria.
Collapse
Affiliation(s)
- Qiaoying Ban
- College of Environmental and Resource Sciences, Shanxi University, Taiyuan, 030006, PR China; Shanxi Laboratory for Yellow River, Taiyuan, 030006, China
| | - Liguo Zhang
- College of Environmental and Resource Sciences, Shanxi University, Taiyuan, 030006, PR China; Shanxi Laboratory for Yellow River, Taiyuan, 030006, China
| | - Jianzheng Li
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, PR China.
| |
Collapse
|
23
|
Investigation on the Interactive Effects between Temperature and Chemical Composition of Organic Wastes on Anaerobic Co-Digestion Performance. Processes (Basel) 2021. [DOI: 10.3390/pr9091682] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Synergistic effects among different chemical components under the anaerobic co-digestion (AcoD) process played an important role in improving its performance, which might be affected by the digesting temperature. The results showed that the actual methane production (AMP) and gasification rate (GR) of 50% lipid content were the highest, and the carbohydrate and protein content should be adjusted according to the temperature. Under mesophilic conditions, the M1 reactor with high protein content (carbohydrate–lipid–protein ratio, CLP = 20:50:30) had the highest AMP of 552.02 mL/g VS and GR of 74.72%. However, as the temperature increased, the high protein content produced high levels of ammonia nitrogen (AN) and free ammonia (FA), which formed a certain degree of ammonia inhibition, resulting in lower AMP and GR. Under thermophilic conditions, the low protein T2 reactor (CLP = 40:50:10) had the highest AMP and GR at 485.45 mL/g VS and 67.18%. In addition, the M1 and T2 reactors had the highest microbial diversity, which promoted substrate degradation and methane production. In the M1 reactor, acetoclastic metabolism is the main methanogenic pathway, while in the T2 reactor changes to hydrogenotrophic metabolism. Therefore, understanding the synergistic effect between temperature and chemical compositions was an effective way to improve the AcoD effect.
Collapse
|
24
|
Saha S, Kurade MB, Ha GS, Lee SS, Roh HS, Park YK, Jeon BH. Syntrophic metabolism facilitates Methanosarcina-led methanation in the anaerobic digestion of lipidic slaughterhouse waste. BIORESOURCE TECHNOLOGY 2021; 335:125250. [PMID: 33991880 DOI: 10.1016/j.biortech.2021.125250] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/29/2021] [Accepted: 04/29/2021] [Indexed: 06/12/2023]
Abstract
Different inoculum to slaughterhouse waste (SHW) ratios (Ino/SHW) influences the digester performance, substrate utilization, and methane yield through microbial shift and their metabolic syntrophy. Acetoclastic Methanosarcina (68-87%) was dominant in the exponential phase, overpowering the initial abundance of Methanosaeta (86% of methanogens) in the SHW digesters. Positive interactions among acetogenic and acetate-oxidizing species of Clostridium (11%) with Methanosarcina (84% of methanogens) improved the methanogenic activity (292 mL g-1 VSinitial d-1) and final VS utilization (90%) at the highest Ino/SHW loading. In contrast, significant improvement of methane yield (152% higher than the control) at the lowest Ino/SHW loading was attributed to strong syntrophy among Methanosaeta (24% of methanogens) and its exoelectrogenic partners, Bythopirellula (0.52%) and Mariniphaga (0.08%) and the acetogenic Cloacimonas (0.16%) and Longilinea (0.32%). These syntrophic interactions among the core microbiota induced major metabolic activities, including butanoate, glycine, serine and threonine, methane, propanoate, and pyruvate metabolism, and quorum sensing.
Collapse
Affiliation(s)
- Shouvik Saha
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Mayur B Kurade
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Geon-Soo Ha
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Sean S Lee
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Hyun-Seog Roh
- Department of Environmental Engineering, Yonsei University, 1 Yonseidae-gil, Wonju, Gangwon 26493, Republic of Korea
| | - Young-Kwon Park
- School of Environmental Engineering, University of Seoul, Seoul, 02504, Republic of Korea
| | - Byong-Hun Jeon
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea.
| |
Collapse
|
25
|
Co-Digestion of Extended Aeration Sewage Sludge with Whey, Grease and Septage: Experimental and Modeling Determination. SUSTAINABILITY 2021. [DOI: 10.3390/su13169199] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The potential of co-digestion mixing thickened secondary sludge (TS) from extended aeration wastewater treatment plant and locally available substrates (whey, grease and septage) has been studied in this work, using three steps. The first step was a batch test to determine the biological methane potential (BMP) of different mixtures of the three co-substrates with TS. The second step was carried out with lab-scale reactors (20 L), simulating anaerobic continuous stirred tank reactors, fed by three mixtures of co-substrates that were determined according to the previous step results. Modeling was applied in the third step, using ADM1 as a mechanistic model to help understand the co-digestion process. According to the BMP step, septage used as a co-substrate has a negative effect on performance, and the addition of 10–30% grease or whey would lead to a gain of around 60–70% in the production of methane. The results from the reactor tests did not validate the positive effects observed with the BMP assay but confirmed good biodegradation efficiency (> 85%). The main purpose of co-digestion in this scenario is to recover energy from waste and effluents that would require even more energy for their treatment. The protein and lipid percentages of particulate biodegradable COD are important variables for digester stability and methane production, as predicted by modeling. The results of simulations with the ADM1 model, adapted to co-digestion, confirmed that this model is a powerful tool to optimize the process of biogas production.
Collapse
|
26
|
Cui Y, Mao F, Zhang J, He Y, Tong YW, Peng Y. Biochar enhanced high-solid mesophilic anaerobic digestion of food waste: Cell viability and methanogenic pathways. CHEMOSPHERE 2021; 272:129863. [PMID: 33588141 DOI: 10.1016/j.chemosphere.2021.129863] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 01/20/2021] [Accepted: 02/02/2021] [Indexed: 06/12/2023]
Abstract
The underlying mechanisms of biochar enhance high-solid anaerobic digestion (HSAD) of food waste were investigated with a focus on the cell viability, microbial community, and methanogenic pathways. This study assessed the effects of different dosages of biochar in HSAD. Optimal biochar dosage was found to be 25 g/L, which produced accumulative methane yields of up to 251 mL CH4/g VS significantly promote volatile fatty acid degradations, especially in butyric acid concentrations. Effects of biochar with a dosage of 25 g/L on the cell viability showed that viable cells based on cell membrane integrity increased from 2.9% to 6.4%. Meanwhile, intact and highly active cells with high DNA content were probably involved in direct interspecies electron transfer (DIET) via membrane-bound electron transport proteins. Further analysis demonstrated that Syntrophomonas and methanogens Methanosarcina &Methanocelleus were selectively enriched by biochar, which resulted in the methanogenic pathways shifting from acetoclastic/hydrogenotrophic methanogenic pathways to more metabolically diverse methanogenic pathways. Accordingly, biochar-mediated DIET was possibly established between Syntrophomonas and Methanosarcina species due to those viable cells. In conclusion, biochar is a feasible additive in enhancing HSAD methanogenic performance.
Collapse
Affiliation(s)
- Yuxuan Cui
- China-UK Low Carbon College, Shanghai Jiao Tong University, Shanghai, 201306, China
| | - Feijian Mao
- NUS Environmental Research Institute, National University of Singapore, Singapore, 138602, Singapore
| | - Jingxin Zhang
- China-UK Low Carbon College, Shanghai Jiao Tong University, Shanghai, 201306, China.
| | - Yiliang He
- China-UK Low Carbon College, Shanghai Jiao Tong University, Shanghai, 201306, China; School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Yen Wah Tong
- NUS Environmental Research Institute, National University of Singapore, Singapore, 138602, Singapore; Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117585, Singapore
| | - Yinghong Peng
- School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China; National Engineering Research Center for Nanotechnology, Shanghai, 200241, China
| |
Collapse
|
27
|
Iskander SM, Amha YM, Wang P, Dong Q, Liu J, Corbett M, Smith AL. Investigation of Fats, Oils, and Grease Co-digestion With Food Waste in Anaerobic Membrane Bioreactors and the Associated Microbial Community Using MinION Sequencing. Front Bioeng Biotechnol 2021; 9:613626. [PMID: 33912543 PMCID: PMC8072289 DOI: 10.3389/fbioe.2021.613626] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 02/26/2021] [Indexed: 01/23/2023] Open
Abstract
Co-digestion of fats, oils, and grease (FOG) with food waste (FW) can improve the energy recovery in anaerobic membrane bioreactors (AnMBRs). Here, we investigated the effect of co-digestion of FW and FOG in AnMBRs at fat mass loading of 0.5, 0.75, and 1.0 kg m–3 day–1 with a constant organic loading rate of 5.0 gCOD L–1 day–1 in both a single-phase (SP) and two-phase (TP) configuration. A separate mono-digestion of FW at an identical organic loading rate was used as the benchmark. During co-digestion, higher daily biogas production, ranging from 4.0 to 12.0%, was observed in the two-phase methane phase (TP-MP) reactor compared to the SP reactor, but the difference was statistically insignificant (p > 0.05) due to the high variability in daily biogas production. However, the co-digestion of FW with FOG at 1.0 kg m–3 day–1 fat loading rate significantly (p < 0.05) improved daily biogas production in both the SP (11.0%) and TP (13.0%) reactors compared to the mono-digestion of FW. Microbial community analyses using cDNA-based MinION sequencing of weekly biomass samples from the AnMBRs revealed the prevalence of Lactobacillus (92.2–95.7% relative activity) and Anaerolineaceae (13.3–57.5% relative activity), which are known as fermenters and fatty acid degraders. Syntrophic fatty acid oxidizers were mostly present in the SP and TP-MP reactors, possibly because of the low pH and short solid retention time (SRT) in the acid phase digesters. A greater abundance of the mcrA gene copies (and methanogens) was observed in the SP and MP reactors compared to the acid-phase (AP) reactors. This study demonstrates that FW and FOG can be effectively co-digested in AnMBRs and is expected to inform full-scale decisions on the optimum fat loading rate.
Collapse
Affiliation(s)
- Syeed Md Iskander
- Astani Department of Civil and Environmental Engineering, University of Southern California, Los Angeles, CA, United States.,Department of Civil and Environmental Engineering, North Dakota State University, Fargo, ND, United States
| | - Yamrot M Amha
- Trussell Technologies, Inc., Pasadena, CA, United States
| | - Phillip Wang
- Astani Department of Civil and Environmental Engineering, University of Southern California, Los Angeles, CA, United States
| | - Qin Dong
- Astani Department of Civil and Environmental Engineering, University of Southern California, Los Angeles, CA, United States
| | - Juhe Liu
- Astani Department of Civil and Environmental Engineering, University of Southern California, Los Angeles, CA, United States
| | | | - Adam L Smith
- Astani Department of Civil and Environmental Engineering, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
28
|
Ma J, Wang P, Gu W, Su Y, Wei H, Xie B. Does lipid stress affect performance, fate of antibiotic resistance genes and microbial dynamics during anaerobic digestion of food waste? THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 756:143846. [PMID: 33250254 DOI: 10.1016/j.scitotenv.2020.143846] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/03/2020] [Accepted: 11/08/2020] [Indexed: 05/25/2023]
Abstract
The dissemination of antibiotic resistance genes (ARGs) in food waste (FW) disposal can pose severe threats to public health. Lipid is a primary composition in FW, while whether lipid stress can affect ARGs dynamics during anaerobic digestion (AD) process of FW is uncertain. This study focused on the impacts of lipid stress on methane production, fate of ARGs and its microbial mechanisms during AD of FW. Results showed that high lipid content increased methane yield but prolonged hydrolysis and lag time of methane production compared to AD of FW without oil. Moreover, variations of ARGs were more susceptible to lipid stress. Lipid stress could facilitate the reduction of total ARGs abundances compared to the group without oil, particularly restraining the proliferation of sul1, aadA1 and mefA in AD systems (P < 0.05). Mantel test suggested that integrons (intl1 and intl2) were significantly correlated with all detected ARGs (r: 0.33, P < 0.05), indicating that horizontal gene transfer mediated by integrons could be the driving force on ARGs dissemination. Network analysis suggested that Firmicutes, Bacteroidetes, Synergistetes and Proteobacteria were the main potential hosts of ARGs. In addition, under the lipid stress, the reduction of host bacteria was responsible for the elimination of several specific ARGs, thereby affecting ARGs profiles. These findings firstly deciphered ARGs dynamics and their driving factors responding to lipid stress during anaerobic biological treatment of FW.
Collapse
Affiliation(s)
- Jiaying Ma
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Panliang Wang
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Wenchao Gu
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Yinglong Su
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Engineering Research Center for Nanophotonics & Advanced Instrument, Ministry of Education, East China Normal University, Shanghai 200241, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Huawei Wei
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Bing Xie
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Engineering Research Center for Nanophotonics & Advanced Instrument, Ministry of Education, East China Normal University, Shanghai 200241, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
29
|
Elsamadony M, Mostafa A, Fujii M, Tawfik A, Pant D. Advances towards understanding long chain fatty acids-induced inhibition and overcoming strategies for efficient anaerobic digestion process. WATER RESEARCH 2021; 190:116732. [PMID: 33316662 DOI: 10.1016/j.watres.2020.116732] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 11/24/2020] [Accepted: 12/06/2020] [Indexed: 06/12/2023]
Abstract
The inhibition of the anaerobic digestion (AD) process, caused by long chain fatty acids (LCFAs), has been considered as an important issue in the wastewater treatment sector. Proper understanding of mechanisms behind the inhibition is a must for further improvements of the AD process in the presence of LCFAs. Through analyzing recent literature, this review extensively describes the mechanism of LCFAs degradation, during AD. Further, a particular focus was directed to the key parameters which could affect such process. Besides, this review highlights the recent research efforts in mitigating LCFAs-caused inhibition, through the addition of commonly used additives such as cations and natural adsorbents. Specifically, additives such as bentonite, cation-based adsorbents, as well as zeolite and other natural adsorbents for alleviating the LCFAs-induced inhibition are discussed in detail. Further, panoramic evaluations for characteristics, various mechanisms of reaction, merits, limits, recommended doses, and preferred conditions for each of the different additives are provided. Moreover, the potential for increasing the methane production via pretreatment using those additives are discussed. Finally, we provide future horizons for the alternative materials that can be utilized, more efficiently, for both mitigating LCFAs-based inhibition and boosting methane potential in the subsequent digestion of LCFA-related wastes.
Collapse
Affiliation(s)
- Mohamed Elsamadony
- Tokyo Institute of Technology, Civil and Environmental Engineering Department, Meguro-ku, Tokyo, 152-8552, Japan; Tanta University, Faculty of Engineering, Public Works Engineering Department, 31521, Tanta City, Egypt.
| | - Alsayed Mostafa
- Department of Smart City Engineering, Inha University, 100 Inharo, Nam-gu, Incheon 22212, South Korea
| | - Manabu Fujii
- Tokyo Institute of Technology, Civil and Environmental Engineering Department, Meguro-ku, Tokyo, 152-8552, Japan.
| | - Ahmed Tawfik
- National Research Centre, Water Pollution Research Department, Giza, 12622, Egypt
| | - Deepak Pant
- Separation & Conversion Technology, Flemish Institute for Technological Research (VITO), Boeretang 200, Mol 2400, Belgium
| |
Collapse
|
30
|
Saha S, Basak B, Hwang JH, Salama ES, Chatterjee PK, Jeon BH. Microbial Symbiosis: A Network towards Biomethanation. Trends Microbiol 2020; 28:968-984. [DOI: 10.1016/j.tim.2020.03.012] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 03/20/2020] [Accepted: 03/25/2020] [Indexed: 11/28/2022]
|
31
|
Wang P, Qiao Z, Li X, Wu D, Xie B. Fate of integrons, antibiotic resistance genes and associated microbial community in food waste and its large-scale biotreatment systems. ENVIRONMENT INTERNATIONAL 2020; 144:106013. [PMID: 32771831 DOI: 10.1016/j.envint.2020.106013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 07/14/2020] [Accepted: 07/24/2020] [Indexed: 06/11/2023]
Abstract
The prevalence and dissemination of antibiotic resistance genes (ARGs) have been globally gained increasing concerns. However, the fate and spread of ARGs in food waste (FW) and its large-scale biotreatment systems are seldomly understood. Here, we investigated the initial and biologically treated FW in two major FW treatment systems of aerobic fermentation (AF) and anaerobic co-digestion (AcoD) processes. The total relative abundances of integrons and ARGs significantly increased from initial FW to treated FW. Among targeted ARGs, ermB and strB were predominant ARGs, which accounted for 52.58-95.28% of total abundance across all samples. Mantel test indicated that integrons (intl1 and intl2) were positively and significantly correlated with detected ARGs (Mantel test, r = 0.24, p < 0.05), suggesting integrons display significant contributions on driving ARG alteration during FW treatment processes. RDA results indicated that blaOXA, strB and blaTEM were more likely to be proliferated by potential host of Firmicutes (96.55-99.77%) in initial FW, while blaCTX-M and mefA were potentially enriched by Proteobacteria (17.12-49.82%) in AF system and ermB, sul1, aadA and tetQ were possibly enhanced by Bacteroidetes (27.43-43.71%) in AcoD system. Consideration of the higher enriched abundance of total ARGs (66.88 ± 87.34 times) and the used inoculum sludge in AcoD-treated system, the resource utilization of anaerobically digested products should draw our more attentions. These findings would deepen our understanding of prevalence and proliferation of ARGs in FW treatment systems and serve as a foundation for guiding the application of biologically treated FW.
Collapse
Affiliation(s)
- Panliang Wang
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Ziru Qiao
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Xunan Li
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Dong Wu
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Bing Xie
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Engineering Research Center for Nanophotonics and Advanced Instrument, Ministry of Education, East China Normal University, Shanghai 200062, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China.
| |
Collapse
|
32
|
Agabo-García C, Solera R, Pérez M. First approaches to valorizate fat, oil and grease (FOG) as anaerobic co-substrate with slaughterhouse wastewater: Biomethane potential, settling capacity and microbial dynamics. CHEMOSPHERE 2020; 259:127474. [PMID: 32603962 DOI: 10.1016/j.chemosphere.2020.127474] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 06/15/2020] [Accepted: 06/17/2020] [Indexed: 06/11/2023]
Abstract
Anaerobic digestion (AD) is the biological preferred treatment applied to Slaughterhouse wastewaters (SWW) due to its effectiveness. The aim of the study is to investigate the effect of different percentages of fats, oil and grease (FOG) on biomethane production in anaerobic co-digestion with slaughterhouse wastewater using BMP tests under mesophilic conditions (35 °C). For this purpose, three percentages of FOG from 1% to 10% were tested. Biodegradability, biomethane production and the microbial population were studied. In addition, settling capacity has been evaluated at different conditions: i) before and after anaerobic co-digestion; ii) at different temperature 25 °C and 35 °C. The settling rates as well as the characterization of the digestate were recorded. Experimental results showed that all the co-digestion mixtures (FOG percentages = 1-10%) enhanced biomethane production and biodegradability compared to AD of sole SWW. The best conditions were achieved at 5-10% of FOG, showing biodegradability of 66-70% CODtremoval and specific biomethane productions of 562 and 777 mLCH4·g-1CODsremoved, respectively. Regarding microbial dynamics, Eubacteria was reduced with the increase in %FOG but Acetate utilizing methanogens was increased. Regarding settling capacity, mesophilic temperatures (35 °C) increased the settling rate of digestate in 1.76 times and reduced the lag-phase to 0.92 min; obtaining a more concentrated sludge and leaving a clarified whose TSS represent only 8% of TS.
Collapse
Affiliation(s)
- Cristina Agabo-García
- Department of Environmental Technologies, University of Cadiz, Campus de Puerto Real, 11500, Puerto Real, Cadiz, Spain.
| | - Rosario Solera
- Department of Environmental Technologies, University of Cadiz, Campus de Puerto Real, 11500, Puerto Real, Cadiz, Spain.
| | - Montserrat Pérez
- Department of Environmental Technologies, University of Cadiz, Campus de Puerto Real, 11500, Puerto Real, Cadiz, Spain.
| |
Collapse
|
33
|
Feng Q, Song YC, Li J, Wang Z, Wu Q. Influence of electrostatic field and conductive material on the direct interspecies electron transfer for methane production. ENVIRONMENTAL RESEARCH 2020; 188:109867. [PMID: 32846649 DOI: 10.1016/j.envres.2020.109867] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 06/12/2020] [Accepted: 06/20/2020] [Indexed: 06/11/2023]
Abstract
The influence of electrostatic field on the direct interspecies electron transfer (DIET) pathways for methane production was investigated in a batch bioelectrochemical anaerobic digester (BEAD). The ultimate methane production and methane yield in the BEAD reactor saturated to 925 ± 29 mL/L and 309.9 ± 9.6 mL CH4/g COD, respectively, which were much higher than 616 ± 3 mL/L and 205.4 ± 205.4 mL CH4/g COD in the anaerobic digester (AD). In the cyclic voltammogram (CV) for bulk solution, the oxidation peak current was 0.52 mA in the BEAD reactor, which was higher than 0.24 mA of AD reactor. This shows that the oxidizing ability of microorganisms was greatly improved in the BEAD reactor. Anaerolineaceae, a well-known electroactive bacterial family, was well enriched in the BEAD reactor. It indicates that the electrostatic field can enrich the electroactive bacteria and activate the DIET pathways for methane production. Moreover, the conductive material (activated carbon) further improved the performance of BEAD reactor, implies that the conductivities of bulk solution is one of the important parameters for the DIET pathways.
Collapse
Affiliation(s)
- Qing Feng
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China; College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China.
| | - Young-Chae Song
- Department of Environmental Engineering, Korea Maritime and Ocean University, Busan, 49112, South Korea
| | - Jun Li
- Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing, 400030, China
| | - Zejie Wang
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Qin Wu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| |
Collapse
|
34
|
Hao J, de Los Reyes Iii FL, He X. Fat, oil, and grease (FOG) deposits yield higher methane than FOG in anaerobic co-digestion with waste activated sludge. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 268:110708. [PMID: 32510442 DOI: 10.1016/j.jenvman.2020.110708] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 04/21/2020] [Accepted: 05/04/2020] [Indexed: 06/11/2023]
Abstract
The formation of fat, oil, and grease (FOG) deposits in sewers is a global challenge for the maintenance of sewer collection systems. Tons of FOG deposits (FDs) are removed from sewer systems every year and present an opportunity for increased methane production via anaerobic co-digestion with waste activated sludge (WAS) at water resource recovery facilities with existing anaerobic digesters. We hypothesized that FDs have higher biomethane potential than that of FOG (e.g., FOG collected in grease interceptors), because of the reduction of inhibition of long chain fatty acids due to saponification. In this study, substantially enhanced methane production was found in anaerobic co-digestion of WAS with FDs within the substrate to inoculum (S/I) ratio range of 0.25-1.2, and the maximum ultimate methane production (685.7 ± 24.1 mL/gVSadded, at S/I = 0.5) was 4.0 times higher than in the control (with WAS only) after 42 days of incubation. Although the lag phase period was longer in FD co-digestion (S/I = 0.5) than in FOG co-digestion (S/I = 0.5) under the same organic loading (gVS) and two times the COD loading, the daily methane production rate became higher after Day 15 in FD co-digestion. Significantly higher cumulative methane production (10.2%, p < 0.05) was obtained in FD co-digestion than in FOG co-digestion after 42-days. Microbial community analysis revealed higher levels of Geobacter in FD co-digestion, possibly suggesting a role for direct interspecies electron transfer (DIET) between Methanosaeta and Geobacter. This work provides fundamental insights supporting anaerobic co-digestion of FDs with WAS, demonstrating the advantages of FDs compared to FOG as co-substrate for enhanced biomethane recovery.
Collapse
Affiliation(s)
- Jiahou Hao
- College of Environmental Science and Engineering, Guilin University of Technology, Guangxi, 541006, China
| | - Francis L de Los Reyes Iii
- Department of Civil, Construction, and Environmental Engineering, North Carolina State University, Raleigh, NC, 27695, USA
| | - Xia He
- College of Environmental Science and Engineering, Guilin University of Technology, Guangxi, 541006, China.
| |
Collapse
|
35
|
Jing R, Liu T, Tian X, Rezaei H, Yuan C, Qian J, Zhang Z. Sustainable strategy for municipal solid waste disposal in Hong Kong: current practices and future perspectives. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:28670-28678. [PMID: 32424753 DOI: 10.1007/s11356-020-09096-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 04/28/2020] [Indexed: 06/11/2023]
Abstract
Hong Kong (HK) is confronted by increasing problems of solid waste disposal, as it is an overpopulated city with limited land resources. Currently, solid waste disposal mainly relies on three landfills located in the New Territories. However, the current waste treatment facilities and policies cannot appropriately control and manage increments of solid waste. The primary reason is the increased amount of municipal solid waste (MSW) caused by the growth of the population and the economy, with food waste accounting for the largest proportion of MSW in HK. The secondary reason is that the capacity of existing landfills will be exhausted in the near future as the level of waste generated continues to grow. To deal with these problems, in this paper, we propose five approaches with the aim of identifying the most sustainable strategy for efficient solid waste disposal in HK: a food waste recycling program; an MSW charging scheme; the implementation of incineration plants (i.e., waste to energy); black soldier fly bioconversion and a waste trading scheme; and black soldier fly bioconversion and a hybrid anaerobic digestion system. This is followed by a detailed demonstration of each approach, particularly focusing on the benefits, limitations, and implementation of each in the case of HK. The results of this study may shed light on how to effectively and sustainably manage the increasing amount of solid waste in HK.
Collapse
Affiliation(s)
- Ran Jing
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, People's Republic of China
- Department of Civil and Environmental Engineering, University of Maryland, College Park, MD, 20742, USA
| | - Tongzhou Liu
- Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Xin Tian
- Lancaster Environment Center, Lancaster University, Graduate College, Lancaster, LA2 0PF, UK
| | - Hamidreza Rezaei
- Department of Civil and Environmental Engineering, University of Maryland, College Park, MD, 20742, USA
| | - Chen Yuan
- Department of Civil and Environmental Engineering, University of Maryland, College Park, MD, 20742, USA
| | - Jin Qian
- Research and Development Institute in Shenzhen & School of Natural and Applied Sciences, Northwestern Polytechnical University, Xi'an, People's Republic of China.
| | - Zhen Zhang
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, People's Republic of China.
| |
Collapse
|
36
|
Zhang Y, Liang Z, Tang C, Liao W, Yu Y, Li G, Yang Y, An T. Malodorous gases production from food wastes decomposition by indigenous microorganisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 717:137175. [PMID: 32062272 DOI: 10.1016/j.scitotenv.2020.137175] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 02/04/2020] [Accepted: 02/06/2020] [Indexed: 06/10/2023]
Abstract
Volatile organic compounds (VOCs) produced during the degradation of food wastes may harm to the health of people and create annoyance in adjacent communities. In this work, the VOCs emitted from the decomposition food wastes including fruit, meat and vegetable, and their microbial communities were measured in three individual 57-L reactors for 61 days. Total of 232.8, 373.5, and 191.1 μg·kg-1·h-1 VOCs with oxygenated VOCs (57.6%), volatile organic sulfur compounds (VOSCs, 58.6%) and VOSCs (54.9%) as the main group were detected during fruit, meat and vegetable fermentation, respectively. 2-Butanone (55.1%) and ethyl acetate (13.8%) were the two most abundant VOCs from fruit wastes, while dimethyl sulfide (68.0 and 26.6%) and dimethyl disulfide (89.2 and 10.1%) were in vegetable and meat wastes. The predominant Firmicutes represented 93.0-99.9% of the bacterial communities of meat decomposition, while Firmicutes and Proteobacteria were the dominant phyla throughout the fruit digestion process. Proteobacteria (16.9%-83.6%) was the dominant phylum in vegetable wastes, followed by Bacteroidetes, Firmicutes, and Actinobacteria. Malodorous VOCs emissions were highly affected by microbial activity, the abundant Weissella, Leuconostoc and Enterobacteriaceae in vegetable wastes showed correlation with carbon disulfide and dimethyl sulfide, while dominant Peptococcus, Bacteroides, Lactobacillales and Peptoniphilus in meat wastes was related to dimethyl disulfide. Overall, significant differences and correlation between VOCs emission profiles and bacterial communities among different food wastes decomposition were observed. These data contribute to a more comprehensive understanding the relationship between microbial community dynamics and malodorous VOCs emission.
Collapse
Affiliation(s)
- Yuna Zhang
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Zhishu Liang
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Changcheng Tang
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Wen Liao
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Yun Yu
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Guiying Li
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Synergy Innovation Institute of GDUT, Shantou 515100, China.
| | - Yan Yang
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Synergy Innovation Institute of GDUT, Shantou 515100, China
| | - Taicheng An
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
37
|
Lianhua L, Shuibin H, Yongming S, Xihui K, Junfeng J, Zhenhong Y, Dingfa L. Anaerobic co-digestion of Pennisetum hybrid and pig manure: A comparative study of performance and microbial community at different mixture ratio and organic loading rate. CHEMOSPHERE 2020; 247:125871. [PMID: 32069711 DOI: 10.1016/j.chemosphere.2020.125871] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 12/27/2019] [Accepted: 01/06/2020] [Indexed: 06/10/2023]
Abstract
To investigate how the changes in performance and the microbial community of the co-digestion system of Pennisetum hybrid and pig manure, two co-digestion systems in a semi-continuous mode were established at different grass:manure mixture ratios (50:50 and 75:25), and at variable organic loading rates (OLRs). The two reactors were in a steady-state at the OLRs of 2.0-5.0 g VS/(L·d), with the specific and volumetric biogas yields of 383.86 ± 65.13 to 574.28 ± 72.04 mL/g VS and 0.87 ± 0.07 to 2.36 ± 0.13 m3/(m3·d), respectively. The co-digestion system with a mixture ratio of 75:25 failed at an OLR of 5.5 g VS/(L⋅d). This failure could be attributed to the accumulation of volatile fatty acids (VFAs) owing to the imbalance between acid-production and -oxidation bacteria. By contrast, the co-digestion system with mixture ratio of 50:50 failed at an OLR of 7.0 g VS/(L⋅d), which was likely due to mechanical issues or improper reactor configuration. The genus Proteiniphilum contributed to the increase in total ammonia nitrogen. These findings provide useful guidance for optimizing co-digestion system, enhancing reactor performance and improving the wastes treatment.
Collapse
Affiliation(s)
- Li Lianhua
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, China; Guangzhou Institute of Energy Conversion, CAS Key Laboratory of Renewable Energy, Chinese Academy of Sciences, Guangzhou, 510640, PR China; Guangdong Key Laboratory of New and Renewable Energy Research and Development, Guangzhou, 510640, PR China
| | - He Shuibin
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Sun Yongming
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, China; Guangzhou Institute of Energy Conversion, CAS Key Laboratory of Renewable Energy, Chinese Academy of Sciences, Guangzhou, 510640, PR China; Guangdong Key Laboratory of New and Renewable Energy Research and Development, Guangzhou, 510640, PR China.
| | - Kang Xihui
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiang Junfeng
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, China; Key Laboratory of Ministry of Education for Water Quality Security and Protection in Pearl River Delta, Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Yuan Zhenhong
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, China; Guangzhou Institute of Energy Conversion, CAS Key Laboratory of Renewable Energy, Chinese Academy of Sciences, Guangzhou, 510640, PR China; Guangdong Key Laboratory of New and Renewable Energy Research and Development, Guangzhou, 510640, PR China
| | - Liu Dingfa
- Guangdong Foodstuffs Imp. & Exp. (Group) Corp, Guangzhou, 510100, China
| |
Collapse
|
38
|
Assessment of the microbial interplay during anaerobic co-digestion of wastewater sludge using common components analysis. PLoS One 2020; 15:e0232324. [PMID: 32357180 PMCID: PMC7194399 DOI: 10.1371/journal.pone.0232324] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 04/12/2020] [Indexed: 12/29/2022] Open
Abstract
Anaerobic digestion (AD) is used to minimize solid waste while producing biogas by the action of microorganisms. To give an insight into the underlying microbial dynamics in anaerobic digesters, we investigated two different AD systems (wastewater sludge mixed with either fish or grass waste). The microbial activity was characterized by 16S RNA sequencing. 16S data is sparse and dispersed, and existent data analysis methods do not take into account this complexity nor the potential microbial interactions. In this line, we proposed a data pre-processing pipeline addressing these issues while not restricting only to the most abundant microorganisms. The data were analyzed by Common Components Analysis (CCA) to decipher the effect of substrate composition on the microorganisms. CCA results hinted the relationships between the microorganisms responding similarly to the AD physicochemical parameters. Thus, in overall, CCA allowed a better understanding of the inter-species interactions within microbial communities.
Collapse
|
39
|
Awhangbo L, Bendoula R, Roger JM, Béline F. Detection of early imbalances in semi-continuous anaerobic co-digestion process based on instantaneous biogas production rate. WATER RESEARCH 2020; 171:115444. [PMID: 31918387 DOI: 10.1016/j.watres.2019.115444] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 12/22/2019] [Accepted: 12/24/2019] [Indexed: 06/10/2023]
Abstract
The aim of this study was to investigate the use of biogas production rate kinetics for the monitoring of anaerobic co-digestion. Recent extensive studies of degradation pathways showed that acetoclastic methanogenesis is not always the main pathway. Hydrogenotrophic methanogenesis and syntrophic acetate oxidation can also dominate, mostly for operating conditions with high concentrations of ammonia or volatile fatty acids … These conditions are also known to cause instability in the digester's operation especially in co-digestion due to substrate variability. Therefore, co-digestion experiments were conducted with several co-substrates using a continuously stirred 35-L tank reactor. Degradation pathways and their potential shifts were identified by monitoring variations in biogas production rate kinetics using a principal component analysis model. The shifts in the degradation pathways were used to monitor the process. These shift points were found to provide early warnings of instabilities in the anaerobic co-digestion process.
Collapse
Affiliation(s)
- L Awhangbo
- Irstea, UR OPAALE, 17 av. de Cucillé, CS 64427, F-35044, Rennes, France; Univ. Bretagne Loire, France.
| | - R Bendoula
- Irstea, UMR ITAP, 361, rue J.F. Breton, BP 5095, F-34196, Montpellier, France.
| | - J M Roger
- Irstea, UMR ITAP, 361, rue J.F. Breton, BP 5095, F-34196, Montpellier, France.
| | - F Béline
- Irstea, UR OPAALE, 17 av. de Cucillé, CS 64427, F-35044, Rennes, France.
| |
Collapse
|
40
|
Conversion of waste cooking oil into biogas: perspectives and limits. Appl Microbiol Biotechnol 2020; 104:2833-2856. [DOI: 10.1007/s00253-020-10431-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 01/24/2020] [Accepted: 02/03/2020] [Indexed: 10/25/2022]
|
41
|
Lavergne C, Bovio-Winkler P, Etchebehere C, García-Gen S. Towards centralized biogas plants: Co-digestion of sewage sludge and pig manure maintains process performance and active microbiome diversity. BIORESOURCE TECHNOLOGY 2020; 297:122442. [PMID: 31780241 DOI: 10.1016/j.biortech.2019.122442] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/13/2019] [Accepted: 11/15/2019] [Indexed: 06/10/2023]
Abstract
The aim of this study is to assess the performance of anaerobic digestion against co-digestion systems during the start-up stages based on key process parameters and biological indicators. Two parallel experiments treating sewage sludge alone or co-digested with low concentration of pig manure (8% vol., 2-3% in COD basis) were carried out in two lab-scale CSTR at mesophilic conditions. Same inoculant and organic loading rate sequences were applied for two consecutive runs of 79 and 90 days. According to the removal efficiencies achieved, no significant differences were encountered amongst mono-digestion and co-digestion. This observation was reinforced with the analysis of the total/active microbiome, sequencing 16S rRNA genes and transcripts. The addition of a co-substrate at low concentration had a negligible effect on the total/active microbial communities; they evolved following the same pattern. This might be an advantage in order to upgrade existing wastewater treatment plants to become centralized biogas facilities.
Collapse
Affiliation(s)
- Céline Lavergne
- Escuela Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Avenida Brasil 2085, 2340950 Valparaíso, Chile
| | - Patricia Bovio-Winkler
- Microbial Ecology Laboratory, Department of Microbial Biochemistry and Genomic, Biological Research Institute "Clemente Estable", Avenida Italia 3318, 11600 Montevideo, Uruguay
| | - Claudia Etchebehere
- Microbial Ecology Laboratory, Department of Microbial Biochemistry and Genomic, Biological Research Institute "Clemente Estable", Avenida Italia 3318, 11600 Montevideo, Uruguay
| | - Santiago García-Gen
- Departamento de Ingeniería Química y Ambiental, Universidad Técnica Federico Santa María, Avenida España 1680, 2390123 Valparaíso, Chile.
| |
Collapse
|
42
|
Wang L, Hossen EH, Aziz TN, Ducoste JJ, de Los Reyes FL. Increased loading stress leads to convergence of microbial communities and high methane yields in adapted anaerobic co-digesters. WATER RESEARCH 2020; 169:115155. [PMID: 31671296 DOI: 10.1016/j.watres.2019.115155] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 07/29/2019] [Accepted: 10/02/2019] [Indexed: 06/10/2023]
Abstract
Enhancing biogas production, while avoiding inhibition of methanogenesis during co-digestion of grease interceptor waste (GIW), can help water resource recovery facilities reduce their carbon footprint. Here we used pre-adapted and non-adapted digesters to link microbial community structure to digester function. Before disturbance, the pre-adapted and non-adapted digesters showed similar methane production and microbial community diversity but dissimilar community composition. When exposed to an identical disturbance, the pre-adapted digester achieved better performance, while the non-adapted digester was inhibited. When re-exposed to disturbance after recovery, communities and performance of both digesters converged, regardless of the temporal variations. Co-digestion of up to 75% GIW added on a volatile solids (VS) basis was achieved, increasing methane yield by 336% from 0.180 to 0.785 l-methane/g-VS-added, the highest methane yield reported to date for lipid-rich waste. Progressive perturbation substantially enriched fatty acid-degrading Syntrophomonas from less than 1% to 24.6% of total 16S rRNA gene sequences, acetoclastic Methanosaeta from 2.3% to 11.9%, and hydrogenotrophic Methanospirillum from less than 1% to 6.6% in the pre-adapted digester. Specific hydrolytic and fermentative populations also increased. These ecological insights demonstrated how progressive perturbation can be strategically used to influence methanogenic microbiomes and improve co-digestion of GIW.
Collapse
Affiliation(s)
- Ling Wang
- Department of Civil, Construction and Environmental Engineering, North Carolina State University, Raleigh, NC, 27695, USA.
| | - Elvin H Hossen
- Department of Civil, Construction and Environmental Engineering, North Carolina State University, Raleigh, NC, 27695, USA
| | - Tarek N Aziz
- Department of Civil, Construction and Environmental Engineering, North Carolina State University, Raleigh, NC, 27695, USA
| | - Joel J Ducoste
- Department of Civil, Construction and Environmental Engineering, North Carolina State University, Raleigh, NC, 27695, USA
| | - Francis L de Los Reyes
- Department of Civil, Construction and Environmental Engineering, North Carolina State University, Raleigh, NC, 27695, USA
| |
Collapse
|
43
|
Kurade MB, Saha S, Kim JR, Roh HS, Jeon BH. Microbial community acclimatization for enhancement in the methane productivity of anaerobic co-digestion of fats, oil, and grease. BIORESOURCE TECHNOLOGY 2020; 296:122294. [PMID: 31677410 DOI: 10.1016/j.biortech.2019.122294] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/15/2019] [Accepted: 10/16/2019] [Indexed: 06/10/2023]
Abstract
The methane productivity and long chain fatty acids (LCFAs) degradation capability of unacclimatized seed sludge (USS) and acclimatized seed sludge (ASS) at different substrate ratios of fats oil and grease (FOG) and mixed sewage sludge were investigated in this study. Biogas produced in ASS in initial phase of anaerobic digestion had higher methane content (65-76%) than that in USS (26-73%). The degradation of major LCFAs in the ASS was 22-80%, 33-191%, and 7-64% higher for the substrate ratios of 100:10, 100:20, and 100:30, respectively, as compared to the LCFAs' degradation in USS. Microbial acclimatization increased the population of Firmicutes (40%), Bacteroidetes (32%), Synergistetes (10%), and Euryarchaeota (8%) in ASS, which supported the faster rate of LCFAs degradation for its later conversion to methane. The significant abundance of Syntrophomonas and Methanosarcina genera in ASS supported faster generation rate of methane in an obligatory syntrophic relationship.
Collapse
Affiliation(s)
- Mayur B Kurade
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Shouvik Saha
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Jung Rae Kim
- School of Chemical and Biomolecular Engineering, Pusan National University, Busan 609-735, Republic of Korea
| | - Hyun-Seog Roh
- Department of Environmental Engineering, Yonsei University, 1 Yonseidae-gil, Wonju, Gangwon 26493, Republic of Korea
| | - Byong-Hun Jeon
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea.
| |
Collapse
|
44
|
Salama ES, Jeon BH, Kurade MB, Patil SM, Usman M, Li X, Lim H. Enhanced anaerobic co-digestion of fat, oil, and grease by calcium addition: Boost of biomethane production and microbial community shift. BIORESOURCE TECHNOLOGY 2020; 296:122353. [PMID: 31718843 DOI: 10.1016/j.biortech.2019.122353] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 10/29/2019] [Accepted: 10/30/2019] [Indexed: 06/10/2023]
Abstract
This work focused on the application of calcium (0.1-1% w/v) to overcome the inhibition caused by the high loadings (2% v/v) of fat, oil, and grease (FOG) in the context of biomethane production, organic removal, and microbial community shift. Addition of 0.5% calcium showed maximum biomethane production (6-fold increase); biomethane production decreased following the addition of calcium (>0.5%). The highest organic removal rates were 83 and 89% upon the addition of 0.3 and 0.5% calcium, respectively. Addition of calcium facilitated the growth of bacteria of phylum Firmicutes from the Clostridium, Syntrophomonas, and Sedimentibacter genera. The population of members from the genus Methanosaeta increased after the addition of 0.5% calcium, which is one of the factors responsible for high biomethane production. This study demonstrated that addition of calcium is an attractive strategy to avoid the inhibition of the growth of anaerobic microflora due to the presence of high FOG concentrations.
Collapse
Affiliation(s)
- El-Sayed Salama
- Department of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou 730000, Gansu Province, PR China
| | - Byong-Hun Jeon
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul, South Korea.
| | - Mayur B Kurade
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul, South Korea
| | - Swapnil M Patil
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul, South Korea
| | - Muhammad Usman
- Department of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou 730000, Gansu Province, PR China; MOE, Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Lanzhou 730000, Gansu, PR China
| | - Xiangkai Li
- MOE, Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Lanzhou 730000, Gansu, PR China
| | - Hankwon Lim
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology, Ulsan, 44919, South Korea
| |
Collapse
|
45
|
Chen H, Hao S, Chen Z, O-Thong S, Fan J, Clark J, Luo G, Zhang S. Mesophilic and thermophilic anaerobic digestion of aqueous phase generated from hydrothermal liquefaction of cornstalk: Molecular and metabolic insights. WATER RESEARCH 2020; 168:115199. [PMID: 31655439 DOI: 10.1016/j.watres.2019.115199] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 10/10/2019] [Accepted: 10/15/2019] [Indexed: 06/10/2023]
Abstract
The critical challenge of hydrothermal liquefaction (HTL) for bio-oil production from biomass is the production of large amounts of aqueous products (HTL-AP) with high organic contents. The present study investigated the anaerobic digestion (AD) performances of HTL-AP under both thermophilic and mesophilic conditions, and molecular and metabolic analysis were conducted to provide insights into the different performances. The results showed that thermophilic AD had lower COD removal efficiency compared to mesophilic AD (45.0% vs. 61.6%). Liquid chromatography coupled with organic carbon detection and organic nitrogen (LC-OCD-OND) analysis showed that both high molecular weight (HMW) and low molecular weight (LMW) compounds were degraded to some extent and more LMW acids (LMWA) and recalcitrant aromatic compounds were degraded in the mesophilic reactor, which was the main reason of higher COD removal efficiency. Phenyl compounds (e.g. phenol and 2 methoxyphenol), furans and pyrazines were the recalcitrant chemicals detected through GC-MS analysis. Fourier transform ion cyclone resonance mass spectrometry (FT-ICR-MS) analysis demonstrated the complexity of HTL-AP and the proportions of phenolic or condensed aromatic compounds increased especially in the thermophilic effluents. Metabolites analysis showed that the reasons contributing to the differences of mesophilic and thermophilic AD were not only related to the degradation of organic compounds (e.g. benzoate degradation via CoA ligation) in HTL-AP but also related to the microbial autogenesis (e.g. fatty acid biosynthesis) as well as the environmental information processing. In addition, the enrichment of Mesotoga, responsible for the high degradation efficiency of LMWA, and Pelolinea, involved in the degradation of phenyl compounds, were found in mesophilic reactor, which was consistent with higher removal of corresponding organics.
Collapse
Affiliation(s)
- Huihui Chen
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China
| | - Shilai Hao
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China; Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, CO, 80401, United States
| | - Zheng Chen
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China
| | - Sompong O-Thong
- Department of Biology, Faculty of Science, Thaksin University, Phathalung, 93110, Thailand
| | - Jiajun Fan
- Green Chemistry Centre of Excellence, Department of Chemistry, University of York, York YO10 5DD, UK
| | - James Clark
- Green Chemistry Centre of Excellence, Department of Chemistry, University of York, York YO10 5DD, UK
| | - Gang Luo
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China.
| | - Shicheng Zhang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China.
| |
Collapse
|
46
|
Chowdhury B, Lin L, Dhar BR, Islam MN, McCartney D, Kumar A. Enhanced biomethane recovery from fat, oil, and grease through co-digestion with food waste and addition of conductive materials. CHEMOSPHERE 2019; 236:124362. [PMID: 31323554 DOI: 10.1016/j.chemosphere.2019.124362] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 06/25/2019] [Accepted: 07/12/2019] [Indexed: 06/10/2023]
Abstract
In this study, the effect of conductive additives on co-digestion of fat, oil, and grease (FOG) and food waste (FW) was evaluated. Initially, biochemical methane potential (BMP) test was conducted for optimization of mixing ratio of FW and FOG. The optimal methane production (800 L (kg VS)-1) was obtained from co-digestion of 70% FW + 30% FOG (w/w), which was 1.2 times and 12 times of that obtained from mono-digestion of FW and FOG, respectively. This optimal mixing ratio was used for subsequent fed-batch studies with the addition of two conductive additives, granular activated carbon (GAC) and magnetite. The addition of GAC significantly shortened the lag phase (from 7 to 3 d), reduced accumulation of various volatile fatty acids (VFAs), and enhanced methane production rate (50-80% increase) compared to the control and magnetite-amended bioreactor. Fourier transformation infrared (FTIR) analysis suggested that the degradation of lipids, protein and carbohydrates was the highest in GAC amended reactor, followed by magnetite and control reactors. GAC addition also enriched more abundant and diverse bacteria and methanogens than control. Magnetite addition also showed similar trends but to a lesser degree. The substantial enrichment of syntrophic LCFA β-oxidizing bacteria (e.g. Syntrophomonas) and methanogenic archaea in the GAC-amended bioreactor likely attributed to the superior methanogenesis kinetics in GAC amended bioreactor. Our findings suggest that the addition of GAC could provide a sustainable strategy to enrich kinetically efficient syntrophic microbiome to favor methanogenesis kinetics in co-digestion of FW and FOG.
Collapse
Affiliation(s)
- Bappi Chowdhury
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada
| | - Long Lin
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada
| | - Bipro Ranjan Dhar
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada.
| | | | - Daryl McCartney
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada
| | - Amit Kumar
- Department of Mechanical Engineering, University of Alberta, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada
| |
Collapse
|
47
|
Investigation on methane yield of wheat husk anaerobic digestion and its enhancement effect by liquid digestate pretreatment. Anaerobe 2019; 59:92-99. [DOI: 10.1016/j.anaerobe.2019.05.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 05/05/2019] [Accepted: 05/22/2019] [Indexed: 11/18/2022]
|
48
|
Kaur G, Luo L, Chen G, Wong JWC. Integrated food waste and sewage treatment - A better approach than conventional food waste-sludge co-digestion for higher energy recovery via anaerobic digestion. BIORESOURCE TECHNOLOGY 2019; 289:121698. [PMID: 31260933 DOI: 10.1016/j.biortech.2019.121698] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 06/21/2019] [Accepted: 06/22/2019] [Indexed: 06/09/2023]
Abstract
This work proposes a new treatment approach involving both food waste disposal and sewerage treatment called MOWFAST i.e. Municipal Organic Waste management by combined Food waste disposal and Sewerage Treatment. MOWFAST involves mixing of food waste directly with raw sewage instead of separate addition to sludge and their combined anaerobic digestion (AD). Compared to conventional sludge digestion, MOWFAST exhibited better digestion capability and allowed a greater degradation of organic material along with higher production of methanogenic-favourable products from the beginning of digestion. This resulted in producing higher specific methane yields (7.86 LCH4/kg VSadded versus 0.95 LCH4/kg VSadded) and 1.4-fold higher cumulative methane yield over sludge AD. Furthermore, compared with conventional food waste-sludge co-digestion, MOWFAST gave higher solubilization of organic material (0.82 g sCOD/g VSadded versus 0.23 g sCOD/g VSadded) and specific methane yields (7.86 LCH4/kg VSadded versus 3.2 LCH4/kg VSadded). This proves its feasibility for digestion and methane generation potential.
Collapse
Affiliation(s)
- Guneet Kaur
- Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong.
| | - Liwen Luo
- Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong; Sino-Forest Applied Research Centre for Pearl River Delta Environment, Hong Kong Baptist University, Kowloon Tong, Hong Kong.
| | - Guanghao Chen
- Department of Civil and Environmental Engineering, The Hong Kong University of Science & Technology, Clear Water Bay, Hong Kong.
| | - Jonathan W C Wong
- Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong; Sino-Forest Applied Research Centre for Pearl River Delta Environment, Hong Kong Baptist University, Kowloon Tong, Hong Kong.
| |
Collapse
|
49
|
Yan Y, Du Z, Zhang L, Feng L, Sun D, Dang Y, Holmes DE, Smith JA. Identification of parameters needed for optimal anaerobic co-digestion of chicken manure and corn stover. RSC Adv 2019; 9:29609-29618. [PMID: 35531503 PMCID: PMC9072019 DOI: 10.1039/c9ra05556h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 09/09/2019] [Indexed: 11/21/2022] Open
Abstract
While studies have shown that anaerobic co-digestion of chicken manure (CM) and corn stover (CS) is an efficient method to treat these agricultural wastes, the microbial ecology of these systems and optimal parameters for the digestion process are yet to be determined. In this study, the effects of different initial substrate concentrations and CS : CM mixture ratios on co-digestion and microbial community structure were evaluated. Results demonstrated that both the highest cumulative methane yields and methane production rates were obtained from reactors with a CS : CM ratio of 1 : 1 during hemi-solid-state anaerobic digestion (HSS-AD). Cumulative methane yields and methane production rates were 24.8% and 42% lower in solid-state anaerobic digestion (SS-AD) reactors using the same CS : CM ratios. Analysis of microbial community structures revealed that cellulolytic bacteria and a diversity of syntrophic microorganisms capable of direct interspecies electron transfer (DIET) and hydrogen interspecies transfer (HIT) were enriched in the best-performing reactors. Methanosarcina species also dominated during HSS-AD, and their presence was positively correlated with methane production in the reactors.
Collapse
Affiliation(s)
- Yilong Yan
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, College of Environmental Science & Engineering, Beijing Forestry University 35 Tsinghua East Road Beijing 100083 China
| | - Ziwen Du
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, College of Environmental Science & Engineering, Beijing Forestry University 35 Tsinghua East Road Beijing 100083 China
| | - Liqiu Zhang
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, College of Environmental Science & Engineering, Beijing Forestry University 35 Tsinghua East Road Beijing 100083 China
| | - Li Feng
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, College of Environmental Science & Engineering, Beijing Forestry University 35 Tsinghua East Road Beijing 100083 China
| | - Dezhi Sun
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, College of Environmental Science & Engineering, Beijing Forestry University 35 Tsinghua East Road Beijing 100083 China
| | - Yan Dang
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, College of Environmental Science & Engineering, Beijing Forestry University 35 Tsinghua East Road Beijing 100083 China
| | - Dawn E Holmes
- Department of Physical and Biological Sciences, Western New England University 1215 Wilbraham Road Springfield Massachusetts 01119 USA
| | - Jessica A Smith
- Department of Biomolecular Sciences, Central Connecticut State University 1615 Stanley Street New Britain CT 06050 USA
| |
Collapse
|
50
|
Zhang L, Ban Q, Li J, Wan C. Functional bacterial and archaeal dynamics dictated by pH stress during sugar refinery wastewater in a UASB. BIORESOURCE TECHNOLOGY 2019; 288:121464. [PMID: 31129516 DOI: 10.1016/j.biortech.2019.121464] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 05/09/2019] [Accepted: 05/11/2019] [Indexed: 06/09/2023]
Abstract
The operation performance and microbial mechanisms by pH stress were investigated during anaerobic digestion of sugar refinery wastewater in a upflow anaerobic sludge blanket (UASB) reactor to clarify correlations between pH stress, microbial community and process efficiency. Results showed that the COD removal and methane yield were respectively reduced by 24.8% and 25.3% as pH decreased to 5.0. pH decrease resulted in the composition of dominant fermentative acidogenic bacteria was changed to Butyricicoccus, Lactococcus, Brooklawnia, Armatimonadetes_gp2 and Megasphaera from Prevotella, Streptococcus, Acidaminococcus and Megasphaera, causing an increase in propionate production. In addition, the growth of propionate-oxidizing bacteria was also inhibited at pH 5.0, leading the propionate was accumulated, and then reduced the process efficiency. Methane was mainly produced through acetate cleavage by Methanosaeta during the whole operational period of UASB. pH decrease blocked the metabolic balance and community structure between different trophic groups, resulting in the decrease in reactor performance.
Collapse
Affiliation(s)
- Liguo Zhang
- College of Environmental and Resource Sciences, Shanxi University, Taiyuan 030006, PR China
| | - Qiaoying Ban
- College of Environmental and Resource Sciences, Shanxi University, Taiyuan 030006, PR China
| | - Jianzheng Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Chunli Wan
- Department of Environmental Science and Engineering, Fudan University, Handan Road, Shanghai 200433, PR China.
| |
Collapse
|